
(old) htmldiff from- (new)

Proprietary Notice
This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent applications. No
part of this document may be reproduced in any form by any means without the express prior written permission of
Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this
document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit
others to use the information for the purposes of determining whether implementations infringe any third party
patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and
has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or
other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF
THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document
or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner”
in reference to Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict
between the English version of this document and any translation, the terms of the English version of the Agreement
shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or
its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document
may be the trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © 20222021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349 version 21.0)

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

Proprietary Notice

Page 1

(old) htmldiff from- (new)

AArch64 System Registers
ACCDATA_EL1: Accelerator Data

ACTLR_EL1: Auxiliary Control Register (EL1)

ACTLR_EL2: Auxiliary Control Register (EL2)

ACTLR_EL3: Auxiliary Control Register (EL3)

AFSR0_EL1: Auxiliary Fault Status Register 0 (EL1)

AFSR0_EL2: Auxiliary Fault Status Register 0 (EL2)

AFSR0_EL3: Auxiliary Fault Status Register 0 (EL3)

AFSR1_EL1: Auxiliary Fault Status Register 1 (EL1)

AFSR1_EL2: Auxiliary Fault Status Register 1 (EL2)

AFSR1_EL3: Auxiliary Fault Status Register 1 (EL3)

AIDR_EL1: Auxiliary ID Register

ALLINT: All Interrupt Mask Bit

AMAIR_EL1: Auxiliary Memory Attribute Indirection Register (EL1)

AMAIR_EL2: Auxiliary Memory Attribute Indirection Register (EL2)

AMAIR_EL3: Auxiliary Memory Attribute Indirection Register (EL3)

AMCFGR_EL0: Activity Monitors Configuration Register

AMCG1IDR_EL0: Activity Monitors Counter Group 1 Identification Register

AMCGCR_EL0: Activity Monitors Counter Group Configuration Register

AMCNTENCLR0_EL0: Activity Monitors Count Enable Clear Register 0

AMCNTENCLR1_EL0: Activity Monitors Count Enable Clear Register 1

AMCNTENSET0_EL0: Activity Monitors Count Enable Set Register 0

AMCNTENSET1_EL0: Activity Monitors Count Enable Set Register 1

AMCR_EL0: Activity Monitors Control Register

AMEVCNTR0<n>_EL0: Activity Monitors Event Counter Registers 0

AMEVCNTR1<n>_EL0: Activity Monitors Event Counter Registers 1

AMEVCNTVOFF0<n>_EL2: Activity Monitors Event Counter Virtual Offset Registers 0

AMEVCNTVOFF1<n>_EL2: Activity Monitors Event Counter Virtual Offset Registers 1

AMEVTYPER0<n>_EL0: Activity Monitors Event Type Registers 0

AMEVTYPER1<n>_EL0: Activity Monitors Event Type Registers 1

AMUSERENR_EL0: Activity Monitors User Enable Register

APDAKeyHi_EL1: Pointer Authentication Key A for Data (bits[127:64])

APDAKeyLo_EL1: Pointer Authentication Key A for Data (bits[63:0])

APDBKeyHi_EL1: Pointer Authentication Key B for Data (bits[127:64])

AArch64 System Registers

Page 2

APDBKeyLo_EL1: Pointer Authentication Key B for Data (bits[63:0])

APGAKeyHi_EL1: Pointer Authentication Key A for Code (bits[127:64])

APGAKeyLo_EL1: Pointer Authentication Key A for Code (bits[63:0])

APIAKeyHi_EL1: Pointer Authentication Key A for Instruction (bits[127:64])

APIAKeyLo_EL1: Pointer Authentication Key A for Instruction (bits[63:0])

APIBKeyHi_EL1: Pointer Authentication Key B for Instruction (bits[127:64])

APIBKeyLo_EL1: Pointer Authentication Key B for Instruction (bits[63:0])

BRBCR_EL1: Branch Record Buffer Control Register (EL1)

BRBCR_EL2: Branch Record Buffer Control Register (EL2)

BRBFCR_EL1: Branch Record Buffer Function Control Register

BRBIDR0_EL1: Branch Record Buffer ID0 Register

BRBINF<n>_EL1: Branch Record Buffer Information Register <n>

BRBINFINJ_EL1: Branch Record Buffer Information Injection Register

BRBSRC<n>_EL1: Branch Record Buffer Source Address Register <n>

BRBSRCINJ_EL1: Branch Record Buffer Source Address Injection Register

BRBTGT<n>_EL1: Branch Record Buffer Target Address Register <n>

BRBTGTINJ_EL1: Branch Record Buffer Target Address Injection Register

BRBTS_EL1: Branch Record Buffer Timestamp Register

CCSIDR2_EL1: Current Cache Size ID Register 2

CCSIDR_EL1: Current Cache Size ID Register

CLIDR_EL1: Cache Level ID Register

CNTFRQ_EL0: Counter-timer Frequency register

CNTHCTL_EL2: Counter-timer Hypervisor Control register

CNTHPS_CTL_EL2: Counter-timer Secure Physical Timer Control register (EL2)

CNTHPS_CVAL_EL2: Counter-timer Secure Physical Timer CompareValue register (EL2)

CNTHPS_TVAL_EL2: Counter-timer Secure Physical Timer TimerValue register (EL2)

CNTHP_CTL_EL2: Counter-timer Hypervisor Physical Timer Control register

CNTHP_CVAL_EL2: Counter-timer Physical Timer CompareValue register (EL2)

CNTHP_TVAL_EL2: Counter-timer Physical Timer TimerValue register (EL2)

CNTHVS_CTL_EL2: Counter-timer Secure Virtual Timer Control register (EL2)

CNTHVS_CVAL_EL2: Counter-timer Secure Virtual Timer CompareValue register (EL2)

CNTHVS_TVAL_EL2: Counter-timer Secure Virtual Timer TimerValue register (EL2)

CNTHV_CTL_EL2: Counter-timer Virtual Timer Control register (EL2)

CNTHV_CVAL_EL2: Counter-timer Virtual Timer CompareValue register (EL2)

CNTHV_TVAL_EL2: Counter-timer Virtual Timer TimerValue Register (EL2)

CNTKCTL_EL1: Counter-timer Kernel Control register

AArch64 System Registers

Page 3

CNTPCTSS_EL0: Counter-timer Self-Synchronized Physical Count register

CNTPCT_EL0: Counter-timer Physical Count register

CNTPOFF_EL2: Counter-timer Physical Offset register

CNTPS_CTL_EL1: Counter-timer Physical Secure Timer Control register

CNTPS_CVAL_EL1: Counter-timer Physical Secure Timer CompareValue register

CNTPS_TVAL_EL1: Counter-timer Physical Secure Timer TimerValue register

CNTP_CTL_EL0: Counter-timer Physical Timer Control register

CNTP_CVAL_EL0: Counter-timer Physical Timer CompareValue register

CNTP_TVAL_EL0: Counter-timer Physical Timer TimerValue register

CNTVCTSS_EL0: Counter-timer Self-Synchronized Virtual Count register

CNTVCT_EL0: Counter-timer Virtual Count register

CNTVOFF_EL2: Counter-timer Virtual Offset register

CNTV_CTL_EL0: Counter-timer Virtual Timer Control register

CNTV_CVAL_EL0: Counter-timer Virtual Timer CompareValue register

CNTV_TVAL_EL0: Counter-timer Virtual Timer TimerValue register

CONTEXTIDR_EL1: Context ID Register (EL1)

CONTEXTIDR_EL2: Context ID Register (EL2)

CPACR_EL1: Architectural Feature Access Control Register

CPTR_EL2: Architectural Feature Trap Register (EL2)

CPTR_EL3: Architectural Feature Trap Register (EL3)

CSSELR_EL1: Cache Size Selection Register

CTR_EL0: Cache Type Register

CurrentEL: Current Exception Level

DACR32_EL2: Domain Access Control Register

DAIF: Interrupt Mask Bits

DBGAUTHSTATUS_EL1: Debug Authentication Status register

DBGBCR<n>_EL1: Debug Breakpoint Control Registers

DBGBVR<n>_EL1: Debug Breakpoint Value Registers

DBGCLAIMCLR_EL1: Debug CLAIM Tag Clear register

DBGCLAIMSET_EL1: Debug CLAIM Tag Set register

DBGDTRRX_EL0: Debug Data Transfer Register, Receive

DBGDTRTX_EL0: Debug Data Transfer Register, Transmit

DBGDTR_EL0: Debug Data Transfer Register, half-duplex

DBGPRCR_EL1: Debug Power Control Register

DBGVCR32_EL2: Debug Vector Catch Register

DBGWCR<n>_EL1: Debug Watchpoint Control Registers

AArch64 System Registers

Page 4

DBGWVR<n>_EL1: Debug Watchpoint Value Registers

DCZID_EL0: Data Cache Zero ID register

DISR_EL1: Deferred Interrupt Status Register

DIT: Data Independent Timing

DLR_EL0: Debug Link Register

DSPSR_EL0: Debug Saved Program Status Register

ELR_EL1: Exception Link Register (EL1)

ELR_EL2: Exception Link Register (EL2)

ELR_EL3: Exception Link Register (EL3)

ERRIDR_EL1: Error Record ID Register

ERRSELR_EL1: Error Record Select Register

ERXADDR_EL1: Selected Error Record Address Register

ERXCTLR_EL1: Selected Error Record Control Register

ERXFR_EL1: Selected Error Record Feature Register

ERXMISC0_EL1: Selected Error Record Miscellaneous Register 0

ERXMISC1_EL1: Selected Error Record Miscellaneous Register 1

ERXMISC2_EL1: Selected Error Record Miscellaneous Register 2

ERXMISC3_EL1: Selected Error Record Miscellaneous Register 3

ERXPFGCDN_EL1: Selected Pseudo-fault Generation Countdown register

ERXPFGCTL_EL1: Selected Pseudo-fault Generation Control register

ERXPFGF_EL1: Selected Pseudo-fault Generation Feature register

ERXSTATUS_EL1: Selected Error Record Primary Status Register

ESR_EL1: Exception Syndrome Register (EL1)

ESR_EL2: Exception Syndrome Register (EL2)

ESR_EL3: Exception Syndrome Register (EL3)

FAR_EL1: Fault Address Register (EL1)

FAR_EL2: Fault Address Register (EL2)

FAR_EL3: Fault Address Register (EL3)

FPCR: Floating-point Control Register

FPEXC32_EL2: Floating-Point Exception Control register

FPSR: Floating-point Status Register

GCR_EL1: Tag Control Register.

GMID_EL1: Multiple tag transfer ID register

GPCCR_EL3: Granule Protection Check Control Register (EL3)

GPTBR_EL3: Granule Protection Table Base Register

HACR_EL2: Hypervisor Auxiliary Control Register

AArch64 System Registers

Page 5

HAFGRTR_EL2: Hypervisor Activity Monitors Fine-Grained Read Trap Register

HCRX_EL2: Extended Hypervisor Configuration Register

HCR_EL2: Hypervisor Configuration Register

HDFGRTR_EL2: Hypervisor Debug Fine-Grained Read Trap Register

HDFGWTR_EL2: Hypervisor Debug Fine-Grained Write Trap Register

HFGITR_EL2: Hypervisor Fine-Grained Instruction Trap Register

HFGRTR_EL2: Hypervisor Fine-Grained Read Trap Register

HFGWTR_EL2: Hypervisor Fine-Grained Write Trap Register

HPFAR_EL2: Hypervisor IPA Fault Address Register

HSTR_EL2: Hypervisor System Trap Register

ICC_AP0R<n>_EL1: Interrupt Controller Active Priorities Group 0 Registers

ICC_AP1R<n>_EL1: Interrupt Controller Active Priorities Group 1 Registers

ICC_ASGI1R_EL1: Interrupt Controller Alias Software Generated Interrupt Group 1 Register

ICC_BPR0_EL1: Interrupt Controller Binary Point Register 0

ICC_BPR1_EL1: Interrupt Controller Binary Point Register 1

ICC_CTLR_EL1: Interrupt Controller Control Register (EL1)

ICC_CTLR_EL3: Interrupt Controller Control Register (EL3)

ICC_DIR_EL1: Interrupt Controller Deactivate Interrupt Register

ICC_EOIR0_EL1: Interrupt Controller End Of Interrupt Register 0

ICC_EOIR1_EL1: Interrupt Controller End Of Interrupt Register 1

ICC_HPPIR0_EL1: Interrupt Controller Highest Priority Pending Interrupt Register 0

ICC_HPPIR1_EL1: Interrupt Controller Highest Priority Pending Interrupt Register 1

ICC_IAR0_EL1: Interrupt Controller Interrupt Acknowledge Register 0

ICC_IAR1_EL1: Interrupt Controller Interrupt Acknowledge Register 1

ICC_IGRPEN0_EL1: Interrupt Controller Interrupt Group 0 Enable register

ICC_IGRPEN1_EL1: Interrupt Controller Interrupt Group 1 Enable register

ICC_IGRPEN1_EL3: Interrupt Controller Interrupt Group 1 Enable register (EL3)

ICC_NMIAR1_EL1: Interrupt Controller Non-maskable Interrupt Acknowledge Register 1

ICC_PMR_EL1: Interrupt Controller Interrupt Priority Mask Register

ICC_RPR_EL1: Interrupt Controller Running Priority Register

ICC_SGI0R_EL1: Interrupt Controller Software Generated Interrupt Group 0 Register

ICC_SGI1R_EL1: Interrupt Controller Software Generated Interrupt Group 1 Register

ICC_SRE_EL1: Interrupt Controller System Register Enable register (EL1)

ICC_SRE_EL2: Interrupt Controller System Register Enable register (EL2)

ICC_SRE_EL3: Interrupt Controller System Register Enable register (EL3)

ICH_AP0R<n>_EL2: Interrupt Controller Hyp Active Priorities Group 0 Registers

AArch64 System Registers

Page 6

ICH_AP1R<n>_EL2: Interrupt Controller Hyp Active Priorities Group 1 Registers

ICH_EISR_EL2: Interrupt Controller End of Interrupt Status Register

ICH_ELRSR_EL2: Interrupt Controller Empty List Register Status Register

ICH_HCR_EL2: Interrupt Controller Hyp Control Register

ICH_LR<n>_EL2: Interrupt Controller List Registers

ICH_MISR_EL2: Interrupt Controller Maintenance Interrupt State Register

ICH_VMCR_EL2: Interrupt Controller Virtual Machine Control Register

ICH_VTR_EL2: Interrupt Controller VGIC Type Register

ICV_AP0R<n>_EL1: Interrupt Controller Virtual Active Priorities Group 0 Registers

ICV_AP1R<n>_EL1: Interrupt Controller Virtual Active Priorities Group 1 Registers

ICV_BPR0_EL1: Interrupt Controller Virtual Binary Point Register 0

ICV_BPR1_EL1: Interrupt Controller Virtual Binary Point Register 1

ICV_CTLR_EL1: Interrupt Controller Virtual Control Register

ICV_DIR_EL1: Interrupt Controller Deactivate Virtual Interrupt Register

ICV_EOIR0_EL1: Interrupt Controller Virtual End Of Interrupt Register 0

ICV_EOIR1_EL1: Interrupt Controller Virtual End Of Interrupt Register 1

ICV_HPPIR0_EL1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

ICV_HPPIR1_EL1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

ICV_IAR0_EL1: Interrupt Controller Virtual Interrupt Acknowledge Register 0

ICV_IAR1_EL1: Interrupt Controller Virtual Interrupt Acknowledge Register 1

ICV_IGRPEN0_EL1: Interrupt Controller Virtual Interrupt Group 0 Enable register

ICV_IGRPEN1_EL1: Interrupt Controller Virtual Interrupt Group 1 Enable register

ICV_NMIAR1_EL1: Interrupt Controller Virtual Non-maskable Interrupt Acknowledge Register 1

ICV_PMR_EL1: Interrupt Controller Virtual Interrupt Priority Mask Register

ICV_RPR_EL1: Interrupt Controller Virtual Running Priority Register

ID_AA64AFR0_EL1: AArch64 Auxiliary Feature Register 0

ID_AA64AFR1_EL1: AArch64 Auxiliary Feature Register 1

ID_AA64DFR0_EL1: AArch64 Debug Feature Register 0

ID_AA64DFR1_EL1: AArch64 Debug Feature Register 1

ID_AA64ISAR0_EL1: AArch64 Instruction Set Attribute Register 0

ID_AA64ISAR1_EL1: AArch64 Instruction Set Attribute Register 1

ID_AA64ISAR2_EL1: AArch64 Instruction Set Attribute Register 2

ID_AA64MMFR0_EL1: AArch64 Memory Model Feature Register 0

ID_AA64MMFR1_EL1: AArch64 Memory Model Feature Register 1

ID_AA64MMFR2_EL1: AArch64 Memory Model Feature Register 2

ID_AA64PFR0_EL1: AArch64 Processor Feature Register 0

AArch64 System Registers

Page 7

ID_AA64PFR1_EL1: AArch64 Processor Feature Register 1

ID_AA64SMFR0_EL1: SME Feature ID register 0

ID_AA64ZFR0_EL1: SVE Feature ID register 0

ID_AFR0_EL1: AArch32 Auxiliary Feature Register 0

ID_DFR0_EL1: AArch32 Debug Feature Register 0

ID_DFR1_EL1: Debug Feature Register 1

ID_ISAR0_EL1: AArch32 Instruction Set Attribute Register 0

ID_ISAR1_EL1: AArch32 Instruction Set Attribute Register 1

ID_ISAR2_EL1: AArch32 Instruction Set Attribute Register 2

ID_ISAR3_EL1: AArch32 Instruction Set Attribute Register 3

ID_ISAR4_EL1: AArch32 Instruction Set Attribute Register 4

ID_ISAR5_EL1: AArch32 Instruction Set Attribute Register 5

ID_ISAR6_EL1: AArch32 Instruction Set Attribute Register 6

ID_MMFR0_EL1: AArch32 Memory Model Feature Register 0

ID_MMFR1_EL1: AArch32 Memory Model Feature Register 1

ID_MMFR2_EL1: AArch32 Memory Model Feature Register 2

ID_MMFR3_EL1: AArch32 Memory Model Feature Register 3

ID_MMFR4_EL1: AArch32 Memory Model Feature Register 4

ID_MMFR5_EL1: AArch32 Memory Model Feature Register 5

ID_PFR0_EL1: AArch32 Processor Feature Register 0

ID_PFR1_EL1: AArch32 Processor Feature Register 1

ID_PFR2_EL1: AArch32 Processor Feature Register 2

IFSR32_EL2: Instruction Fault Status Register (EL2)

ISR_EL1: Interrupt Status Register

LORC_EL1: LORegion Control (EL1)

LOREA_EL1: LORegion End Address (EL1)

LORID_EL1: LORegionID (EL1)

LORN_EL1: LORegion Number (EL1)

LORSA_EL1: LORegion Start Address (EL1)

MAIR_EL1: Memory Attribute Indirection Register (EL1)

MAIR_EL2: Memory Attribute Indirection Register (EL2)

MAIR_EL3: Memory Attribute Indirection Register (EL3)

MDCCINT_EL1: Monitor DCC Interrupt Enable Register

MDCCSR_EL0: Monitor DCC Status Register

MDCR_EL2: Monitor Debug Configuration Register (EL2)

MDCR_EL3: Monitor Debug Configuration Register (EL3)

AArch64 System Registers

Page 8

MDRAR_EL1: Monitor Debug ROM Address Register

MDSCR_EL1: Monitor Debug System Control Register

MFAR_EL3: PA Fault Address Register

MIDR_EL1: Main ID Register

MPAM0_EL1: MPAM0 Register (EL1)

MPAM1_EL1: MPAM1 Register (EL1)

MPAM2_EL2: MPAM2 Register (EL2)

MPAM3_EL3: MPAM3 Register (EL3)

MPAMHCR_EL2: MPAM Hypervisor Control Register (EL2)

MPAMIDR_EL1: MPAM ID Register (EL1)

MPAMSM_EL1: MPAM Streaming Mode Register

MPAMVPM0_EL2: MPAM Virtual PARTID Mapping Register 0

MPAMVPM1_EL2: MPAM Virtual PARTID Mapping Register 1

MPAMVPM2_EL2: MPAM Virtual PARTID Mapping Register 2

MPAMVPM3_EL2: MPAM Virtual PARTID Mapping Register 3

MPAMVPM4_EL2: MPAM Virtual PARTID Mapping Register 4

MPAMVPM5_EL2: MPAM Virtual PARTID Mapping Register 5

MPAMVPM6_EL2: MPAM Virtual PARTID Mapping Register 6

MPAMVPM7_EL2: MPAM Virtual PARTID Mapping Register 7

MPAMVPMV_EL2: MPAM Virtual Partition Mapping Valid Register

MPIDR_EL1: Multiprocessor Affinity Register

MVFR0_EL1: AArch32 Media and VFP Feature Register 0

MVFR1_EL1: AArch32 Media and VFP Feature Register 1

MVFR2_EL1: AArch32 Media and VFP Feature Register 2

NZCV: Condition Flags

OSDLR_EL1: OS Double Lock Register

OSDTRRX_EL1: OS Lock Data Transfer Register, Receive

OSDTRTX_EL1: OS Lock Data Transfer Register, Transmit

OSECCR_EL1: OS Lock Exception Catch Control Register

OSLAR_EL1: OS Lock Access Register

OSLSR_EL1: OS Lock Status Register

PAN: Privileged Access Never

PAR_EL1: Physical Address Register

PMBIDR_EL1: Profiling Buffer ID Register

PMBLIMITR_EL1: Profiling Buffer Limit Address Register

PMBPTR_EL1: Profiling Buffer Write Pointer Register

AArch64 System Registers

Page 9

PMBSR_EL1: Profiling Buffer Status/syndrome Register

PMCCFILTR_EL0: Performance Monitors Cycle Count Filter Register

PMCCNTR_EL0: Performance Monitors Cycle Count Register

PMCEID0_EL0: Performance Monitors Common Event Identification register 0

PMCEID1_EL0: Performance Monitors Common Event Identification register 1

PMCNTENCLR_EL0: Performance Monitors Count Enable Clear register

PMCNTENSET_EL0: Performance Monitors Count Enable Set register

PMCR_EL0: Performance Monitors Control Register

PMEVCNTR<n>_EL0: Performance Monitors Event Count Registers

PMEVTYPER<n>_EL0: Performance Monitors Event Type Registers

PMINTENCLR_EL1: Performance Monitors Interrupt Enable Clear register

PMINTENSET_EL1: Performance Monitors Interrupt Enable Set register

PMMIR_EL1: Performance Monitors Machine Identification Register

PMOVSCLR_EL0: Performance Monitors Overflow Flag Status Clear Register

PMOVSSET_EL0: Performance Monitors Overflow Flag Status Set register

PMSCR_EL1: Statistical Profiling Control Register (EL1)

PMSCR_EL2: Statistical Profiling Control Register (EL2)

PMSELR_EL0: Performance Monitors Event Counter Selection Register

PMSEVFR_EL1: Sampling Event Filter Register

PMSFCR_EL1: Sampling Filter Control Register

PMSICR_EL1: Sampling Interval Counter Register

PMSIDR_EL1: Sampling Profiling ID Register

PMSIRR_EL1: Sampling Interval Reload Register

PMSLATFR_EL1: Sampling Latency Filter Register

PMSNEVFR_EL1: Sampling Inverted Event Filter Register

PMSWINC_EL0: Performance Monitors Software Increment register

PMUSERENR_EL0: Performance Monitors User Enable Register

PMXEVCNTR_EL0: Performance Monitors Selected Event Count Register

PMXEVTYPER_EL0: Performance Monitors Selected Event Type Register

REVIDR_EL1: Revision ID Register

RGSR_EL1: Random Allocation Tag Seed Register.

RMR_EL1: Reset Management Register (EL1)

RMR_EL2: Reset Management Register (EL2)

RMR_EL3: Reset Management Register (EL3)

RNDR: Random Number

RNDRRS: Reseeded Random Number

AArch64 System Registers

Page 10

RVBAR_EL1: Reset Vector Base Address Register (if EL2 and EL3 not implemented)

RVBAR_EL2: Reset Vector Base Address Register (if EL3 not implemented)

RVBAR_EL3: Reset Vector Base Address Register (if EL3 implemented)

S3_<op1>_<Cn>_<Cm>_<op2>: IMPLEMENTATION DEFINED registers

SCR_EL3: Secure Configuration Register

SCTLR_EL1: System Control Register (EL1)

SCTLR_EL2: System Control Register (EL2)

SCTLR_EL3: System Control Register (EL3)

SCXTNUM_EL0: EL0 Read/Write Software Context Number

SCXTNUM_EL1: EL1 Read/Write Software Context Number

SCXTNUM_EL2: EL2 Read/Write Software Context Number

SCXTNUM_EL3: EL3 Read/Write Software Context Number

SDER32_EL2: AArch32 Secure Debug Enable Register

SDER32_EL3: AArch32 Secure Debug Enable Register

SMCR_EL1: SME Control Register (EL1)

SMCR_EL2: SME Control Register (EL2)

SMCR_EL3: SME Control Register (EL3)

SMIDR_EL1: Streaming Mode Identification Register

SMPRIMAP_EL2: Streaming Mode Priority Mapping Register

SMPRI_EL1: Streaming Mode Priority Register

SPSel: Stack Pointer Select

SPSR_abt: Saved Program Status Register (Abort mode)

SPSR_EL1: Saved Program Status Register (EL1)

SPSR_EL2: Saved Program Status Register (EL2)

SPSR_EL3: Saved Program Status Register (EL3)

SPSR_fiq: Saved Program Status Register (FIQ mode)

SPSR_irq: Saved Program Status Register (IRQ mode)

SPSR_und: Saved Program Status Register (Undefined mode)

SP_EL0: Stack Pointer (EL0)

SP_EL1: Stack Pointer (EL1)

SP_EL2: Stack Pointer (EL2)

SP_EL3: Stack Pointer (EL3)

SSBS: Speculative Store Bypass Safe

SVCR: Streaming Vector Control Register

TCO: Tag Check Override

TCR_EL1: Translation Control Register (EL1)

AArch64 System Registers

Page 11

TCR_EL2: Translation Control Register (EL2)

TCR_EL3: Translation Control Register (EL3)

TFSRE0_EL1: Tag Fault Status Register (EL0).

TFSR_EL1: Tag Fault Status Register (EL1)

TFSR_EL2: Tag Fault Status Register (EL2)

TFSR_EL3: Tag Fault Status Register (EL3)

TPIDR2_EL0: EL0 Read/Write Software Thread ID Register 2

TPIDRRO_EL0: EL0 Read-Only Software Thread ID Register

TPIDR_EL0: EL0 Read/Write Software Thread ID Register

TPIDR_EL1: EL1 Software Thread ID Register

TPIDR_EL2: EL2 Software Thread ID Register

TPIDR_EL3: EL3 Software Thread ID Register

TRBBASER_EL1: Trace Buffer Base Address Register

TRBIDR_EL1: Trace Buffer ID Register

TRBLIMITR_EL1: Trace Buffer Limit Address Register

TRBMAR_EL1: Trace Buffer Memory Attribute Register

TRBPTR_EL1: Trace Buffer Write Pointer Register

TRBSR_EL1: Trace Buffer Status/syndrome Register

TRBTRG_EL1: Trace Buffer Trigger Counter Register

TRCACATR<n>: Address Comparator Access Type Register <n>

TRCACVR<n>: Address Comparator Value Register <n>

TRCAUTHSTATUS: Authentication Status Register

TRCAUXCTLR: Auxiliary Control Register

TRCBBCTLR: Branch Broadcast Control Register

TRCCCCTLR: Cycle Count Control Register

TRCCIDCCTLR0: Context Identifier Comparator Control Register 0

TRCCIDCCTLR1: Context Identifier Comparator Control Register 1

TRCCIDCVR<n>: Context Identifier Comparator Value Registers <n>

TRCCLAIMCLR: Claim Tag Clear Register

TRCCLAIMSET: Claim Tag Set Register

TRCCNTCTLR<n>: Counter Control Register <n>

TRCCNTRLDVR<n>: Counter Reload Value Register <n>

TRCCNTVR<n>: Counter Value Register <n>

TRCCONFIGR: Trace Configuration Register

TRCDEVARCH: Device Architecture Register

TRCDEVID: Device Configuration Register

AArch64 System Registers

Page 12

TRCEVENTCTL0R: Event Control 0 Register

TRCEVENTCTL1R: Event Control 1 Register

TRCEXTINSELR<n>: External Input Select Register <n>

TRCIDR0: ID Register 0

TRCIDR1: ID Register 1

TRCIDR10: ID Register 10

TRCIDR11: ID Register 11

TRCIDR12: ID Register 12

TRCIDR13: ID Register 13

TRCIDR2: ID Register 2

TRCIDR3: ID Register 3

TRCIDR4: ID Register 4

TRCIDR5: ID Register 5

TRCIDR6: ID Register 6

TRCIDR7: ID Register 7

TRCIDR8: ID Register 8

TRCIDR9: ID Register 9

TRCIMSPEC0: IMP DEF Register 0

TRCIMSPEC<n>: IMP DEF Register <n>

TRCOSLSR: Trace OS Lock Status Register

TRCPRGCTLR: Programming Control Register

TRCQCTLR: Q Element Control Register

TRCRSCTLR<n>: Resource Selection Control Register <n>

TRCRSR: Resources Status Register

TRCSEQEVR<n>: Sequencer State Transition Control Register <n>

TRCSEQRSTEVR: Sequencer Reset Control Register

TRCSEQSTR: Sequencer State Register

TRCSSCCR<n>: Single-shot Comparator Control Register <n>

TRCSSCSR<n>: Single-shot Comparator Control Status Register <n>

TRCSSPCICR<n>: Single-shot Processing Element Comparator Input Control Register <n>

TRCSTALLCTLR: Stall Control Register

TRCSTATR: Trace Status Register

TRCSYNCPR: Synchronization Period Register

TRCTRACEIDR: Trace ID Register

TRCTSCTLR: Timestamp Control Register

TRCVICTLR: ViewInst Main Control Register

AArch64 System Registers

Page 13

TRCVIIECTLR: ViewInst Include/Exclude Control Register

TRCVIPCSSCTLR: ViewInst Start/Stop PE Comparator Control Register

TRCVISSCTLR: ViewInst Start/Stop Control Register

TRCVMIDCCTLR0: Virtual Context Identifier Comparator Control Register 0

TRCVMIDCCTLR1: Virtual Context Identifier Comparator Control Register 1

TRCVMIDCVR<n>: Virtual Context Identifier Comparator Value Register <n>

TRFCR_EL1: Trace Filter Control Register (EL1)

TRFCR_EL2: Trace Filter Control Register (EL2)

TTBR0_EL1: Translation Table Base Register 0 (EL1)

TTBR0_EL2: Translation Table Base Register 0 (EL2)

TTBR0_EL3: Translation Table Base Register 0 (EL3)

TTBR1_EL1: Translation Table Base Register 1 (EL1)

TTBR1_EL2: Translation Table Base Register 1 (EL2)

UAO: User Access Override

VBAR_EL1: Vector Base Address Register (EL1)

VBAR_EL2: Vector Base Address Register (EL2)

VBAR_EL3: Vector Base Address Register (EL3)

VDISR_EL2: Virtual Deferred Interrupt Status Register

VMPIDR_EL2: Virtualization Multiprocessor ID Register

VNCR_EL2: Virtual Nested Control Register

VPIDR_EL2: Virtualization Processor ID Register

VSESR_EL2: Virtual SError Exception Syndrome Register

VSTCR_EL2: Virtualization Secure Translation Control Register

VSTTBR_EL2: Virtualization Secure Translation Table Base Register

VTCR_EL2: Virtualization Translation Control Register

VTTBR_EL2: Virtualization Translation Table Base Register

ZCR_EL1: SVE Control Register (EL1)

ZCR_EL2: SVE Control Register (EL2)

ZCR_EL3: SVE Control Register (EL3)

3021/03/2022 2017:3305

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AArch64 System Registers

Page 14

(old) htmldiff from- (new)

AArch64 System Instructions
AT S12E0R: Address Translate Stages 1 and 2 EL0 Read

AT S12E0W: Address Translate Stages 1 and 2 EL0 Write

AT S12E1R: Address Translate Stages 1 and 2 EL1 Read

AT S12E1W: Address Translate Stages 1 and 2 EL1 Write

AT S1E0R: Address Translate Stage 1 EL0 Read

AT S1E0W: Address Translate Stage 1 EL0 Write

AT S1E1R: Address Translate Stage 1 EL1 Read

AT S1E1RP: Address Translate Stage 1 EL1 Read PAN

AT S1E1W: Address Translate Stage 1 EL1 Write

AT S1E1WP: Address Translate Stage 1 EL1 Write PAN

AT S1E2R: Address Translate Stage 1 EL2 Read

AT S1E2W: Address Translate Stage 1 EL2 Write

AT S1E3R: Address Translate Stage 1 EL3 Read

AT S1E3W: Address Translate Stage 1 EL3 Write

BRB IALL: Invalidate the Branch Record Buffer

BRB INJ: Branch Record Injection into the Branch Record Buffer

CFP RCTX: Control Flow Prediction Restriction by Context

CPP RCTX: Cache Prefetch Prediction Restriction by Context

DC CGDSW: Clean of Data and Allocation Tags by Set/Way

DC CGDVAC: Clean of Data and Allocation Tags by VA to PoC

DC CGDVADP: Clean of Data and Allocation Tags by VA to PoDP

DC CGDVAP: Clean of Data and Allocation Tags by VA to PoP

DC CGSW: Clean of Allocation Tags by Set/Way

DC CGVAC: Clean of Allocation Tags by VA to PoC

DC CGVADP: Clean of Allocation Tags by VA to PoDP

DC CGVAP: Clean of Allocation Tags by VA to PoP

DC CIGDPAPA: Clean and Invalidate of Data and Allocation Tags by PA to PoPA

DC CIGDSW: Clean and Invalidate of Data and Allocation Tags by Set/Way

DC CIGDVAC: Clean and Invalidate of Data and Allocation Tags by VA to PoC

DC CIGSW: Clean and Invalidate of Allocation Tags by Set/Way

DC CIGVAC: Clean and Invalidate of Allocation Tags by VA to PoC

DC CIPAPA: Data or unified Cache line Clean and Invalidate by PA to PoPA

DC CISW: Data or unified Cache line Clean and Invalidate by Set/Way

AArch64 System Instructions

Page 15

DC CIVAC: Data or unified Cache line Clean and Invalidate by VA to PoC

DC CSW: Data or unified Cache line Clean by Set/Way

DC CVAC: Data or unified Cache line Clean by VA to PoC

DC CVADP: Data or unified Cache line Clean by VA to PoDP

DC CVAP: Data or unified Cache line Clean by VA to PoP

DC CVAU: Data or unified Cache line Clean by VA to PoU

DC GVA: Data Cache set Allocation Tag by VA

DC GZVA: Data Cache set Allocation Tags and Zero by VA

DC IGDSW: Invalidate of Data and Allocation Tags by Set/Way

DC IGDVAC: Invalidate of Data and Allocation Tags by VA to PoC

DC IGSW: Invalidate of Allocation Tags by Set/Way

DC IGVAC: Invalidate of Allocation Tags by VA to PoC

DC ISW: Data or unified Cache line Invalidate by Set/Way

DC IVAC: Data or unified Cache line Invalidate by VA to PoC

DC ZVA: Data Cache Zero by VA

DVP RCTX: Data Value Prediction Restriction by Context

IC IALLU: Instruction Cache Invalidate All to PoU

IC IALLUIS: Instruction Cache Invalidate All to PoU, Inner Shareable

IC IVAU: Instruction Cache line Invalidate by VA to PoU

SYS S1_<op1>_<Cn>_<Cm>_<op2>, SYSL S1_<op1>_<Cn>_<Cm>_<op2>: IMPLEMENTATION DEFINED
maintenance instructions

TLBI ALLE1, TLBI ALLE1NXS: TLB Invalidate All, EL1

TLBI ALLE1IS, TLBI ALLE1ISNXS: TLB Invalidate All, EL1, Inner Shareable

TLBI ALLE1OS, TLBI ALLE1OSNXS: TLB Invalidate All, EL1, Outer Shareable

TLBI ALLE2, TLBI ALLE2NXS: TLB Invalidate All, EL2

TLBI ALLE2IS, TLBI ALLE2ISNXS: TLB Invalidate All, EL2, Inner Shareable

TLBI ALLE2OS, TLBI ALLE2OSNXS: TLB Invalidate All, EL2, Outer Shareable

TLBI ALLE3, TLBI ALLE3NXS: TLB Invalidate All, EL3

TLBI ALLE3IS, TLBI ALLE3ISNXS: TLB Invalidate All, EL3, Inner Shareable

TLBI ALLE3OS, TLBI ALLE3OSNXS: TLB Invalidate All, EL3, Outer Shareable

TLBI ASIDE1, TLBI ASIDE1NXS: TLB Invalidate by ASID, EL1

TLBI ASIDE1IS, TLBI ASIDE1ISNXS: TLB Invalidate by ASID, EL1, Inner Shareable

TLBI ASIDE1OS, TLBI ASIDE1OSNXS: TLB Invalidate by ASID, EL1, Outer Shareable

TLBI IPAS2E1, TLBI IPAS2E1NXS: TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS: TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner
Shareable

TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS: TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer
Shareable

AArch64 System Instructions

Page 16

TLBI IPAS2LE1, TLBI IPAS2LE1NXS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1,
Inner Shareable

TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1,
Outer Shareable

TLBI PAALL: TLB Invalidate GPT Information by PA, All Entries, Local

TLBI PAALLOS: TLB Invalidate GPT Information by PA, All Entries, Outer Shareable

TLBI RIPAS2E1, TLBI RIPAS2E1NXS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner
Shareable

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1,
Outer Shareable

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1

TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Inner Shareable

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Outer Shareable

TLBI RPALOS: TLB Range Invalidate GPT Information by PA, Last level, Outer Shareable

TLBI RPAOS: TLB Range Invalidate GPT Information by PA, Outer Shareable

TLBI RVAAE1, TLBI RVAAE1NXS: TLB Range Invalidate by VA, All ASID, EL1

TLBI RVAAE1IS, TLBI RVAAE1ISNXS: TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

TLBI RVAAE1OS, TLBI RVAAE1OSNXS: TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

TLBI RVAALE1, TLBI RVAALE1NXS: TLB Range Invalidate by VA, All ASID, Last level, EL1

TLBI RVAALE1IS, TLBI RVAALE1ISNXS: TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

TLBI RVAALE1OS, TLBI RVAALE1OSNXS: TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

TLBI RVAE1, TLBI RVAE1NXS: TLB Range Invalidate by VA, EL1

TLBI RVAE1IS, TLBI RVAE1ISNXS: TLB Range Invalidate by VA, EL1, Inner Shareable

TLBI RVAE1OS, TLBI RVAE1OSNXS: TLB Range Invalidate by VA, EL1, Outer Shareable

TLBI RVAE2, TLBI RVAE2NXS: TLB Range Invalidate by VA, EL2

TLBI RVAE2IS, TLBI RVAE2ISNXS: TLB Range Invalidate by VA, EL2, Inner Shareable

TLBI RVAE2OS, TLBI RVAE2OSNXS: TLB Range Invalidate by VA, EL2, Outer Shareable

TLBI RVAE3, TLBI RVAE3NXS: TLB Range Invalidate by VA, EL3

TLBI RVAE3IS, TLBI RVAE3ISNXS: TLB Range Invalidate by VA, EL3, Inner Shareable

TLBI RVAE3OS, TLBI RVAE3OSNXS: TLB Range Invalidate by VA, EL3, Outer Shareable

TLBI RVALE1, TLBI RVALE1NXS: TLB Range Invalidate by VA, Last level, EL1

TLBI RVALE1IS, TLBI RVALE1ISNXS: TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

TLBI RVALE1OS, TLBI RVALE1OSNXS: TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

TLBI RVALE2, TLBI RVALE2NXS: TLB Range Invalidate by VA, Last level, EL2

TLBI RVALE2IS, TLBI RVALE2ISNXS: TLB Range Invalidate by VA, Last level, EL2, Inner Shareable

AArch64 System Instructions

Page 17

TLBI RVALE2OS, TLBI RVALE2OSNXS: TLB Range Invalidate by VA, Last level, EL2, Outer Shareable

TLBI RVALE3, TLBI RVALE3NXS: TLB Range Invalidate by VA, Last level, EL3

TLBI RVALE3IS, TLBI RVALE3ISNXS: TLB Range Invalidate by VA, Last level, EL3, Inner Shareable

TLBI RVALE3OS, TLBI RVALE3OSNXS: TLB Range Invalidate by VA, Last level, EL3, Outer Shareable

TLBI VAAE1, TLBI VAAE1NXS: TLB Invalidate by VA, All ASID, EL1

TLBI VAAE1IS, TLBI VAAE1ISNXS: TLB Invalidate by VA, All ASID, EL1, Inner Shareable

TLBI VAAE1OS, TLBI VAAE1OSNXS: TLB Invalidate by VA, All ASID, EL1, Outer Shareable

TLBI VAALE1, TLBI VAALE1NXS: TLB Invalidate by VA, All ASID, Last level, EL1

TLBI VAALE1IS, TLBI VAALE1ISNXS: TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

TLBI VAALE1OS, TLBI VAALE1OSNXS: TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

TLBI VAE1, TLBI VAE1NXS: TLB Invalidate by VA, EL1

TLBI VAE1IS, TLBI VAE1ISNXS: TLB Invalidate by VA, EL1, Inner Shareable

TLBI VAE1OS, TLBI VAE1OSNXS: TLB Invalidate by VA, EL1, Outer Shareable

TLBI VAE2, TLBI VAE2NXS: TLB Invalidate by VA, EL2

TLBI VAE2IS, TLBI VAE2ISNXS: TLB Invalidate by VA, EL2, Inner Shareable

TLBI VAE2OS, TLBI VAE2OSNXS: TLB Invalidate by VA, EL2, Outer Shareable

TLBI VAE3, TLBI VAE3NXS: TLB Invalidate by VA, EL3

TLBI VAE3IS, TLBI VAE3ISNXS: TLB Invalidate by VA, EL3, Inner Shareable

TLBI VAE3OS, TLBI VAE3OSNXS: TLB Invalidate by VA, EL3, Outer Shareable

TLBI VALE1, TLBI VALE1NXS: TLB Invalidate by VA, Last level, EL1

TLBI VALE1IS, TLBI VALE1ISNXS: TLB Invalidate by VA, Last level, EL1, Inner Shareable

TLBI VALE1OS, TLBI VALE1OSNXS: TLB Invalidate by VA, Last level, EL1, Outer Shareable

TLBI VALE2, TLBI VALE2NXS: TLB Invalidate by VA, Last level, EL2

TLBI VALE2IS, TLBI VALE2ISNXS: TLB Invalidate by VA, Last level, EL2, Inner Shareable

TLBI VALE2OS, TLBI VALE2OSNXS: TLB Invalidate by VA, Last level, EL2, Outer Shareable

TLBI VALE3, TLBI VALE3NXS: TLB Invalidate by VA, Last level, EL3

TLBI VALE3IS, TLBI VALE3ISNXS: TLB Invalidate by VA, Last level, EL3, Inner Shareable

TLBI VALE3OS, TLBI VALE3OSNXS: TLB Invalidate by VA, Last level, EL3, Outer Shareable

TLBI VMALLE1, TLBI VMALLE1NXS: TLB Invalidate by VMID, All at stage 1, EL1

TLBI VMALLE1IS, TLBI VMALLE1ISNXS: TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable

TLBI VMALLE1OS, TLBI VMALLE1OSNXS: TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable

TLBI VMALLS12E1, TLBI VMALLS12E1NXS: TLB Invalidate by VMID, All at Stage 1 and 2, EL1

TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS: TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable

TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS: TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Outer
Shareable

3021/03/2022 2017:3305

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AArch64 System Instructions

Page 18

(old) htmldiff from- (new)

AArch64 System Instructions

Page 19

(old) htmldiff from- (new)

CCSIDR_EL1, Current Cache Size ID Register
The CCSIDR_EL1 characteristics are:

Purpose
Provides information about the architecture of the currently selected cache.

Configuration
AArch64 System register CCSIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
CCSIDR[31:0].

AArch64 System register CCSIDR_EL1 bits [63:32] are architecturally mapped to AArch32 System register
CCSIDR2[31:0].

The implementation includes one CCSIDR_EL1 for each cache that it can access. CSSELR_EL1 selects which Cache
Size ID Register is accessible.

Attributes
CCSIDR_EL1 is a 64-bit register.

Field descriptions

When FEAT_CCIDX is implemented:
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 NumSets
RES0 Associativity LineSize

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note

The parameters NumSets, Associativity, and LineSize in these registers define
the architecturally visible parameters that are required for the cache
maintenance by Set/Way instructions. They are not guaranteed to represent
the actual microarchitectural features of a design. You cannot make any
inference about the actual sizes of caches based on these parameters.

Bits [63:56]

Reserved, RES0.

NumSets, bits [55:32]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have
to be a power of 2.

Bits [31:24]

Reserved, RES0.

CCSIDR_EL1, Current Cache Size ID Register

Page 20

AArch32-ccsidr2.html
AArch64-csselr_el1.html

Associativity, bits [23:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to
be a power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

• For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.
• For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

Note

The C++ 17 specification has two defined parameters relating to the
granularity of memory that does not interfere. For generic software and
tools, Arm will set the hardware_destructive_interference_size parameter to
256 bytes and the hardware_constructive_interference_size parameter to
64 bytes.

When FEAT_MTE2 is implemented and enabled, where a cache only holds Allocation tags, this field is RES0.

Otherwise:
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
UNKNOWN NumSets Associativity LineSize

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note

The parameters NumSets, Associativity, and LineSize in these registers define
the architecturally visible parameters that are required for the cache
maintenance by Set/Way instructions. They are not guaranteed to represent
the actual microarchitectural features of a design. You cannot make any
inference about the actual sizes of caches based on these parameters.

Bits [63:32]

Reserved, RES0.

Bits [31:28]

Reserved, UNKNOWN.

NumSets, bits [27:13]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have
to be a power of 2.

Associativity, bits [12:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to
be a power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

• For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.
• For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

CCSIDR_EL1, Current Cache Size ID Register

Page 21

Note

The C++ 17 specification has two defined parameters relating to the
granularity of memory that does not interfere. For generic software and
tools, Arm will set the hardware_destructive_interference_size parameter to
256 bytes and the hardware_constructive_interference_size parameter to
64 bytes.

Accessing CCSIDR_EL1
If CSSELR_EL1.{TnD, Level, InD} is programmed to a cache level that is not implemented, then on a read of the
CCSIDR_EL1 the behavior is CONSTRAINED UNPREDICTABLE, and can be one of the following:

• The CCSIDR_EL1 read is treated as NOP.
• The CCSIDR_EL1 read is UNDEFINED.
• The CCSIDR_EL1 read returns an UNKNOWN value.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CCSIDR_EL1

op0 op1 CRn CRm op2
0b11 0b001 0b0000 0b0000 0b000

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID2 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TID4 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CCSIDR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
X[t, 64] = CCSIDR_EL1;

elsif PSTATE.EL == EL2 then
X[t, 64] = CCSIDR_EL1;

elsif PSTATE.EL == EL3 then
X[t, 64] = CCSIDR_EL1;

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CCSIDR_EL1, Current Cache Size ID Register

Page 22

AArch64-csselr_el1.html

(old) htmldiff from- (new)

CLIDR_EL1, Cache Level ID Register
The CLIDR_EL1 characteristics are:

Purpose
Identifies the type of cache, or caches, that are implemented at each level and can be managed using the architected
cache maintenance instructions that operate by set/way, up to a maximum of seven levels. Also identifies the Level of
Coherence (LoC) and Level of Unification (LoU) for the cache hierarchy.

Configuration
AArch64 System register CLIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register CLIDR[31:0].

Attributes
CLIDR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 Ttype7Ttype6Ttype5Ttype4Ttype3Ttype2Ttype1ICB
ICB LoUU LoC LoUIS Ctype7 Ctype6 Ctype5 Ctype4 Ctype3 Ctype2 Ctype1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:47]

Reserved, RES0.

Ttype<n>, bits [2(n-1)+34:2(n-1)+33], for n = 7 to 1
When FEAT_MTE2 is implemented:

Tag cache type. Indicate the type of cache that is implemented and can be managed using the architected cache
maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of
cache hierarchy.

Ttype<n> Meaning
0b00 No Tag Cache.
0b01 Separate Allocation Tag Cache.
0b10 Unified Allocation Tag and Data cache, Allocation Tags

and Data in unified lines.
0b11 Unified Allocation Tag and Data cache, Allocation Tags

and Data in separate lines.

Otherwise:

Reserved, RES0.

ICB, bits [32:30]

Inner cache boundary. This field indicates the boundary for caching Inner Cacheable memory regions.

CLIDR_EL1, Cache Level ID Register

Page 23

ICB Meaning
0b000 Not disclosed by this mechanism.
0b001 L1 cache is the highest Inner Cacheable level.
0b010 L2 cache is the highest Inner Cacheable level.
0b011 L3 cache is the highest Inner Cacheable level.
0b100 L4 cache is the highest Inner Cacheable level.
0b101 L5 cache is the highest Inner Cacheable level.
0b110 L6 cache is the highest Inner Cacheable level.
0b111 L7 cache is the highest Inner Cacheable level.

LoUU, bits [29:27]

Level of Unification Uniprocessor for the cache hierarchy.

For a description of the values of this field, see Terminology for Clean, Invalidate, and Clean and Invalidate
instructions.

Note

When FEAT_S2FWB is implemented, the architecture requires that this
field is zero so that no levels of data cache need to be cleaned in order to
manage coherency with instruction fetches.

LoC, bits [26:24]

Level of Coherence for the cache hierarchy.

For a description of the values of this field, see Terminology for Clean, Invalidate, and Clean and Invalidate
instructions.

LoUIS, bits [23:21]

Level of Unification Inner Shareable for the cache hierarchy.

For a description of the values of this field, see Terminology for Clean, Invalidate, and Clean and Invalidate
instructions.

Note

When FEAT_S2FWB is implemented, the architecture requires that this
field is zero so that no levels of data cache need to be cleaned in order to
manage coherency with instruction fetches.

Ctype<n>, bits [3(n-1)+2:3(n-1)], for n = 7 to 1

Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache
maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of
cache hierarchy. Possible values of each field are:

Ctype<n> Meaning
0b000 No cache.
0b001 Instruction cache only.
0b010 Data cache only.
0b011 Separate instruction and data caches.
0b100 Unified cache.

All other values are reserved.

If software reads the Cache Type fields from Ctype1 upwards, once it has seen a value of 000, no caches that can
be managed using the architected cache maintenance instructions that operate by set/way exist at further-out
levels of the hierarchy. So, for example, if Ctype3 is the first Cache Type field with a value of 000, the values of
Ctype4 to Ctype7 must be ignored.

CLIDR_EL1, Cache Level ID Register

Page 24

Accessing CLIDR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CLIDR_EL1

op0 op1 CRn CRm op2
0b11 0b001 0b0000 0b0000 0b001

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID2 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TID4 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CLIDR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
X[t, 64] = CLIDR_EL1;

elsif PSTATE.EL == EL2 then
X[t, 64] = CLIDR_EL1;

elsif PSTATE.EL == EL3 then
X[t, 64] = CLIDR_EL1;

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CLIDR_EL1, Cache Level ID Register

Page 25

(old) htmldiff from- (new)

CNTHPS_CTL_EL2, Counter-timer Secure Physical
Timer Control register (EL2)

The CNTHPS_CTL_EL2 characteristics are:

Purpose
Control register for the Secure EL2 physical timer.

Configuration
AArch64 System register CNTHPS_CTL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHPS_CTL[31:0].

This register is present only when FEAT_SEL2 is implemented. Otherwise, direct accesses to CNTHPS_CTL_EL2 are
UNDEFINED.

Attributes
CNTHPS_CTL_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 ISTATUSIMASKENABLE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the CNTHPS_CTL_EL2.ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0
then the timer interrupt is asserted.

When the value of the CNTHPS_CTL_EL2.ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)

Page 26

AArch32-cnthps_ctl.html

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHPS_TVAL_EL2
continues to count down.

Note

Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHPS_CTL_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHPS_CTL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0101 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsCurrentSecurityState(SS_Secure)IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsCurrentSecurityState(SS_Secure)IsSecure() then
UNDEFINED;

else
X[t, 64] = CNTHPS_CTL_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

X[t, 64] = CNTHPS_CTL_EL2;

MSR CNTHPS_CTL_EL2, <Xt>

op0 op1 CRn CRm op2

CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)

Page 27

0b11 0b100 0b1110 0b0101 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsCurrentSecurityState(SS_Secure)IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsCurrentSecurityState(SS_Secure)IsSecure() then
UNDEFINED;

else
CNTHPS_CTL_EL2 = X[t, 64];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

CNTHPS_CTL_EL2 = X[t, 64];

MRS <Xt>, CNTP_CTL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

X[t, 64] = CNTHPS_CTL_EL2;
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

X[t, 64] = CNTHP_CTL_EL2;
else

X[t, 64] = CNTP_CTL_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
X[t, 64] = NVMem[0x180];

else
X[t, 64] = CNTP_CTL_EL0;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

X[t, 64] = CNTHPS_CTL_EL2;
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

X[t, 64] = CNTHP_CTL_EL2;
else

X[t, 64] = CNTP_CTL_EL0;
elsif PSTATE.EL == EL3 then

X[t, 64] = CNTP_CTL_EL0;

CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)

Page 28

MSR CNTP_CTL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CTL_EL2 = X[t, 64];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHP_CTL_EL2 = X[t, 64];
else

CNTP_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x180] = X[t, 64];

else
CNTP_CTL_EL0 = X[t, 64];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CTL_EL2 = X[t, 64];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHP_CTL_EL2 = X[t, 64];
else

CNTP_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then

CNTP_CTL_EL0 = X[t, 64];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)

Page 29

(old) htmldiff from- (new)

CNTHPS_CVAL_EL2, Counter-timer Secure Physical
Timer CompareValue register (EL2)

The CNTHPS_CVAL_EL2 characteristics are:

Purpose
Holds the compare value for the Secure EL2 physical timer.

Configuration
AArch64 System register CNTHPS_CVAL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHPS_CVAL[31:0].

This register is present only when EL2 is implemented and FEAT_SEL2 is implemented. Otherwise, direct accesses to
CNTHPS_CVAL_EL2 are UNDEFINED.

Attributes
CNTHPS_CVAL_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CompareValue) is greater
than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition
is met:

• CNTHPS_CTL_EL2.ISTATUS is set to 1.
• If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at
the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHPS_CVAL_EL2
Accesses to this register use the following encodings in the System register encoding space:

CNTHPS_CVAL_EL2, Counter-timer Secure Physical Timer CompareValue register (EL2)

Page 30

AArch32-cnthps_cval.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html

MRS <Xt>, CNTHPS_CVAL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0101 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsCurrentSecurityState(SS_Secure)IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsCurrentSecurityState(SS_Secure)IsSecure() then
UNDEFINED;

else
X[t, 64] = CNTHPS_CVAL_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

X[t, 64] = CNTHPS_CVAL_EL2;

MSR CNTHPS_CVAL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0101 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsCurrentSecurityState(SS_Secure)IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsCurrentSecurityState(SS_Secure)IsSecure() then
UNDEFINED;

else
CNTHPS_CVAL_EL2 = X[t, 64];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

CNTHPS_CVAL_EL2 = X[t, 64];

MRS <Xt>, CNTP_CVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b010

CNTHPS_CVAL_EL2, Counter-timer Secure Physical Timer CompareValue register (EL2)

Page 31

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

X[t, 64] = CNTHPS_CVAL_EL2;
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

X[t, 64] = CNTHP_CVAL_EL2;
else

X[t, 64] = CNTP_CVAL_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
X[t, 64] = NVMem[0x178];

else
X[t, 64] = CNTP_CVAL_EL0;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

X[t, 64] = CNTHPS_CVAL_EL2;
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

X[t, 64] = CNTHP_CVAL_EL2;
else

X[t, 64] = CNTP_CVAL_EL0;
elsif PSTATE.EL == EL3 then

X[t, 64] = CNTP_CVAL_EL0;

MSR CNTP_CVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b010

CNTHPS_CVAL_EL2, Counter-timer Secure Physical Timer CompareValue register (EL2)

Page 32

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CVAL_EL2 = X[t, 64];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHP_CVAL_EL2 = X[t, 64];
else

CNTP_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x178] = X[t, 64];

else
CNTP_CVAL_EL0 = X[t, 64];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CVAL_EL2 = X[t, 64];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHP_CVAL_EL2 = X[t, 64];
else

CNTP_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then

CNTP_CVAL_EL0 = X[t, 64];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHPS_CVAL_EL2, Counter-timer Secure Physical Timer CompareValue register (EL2)

Page 33

(old) htmldiff from- (new)

CNTHPS_TVAL_EL2, Counter-timer Secure Physical
Timer TimerValue register (EL2)

The CNTHPS_TVAL_EL2 characteristics are:

Purpose
Holds the timer value for the Secure EL2 physical timer.

Configuration
AArch64 System register CNTHPS_TVAL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHPS_TVAL[31:0].

This register is present only when EL2 is implemented and FEAT_SEL2 is implemented. Otherwise, direct accesses to
CNTHPS_TVAL_EL2 are UNDEFINED.

Attributes
CNTHPS_TVAL_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
TimerValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHPS_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHPS_CTL_EL2.ENABLE is 1, the value returned is (CNTHPS_CVAL_EL2 - CNTPCT_EL0).

On a write of this register, CNTHPS_CVAL_EL2 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is
treated as a signed 32-bit integer.

When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTHPS_CVAL_EL2) is
greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer
condition is met:

• CNTHPS_CTL_EL2.ISTATUS is set to 1.
• If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the
TimerValue view appears to continue to count down.

The reset behavior of this field is:

CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)

Page 34

AArch32-cnthps_tval.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHPS_TVAL_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHPS_TVAL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0101 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsCurrentSecurityState(SS_Secure)IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsCurrentSecurityState(SS_Secure)IsSecure() then
UNDEFINED;

else
if CNTHPS_CTL_EL2.ENABLE == '0' then

X[t, 64] = bits(64) UNKNOWN;
else

X[t, 64] = CNTHPS_CVAL_EL2 - PhysicalCountInt();
elsif PSTATE.EL == EL3 then

if SCR_EL3.EEL2 == '0' then
UNDEFINED;

else
if CNTHPS_CTL_EL2.ENABLE == '0' then

X[t, 64] = bits(64) UNKNOWN;
else

X[t, 64] = CNTHPS_CVAL_EL2 - PhysicalCountInt();

MSR CNTHPS_TVAL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0101 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsCurrentSecurityState(SS_Secure)IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsCurrentSecurityState(SS_Secure)IsSecure() then
UNDEFINED;

else
CNTHPS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

CNTHPS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)

Page 35

MRS <Xt>, CNTP_TVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b000

CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)

Page 36

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

if CNTHPS_CTL_EL2.ENABLE == '0' then
X[t, 64] = bits(64) UNKNOWN;

else
X[t, 64] = CNTHPS_CVAL_EL2 - PhysicalCountInt();

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
if CNTHP_CTL_EL2.ENABLE == '0' then

X[t, 64] = bits(64) UNKNOWN;
else

X[t, 64] = CNTHP_CVAL_EL2 - PhysicalCountInt();
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&

CNTHCTL_EL2.ECV == '1' && HCR_EL2.<E2H,TGE> != '11' then
if CNTP_CTL_EL0.ENABLE == '0' then

X[t, 64] = bits(64) UNKNOWN;
else

X[t, 64] = CNTP_CVAL_EL0 - (PhysicalCountInt() - CNTPOFF_EL2);
else

if CNTP_CTL_EL0.ENABLE == '0' then
X[t, 64] = bits(64) UNKNOWN;

else
X[t, 64] = CNTP_CVAL_EL0 - PhysicalCountInt();

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&

CNTHCTL_EL2.ECV == '1' then
if CNTP_CTL_EL0.ENABLE == '0' then

X[t, 64] = bits(64) UNKNOWN;
else

X[t, 64] = CNTP_CVAL_EL0 - (PhysicalCountInt() - CNTPOFF_EL2);
else

if CNTP_CTL_EL0.ENABLE == '0' then
X[t, 64] = bits(64) UNKNOWN;

else
X[t, 64] = CNTP_CVAL_EL0 - PhysicalCountInt();

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

if CNTHPS_CTL_EL2.ENABLE == '0' then
X[t, 64] = bits(64) UNKNOWN;

else
X[t, 64] = CNTHPS_CVAL_EL2 - PhysicalCountInt();

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
if CNTHP_CTL_EL2.ENABLE == '0' then

X[t, 64] = bits(64) UNKNOWN;
else

X[t, 64] = CNTHP_CVAL_EL2 - PhysicalCountInt();
else

if CNTP_CTL_EL0.ENABLE == '0' then
X[t, 64] = bits(64) UNKNOWN;

else
X[t, 64] = CNTP_CVAL_EL0 - PhysicalCountInt();

elsif PSTATE.EL == EL3 then
if CNTP_CTL_EL0.ENABLE == '0' then

X[t, 64] = bits(64) UNKNOWN;
else

CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)

Page 37

X[t, 64] = CNTP_CVAL_EL0 - PhysicalCountInt();

MSR CNTP_TVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHP_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&

CNTHCTL_EL2.ECV == '1' && HCR_EL2.<E2H,TGE> != '11' then
CNTP_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) - CNTPOFF_EL2;

else
CNTP_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&

CNTHCTL_EL2.ECV == '1' then
CNTP_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) - CNTPOFF_EL2;

else
CNTP_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHP_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
else

CNTP_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL3 then

CNTP_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)

Page 38

(old) htmldiff from- (new)

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer
Control register (EL2)

The CNTHVS_CTL_EL2 characteristics are:

Purpose
Control register for the Secure EL2 virtual timer.

Configuration
AArch64 System register CNTHVS_CTL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHVS_CTL[31:0].

This register is present only when FEAT_SEL2 is implemented and FEAT_VHE is implemented. Otherwise, direct
accesses to CNTHVS_CTL_EL2 are UNDEFINED.

Attributes
CNTHVS_CTL_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 ISTATUSIMASKENABLE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the CNTHVS_CTL_EL2.ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0
then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)

Page 39

AArch32-cnthvs_ctl.html

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the CNTHVS_CTL_EL2.ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHVS_TVAL_EL2
continues to count down.

Note

Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHVS_CTL_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHVS_CTL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsCurrentSecurityState(SS_Secure)IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsCurrentSecurityState(SS_Secure)IsSecure() then
UNDEFINED;

else
X[t, 64] = CNTHVS_CTL_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

X[t, 64] = CNTHVS_CTL_EL2;

MSR CNTHVS_CTL_EL2, <Xt>

op0 op1 CRn CRm op2

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)

Page 40

0b11 0b100 0b1110 0b0100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsCurrentSecurityState(SS_Secure)IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsCurrentSecurityState(SS_Secure)IsSecure() then
UNDEFINED;

else
CNTHVS_CTL_EL2 = X[t, 64];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

CNTHVS_CTL_EL2 = X[t, 64];

MRS <Xt>, CNTV_CTL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b001

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

X[t, 64] = CNTHVS_CTL_EL2;
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

X[t, 64] = CNTHV_CTL_EL2;
else

X[t, 64] = CNTV_CTL_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
X[t, 64] = NVMem[0x170];

else
X[t, 64] = CNTV_CTL_EL0;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

X[t, 64] = CNTHVS_CTL_EL2;
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

X[t, 64] = CNTHV_CTL_EL2;
else

X[t, 64] = CNTV_CTL_EL0;
elsif PSTATE.EL == EL3 then

X[t, 64] = CNTV_CTL_EL0;

MSR CNTV_CTL_EL0, <Xt>

op0 op1 CRn CRm op2

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)

Page 41

0b11 0b011 0b1110 0b0011 0b001

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CTL_EL2 = X[t, 64];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHV_CTL_EL2 = X[t, 64];
else

CNTV_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x170] = X[t, 64];

else
CNTV_CTL_EL0 = X[t, 64];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CTL_EL2 = X[t, 64];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHV_CTL_EL2 = X[t, 64];
else

CNTV_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then

CNTV_CTL_EL0 = X[t, 64];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)

Page 42

(old) htmldiff from- (new)

CNTHVS_CVAL_EL2, Counter-timer Secure Virtual
Timer CompareValue register (EL2)

The CNTHVS_CVAL_EL2 characteristics are:

Purpose
Holds the compare value for the Secure EL2 virtual timer.

Configuration
AArch64 System register CNTHVS_CVAL_EL2 bits [63:0] are architecturally mapped to AArch32 System register
CNTHVS_CVAL[63:0].

This register is present only when FEAT_SEL2 is implemented and FEAT_VHE is implemented. Otherwise, direct
accesses to CNTHVS_CVAL_EL2 are UNDEFINED.

Attributes
CNTHVS_CVAL_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the Secure EL2 virtual timer CompareValue.

When CNTHVS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 - CompareValue) is greater
than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition
is met:

• CNTHVS_CTL_EL2.ISTATUS is set to 1.
• If CNTHVS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at
the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHVS_CVAL_EL2
Accesses to this register use the following encodings in the System register encoding space:

CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register (EL2)

Page 43

AArch32-cnthvs_cval.html
AArch64-cntvct_el0.html
AArch64-cntvct_el0.html

MRS <Xt>, CNTHVS_CVAL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0100 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsCurrentSecurityState(SS_Secure)IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsCurrentSecurityState(SS_Secure)IsSecure() then
UNDEFINED;

else
X[t, 64] = CNTHVS_CVAL_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

X[t, 64] = CNTHVS_CVAL_EL2;

MSR CNTHVS_CVAL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0100 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsCurrentSecurityState(SS_Secure)IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsCurrentSecurityState(SS_Secure)IsSecure() then
UNDEFINED;

else
CNTHVS_CVAL_EL2 = X[t, 64];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

CNTHVS_CVAL_EL2 = X[t, 64];

MRS <Xt>, CNTV_CVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b010

CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register (EL2)

Page 44

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

X[t, 64] = CNTHVS_CVAL_EL2;
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

X[t, 64] = CNTHV_CVAL_EL2;
else

X[t, 64] = CNTV_CVAL_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
X[t, 64] = NVMem[0x168];

else
X[t, 64] = CNTV_CVAL_EL0;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

X[t, 64] = CNTHVS_CVAL_EL2;
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

X[t, 64] = CNTHV_CVAL_EL2;
else

X[t, 64] = CNTV_CVAL_EL0;
elsif PSTATE.EL == EL3 then

X[t, 64] = CNTV_CVAL_EL0;

MSR CNTV_CVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b010

CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register (EL2)

Page 45

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CVAL_EL2 = X[t, 64];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHV_CVAL_EL2 = X[t, 64];
else

CNTV_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x168] = X[t, 64];

else
CNTV_CVAL_EL0 = X[t, 64];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CVAL_EL2 = X[t, 64];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHV_CVAL_EL2 = X[t, 64];
else

CNTV_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then

CNTV_CVAL_EL0 = X[t, 64];

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register (EL2)

Page 46

(old) htmldiff from- (new)

CNTHVS_TVAL_EL2, Counter-timer Secure Virtual
Timer TimerValue register (EL2)

The CNTHVS_TVAL_EL2 characteristics are:

Purpose
Holds the timer value for the Secure EL2 virtual timer.

Configuration
AArch64 System register CNTHVS_TVAL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHVS_TVAL[31:0].

This register is present only when FEAT_SEL2 is implemented and FEAT_VHE is implemented. Otherwise, direct
accesses to CNTHVS_TVAL_EL2 are UNDEFINED.

Attributes
CNTHVS_TVAL_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
TimerValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHVS_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHVS_CTL_EL2.ENABLE is 1, the value returned is (CNTHVS_CVAL_EL2 - CNTVCT_EL0).

On a write of this register, CNTHVS_CVAL_EL2 is set to (CNTVCT_EL0 + TimerValue), where TimerValue is
treated as a signed 32-bit integer.

When CNTHVS_CTL_EL2.ENABLE is 1, the timer condition is met when ((CNTVCT_EL0 - CNTHVS_CVAL_EL2) is
greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer
condition is met:

• CNTHVS_CTL_EL2.ISTATUS is set to 1.
• If CNTHVS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count, so the
TimerValue view appears to continue to count down.

The reset behavior of this field is:

CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)

Page 47

AArch32-cnthvs_tval.html
AArch64-cntvct_el0.html
AArch64-cntvct_el0.html
AArch64-cntvct_el0.html
AArch64-cntvct_el0.html

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHVS_TVAL_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHVS_TVAL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsCurrentSecurityState(SS_Secure)IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsCurrentSecurityState(SS_Secure)IsSecure() then
UNDEFINED;

else
if CNTHVS_CTL_EL2.ENABLE == '0' then

X[t, 64] = bits(64) UNKNOWN;
else

X[t, 64] = CNTHVS_CVAL_EL2 - PhysicalCountInt();
elsif PSTATE.EL == EL3 then

if SCR_EL3.EEL2 == '0' then
UNDEFINED;

else
if CNTHVS_CTL_EL2.ENABLE == '0' then

X[t, 64] = bits(64) UNKNOWN;
else

X[t, 64] = CNTHVS_CVAL_EL2 - PhysicalCountInt();

MSR CNTHVS_TVAL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsCurrentSecurityState(SS_Secure)IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsCurrentSecurityState(SS_Secure)IsSecure() then
UNDEFINED;

else
CNTHVS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

CNTHVS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)

Page 48

MRS <Xt>, CNTV_TVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b000

CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)

Page 49

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

if CNTHVS_CTL_EL2.ENABLE == '0' then
X[t, 64] = bits(64) UNKNOWN;

else
X[t, 64] = CNTHVS_CVAL_EL2 - PhysicalCountInt();

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
if CNTHV_CTL_EL2.ENABLE == '0' then

X[t, 64] = bits(64) UNKNOWN;
else

X[t, 64] = CNTHV_CVAL_EL2 - PhysicalCountInt();
elsif HaveEL(EL2) && (!EL2Enabled() || HCR_EL2.<E2H,TGE> != '11') then

if CNTV_CTL_EL0.ENABLE == '0' then
X[t, 64] = bits(64) UNKNOWN;

else
X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);

else
if CNTV_CTL_EL0.ENABLE == '0' then

X[t, 64] = bits(64) UNKNOWN;
else

X[t, 64] = CNTV_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL2) then
if CNTV_CTL_EL0.ENABLE == '0' then

X[t, 64] = bits(64) UNKNOWN;
else

X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
else

if CNTV_CTL_EL0.ENABLE == '0' then
X[t, 64] = bits(64) UNKNOWN;

else
X[t, 64] = CNTV_CVAL_EL0 - PhysicalCountInt();

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

if CNTHVS_CTL_EL2.ENABLE == '0' then
X[t, 64] = bits(64) UNKNOWN;

else
X[t, 64] = CNTHVS_CVAL_EL2 - PhysicalCountInt();

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
if CNTHV_CTL_EL2.ENABLE == '0' then

X[t, 64] = bits(64) UNKNOWN;
else

X[t, 64] = CNTHV_CVAL_EL2 - PhysicalCountInt();
elsif HCR_EL2.E2H == '0' then

if CNTV_CTL_EL0.ENABLE == '0' then
X[t, 64] = bits(64) UNKNOWN;

else
X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);

else
if CNTV_CTL_EL0.ENABLE == '0' then

X[t, 64] = bits(64) UNKNOWN;
else

X[t, 64] = CNTV_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL3 then

if CNTV_CTL_EL0.ENABLE == '0' then
X[t, 64] = bits(64) UNKNOWN;

elsif HaveEL(EL2) && !ELUsingAArch32(EL2) then
X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);

CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)

Page 50

elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF);

else
X[t, 64] = CNTV_CVAL_EL0 - PhysicalCountInt();

MSR CNTV_TVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b000

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHV_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif HaveEL(EL2) && (!EL2Enabled() || HCR_EL2.<E2H,TGE> != '11') then

CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) - CNTVOFF_EL2;
else

CNTV_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL2) then
CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) - CNTVOFF_EL2;

else
CNTV_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHV_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif HCR_EL2.E2H == '0' then

CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) - CNTVOFF_EL2;
else

CNTV_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL3 then

if HaveEL(EL2) && !ELUsingAArch32(EL2) then
CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) - CNTVOFF_EL2;

elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) - CNTVOFF;

else
CNTV_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)

Page 51

(old) htmldiff from- (new)

CPP RCTX, Cache Prefetch Prediction Restriction by
Context

The CPP RCTX characteristics are:

Purpose
Cache Prefetch Prediction Restriction by Context applies to all Cache Allocation Resources that predict cache
allocations based on information gathered within the target execution context or contexts.

TheCache prefetch predictions determined by the actions of code in the target execution context or contexts
appearing in program order before the instruction cannot exploitativelyinfluence controlspeculative cache prefetch
predictionsexecution occurring after the instruction is complete and synchronized.

This instruction applies to all:

• Instruction caches.
• Data caches.
• TLB prefetching hardware used by the executing PE that applies to the supplied context or contexts.

This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same
PE as executed the original restriction instruction, and a subsequent context synchronization event is required to
ensure that the effect of the completion of the instructions is synchronized to the current execution.

Note

This instruction does not require the invalidation of Cache Allocation
Resources so long as the behavior described for completion of this instruction
is met by the implementation.

On some implementations the instruction is likely to take a significant number
of cycles to execute. This instruction is expected to be used very rarely, such
as on the roll-over of an ASID or VMID, but should not be used on every
context switch.

Configuration
This instruction is present only when FEAT_SPECRES is implemented. Otherwise, direct accesses to CPP RCTX are
UNDEFINED.

Attributes
CPP RCTX is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 GVMID VMID
RES0 NSENS EL RES0 GASID ASID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:49]

Reserved, RES0.

CPP RCTX, Cache Prefetch Prediction Restriction by Context

Page 52

GVMID, bit [48]

Execution of this instruction applies to all VMIDs or a specified VMID.

GVMID Meaning
0b0 Applies to specified VMID for an EL0 or EL1 target

execution context.
0b1 Applies to all VMIDs for an EL0 or EL1 target execution

context.

For target execution contexts other than EL0 and EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

VMID, bits [47:32]

Only applies when bit[48] is 0 and the target execution context is either:

• EL1.
• EL0 when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0).

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0), this field is treated as the
current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1), this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

If the implementation supports 16 bits of VMID, then the upper 8 bits of the VMID must be written to 0 by
software when the context being affected only uses 8 bits.

Bits [31:28]

Reserved, RES0.

NSE, bit [27]
When FEAT_RME is implemented:

Together with the NS field, selects the Security state.

For a description of the values derived by evaluating NS and NSE together, see CPP_RCTX.NS.

Otherwise:

Reserved, RES0.

NS, bit [26]
When FEAT_RME is implemented:

Together with the NSE field, selects the Security state. Defined values are:

NSE NS Meaning
0b0 0b0 Secure.
0b0 0b1 Non-secure.
0b1 0b0 Root.
0b1 0b1 Realm.

CPP RCTX, Cache Prefetch Prediction Restriction by Context

Page 53

Some Effective values are determined by the current Security state:

• When executed in Secure state, the Effective value of NSE is 0.
• When executed in Non-secure state, the Effective value of {NSE, NS} is {0, 1}.
• When executed in Realm state, the Effective value of {NSE, NS} is {1, 1}.

An instruction with an EL field that has a value other than 0b11 (EL3) is treated as a NOP when executed at EL3
with CPP_RCTX.{NSE, NS} == {1, 0}.

Otherwise:

Security State. Defined values are:

NS Meaning
0b0 Secure state.
0b1 Non-secure state.

When executed in Non-secure state, the Effective value of NS is 1.

EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

EL Meaning
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, this instruction is treated as a
NOP.

Bits [23:17]

Reserved, RES0.

GASID, bit [16]

Execution of this instruction applies to all ASIDs or a specified ASID.

GASID Meaning
0b0 Applies to specified ASID for an EL0 target execution

context.
0b1 Applies to all ASIDs for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [15:0]

Only applies for an EL0 target execution context and when bit[16] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being affected only uses 8 bits.

Executing the CPP RCTX instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

CPP RCTX, Cache Prefetch Prediction Restriction by Context

Page 54

CPP RCTX, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b0011 0b111

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.CPPRCTX == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.RestrictPrediction(X[t, 64], RestrictType_CachePrefetch);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.CPPRCTX == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.RestrictPrediction(X[t, 64], RestrictType_CachePrefetch);

elsif PSTATE.EL == EL2 then
AArch64.RestrictPrediction(X[t, 64], RestrictType_CachePrefetch);

elsif PSTATE.EL == EL3 then
AArch64.RestrictPrediction(X[t, 64], RestrictType_CachePrefetch);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CPP RCTX, Cache Prefetch Prediction Restriction by Context

Page 55

(old) htmldiff from- (new)

CurrentEL, Current Exception Level
The CurrentEL characteristics are:

Purpose
Holds the current Exception level.

Configuration
There are no configuration notes.

Attributes
CurrentEL is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 EL RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:4]

Reserved, RES0.

EL, bits [3:2]

Current Exception level.

EL Meaning
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.

When the HCR_EL2.NV bit is 1, EL1 read accesses to the CurrentEL register return the value of 0b10 in this field.

TheThis resetfield behaviorresets ofto thisthe fieldhighest is:implemented Exception level.

• On a Warm reset:
◦ When the highest implemented Exception level is EL1, this field resets to 1.
◦ When the highest implemented Exception level is EL2, this field resets to 2.
◦ Otherwise, this field resets to 3.

Bits [1:0]

Reserved, RES0.

Accessing CurrentEL
Accesses to this register use the following encodings in the System register encoding space:

CurrentEL, Current Exception Level

Page 56

MRS <Xt>, CurrentEL

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

X[t, 64] = Zeros(60):'10':Zeros(2);
else

X[t, 64] = Zeros(60):PSTATE.EL:Zeros(2);
elsif PSTATE.EL == EL2 then

X[t, 64] = Zeros(60):PSTATE.EL:Zeros(2);
elsif PSTATE.EL == EL3 then

X[t, 64] = Zeros(60):PSTATE.EL:Zeros(2);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CurrentEL, Current Exception Level

Page 57

(old) htmldiff from- (new)

DIT, Data Independent Timing
The DIT characteristics are:

Purpose
Allows access to the Data Independent Timing bit.

Configuration
This register is present only when FEAT_DIT is implemented. Otherwise, direct accesses to DIT are UNDEFINED.

Attributes
DIT is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 DIT RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:25]

Reserved, RES0.

DIT, bit [24]

Data Independent Timing.

DIT Meaning
0b0 The architecture makes no statement about the timing

properties of any instructions.
0b1 The architecture requires that:

• The timing of every load and store instruction is
insensitive to the value of the data being loaded or
stored.

• For certain data processing instructions, the instruction
takes a time which is independent of:

◦ The values of the data supplied in any of its
registers.

◦ The values of the NZCV flags.
• For certain data processing instructions, the response of

the instruction to asynchronous exceptions does not
vary based on:

◦ The values of the data supplied in any of its
registers.

◦ The values of the NZCV flags.

The data processing instructions affected by this bit are:

• All cryptographic instructions. These instructions are:

◦ AESD, AESE, AESIMC, AESMC, SHA1C, SHA1H, SHA1M, SHA1P, SHA1SU0, SHA1SU1, SHA256H, SHA256H2,
SHA256SU0, SHA256SU1, SHA512H, SHA512H2, SHA512SU0, SHA512SU1, EOR3, RAX1, XAR, BCAX,
SM3SS1, SM3TT1A, SM3TT1B, SM3TT2A, SM3TT2B, SM3PARTW1, SM3PARTW2, SM4E, and SM4EKEY.

DIT, Data Independent Timing

Page 58

• A subset of those instructions which use the general-purpose register file. These instructions are:

◦ ADC, ADCS, ADD, ADDS, AND, ANDS, ASR, ASRV, BFC, BFI, BFM, BFXIL, BIC, BICS, CCMN, CCMP, CFINV,
CINC, CINV, CLS, CLZ, CMN, CMP, CNEG, CSEL, CSET, CSETM, CSINC, CSINV, CSNEG, EON, EOR, EXTR,
LSL, LSLV, LSR, LSRV, MADD, MNEG, MOV, MOVK, MOVN, MOVZ, MSUB, MUL, MVN, NEG, NEGS, NGC, NGCS,
NOP, ORN, ORR, RBIT, REV, REV16, REV32, REV64, RMIF, ROR, RORV, SBC, SBCS, SBFIZ, SBFM, SBFX,
SETF8, SETF16, SMADDL, SMNEGL, SMSUBL, SMULH, SMULL, SUB, SUBS, SXTB, SXTH, SXTW, TST, UBFIZ,
UBFM, UBFX, UMADDL, UMNEGL, UMSUBL, UMULH, UMULL, UXTB, and UXTH.

◦ If FEAT_CRC32 is implemented, CRC32B, CRC32H, CRC32W, CRC32X, CRC32CB, CRC32CH, CRC32CW,
and CRC32CX.

• A subset of those instructions which use the SIMD&FP register file. These instructions are:

◦ ABS, ADD, ADDHN, ADDHN2, ADDP, ADDV, AND, BIC, BIF, BIT, BSL, CLS, CLZ, CMEQ, CMGE, CMGT, CMHI,
CMHS, CMLE, CMLT, CMTST, CNT, DUP, EOR, EXT, FCSEL, INS, MLA, MLS, MOV, MOVI, MUL, MVN, MVNI, NEG,
NOT, ORN, ORR, PMUL, PMULL, PMULL2, RADDHN, RADDHN2, RBIT, REV16, REV32, RSHRN, RSHRN2, RSUBHN,
RSUBHN2, SABA, SABD, SABAL, SABAL2, SABDL, SABDL2, SADALP, SADDL, SADDL2, SADDLP, SADDLV,
SADDW, SADDW2, SHADD, SHL, SHLL, SHLL2, SHRN, SHRN2, SHSUB, SLI, SMAX, SMAXP, SMAXV, SMIN,
SMINP, SMINV, SMLAL, SMLAL2, SMLSL, SMLSL2, SMOV, SMULL, SMULL2, SQDMULH (by element), SQDMULH
(vector), SQRDMLAH (by element), SQRDMLAH (vector), SQRDMULH (by element), SQRDMULH (vector),
SRI, SSHL, SSHLL, SSHLL2, SSHR, SSRA, SSUBL, SSUBL2, SSUBW, SSUBW2, SUB, SUBHN, SUBHN2, SXTL,
SXTL2, TBL, TBX, TRN1, TRN2, UABA, UABAL, UABAL2, UABD, UABDL, UABDL2, UADALP, UADDL, UADDL2,
UADDLP, UADDLV, UADDW, UADDW2, UHADD, UHSUB, UMAX, UMAXP, UMAXV, UMIN, UMINP, UMINV, UMLAL,
UMLAL2, UMLSL, UMOV, UMLSL2, UMULL, UMULL2, USHL, USHLL, USHLL2, USHR, USRA, USUBL, USUBL2,
USUBW, USUBW2, UXTL, UXTL2, UZP1, UZP2, XTN, XTN2, ZIP1, and ZIP2.

Note

The architecture makes no statement about the timing properties when the
PSTATE.DIT bit is not set. However, it is likely that many of these
instructions have timing that is invariant of the data in many situations.

In particular, Arm strongly recommends that the Armv8.3 pointer
authentication instructions do not have their timing dependent on the key
value used in the pointer authentication in all cases, regardless of the
PSTATE.DIT bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [23:0]

Reserved, RES0.

Accessing DIT
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DIT

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b101

if PSTATE.EL == EL0 then
X[t, 64] = Zeros(39):PSTATE.DIT:Zeros(24);

elsif PSTATE.EL == EL1 then
X[t, 64] = Zeros(39):PSTATE.DIT:Zeros(24);

elsif PSTATE.EL == EL2 then
X[t, 64] = Zeros(39):PSTATE.DIT:Zeros(24);

elsif PSTATE.EL == EL3 then
X[t, 64] = Zeros(39):PSTATE.DIT:Zeros(24);

DIT, Data Independent Timing

Page 59

MSR DIT, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b101

if PSTATE.EL == EL0 then
PSTATE.DIT = X[t, 64]<24>;

elsif PSTATE.EL == EL1 then
PSTATE.DIT = X[t, 64]<24>;

elsif PSTATE.EL == EL2 then
PSTATE.DIT = X[t, 64]<24>;

elsif PSTATE.EL == EL3 then
PSTATE.DIT = X[t, 64]<24>;

MSR DIT, #<imm>

op0 op1 CRn op2
0b00 0b011 0b0100 0b010

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DIT, Data Independent Timing

Page 60

(old) htmldiff from- (new)

ESR_EL1, Exception Syndrome Register (EL1)
The ESR_EL1 characteristics are:

Purpose
Holds syndrome information for an exception taken to EL1.

Configuration
AArch64 System register ESR_EL1 bits [31:0] are architecturally mapped to AArch32 System register DFSR[31:0].

Attributes
ESR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 ISS2
EC IL ISS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ESR_EL1 is made UNKNOWN as a result of an exception return from EL1.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL1, the value of ESR_EL1
is UNKNOWN. The value written to ESR_EL1 must be consistent with a value that could be created as a result of an
exception from the same Exception level that generated the exception as a result of a situation that is not
UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:37]

Reserved, RES0.

ISS2, bits [36:32]
When FEAT_LS64 is implemented:

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction generates a Data
Abort exception for a Translation fault, Access flag fault, or Permission fault, then this field holds register specifier,
Xs.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0 instruction generates
a Data Abort exception for a Translation fault, Access flag fault, or Permission fault, then this field holds register
specifier, Xs.

Otherwise, this field is RES0.

Otherwise:

Reserved, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 61

AArch32-dfsr.html

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.
• The encoding of the associated ISS.

Possible values of the EC field are:

ESR_EL1, Exception Syndrome Register (EL1)

Page 62

EC Meaning ISS Applies
when

0b000000 Unknown reason. ISS encoding for
exceptions with
an unknown
reason

0b000001 Trapped WF*
instruction
execution.
Conditional WF*
instructions that fail
their condition code
check do not cause
an exception.

ISS encoding for
an exception
from a WF*
instruction

0b000011 Trapped MCR or
MRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for
an exception
from an MCR or
MRC access

When
AArch32 is
supported

0b000100 Trapped MCRR or
MRRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for
an exception
from an MCRR or
MRRC access

When
AArch32 is
supported

0b000101 Trapped MCR or
MRC access with
(coproc==0b1110).

ISS encoding for
an exception
from an MCR or
MRC access

When
AArch32 is
supported

0b000110 Trapped LDC or
STC access.
The only architected
uses of these
instruction are:
• An STC to write

data to memory
from
DBGDTRRXint.

• An LDC to read
data from
memory to
DBGDTRTXint.

ISS encoding for
an exception
from an LDC or
STC instruction

When
AArch32 is
supported

0b000111 Access to SME,
SVE, Advanced
SIMD or floating-
point functionality
trapped by
CPACR_EL1.FPEN,
CPTR_EL2.FPEN,
CPTR_EL2.TFP, or
CPTR_EL3.TFP
control.
Excludes exceptions
resulting from
CPACR_EL1 when
the value of
HCR_EL2.TGE is 1,
or because SVE or
Advanced SIMD and
floating-point are
not implemented.
These are reported
with EC value
0b000000.

ISS encoding for
an exception
from an access to
SVE, Advanced
SIMD or floating-
point
functionality,
resulting from
the FPEN and
TFP traps

0b001010 Trapped execution
of an LD64B or
ST64B* instruction.

ISS encoding for
an exception
from an LD64B
or ST64B*
instruction

When
FEAT_LS64
is
implemented

ESR_EL1, Exception Syndrome Register (EL1)

Page 63

AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html

0b001100 Trapped MRRC
access with
(coproc==0b1110).

ISS encoding for
an exception
from an MCRR or
MRRC access

When
AArch32 is
supported

0b001101 Branch Target
Exception.

ISS encoding for
an exception
from Branch
Target
Identification
instruction

When
FEAT_BTI is
implemented

0b001110 Illegal Execution
state.

ISS encoding for
an exception
from an Illegal
Execution state,
or a PC or SP
alignment fault

0b010001 SVC instruction
execution in
AArch32 state.

ISS encoding for
an exception
from HVC or SVC
instruction
execution

When
AArch32 is
supported

0b010101 SVC instruction
execution in
AArch64 state.

ISS encoding for
an exception
from HVC or SVC
instruction
execution

When
AArch64 is
supported

0b011000 Trapped MSR, MRS
or System
instruction
execution in
AArch64 state, that
is not reported
using EC 0b000000,
0b000001, or
0b000111.
This includes all
instructions that
cause exceptions
that are part of the
encoding space
defined in 'System
instruction class
encoding overview',
except for those
exceptions reported
using EC values
0b000000, 0b000001,
or 0b000111.

ISS encoding for
an exception
from MSR, MRS,
or System
instruction
execution in
AArch64 state

When
AArch64 is
supported

0b011001 Access to SVE
functionality
trapped as a result
of CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ, that
is not reported
using EC 0b000000.

ISS encoding for
an exception
from an access to
SVE
functionality,
resulting from
CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ

When
FEAT_SVE is
implemented

0b011011 Exception from an
access to a TSTART
instruction at EL0
when
SCTLR_EL1.TME0
== 0, EL0 when
SCTLR_EL2.TME0
== 0, at EL1 when
SCTLR_EL1.TME
== 0, at EL2 when
SCTLR_EL2.TME
== 0 or at EL3

ISS encoding for
an exception
from a TSTART
instruction

When
FEAT_TME
is
implemented

ESR_EL1, Exception Syndrome Register (EL1)

Page 64

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

when
SCTLR_EL3.TME
== 0.

0b011100 Exception from a
Pointer
Authentication
instruction
authentication
failure

ISS encoding for
an exception
from a Pointer
Authentication
instruction
authentication
failure

When
FEAT_FPAC
is
implemented

0b011101 Access to SME
functionality
trapped as a result
of
CPACR_EL1.SMEN,
CPTR_EL2.SMEN,
CPTR_EL2.TSM,
CPTR_EL3.ESM, or
an attempted
execution of an
instruction that is
illegal because of
the value of
PSTATE.SM or
PSTATE.ZA, that is
not reported using
EC 0b000000.

ISS encoding for
an exception due
to SME
functionality

When
FEAT_SME
is
implemented

0b011110 Exception from a
Granule Protection
Check

ISS encoding for
an exception
from a Granule
Protection Check

When
FEAT_RME
is
implemented

0b100000 Instruction Abort
from a lower
Exception level.
Used for MMU
faults generated by
instruction accesses
and synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for
an exception
from an
Instruction Abort

0b100001 Instruction Abort
taken without a
change in Exception
level.
Used for MMU
faults generated by
instruction accesses
and synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for
an exception
from an
Instruction Abort

0b100010 PC alignment fault
exception.

ISS encoding for
an exception
from an Illegal
Execution state,
or a PC or SP
alignment fault

0b100100 Data Abort
exception from a
lower Exception
level.
Used for MMU
faults generated by

ISS encoding for
an exception
from a Data
Abort

ESR_EL1, Exception Syndrome Register (EL1)

Page 65

AArch64-sctlr_el3.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

0b100101 Data Abort
exception taken
without a change in
Exception level.
Used for MMU
faults generated by
data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for
an exception
from a Data
Abort

0b100110 SP alignment fault
exception.

ISS encoding for
an exception
from an Illegal
Execution state,
or a PC or SP
alignment fault

0b100111 Memory Operation
Exception.

ISS encoding for
an exception
from the Memory
Copy and
Memory Set
instructions

When
FEAT_MOPS
is
implemented

0b101000 Trapped floating-
point exception
taken from AArch32
state.
This EC value is
valid if the
implementation
supports trapping of
floating-point
exceptions,
otherwise it is
reserved. Whether a
floating-point
implementation
supports trapping of
floating-point
exceptions is
IMPLEMENTATION
DEFINED.

ISS encoding for
an exception
from a trapped
floating-point
exception

When
AArch32 is
supported

0b101100 Trapped floating-
point exception
taken from AArch64
state.
This EC value is
valid if the
implementation

ISS encoding for
an exception
from a trapped
floating-point
exception

When
AArch64 is
supported

ESR_EL1, Exception Syndrome Register (EL1)

Page 66

supports trapping of
floating-point
exceptions,
otherwise it is
reserved. Whether a
floating-point
implementation
supports trapping of
floating-point
exceptions is
IMPLEMENTATION
DEFINED.

0b101111 SError interrupt. ISS encoding for
an SError
interrupt

0b110000 Breakpoint
exception from a
lower Exception
level.

ISS encoding for
an exception
from a
Breakpoint or
Vector Catch
debug exception

0b110001 Breakpoint
exception taken
without a change in
Exception level.

ISS encoding for
an exception
from a
Breakpoint or
Vector Catch
debug exception

0b110010 Software Step
exception from a
lower Exception
level.

ISS encoding for
an exception
from a Software
Step exception

0b110011 Software Step
exception taken
without a change in
Exception level.

ISS encoding for
an exception
from a Software
Step exception

0b110100 Watchpoint
exception from a
lower Exception
level.

ISS encoding for
an exception
from a
Watchpoint
exception

0b110101 Watchpoint
exception taken
without a change in
Exception level.

ISS encoding for
an exception
from a
Watchpoint
exception

0b111000 BKPT instruction
execution in
AArch32 state.

ISS encoding for
an exception
from execution of
a Breakpoint
instruction

When
AArch32 is
supported

0b111100 BRK instruction
execution in
AArch64 state.

ISS encoding for
an exception
from execution of
a Breakpoint
instruction

When
AArch64 is
supported

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous
exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be
used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 67

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

IL Meaning
0b0 16-bit instruction trapped.
0b1 32-bit instruction trapped. This value is also used when the

exception is one of the following:
• An SError interrupt.
• An Instruction Abort exception.
• A PC alignment fault exception.
• An SP alignment fault exception.
• A Data Abort exception for which the value of the ISV bit

is 0.
• An Illegal Execution state exception.
• Any debug exception except for Breakpoint instruction

exceptions. For Breakpoint instruction exceptions, this
bit has its standard meaning:

◦ 0b0: 16-bit T32 BKPT instruction.
◦ 0b1: 32-bit A32 BKPT instruction or A64 BRK

instruction.
• An exception reported using EC value 0b000000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception
class. However, in practice, some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value
returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see 'Mapping of the general-purpose registers between the Execution
states'.

If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value 0b11111.
• If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that

must be either:
◦ The AArch64 view of the register number of a register that might have been used at the

Exception level from which the exception was taken.
◦ The value 0b11111.

ISS encoding for exceptions with an unknown reason
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions
that are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not
accessible at the current Exception level and Security state, including:

◦ A read access using a System register pattern that is not allocated for reads or that does not
permit reads at the current Exception level and Security state.

ESR_EL1, Exception Syndrome Register (EL1)

Page 68

◦ A write access using a System register pattern that is not allocated for writes or that does
not permit writes at the current Exception level and Security state.

◦ Instruction encodings that are unallocated.
◦ Instruction encodings for instructions or System registers that are not implemented in the

implementation.
• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug

state.
• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-

debug state.
• In AArch32 state, attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an

attempted access to Advanced SIMD or floating-point functionality under conditions where that access
would be permitted if that functionality was present. This includes the attempted execution of an
Advanced SIMD or floating-point instruction, and attempted accesses to Advanced SIMD and floating-
point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control
bits.

• Attempted execution of:
◦ An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
◦ An SMC instruction when disabled by SCR_EL3.SMD.
◦ An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.
• Attempted execution of an MSR or MRS instruction using a _EL12 register name when HCR_EL2.E2H

== 0.
• Attempted execution, in Debug state, of:

◦ A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not
implemented in the current Security state.

◦ A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the
current Security state.

◦ A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.
• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using

R13_mon.
• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an

instruction that is configured to trap to EL3.
• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)

instruction to SPSR_mon, SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of
HCR_EL2.TGE was 0 would have been reported with an ESR_ELx.EC value of 0b000111.

• In Non-transactional state, attempted execution of a TCOMMIT instruction.

ISS encoding for an exception from a WF* instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0 RN RES0 RV TI

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 69

AArch64-sp_el0.html
AArch64-spsel.html

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:10]

Reserved, RES0.

RN, bits [9:5]
When FEAT_WFxT is implemented:

Register Number. Indicates the register number supplied for a WFET or WFIT instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [4:3]

Reserved, RES0.

RV, bit [2]
When FEAT_WFxT is implemented:

Register field Valid.

If TI[1] == 1, then this field indicates whether RN holds a valid register number for the register
argument to the trapped WFET or WFIT instruction.

RV Meaning
0b0 Register field invalid.
0b1 Register field valid.

ESR_EL1, Exception Syndrome Register (EL1)

Page 70

If TI[1] == 0, then this field is RES0.

This field is set to 1 on a trap on WFET or WFIT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TI, bits [1:0]

Trapped instruction. Possible values of this bit are:

TI Meaning Applies when
0b00 WFI trapped.
0b01 WFE trapped.
0b10 WFIT trapped. When FEAT_WFxT is implemented
0b11 WFET trapped. When FEAT_WFxT is implemented

When FEAT_WFxT is implemented, this is a two bit field as shown. Otherwise, bit[1] is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• SCTLR_EL1.{nTWE, nTWI}.
• HCR_EL2.{TWE, TWI}.
• SCR_EL3.{TWE, TWI}.

ISS encoding for an exception from an MCR or MRC access
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc2 Opc1 CRn Rt CRm Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

ESR_EL1, Exception Syndrome Register (EL1)

Page 71

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

ESR_EL1, Exception Syndrome Register (EL1)

Page 72

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to System register space. MCR instruction.
0b1 Read from System register space. MRC or VMRS

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000011:

• If FEAT_TIDCP1 is implemented, SCTLR_EL1.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or
EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• If FEAT_TIDCP1 is implemented, SCTLR_EL2.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access
(coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCR or MRC access (coproc
== 0b1111) trapped to EL2.

ESR_EL1, Exception Syndrome Register (EL1)

Page 73

AArch64-cntkctl_el1.html
AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-cptr_el2.html
AArch64-cpacr_el1.html
AArch64-hstr_el2.html

• CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• If FEAT_FGT is implemented, MCR or MRC access to some registers at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000101:

• CPACR_EL1.TTA for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and
EL1 using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

• HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32,
MRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR using AArch32,
MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC
access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, MCR or MRC access
(coproc == 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, MCR or MRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc
== 0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b001000:

• HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS
access trapped to EL2.

• HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS
access trapped to EL2.

ISS encoding for an exception from an LD64B or ST64B*
instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ISS

ESR_EL1, Exception Syndrome Register (EL1)

Page 74

AArch64-cnthctl_el2.html
AArch64-mdcr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-mdcr_el3.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html
AArch64-mdscr_el1.html
AArch64-mdcr_el2.html
AArch64-mdcr_el3.html
AArch32-jidr.html
AArch64-cptr_el2.html
AArch64-mdcr_el2.html
AArch32-dbgdrar.html
AArch32-dbgdsar.html
AArch64-mdcr_el2.html
AArch64-mdcr_el2.html
AArch64-cptr_el3.html
AArch64-mdcr_el3.html
AArch64-mdcr_el3.html
AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html

ISS, bits [24:0]

ISS Meaning Applies when
0b0000000000000000000000000 ST64BV

instruction
trapped.

When FEAT_LS64_V
is implemented

0b0000000000000000000000001 ST64BV0
instruction
trapped.

When
FEAT_LS64_ACCDATA
is implemented

0b0000000000000000000000010 LD64B or
ST64B
instruction
trapped.

When FEAT_LS64 is
implemented

All other values are reserved.

ISS encoding for an exception from an MCRR or MRRC access
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc1 RES0 Rt2 Rt CRm Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these

ESR_EL1, Exception Syndrome Register (EL1)

Page 75

definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.

If the Rt2 value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt2 value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 76

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to System register space. MCRR

instruction.
0b1 Read from System register space. MRRC

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1
or EL2.

• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped
to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCRR or MRRC access
(coproc == 0b1111) trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers from EL0 and
EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers AMEVCNTR0<n> and AMEVCNTR1<n>
from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• If FEAT_FGT is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and
HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b001100:

• MDSCR_EL1.TDCC, for accesses to the Debug ROM registers DBGDSAR and DBGDRAR at EL0 using
AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR using AArch32,
MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

• CPACR_EL1.TTA for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL1 or EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

Note

ESR_EL1, Exception Syndrome Register (EL1)

Page 77

AArch64-cntkctl_el1.html
AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-hstr_el2.html
AArch64-cnthctl_el2.html
AArch64-mdcr_el2.html
AArch64-cptr_el2.html
AArch64-mdcr_el3.html
AArch64-cptr_el3.html
AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch32-pmccntr.html
AArch64-mdscr_el1.html
AArch32-dbgdsar.html
AArch32-dbgdrar.html
AArch64-mdcr_el2.html
AArch32-dbgdrar.html
AArch32-dbgdsar.html
AArch64-mdcr_el3.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

If the Armv8-A architecture is implemented with an ETMv4
implementation, MCRR and MRRC accesses to trace registers are
UNDEFINED and the resulting exception is higher priority than an
exception due to these traps.

ISS encoding for an exception from an LDC or STC instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND imm8 RES0 Rn Offset AM Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

ESR_EL1, Exception Syndrome Register (EL1)

Page 78

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer.

If the Rn value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rn value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction.
When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Offset Meaning
0b0 Subtract offset.
0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

AM Meaning
0b000 Immediate unindexed.
0b001 Immediate post-indexed.
0b010 Immediate offset.
0b011 Immediate pre-indexed.
0b100 For a trapped STC instruction or a trapped T32 LDC

instruction this encoding is reserved.
0b110 For a trapped STC instruction, this encoding is

reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is
that behavior is CONSTRAINED UNPREDICTABLE, as described in 'Reserved values in System and memory-
mapped registers and translation table entries'.

ESR_EL1, Exception Syndrome Register (EL1)

Page 79

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to memory. STC instruction.
0b1 Read from memory. LDC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value
0b000110:

• MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint trapped to EL1 or EL2.

• MDCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL2.

• MDCR_EL3.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL3.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for LDC and STC accesses to the DCC registers at
EL0 and EL1 trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1,
and EL2 trapped to EL3.

ISS encoding for an exception from an access to SVE, Advanced
SIMD or floating-point functionality, resulting from the FPEN and
TFP traps
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.
• Accesses to the Advanced SIMD and floating-point System registers.
• Execution of SME instructions.

For an implementation that does not include either SVE or support for Advanced SIMD and floating-point,
the exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

ESR_EL1, Exception Syndrome Register (EL1)

Page 80

AArch64-mdscr_el1.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch64-mdcr_el2.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch64-mdcr_el3.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch64-mdcr_el2.html
AArch64-mdcr_el3.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value
0b000111:

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.
• CPTR_EL2.FPEN and CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to

EL2.
• CPTR_EL3.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

ISS encoding for an exception from an access to SVE
functionality, resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN,
CPTR_EL2.TZ, or CPTR_EL3.EZ
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

The accesses covered by this trap include:

• Execution of SVE instructions when the PE is not in Streaming SVE mode.
• Accesses to the SVE System registers, ZCR_ELx.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

Bits [24:0]

Reserved, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 81

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

The following fields describe the configuration settings for the traps that are reported using EC value
0b011001:

• CPACR_EL1.ZEN, for execution of SVE instructions and accesses to SVE registers at EL0 or EL1,
trapped to EL1.

• CPTR_EL2.ZEN and CPTR_EL2.TZ, for execution of SVE instructions and accesses to SVE registers at
EL0, EL1, or EL2, trapped to EL2.

• CPTR_EL3.EZ, for execution of SVE instructions and accesses to SVE registers from all Exception
levels, trapped to EL3.

ISS encoding for an exception from an Illegal Execution state, or
a PC or SP alignment fault
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about PC alignment fault exceptions, see 'PC alignment checking'.

'SP alignment checking' describes the configuration settings for generating SP alignment fault exceptions.

ISS encoding for an exception from the Memory Copy and
Memory Set instructions

24 23 22212019 18 17 16 15 1413121110 9 8 7 6 5 4 3 2 1 0
MemInstisSETG Options FromEpilogueWrongOptionOptionARES0 destreg srcreg sizereg

MemInst, bit [24]

Indicates the memory instruction class causing the exception.

MemInst Meaning
0b0 CPYFE*, CPYFM*, CPYE*, and CPYM*

instructions.
0b1 SETE*, SETM*, SETGE*, and SETGM*

instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

isSETG, bit [23]

Indicates whether the instruction belongs to SETGM* or SETGE* class of instruction.

isSETG Meaning
0b0 Not a SETGM* or SETGE* instruction.
0b1 SETGM* or SETGE* instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Options, bits [22:19]

Options : the Options field of the instruction.

ESR_EL1, Exception Syndrome Register (EL1)

Page 82

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

For Memory Copy instructions, bits[22:19] forms the Options field, which holds the bits[15:12] of the
instruction.

For Memory Set instructions:

• Bits[22:21] are RES0.
• Bits[20:19] form the Options field, which holds the bits[13:12] of the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FromEpilogue, bit [18]

Indicates whether the instruction belongs to the epilogue class of Memory Copy or Memory Set
instructions.

FromEpilogue Meaning
0b0 Not an epilogue instruction.
0b1 CPYE*, CPYFE*, SETE*, or SETGE*

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WrongOption, bit [17]

Algorithm option.

WrongOption Meaning
0b0 WrongOption is false.
0b1 WrongOption is true.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OptionA, bit [16]

Algorithm type indicated by the PSTATE.C bit.

OptionA Meaning
0b0 OptionB indicated by PSTATE.C is 0.
0b1 OptionA indicated by PSTATE.C is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

destreg, bits [14:10]

The destination register value from the issued instruction, containing the destination address.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 83

srcreg, bits [9:5]

The source register value from the issued instruction, containing either the source address or the
source data.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

sizereg, bits [4:0]

The size register value from the issued instruction, containing the number of bytes to be transfered or
set.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from HVC or SVC instruction
execution
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the
issued instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:
◦ For the T32 instruction, this field is zero-extended from the imm8 field of the

instruction.
◦ For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the

instruction.
• If the instruction is conditional, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an
exception only if it passes its condition code check. Therefore, the syndrome information for these exceptions
does not require conditionality information.

For T32 and A32 instructions, see 'SVC' and 'HVC'.

For A64 instructions, see 'SVC' and 'HVC'.

If FEAT_FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC
execution.

ESR_EL1, Exception Syndrome Register (EL1)

Page 84

ISS encoding for an exception from MSR, MRS, or System
instruction execution in AArch64 state
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 Op0 Op2 Op1 CRn Rt CRm Direction

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

ESR_EL1, Exception Syndrome Register (EL1)

Page 85

Direction Meaning
0b0 Write access, including MSR instructions.
0b1 Read access, including MRS instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see 'System instructions' subsection of 'Branches, exception
generating and System instructions' for the encoding values returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC
value 0b011000:

• If FEAT_TIDCP1 is implemented, SCTLR_EL1.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch64 state, MSR or MRS access trapped to EL1.

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1
or EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer
registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to the Performance Monitor registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• If FEAT_TIDCP1 is implemented, SCTLR_EL2.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch64 state, MSR or MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter control register, TRFCR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS
access trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64
state, MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state,
MSR or MRS access trapped to EL2.

ESR_EL1, Exception Syndrome Register (EL1)

Page 86

AArch64-ctr_el0.html
AArch64-cpacr_el1.html
AArch64-mdscr_el1.html
AArch64-mdcr_el2.html
AArch64-mdcr_el3.html
AArch64-cntkctl_el1.html
AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-actlr_el1.html
AArch64-cptr_el2.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-mdcr_el2.html
AArch64-trfcr_el1.html
AArch64-mdcr_el2.html
AArch64-mdcr_el2.html
AArch64-cnthctl_el2.html
AArch64-mdcr_el2.html
AArch64-mdcr_el2.html

• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.APK, for accesses to Pointer authentication key registers. using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS
access, trapped to EL2.

• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access, trapped
to EL2.

• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access,
trapped to EL2.

• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state,
MSR or MRS access trapped to EL3.

• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access
trapped to EL3.

• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL3.

• MDCR_EL3.TTRF, for accesses to the trace filter control registers, TRFCR_EL1 and TRFCR_EL2, using
AArch64 state, MSR or MRS access trapped to EL3.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,
trapped to EL3.

• If FEAT_EVT is implemented, the following registers control traps for EL1 and EL0 Cache controls
that use this EC value:

◦ HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}.
◦ HCR2.{TTLBIS, TICAB, TOCU, TID4}.

• If FEAT_FGT is implemented:
◦ SCR_EL3.FGTEn, for accesses to the fine-grained trap registers, MSR or MRS access at EL2

trapped to EL3.
◦ HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, MSR

or MRS access at EL0 and EL1 trapped to EL2.
◦ HFGITR_EL2 for execution of system instructions, MSR or MRS access trapped to EL2
◦ HDFGRTR_EL2 for reads and HDFGWTR_EL2 for writes of registers, using AArch64 state,

MSR or MRS access at EL0 and EL1 state trapped to EL2.
◦ HAFGRTR_EL2 for reads of Activity Monitor counters, using AArch64 state, MRS access at

EL0 and EL1 trapped to EL2.
• If FEAT_RNG_TRAP is implemented:

◦ SCR_EL3.TRNDR for reads of RNDR and RNDRRS using AArch64 state, MRS access trapped
to EL3.

• If FEAT_SME is implemented:
◦ CPTR_EL3.ESM, for MSR or MRS accesses to SMPRI_EL1 at EL1, EL2, and EL3, trapped to

EL3.
◦ CPTR_EL3.ESM, for MSR or MRS accesses to SMPRIMAP_EL2 at EL2 and EL3, trapped to

EL3.
◦ SCTLR_EL1.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, trapped to EL1 or EL2.
◦ SCTLR_EL2.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, trapped to EL2.
◦ SCR_EL3.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, EL1, and EL2, trapped to

EL3.
• If FEAT_NMI is implemented, HCRX_EL2.TALLINT, for MSR writes of ALLINT at EL1, trapped to EL2.

ISS encoding for an exception from an Instruction Abort
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 SET FnV EA RES0S1PTWRES0 IFSC

Bits [24:13]

Reserved, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 87

AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cptr_el2.html
AArch64-cpacr_el1.html
AArch64-cptr_el3.html
AArch64-mdcr_el3.html
AArch64-trfcr_el1.html
AArch64-trfcr_el2.html
AArch64-mdcr_el3.html
AArch64-mdcr_el3.html
AArch64-mdcr_el3.html
AArch64-cptr_el3.html
AArch64-hfgrtr_el2.html
AArch64-hfgwtr_el2.html
AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch64-hafgrtr_el2.html
AArch64-rndr.html
AArch64-rndrrs.html
AArch64-cptr_el3.html
AArch64-smpri_el1.html
AArch64-cptr_el3.html
AArch64-smprimap_el2.html
AArch64-tpidr2_el0.html
AArch64-tpidr2_el0.html
AArch64-tpidr2_el0.html
AArch64-hcrx_el2.html
AArch64-allint.html

SET, bits [12:11]
When FEAT_RAS is implemented:

Synchronous Error Type. When IFSC is 0b010000, describes the PE error state after taking the
Instruction Abort exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery
might be possible. Taking a synchronous External Abort exception
might result in a PE state that is not recoverable.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

ESR_EL1, Exception Syndrome Register (EL1)

Page 88

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

ESR_EL1, Exception Syndrome Register (EL1)

Page 89

IFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When

FEAT_LPA2 is
implemented

0b001100 Permission fault, level 0. When
FEAT_LPA2 is
implemented

0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort,

not on translation table walk
or hardware update of
translation table.

0b010011 Synchronous External abort
on translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented

0b010100 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 0.

0b010101 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 1.

0b010110 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 2.

0b010111 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 3.

0b011000 Synchronous parity or ECC
error on memory access, not
on translation table walk.

When
FEAT_RAS is
not
implemented

0b011011 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented
and FEAT_RAS
is not
implemented

0b011100 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RAS is
not
implemented

0b011101 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RAS is
not
implemented

0b011110 Synchronous parity or ECC
error on memory access on
translation table walk or

When
FEAT_RAS is

ESR_EL1, Exception Syndrome Register (EL1)

Page 90

hardware update of
translation table, level 2.

not
implemented

0b011111 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RAS is
not
implemented

0b100011 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_RME is
implemented
and FEAT_LPA2
is implemented

0b100100 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RME is
implemented

0b100101 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RME is
implemented

0b100110 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RME is
implemented

0b100111 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RME is
implemented

0b101000 Granule Protection Fault, not
on translation table walk or
hardware update of
translation table.

When
FEAT_RME is
implemented

0b101001 Address size fault, level -1. When
FEAT_LPA2 is
implemented

0b101011 Translation fault, level -1. When
FEAT_LPA2 is
implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic

hardware update fault.
When
FEAT_HAFDBS
is implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults'.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception due to SME functionality
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 SMTC

The accesses covered by this trap include:

• Execution of SME instructions.
• Execution of SVE and Advanced SIMD instructions, when the PE is in Streaming SVE mode.
• Direct accesses of SVCR, SMCR_EL1, SMCR_EL2, SMCR_EL3.

ESR_EL1, Exception Syndrome Register (EL1)

Page 91

AArch64-smcr_el1.html
AArch64-smcr_el2.html
AArch64-smcr_el3.html

Bits [24:3]

Reserved, RES0.

SMTC, bits [2:0]

SME Trap Code. Identifies the reason for instruction trapping.

SMTC Meaning
0b000 Access to SME functionality trapped as a result of

CPACR_EL1.SMEN, CPTR_EL2.SMEN,
CPTR_EL2.TSM, or CPTR_EL3.ESM, that is not
reported using EC 0b000000.

0b001 Advanced SIMD, SVE, or SVE2 instruction trapped
because PSTATE.SM is 1.

0b010 SME instruction trapped because PSTATE.SM is 0.
0b011 SME instruction trapped because PSTATE.ZA is 0.

All other values are reserved.

The following fields describe the configuration settings for the traps that are reported using the EC value
0b011101:

• CPACR_EL1.SMEN, for execution of SME instructions, SVE instructions when the PE is in Streaming
SVE mode, and instructions that directly access SVCR and SMCR_EL1 System registers at EL1 and
EL0, trapped to EL1 or EL2.

• CPTR_EL2.SMEN and CPTR_EL2.TSM, for execution of SME instructions, SVE instructions when the
PE is in Streaming SVE mode, and instructions that directly access SVCR, SMCR_EL1, SMCR_EL2 at
EL2, EL1, or EL0, trapped to EL2.

• CPTR_EL3.ESM, for execution of SME instructions, SVE instructions when the PE is in Streaming SVE
mode, and instructions that directly access SVCR, SMCR_EL1, SMCR_EL2, SMCR_EL3 from all
Exception levels and any Security state, trapped to EL3.

ISS encoding for an exception from a Granule Protection Check
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 S2PTWInD GPCSC VNCR RES0 CMS1PTWWnR xFSC

Bits [24:22]

Reserved, RES0.

S2PTW, bit [21]

Indicates whether the Granule Protection Check exception was on an access made for a stage 2
translation table walk.

S2PTW Meaning
0b0 Fault not on a stage 2 translation table walk.
0b1 Fault on a stage 2 translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

InD, bit [20]

Indicates whether the Granule Protection Check exception was on an instruction or data access.

InD Meaning
0b0 Data access.
0b1 Instruction access.

ESR_EL1, Exception Syndrome Register (EL1)

Page 92

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html
AArch64-smcr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-smcr_el1.html
AArch64-smcr_el2.html
AArch64-cptr_el3.html
AArch64-smcr_el1.html
AArch64-smcr_el2.html
AArch64-smcr_el3.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GPCSC, bits [19:14]

Granule Protection Check Status Code.

GPCSC Meaning
0b000000 GPT address size fault at level 0.
0b000100 GPT walk fault at level 0.
0b000101 GPT walk fault at level 1.
0b001100 Granule protection fault at level 0.
0b001101 Granule protection fault at level 1.
0b010100 Synchronous External abort on GPT fetch at level

0.
0b010101 Synchronous External abort on GPT fetch at level

1.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VNCR, bit [13]
When FEAT_NV2 is implemented:

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The fault was not generated by the use of

VNCR_EL2, by an MRS or MSR instruction executed
at EL1.

0b1 The fault was generated by the use of VNCR_EL2, by
an MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.

When InD is '1', this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [12:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address
translation instruction:

ESR_EL1, Exception Syndrome Register (EL1)

Page 93

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html

CM Meaning
0b0 The Data Abort was not generated by the execution of

one of the System instructions identified in the
description of value 1.

0b1 The Data Abort was generated by either the execution
of a cache maintenance instruction or by a
synchronous fault on the execution of an address
translation instruction. The DC ZVA, DC GVA, and DC
GZVA instructions are not classified as cache
maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

Indicates whether the Granule Protection Check exception was on an access for stage 2 translation for
a stage 1 translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

WnR Meaning
0b0 Abort caused by an instruction reading from a

memory location.
0b1 Abort caused by an instruction writing to a memory

location.

When InD is '1', this field is RES0.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set
to 0 if a read of the address specified by the instruction would have generated the fault which is being
reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this
requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic instructions,
the WnR bit is always 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported

Exclusive or atomic access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 94

AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html
AArch64-dc-gzva.html

xFSC, bits [5:0]

Instruction or Data Fault Status Code.

xFSC Meaning Applies when
0b100011 Granule Protection Fault

on translation table walk or
hardware update of
translation table, level -1.

When FEAT_RME
is implemented
and FEAT_LPA2 is
implemented

0b100100 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 0.

When FEAT_RME
is implemented

0b100101 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 1.

When FEAT_RME
is implemented

0b100110 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 2.

When FEAT_RME
is implemented

0b100111 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 3.

When FEAT_RME
is implemented

0b101000 Granule Protection Fault,
not on translation table
walk or hardware update of
translation table.

When FEAT_RME
is implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults'.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a Data Abort
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV SAS SSE SRT Bit[15]ARVNCRBits[12:11]FnVEACMS1PTWWnR DFSC

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction generates a
Data Abort for a Translation fault, Access flag fault, or Permission fault, then this ISS encoding includes
ISS2, bits[36:32].

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0 instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this ISS
encoding includes ISS2, bits[36:32].

ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

ISV Meaning
0b0 No valid instruction syndrome. ISS[23:14] are RES0.
0b1 ISS[23:14] hold a valid instruction syndrome.

In ESR_EL2, ISV is 1 when FEAT_LS64 is implemented and a memory access generated by an LD64B
or ST64B instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault.

ESR_EL1, Exception Syndrome Register (EL1)

Page 95

In ESR_EL2, ISV is 1 when FEAT_LS64_V is implemented and a memory access generated by an
ST64BV instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault.

In ESR_EL2, ISV is 1 when FEAT_LS64_ACCDATA is implemented and a memory access generated by
an ST64BV0 instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault.

For other faults reported in ESR_EL2, ISV is 0 except for the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register specified
with 0b11111, including those with Acquire/Release semantics, but excluding Load Exclusive or
Store Exclusive and excluding those with writeback).

• AArch32 instructions where the instruction:
◦ Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT,

LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT
instruction.

◦ Is not performing register writeback.
◦ Is not using R15 as a source or destination register.

For these stage 2 aborts, ISV is UNKNOWN if the exception was generated in Debug state in memory
access mode, and otherwise indicates whether ISS[23:14] hold a valid syndrome.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64 is implemented and a memory
access generated by an LD64B or ST64B instruction generates a Data Abort for a Translation fault,
Access flag fault, or Permission fault.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64_V is implemented and a
memory access generated by an ST64BV instruction generates a Data Abort for a Translation fault,
Access flag fault, or Permission fault.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64_ACCDATA is implemented and
a memory access generated by an ST64BV0 instruction generates a Data Abort for a Translation fault,
Access flag fault, or Permission fault.

When FEAT_RAS is implemented, ISV is 0 for any synchronous External abort.

When FEAT_RAS is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0 on a
synchronous External abort on a stage 2 translation table walk.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid
instruction syndrome, and therefore ISV is 0 for these aborts.

When FEAT_MTE2 is implemented, for a synchronous Tag Check Fault abort taken to ELx,
ESR_ELx.FnV is 0 and FAR_ELx is valid.

When FEAT_MOPS is implemented, for a synchronous Data Abort on a Memory Copy and Memory Set
instruction, ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]
When ISV == 1:

Syndrome Access Size. Indicates the size of the access attempted by the faulting operation.

SAS Meaning
0b00 Byte
0b01 Halfword
0b10 Word
0b11 Doubleword

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
0b11.

ESR_EL1, Exception Syndrome Register (EL1)

Page 96

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
0b11.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0b11.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSE, bit [21]
When ISV == 1:

Syndrome Sign Extend. For a byte, halfword, or word load operation, indicates whether the data item
must be sign extended.

SSE Meaning
0b0 Sign-extension not required.
0b1 Data item must be sign-extended.

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
0.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
0.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0.

For all other operations, this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SRT, bits [20:16]
When ISV == 1:

Syndrome Register Transfer. The register number of the Wt/Xt/Rt operand of the faulting instruction.

If the exception was taken from an Exception level that is using AArch32, then this is the AArch64
view of the register. See 'Mapping of the general-purpose registers between the Execution states'.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

ESR_EL1, Exception Syndrome Register (EL1)

Page 97

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit[15]
When ISV == 1:

SF, bit [0] of bit [15]

Sixty Four bit general-purpose register transfer. Width of the register accessed by the instruction is
64-bit.

SF Meaning
0b0 Instruction loads/stores a 32-bit general-purpose

register.
0b1 Instruction loads/stores a 64-bit general-purpose

register.

Note

This field specifies the register width identified by the instruction,
not the Execution state.

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
1.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
1.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 1.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When ISV == 0 and FEAT_SME is implemented:

FnP, bit [0] of bit [15]

FAR not Precise.

FnP Meaning
0b0 The FAR holds the faulting virtual address that

generated the Data Abort.
0b1 The FAR holds any virtual address within the naturally-

aligned granule that contains the faulting virtual
address that generated a Data Abort due to an SVE
contiguous vector load/store instruction in Streaming
SVE mode, or an SME load/store instruction.
For more information about the naturally-aligned fault
granule, see FAR_ELx (for example, FAR_EL1).

The reset behavior of this field is:

ESR_EL1, Exception Syndrome Register (EL1)

Page 98

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AR, bit [14]
When ISV == 1:

Acquire/Release.

AR Meaning
0b0 Instruction did not have acquire/release semantics.
0b1 Instruction did have acquire/release semantics.

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
0.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
0.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VNCR, bit [13]
When FEAT_NV2 is implemented:

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The fault was not generated by the use of

VNCR_EL2, by an MRS or MSR instruction executed
at EL1.

0b1 The fault was generated by the use of VNCR_EL2, by
an MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 99

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html

SET, bits [1:0] of bits [12:11]

Synchronous Error Type. When DFSC is 0b010000, describes the PE error state after taking the Data
Abort exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery
might be possible. Taking a synchronous External Abort exception
might result in a PE state that is not recoverable.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LS64 is implemented and DFSC == 0b110101:

Bits[12:11]
When (DFSCFEAT_RAS ==is 0b00xxxximplemented ||and DFSC == 0b101011) &&
DFSC != 0b0000xx0b010000:

LST, bits [1:0] of bits [12:11]

Used when an LD64B or ST64B instruction generates a Data Abort for a Translation fault, Access flag
fault, or Permission fault.

When FEAT_LS64_V is implemented, used when an ST64BV instruction generates a Data Abort for a
Translation fault, Access flag fault, or Permission fault.

When FEAT_LS64_ACCDATA is implemented, used when an ST64BV0 instruction generates a Data
Abort for a Translation fault, Access flag fault, or Permission fault.

Load/Store Type. Used when a Translation fault, Access flag fault, or Permission fault generates a
Data Abort.

LST Meaning Applies when
0b00 The instruction that

generated the Data Abort is
not specified.

0b01 An ST64BV instruction
generated the Data Abort.

When FEAT_LS64_V
is implemented

0b10 An LD64B or ST64B
instruction generated the
Data Abort.

When FEAT_LS64 is
implemented

0b11 An ST64BV0 instruction
generated the Data Abort.

When
FEAT_LS64_ACCDATA
is implemented

All other values are reserved.

This field is valid only if the DFSC code is 0b110101. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 100

When FEAT_RAS is implemented and DFSC == 0b010000:

SET, bits [1:0] of bits [12:11]

Synchronous Error Type. Used when a Syncronous External abort, not on a Translation table walk or
hardware update of the Translation table, generated the Data Abort. Describes the PE error state
after taking the Data Abort exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery
might be possible. Taking a synchronous External Abort exception
might result in a PE state that is not recoverable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address
translation instruction:

ESR_EL1, Exception Syndrome Register (EL1)

Page 101

CM Meaning
0b0 The Data Abort was not generated by the execution of

one of the System instructions identified in the
description of value 1.

0b1 The Data Abort was generated by either the execution
of a cache maintenance instruction or by a
synchronous fault on the execution of an address
translation instruction. The DC ZVA, DC GVA, and DC
GZVA instructions are not classified as cache
maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

WnR Meaning
0b0 Abort caused by an instruction reading from a

memory location.
0b1 Abort caused by an instruction writing to a memory

location.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set
to 0 if a read of the address specified by the instruction would have generated the fault which is being
reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this
requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic instructions,
the WnR bit is always 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported

Exclusive or atomic access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

ESR_EL1, Exception Syndrome Register (EL1)

Page 102

AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html
AArch64-dc-gzva.html

DFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When

FEAT_LPA2 is
implemented

0b001100 Permission fault, level 0. When
FEAT_LPA2 is
implemented

0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort,

not on translation table walk
or hardware update of
translation table.

0b010001 Synchronous Tag Check
Fault.

When
FEAT_MTE2 is
implemented

0b010011 Synchronous External abort
on translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented

0b010100 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 0.

0b010101 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 1.

0b010110 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 2.

0b010111 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 3.

0b011000 Synchronous parity or ECC
error on memory access, not
on translation table walk.

When
FEAT_RAS is
not
implemented

0b011011 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented
and FEAT_RAS
is not
implemented

0b011100 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RAS is
not
implemented

0b011101 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RAS is
not
implemented

ESR_EL1, Exception Syndrome Register (EL1)

Page 103

0b011110 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RAS is
not
implemented

0b011111 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RAS is
not
implemented

0b100001 Alignment fault.
0b100011 Granule Protection Fault on

translation table walk or
hardware update of
translation table, level -1.

When
FEAT_RME is
implemented
and FEAT_LPA2
is implemented

0b100100 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RME is
implemented

0b100101 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RME is
implemented

0b100110 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RME is
implemented

0b100111 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RME is
implemented

0b101000 Granule Protection Fault, not
on translation table walk or
hardware update of
translation table.

When
FEAT_RME is
implemented

0b101001 Address size fault, level -1. When
FEAT_LPA2 is
implemented

0b101011 Translation fault, level -1. When
FEAT_LPA2 is
implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic

hardware update fault.
When
FEAT_HAFDBS
is implemented

0b110100 IMPLEMENTATION DEFINED fault
(Lockdown).

0b110101 IMPLEMENTATION DEFINED fault
(Unsupported Exclusive or
Atomic access).

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults'.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 104

ISS encoding for an exception from a trapped floating-point
exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0TFV RES0 VECITR IDF RES0 IXF UFFOFFDZFIOF

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid
information about trapped floating-point exceptions.

TFV Meaning
0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold

valid information about trapped floating-point
exceptions and are UNKNOWN.

0b1 One or more floating-point exceptions occurred during
an operation performed while executing the reported
instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits
indicate trapped floating-point exceptions that
occurred. For more information, see 'Floating-point
exceptions and exception traps'.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped
floating-point exception from an instruction that is performing floating-point operations on more than
one lane of a vector.

Note

This is not a requirement. Implementations can set this field to 1
on a trapped floating-point exception from an instruction and
return valid information in the {IDF, IXF, UFF, OFF, DZF, IOF}
fields.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

ESR_EL1, Exception Syndrome Register (EL1)

Page 105

IDF Meaning
0b0 Input denormal floating-point exception has not

occurred.
0b1 Input denormal floating-point exception occurred

during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

IXF Meaning
0b0 Inexact floating-point exception has not occurred.
0b1 Inexact floating-point exception occurred during

execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

UFF Meaning
0b0 Underflow floating-point exception has not occurred.
0b1 Underflow floating-point exception occurred during

execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

OFF Meaning
0b0 Overflow floating-point exception has not occurred.
0b1 Overflow floating-point exception occurred during

execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

ESR_EL1, Exception Syndrome Register (EL1)

Page 106

DZF Meaning
0b0 Divide by Zero floating-point exception has not

occurred.
0b1 Divide by Zero floating-point exception occurred

during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

IOF Meaning
0b0 Invalid Operation floating-point exception has not

occurred.
0b1 Invalid Operation floating-point exception occurred

during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

ISS encoding for an SError interrupt
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDS RES0 IESB AET EA RES0 DFSC

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome.

IDS Meaning
0b0 Bits [23:0] of the ISS field holds the fields described in

this encoding.

Note
If FEAT_RAS is not implemented,
bits [23:0] of the ISS field are
RES0.

0b1 Bits [23:0] of the ISS field holds IMPLEMENTATION
DEFINED syndrome information that can be used to
provide additional information about the SError
interrupt.

Note

This field was previously called ISV.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 107

AArch32-fpscr.html

Bits [23:14]

Reserved, RES0.

IESB, bit [13]
When FEAT_IESB is implemented and DFSC == 0b010001:

Implicit error synchronization event.

IESB Meaning
0b0 The SError interrupt was either not synchronized by

the implicit error synchronization event or not taken
immediately.

0b1 The SError interrupt was synchronized by the
implicit error synchronization event and taken
immediately.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AET, bits [12:10]
When FEAT_RAS is implemented and DFSC == 0b010001:

Asynchronous Error Type.

Describes the PE error state after taking the SError interrupt exception.

When DFSC is 0b010001, describes the PE error state after taking the SError interrupt exception.

AET Meaning
0b000 Uncontainable (UC).
0b001 Unrecoverable state (UEU).
0b010 Restartable state (UEO).
0b011 Recoverable state (UER).
0b110 Corrected (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall PE error state is
reported.

Note

Software can use this information to determine what recovery
might be possible. The recovery software must also examine any
implemented fault records to determine the location and extent of
the error.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 108

Otherwise:

Reserved, RES0.

EA, bit [9]
When FEAT_RAS is implemented and DFSC == 0b010001:

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

External abort type. Provides an IMPLEMENTATION DEFINED classification of External aborts.

External abort type. When DFSC is 0b010001, provides an IMPLEMENTATION DEFINED classification of
External aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]
When FEAT_RAS is implemented:

Data Fault Status Code.

DFSC Meaning
0b000000 Uncategorized error.
0b010001 Asynchronous SError interrupt.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ISS encoding for an exception from a Breakpoint or Vector Catch
debug exception
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 IFSC

Bits [24:6]

Reserved, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 109

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions:

• For exceptions from AArch64, see 'Breakpoint exceptions'.
• For exceptions from AArch32, see 'Breakpoint exceptions' and 'Vector Catch exceptions'.

ISS encoding for an exception from a Software Step exception
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV RES0 EX IFSC

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

ISV Meaning
0b0 EX bit is RES0.
0b1 EX bit is valid.

See the EX bit description for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction
was stepped.

EX Meaning
0b0 An instruction other than a Load-Exclusive instruction

was stepped.
0b1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

The reset behavior of this field is:

ESR_EL1, Exception Syndrome Register (EL1)

Page 110

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Software Step exceptions'.

ISS encoding for an exception from a Watchpoint exception
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 WPT WPTVWPFFnPRES0VNCR RES0 FnVRES0CMRES0WnR DFSC

Bit [24]

Reserved, RES0.

WPT, bits [23:18]
When FEAT_SME is implemented:

Watchpoint number, 0 to 15 inclusive.

All other values are reserved.

Otherwise:

Reserved, RES0.

WPTV, bit [17]
When FEAT_SME is implemented:

Watchpoint number Valid.

WPTV Meaning
0b0 The WPT field is invalid, and holds an UNKNOWN

value.
0b1 The WPT field is valid, and holds the number of a

watchpoint that triggered a Watchpoint exception.

When a Watchpoint exception is triggered by a watchpoint match:

• If the PE sets any of FnV, FnP, or WPF to 1, then the PE sets WPTV to 1.
• If the PE sets all of FnV, FnP, and WPF to 0, then the PE sets WPTV to an IMPLEMENTATION

DEFINED value, 0 or 1.

Otherwise:

Reserved, RES0.

WPF, bit [16]
When FEAT_SME is implemented:

Watchpoint might be false-positive.

ESR_EL1, Exception Syndrome Register (EL1)

Page 111

WPF Meaning
0b0 The watchpoint matched the original access or set of

contiguous accesses.
0b1 The watchpoint matched an access or set of

contiguous accesses where the lowest accessed
address was rounded down to the nearest multiple of
16 bytes and the highest accessed address was
rounded up to the nearest multiple of 16 bytes minus
1, but the watchpoint might not have matched the
original access or set of contiguous accesses.

Otherwise:

Reserved, RES0.

FnP, bit [15]
When FEAT_SME is implemented:

FAR not Precise.

This field only has meaning if the FAR is valid; that is, when the FnV field is 0. If the FnV field is 1, the
FnP field is 0.

FnP Meaning
0b0 If the FnV field is 0, the FAR holds the virtual address

of an access or set of contiguous accesses that
triggered a Watchpoint exception.

0b1 The FAR holds any address within the smallest
implemented translation granule that contains the
virtual address of an access or set of contiguous
accesses that triggered a Watchpoint exception.

Otherwise:

Reserved, RES0.

Bit [14]

Reserved, RES0.

VNCR, bit [13]
When FEAT_NV2 is implemented:

Indicates that the watchpoint came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The watchpoint was not generated by the use of

VNCR_EL2 by EL1 code.
0b1 The watchpoint was generated by the use of

VNCR_EL2 by EL1 code.

This field is 0 in ESR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 112

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html

Otherwise:

Reserved, RES0.

Bits [12:11]

Reserved, RES0.

FnV, bit [10]
When FEAT_SME is implemented:

FAR not Valid.

FnV Meaning
0b0 The FAR is valid, and its value is as described by the

FnP field.
0b1 The FAR is invalid, and holds an UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance or
address translation instruction:

CM Meaning
0b0 The Watchpoint exception was not generated by the

execution of one of the System instructions identified in
the description of value 1.

0b1 The Watchpoint exception was generated by either the
execution of a cache maintenance instruction or by a
synchronous Watchpoint exception on the execution of
an address translation instruction. The DC ZVA, DC
GVA, and DC GZVA instructions are not classified as a
cache maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

ESR_EL1, Exception Syndrome Register (EL1)

Page 113

AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html

WnR Meaning
0b0 Watchpoint exception caused by an instruction

reading from a memory location.
0b1 Watchpoint exception caused by an instruction

writing to a memory location.

For Watchpoint exceptions on cache maintenance and address translation instructions, this bit always
returns a value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location
would have generated the Watchpoint exception, otherwise it is set to 1.

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates the
Watchpoint exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

DFSC Meaning
0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Watchpoint exceptions'.

ISS encoding for an exception from execution of a Breakpoint
instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 Comment

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Breakpoint instruction exceptions'.

ISS encoding for an exception from a TSTART instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 Rd RES0

ESR_EL1, Exception Syndrome Register (EL1)

Page 114

Bits [24:10]

Reserved, RES0.

Rd, bits [9:5]

The Rd value from the issued instruction, the general purpose register used for the destination.

Bits [4:0]

Reserved, RES0.

ISS encoding for an exception from Branch Target Identification
instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 BTYPE

Bits [24:2]

Reserved, RES0.

BTYPE, bits [1:0]

This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception.

For more information about generating these exceptions, see 'The AArch64 application level programmers
model'.

ISS encoding for an exception from a Pointer Authentication
instruction authentication failure
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Exception
as a result

of an
Instruction

key or a
Data key

Exception
as a

result of
an A key

or a B
key

Bits [24:2]

Reserved, RES0.

Bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

Meaning
0b0 Instruction Key.
0b1 Data Key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 115

Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

Meaning
0b0 A key.
0b1 B key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTIASP, AUTIAZ, AUTIA1716.
• AUTIBSP, AUTIBZ, AUTIB1716.
• AUTIA, AUTDA, AUTIB, AUTDB.
• AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the
authorization failure, rather than changing the address in a way that will generate a Translation fault when
the address is accessed:

• RETAA, RETAB.
• BRAA, BRAB, BLRAA, BLRAB.
• BRAAZ, BRABZ, BLRAAZ, BLRABZ.
• ERETAA, ERETAB.
• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

Accessing ESR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ESR_EL1 or
ESR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ESR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ESR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

X[t, 64] = NVMem[0x138];
else

X[t, 64] = ESR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
X[t, 64] = ESR_EL2;

else
X[t, 64] = ESR_EL1;

elsif PSTATE.EL == EL3 then
X[t, 64] = ESR_EL1;

MSR ESR_EL1, <Xt>

op0 op1 CRn CRm op2

ESR_EL1, Exception Syndrome Register (EL1)

Page 116

0b11 0b000 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ESR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x138] = X[t, 64];
else

ESR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
ESR_EL2 = X[t, 64];

else
ESR_EL1 = X[t, 64];

elsif PSTATE.EL == EL3 then
ESR_EL1 = X[t, 64];

MRS <Xt>, ESR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

X[t, 64] = NVMem[0x138];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
X[t, 64] = ESR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

X[t, 64] = ESR_EL1;
else

UNDEFINED;

MSR ESR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0101 0b0010 0b000

ESR_EL1, Exception Syndrome Register (EL1)

Page 117

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x138] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
ESR_EL1 = X[t, 64];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

ESR_EL1 = X[t, 64];
else

UNDEFINED;

MRS <Xt>, ESR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

X[t, 64] = ESR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = ESR_EL2;
elsif PSTATE.EL == EL3 then

X[t, 64] = ESR_EL2;

MSR ESR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

ESR_EL1 = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ESR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then

ESR_EL2 = X[t, 64];

3021/03/2022 2017:2800; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

ESR_EL1, Exception Syndrome Register (EL1)

Page 118

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ESR_EL1, Exception Syndrome Register (EL1)

Page 119

(old) htmldiff from- (new)

ESR_EL2, Exception Syndrome Register (EL2)
The ESR_EL2 characteristics are:

Purpose
Holds syndrome information for an exception taken to EL2.

Configuration
AArch64 System register ESR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HSR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ESR_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 ISS2
EC IL ISS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ESR_EL2 is made UNKNOWN as a result of an exception return from EL2.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL2, the value of ESR_EL2
is UNKNOWN. The value written to ESR_EL2 must be consistent with a value that could be created as a result of an
exception from the same Exception level that generated the exception as a result of a situation that is not
UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:37]

Reserved, RES0.

ISS2, bits [36:32]
When FEAT_LS64 is implemented:

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction generates a Data
Abort exception for a Translation fault, Access flag fault, or Permission fault, then this field holds register specifier,
Xs.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0 instruction generates
a Data Abort exception for a Translation fault, Access flag fault, or Permission fault, then this field holds register
specifier, Xs.

Otherwise, this field is RES0.

Otherwise:

Reserved, RES0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 120

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.
• The encoding of the associated ISS.

Possible values of the EC field are:

ESR_EL2, Exception Syndrome Register (EL2)

Page 121

EC Meaning ISS Applies
when

0b000000 Unknown reason. ISS encoding for
exceptions with
an unknown
reason

0b000001 Trapped WF*
instruction
execution.
Conditional WF*
instructions that fail
their condition code
check do not cause
an exception.

ISS encoding for
an exception
from a WF*
instruction

0b000011 Trapped MCR or
MRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for
an exception
from an MCR or
MRC access

When
AArch32 is
supported

0b000100 Trapped MCRR or
MRRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for
an exception
from an MCRR or
MRRC access

When
AArch32 is
supported

0b000101 Trapped MCR or
MRC access with
(coproc==0b1110).

ISS encoding for
an exception
from an MCR or
MRC access

When
AArch32 is
supported

0b000110 Trapped LDC or
STC access.
The only architected
uses of these
instruction are:
• An STC to write

data to memory
from
DBGDTRRXint.

• An LDC to read
data from
memory to
DBGDTRTXint.

ISS encoding for
an exception
from an LDC or
STC instruction

When
AArch32 is
supported

0b000111 Access to SME,
SVE, Advanced
SIMD or floating-
point functionality
trapped by
CPACR_EL1.FPEN,
CPTR_EL2.FPEN,
CPTR_EL2.TFP, or
CPTR_EL3.TFP
control.
Excludes exceptions
resulting from
CPACR_EL1 when
the value of
HCR_EL2.TGE is 1,
or because SVE or
Advanced SIMD and
floating-point are
not implemented.
These are reported
with EC value
0b000000.
Excludes exceptions
resulting from
CPACR_EL1 when
the value of
HCR_EL2.TGE is 1,
or because SVE or
Advanced SIMD and

ISS encoding for
an exception
from an access to
SVE, Advanced
SIMD or floating-
point
functionality,
resulting from
the FPEN and
TFP traps

ESR_EL2, Exception Syndrome Register (EL2)

Page 122

AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html
AArch64-cpacr_el1.html

floating-point are
not implemented.
These are reported
with EC value
0b000000 as
described in 'The EC
used to report an
exception routed to
EL2 because
HCR_EL2.TGE is 1'.

0b001000 Trapped VMRS
access, from ID
group trap, that is
not reported using
EC 0b000111.

ISS encoding for
an exception
from an MCR or
MRC access

When
AArch32 is
supported

0b001001 Trapped use of a
Pointer
authentication
instruction because
HCR_EL2.API == 0
|| SCR_EL3.API ==
0.

ISS encoding for
an exception
from a Pointer
Authentication
instruction when
HCR_EL2.API
== 0 ||
SCR_EL3.API ==
0

When
FEAT_PAuth
is
implemented

0b001010 An exception from
an LD64B or ST64B*
instruction.

ISS encoding for
an exception
from an LD64B
or ST64B*
instruction

When
FEAT_LS64
is
implemented

0b001100 Trapped MRRC
access with
(coproc==0b1110).

ISS encoding for
an exception
from an MCRR or
MRRC access

When
AArch32 is
supported

0b001101 Branch Target
Exception.

ISS encoding for
an exception
from Branch
Target
Identification
instruction

When
FEAT_BTI is
implemented

0b001110 Illegal Execution
state.

ISS encoding for
an exception
from an Illegal
Execution state,
or a PC or SP
alignment fault

0b010001 SVC instruction
execution in
AArch32 state.
This is reported in
ESR_EL2 only when
the exception is
generated because
the value of
HCR_EL2.TGE is 1.

ISS encoding for
an exception
from HVC or SVC
instruction
execution

When
AArch32 is
supported

0b010010 HVC instruction
execution in
AArch32 state, when
HVC is not disabled.

ISS encoding for
an exception
from HVC or SVC
instruction
execution

When
AArch32 is
supported

0b010011 SMC instruction
execution in
AArch32 state, when
SMC is not disabled.
This is reported in
ESR_EL2 only when
the exception is
generated because
the value of
HCR_EL2.TSC is 1.

ISS encoding for
an exception
from SMC
instruction
execution in
AArch32 state

When
AArch32 is
supported

ESR_EL2, Exception Syndrome Register (EL2)

Page 123

0b010101 SVC instruction
execution in
AArch64 state.

ISS encoding for
an exception
from HVC or SVC
instruction
execution

When
AArch64 is
supported

0b010110 HVC instruction
execution in
AArch64 state, when
HVC is not disabled.

ISS encoding for
an exception
from HVC or SVC
instruction
execution

When
AArch64 is
supported

0b010111 SMC instruction
execution in
AArch64 state, when
SMC is not disabled.
This is reported in
ESR_EL2 only when
the exception is
generated because
the value of
HCR_EL2.TSC is 1.

ISS encoding for
an exception
from SMC
instruction
execution in
AArch64 state

When
AArch64 is
supported

0b011000 Trapped MSR, MRS
or System
instruction
execution in
AArch64 state, that
is not reported
using EC 0b000000,
0b000001 or
0b000111.
This includes all
instructions that
cause exceptions
that are part of the
encoding space
defined in 'System
instruction class
encoding overview',
except for those
exceptions reported
using EC values
0b000000, 0b000001,
or 0b000111.

ISS encoding for
an exception
from MSR, MRS,
or System
instruction
execution in
AArch64 state

When
AArch64 is
supported

0b011001 Access to SVE
functionality
trapped as a result
of CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ, that
is not reported
using EC 0b000000.

ISS encoding for
an exception
from an access to
SVE
functionality,
resulting from
CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ

When
FEAT_SVE is
implemented

0b011010 Trapped ERET,
ERETAA, or ERETAB
instruction
execution.

ISS encoding for
an exception
from an ERET,
ERETAA, or
ERETAB
instruction

When
FEAT_PAuth
is
implemented
and
FEAT_NV is
implemented

0b011011 Exception from an
access to a TSTART
instruction at EL0
when
SCTLR_EL1.TME0
== 0, EL0 when
SCTLR_EL2.TME0
== 0, at EL1 when
SCTLR_EL1.TME
== 0, at EL2 when
SCTLR_EL2.TME

ISS encoding for
an exception
from a TSTART
instruction

When
FEAT_TME
is
implemented

ESR_EL2, Exception Syndrome Register (EL2)

Page 124

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

== 0 or at EL3
when
SCTLR_EL3.TME
== 0.

0b011100 Exception from a
Pointer
Authentication
instruction
authentication
failure

ISS encoding for
an exception
from a Pointer
Authentication
instruction
authentication
failure

When
FEAT_FPAC
is
implemented

0b011101 Access to SME
functionality
trapped as a result
of
CPACR_EL1.SMEN,
CPTR_EL2.SMEN,
CPTR_EL2.TSM,
CPTR_EL3.ESM, or
an attempted
execution of an
instruction that is
illegal because of
the value of
PSTATE.SM or
PSTATE.ZA, that is
not reported using
EC 0b000000.

ISS encoding for
an exception due
to SME
functionality

When
FEAT_SME
is
implemented

0b011110 Exception from a
Granule Protection
Check

ISS encoding for
an exception
from a Granule
Protection Check

When
FEAT_RME
is
implemented

0b100000 Instruction Abort
from a lower
Exception level.
Used for MMU
faults generated by
instruction accesses
and synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for
an exception
from an
Instruction Abort

0b100001 Instruction Abort
taken without a
change in Exception
level.
Used for MMU
faults generated by
instruction accesses
and synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for
an exception
from an
Instruction Abort

0b100010 PC alignment fault
exception.

ISS encoding for
an exception
from an Illegal
Execution state,
or a PC or SP
alignment fault

0b100100 Data Abort
exception from a
lower Exception
level, excluding
Data Abort

ISS encoding for
an exception
from a Data
Abort

ESR_EL2, Exception Syndrome Register (EL2)

Page 125

AArch64-sctlr_el3.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

exceptions taken to
EL2 as a result of
accesses generated
associated with
VNCR_EL2 as part
of nested
virtualization
support.
These Data Abort
exceptions might be
generated from
Exception levels in
any Execution state.
Used for MMU
faults generated by
data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

0b100101 Data Abort
exception without a
change in Exception
level, or Data Abort
exceptions taken to
EL2 as a result of
accesses generated
associated with
VNCR_EL2 as part
of nested
virtualization
support.
Used for MMU
faults generated by
data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for
an exception
from a Data
Abort

0b100110 SP alignment fault
exception.

ISS encoding for
an exception
from an Illegal
Execution state,
or a PC or SP
alignment fault

0b100111 Memory Operation
Exception.

ISS encoding for
an exception
from the Memory
Copy and
Memory Set
instructions

When
FEAT_MOPS
is
implemented

0b101000 Trapped floating-
point exception

ISS encoding for
an exception
from a trapped

When
AArch32 is
supported

ESR_EL2, Exception Syndrome Register (EL2)

Page 126

AArch64-vncr_el2.html
AArch64-vncr_el2.html

taken from AArch32
state.
This EC value is
valid if the
implementation
supports trapping of
floating-point
exceptions,
otherwise it is
reserved. Whether a
floating-point
implementation
supports trapping of
floating-point
exceptions is
IMPLEMENTATION
DEFINED.

floating-point
exception

0b101100 Trapped floating-
point exception
taken from AArch64
state.
This EC value is
valid if the
implementation
supports trapping of
floating-point
exceptions,
otherwise it is
reserved. Whether a
floating-point
implementation
supports trapping of
floating-point
exceptions is
IMPLEMENTATION
DEFINED.

ISS encoding for
an exception
from a trapped
floating-point
exception

When
AArch64 is
supported

0b101111 SError interrupt. ISS encoding for
an SError
interrupt

0b110000 Breakpoint
exception from a
lower Exception
level.

ISS encoding for
an exception
from a
Breakpoint or
Vector Catch
debug exception

0b110001 Breakpoint
exception taken
without a change in
Exception level.

ISS encoding for
an exception
from a
Breakpoint or
Vector Catch
debug exception

0b110010 Software Step
exception from a
lower Exception
level.

ISS encoding for
an exception
from a Software
Step exception

0b110011 Software Step
exception taken
without a change in
Exception level.

ISS encoding for
an exception
from a Software
Step exception

0b110100 Watchpoint from a
lower Exception
level, excluding
Watchpoint
Exceptions taken to
EL2 as a result of
accesses generated
associated with
VNCR_EL2 as part
of nested

ISS encoding for
an exception
from a
Watchpoint
exception

ESR_EL2, Exception Syndrome Register (EL2)

Page 127

AArch64-vncr_el2.html

virtualization
support.
These Watchpoint
Exceptions might be
generated from
Exception levels
using any Execution
state.

0b110101 Watchpoint
exceptions without a
change in Exception
level, or Watchpoint
exceptions taken to
EL2 as a result of
accesses generated
associated with
VNCR_EL2 as part
of nested
virtualization
support.

ISS encoding for
an exception
from a
Watchpoint
exception

0b111000 BKPT instruction
execution in
AArch32 state.

ISS encoding for
an exception
from execution of
a Breakpoint
instruction

When
AArch32 is
supported

0b111010 Vector Catch
exception from
AArch32 state.
The only case where
a Vector Catch
exception is taken to
an Exception level
that is using
AArch64 is when the
exception is routed
to EL2 and EL2 is
using AArch64.

ISS encoding for
an exception
from a
Breakpoint or
Vector Catch
debug exception

When
AArch32 is
supported

0b111100 BRK instruction
execution in
AArch64 state.

ISS encoding for
an exception
from execution of
a Breakpoint
instruction

When
AArch64 is
supported

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous
exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be
used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

ESR_EL2, Exception Syndrome Register (EL2)

Page 128

AArch64-vncr_el2.html

IL Meaning
0b0 16-bit instruction trapped.
0b1 32-bit instruction trapped. This value is also used when the

exception is one of the following:
• An SError interrupt.
• An Instruction Abort exception.
• A PC alignment fault exception.
• An SP alignment fault exception.
• A Data Abort exception for which the value of the ISV bit

is 0.
• An Illegal Execution state exception.
• Any debug exception except for Breakpoint instruction

exceptions. For Breakpoint instruction exceptions, this
bit has its standard meaning:

◦ 0b0: 16-bit T32 BKPT instruction.
◦ 0b1: 32-bit A32 BKPT instruction or A64 BRK

instruction.
• An exception reported using EC value 0b000000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception
class. However, in practice, some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value
returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see 'Mapping of the general-purpose registers between the Execution
states'.

If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value 0b11111.
• If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that

must be either:
◦ The AArch64 view of the register number of a register that might have been used at the

Exception level from which the exception was taken.
◦ The value 0b11111.

ISS encoding for exceptions with an unknown reason
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions
that are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not
accessible at the current Exception level and Security state, including:

◦ A read access using a System register pattern that is not allocated for reads or that does not
permit reads at the current Exception level and Security state.

◦ A write access using a System register pattern that is not allocated for writes or that does
not permit writes at the current Exception level and Security state.

◦ Instruction encodings that are unallocated.
◦ Instruction encodings for instructions or System registers that are not implemented in the

implementation.

ESR_EL2, Exception Syndrome Register (EL2)

Page 129

• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug
state.

• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-
debug state.

• In AArch32 state, attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an

attempted access to Advanced SIMD or floating-point functionality under conditions where that access
would be permitted if that functionality was present. This includes the attempted execution of an
Advanced SIMD or floating-point instruction, and attempted accesses to Advanced SIMD and floating-
point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control
bits.

• Attempted execution of:
◦ An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
◦ An SMC instruction when disabled by SCR_EL3.SMD.
◦ An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.
• Attempted execution of an MSR or MRS instruction using a _EL12 register name when HCR_EL2.E2H

== 0.
• Attempted execution, in Debug state, of:

◦ A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not
implemented in the current Security state.

◦ A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the
current Security state.

◦ A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.
• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using

R13_mon.
• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an

instruction that is configured to trap to EL3.
• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)

instruction to SPSR_mon, SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of
HCR_EL2.TGE was 0 would have been reported with an ESR_ELx.EC value of 0b000111.

• In Non-transactional state, attempted execution of a TCOMMIT instruction.

ISS encoding for an exception from a WF* instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0 RN RES0 RV TI

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

ESR_EL2, Exception Syndrome Register (EL2)

Page 130

AArch64-sp_el0.html
AArch64-spsel.html

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:10]

Reserved, RES0.

RN, bits [9:5]
When FEAT_WFxT is implemented:

Register Number. Indicates the register number supplied for a WFET or WFIT instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [4:3]

Reserved, RES0.

RV, bit [2]
When FEAT_WFxT is implemented:

Register field Valid.

If TI[1] == 1, then this field indicates whether RN holds a valid register number for the register
argument to the trapped WFET or WFIT instruction.

RV Meaning
0b0 Register field invalid.
0b1 Register field valid.

If TI[1] == 0, then this field is RES0.

This field is set to 1 on a trap on WFET or WFIT.

ESR_EL2, Exception Syndrome Register (EL2)

Page 131

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TI, bits [1:0]

Trapped instruction. Possible values of this bit are:

TI Meaning Applies when
0b00 WFI trapped.
0b01 WFE trapped.
0b10 WFIT trapped. When FEAT_WFxT is implemented
0b11 WFET trapped. When FEAT_WFxT is implemented

When FEAT_WFxT is implemented, this is a two bit field as shown. Otherwise, bit[1] is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• SCTLR_EL1.{nTWE, nTWI}.
• HCR_EL2.{TWE, TWI}.
• SCR_EL3.{TWE, TWI}.

ISS encoding for an exception from an MCR or MRC access
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc2 Opc1 CRn Rt CRm Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

ESR_EL2, Exception Syndrome Register (EL2)

Page 132

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

ESR_EL2, Exception Syndrome Register (EL2)

Page 133

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to System register space. MCR instruction.
0b1 Read from System register space. MRC or VMRS

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000011:

• If FEAT_TIDCP1 is implemented, SCTLR_EL1.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or
EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• If FEAT_TIDCP1 is implemented, SCTLR_EL2.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access
(coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCR or MRC access (coproc
== 0b1111) trapped to EL2.

• CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL2.

ESR_EL2, Exception Syndrome Register (EL2)

Page 134

AArch64-cntkctl_el1.html
AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-cptr_el2.html
AArch64-cpacr_el1.html
AArch64-hstr_el2.html
AArch64-cnthctl_el2.html
AArch64-mdcr_el2.html
AArch64-cptr_el2.html

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• If FEAT_FGT is implemented, MCR or MRC access to some registers at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000101:

• CPACR_EL1.TTA for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and
EL1 using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

• HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32,
MRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR using AArch32,
MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC
access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, MCR or MRC access
(coproc == 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, MCR or MRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc
== 0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b001000:

• HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS
access trapped to EL2.

• HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS
access trapped to EL2.

ISS encoding for an exception from an LD64B or ST64B*
instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ISS

ISS, bits [24:0]

ISS Meaning Applies when
0b0000000000000000000000000 ST64BV

instruction
trapped.

When FEAT_LS64_V
is implemented

0b0000000000000000000000001 ST64BV0
instruction
trapped.

When
FEAT_LS64_ACCDATA
is implemented

0b0000000000000000000000010 LD64B or
ST64B
instruction
trapped.

When FEAT_LS64 is
implemented

All other values are reserved.

ESR_EL2, Exception Syndrome Register (EL2)

Page 135

AArch64-cptr_el3.html
AArch64-mdcr_el3.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html
AArch64-mdscr_el1.html
AArch64-mdcr_el2.html
AArch64-mdcr_el3.html
AArch32-jidr.html
AArch64-cptr_el2.html
AArch64-mdcr_el2.html
AArch32-dbgdrar.html
AArch32-dbgdsar.html
AArch64-mdcr_el2.html
AArch64-mdcr_el2.html
AArch64-cptr_el3.html
AArch64-mdcr_el3.html
AArch64-mdcr_el3.html
AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html

ISS encoding for an exception from an MCRR or MRRC access
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc1 RES0 Rt2 Rt CRm Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 136

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.

If the Rt2 value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt2 value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

ESR_EL2, Exception Syndrome Register (EL2)

Page 137

Direction Meaning
0b0 Write to System register space. MCRR

instruction.
0b1 Read from System register space. MRRC

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1
or EL2.

• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped
to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCRR or MRRC access
(coproc == 0b1111) trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers from EL0 and
EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers AMEVCNTR0<n> and AMEVCNTR1<n>
from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• If FEAT_FGT is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and
HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b001100:

• MDSCR_EL1.TDCC, for accesses to the Debug ROM registers DBGDSAR and DBGDRAR at EL0 using
AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR using AArch32,
MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

• CPACR_EL1.TTA for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL1 or EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

Note

If the Armv8-A architecture is implemented with an ETMv4
implementation, MCRR and MRRC accesses to trace registers are
UNDEFINED and the resulting exception is higher priority than an
exception due to these traps.

ISS encoding for an exception from an LDC or STC instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND imm8 RES0 Rn Offset AM Direction

ESR_EL2, Exception Syndrome Register (EL2)

Page 138

AArch64-cntkctl_el1.html
AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-hstr_el2.html
AArch64-cnthctl_el2.html
AArch64-mdcr_el2.html
AArch64-cptr_el2.html
AArch64-mdcr_el3.html
AArch64-cptr_el3.html
AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch32-pmccntr.html
AArch64-mdscr_el1.html
AArch32-dbgdsar.html
AArch32-dbgdrar.html
AArch64-mdcr_el2.html
AArch32-dbgdrar.html
AArch32-dbgdsar.html
AArch64-mdcr_el3.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer.

ESR_EL2, Exception Syndrome Register (EL2)

Page 139

If the Rn value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rn value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction.
When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Offset Meaning
0b0 Subtract offset.
0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

AM Meaning
0b000 Immediate unindexed.
0b001 Immediate post-indexed.
0b010 Immediate offset.
0b011 Immediate pre-indexed.
0b100 For a trapped STC instruction or a trapped T32 LDC

instruction this encoding is reserved.
0b110 For a trapped STC instruction, this encoding is

reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is
that behavior is CONSTRAINED UNPREDICTABLE, as described in 'Reserved values in System and memory-
mapped registers and translation table entries'.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

ESR_EL2, Exception Syndrome Register (EL2)

Page 140

Direction Meaning
0b0 Write to memory. STC instruction.
0b1 Read from memory. LDC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value
0b000110:

• MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint trapped to EL1 or EL2.

• MDCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL2.

• MDCR_EL3.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL3.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for LDC and STC accesses to the DCC registers at
EL0 and EL1 trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1,
and EL2 trapped to EL3.

ISS encoding for an exception from an access to SVE, Advanced
SIMD or floating-point functionality, resulting from the FPEN and
TFP traps
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.
• Accesses to the Advanced SIMD and floating-point System registers.
• Execution of SME instructions.

For an implementation that does not include either SVE or support for Advanced SIMD and floating-point,
the exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

ESR_EL2, Exception Syndrome Register (EL2)

Page 141

AArch64-mdscr_el1.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch64-mdcr_el2.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch64-mdcr_el3.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch64-mdcr_el2.html
AArch64-mdcr_el3.html

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value
0b000111:

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.
• CPTR_EL2.FPEN and CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to

EL2.
• CPTR_EL3.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

ISS encoding for an exception from an access to SVE
functionality, resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN,
CPTR_EL2.TZ, or CPTR_EL3.EZ
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

The accesses covered by this trap include:

• Execution of SVE instructions when the PE is not in Streaming SVE mode.
• Accesses to the SVE System registers, ZCR_ELx.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

Bits [24:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value
0b011001:

• CPACR_EL1.ZEN, for execution of SVE instructions and accesses to SVE registers at EL0 or EL1,
trapped to EL1.

• CPTR_EL2.ZEN and CPTR_EL2.TZ, for execution of SVE instructions and accesses to SVE registers at
EL0, EL1, or EL2, trapped to EL2.

• CPTR_EL3.EZ, for execution of SVE instructions and accesses to SVE registers from all Exception
levels, trapped to EL3.

ESR_EL2, Exception Syndrome Register (EL2)

Page 142

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

ISS encoding for an exception from an Illegal Execution state, or
a PC or SP alignment fault
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about PC alignment fault exceptions, see 'PC alignment checking'.

'SP alignment checking' describes the configuration settings for generating SP alignment fault exceptions.

ISS encoding for an exception from the Memory Copy and
Memory Set instructions

24 23 22212019 18 17 16 15 1413121110 9 8 7 6 5 4 3 2 1 0
MemInstisSETG Options FromEpilogueWrongOptionOptionARES0 destreg srcreg sizereg

MemInst, bit [24]

Indicates the memory instruction class causing the exception.

MemInst Meaning
0b0 CPYFE*, CPYFM*, CPYE*, and CPYM*

instructions.
0b1 SETE*, SETM*, SETGE*, and SETGM*

instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

isSETG, bit [23]

Indicates whether the instruction belongs to SETGM* or SETGE* class of instruction.

isSETG Meaning
0b0 Not a SETGM* or SETGE* instruction.
0b1 SETGM* or SETGE* instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Options, bits [22:19]

Options : the Options field of the instruction.

For Memory Copy instructions, bits[22:19] forms the Options field, which holds the bits[15:12] of the
instruction.

For Memory Set instructions:

• Bits[22:21] are RES0.
• Bits[20:19] form the Options field, which holds the bits[13:12] of the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 143

FromEpilogue, bit [18]

Indicates whether the instruction belongs to the epilogue class of Memory Copy or Memory Set
instructions.

FromEpilogue Meaning
0b0 Not an epilogue instruction.
0b1 CPYE*, CPYFE*, SETE*, or SETGE*

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WrongOption, bit [17]

Algorithm option.

WrongOption Meaning
0b0 WrongOption is false.
0b1 WrongOption is true.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OptionA, bit [16]

Algorithm type indicated by the PSTATE.C bit.

OptionA Meaning
0b0 OptionB indicated by PSTATE.C is 0.
0b1 OptionA indicated by PSTATE.C is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

destreg, bits [14:10]

The destination register value from the issued instruction, containing the destination address.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

srcreg, bits [9:5]

The source register value from the issued instruction, containing either the source address or the
source data.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

sizereg, bits [4:0]

The size register value from the issued instruction, containing the number of bytes to be transfered or
set.

ESR_EL2, Exception Syndrome Register (EL2)

Page 144

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from HVC or SVC instruction
execution
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the
issued instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:
◦ For the T32 instruction, this field is zero-extended from the imm8 field of the

instruction.
◦ For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the

instruction.
• If the instruction is conditional, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an
exception only if it passes its condition code check. Therefore, the syndrome information for these exceptions
does not require conditionality information.

For T32 and A32 instructions, see 'SVC' and 'HVC'.

For A64 instructions, see 'SVC' and 'HVC'.

If FEAT_FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC
execution.

ISS encoding for an exception from SMC instruction execution in
AArch32 state
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND CCKNOWNPASS RES0

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS
encoding is RES0.

For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is
as shown in the diagram.

CV, bit [24]

Condition code valid.

ESR_EL2, Exception Syndrome Register (EL2)

Page 145

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

CCKNOWNPASS Meaning
0b0 The instruction was unconditional, or

was conditional and passed its condition
code check.

0b1 The instruction was conditional, and
might have failed its condition code
check.

Note

In an implementation in which an SMC instruction that fails it code
check is not trapped, this field can always return the value 0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 146

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

ISS encoding for an exception from SMC instruction execution in
AArch64 state
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from EL1 modes.
• When an SMC instruction is not trapped, so completes normally and generates an exception that is

taken to EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

ISS encoding for an exception from MSR, MRS, or System
instruction execution in AArch64 state
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 Op0 Op2 Op1 CRn Rt CRm Direction

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

The reset behavior of this field is:

ESR_EL2, Exception Syndrome Register (EL2)

Page 147

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write access, including MSR instructions.
0b1 Read access, including MRS instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see 'System instructions' subsection of 'Branches, exception
generating and System instructions' for the encoding values returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC
value 0b011000:

• If FEAT_TIDCP1 is implemented, SCTLR_EL1.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch64 state, MSR or MRS access trapped to EL1.

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1
or EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

ESR_EL2, Exception Syndrome Register (EL2)

Page 148

AArch64-ctr_el0.html
AArch64-cpacr_el1.html

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer
registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to the Performance Monitor registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• If FEAT_TIDCP1 is implemented, SCTLR_EL2.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch64 state, MSR or MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter control register, TRFCR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS
access trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64
state, MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state,
MSR or MRS access trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.APK, for accesses to Pointer authentication key registers. using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS
access, trapped to EL2.

• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access, trapped
to EL2.

• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access,
trapped to EL2.

• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state,
MSR or MRS access trapped to EL3.

• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access
trapped to EL3.

• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL3.

• MDCR_EL3.TTRF, for accesses to the trace filter control registers, TRFCR_EL1 and TRFCR_EL2, using
AArch64 state, MSR or MRS access trapped to EL3.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS
access trapped to EL3.

ESR_EL2, Exception Syndrome Register (EL2)

Page 149

AArch64-mdscr_el1.html
AArch64-mdcr_el2.html
AArch64-mdcr_el3.html
AArch64-cntkctl_el1.html
AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-actlr_el1.html
AArch64-cptr_el2.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-mdcr_el2.html
AArch64-trfcr_el1.html
AArch64-mdcr_el2.html
AArch64-mdcr_el2.html
AArch64-cnthctl_el2.html
AArch64-mdcr_el2.html
AArch64-mdcr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cptr_el2.html
AArch64-cpacr_el1.html
AArch64-cptr_el3.html
AArch64-mdcr_el3.html
AArch64-trfcr_el1.html
AArch64-trfcr_el2.html
AArch64-mdcr_el3.html
AArch64-mdcr_el3.html

• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,
trapped to EL3.

• If FEAT_EVT is implemented, the following registers control traps for EL1 and EL0 Cache controls
that use this EC value:

◦ HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}.
◦ HCR2.{TTLBIS, TICAB, TOCU, TID4}.

• If FEAT_FGT is implemented:
◦ SCR_EL3.FGTEn, for accesses to the fine-grained trap registers, MSR or MRS access at EL2

trapped to EL3.
◦ HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, MSR

or MRS access at EL0 and EL1 trapped to EL2.
◦ HFGITR_EL2 for execution of system instructions, MSR or MRS access trapped to EL2
◦ HDFGRTR_EL2 for reads and HDFGWTR_EL2 for writes of registers, using AArch64 state,

MSR or MRS access at EL0 and EL1 state trapped to EL2.
◦ HAFGRTR_EL2 for reads of Activity Monitor counters, using AArch64 state, MRS access at

EL0 and EL1 trapped to EL2.
• If FEAT_RNG_TRAP is implemented:

◦ SCR_EL3.TRNDR for reads of RNDR and RNDRRS using AArch64 state, MRS access trapped
to EL3.

• If FEAT_SME is implemented:
◦ CPTR_EL3.ESM, for MSR or MRS accesses to SMPRI_EL1 at EL1, EL2, and EL3, trapped to

EL3.
◦ CPTR_EL3.ESM, for MSR or MRS accesses to SMPRIMAP_EL2 at EL2 and EL3, trapped to

EL3.
◦ SCTLR_EL1.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, trapped to EL1 or EL2.
◦ SCTLR_EL2.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, trapped to EL2.
◦ SCR_EL3.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, EL1, and EL2, trapped to

EL3.
• If FEAT_NMI is implemented, HCRX_EL2.TALLINT, for MSR writes of ALLINT at EL1, trapped to EL2.

ISS encoding for an exception from an Instruction Abort
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 SET FnV EA RES0S1PTWRES0 IFSC

Bits [24:13]

Reserved, RES0.

SET, bits [12:11]
When FEAT_RAS is implemented:

Synchronous Error Type. When IFSC is 0b010000, describes the PE error state after taking the
Instruction Abort exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery
might be possible. Taking a synchronous External Abort exception
might result in a PE state that is not recoverable.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 150

AArch64-mdcr_el3.html
AArch64-cptr_el3.html
AArch64-hfgrtr_el2.html
AArch64-hfgwtr_el2.html
AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch64-hafgrtr_el2.html
AArch64-rndr.html
AArch64-rndrrs.html
AArch64-cptr_el3.html
AArch64-smpri_el1.html
AArch64-cptr_el3.html
AArch64-smprimap_el2.html
AArch64-tpidr2_el0.html
AArch64-tpidr2_el0.html
AArch64-tpidr2_el0.html
AArch64-hcrx_el2.html
AArch64-allint.html

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

ESR_EL2, Exception Syndrome Register (EL2)

Page 151

IFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When

FEAT_LPA2 is
implemented

0b001100 Permission fault, level 0. When
FEAT_LPA2 is
implemented

0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort,

not on translation table walk
or hardware update of
translation table.

0b010011 Synchronous External abort
on translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented

0b010100 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 0.

0b010101 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 1.

0b010110 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 2.

0b010111 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 3.

0b011000 Synchronous parity or ECC
error on memory access, not
on translation table walk.

When
FEAT_RAS is
not
implemented

0b011011 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented
and FEAT_RAS
is not
implemented

0b011100 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RAS is
not
implemented

0b011101 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RAS is
not
implemented

0b011110 Synchronous parity or ECC
error on memory access on
translation table walk or

When
FEAT_RAS is

ESR_EL2, Exception Syndrome Register (EL2)

Page 152

hardware update of
translation table, level 2.

not
implemented

0b011111 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RAS is
not
implemented

0b100011 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_RME is
implemented
and FEAT_LPA2
is implemented

0b100100 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RME is
implemented

0b100101 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RME is
implemented

0b100110 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RME is
implemented

0b100111 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RME is
implemented

0b101000 Granule Protection Fault, not
on translation table walk or
hardware update of
translation table.

When
FEAT_RME is
implemented

0b101001 Address size fault, level -1. When
FEAT_LPA2 is
implemented

0b101011 Translation fault, level -1. When
FEAT_LPA2 is
implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic

hardware update fault.
When
FEAT_HAFDBS
is implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults'.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception due to SME functionality
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 SMTC

The accesses covered by this trap include:

• Execution of SME instructions.
• Execution of SVE and Advanced SIMD instructions, when the PE is in Streaming SVE mode.
• Direct accesses of SVCR, SMCR_EL1, SMCR_EL2, SMCR_EL3.

ESR_EL2, Exception Syndrome Register (EL2)

Page 153

AArch64-smcr_el1.html
AArch64-smcr_el2.html
AArch64-smcr_el3.html

Bits [24:3]

Reserved, RES0.

SMTC, bits [2:0]

SME Trap Code. Identifies the reason for instruction trapping.

SMTC Meaning
0b000 Access to SME functionality trapped as a result of

CPACR_EL1.SMEN, CPTR_EL2.SMEN,
CPTR_EL2.TSM, or CPTR_EL3.ESM, that is not
reported using EC 0b000000.

0b001 Advanced SIMD, SVE, or SVE2 instruction trapped
because PSTATE.SM is 1.

0b010 SME instruction trapped because PSTATE.SM is 0.
0b011 SME instruction trapped because PSTATE.ZA is 0.

All other values are reserved.

The following fields describe the configuration settings for the traps that are reported using the EC value
0b011101:

• CPACR_EL1.SMEN, for execution of SME instructions, SVE instructions when the PE is in Streaming
SVE mode, and instructions that directly access SVCR and SMCR_EL1 System registers at EL1 and
EL0, trapped to EL1 or EL2.

• CPTR_EL2.SMEN and CPTR_EL2.TSM, for execution of SME instructions, SVE instructions when the
PE is in Streaming SVE mode, and instructions that directly access SVCR, SMCR_EL1, SMCR_EL2 at
EL2, EL1, or EL0, trapped to EL2.

• CPTR_EL3.ESM, for execution of SME instructions, SVE instructions when the PE is in Streaming SVE
mode, and instructions that directly access SVCR, SMCR_EL1, SMCR_EL2, SMCR_EL3 from all
Exception levels and any Security state, trapped to EL3.

ISS encoding for an exception from a Granule Protection Check
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 S2PTWInD GPCSC VNCR RES0 CMS1PTWWnR xFSC

Bits [24:22]

Reserved, RES0.

S2PTW, bit [21]

Indicates whether the Granule Protection Check exception was on an access made for a stage 2
translation table walk.

S2PTW Meaning
0b0 Fault not on a stage 2 translation table walk.
0b1 Fault on a stage 2 translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

InD, bit [20]

Indicates whether the Granule Protection Check exception was on an instruction or data access.

InD Meaning
0b0 Data access.
0b1 Instruction access.

ESR_EL2, Exception Syndrome Register (EL2)

Page 154

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html
AArch64-smcr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-smcr_el1.html
AArch64-smcr_el2.html
AArch64-cptr_el3.html
AArch64-smcr_el1.html
AArch64-smcr_el2.html
AArch64-smcr_el3.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GPCSC, bits [19:14]

Granule Protection Check Status Code.

GPCSC Meaning
0b000000 GPT address size fault at level 0.
0b000100 GPT walk fault at level 0.
0b000101 GPT walk fault at level 1.
0b001100 Granule protection fault at level 0.
0b001101 Granule protection fault at level 1.
0b010100 Synchronous External abort on GPT fetch at level

0.
0b010101 Synchronous External abort on GPT fetch at level

1.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VNCR, bit [13]
When FEAT_NV2 is implemented:

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The fault was not generated by the use of

VNCR_EL2, by an MRS or MSR instruction executed
at EL1.

0b1 The fault was generated by the use of VNCR_EL2, by
an MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.

When InD is '1', this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [12:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address
translation instruction:

ESR_EL2, Exception Syndrome Register (EL2)

Page 155

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html

CM Meaning
0b0 The Data Abort was not generated by the execution of

one of the System instructions identified in the
description of value 1.

0b1 The Data Abort was generated by either the execution
of a cache maintenance instruction or by a
synchronous fault on the execution of an address
translation instruction. The DC ZVA, DC GVA, and DC
GZVA instructions are not classified as cache
maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

Indicates whether the Granule Protection Check exception was on an access for stage 2 translation for
a stage 1 translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

WnR Meaning
0b0 Abort caused by an instruction reading from a

memory location.
0b1 Abort caused by an instruction writing to a memory

location.

When InD is '1', this field is RES0.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set
to 0 if a read of the address specified by the instruction would have generated the fault which is being
reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this
requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic instructions,
the WnR bit is always 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported

Exclusive or atomic access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 156

AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html
AArch64-dc-gzva.html

xFSC, bits [5:0]

Instruction or Data Fault Status Code.

xFSC Meaning Applies when
0b100011 Granule Protection Fault

on translation table walk or
hardware update of
translation table, level -1.

When FEAT_RME
is implemented
and FEAT_LPA2 is
implemented

0b100100 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 0.

When FEAT_RME
is implemented

0b100101 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 1.

When FEAT_RME
is implemented

0b100110 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 2.

When FEAT_RME
is implemented

0b100111 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 3.

When FEAT_RME
is implemented

0b101000 Granule Protection Fault,
not on translation table
walk or hardware update of
translation table.

When FEAT_RME
is implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults'.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a Data Abort
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV SAS SSE SRT Bit[15]ARVNCRBits[12:11]FnVEACMS1PTWWnR DFSC

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction generates a
Data Abort for a Translation fault, Access flag fault, or Permission fault, then this ISS encoding includes
ISS2, bits[36:32].

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0 instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this ISS
encoding includes ISS2, bits[36:32].

ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

ISV Meaning
0b0 No valid instruction syndrome. ISS[23:14] are RES0.
0b1 ISS[23:14] hold a valid instruction syndrome.

In ESR_EL2, ISV is 1 when FEAT_LS64 is implemented and a memory access generated by an LD64B
or ST64B instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault.

ESR_EL2, Exception Syndrome Register (EL2)

Page 157

In ESR_EL2, ISV is 1 when FEAT_LS64_V is implemented and a memory access generated by an
ST64BV instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault.

In ESR_EL2, ISV is 1 when FEAT_LS64_ACCDATA is implemented and a memory access generated by
an ST64BV0 instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault.

For other faults reported in ESR_EL2, ISV is 0 except for the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register specified
with 0b11111, including those with Acquire/Release semantics, but excluding Load Exclusive or
Store Exclusive and excluding those with writeback).

• AArch32 instructions where the instruction:
◦ Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT,

LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT
instruction.

◦ Is not performing register writeback.
◦ Is not using R15 as a source or destination register.

For these stage 2 aborts, ISV is UNKNOWN if the exception was generated in Debug state in memory
access mode, and otherwise indicates whether ISS[23:14] hold a valid syndrome.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64 is implemented and a memory
access generated by an LD64B or ST64B instruction generates a Data Abort for a Translation fault,
Access flag fault, or Permission fault.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64_V is implemented and a
memory access generated by an ST64BV instruction generates a Data Abort for a Translation fault,
Access flag fault, or Permission fault.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64_ACCDATA is implemented and
a memory access generated by an ST64BV0 instruction generates a Data Abort for a Translation fault,
Access flag fault, or Permission fault.

When FEAT_RAS is implemented, ISV is 0 for any synchronous External abort.

When FEAT_RAS is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0 on a
synchronous External abort on a stage 2 translation table walk.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid
instruction syndrome, and therefore ISV is 0 for these aborts.

When FEAT_MTE2 is implemented, for a synchronous Tag Check Fault abort taken to ELx,
ESR_ELx.FnV is 0 and FAR_ELx is valid.

When FEAT_MOPS is implemented, for a synchronous Data Abort on a Memory Copy and Memory Set
instruction, ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]
When ISV == 1:

Syndrome Access Size. Indicates the size of the access attempted by the faulting operation.

SAS Meaning
0b00 Byte
0b01 Halfword
0b10 Word
0b11 Doubleword

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
0b11.

ESR_EL2, Exception Syndrome Register (EL2)

Page 158

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
0b11.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0b11.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSE, bit [21]
When ISV == 1:

Syndrome Sign Extend. For a byte, halfword, or word load operation, indicates whether the data item
must be sign extended.

SSE Meaning
0b0 Sign-extension not required.
0b1 Data item must be sign-extended.

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
0.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
0.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0.

For all other operations, this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SRT, bits [20:16]
When ISV == 1:

Syndrome Register Transfer. The register number of the Wt/Xt/Rt operand of the faulting instruction.

If the exception was taken from an Exception level that is using AArch32, then this is the AArch64
view of the register. See 'Mapping of the general-purpose registers between the Execution states'.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

ESR_EL2, Exception Syndrome Register (EL2)

Page 159

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit[15]
When ISV == 1:

SF, bit [0] of bit [15]

Sixty Four bit general-purpose register transfer. Width of the register accessed by the instruction is
64-bit.

SF Meaning
0b0 Instruction loads/stores a 32-bit general-purpose

register.
0b1 Instruction loads/stores a 64-bit general-purpose

register.

Note

This field specifies the register width identified by the instruction,
not the Execution state.

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
1.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
1.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 1.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When ISV == 0 and FEAT_SME is implemented:

FnP, bit [0] of bit [15]

FAR not Precise.

FnP Meaning
0b0 The FAR holds the faulting virtual address that

generated the Data Abort.
0b1 The FAR holds any virtual address within the naturally-

aligned granule that contains the faulting virtual
address that generated a Data Abort due to an SVE
contiguous vector load/store instruction in Streaming
SVE mode, or an SME load/store instruction.
For more information about the naturally-aligned fault
granule, see FAR_ELx (for example, FAR_EL1).

The reset behavior of this field is:

ESR_EL2, Exception Syndrome Register (EL2)

Page 160

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AR, bit [14]
When ISV == 1:

Acquire/Release.

AR Meaning
0b0 Instruction did not have acquire/release semantics.
0b1 Instruction did have acquire/release semantics.

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
0.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
0.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VNCR, bit [13]
When FEAT_NV2 is implemented:

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The fault was not generated by the use of

VNCR_EL2, by an MRS or MSR instruction executed
at EL1.

0b1 The fault was generated by the use of VNCR_EL2, by
an MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 161

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html

SET, bits [1:0] of bits [12:11]

Synchronous Error Type. When DFSC is 0b010000, describes the PE error state after taking the Data
Abort exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery
might be possible. Taking a synchronous External Abort exception
might result in a PE state that is not recoverable.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LS64 is implemented and DFSC == 0b110101:

Bits[12:11]
When (DFSCFEAT_RAS ==is 0b00xxxximplemented ||and DFSC == 0b101011) &&
DFSC != 0b0000xx0b010000:

LST, bits [1:0] of bits [12:11]

Used when an LD64B or ST64B instruction generates a Data Abort for a Translation fault, Access flag
fault, or Permission fault.

When FEAT_LS64_V is implemented, used when an ST64BV instruction generates a Data Abort for a
Translation fault, Access flag fault, or Permission fault.

When FEAT_LS64_ACCDATA is implemented, used when an ST64BV0 instruction generates a Data
Abort for a Translation fault, Access flag fault, or Permission fault.

Load/Store Type. Used when a Translation fault, Access flag fault, or Permission fault generates a
Data Abort.

LST Meaning Applies when
0b00 The instruction that

generated the Data Abort is
not specified.

0b01 An ST64BV instruction
generated the Data Abort.

When FEAT_LS64_V
is implemented

0b10 An LD64B or ST64B
instruction generated the
Data Abort.

When FEAT_LS64 is
implemented

0b11 An ST64BV0 instruction
generated the Data Abort.

When
FEAT_LS64_ACCDATA
is implemented

All other values are reserved.

This field is valid only if the DFSC code is 0b110101. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 162

When FEAT_RAS is implemented and DFSC == 0b010000:

SET, bits [1:0] of bits [12:11]

Synchronous Error Type. Used when a Syncronous External abort, not on a Translation table walk or
hardware update of the Translation table, generated the Data Abort. Describes the PE error state
after taking the Data Abort exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery
might be possible. Taking a synchronous External Abort exception
might result in a PE state that is not recoverable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address
translation instruction:

ESR_EL2, Exception Syndrome Register (EL2)

Page 163

CM Meaning
0b0 The Data Abort was not generated by the execution of

one of the System instructions identified in the
description of value 1.

0b1 The Data Abort was generated by either the execution
of a cache maintenance instruction or by a
synchronous fault on the execution of an address
translation instruction. The DC ZVA, DC GVA, and DC
GZVA instructions are not classified as cache
maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

WnR Meaning
0b0 Abort caused by an instruction reading from a

memory location.
0b1 Abort caused by an instruction writing to a memory

location.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set
to 0 if a read of the address specified by the instruction would have generated the fault which is being
reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this
requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic instructions,
the WnR bit is always 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported

Exclusive or atomic access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

ESR_EL2, Exception Syndrome Register (EL2)

Page 164

AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html
AArch64-dc-gzva.html

DFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When

FEAT_LPA2 is
implemented

0b001100 Permission fault, level 0. When
FEAT_LPA2 is
implemented

0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort,

not on translation table walk
or hardware update of
translation table.

0b010001 Synchronous Tag Check
Fault.

When
FEAT_MTE2 is
implemented

0b010011 Synchronous External abort
on translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented

0b010100 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 0.

0b010101 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 1.

0b010110 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 2.

0b010111 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 3.

0b011000 Synchronous parity or ECC
error on memory access, not
on translation table walk.

When
FEAT_RAS is
not
implemented

0b011011 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented
and FEAT_RAS
is not
implemented

0b011100 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RAS is
not
implemented

0b011101 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RAS is
not
implemented

ESR_EL2, Exception Syndrome Register (EL2)

Page 165

0b011110 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RAS is
not
implemented

0b011111 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RAS is
not
implemented

0b100001 Alignment fault.
0b100011 Granule Protection Fault on

translation table walk or
hardware update of
translation table, level -1.

When
FEAT_RME is
implemented
and FEAT_LPA2
is implemented

0b100100 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RME is
implemented

0b100101 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RME is
implemented

0b100110 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RME is
implemented

0b100111 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RME is
implemented

0b101000 Granule Protection Fault, not
on translation table walk or
hardware update of
translation table.

When
FEAT_RME is
implemented

0b101001 Address size fault, level -1. When
FEAT_LPA2 is
implemented

0b101011 Translation fault, level -1. When
FEAT_LPA2 is
implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic

hardware update fault.
When
FEAT_HAFDBS
is implemented

0b110100 IMPLEMENTATION DEFINED fault
(Lockdown).

0b110101 IMPLEMENTATION DEFINED fault
(Unsupported Exclusive or
Atomic access).

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults'.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 166

ISS encoding for an exception from a trapped floating-point
exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0TFV RES0 VECITR IDF RES0 IXF UFFOFFDZFIOF

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid
information about trapped floating-point exceptions.

TFV Meaning
0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold

valid information about trapped floating-point
exceptions and are UNKNOWN.

0b1 One or more floating-point exceptions occurred during
an operation performed while executing the reported
instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits
indicate trapped floating-point exceptions that
occurred. For more information, see 'Floating-point
exceptions and exception traps'.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped
floating-point exception from an instruction that is performing floating-point operations on more than
one lane of a vector.

Note

This is not a requirement. Implementations can set this field to 1
on a trapped floating-point exception from an instruction and
return valid information in the {IDF, IXF, UFF, OFF, DZF, IOF}
fields.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

ESR_EL2, Exception Syndrome Register (EL2)

Page 167

IDF Meaning
0b0 Input denormal floating-point exception has not

occurred.
0b1 Input denormal floating-point exception occurred

during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

IXF Meaning
0b0 Inexact floating-point exception has not occurred.
0b1 Inexact floating-point exception occurred during

execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

UFF Meaning
0b0 Underflow floating-point exception has not occurred.
0b1 Underflow floating-point exception occurred during

execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

OFF Meaning
0b0 Overflow floating-point exception has not occurred.
0b1 Overflow floating-point exception occurred during

execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

ESR_EL2, Exception Syndrome Register (EL2)

Page 168

DZF Meaning
0b0 Divide by Zero floating-point exception has not

occurred.
0b1 Divide by Zero floating-point exception occurred

during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

IOF Meaning
0b0 Invalid Operation floating-point exception has not

occurred.
0b1 Invalid Operation floating-point exception occurred

during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

ISS encoding for an SError interrupt
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDS RES0 IESB AET EA RES0 DFSC

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome.

IDS Meaning
0b0 Bits [23:0] of the ISS field holds the fields described in

this encoding.

Note
If FEAT_RAS is not implemented,
bits [23:0] of the ISS field are
RES0.

0b1 Bits [23:0] of the ISS field holds IMPLEMENTATION
DEFINED syndrome information that can be used to
provide additional information about the SError
interrupt.

Note

This field was previously called ISV.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 169

AArch32-fpscr.html

Bits [23:14]

Reserved, RES0.

IESB, bit [13]
When FEAT_IESB is implemented and DFSC == 0b010001:

Implicit error synchronization event.

IESB Meaning
0b0 The SError interrupt was either not synchronized by

the implicit error synchronization event or not taken
immediately.

0b1 The SError interrupt was synchronized by the
implicit error synchronization event and taken
immediately.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AET, bits [12:10]
When FEAT_RAS is implemented and DFSC == 0b010001:

Asynchronous Error Type.

Describes the PE error state after taking the SError interrupt exception.

When DFSC is 0b010001, describes the PE error state after taking the SError interrupt exception.

AET Meaning
0b000 Uncontainable (UC).
0b001 Unrecoverable state (UEU).
0b010 Restartable state (UEO).
0b011 Recoverable state (UER).
0b110 Corrected (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall PE error state is
reported.

Note

Software can use this information to determine what recovery
might be possible. The recovery software must also examine any
implemented fault records to determine the location and extent of
the error.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 170

Otherwise:

Reserved, RES0.

EA, bit [9]
When FEAT_RAS is implemented and DFSC == 0b010001:

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

External abort type. Provides an IMPLEMENTATION DEFINED classification of External aborts.

External abort type. When DFSC is 0b010001, provides an IMPLEMENTATION DEFINED classification of
External aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]
When FEAT_RAS is implemented:

Data Fault Status Code.

DFSC Meaning
0b000000 Uncategorized error.
0b010001 Asynchronous SError interrupt.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ISS encoding for an exception from a Breakpoint or Vector Catch
debug exception
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 IFSC

Bits [24:6]

Reserved, RES0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 171

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions:

• For exceptions from AArch64, see 'Breakpoint exceptions'.
• For exceptions from AArch32, see 'Breakpoint exceptions' and 'Vector Catch exceptions'.

ISS encoding for an exception from a Software Step exception
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV RES0 EX IFSC

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

ISV Meaning
0b0 EX bit is RES0.
0b1 EX bit is valid.

See the EX bit description for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction
was stepped.

EX Meaning
0b0 An instruction other than a Load-Exclusive instruction

was stepped.
0b1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

The reset behavior of this field is:

ESR_EL2, Exception Syndrome Register (EL2)

Page 172

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Software Step exceptions'.

ISS encoding for an exception from a Watchpoint exception
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 WPT WPTVWPFFnPRES0VNCR RES0 FnVRES0CMRES0WnR DFSC

Bit [24]

Reserved, RES0.

WPT, bits [23:18]
When FEAT_SME is implemented:

Watchpoint number, 0 to 15 inclusive.

All other values are reserved.

Otherwise:

Reserved, RES0.

WPTV, bit [17]
When FEAT_SME is implemented:

Watchpoint number Valid.

WPTV Meaning
0b0 The WPT field is invalid, and holds an UNKNOWN

value.
0b1 The WPT field is valid, and holds the number of a

watchpoint that triggered a Watchpoint exception.

When a Watchpoint exception is triggered by a watchpoint match:

• If the PE sets any of FnV, FnP, or WPF to 1, then the PE sets WPTV to 1.
• If the PE sets all of FnV, FnP, and WPF to 0, then the PE sets WPTV to an IMPLEMENTATION

DEFINED value, 0 or 1.

Otherwise:

Reserved, RES0.

WPF, bit [16]
When FEAT_SME is implemented:

Watchpoint might be false-positive.

ESR_EL2, Exception Syndrome Register (EL2)

Page 173

WPF Meaning
0b0 The watchpoint matched the original access or set of

contiguous accesses.
0b1 The watchpoint matched an access or set of

contiguous accesses where the lowest accessed
address was rounded down to the nearest multiple of
16 bytes and the highest accessed address was
rounded up to the nearest multiple of 16 bytes minus
1, but the watchpoint might not have matched the
original access or set of contiguous accesses.

Otherwise:

Reserved, RES0.

FnP, bit [15]
When FEAT_SME is implemented:

FAR not Precise.

This field only has meaning if the FAR is valid; that is, when the FnV field is 0. If the FnV field is 1, the
FnP field is 0.

FnP Meaning
0b0 If the FnV field is 0, the FAR holds the virtual address

of an access or set of contiguous accesses that
triggered a Watchpoint exception.

0b1 The FAR holds any address within the smallest
implemented translation granule that contains the
virtual address of an access or set of contiguous
accesses that triggered a Watchpoint exception.

Otherwise:

Reserved, RES0.

Bit [14]

Reserved, RES0.

VNCR, bit [13]
When FEAT_NV2 is implemented:

Indicates that the watchpoint came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The watchpoint was not generated by the use of

VNCR_EL2 by EL1 code.
0b1 The watchpoint was generated by the use of

VNCR_EL2 by EL1 code.

This field is 0 in ESR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 174

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html

Otherwise:

Reserved, RES0.

Bits [12:11]

Reserved, RES0.

FnV, bit [10]
When FEAT_SME is implemented:

FAR not Valid.

FnV Meaning
0b0 The FAR is valid, and its value is as described by the

FnP field.
0b1 The FAR is invalid, and holds an UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance or
address translation instruction:

CM Meaning
0b0 The Watchpoint exception was not generated by the

execution of one of the System instructions identified in
the description of value 1.

0b1 The Watchpoint exception was generated by either the
execution of a cache maintenance instruction or by a
synchronous Watchpoint exception on the execution of
an address translation instruction. The DC ZVA, DC
GVA, and DC GZVA instructions are not classified as a
cache maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

ESR_EL2, Exception Syndrome Register (EL2)

Page 175

AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html

WnR Meaning
0b0 Watchpoint exception caused by an instruction

reading from a memory location.
0b1 Watchpoint exception caused by an instruction

writing to a memory location.

For Watchpoint exceptions on cache maintenance and address translation instructions, this bit always
returns a value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location
would have generated the Watchpoint exception, otherwise it is set to 1.

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates the
Watchpoint exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

DFSC Meaning
0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Watchpoint exceptions'.

ISS encoding for an exception from execution of a Breakpoint
instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 Comment

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Breakpoint instruction exceptions'.

ISS encoding for an exception from an ERET, ERETAA, or ERETAB
instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 ERETERETA

This EC value applies when FEAT_FGT is implemented, or when HCR_EL2.NV is 1.

ESR_EL2, Exception Syndrome Register (EL2)

Page 176

Bits [24:2]

Reserved, RES0.

ERET, bit [1]

Indicates whether an ERET or ERETA* instruction was trapped to EL2.

ERET Meaning
0b0 ERET instruction trapped to EL2.
0b1 ERETAA or ERETAB instruction trapped to EL2.

If this bit is 0, the ERETA field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ERETA, bit [0]

Indicates whether an ERETAA or ERETAB instruction was trapped to EL2.

ERETA Meaning
0b0 ERETAA instruction trapped to EL2.
0b1 ERETAB instruction trapped to EL2.

When the ERET field is 0, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see HCR_EL2.NV.

If FEAT_FGT is implemented, HFGITR_EL2.ERET controls fine-grained trap exceptions from ERET, ERETAA
and ERETAB execution.

ISS encoding for an exception from a TSTART instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 Rd RES0

Bits [24:10]

Reserved, RES0.

Rd, bits [9:5]

The Rd value from the issued instruction, the general purpose register used for the destination.

Bits [4:0]

Reserved, RES0.

ISS encoding for an exception from Branch Target Identification
instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 BTYPE

ESR_EL2, Exception Syndrome Register (EL2)

Page 177

Bits [24:2]

Reserved, RES0.

BTYPE, bits [1:0]

This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception.

For more information about generating these exceptions, see 'The AArch64 application level programmers
model'.

ISS encoding for an exception from a Pointer Authentication
instruction when HCR_EL2.API == 0 || SCR_EL3.API == 0
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Bits [24:0]

Reserved, RES0.

For more information about generating these exceptions, see:

• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped
to EL2.

• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to
EL3.

ISS encoding for an exception from a Pointer Authentication
instruction authentication failure
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Exception
as a result

of an
Instruction

key or a
Data key

Exception
as a

result of
an A key

or a B
key

Bits [24:2]

Reserved, RES0.

Bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

Meaning
0b0 Instruction Key.
0b1 Data Key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

ESR_EL2, Exception Syndrome Register (EL2)

Page 178

Meaning
0b0 A key.
0b1 B key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTIASP, AUTIAZ, AUTIA1716.
• AUTIBSP, AUTIBZ, AUTIB1716.
• AUTIA, AUTDA, AUTIB, AUTDB.
• AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the
authorization failure, rather than changing the address in a way that will generate a Translation fault when
the address is accessed:

• RETAA, RETAB.
• BRAA, BRAB, BLRAA, BLRAB.
• BRAAZ, BRABZ, BLRAAZ, BLRABZ.
• ERETAA, ERETAB.
• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

Accessing ESR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ESR_EL2 or
ESR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ESR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

X[t, 64] = ESR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = ESR_EL2;
elsif PSTATE.EL == EL3 then

X[t, 64] = ESR_EL2;

MSR ESR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b000

ESR_EL2, Exception Syndrome Register (EL2)

Page 179

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

ESR_EL1 = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ESR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then

ESR_EL2 = X[t, 64];

MRS <Xt>, ESR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ESR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

X[t, 64] = NVMem[0x138];
else

X[t, 64] = ESR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
X[t, 64] = ESR_EL2;

else
X[t, 64] = ESR_EL1;

elsif PSTATE.EL == EL3 then
X[t, 64] = ESR_EL1;

MSR ESR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ESR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x138] = X[t, 64];
else

ESR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
ESR_EL2 = X[t, 64];

else
ESR_EL1 = X[t, 64];

elsif PSTATE.EL == EL3 then
ESR_EL1 = X[t, 64];

ESR_EL2, Exception Syndrome Register (EL2)

Page 180

3021/03/2022 2017:2800; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ESR_EL2, Exception Syndrome Register (EL2)

Page 181

(old) htmldiff from- (new)

ESR_EL3, Exception Syndrome Register (EL3)
The ESR_EL3 characteristics are:

Purpose
Holds syndrome information for an exception taken to EL3.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to ESR_EL3 are UNDEFINED.

Attributes
ESR_EL3 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 ISS2
EC IL ISS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ESR_EL3 is made UNKNOWN as a result of an exception return from EL3.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL3, the value of ESR_EL3
is UNKNOWN. The value written to ESR_EL3 must be consistent with a value that could be created as a result of an
exception from the same Exception level that generated the exception as a result of a situation that is not
UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:37]

Reserved, RES0.

ISS2, bits [36:32]
When FEAT_LS64 is implemented:

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction generates a Data
Abort exception for a Translation fault, Access flag fault, or Permission fault, then this field holds register specifier,
Xs.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0 instruction generates
a Data Abort exception for a Translation fault, Access flag fault, or Permission fault, then this field holds register
specifier, Xs.

Otherwise, this field is RES0.

Otherwise:

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 182

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.
• The encoding of the associated ISS.

Possible values of the EC field are:

ESR_EL3, Exception Syndrome Register (EL3)

Page 183

EC Meaning ISS Applies
when

0b000000 Unknown reason. ISS encoding for
exceptions with an
unknown reason

0b000001 Trapped WF*
instruction
execution.
Conditional WF*
instructions that fail
their condition code
check do not cause
an exception.

ISS encoding for an
exception from a
WF* instruction

0b000011 Trapped MCR or
MRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for an
exception from an
MCR or MRC
access

When
AArch32 is
supported

0b000100 Trapped MCRR or
MRRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for an
exception from an
MCRR or MRRC
access

When
AArch32 is
supported

0b000101 Trapped MCR or
MRC access with
(coproc==0b1110).

ISS encoding for an
exception from an
MCR or MRC
access

When
AArch32 is
supported

0b000110 Trapped LDC or
STC access.
The only architected
uses of these
instruction are:
• An STC to write

data to memory
from
DBGDTRRXint.

• An LDC to read
data from
memory to
DBGDTRTXint.

ISS encoding for an
exception from an
LDC or STC
instruction

When
AArch32 is
supported

0b000111 Access to SME,
SVE, Advanced
SIMD or floating-
point functionality
trapped by
CPACR_EL1.FPEN,
CPTR_EL2.FPEN,
CPTR_EL2.TFP, or
CPTR_EL3.TFP
control.
Excludes exceptions
resulting from
CPACR_EL1 when
the value of
HCR_EL2.TGE is 1,
or because SVE or
Advanced SIMD and
floating-point are
not implemented.
These are reported
with EC value
0b000000.
Excludes exceptions
resulting from
CPACR_EL1 when
the value of
HCR_EL2.TGE is 1,
or because SVE or
Advanced SIMD and
floating-point are

ISS encoding for an
exception from an
access to SVE,
Advanced SIMD or
floating-point
functionality,
resulting from the
FPEN and TFP
traps

ESR_EL3, Exception Syndrome Register (EL3)

Page 184

AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html
AArch64-cpacr_el1.html

not implemented.
These are reported
with EC value
0b000000 as
described in 'The EC
used to report an
exception routed to
EL2 because
HCR_EL2.TGE is 1'.

0b001001 Trapped use of a
Pointer
authentication
instruction because
HCR_EL2.API == 0
|| SCR_EL3.API ==
0.

ISS encoding for an
exception from a
Pointer
Authentication
instruction when
HCR_EL2.API == 0
|| SCR_EL3.API ==
0

When
FEAT_PAuth
is
implemented

0b001010 An exception from
an LD64B or ST64B*
instruction.

ISS encoding for an
exception from an
LD64B or ST64B*
instruction

When
FEAT_LS64
is
implemented

0b001100 Trapped MRRC
access with
(coproc==0b1110).

ISS encoding for an
exception from an
MCRR or MRRC
access

When
AArch32 is
supported

0b001101 Branch Target
Exception.

ISS encoding for an
exception from
Branch Target
Identification
instruction

When
FEAT_BTI is
implemented

0b001110 Illegal Execution
state.

ISS encoding for an
exception from an
Illegal Execution
state, or a PC or SP
alignment fault

0b010011 SMC instruction
execution in
AArch32 state, when
SMC is not disabled.

ISS encoding for an
exception from
SMC instruction
execution in
AArch32 state

When
AArch32 is
supported

0b010101 SVC instruction
execution in
AArch64 state.

ISS encoding for an
exception from
HVC or SVC
instruction
execution

When
AArch64 is
supported

0b010110 HVC instruction
execution in
AArch64 state, when
HVC is not disabled.

ISS encoding for an
exception from
HVC or SVC
instruction
execution

When
AArch64 is
supported

0b010111 SMC instruction
execution in
AArch64 state, when
SMC is not disabled.

ISS encoding for an
exception from
SMC instruction
execution in
AArch64 state

When
AArch64 is
supported

0b011000 Trapped MSR, MRS
or System
instruction
execution in
AArch64 state, that
is not reported
using EC 0b000000,
0b000001 or
0b000111.
This includes all
instructions that
cause exceptions
that are part of the
encoding space
defined in 'System

ISS encoding for an
exception from
MSR, MRS, or
System instruction
execution in
AArch64 state

When
AArch64 is
supported

ESR_EL3, Exception Syndrome Register (EL3)

Page 185

instruction class
encoding overview',
except for those
exceptions reported
using EC values
0b000000, 0b000001,
or 0b000111.

0b011001 Access to SVE
functionality
trapped as a result
of CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ, that
is not reported
using EC 0b000000.

ISS encoding for an
exception from an
access to SVE
functionality,
resulting from
CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ

When
FEAT_SVE is
implemented

0b011011 Exception from an
access to a TSTART
instruction at EL0
when
SCTLR_EL1.TME0
== 0, EL0 when
SCTLR_EL2.TME0
== 0, at EL1 when
SCTLR_EL1.TME
== 0, at EL2 when
SCTLR_EL2.TME
== 0 or at EL3
when
SCTLR_EL3.TME
== 0.

ISS encoding for an
exception from a
TSTART instruction

When
FEAT_TME
is
implemented

0b011100 Exception from a
Pointer
Authentication
instruction
authentication
failure

ISS encoding for an
exception from a
Pointer
Authentication
instruction
authentication
failure

When
FEAT_FPAC
is
implemented

0b011101 Access to SME
functionality
trapped as a result
of
CPACR_EL1.SMEN,
CPTR_EL2.SMEN,
CPTR_EL2.TSM,
CPTR_EL3.ESM, or
an attempted
execution of an
instruction that is
illegal because of
the value of
PSTATE.SM or
PSTATE.ZA, that is
not reported using
EC 0b000000.

ISS encoding for an
exception due to
SME functionality

When
FEAT_SME
is
implemented

0b011110 Exception from a
Granule Protection
Check

ISS encoding for an
exception from a
Granule Protection
Check

When
FEAT_RME
is
implemented

0b011111 IMPLEMENTATION
DEFINED exception to
EL3.

ISS encoding for an
IMPLEMENTATION
DEFINED
exception to EL3

0b100000 Instruction Abort
from a lower
Exception level.
Used for MMU
faults generated by
instruction accesses
and synchronous

ISS encoding for an
exception from an
Instruction Abort

ESR_EL3, Exception Syndrome Register (EL3)

Page 186

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-sctlr_el3.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

0b100001 Instruction Abort
taken without a
change in Exception
level.
Used for MMU
faults generated by
instruction accesses
and synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for an
exception from an
Instruction Abort

0b100010 PC alignment fault
exception.

ISS encoding for an
exception from an
Illegal Execution
state, or a PC or SP
alignment fault

0b100100 Data Abort
exception from a
lower Exception
level.
Used for MMU
faults generated by
data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for an
exception from a
Data Abort

0b100101 Data Abort
exception taken
without a change in
Exception level.
Used for MMU
faults generated by
data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for an
exception from a
Data Abort

0b100110 SP alignment fault
exception.

ISS encoding for an
exception from an
Illegal Execution
state, or a PC or SP
alignment fault

0b100111 Memory Operation
Exception.

ISS encoding for an
exception from the

When
FEAT_MOPS

ESR_EL3, Exception Syndrome Register (EL3)

Page 187

Memory Copy and
Memory Set
instructions

is
implemented

0b101100 Trapped floating-
point exception
taken from AArch64
state.
This EC value is
valid if the
implementation
supports trapping of
floating-point
exceptions,
otherwise it is
reserved. Whether a
floating-point
implementation
supports trapping of
floating-point
exceptions is
IMPLEMENTATION
DEFINED.

ISS encoding for an
exception from a
trapped floating-
point exception

When
AArch64 is
supported

0b101111 SError interrupt. ISS encoding for an
SError interrupt

0b111100 BRK instruction
execution in
AArch64 state.
This is reported in
ESR_EL3 only if a
BRK instruction is
executed in EL3.
This is the only
debug exception
that can be taken to
EL3 when EL3 is
using AArch64.

ISS encoding for an
exception from
execution of a
Breakpoint
instruction

When
AArch64 is
supported

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous
exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be
used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

IL Meaning
0b0 16-bit instruction trapped.
0b1 32-bit instruction trapped. This value is also used when the

exception is one of the following:
• An SError interrupt.
• An Instruction Abort exception.
• A PC alignment fault exception.
• An SP alignment fault exception.
• A Data Abort exception for which the value of the ISV bit

is 0.
• An Illegal Execution state exception.
• Any debug exception except for Breakpoint instruction

exceptions.
• An exception reported using EC value 0b000000.

ESR_EL3, Exception Syndrome Register (EL3)

Page 188

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception
class. However, in practice, some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value
returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see 'Mapping of the general-purpose registers between the Execution
states'.

If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value 0b11111.
• If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that

must be either:
◦ The AArch64 view of the register number of a register that might have been used at the

Exception level from which the exception was taken.
◦ The value 0b11111.

ISS encoding for exceptions with an unknown reason
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions
that are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not
accessible at the current Exception level and Security state, including:

◦ A read access using a System register pattern that is not allocated for reads or that does not
permit reads at the current Exception level and Security state.

◦ A write access using a System register pattern that is not allocated for writes or that does
not permit writes at the current Exception level and Security state.

◦ Instruction encodings that are unallocated.
◦ Instruction encodings for instructions or System registers that are not implemented in the

implementation.
• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug

state.
• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-

debug state.
• In AArch32 state, attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an

attempted access to Advanced SIMD or floating-point functionality under conditions where that access
would be permitted if that functionality was present. This includes the attempted execution of an
Advanced SIMD or floating-point instruction, and attempted accesses to Advanced SIMD and floating-
point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control
bits.

• Attempted execution of:
◦ An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
◦ An SMC instruction when disabled by SCR_EL3.SMD.
◦ An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.
• Attempted execution of an MSR or MRS instruction using a _EL12 register name when HCR_EL2.E2H

== 0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 189

AArch64-sp_el0.html
AArch64-spsel.html

• Attempted execution, in Debug state, of:
◦ A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not

implemented in the current Security state.
◦ A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the

current Security state.
◦ A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.

• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using
R13_mon.

• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an
instruction that is configured to trap to EL3.

• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)
instruction to SPSR_mon, SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of
HCR_EL2.TGE was 0 would have been reported with an ESR_ELx.EC value of 0b000111.

• In Non-transactional state, attempted execution of a TCOMMIT instruction.

ISS encoding for an exception from a WF* instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0 RN RES0 RV TI

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these

ESR_EL3, Exception Syndrome Register (EL3)

Page 190

definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:10]

Reserved, RES0.

RN, bits [9:5]
When FEAT_WFxT is implemented:

Register Number. Indicates the register number supplied for a WFET or WFIT instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [4:3]

Reserved, RES0.

RV, bit [2]
When FEAT_WFxT is implemented:

Register field Valid.

If TI[1] == 1, then this field indicates whether RN holds a valid register number for the register
argument to the trapped WFET or WFIT instruction.

RV Meaning
0b0 Register field invalid.
0b1 Register field valid.

If TI[1] == 0, then this field is RES0.

This field is set to 1 on a trap on WFET or WFIT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TI, bits [1:0]

Trapped instruction. Possible values of this bit are:

ESR_EL3, Exception Syndrome Register (EL3)

Page 191

TI Meaning Applies when
0b00 WFI trapped.
0b01 WFE trapped.
0b10 WFIT trapped. When FEAT_WFxT is implemented
0b11 WFET trapped. When FEAT_WFxT is implemented

When FEAT_WFxT is implemented, this is a two bit field as shown. Otherwise, bit[1] is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• SCTLR_EL1.{nTWE, nTWI}.
• HCR_EL2.{TWE, TWI}.
• SCR_EL3.{TWE, TWI}.

ISS encoding for an exception from an MCR or MRC access
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc2 Opc1 CRn Rt CRm Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.

ESR_EL3, Exception Syndrome Register (EL3)

Page 192

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

ESR_EL3, Exception Syndrome Register (EL3)

Page 193

For a trapped VMRS access, holds the value 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to System register space. MCR instruction.
0b1 Read from System register space. MRC or VMRS

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000011:

• If FEAT_TIDCP1 is implemented, SCTLR_EL1.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or
EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• If FEAT_TIDCP1 is implemented, SCTLR_EL2.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access
(coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCR or MRC access (coproc
== 0b1111) trapped to EL2.

• CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• If FEAT_FGT is implemented, MCR or MRC access to some registers at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000101:

• CPACR_EL1.TTA for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to
EL1 or EL2.

ESR_EL3, Exception Syndrome Register (EL3)

Page 194

AArch64-cntkctl_el1.html
AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-cptr_el2.html
AArch64-cpacr_el1.html
AArch64-hstr_el2.html
AArch64-cnthctl_el2.html
AArch64-mdcr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-mdcr_el3.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and
EL1 using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

• HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32,
MRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR using AArch32,
MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC
access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, MCR or MRC access
(coproc == 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, MCR or MRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc
== 0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b001000:

• HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS
access trapped to EL2.

• HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS
access trapped to EL2.

ISS encoding for an exception from an LD64B or ST64B*
instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ISS

ISS, bits [24:0]

ISS Meaning Applies when
0b0000000000000000000000000 ST64BV

instruction
trapped.

When FEAT_LS64_V
is implemented

0b0000000000000000000000001 ST64BV0
instruction
trapped.

When
FEAT_LS64_ACCDATA
is implemented

0b0000000000000000000000010 LD64B or
ST64B
instruction
trapped.

When FEAT_LS64 is
implemented

All other values are reserved.

ISS encoding for an exception from an MCRR or MRRC access
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc1 RES0 Rt2 Rt CRm Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

ESR_EL3, Exception Syndrome Register (EL3)

Page 195

AArch64-mdscr_el1.html
AArch64-mdcr_el2.html
AArch64-mdcr_el3.html
AArch32-jidr.html
AArch64-cptr_el2.html
AArch64-mdcr_el2.html
AArch32-dbgdrar.html
AArch32-dbgdsar.html
AArch64-mdcr_el2.html
AArch64-mdcr_el2.html
AArch64-cptr_el3.html
AArch64-mdcr_el3.html
AArch64-mdcr_el3.html
AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.

If the Rt2 value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt2 value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

ESR_EL3, Exception Syndrome Register (EL3)

Page 196

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to System register space. MCRR

instruction.
0b1 Read from System register space. MRRC

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1
or EL2.

• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.

ESR_EL3, Exception Syndrome Register (EL3)

Page 197

AArch64-cntkctl_el1.html
AArch64-pmuserenr_el0.html

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped
to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCRR or MRRC access
(coproc == 0b1111) trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers from EL0 and
EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers AMEVCNTR0<n> and AMEVCNTR1<n>
from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• If FEAT_FGT is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and
HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b001100:

• MDSCR_EL1.TDCC, for accesses to the Debug ROM registers DBGDSAR and DBGDRAR at EL0 using
AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR using AArch32,
MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

• CPACR_EL1.TTA for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL1 or EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

Note

If the Armv8-A architecture is implemented with an ETMv4
implementation, MCRR and MRRC accesses to trace registers are
UNDEFINED and the resulting exception is higher priority than an
exception due to these traps.

ISS encoding for an exception from an LDC or STC instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND imm8 RES0 Rn Offset AM Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 198

AArch64-amuserenr_el0.html
AArch64-hstr_el2.html
AArch64-cnthctl_el2.html
AArch64-mdcr_el2.html
AArch64-cptr_el2.html
AArch64-mdcr_el3.html
AArch64-cptr_el3.html
AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch32-pmccntr.html
AArch64-mdscr_el1.html
AArch32-dbgdsar.html
AArch32-dbgdrar.html
AArch64-mdcr_el2.html
AArch32-dbgdrar.html
AArch32-dbgdsar.html
AArch64-mdcr_el3.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer.

If the Rn value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rn value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction.
When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

The reset behavior of this field is:

ESR_EL3, Exception Syndrome Register (EL3)

Page 199

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Offset Meaning
0b0 Subtract offset.
0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

AM Meaning
0b000 Immediate unindexed.
0b001 Immediate post-indexed.
0b010 Immediate offset.
0b011 Immediate pre-indexed.
0b100 For a trapped STC instruction or a trapped T32 LDC

instruction this encoding is reserved.
0b110 For a trapped STC instruction, this encoding is

reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is
that behavior is CONSTRAINED UNPREDICTABLE, as described in 'Reserved values in System and memory-
mapped registers and translation table entries'.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to memory. STC instruction.
0b1 Read from memory. LDC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value
0b000110:

• MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint trapped to EL1 or EL2.

• MDCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL2.

• MDCR_EL3.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL3.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for LDC and STC accesses to the DCC registers at
EL0 and EL1 trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1,
and EL2 trapped to EL3.

ESR_EL3, Exception Syndrome Register (EL3)

Page 200

AArch64-mdscr_el1.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch64-mdcr_el2.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch64-mdcr_el3.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch64-mdcr_el2.html
AArch64-mdcr_el3.html

ISS encoding for an exception from an access to SVE, Advanced
SIMD or floating-point functionality, resulting from the FPEN and
TFP traps
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.
• Accesses to the Advanced SIMD and floating-point System registers.
• Execution of SME instructions.

For an implementation that does not include either SVE or support for Advanced SIMD and floating-point,
the exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 201

Bits [19:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value
0b000111:

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.
• CPTR_EL2.FPEN and CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to

EL2.
• CPTR_EL3.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

ISS encoding for an exception from an access to SVE
functionality, resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN,
CPTR_EL2.TZ, or CPTR_EL3.EZ
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

The accesses covered by this trap include:

• Execution of SVE instructions when the PE is not in Streaming SVE mode.
• Accesses to the SVE System registers, ZCR_ELx.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

Bits [24:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value
0b011001:

• CPACR_EL1.ZEN, for execution of SVE instructions and accesses to SVE registers at EL0 or EL1,
trapped to EL1.

• CPTR_EL2.ZEN and CPTR_EL2.TZ, for execution of SVE instructions and accesses to SVE registers at
EL0, EL1, or EL2, trapped to EL2.

• CPTR_EL3.EZ, for execution of SVE instructions and accesses to SVE registers from all Exception
levels, trapped to EL3.

ISS encoding for an exception from an Illegal Execution state, or
a PC or SP alignment fault
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about PC alignment fault exceptions, see 'PC alignment checking'.

'SP alignment checking' describes the configuration settings for generating SP alignment fault exceptions.

ESR_EL3, Exception Syndrome Register (EL3)

Page 202

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

ISS encoding for an exception from the Memory Copy and
Memory Set instructions

24 23 22212019 18 17 16 15 1413121110 9 8 7 6 5 4 3 2 1 0
MemInstisSETG Options FromEpilogueWrongOptionOptionARES0 destreg srcreg sizereg

MemInst, bit [24]

Indicates the memory instruction class causing the exception.

MemInst Meaning
0b0 CPYFE*, CPYFM*, CPYE*, and CPYM*

instructions.
0b1 SETE*, SETM*, SETGE*, and SETGM*

instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

isSETG, bit [23]

Indicates whether the instruction belongs to SETGM* or SETGE* class of instruction.

isSETG Meaning
0b0 Not a SETGM* or SETGE* instruction.
0b1 SETGM* or SETGE* instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Options, bits [22:19]

Options : the Options field of the instruction.

For Memory Copy instructions, bits[22:19] forms the Options field, which holds the bits[15:12] of the
instruction.

For Memory Set instructions:

• Bits[22:21] are RES0.
• Bits[20:19] form the Options field, which holds the bits[13:12] of the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FromEpilogue, bit [18]

Indicates whether the instruction belongs to the epilogue class of Memory Copy or Memory Set
instructions.

FromEpilogue Meaning
0b0 Not an epilogue instruction.
0b1 CPYE*, CPYFE*, SETE*, or SETGE*

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 203

WrongOption, bit [17]

Algorithm option.

WrongOption Meaning
0b0 WrongOption is false.
0b1 WrongOption is true.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OptionA, bit [16]

Algorithm type indicated by the PSTATE.C bit.

OptionA Meaning
0b0 OptionB indicated by PSTATE.C is 0.
0b1 OptionA indicated by PSTATE.C is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

destreg, bits [14:10]

The destination register value from the issued instruction, containing the destination address.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

srcreg, bits [9:5]

The source register value from the issued instruction, containing either the source address or the
source data.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

sizereg, bits [4:0]

The size register value from the issued instruction, containing the number of bytes to be transfered or
set.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from HVC or SVC instruction
execution
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 imm16

ESR_EL3, Exception Syndrome Register (EL3)

Page 204

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the
issued instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:
◦ For the T32 instruction, this field is zero-extended from the imm8 field of the

instruction.
◦ For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the

instruction.
• If the instruction is conditional, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an
exception only if it passes its condition code check. Therefore, the syndrome information for these exceptions
does not require conditionality information.

For T32 and A32 instructions, see 'SVC' and 'HVC'.

For A64 instructions, see 'SVC' and 'HVC'.

If FEAT_FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC
execution.

ISS encoding for an exception from SMC instruction execution in
AArch32 state
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND CCKNOWNPASS RES0

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS
encoding is RES0.

For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is
as shown in the diagram.

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

ESR_EL3, Exception Syndrome Register (EL3)

Page 205

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

CCKNOWNPASS Meaning
0b0 The instruction was unconditional, or

was conditional and passed its condition
code check.

0b1 The instruction was conditional, and
might have failed its condition code
check.

Note

In an implementation in which an SMC instruction that fails it code
check is not trapped, this field can always return the value 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

ESR_EL3, Exception Syndrome Register (EL3)

Page 206

ISS encoding for an exception from SMC instruction execution in
AArch64 state
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from EL1 modes.
• When an SMC instruction is not trapped, so completes normally and generates an exception that is

taken to EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

ISS encoding for an exception from MSR, MRS, or System
instruction execution in AArch64 state
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 Op0 Op2 Op1 CRn Rt CRm Direction

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 207

CRn, bits [13:10]

The CRn value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write access, including MSR instructions.
0b1 Read access, including MRS instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see 'System instructions' subsection of 'Branches, exception
generating and System instructions' for the encoding values returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC
value 0b011000:

• If FEAT_TIDCP1 is implemented, SCTLR_EL1.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch64 state, MSR or MRS access trapped to EL1.

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1
or EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer
registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to the Performance Monitor registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR
or MRS access trapped to EL2.

ESR_EL3, Exception Syndrome Register (EL3)

Page 208

AArch64-ctr_el0.html
AArch64-cpacr_el1.html
AArch64-mdscr_el1.html
AArch64-mdcr_el2.html
AArch64-mdcr_el3.html
AArch64-cntkctl_el1.html
AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• If FEAT_TIDCP1 is implemented, SCTLR_EL2.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch64 state, MSR or MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter control register, TRFCR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS
access trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64
state, MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state,
MSR or MRS access trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.APK, for accesses to Pointer authentication key registers. using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS
access, trapped to EL2.

• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access, trapped
to EL2.

• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access,
trapped to EL2.

• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state,
MSR or MRS access trapped to EL3.

• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access
trapped to EL3.

• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL3.

• MDCR_EL3.TTRF, for accesses to the trace filter control registers, TRFCR_EL1 and TRFCR_EL2, using
AArch64 state, MSR or MRS access trapped to EL3.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,
trapped to EL3.

• If FEAT_EVT is implemented, the following registers control traps for EL1 and EL0 Cache controls
that use this EC value:

◦ HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}.
◦ HCR2.{TTLBIS, TICAB, TOCU, TID4}.

• If FEAT_FGT is implemented:
◦ SCR_EL3.FGTEn, for accesses to the fine-grained trap registers, MSR or MRS access at EL2

trapped to EL3.
◦ HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, MSR

or MRS access at EL0 and EL1 trapped to EL2.
◦ HFGITR_EL2 for execution of system instructions, MSR or MRS access trapped to EL2

ESR_EL3, Exception Syndrome Register (EL3)

Page 209

AArch64-actlr_el1.html
AArch64-cptr_el2.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-mdcr_el2.html
AArch64-trfcr_el1.html
AArch64-mdcr_el2.html
AArch64-mdcr_el2.html
AArch64-cnthctl_el2.html
AArch64-mdcr_el2.html
AArch64-mdcr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cptr_el2.html
AArch64-cpacr_el1.html
AArch64-cptr_el3.html
AArch64-mdcr_el3.html
AArch64-trfcr_el1.html
AArch64-trfcr_el2.html
AArch64-mdcr_el3.html
AArch64-mdcr_el3.html
AArch64-mdcr_el3.html
AArch64-cptr_el3.html
AArch64-hfgrtr_el2.html
AArch64-hfgwtr_el2.html

◦ HDFGRTR_EL2 for reads and HDFGWTR_EL2 for writes of registers, using AArch64 state,
MSR or MRS access at EL0 and EL1 state trapped to EL2.

◦ HAFGRTR_EL2 for reads of Activity Monitor counters, using AArch64 state, MRS access at
EL0 and EL1 trapped to EL2.

• If FEAT_RNG_TRAP is implemented:
◦ SCR_EL3.TRNDR for reads of RNDR and RNDRRS using AArch64 state, MRS access trapped

to EL3.
• If FEAT_SME is implemented:

◦ CPTR_EL3.ESM, for MSR or MRS accesses to SMPRI_EL1 at EL1, EL2, and EL3, trapped to
EL3.

◦ CPTR_EL3.ESM, for MSR or MRS accesses to SMPRIMAP_EL2 at EL2 and EL3, trapped to
EL3.

◦ SCTLR_EL1.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, trapped to EL1 or EL2.
◦ SCTLR_EL2.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, trapped to EL2.
◦ SCR_EL3.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, EL1, and EL2, trapped to

EL3.
• If FEAT_NMI is implemented, HCRX_EL2.TALLINT, for MSR writes of ALLINT at EL1, trapped to EL2.

ISS encoding for an IMPLEMENTATION DEFINED exception to EL3
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [24:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from an Instruction Abort
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 SET FnV EA RES0S1PTWRES0 IFSC

Bits [24:13]

Reserved, RES0.

SET, bits [12:11]
When FEAT_RAS is implemented:

Synchronous Error Type. When IFSC is 0b010000, describes the PE error state after taking the
Instruction Abort exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery
might be possible. Taking a synchronous External Abort exception
might result in a PE state that is not recoverable.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

ESR_EL3, Exception Syndrome Register (EL3)

Page 210

AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch64-hafgrtr_el2.html
AArch64-rndr.html
AArch64-rndrrs.html
AArch64-cptr_el3.html
AArch64-smpri_el1.html
AArch64-cptr_el3.html
AArch64-smprimap_el2.html
AArch64-tpidr2_el0.html
AArch64-tpidr2_el0.html
AArch64-tpidr2_el0.html
AArch64-hcrx_el2.html
AArch64-allint.html

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

ESR_EL3, Exception Syndrome Register (EL3)

Page 211

IFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When

FEAT_LPA2 is
implemented

0b001100 Permission fault, level 0. When
FEAT_LPA2 is
implemented

0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort,

not on translation table walk
or hardware update of
translation table.

0b010011 Synchronous External abort
on translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented

0b010100 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 0.

0b010101 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 1.

0b010110 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 2.

0b010111 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 3.

0b011000 Synchronous parity or ECC
error on memory access, not
on translation table walk.

When
FEAT_RAS is
not
implemented

0b011011 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented
and FEAT_RAS
is not
implemented

0b011100 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RAS is
not
implemented

0b011101 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RAS is
not
implemented

0b011110 Synchronous parity or ECC
error on memory access on
translation table walk or

When
FEAT_RAS is

ESR_EL3, Exception Syndrome Register (EL3)

Page 212

hardware update of
translation table, level 2.

not
implemented

0b011111 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RAS is
not
implemented

0b100011 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_RME is
implemented
and FEAT_LPA2
is implemented

0b100100 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RME is
implemented

0b100101 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RME is
implemented

0b100110 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RME is
implemented

0b100111 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RME is
implemented

0b101000 Granule Protection Fault, not
on translation table walk or
hardware update of
translation table.

When
FEAT_RME is
implemented

0b101001 Address size fault, level -1. When
FEAT_LPA2 is
implemented

0b101011 Translation fault, level -1. When
FEAT_LPA2 is
implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic

hardware update fault.
When
FEAT_HAFDBS
is implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults'.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception due to SME functionality
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 SMTC

The accesses covered by this trap include:

• Execution of SME instructions.
• Execution of SVE and Advanced SIMD instructions, when the PE is in Streaming SVE mode.
• Direct accesses of SVCR, SMCR_EL1, SMCR_EL2, SMCR_EL3.

ESR_EL3, Exception Syndrome Register (EL3)

Page 213

AArch64-smcr_el1.html
AArch64-smcr_el2.html
AArch64-smcr_el3.html

Bits [24:3]

Reserved, RES0.

SMTC, bits [2:0]

SME Trap Code. Identifies the reason for instruction trapping.

SMTC Meaning
0b000 Access to SME functionality trapped as a result of

CPACR_EL1.SMEN, CPTR_EL2.SMEN,
CPTR_EL2.TSM, or CPTR_EL3.ESM, that is not
reported using EC 0b000000.

0b001 Advanced SIMD, SVE, or SVE2 instruction trapped
because PSTATE.SM is 1.

0b010 SME instruction trapped because PSTATE.SM is 0.
0b011 SME instruction trapped because PSTATE.ZA is 0.

All other values are reserved.

The following fields describe the configuration settings for the traps that are reported using the EC value
0b011101:

• CPACR_EL1.SMEN, for execution of SME instructions, SVE instructions when the PE is in Streaming
SVE mode, and instructions that directly access SVCR and SMCR_EL1 System registers at EL1 and
EL0, trapped to EL1 or EL2.

• CPTR_EL2.SMEN and CPTR_EL2.TSM, for execution of SME instructions, SVE instructions when the
PE is in Streaming SVE mode, and instructions that directly access SVCR, SMCR_EL1, SMCR_EL2 at
EL2, EL1, or EL0, trapped to EL2.

• CPTR_EL3.ESM, for execution of SME instructions, SVE instructions when the PE is in Streaming SVE
mode, and instructions that directly access SVCR, SMCR_EL1, SMCR_EL2, SMCR_EL3 from all
Exception levels and any Security state, trapped to EL3.

ISS encoding for an exception from a Granule Protection Check
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 S2PTWInD GPCSC VNCR RES0 CMS1PTWWnR xFSC

Bits [24:22]

Reserved, RES0.

S2PTW, bit [21]

Indicates whether the Granule Protection Check exception was on an access made for a stage 2
translation table walk.

S2PTW Meaning
0b0 Fault not on a stage 2 translation table walk.
0b1 Fault on a stage 2 translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

InD, bit [20]

Indicates whether the Granule Protection Check exception was on an instruction or data access.

InD Meaning
0b0 Data access.
0b1 Instruction access.

ESR_EL3, Exception Syndrome Register (EL3)

Page 214

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html
AArch64-smcr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-smcr_el1.html
AArch64-smcr_el2.html
AArch64-cptr_el3.html
AArch64-smcr_el1.html
AArch64-smcr_el2.html
AArch64-smcr_el3.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GPCSC, bits [19:14]

Granule Protection Check Status Code.

GPCSC Meaning
0b000000 GPT address size fault at level 0.
0b000100 GPT walk fault at level 0.
0b000101 GPT walk fault at level 1.
0b001100 Granule protection fault at level 0.
0b001101 Granule protection fault at level 1.
0b010100 Synchronous External abort on GPT fetch at level

0.
0b010101 Synchronous External abort on GPT fetch at level

1.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VNCR, bit [13]
When FEAT_NV2 is implemented:

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The fault was not generated by the use of

VNCR_EL2, by an MRS or MSR instruction executed
at EL1.

0b1 The fault was generated by the use of VNCR_EL2, by
an MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.

When InD is '1', this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [12:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address
translation instruction:

ESR_EL3, Exception Syndrome Register (EL3)

Page 215

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html

CM Meaning
0b0 The Data Abort was not generated by the execution of

one of the System instructions identified in the
description of value 1.

0b1 The Data Abort was generated by either the execution
of a cache maintenance instruction or by a
synchronous fault on the execution of an address
translation instruction. The DC ZVA, DC GVA, and DC
GZVA instructions are not classified as cache
maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

Indicates whether the Granule Protection Check exception was on an access for stage 2 translation for
a stage 1 translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

WnR Meaning
0b0 Abort caused by an instruction reading from a

memory location.
0b1 Abort caused by an instruction writing to a memory

location.

When InD is '1', this field is RES0.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set
to 0 if a read of the address specified by the instruction would have generated the fault which is being
reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this
requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic instructions,
the WnR bit is always 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported

Exclusive or atomic access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 216

AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html
AArch64-dc-gzva.html

xFSC, bits [5:0]

Instruction or Data Fault Status Code.

xFSC Meaning Applies when
0b100011 Granule Protection Fault

on translation table walk or
hardware update of
translation table, level -1.

When FEAT_RME
is implemented
and FEAT_LPA2 is
implemented

0b100100 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 0.

When FEAT_RME
is implemented

0b100101 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 1.

When FEAT_RME
is implemented

0b100110 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 2.

When FEAT_RME
is implemented

0b100111 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 3.

When FEAT_RME
is implemented

0b101000 Granule Protection Fault,
not on translation table
walk or hardware update of
translation table.

When FEAT_RME
is implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults'.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a Data Abort
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV SAS SSE SRT Bit[15]ARVNCRBits[12:11]FnVEACMS1PTWWnR DFSC

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction generates a
Data Abort for a Translation fault, Access flag fault, or Permission fault, then this ISS encoding includes
ISS2, bits[36:32].

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0 instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this ISS
encoding includes ISS2, bits[36:32].

ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

ISV Meaning
0b0 No valid instruction syndrome. ISS[23:14] are RES0.
0b1 ISS[23:14] hold a valid instruction syndrome.

In ESR_EL2, ISV is 1 when FEAT_LS64 is implemented and a memory access generated by an LD64B
or ST64B instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault.

ESR_EL3, Exception Syndrome Register (EL3)

Page 217

In ESR_EL2, ISV is 1 when FEAT_LS64_V is implemented and a memory access generated by an
ST64BV instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault.

In ESR_EL2, ISV is 1 when FEAT_LS64_ACCDATA is implemented and a memory access generated by
an ST64BV0 instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault.

For other faults reported in ESR_EL2, ISV is 0 except for the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register specified
with 0b11111, including those with Acquire/Release semantics, but excluding Load Exclusive or
Store Exclusive and excluding those with writeback).

• AArch32 instructions where the instruction:
◦ Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT,

LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT
instruction.

◦ Is not performing register writeback.
◦ Is not using R15 as a source or destination register.

For these stage 2 aborts, ISV is UNKNOWN if the exception was generated in Debug state in memory
access mode, and otherwise indicates whether ISS[23:14] hold a valid syndrome.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64 is implemented and a memory
access generated by an LD64B or ST64B instruction generates a Data Abort for a Translation fault,
Access flag fault, or Permission fault.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64_V is implemented and a
memory access generated by an ST64BV instruction generates a Data Abort for a Translation fault,
Access flag fault, or Permission fault.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64_ACCDATA is implemented and
a memory access generated by an ST64BV0 instruction generates a Data Abort for a Translation fault,
Access flag fault, or Permission fault.

When FEAT_RAS is implemented, ISV is 0 for any synchronous External abort.

When FEAT_RAS is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0 on a
synchronous External abort on a stage 2 translation table walk.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid
instruction syndrome, and therefore ISV is 0 for these aborts.

When FEAT_MTE2 is implemented, for a synchronous Tag Check Fault abort taken to ELx,
ESR_ELx.FnV is 0 and FAR_ELx is valid.

When FEAT_MOPS is implemented, for a synchronous Data Abort on a Memory Copy and Memory Set
instruction, ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]
When ISV == 1:

Syndrome Access Size. Indicates the size of the access attempted by the faulting operation.

SAS Meaning
0b00 Byte
0b01 Halfword
0b10 Word
0b11 Doubleword

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
0b11.

ESR_EL3, Exception Syndrome Register (EL3)

Page 218

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
0b11.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0b11.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSE, bit [21]
When ISV == 1:

Syndrome Sign Extend. For a byte, halfword, or word load operation, indicates whether the data item
must be sign extended.

SSE Meaning
0b0 Sign-extension not required.
0b1 Data item must be sign-extended.

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
0.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
0.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0.

For all other operations, this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SRT, bits [20:16]
When ISV == 1:

Syndrome Register Transfer. The register number of the Wt/Xt/Rt operand of the faulting instruction.

If the exception was taken from an Exception level that is using AArch32, then this is the AArch64
view of the register. See 'Mapping of the general-purpose registers between the Execution states'.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

ESR_EL3, Exception Syndrome Register (EL3)

Page 219

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit[15]
When ISV == 1:

SF, bit [0] of bit [15]

Sixty Four bit general-purpose register transfer. Width of the register accessed by the instruction is
64-bit.

SF Meaning
0b0 Instruction loads/stores a 32-bit general-purpose

register.
0b1 Instruction loads/stores a 64-bit general-purpose

register.

Note

This field specifies the register width identified by the instruction,
not the Execution state.

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
1.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
1.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 1.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When ISV == 0 and FEAT_SME is implemented:

FnP, bit [0] of bit [15]

FAR not Precise.

FnP Meaning
0b0 The FAR holds the faulting virtual address that

generated the Data Abort.
0b1 The FAR holds any virtual address within the naturally-

aligned granule that contains the faulting virtual
address that generated a Data Abort due to an SVE
contiguous vector load/store instruction in Streaming
SVE mode, or an SME load/store instruction.
For more information about the naturally-aligned fault
granule, see FAR_ELx (for example, FAR_EL1).

The reset behavior of this field is:

ESR_EL3, Exception Syndrome Register (EL3)

Page 220

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AR, bit [14]
When ISV == 1:

Acquire/Release.

AR Meaning
0b0 Instruction did not have acquire/release semantics.
0b1 Instruction did have acquire/release semantics.

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
0.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field is
0.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VNCR, bit [13]
When FEAT_NV2 is implemented:

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The fault was not generated by the use of

VNCR_EL2, by an MRS or MSR instruction executed
at EL1.

0b1 The fault was generated by the use of VNCR_EL2, by
an MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 221

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html

SET, bits [1:0] of bits [12:11]

Synchronous Error Type. When DFSC is 0b010000, describes the PE error state after taking the Data
Abort exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery
might be possible. Taking a synchronous External Abort exception
might result in a PE state that is not recoverable.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LS64 is implemented and DFSC == 0b110101:

Bits[12:11]
When (DFSCFEAT_RAS ==is 0b00xxxximplemented ||and DFSC == 0b101011) &&
DFSC != 0b0000xx0b010000:

LST, bits [1:0] of bits [12:11]

Used when an LD64B or ST64B instruction generates a Data Abort for a Translation fault, Access flag
fault, or Permission fault.

When FEAT_LS64_V is implemented, used when an ST64BV instruction generates a Data Abort for a
Translation fault, Access flag fault, or Permission fault.

When FEAT_LS64_ACCDATA is implemented, used when an ST64BV0 instruction generates a Data
Abort for a Translation fault, Access flag fault, or Permission fault.

Load/Store Type. Used when a Translation fault, Access flag fault, or Permission fault generates a
Data Abort.

LST Meaning Applies when
0b00 The instruction that

generated the Data Abort is
not specified.

0b01 An ST64BV instruction
generated the Data Abort.

When FEAT_LS64_V
is implemented

0b10 An LD64B or ST64B
instruction generated the
Data Abort.

When FEAT_LS64 is
implemented

0b11 An ST64BV0 instruction
generated the Data Abort.

When
FEAT_LS64_ACCDATA
is implemented

All other values are reserved.

This field is valid only if the DFSC code is 0b110101. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 222

When FEAT_RAS is implemented and DFSC == 0b010000:

SET, bits [1:0] of bits [12:11]

Synchronous Error Type. Used when a Syncronous External abort, not on a Translation table walk or
hardware update of the Translation table, generated the Data Abort. Describes the PE error state
after taking the Data Abort exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery
might be possible. Taking a synchronous External Abort exception
might result in a PE state that is not recoverable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address
translation instruction:

ESR_EL3, Exception Syndrome Register (EL3)

Page 223

CM Meaning
0b0 The Data Abort was not generated by the execution of

one of the System instructions identified in the
description of value 1.

0b1 The Data Abort was generated by either the execution
of a cache maintenance instruction or by a
synchronous fault on the execution of an address
translation instruction. The DC ZVA, DC GVA, and DC
GZVA instructions are not classified as cache
maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

WnR Meaning
0b0 Abort caused by an instruction reading from a

memory location.
0b1 Abort caused by an instruction writing to a memory

location.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set
to 0 if a read of the address specified by the instruction would have generated the fault which is being
reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this
requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic instructions,
the WnR bit is always 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported

Exclusive or atomic access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

ESR_EL3, Exception Syndrome Register (EL3)

Page 224

AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html
AArch64-dc-gzva.html

DFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When

FEAT_LPA2 is
implemented

0b001100 Permission fault, level 0. When
FEAT_LPA2 is
implemented

0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort,

not on translation table walk
or hardware update of
translation table.

0b010001 Synchronous Tag Check
Fault.

When
FEAT_MTE2 is
implemented

0b010011 Synchronous External abort
on translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented

0b010100 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 0.

0b010101 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 1.

0b010110 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 2.

0b010111 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 3.

0b011000 Synchronous parity or ECC
error on memory access, not
on translation table walk.

When
FEAT_RAS is
not
implemented

0b011011 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented
and FEAT_RAS
is not
implemented

0b011100 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RAS is
not
implemented

0b011101 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RAS is
not
implemented

ESR_EL3, Exception Syndrome Register (EL3)

Page 225

0b011110 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RAS is
not
implemented

0b011111 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RAS is
not
implemented

0b100001 Alignment fault.
0b100011 Granule Protection Fault on

translation table walk or
hardware update of
translation table, level -1.

When
FEAT_RME is
implemented
and FEAT_LPA2
is implemented

0b100100 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RME is
implemented

0b100101 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RME is
implemented

0b100110 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RME is
implemented

0b100111 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RME is
implemented

0b101000 Granule Protection Fault, not
on translation table walk or
hardware update of
translation table.

When
FEAT_RME is
implemented

0b101001 Address size fault, level -1. When
FEAT_LPA2 is
implemented

0b101011 Translation fault, level -1. When
FEAT_LPA2 is
implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic

hardware update fault.
When
FEAT_HAFDBS
is implemented

0b110100 IMPLEMENTATION DEFINED fault
(Lockdown).

0b110101 IMPLEMENTATION DEFINED fault
(Unsupported Exclusive or
Atomic access).

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults'.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 226

ISS encoding for an exception from a trapped floating-point
exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0TFV RES0 VECITR IDF RES0 IXF UFFOFFDZFIOF

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid
information about trapped floating-point exceptions.

TFV Meaning
0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold

valid information about trapped floating-point
exceptions and are UNKNOWN.

0b1 One or more floating-point exceptions occurred during
an operation performed while executing the reported
instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits
indicate trapped floating-point exceptions that
occurred. For more information, see 'Floating-point
exceptions and exception traps'.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped
floating-point exception from an instruction that is performing floating-point operations on more than
one lane of a vector.

Note

This is not a requirement. Implementations can set this field to 1
on a trapped floating-point exception from an instruction and
return valid information in the {IDF, IXF, UFF, OFF, DZF, IOF}
fields.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

ESR_EL3, Exception Syndrome Register (EL3)

Page 227

IDF Meaning
0b0 Input denormal floating-point exception has not

occurred.
0b1 Input denormal floating-point exception occurred

during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

IXF Meaning
0b0 Inexact floating-point exception has not occurred.
0b1 Inexact floating-point exception occurred during

execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

UFF Meaning
0b0 Underflow floating-point exception has not occurred.
0b1 Underflow floating-point exception occurred during

execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

OFF Meaning
0b0 Overflow floating-point exception has not occurred.
0b1 Overflow floating-point exception occurred during

execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

ESR_EL3, Exception Syndrome Register (EL3)

Page 228

DZF Meaning
0b0 Divide by Zero floating-point exception has not

occurred.
0b1 Divide by Zero floating-point exception occurred

during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

IOF Meaning
0b0 Invalid Operation floating-point exception has not

occurred.
0b1 Invalid Operation floating-point exception occurred

during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

ISS encoding for an SError interrupt
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDS RES0 IESB AET EA RES0 DFSC

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome.

IDS Meaning
0b0 Bits [23:0] of the ISS field holds the fields described in

this encoding.

Note
If FEAT_RAS is not implemented,
bits [23:0] of the ISS field are
RES0.

0b1 Bits [23:0] of the ISS field holds IMPLEMENTATION
DEFINED syndrome information that can be used to
provide additional information about the SError
interrupt.

Note

This field was previously called ISV.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 229

AArch32-fpscr.html

Bits [23:14]

Reserved, RES0.

IESB, bit [13]
When FEAT_IESB is implemented and DFSC == 0b010001:

Implicit error synchronization event.

IESB Meaning
0b0 The SError interrupt was either not synchronized by

the implicit error synchronization event or not taken
immediately.

0b1 The SError interrupt was synchronized by the
implicit error synchronization event and taken
immediately.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AET, bits [12:10]
When FEAT_RAS is implemented and DFSC == 0b010001:

Asynchronous Error Type.

Describes the PE error state after taking the SError interrupt exception.

When DFSC is 0b010001, describes the PE error state after taking the SError interrupt exception.

AET Meaning
0b000 Uncontainable (UC).
0b001 Unrecoverable state (UEU).
0b010 Restartable state (UEO).
0b011 Recoverable state (UER).
0b110 Corrected (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall PE error state is
reported.

Note

Software can use this information to determine what recovery
might be possible. The recovery software must also examine any
implemented fault records to determine the location and extent of
the error.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 230

Otherwise:

Reserved, RES0.

EA, bit [9]
When FEAT_RAS is implemented and DFSC == 0b010001:

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

External abort type. Provides an IMPLEMENTATION DEFINED classification of External aborts.

External abort type. When DFSC is 0b010001, provides an IMPLEMENTATION DEFINED classification of
External aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]
When FEAT_RAS is implemented:

Data Fault Status Code.

DFSC Meaning
0b000000 Uncategorized error.
0b010001 Asynchronous SError interrupt.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ISS encoding for an exception from execution of a Breakpoint
instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 Comment

Bits [24:16]

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 231

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Breakpoint instruction exceptions'.

ISS encoding for an exception from a TSTART instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 Rd RES0

Bits [24:10]

Reserved, RES0.

Rd, bits [9:5]

The Rd value from the issued instruction, the general purpose register used for the destination.

Bits [4:0]

Reserved, RES0.

ISS encoding for an exception from Branch Target Identification
instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 BTYPE

Bits [24:2]

Reserved, RES0.

BTYPE, bits [1:0]

This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception.

For more information about generating these exceptions, see 'The AArch64 application level programmers
model'.

ISS encoding for an exception from a Pointer Authentication
instruction when HCR_EL2.API == 0 || SCR_EL3.API == 0
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Bits [24:0]

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 232

For more information about generating these exceptions, see:

• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped
to EL2.

• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to
EL3.

ISS encoding for an exception from a Pointer Authentication
instruction authentication failure
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Exception
as a result

of an
Instruction

key or a
Data key

Exception
as a

result of
an A key

or a B
key

Bits [24:2]

Reserved, RES0.

Bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

Meaning
0b0 Instruction Key.
0b1 Data Key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

Meaning
0b0 A key.
0b1 B key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTIASP, AUTIAZ, AUTIA1716.
• AUTIBSP, AUTIBZ, AUTIB1716.
• AUTIA, AUTDA, AUTIB, AUTDB.
• AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the
authorization failure, rather than changing the address in a way that will generate a Translation fault when
the address is accessed:

• RETAA, RETAB.
• BRAA, BRAB, BLRAA, BLRAB.
• BRAAZ, BRABZ, BLRAAZ, BLRABZ.
• ERETAA, ERETAB.
• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

ESR_EL3, Exception Syndrome Register (EL3)

Page 233

Accessing ESR_EL3
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ESR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
X[t, 64] = ESR_EL3;

MSR ESR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
ESR_EL3 = X[t, 64];

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ESR_EL3, Exception Syndrome Register (EL3)

Page 234

(old) htmldiff from- (new)

FAR_EL1, Fault Address Register (EL1)
The FAR_EL1 characteristics are:

Purpose
Holds the faulting Virtual Address for all synchronous Instruction Abortexception exceptions,or Data Abort
exceptionsexception, PC alignment fault exceptions and Watchpoint exceptions that are taken to EL1.

Configuration
AArch64 System register FAR_EL1 bits [31:0] are architecturally mapped to AArch32 System register DFAR[31:0]
(NS).

AArch64 System register FAR_EL1 bits [63:32] are architecturally mapped to AArch32 System register IFAR[31:0]
(NS).

Attributes
FAR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Faulting Virtual Address for synchronous exceptions taken to EL1
Faulting Virtual Address for synchronous exceptions taken to EL1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL1. Exceptions that set the FAR_EL1 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC
0x34 or 0x35). ESR_EL1.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight
bits of FAR_EL1 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL1.FnV is 0, and FAR_EL1 is UNKNOWN if ESR_EL1.FnV is 1.

If a memory fault that sets FAR_EL1, other than a Tag Check Fault, is generated from a data cache maintenance or
other DC instruction, this field holds the address specified in the register argument of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC instruction, the
address held in FAR_EL1 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.
• The address specified in the register argument of the instruction as generated by MMU faults caused by

DC ZVA.

If the exception that updates FAR_EL1 is taken from an Exception level using AArch32, the top 32 bits are all zero,
unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially incremented from
address 0xFFFFFFFF. Such a load or store instruction is CONSTRAINED UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

FAR_EL1, Fault Address Register (EL1)

Page 235

AArch32-dfar.html
AArch32-ifar.html
AArch64-dc-zva.html

When FEAT_SME is implemented, and the PE sets ESR_EL1.ISV to 0 and ESR_EL1.FnP to 1 on taking a Data Abort
exception or Watchpoint exception, the PE sets FAR_EL1 to any address within the naturally-aligned fault granule
that contains the virtual address of the memory access that generated the Data Abort or Watchpoint exception.

The naturally-aligned fault granule is one of:

• When ESR_EL1.DFSC is 0b010001, indicating a Synchronous Tag Check fault, it is a 16-byte tag granule.
• When ESR_EL1.DFSC is 0b11010x, indicating an IMPLEMENTATION DEFINED fault, it is an IMPLEMENTATION

DEFINED granule.
• Otherwise, it is the smallest implemented translation granule.

When FEAT_MOPS is implemented, the value in FAR_EL1 on a synchronous exception from any of the Memory
Copy and Memory Set instructions represents the first element that has not been copied or set, and is determined
as follows:

• For a Data Abort generated by the MMU, the value is within the address range of the relevantcurrent
translation granule, aligned to the size of the relevantcurrent translation granule of the address that
generated the Data Abort. Bits[([n-1)::0] of the value are UNKNOWN, where 2n is the relevant translation
granule size in bytes. For the purpose of calculating the relevant translation granule, if the MMU is
disabled for a stage of translation, then the current translation granule size is equal to 264 for stage 1,
and the PARange for stage 2. The relevant translation granule is:

◦ For MMU faults generated at stage 1, the current stage 1 translation granule.
◦ For MMU faults generated at stage 2, the smaller of the current stage 1 translation granule and

the current stage 2 translation granule.
◦ If FEAT_RME is implemented, for a synchronous data abort generated as the result of a GPF, the

smallest of the current stage 1 translation granule, the current stage 2 translation granule and
the configured granule size in GPCCR_EL3.PGS.

• For a Data Abort generated by a Tag Check failure, the value is the lowest address that failed the Tag
Check within the block size of the load or store.

• For a Watchpoint exception, the value is an address range of the size defined by the DCZID_EL0.BS field.
This address does not need to be the element with a watchpoint, but can be some earlier element.

• Otherwise, the value is the lowest address in the block size of the load or store.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data
access that caused the exception, then this field includes the tag. For more information about address tagging, see
'Address tagging in AArch64 state'.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL0 makes FAR_EL1 become UNKNOWN.

Note

The address held in this field is an address accessed by the instruction
fetch or data access that caused the exception that actually gave rise to the
instruction or data abort. It is the lower address that gave rise to the fault.
Where different faults from different addresses arise from the same
instruction, such as for an instruction that loads or stores an unaligned
address that crosses a page boundary, the architecture does not prioritize
between those different faults.

For all other exceptions taken to EL1, FAR_EL1 is UNKNOWN.

FAR_EL1 is made UNKNOWN on an exception return from EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing FAR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic FAR_EL1 or
FAR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

FAR_EL1, Fault Address Register (EL1)

Page 236

AArch64-gpccr_el3.html
AArch64-dczid_el0.html

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FAR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.FAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

X[t, 64] = NVMem[0x220];
else

X[t, 64] = FAR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
X[t, 64] = FAR_EL2;

else
X[t, 64] = FAR_EL1;

elsif PSTATE.EL == EL3 then
X[t, 64] = FAR_EL1;

MSR FAR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.FAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x220] = X[t, 64];
else

FAR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
FAR_EL2 = X[t, 64];

else
FAR_EL1 = X[t, 64];

elsif PSTATE.EL == EL3 then
FAR_EL1 = X[t, 64];

MRS <Xt>, FAR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0110 0b0000 0b000

FAR_EL1, Fault Address Register (EL1)

Page 237

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

X[t, 64] = NVMem[0x220];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
X[t, 64] = FAR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

X[t, 64] = FAR_EL1;
else

UNDEFINED;

MSR FAR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x220] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
FAR_EL1 = X[t, 64];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

FAR_EL1 = X[t, 64];
else

UNDEFINED;

MRS <Xt>, FAR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

X[t, 64] = FAR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = FAR_EL2;
elsif PSTATE.EL == EL3 then

X[t, 64] = FAR_EL2;

FAR_EL1, Fault Address Register (EL1)

Page 238

MSR FAR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

FAR_EL1 = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

FAR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then

FAR_EL2 = X[t, 64];

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

FAR_EL1, Fault Address Register (EL1)

Page 239

(old) htmldiff from- (new)

FAR_EL2, Fault Address Register (EL2)
The FAR_EL2 characteristics are:

Purpose
Holds the faulting Virtual Address for all synchronous Instruction Abortexception exceptions,or Data Abort
exceptionsexception, PC alignment fault exceptions and Watchpoint exceptions that are taken to EL2.

Configuration
AArch64 System register FAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HDFAR[31:0].

AArch64 System register FAR_EL2 bits [63:32] are architecturally mapped to AArch32 System register HIFAR[31:0].

AArch64 System register FAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register DFAR[31:0] (S)
when EL2 is implemented.

AArch64 System register FAR_EL2 bits [63:32] are architecturally mapped to AArch32 System register IFAR[31:0] (S)
when EL2 is implemented.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
FAR_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Faulting Virtual Address for synchronous exceptions taken to EL2
Faulting Virtual Address for synchronous exceptions taken to EL2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL2. Exceptions that set the FAR_EL2 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC
0x34 or 0x35). ESR_EL2.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight
bits of FAR_EL2 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL2.FnV is 0, and FAR_EL2 is UNKNOWN if ESR_EL2.FnV is 1.

If a memory fault that sets FAR_EL2, other than a Tag Check Fault, is generated from a data cache maintenance or
other DC instruction, this field holds the address specified in the register argument of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC instruction, the
address held in FAR_EL2 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.
• The address specified in the register argument of the instruction as generated by MMU faults caused by

DC ZVA.

FAR_EL2, Fault Address Register (EL2)

Page 240

AArch32-hdfar.html
AArch32-hifar.html
AArch32-dfar.html
AArch32-ifar.html
AArch64-dc-zva.html

If the exception that updates FAR_EL2 is taken from an Exception level using AArch32, the top 32 bits are all zero,
unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially incremented from
address 0xFFFFFFFF. Such a load or store instruction is CONSTRAINED UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

When FEAT_SME is implemented, and the PE sets ESR_EL2.ISV to 0 and ESR_EL2.FnP to 1 on taking a Data Abort
exception or Watchpoint exception, the PE sets FAR_EL2 to any address within the naturally-aligned fault granule
that contains the virtual address of the memory access that generated the Data Abort or Watchpoint exception.

The naturally-aligned fault granule is one of:

• When ESR_EL2.DFSC is 0b010001, indicating a Synchronous Tag Check fault, it is a 16-byte tag granule.
• When ESR_EL2.DFSC is 0b11010x, indicating an IMPLEMENTATION DEFINED fault, it is an IMPLEMENTATION

DEFINED granule.
• Otherwise, it is the smallest implemented translation granule.

When FEAT_MOPS is implemented, the value in FAR_EL2 on a synchronous exception from any of the Memory
Copy and Memory Set instructions represents the first element that has not been copied or set, and is determined
as follows:

• For a Data Abort generated by the MMU, the value is within the address range of the relevantcurrent
translation granule, aligned to the size of the relevantcurrent translation granule of the address that
generated the Data Abort. Bits[([n-1)::0] of the value are UNKNOWN, where 2n is the relevant translation
granule size in bytes. For the purpose of calculating the relevant translation granule, if the MMU is
disabled for a stage of translation, then the current translation granule size is equal to 264 for stage 1,
and the PARange for stage 2. The relevant translation granule is:

◦ For MMU faults generated at stage 1, the current stage 1 translation granule.
◦ For MMU faults generated at stage 2, the smaller of the current stage 1 translation granule and

the current stage 2 translation granule.
◦ If FEAT_RME is implemented, for a synchronous data abort generated as the result of a GPF, the

smallest of the current stage 1 translation granule, the current stage 2 translation granule and
the configured granule size in GPCCR_EL3.PGS.

• For a Data Abort generated by a Tag Check failure, the value is the lowest address that failed the Tag
Check within the block size of the load or store.

• For a Watchpoint exception, the value is an address range of the size defined by the DCZID_EL0.BS field.
This address does not need to be the element with a watchpoint, but can be some earlier element.

• Otherwise, the value is the lowest address in the block size of the load or store.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data
access that caused the exception, then this field includes the tag. For more information about address tagging, see
'Address tagging in AArch64 state'.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL1 or EL0 makes FAR_EL2 become UNKNOWN.

Note

The address held in this field is an address accessed by the instruction
fetch or data access that caused the exception that actually gave rise to the
instruction or data abort. It is the lower address that gave rise to the fault.
Where different faults from different addresses arise from the same
instruction, such as for an instruction that loads or stores an unaligned
address that crosses a page boundary, the architecture does not prioritize
between those different faults.

For all other exceptions taken to EL2, FAR_EL2 is UNKNOWN.

FAR_EL2 is made UNKNOWN on an exception return from EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FAR_EL2, Fault Address Register (EL2)

Page 241

AArch64-gpccr_el3.html
AArch64-dczid_el0.html

Accessing FAR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic FAR_EL2 or FAR_EL1
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FAR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

X[t, 64] = FAR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = FAR_EL2;
elsif PSTATE.EL == EL3 then

X[t, 64] = FAR_EL2;

MSR FAR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

FAR_EL1 = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

FAR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then

FAR_EL2 = X[t, 64];

MRS <Xt>, FAR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0110 0b0000 0b000

FAR_EL2, Fault Address Register (EL2)

Page 242

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.FAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

X[t, 64] = NVMem[0x220];
else

X[t, 64] = FAR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
X[t, 64] = FAR_EL2;

else
X[t, 64] = FAR_EL1;

elsif PSTATE.EL == EL3 then
X[t, 64] = FAR_EL1;

MSR FAR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.FAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x220] = X[t, 64];
else

FAR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
FAR_EL2 = X[t, 64];

else
FAR_EL1 = X[t, 64];

elsif PSTATE.EL == EL3 then
FAR_EL1 = X[t, 64];

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

FAR_EL2, Fault Address Register (EL2)

Page 243

(old) htmldiff from- (new)

FAR_EL3, Fault Address Register (EL3)
The FAR_EL3 characteristics are:

Purpose
Holds the faulting Virtual Address for all synchronous Instruction Abortexception exceptions,or Data Abort
exceptionsexception and PC alignment fault exceptions that are taken to EL3.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to FAR_EL3 are UNDEFINED.

Attributes
FAR_EL3 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Faulting Virtual Address for synchronous exceptions taken to EL3
Faulting Virtual Address for synchronous exceptions taken to EL3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL3. Exceptions that set the FAR_EL3 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), and PC alignment faults (EC 0x22). ESR_EL3.EC holds
the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight
bits of FAR_EL3 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL3.FnV is 0, and FAR_EL3 is UNKNOWN if ESR_EL3.FnV is 1.

If a memory fault that sets FAR_EL3, other than a Tag Check Fault, is generated from a data cache maintenance or
other DC instruction, this field holds the address specified in the register argument of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC instruction, the
address held in FAR_EL3 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.
• The address specified in the register argument of the instruction as generated by MMU faults caused by

DC ZVA.

If the exception that updates FAR_EL3 is taken from an Exception level using AArch32, the top 32 bits are all zero,
unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially incremented from
address 0xFFFFFFFF. Such a load or store instruction is CONSTRAINED UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

When FEAT_SME is implemented, and the PE sets ESR_EL3.ISV to 0 and ESR_EL3.FnP to 1 on taking a Data Abort
exception, the PE sets FAR_EL3 to any address within the naturally-aligned fault granule that contains the virtual
address of the memory access that generated the Data Abort.

FAR_EL3, Fault Address Register (EL3)

Page 244

AArch64-dc-zva.html

The naturally-aligned fault granule is one of:

• When ESR_EL3.DFSC is 0b010001, indicating a Synchronous Tag Check fault, it is a 16-byte tag granule.
• When ESR_EL3.DFSC is 0b11010x, indicating an IMPLEMENTATION DEFINED fault, it is an IMPLEMENTATION

DEFINED granule.
• Otherwise, it is the smallest implemented translation granule.

When FEAT_MOPS is implemented, the value in FAR_EL3 on a synchronous exception from any of the Memory
Copy and Memory Set instructions represents the first element that has not been copied or set, and is determined
as follows:

• For a Data Abort generated by the MMU, the value is within the address range of the relevantcurrent
translation granule, aligned to the size of the relevantcurrent translation granule of the address that
generated the Data Abort. Bits[([n-1)::0] of the value are UNKNOWN, where 2n is the relevant translation
granule size in bytes. For the purpose of calculating the relevant translation granule, if the MMU is
disabled for a stage of translation, then the current translation granule size is equal to 264 for stage 1,
and the PARange for stage 2. The relevant translation granule is:

◦ For MMU faults generated at stage 1, the current stage 1 translation granule.
◦ For MMU faults generated at stage 2, the smaller of the current stage 1 translation granule and

the current stage 2 translation granule.
◦ If FEAT_RME is implemented, for a synchronous data abort generated as the result of a GPF, the

smallest of the current stage 1 translation granule, the current stage 2 translation granule and
the configured granule size in GPCCR_EL3.PGS.

• For a Data Abort generated by a Tag Check failure, the value is the lowest address that failed the Tag
Check within the block size of the load or store.

• Otherwise, the value is the lowest address in the block size of the load or store.

For a Data Abort exception, if address tagging is enabled for the address accessed by the data access that caused
the exception, then this field includes the tag. For more information about address tagging, see 'Address tagging
in AArch64 state'.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL2, EL1, or EL0 makes FAR_EL3 become UNKNOWN.

Note

The address held in this register is an address accessed by the instruction
fetch or data access that caused the exception that actually gave rise to the
instruction or data abort. It is the lowest address that gave rise to the fault.
Where different faults from different addresses arise from the same
instruction, such as for an instruction that loads or stores an unaligned
address that crosses a page boundary, the architecture does not prioritize
between those different faults.

For all other exceptions taken to EL3, FAR_EL3 is UNKNOWN.

FAR_EL3 is made UNKNOWN on an exception return from EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing FAR_EL3
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FAR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0110 0b0000 0b000

FAR_EL3, Fault Address Register (EL3)

Page 245

AArch64-gpccr_el3.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
X[t, 64] = FAR_EL3;

MSR FAR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
FAR_EL3 = X[t, 64];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

FAR_EL3, Fault Address Register (EL3)

Page 246

(old) htmldiff from- (new)

FPCR, Floating-point Control Register
The FPCR characteristics are:

Purpose
Controls floating-point behavior.

Configuration
AArch64 System register FPCR bits [26:15] are architecturally mapped to AArch32 System register FPSCR[26:15].

AArch64 System register FPCR bits [12:8] are architecturally mapped to AArch32 System register FPSCR[12:8].

It is IMPLEMENTATION DEFINED whether the Len and Stride fields can be programmed to non-zero values, which will
cause some AArch32 floating-point instruction encodings to be UNDEFINED, or whether these fields are RAZ.

Attributes
FPCR is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 AHPDNFZRModeStrideFZ16 Len IDERES0EBFIXEUFEOFEDZEIOE RES0 NEPAHFIZ

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:27]

Reserved, RES0.

AHP, bit [26]

Alternative half-precision control bit.

AHP Meaning
0b0 IEEE half-precision format selected.
0b1 Alternative half-precision format selected.

This bit is used only for conversions between half-precision floating-point and other floating-point formats.

The data-processing instructions added as part of the FEAT_FP16 extension always use the IEEE half-precision
format, and ignore the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DN, bit [25]

Default NaN use for NaN propagation.

FPCR, Floating-point Control Register

Page 247

AArch32-fpscr.html
AArch32-fpscr.html

DN Meaning
0b0 NaN operands propagate through to the output of a floating-

point operation.
0b1 Any operation involving one or more NaNs returns the Default

NaN.
This bit has no effect on the output of FABS, FMAX*, FMIN*,
and FNEG instructions, and a default NaN is never returned as
a result of these instructions.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FZ, bit [24]

Flushing denormalized numbers to zero control bit.

FZ Meaning
0b0 If FPCR.AH is 0, the flushing to zero of single-precision and

double-precision denormalized inputs to, and outputs of,
floating-point instructions not enabled by this control, but other
factors might cause the input denormalized numbers to be
flushed to zero.
If FPCR.AH is 1, the flushing to zero of single-precision and
double-precision denormalized outputs of floating-point
instructions not enabled by this control, but other factors might
cause the input denormalized numbers to be flushed to zero.

0b1 If FPCR.AH is 0, denormalized single-precision and double-
precision inputs to, and outputs from, floating-point instructions
are flushed to zero.
If FPCR.AH is 1, denormalized single-precision and double-
precision outputs from floating-point instructions are flushed to
zero.

For more information, see 'Flushing denormalized numbers to zero' and the pseudocode of the floating-point
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RMode, bits [23:22]

Rounding Mode control field.

RMode Meaning
0b00 Round to Nearest (RN) mode.
0b01 Round towards Plus Infinity (RP) mode.
0b10 Round towards Minus Infinity (RM) mode.
0b11 Round towards Zero (RZ) mode.

The specified rounding mode is used by both scalar and Advanced SIMD floating-point instructions.

If FPCR.AH is 1, then the following instructions use Round to Nearest mode regardless of the value of this bit:

• The FRECPE, FRECPS, FRECPX, FRSQRTE, and FRSQRTS instructions.

• The BFCVT, BFCVTN, BFCVTN2, BFCVTNT, BFMLALB, and BFMLALT instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FPCR, Floating-point Control Register

Page 248

Stride, bits [21:20]

This field has no function in AArch64 state, and non-zero values are ignored during execution in AArch64 state.

This field is included only for context saving and restoration of the AArch32 FPSCR.Stride field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FZ16, bit [19]
When FEAT_FP16 is implemented:

Flushing denormalized numbers to zero control bit on half-precision data-processing instructions.

FZ16 Meaning
0b0 For some instructions, this bit disables flushing to zero of

inputs and outputs that are half-precision denormalized
numbers.

0b1 Flushing denormalized numbers to zero enabled.
For some instructions that do not convert a half-precision
input to a higher precision output, this bit enables flushing to
zero of inputs and outputs that are half-precision
denormalized numbers.

The value of this bit applies to both scalar and Advanced SIMD floating-point half-precision calculations.

For more information, see 'Flushing denormalized numbers to zero' and the pseudocode of the floating-point
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Len, bits [18:16]

This field has no function in AArch64 state, and non-zero values are ignored during execution in AArch64 state.

This field is included only for context saving and restoration of the AArch32 FPSCR.Len field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDE, bit [15]

Input Denormal floating-point exception trap enable.

IDE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs, the FPSR.IDC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the FPSR.IDC bit.

WhenThe the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled at the
current Exception level, the value of FPCR.IDEthis isbit treatedcontrols asboth 0scalar forand allAdvanced
purposesSIMD otherfloating-point than a direct read or write of the FPCR.arithmetic.

The value of this bit controls both scalar and vector floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

FPCR, Floating-point Control Register

Page 249

AArch32-fpscr.html
AArch32-fpscr.html
AArch64-fpsr.html
AArch64-fpsr.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [14]

Reserved, RES0.

EBF, bit [13]
When FEAT_EBF16 is implemented:

The value of this bit controls the numeric behaviors of BFloat16 dot product calculations performed by the BFDOT,
BFMMLA, BFMOPA, and BFMOPS instructions.

When ID_AA64ISAR1_EL1.BF16 and ID_AA64ZFR0_EL1.BF16 are 0b0010, the PE supports the FPCR.EBF field.
Otherwise, FPCR.EBF is RES0.

EBF Meaning
0b0 These instructions use the standard BFloat16 behaviors:

• Ignoring the FPCR.RMode control and using the rounding
mode defined for BFloat16. For more information, see
'Round to Odd mode'.

• Flushing denormalized inputs and outputs to zero, as if
the FPCR.FZ and FPCR.FIZ controls had the value '1'.

• Performing unfused multiplies and additions with
intermediate rounding of all products and sums.

0b1 These instructions use the extended BFloat16 behaviors:
• Supporting all four IEEE 754 rounding modes selected by

the FPCR.RMode control.
• Optionally, flushing denormalized inputs and outputs to

zero, as governed by the FPCR.FZ and FPCR.FIZ controls.
• Performing a fused two-way sum-of-products for each pair

of adjacent BFloat16 elements, without intermediate
rounding of the products, but rounding the single-
precision sum before addition to the accumulator.

• Generating the default NaN as intermediate sum-of-
products when any multiplier input is a NaN, or any
product is infinity × 0.0, or there are infinite products
with differing signs.

• Generating an intermediate sum-of-products of the same
infinity when there are infinite products all with the same
sign.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IXE, bit [12]

Inexact floating-point exception trap enable.

IXE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs, the FPSR.IXC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the FPSR.IXC bit.

WhenThe the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled at the
current Exception level, the value of FPCR.IXEthis isbit treatedcontrols asboth 0scalar forand allAdvanced
purposesSIMD otherfloating-point than a direct read or write of the FPCR.arithmetic.

FPCR, Floating-point Control Register

Page 250

AArch64-id_aa64isar1_el1.html
AArch64-fpsr.html
AArch64-fpsr.html

The value of this bit controls both scalar and vector floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFE, bit [11]

Underflow floating-point exception trap enable.

UFE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs, the FPSR.UFC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs and Flush-to-zero is not enabled, the PE does
not update the FPSR.UFC bit.

WhenThe the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled at the
current Exception level, the value of FPCR.UFEthis isbit treatedcontrols asboth 0scalar forand allAdvanced
purposesSIMD otherfloating-point than a direct read or write of the FPCR.arithmetic.

The value of this bit controls both scalar and vector floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFE, bit [10]

Overflow floating-point exception trap enable.

OFE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs, the FPSR.OFC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the FPSR.OFC bit.

WhenThe the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled at the
current Exception level, the value of FPCR.OFEthis isbit treatedcontrols asboth 0scalar forand allAdvanced
purposesSIMD otherfloating-point than a direct read or write of the FPCR.arithmetic.

The value of this bit controls both scalar and vector floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZE, bit [9]

Divide by Zero floating-point exception trap enable.

DZE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs, the FPSR.DZC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the FPSR.DZC bit.

WhenThe the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled at the
current Exception level, the value of FPCR.DZEthis isbit treatedcontrols asboth 0scalar forand allAdvanced
purposesSIMD otherfloating-point than a direct read or write of the FPCR.arithmetic.

The value of this bit controls both scalar and vector floating-point arithmetic.

FPCR, Floating-point Control Register

Page 251

AArch64-fpsr.html
AArch64-fpsr.html
AArch64-fpsr.html
AArch64-fpsr.html
AArch64-fpsr.html
AArch64-fpsr.html

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOE, bit [8]

Invalid Operation floating-point exception trap enable.

IOE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs, the FPSR.IOC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the FPSR.IOC bit.

WhenThe the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled at the
current Exception level, the value of FPCR.IOEthis isbit treatedcontrols asboth 0scalar forand allAdvanced
purposesSIMD otherfloating-point than a direct read or write of the FPCR.arithmetic.

The value of this bit controls both scalar and vector floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:3]

Reserved, RES0.

NEP, bit [2]
When FEAT_AFP is implemented:

Controls how the output elements other than the lowest element of the vector are determined for Advanced SIMD
scalar instructions.

FPCR, Floating-point Control Register

Page 252

AArch64-fpsr.html
AArch64-fpsr.html

NEP Meaning
0b0 Does not affect how the output elements other than the lowest

are determined for Advanced SIMD scalar instructions.
0b1 The output elements other than the lowest are taken from the

following registers:
• For 3-input scalar versions of the FMLA (by element)

and FMLS (by element) instructions, the <Hd>, <Sd>,
or <Dd> register.

• For 3-input versions of the FMADD, FMSUB, FNMADD,
and FNMSUB instructions, the <Ha>, <Sa>, or <Da>
register.

• For 2-input scalar versions of the FACGE, FACGT,
FCMEQ (register), FCMGE (register), and FCMGT
(register) instructions, the <Hm>, <Sm>, or <Dm>
register.

• For 2-input scalar versions of the FABD, FADD (scalar),
FDIV (scalar), FMAX (scalar), FMAXNM (scalar), FMIN
(scalar), FMINNM (scalar), FMUL (by element), FMUL
(scalar), FMULX (by element), FMULX, FNMUL
(scalar), FRECPS, FRSQRTS, and FSUB (scalar)
instructions, the <Hn>, <Sn>, or <Dn> register.

• For 1-input scalar versions of the following instructions,
the <Hd>, <Sd>, or <Dd> register:

◦ The (vector) versions of the FCVTAS, FCVTAU,
FCVTMS, FCVTMU, FCVTNS, FCVTNU, FCVTPS,
and FCVTPU instructions.

◦ The (vector, fixed-point) and (vector, integer)
versions of the FCVTZS, FCVTZU, SCVTF, and
UCVTF instructions.

◦ The (scalar) versions of the FABS, FNEG,
FRINT32X, FRINT32Z, FRINT64X, FRINT64Z,
FRINTA, FRINTI, FRINTM, FRINTN, FRINTP,
FRINTX, FRINTZ, and FSQRT instructions.

◦ The (scalar, fixed-point) and (scalar, integer)
versions of the SCVTF and UCVTF instructions.

◦ The BFCVT, FCVT, FCVTXN, FRECPE, FRECPX,
and FRSQRTE instructions.

WhenThe the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled at the
current Exception level, the value of FPCR.NEP is treated as 0 for all purposes other than a direct read or write of
the FPCR.FPCR when the PE is in Streaming SVE mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AH, bit [1]
When FEAT_AFP is implemented:

Alternate Handling. Controls alternate handling of floating-point numbers.

The Arm architecture supports two models for handling some of the corner cases of the floating-point behaviors,
such as the nature of flushing of denormalized numbers, the detection of tininess and other exceptions and a range
of other behaviors. The value of the FPCR.AH bit selects between these models.

For more information on the FPCR.AH bit, see 'Flushing denormalized numbers to zero', 'Floating-point exceptions
and exception traps' and the pseudocode of the floating-point instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FPCR, Floating-point Control Register

Page 253

Otherwise:

Reserved, RES0.

FIZ, bit [0]
When FEAT_AFP is implemented:

Flush Inputs to Zero. Controls whether single-precision, double-precision and BFloat16 input operands that are
denormalized numbers are flushed to zero.

FIZ Meaning
0b0 The flushing to zero of single-precision and double-precision

denormalized inputs to floating-point instructions not enabled
by this control, but other factors might cause the input
denormalized numbers to be flushed to zero.

0b1 Denormalized single-precision and double-precision inputs to
most floating-point instructions flushed to zero.

For more information, see 'Flushing denormalized numbers to zero' and the pseudocode of the floating-point
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing FPCR
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FPCR

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0100 0b000

FPCR, Floating-point Control Register

Page 254

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TFP == '1' then
UNDEFINED;

elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x00);
else

AArch64.SystemAccessTrap(EL1, 0x07);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN != '11' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x07);

else
X[t, 64] = FPCR;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TFP == '1' then
UNDEFINED;

elsif CPACR_EL1.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x07);

elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x07);
else

X[t, 64] = FPCR;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.TFP == '1' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x07);

else
X[t, 64] = FPCR;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

X[t, 64] = FPCR;

MSR FPCR, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0100 0b000

FPCR, Floating-point Control Register

Page 255

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TFP == '1' then
UNDEFINED;

elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x00);
else

AArch64.SystemAccessTrap(EL1, 0x07);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN != '11' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x07);

else
FPCR = X[t, 64];

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TFP == '1' then
UNDEFINED;

elsif CPACR_EL1.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x07);

elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x07);
else

FPCR = X[t, 64];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.TFP == '1' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x07);

else
FPCR = X[t, 64];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

FPCR = X[t, 64];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

FPCR, Floating-point Control Register

Page 256

(old) htmldiff from- (new)

FPEXC32_EL2, Floating-Point Exception Control
register

The FPEXC32_EL2 characteristics are:

Purpose
Allows access to the AArch32 register FPEXC from AArch64 state only. Its value has no effect on execution in AArch64
state.

Configuration
AArch64 System register FPEXC32_EL2 bits [31:0] are architecturally mapped to AArch32 System register
FPEXC[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to FPEXC32_EL2 are
UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this register is not RES0.

Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

Attributes
FPEXC32_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
EX ENDEXFP2VVVTFV RES0 VECITR IDF RES0 IXFUFFOFFDZFIOF
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

EX, bit [31]

Exception bit. From Armv8, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RAZ/WI.

EN, bit [30]

Enables access to the Advanced SIMD and floating-point functionality from all Exception levels, except that setting
this field to 0 does not disable the following:

• VMSR accesses to the FPEXC or FPSID.
• VMRS accesses from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2.

FPEXC32_EL2, Floating-Point Exception Control register

Page 257

AArch32-fpsid.html
AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html

EN Meaning
0b0 Accesses to the FPSCR, and any of the SIMD and floating-point

registers Q0-Q15, including their views as D0-D31 registers or
S0-S31 registers, are UNDEFINED at all Exception levels.

0b1 This control permits access to the Advanced SIMD and floating-
point functionality at all Exception levels.

Execution of Advanced SIMD and floating-point instructions in AArch32 state can be disabled or trapped by the
following controls:

• CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.
• FPEXC.EN.
• If executing in Non-secure state:

◦ HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.
◦ NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.

• For Advanced SIMD instructions only:
◦ CPACR.ASEDIS.
◦ If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

See the descriptions of the controls for more information.

Note

When executing at EL0 using AArch32:

• If EL1 is using AArch64, then the Effective value of FPEXC.EN is 1.
• If EL2 is using AArch64 and is enabled in the current Security state,

HCR_EL2.TGE is 1, and the Effective value of HCR_EL2.RW is 1, then
the Effective value of FPEXC.EN is 1. However, Arm deprecates using
the value of FPEXC32_EL2.EN to determine behavior.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DEX, bit [29]

Defined synchronous exception on floating-point execution.

This field identifies whether a synchronous exception generated by the attempted execution of an instruction was
generated by an unallocated encoding. The instruction must be in the encoding space that is identified by the
pseudocode function ExecutingCP10or11Instr() returning TRUE. This field also indicates whether the
FPEXC32_EL2.TFV field is valid.

The meaning of this bit is:

DEX Meaning
0b0 The exception was generated by the attempted execution of an

unallocated instruction in the encoding space that is identified
by the pseudocode function ExecutingCP10or11Instr(). If
FPEXC32_EL2.TFV is RW then it is invalid and UNKNOWN. If
FPEXC32_EL2.{IDF, IXF, UFF, OFF, DZF, IOF} are RW then
they are invalid and UNKNOWN.

0b1 The exception was generated during the execution of an
allocated encoding. FPEXC32_EL2.TFV is valid and indicates
the cause of the exception.

On an exception that sets this bit to 1 the exception-handling routine must clear this bit to 0.

On an implementation that both does not support trapping of floating-point exceptions and implements the
AArch32 FPSCR.{Stride, Len} fields as RAZ, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FPEXC32_EL2, Floating-Point Exception Control register

Page 258

AArch32-fpscr.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch32-nsacr.html
AArch64-cptr_el3.html
AArch32-nsacr.html
AArch32-fpscr.html

FP2V, bit [28]

FPINST2 instruction valid bit. From Armv8, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RES0.

VV, bit [27]

VECITR valid bit. From Armv8, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RES0.

TFV, bit [26]

Trapped Fault Valid bit. Valid only when the value of FPEXC32_EL2.DEXFPEXC.DEX is 1. When valid, it indicates
the cause of the exception and therefore whether FPEXC32_EL2.the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} bits
are valid.

TFV Meaning
0b0 The exception was caused by the execution of a floating-point

VABS, VADD, VDIV, VFMA, VFMS, VFNMA, VFNMS, VMLA,
VMLS, VMOV, VMUL, VNEG, VNMLA, VNMLS, VNMUL,
VSQRT, or VSUB instruction when one or both of
FPSCR.{Stride, Len} was non-zero. If FPEXC32_EL2.the
FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} bits are RW then they
are invalid and UNKNOWN.

0b1 FPEXC32_EL2.FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} indicate
the presence of trapped floating-point exceptions that had
occurred at the time of the exception. Bits are set for all
trapped exceptions that had occurred at the time of the
exception.

This bit returns a status value and ignores writes.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On an implementation that supports the trapping of floating-point exceptions and implements FPSCR.{Stride,
Len} as RAZ, this bit is RAO/WI.

When the value of FPEXC32_EL2.DEXFPEXC.DEX is 0 and this bit is RW, this bit is invalid and UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• WhenOn !ImpDefBool("Supporta trappingWarm ofreset, this floating-pointfield exceptions"), access resets
to thisan field isarchitecturally RAZ/WIUNKNOWN.value.

• When ImpDefBool("Implemented FPSCR LEN, STRIDE as RAZ"), access to this field is RAO/WI.

Bits [25:11]

Reserved, RES0.

VECITR, bits [10:8]

Vector iteration count. From Armv8, this field is RES1.

FPEXC32_EL2, Floating-Point Exception Control register

Page 259

AArch32-fpscr.html
AArch32-fpscr.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RES1.

IDF, bit [7]

Input Denormal trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates
whether an Input Denormal exception occurred while FPSCR.IDE was 1:

IDF Meaning
0b0 Input Denormal exception has not occurred.
0b1 Input Denormal exception has occurred.

Input Denormal exceptions can occur only when FPSCR.FZ is 1.

Note

A half-precision floating-point value that is flushed to zero because the
value of FPSCR.FZ16 is 1 does not generate an Input Denormal exception.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC32_EL2.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an
Inexact exception occurred while FPSCR.IXE was 1:

IXF Meaning
0b0 Inexact exception has not occurred.
0b1 Inexact exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an
Underflow exception occurred while FPSCR.UFE was 1:

UFF Meaning
0b0 Underflow exception has not occurred.
0b1 Underflow exception has occurred.

Underflow trapped exceptions can occur:

FPEXC32_EL2, Floating-Point Exception Control register

Page 260

AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html

• On half-precision data-processing instructions only when FPSCR.FZ16 is 0.
• Otherwise only when FPSCR.FZ is 0.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC32_EL2.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an
Overflow exception occurred while FPSCR.OFE was 1:

OFF Meaning
0b0 Overflow exception has not occurred.
0b1 Overflow exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates
whether a Divide by Zero exception occurred while FPSCR.DZE was 1:

DZF Meaning
0b0 Divide by Zero exception has not occurred.
0b1 Divide by Zero exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates
whether an Invalid Operation exception occurred while FPSCR.IOE was 1:

IOF Meaning
0b0 Invalid Operation exception has not occurred.
0b1 Invalid Operation exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

The reset behavior of this field is:

FPEXC32_EL2, Floating-Point Exception Control register

Page 261

AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing FPEXC32_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FPEXC32_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.TFP == '1' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x07);

else
X[t, 64] = FPEXC32_EL2;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

X[t, 64] = FPEXC32_EL2;

MSR FPEXC32_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0011 0b000

FPEXC32_EL2, Floating-Point Exception Control register

Page 262

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.TFP == '1' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x07);

else
FPEXC32_EL2 = X[t, 64];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

FPEXC32_EL2 = X[t, 64];

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

FPEXC32_EL2, Floating-Point Exception Control register

Page 263

(old) htmldiff from- (new)

HCR_EL2, Hypervisor Configuration Register
The HCR_EL2 characteristics are:

Purpose
Provides configuration controls for virtualization, including defining whether various operations are trapped to EL2.

Configuration
AArch64 System register HCR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HCR[31:0].

AArch64 System register HCR_EL2 bits [63:32] are architecturally mapped to AArch32 System register HCR2[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

The bits in this register behave as if they are 0 for all purposes other than direct reads of the register if EL2 is not
enabled in the current Security state.

Attributes
HCR_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

TWEDEL TWEDEnTID5 DCT ATATTLBOSTTLBISEnSCXTTOCUAMVOFFENTICABTID4 GPF FIENFWBNV2 AT NV1NVAPIAPKTMEMIOCNCE TEA TERRTLOR E2H ID CD
RWTRVMHCDTDZ TGE TVMTTLBTPU Bit[23] TSW TACR TIDCP TSC TID3 TID2TID1TID0TWE TWI DC BSU FB VSE VI VF AMO IMO FMO PTWSWIOVM
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TWEDEL, bits [63:60]
When FEAT_TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when HCR_EL2.TWEDEn is 1, encodes the minimum delay in taking a
trap of WFE* caused by HCR_EL2.TWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [59]
When FEAT_TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by HCR_EL2.TWE.

TWEDEn Meaning
0b0 The delay for taking the trap is IMPLEMENTATION DEFINED.
0b1 The delay for taking the trap is at least the number of

cycles defined in HCR_EL2.TWEDEL.

HCR_EL2, Hypervisor Configuration Register

Page 264

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TID5, bit [58]
When FEAT_MTE2 is implemented:

Trap ID group 5. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:

AArch64:

• GMID_EL1.
TID5 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 and EL0 accesses to ID group 5 registers

are trapped to EL2.

When the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field has an Effective value of 0 for all purposes other than
a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DCT, bit [57]
When FEAT_MTE2 is implemented:

Default Cacheability Tagging. When HCR_EL2.DC is in effect, controls whether stage 1 translations are treated as
Tagged or Untagged.

DCT Meaning
0b0 Stage 1 translations are treated as Untagged.
0b1 Stage 1 translations are treated as Tagged.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ATA, bit [56]
When FEAT_MTE2 is implemented:

Allocation Tag Access. When HCR_EL2.{E2H,TGE} != {1,1}, controls EL1 and EL0 access to Allocation Tags.

HCR_EL2, Hypervisor Configuration Register

Page 265

AArch64-gmid_el1.html

ATA Meaning
0b0 Access to Allocation Tags is prevented. Accesses at EL1 to

GCR_EL1, RGSR_EL1, TFSR_EL1, TFSR_EL2, or TFSRE0_EL1
that are not UNDEFINED are trapped to EL2.

0b1 This control does not prevent access to Allocation Tags.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TTLBOS, bit [55]
When FEAT_EVT is implemented:

Trap TLB maintenance instructions that operate on the Outer Shareable domain. Traps execution of those TLB
maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state. This applies to the
following instructions:

TLBI VMALLE1OS, TLBI VAE1OS, TLBI ASIDE1OS,TLBI VAAE1OS, TLBI VALE1OS, TLBI VAALE1OS,TLBI
RVAE1OS, TLBI RVAAE1OS,TLBI RVALE1OS, and TLBI RVAALE1OS.

TTLBOS Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions are trapped to EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TTLBIS, bit [54]
When FEAT_EVT is implemented:

Trap TLB maintenance instructions that operate on the Inner Shareable domain. Traps execution of those TLB
maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state. This applies to the
following instructions:

• When EL1 is using AArch64, TLBI VMALLE1IS, TLBI VAE1IS, TLBI ASIDE1IS, TLBI VAAE1IS, TLBI
VALE1IS, TLBI VAALE1IS, TLBI RVAE1IS, TLBI RVAAE1IS, TLBI RVALE1IS, and TLBI RVAALE1IS.

• When EL1 is using AArch32, TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, and
TLBIMVAALIS.

TTLBIS Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions are trapped to EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 266

AArch64-gcr_el1.html
AArch64-rgsr_el1.html
AArch64-tfsr_el1.html
AArch64-tfsr_el2.html
AArch64-tfsre0_el1.html
AArch64-tlbi-vmalle1os.html
AArch64-tlbi-vae1os.html
AArch64-tlbi-aside1os.html
AArch64-tlbi-vaae1os.html
AArch64-tlbi-vale1os.html
AArch64-tlbi-vaale1os.html
AArch64-tlbi-vmalle1is.html
AArch64-tlbi-vae1is.html
AArch64-tlbi-aside1is.html
AArch64-tlbi-vaae1is.html
AArch64-tlbi-vale1is.html
AArch64-tlbi-vale1is.html
AArch64-tlbi-vaale1is.html
AArch32-tlbiallis.html
AArch32-tlbimvais.html
AArch32-tlbiasidis.html
AArch32-tlbimvaais.html
AArch32-tlbimvalis.html
AArch32-tlbimvaalis.html

Otherwise:

Reserved, RES0.

EnSCXT, bit [53]
When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Enable Access to the SCXTNUM_EL1 and SCXTNUM_EL0 registers. The defined values are:

EnSCXT Meaning
0b0 When HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, and EL2 is

enabled in the current Security state, EL1 and EL0 access
to SCXTNUM_EL0 and EL1 access to SCXTNUM_EL1 is
disabled by this mechanism, causing an exception to EL2,
and the values of these registers to be treated as 0.
When HCR_EL2.{E2H, TGE} is {1, 1} and EL2 is enabled
in the current Security state, EL0 access to
SCXTNUM_EL0 is disabled by this mechanism, causing an
exception to EL2, and the value of this register to be
treated as 0.

0b1 This control does not cause accesses to SCXTNUM_EL0 or
SCXTNUM_EL1 to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TOCU, bit [52]
When FEAT_EVT is implemented:

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of those cache
maintenance instructions to EL2, when EL2 is enabled in the current Security state. This applies to the following
instructions:

• When SCTLR_EL1.UCI is 1, HCR_EL2.{TGE, E2H} is not {1, 1}, and EL0 is using AArch64, IC IVAU, DC
CVAU.

• When EL1 is using AArch64, IC IVAU, IC IALLU, DC CVAU.
• When EL1 is using AArch32, ICIMVAU, ICIALLU, DCCMVAU.

Note

An exception generated because an instruction is UNDEFINED at EL0 is
higher priority than this trap to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using
AArch64.

• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always
UNDEFINED at EL0 using AArch32.

TOCU Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions are trapped to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this
control is 1.

HCR_EL2, Hypervisor Configuration Register

Page 267

AArch64-scxtnum_el1.html
AArch64-scxtnum_el0.html
AArch64-scxtnum_el0.html
AArch64-scxtnum_el1.html
AArch64-scxtnum_el0.html
AArch64-scxtnum_el0.html
AArch64-scxtnum_el1.html
AArch64-ic-ivau.html
AArch64-dc-cvau.html
AArch64-dc-cvau.html
AArch64-ic-ivau.html
AArch64-ic-iallu.html
AArch64-dc-cvau.html
AArch32-icimvau.html
AArch32-iciallu.html
AArch32-dccmvau.html
AArch64-ic-ialluis.html
AArch64-ic-iallu.html
AArch32-icimvau.html
AArch32-iciallu.html
AArch32-icialluis.html
AArch32-dccmvau.html

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the
execution of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value
of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AMVOFFEN, bit [51]
When FEAT_AMUv1p1 is implemented:

Activity Monitors Virtual Offsets Enable.

AMVOFFEN Meaning
0b0 Virtualization of the Activity Monitors is disabled.

Indirect reads of the virtual offset registers are zero.
0b1 Virtualization of the Activity Monitors is enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TICAB, bit [50]
When FEAT_EVT is implemented:

Trap ICIALLUIS/IC IALLUIS cache maintenance instructions. Traps execution of those cache maintenance
instructions at EL1 to EL2, when EL2 is enabled in the current Security state. This applies to the following
instructions:

• When EL1 is using AArch64, IC IALLUIS.
• When EL1 is using AArch32, ICIALLUIS.

TICAB Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 execution of the specified instructions is trapped to

EL2.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the
execution of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value
of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 268

AArch64-ic-ialluis.html
AArch32-icialluis.html

Otherwise:

Reserved, RES0.

TID4, bit [49]
When FEAT_EVT is implemented:

Trap ID group 4. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:

AArch64:

• EL1 reads of CCSIDR_EL1, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1.
• EL1 writes to CSSELR_EL1.

AArch32:

• EL1 reads of CCSIDR, CCSIDR2, CLIDR, and CSSELR.
• EL1 writes to CSSELR.

TID4 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 and EL0 accesses to ID group 4 registers

are trapped to EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

GPF, bit [48]
When FEAT_RME is implemented:

Controls the reporting of Granule protection faults at EL0 and EL1.

GPF Meaning
0b0 This control does not cause exceptions to be routed from EL0

and EL1 to EL2.
0b1 Instruction Abort exceptions and Data Abort exceptions due to

GPFs from EL0 and EL1 are routed to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FIEN, bit [47]
When FEAT_RASv1p1 is implemented:

Fault Injection Enable. Unless this bit is set to 1, accesses to the ERXPFGCDN_EL1, ERXPFGCTL_EL1, and
ERXPFGF_EL1 registers from EL1 generate a Trap exception to EL2, when EL2 is enabled in the current Security
state, reported using EC syndrome value 0x18.

HCR_EL2, Hypervisor Configuration Register

Page 269

AArch64-ccsidr2_el1.html
AArch64-csselr_el1.html
AArch64-csselr_el1.html
AArch32-ccsidr2.html
AArch32-csselr.html
AArch32-csselr.html
AArch64-erxpfgcdn_el1.html
AArch64-erxpfgctl_el1.html
AArch64-erxpfgf_el1.html

FIEN Meaning
0b0 Accesses to the specified registers from EL1 are trapped to

EL2, when EL2 is enabled in the current Security state.
0b1 This control does not cause any instructions to be trapped.

If EL2 is disabled in the current Security state, the Effective value of HCR_EL2.FIEN is 0b1.

If ERRIDR_EL1.NUM is zero, meaning no error records are implemented, or no error record accessible using
System registers is owned by a node that implements the RAS Common Fault Injection Model Extension, then this
bit might be RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FWB, bit [46]
When FEAT_S2FWB is implemented:

Forced Write-Back. Defines the combined cacheability attributes in a 2 stage translation regime.

Note

When FEAT_MTE2 is implemented, if the stage 1 page or block descriptor
specifies the Tagged attribute, the final memory type is Tagged only if the
final cacheable memory type is Inner and Outer Write-back cacheable and
the final allocation hints are Read-Allocate, Write-Allocate.

HCR_EL2, Hypervisor Configuration Register

Page 270

AArch64-erridr_el1.html

FWB Meaning
0b0 When this bit is 0, then:

• The combination of stage 1 and stage 2 translations on
memory type and cacheability attributes are as
described in the Armv8.0 architecture. For more
information, see 'Combining the stage 1 and stage 2
attributes, EL1&0 translation regime'.

• The encoding of the stage 2 memory type and
cacheability attributes in bits[5:2] of the stage 2 page
or block descriptors are as described in the Armv8.0
architecture.

0b1 When this bit is 1, then:
• Bit[5] of stage 2 page or block descriptor is RES0.
• When bit[4] of stage 2 page or block descriptor is 1 and

when:
◦ Bits[3:2] of stage 2 page or block descriptor are

0b11, the resultant memory type and inner or
outer cacheability attribute is the same as the
stage 1 memory type and inner or outer
cacheability attribute.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b10, the resultant memory type and attribute is
Normal Write-Back.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b0x, the resultant memory type will be Normal
Non-cacheable except where the stage 1
memory type was Device-<attr> the resultant
memory type will be Device-<attr>

• When bit[4] of stage 2 page or block descriptor is 0 the
memory type is Device, and when:

◦ Bits[3:2] of stage 2 page or block descriptor are
0b00, the stage 2 memory type is Device-
nGnRnE.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b01, the stage 2 memory type is Device-nGnRE.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b10, the stage 2 memory type is Device-nGRE.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b11, the stage 2 memory type is Device-GRE.

• If the stage 1 translation specifies a cacheable memory
type, then the stage 1 cache allocation hint is applied
to the final cache allocation hint where the final
memory type is cacheable.

• If the stage 1 translation does not specify a cacheable
memory type, then if the final memory type is
cacheable, it is treated as read allocate, write allocate.

The stage 1 and stage 2 memory types are combined in the
manner described in 'Combining the stage 1 and stage 2
attributes, EL1&0 translation regime'.

In Secure state, this bit applies to both the Secure stage 2 translation and the Non-secure stage 2 translation.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NV2, bit [45]
When FEAT_NV2 is implemented:

Nested Virtualization. Changes the behaviors of HCR_EL2.{NV1, NV} to provide a mechanism for hardware to
transform reads and writes from System registers into reads and writes from memory.

HCR_EL2, Hypervisor Configuration Register

Page 271

NV2 Meaning
0b0 This bit has no effect on the behavior of HCR_EL2.{NV1, NV}.

The behavior of HCR_EL2.{NV1, NV} is as defined for
FEAT_NV.

0b1 Redefines behavior of HCR_EL2{NV1, NV} to enable:
• Transformation of read/writes to registers into read/

writes to memory.
• Redirection of EL2 registers to EL1 registers.

Any exception taken from EL1 and taken to EL1 causes
SPSR_EL1.M[3:2] to be set to 0b10 and not 0b01.

When HCR_EL2.NV is 0, the Effective value of this field is 0 and this field is treated as 0 for all purposes other
than direct reads and writes of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AT, bit [44]
When FEAT_NV is implemented:

Address Translation. EL1 execution of the following address translation instructions is trapped to EL2, when EL2
is enabled in the current Security state, reported using EC syndrome value 0x18:

• AT S1E0R, AT S1E0W, AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP.
AT Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 execution of the specified instructions is trapped to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NV1, bit [43]
When FEAT_NV2 is implemented:

Nested Virtualization.

NV1 Meaning
0b0 If HCR_EL2.{NV2, NV} are both 1, accesses executed from

EL1 to implemented EL12, EL02, or EL2 registers are
transformed to loads and stores.
If HCR_EL2.NV2 is 0 or HCR_EL2.{NV2, NV} == {1, 0}, this
control does not cause any instructions to be trapped.

0b1 If HCR_EL2.NV2 is 1, accesses executed from EL1 to
implemented EL2 registers are transformed to loads and
stores.
If HCR_EL2.NV2 is 0, EL1 accesses to VBAR_EL1, ELR_EL1,
SPSR_EL1, and, when FEAT_CSV2_2 or FEAT_CSV2_1p2 is
implemented, SCXTNUM_EL1, are trapped to EL2, when EL2
is enabled in the current Security state, and are reported using
EC syndrome value 0x18.

HCR_EL2, Hypervisor Configuration Register

Page 272

AArch64-spsr_el1.html
AArch64-at-s1e0r.html
AArch64-at-s1e0w.html
AArch64-at-s1e1r.html
AArch64-at-s1e1w.html
AArch64-at-s1e1rp.html
AArch64-at-s1e1wp.html
AArch64-vbar_el1.html
AArch64-elr_el1.html
AArch64-spsr_el1.html
AArch64-scxtnum_el1.html

If HCR_EL2.NV2 is 1, the value of HCR_EL2.NV1 defines which EL1 register accesses are transformed to loads
and stores. These transformed accesses have priority over the trapping of registers.

The trapping of EL1 registers caused by other control bits has priority over the transformation of these accesses.

If a register is specified that is not implemented by an implementation, then access to that register are UNDEFINED.

For the list of registers affected, see 'Enhanced support for nested virtualization'.

If HCR_EL2.{NV1, NV} is {0, 1}, any exception taken from EL1, and taken to EL1, causes the SPSR_EL1.M[3:2] to
be set to 0b10, and not 0b01.

If HCR_EL2.{NV1, NV} is {1, 1}, then:

• The EL1 translation table Block and Page descriptors:
◦ Bit[54] holds the PXN instead of the UXN.
◦ Bit[53] is RES0.
◦ Bit[6] is treated as 0 regardless of the actual value.

• If Hierarchical Permissions are enabled, the EL1 translation table Table descriptors are as follows:
◦ Bit[61] is treated as 0 regardless of the actual value.
◦ Bit[60] holds the PXNTable instead of the UXNTable.
◦ Bit[59] is RES0.

• When executing at EL1, the PSTATE.PAN bit is treated as zero for all purposes except reading the value of
the bit.

• When executing at EL1, the LDTR* instructions are treated as the equivalent LDR* instructions, and the
STTR* instructions are treated as the equivalent STR* instructions.

If HCR_EL2.{NV1, NV} are {1, 0}, then the behavior is a CONSTRAINED UNPREDICTABLE choice of:

• Behaving as if HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1 for all purposes other than reading back the value
of the HCR_EL2.NV bit.

• Behaving as if HCR_EL2.NV is 0 and HCR_EL2.NV1 is 0 for all purposes other than reading back the value
of the HCR_EL2.NV1 bit.

• Behaving with regard to the HCR_EL2.NV and HCR_EL2.NV1 bits behavior as defined in the rest of this
description.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_NV is implemented:

Nested Virtualization. EL1 accesses to certain registers are trapped to EL2, when EL2 is enabled in the current
Security state.

NV1 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to VBAR_EL1, ELR_EL1, SPSR_EL1, and, when

FEAT_CSV2_2 or FEAT_CSV2_1p2 is implemented,
SCXTNUM_EL1, are trapped to EL2, when EL2 is enabled in
the current Security state, and are reported using EC
syndrome value 0x18.

If HCR_EL2.NV is 1 and HCR_EL2.NV1 is 0, then the following effects also apply:

• Any exception taken from EL1, and taken to EL1, causes the SPSR_EL1.M[3:2] to be set to 0b10, and not
0b01.

If HCR_EL2.NV and HCR_EL2.NV1 are both set to 1, then the following effects also apply:

• The EL1 translation table Block and Page descriptors:
◦ Bit[54] holds the PXN instead of the UXN.
◦ Bit[53] is RES0.
◦ Bit[6] is treated as 0 regardless of the actual value.

• If Hierarchical Permissions are enabled, the EL1 translation table Table descriptors are as follows:
◦ Bit[61] is treated as 0 regardless of the actual value.
◦ Bit[60] holds the PXNTable instead of the UXNTable.

HCR_EL2, Hypervisor Configuration Register

Page 273

AArch64-spsr_el1.html
AArch64-vbar_el1.html
AArch64-elr_el1.html
AArch64-spsr_el1.html
AArch64-scxtnum_el1.html
AArch64-spsr_el1.html

◦ Bit[59] is RES0.
• When executing at EL1, the PSTATE.PAN bit is treated as zero for all purposes except reading the value of

the bit.
• When executing at EL1, the LDTR* instructions are treated as the equivalent LDR* instructions, and the

STTR* instructions are treated as the equivalent STR* instructions.

If HCR_EL2.NV is 0 and HCR_EL2.NV1 is 1, then the behavior is a CONSTRAINED UNPREDICTABLE choice of:

• Behaving as if HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1 for all purposes other than reading back the value
of the HCR_EL2.NV bit.

• Behaving as if HCR_EL2.NV is 0 and HCR_EL2.NV1 is 0 for all purposes other than reading back the value
of the HCR_EL2.NV1 bit.

• Behaving with regard to the HCR_EL2.NV and HCR_EL2.NV1 bits behavior as defined in the rest of this
description.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NV, bit [42]
When FEAT_NV2 is implemented:

Nested Virtualization.

When HCR_EL2.NV2 is 1, redefines register accesses so that:

• Instructions accessing the Special purpose registers SPSR_EL2 and ELR_EL2 instead access SPSR_EL1
and ELR_EL1 respectively.

• Instructions accessing the System registers ESR_EL2 and FAR_EL2 instead access ESR_EL1 and FAR_EL1.

When HCR_EL2.NV2 is 0, or if FEAT_NV2 is not implemented, traps functionality that is permitted at EL2 and
would be UNDEFINED at EL1 if this field was 0, when EL2 is enabled in the current Security state. This applies to
the following operations:

• EL1 accesses to Special-purpose registers that are not UNDEFINED at EL2.
• EL1 accesses to System registers that are not UNDEFINED at EL2.
• Execution of EL1 or EL2 translation regime address translation and TLB maintenance instructions for EL2

and above.
NV Meaning
0b0 When this bit is set to 0, then the PE behaves as if

HCR_EL2.NV2 is 0 for all purposes other than reading this
register. This control does not cause any instructions to be
trapped.
When HCR_EL2.NV2 is 1, no FEAT_NV2 functionality is
implemented.

0b1 When HCR_EL2.NV2 is 0, or if FEAT_NV2 is not implemented,
EL1 accesses to the specified registers or the execution of the
specified instructions are trapped to EL2, when EL2 is enabled
in the current Security state. EL1 read accesses to the
CurrentEL register return a value of 0x2.
When HCR_EL2.NV2 is 1, this control redefines EL1 register
accesses so that instructions accessing SPSR_EL2, ELR_EL2,
ESR_EL2, and FAR_EL2 instead access SPSR_EL1, ELR_EL1,
ESR_EL1, and FAR_EL1 respectively.

When HCR_EL2.NV2 is 0, or if FEAT_NV2 is not implemented, then:

• The System or Special-purpose registers for which accesses are trapped and reported using EC syndrome
value 0x18 are as follows:

◦ Registers accessed using MRS or MSR with a name ending in _EL2, except SP_EL2.
◦ Registers accessed using MRS or MSR with a name ending in _EL12.

HCR_EL2, Hypervisor Configuration Register

Page 274

AArch64-spsr_el2.html
AArch64-elr_el2.html
AArch64-spsr_el1.html
AArch64-elr_el1.html
AArch64-spsr_el2.html
AArch64-elr_el2.html
AArch64-spsr_el1.html
AArch64-elr_el1.html
AArch64-sp_el2.html

◦ Registers accessed using MRS or MSR with a name ending in _EL02.
◦ Special-purpose registers SPSR_irq, SPSR_abt, SPSR_und and SPSR_fiq, accessed using MRS or

MSR.
◦ Special-purpose register SP_EL1 accessed using the dedicated MRS or MSR instruction.

• The instructions for which the execution is trapped and reported using EC syndrome value 0x18 are as
follows:

◦ EL2 translation regime Address Translation instructions and TLB maintenance instructions.
◦ EL1 translation regime Address Translation instructions and TLB maintenance instructions that

are accessible only from EL2 and EL3.
• The instructions for which the execution is trapped as follows:

◦ SMC in an implementation that does not include EL3 and when HCR_EL2.TSC is 1.
HCR_EL2.TSC bit is not RES0 in this case. This is reported using EC syndrome value 0x17.

◦ The ERET, ERETAA, and ERETAB instructions, reported using EC syndrome value 0x1A.

Note

The priority of this trap is higher than the priority of the HCR_EL2.API trap.
If both of these bits are set so that EL1 execution of an ERETAA or ERETAB
instruction is trapped to EL2, then the syndrome reported is 0x1A.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_NV is implemented:

Nested Virtualization. Traps functionality that is permitted at EL2 and would be UNDEFINED at EL1 if this field was
0, when EL2 is enabled in the current Security state. This applies to the following operations:

• EL1 accesses to Special-purpose registers that are not UNDEFINED at EL2.
• EL1 accesses to System registers that are not UNDEFINED at EL2.
• Execution of EL1 or EL2 translation regime address translation and TLB maintenance instructions for EL2

and above.
NV Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to the specified registers or the execution of the

specified instructions are trapped to EL2, when EL2 is enabled
in the current Security state. EL1 read accesses to the
CurrentEL register return a value of 0x2.

The System or Special-purpose registers for which accesses are trapped and reported using EC syndrome value
0x18 are as follows:

• Registers accessed using MRS or MSR with a name ending in _EL2, except SP_EL2.
• Registers accessed using MRS or MSR with a name ending in _EL12.
• Registers accessed using MRS or MSR with a name ending in _EL02.
• Special-purpose registers SPSR_irq, SPSR_abt, SPSR_und and SPSR_fiq, accessed using MRS or MSR.
• Special-purpose register SP_EL1 accessed using the dedicated MRS or MSR instruction.

The instructions for which the execution is trapped and reported using EC syndrome value 0x18 are as follows:

• EL2 translation regime Address Translation instructions and TLB maintenance instructions.
• EL1 translation regime Address Translation instructions and TLB maintenance instructions that are

accessible only from EL2 and EL3.

The execution of the ERET, ERETAA, and ERETAB instructions are trapped and reported using EC syndrome value
0x1A.

Note

The priority of this trap is higher than the priority of the HCR_EL2.API trap.
If both of these bits are set so that EL1 execution of an ERETAA or ERETAB
instruction is trapped to EL2, then the syndrome reported is 0x1A.

The execution of the SMC instructions in an implementation that does not include EL3 and when HCR_EL2.TSC is
1 are trapped and reported using EC syndrome value 0x17. HCR_EL2.TSC bit is not RES0 in this case.

HCR_EL2, Hypervisor Configuration Register

Page 275

AArch32-spsr_irq.html
AArch32-spsr_abt.html
AArch32-spsr_und.html
AArch32-spsr_fiq.html
AArch64-sp_el1.html
AArch64-sp_el2.html
AArch32-spsr_irq.html
AArch32-spsr_abt.html
AArch32-spsr_und.html
AArch32-spsr_fiq.html
AArch64-sp_el1.html

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

API, bit [41]
When FEAT_PAuth is implemented:

Controls the use of instructions related to Pointer Authentication:

• In EL0, when HCR_EL2.TGE==0 or HCR_EL2.E2H==0, and the associated SCTLR_EL1.En<N><M>==1.
• In EL1, the associated SCTLR_EL1.En<N><M>==1.

Traps are reported using EC syndrome value 0x09. The Pointer Authentication instructions trapped are:

• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP,
AUTIBZ, AUTIZA, AUTIZB.

• PACGA, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB, PACIB1716,
PACIBSP, PACIBZ, PACIZA, PACIZB.

• RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ, BLRABZ.
• ERETAA, ERETAB, LDRAA, and LDRAB.

API Meaning
0b0 The instructions related to Pointer Authentication are trapped

to EL2, when EL2 is enabled in the current Security state and
the instructions are enabled for the EL1&0 translation regime,
from:

• EL0 when HCR_EL2.TGE==0 or HCR_EL2.E2H==0.
• EL1.

If HCR_EL2.NV is 1, the HCR_EL2.NV trap takes precedence
over the HCR_EL2.API trap for the ERETAA and ERETAB
instructions.
If EL2 is implemented and enabled in the current Security state
and HFGITR_EL2.ERET == 1, execution at EL1 using AArch64
of ERETAA or ERETAB instructions is reported with EC syndrome
value 0x1A with its associated ISS field, as the fine-grained trap
has higher priority than the HCR_EL2.API == 0.

0b1 This control does not cause any instructions to be trapped.

If FEAT_PAuth is implemented but EL2 is not implemented or disabled in the current Security state, the system
behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APK, bit [40]
When FEAT_PAuth is implemented:

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following registers from EL1
to EL2, when EL2 is enabled in the current Security state, reported using EC syndrome value 0x18:

• APIAKeyLo_EL1, APIAKeyHi_EL1, APIBKeyLo_EL1, APIBKeyHi_EL1, APDAKeyLo_EL1, APDAKeyHi_EL1,
APDBKeyLo_EL1, APDBKeyHi_EL1, APGAKeyLo_EL1, and APGAKeyHi_EL1.

HCR_EL2, Hypervisor Configuration Register

Page 276

AArch64-apiakeylo_el1.html
AArch64-apiakeyhi_el1.html
AArch64-apibkeylo_el1.html
AArch64-apibkeyhi_el1.html
AArch64-apdakeylo_el1.html
AArch64-apdakeyhi_el1.html
AArch64-apdbkeylo_el1.html
AArch64-apdbkeyhi_el1.html
AArch64-apgakeylo_el1.html
AArch64-apgakeyhi_el1.html

APK Meaning
0b0 Access to the registers holding "key" values for pointer

authentication from EL1 are trapped to EL2, when EL2 is
enabled in the current Security state.

0b1 This control does not cause any instructions to be trapped.

Note

If FEAT_PAuth is implemented but EL2 is not implemented or is disabled in
the current Security state, the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TME, bit [39]
When FEAT_TME is implemented:

Enables access to the TSTART, TCOMMIT, TTEST, and TCANCEL instructions at EL0 and EL1.

TME Meaning
0b0 EL0 and EL1 accesses to TSTART, TCOMMIT, TTEST, and

TCANCEL instructions are UNDEFINED.
0b1 This control does not cause any instruction to be UNDEFINED.

If EL2 is not implemented or is disabled in the current Security state, the Effective value of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MIOCNCE, bit [38]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the EL1&0 translation regimes.

MIOCNCE Meaning
0b0 For the EL1&0 translation regimes, for permitted

accesses to a memory location that use a common
definition of the Shareability and Cacheability of the
location, there must be no loss of coherency if the Inner
Cacheability attribute for those accesses differs from the
Outer Cacheability attribute.

0b1 For the EL1&0 translation regimes, for permitted
accesses to a memory location that use a common
definition of the Shareability and Cacheability of the
location, there might be a loss of coherency if the Inner
Cacheability attribute for those accesses differs from the
Outer Cacheability attribute.

For more information, see 'Mismatched memory attributes'.

This field can be implemented as RAZ/WI.

HCR_EL2, Hypervisor Configuration Register

Page 277

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of
this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TEA, bit [37]
When FEAT_RAS is implemented:

Route synchronous External abort exceptions to EL2.

TEA Meaning
0b0 This control does not cause exceptions to be routed from EL0

and EL1 to EL2.
0b1 Route synchronous External abort exceptions from EL0 and

EL1 to EL2, when EL2 is enabled in the current Security state,
if not routed to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TERR, bit [36]
When FEAT_RAS is implemented:

Trap Error record accesses. Trap accesses to the RAS error registers from EL1 to EL2 as follows:

• If EL1 is using AArch64 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x18:

◦ ERRIDR_EL1, ERRSELR_EL1, ERXADDR_EL1, ERXCTLR_EL1, ERXFR_EL1, ERXMISC0_EL1,
ERXMISC1_EL1, and ERXSTATUS_EL1.

◦ When FEAT_RASv1p1 is implemented, ERXMISC2_EL1, and ERXMISC3_EL1.
• If EL1 is using AArch32 state, MCR or MRC accesses are trapped to EL2, reported using EC syndrome

value 0x03, MCRR or MRRC accesses are trapped to EL2, reported using EC syndrome value 0x04:
◦ ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR, ERXFR2,

ERXMISC0, ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS.
◦ When FEAT_RASv1p1 is implemented, ERXMISC4, ERXMISC5, ERXMISC6, and ERXMISC7.

TERR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Accesses to the specified registers from EL1 generate a Trap

exception to EL2, when EL2 is enabled in the current
Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLOR, bit [35]
When FEAT_LOR is implemented:

Trap LOR registers. Traps Non-secure EL1 accesses to LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1, and
LORID_EL1 registers to EL2.

HCR_EL2, Hypervisor Configuration Register

Page 278

AArch64-erridr_el1.html
AArch64-errselr_el1.html
AArch64-erxaddr_el1.html
AArch64-erxctlr_el1.html
AArch64-erxfr_el1.html
AArch64-erxmisc0_el1.html
AArch64-erxmisc1_el1.html
AArch64-erxstatus_el1.html
AArch64-erxmisc2_el1.html
AArch64-erxmisc3_el1.html
AArch32-erridr.html
AArch32-errselr.html
AArch32-erxaddr.html
AArch32-erxaddr2.html
AArch32-erxctlr.html
AArch32-erxctlr2.html
AArch32-erxfr.html
AArch32-erxfr2.html
AArch32-erxmisc0.html
AArch32-erxmisc1.html
AArch32-erxmisc2.html
AArch32-erxmisc3.html
AArch32-erxstatus.html
AArch32-erxmisc4.html
AArch32-erxmisc5.html
AArch32-erxmisc6.html
AArch32-erxmisc7.html
AArch64-lorsa_el1.html
AArch64-lorea_el1.html
AArch64-lorn_el1.html
AArch64-lorc_el1.html
AArch64-lorid_el1.html

TLOR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 accesses to the LOR registers are trapped to

EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E2H, bit [34]
When FEAT_VHE is implemented:

EL2 Host. Enables a configuration where a Host Operating System is running in EL2, and the Host Operating
System's applications are running in EL0.

E2H Meaning
0b0 The facilities to support a Host Operating System at EL2 are

disabled.
0b1 The facilities to support a Host Operating System at EL2 are

enabled.

For information on the behavior of this bit see 'Behavior of HCR_EL2.E2H'.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ID, bit [33]

Stage 2 Instruction access cacheability disable. For the EL1&0 translation regime, when EL2 is enabled in the
current Security state and HCR_EL2.VM==1, this control forces all stage 2 translations for instruction accesses to
Normal memory to be Non-cacheable.

ID Meaning
0b0 This control has no effect on stage 2 of the EL1&0 translation

regime.
0b1 Forces all stage 2 translations for instruction accesses to

Normal memory to be Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of
this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 279

CD, bit [32]

Stage 2 Data access cacheability disable. For the EL1&0 translation regime, when EL2 is enabled in the current
Security state and HCR_EL2.VM==1, this control forces all stage 2 translations for data accesses and translation
table walks to Normal memory to be Non-cacheable.

CD Meaning
0b0 This control has no effect on stage 2 of the EL1&0 translation

regime for data accesses and translation table walks.
0b1 Forces all stage 2 translations for data accesses and translation

table walks to Normal memory to be Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of
this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RW, bit [31]
When EL1 is capable of using AArch32:

Execution state control for lower Exception levels:

RW Meaning
0b0 Lower levels are all AArch32.
0b1 The Execution state for EL1 is AArch64. The Execution state for

EL0 is determined by the current value of PSTATE.nRW when
executing at EL0.

In an implementation that includes EL3, when EL2 is not enabled in Secure state, the PE behaves as if this bit has
the same value as the SCR_EL3.RW bit for all purposes other than a direct read or write access of HCR_EL2.

The RW bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 1 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAO/WI.

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps EL1 reads of the virtual memory control registers to EL2, when EL2
is enabled in the current Security state, as follows:

• If EL1 is using AArch64 state, the following registers are trapped to EL2 and reported using EC
syndrome value 0x18.

◦ SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1, AFSR0_EL1, AFSR1_EL1,
MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

• If EL1 is using AArch32 state, accesses using MRC to the following registers are trapped to EL2 and
reported using EC syndrome value 0x03, accesses using MRRC are trapped to EL2 and reported using
EC syndrome value 0x04:

◦ SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR,
PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

HCR_EL2, Hypervisor Configuration Register

Page 280

AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-tcr_el1.html
AArch64-afsr0_el1.html
AArch64-afsr1_el1.html
AArch64-mair_el1.html
AArch64-amair_el1.html
AArch64-contextidr_el1.html
AArch32-sctlr.html
AArch32-ttbr0.html
AArch32-ttbr1.html
AArch32-ttbcr.html
AArch32-ttbcr2.html
AArch32-dacr.html
AArch32-dfsr.html
AArch32-ifsr.html
AArch32-dfar.html
AArch32-ifar.html
AArch32-adfsr.html
AArch32-aifsr.html
AArch32-prrr.html
AArch32-nmrr.html
AArch32-mair0.html
AArch32-mair1.html
AArch32-amair0.html
AArch32-amair1.html
AArch32-contextidr.html

TRVM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 read accesses to the specified Virtual Memory controls

are trapped to EL2, when EL2 is enabled in the current
Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

Note

EL2 provides a second stage of address translation, that a hypervisor can
use to remap the address map defined by a Guest OS. In addition, a
hypervisor can trap attempts by a Guest OS to write to the registers that
control the memory system. A hypervisor might use this trap as part of its
virtualization of memory management.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCD, bit [29]
When EL3 is not implemented:

HVC instruction disable. Disables EL1 execution of HVC instructions, from both Execution states, when EL2 is
enabled in the current Security state, reported using EC syndrome value 0x00.

HCD Meaning
0b0 HVC instruction execution is enabled at EL2 and EL1.
0b1 HVC instructions are UNDEFINED at EL2 and EL1. Any resulting

exception is taken to the Exception level at which the HVC
instruction is executed.

Note

HVC instructions are always UNDEFINED at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TDZ, bit [28]

Trap DC ZVA instructions. Traps EL0 and EL1 execution of DC ZVA instructions to EL2, when EL2 is enabled in
the current Security state, from AArch64 state only, reported using EC syndrome value 0x18.

If FEAT_MTE is implemented, this trap also applies to DC GVA and DC GZVA.

TDZ Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 In AArch64 state, any attempt to execute an instruction this

trap applies to at EL1, or at EL0 when the instruction is not
UNDEFINED at EL0, is trapped to EL2 when EL2 is enabled in
the current Security state.
Reading the DCZID_EL0 returns a value that indicates that the
instructions this trap applies to are not supported.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

HCR_EL2, Hypervisor Configuration Register

Page 281

AArch64-dc-zva.html
AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html
AArch64-dczid_el0.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TGE, bit [27]

Trap General Exceptions, from EL0.

TGE Meaning
0b0 This control has no effect on execution at EL0.
0b1 When EL2 is not enabled in the current Security state, this

control has no effect on execution at EL0.
When EL2 is enabled in the current Security state, in all cases:

• All exceptions that would be routed to EL1 are routed to
EL2.

• If EL1 is using AArch64, the SCTLR_EL1.M field is
treated as being 0 for all purposes other than returning
the result of a direct read of SCTLR_EL1.

• If EL1 is using AArch32, the SCTLR.M field is treated as
being 0 for all purposes other than returning the result of
a direct read of SCTLR.

• All virtual interrupts are disabled.
• Any IMPLEMENTATION DEFINED mechanisms for signaling

virtual interrupts are disabled.
• An exception return to EL1 is treated as an illegal

exception return.
• The MDCR_EL2.{TDRA, TDOSA, TDA, TDE} fields are

treated as being 1 for all purposes other than returning
the result of a direct read of MDCR_EL2.

In addition, when EL2 is enabled in the current Security state,
if:

• HCR_EL2.E2H is 0, the Effective values of the
HCR_EL2.{FMO, IMO, AMO} fields are 1.

• HCR_EL2.E2H is 1, the Effective values of the
HCR_EL2.{FMO, IMO, AMO} fields are 0.

For further information on the behavior of this bit when E2H is
1, see 'Behavior of HCR_EL2.E2H'.

HCR_EL2.TGE must not be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TVM, bit [26]

Trap Virtual Memory controls. Traps EL1 writes to the virtual memory control registers to EL2, when EL2 is
enabled in the current Security state, as follows:

• If EL1 is using AArch64 state, the following registers are trapped to EL2 and reported using EC
syndrome value 0x18:

◦ SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1, AFSR0_EL1, AFSR1_EL1,
MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

• If EL1 is using AArch32 state, accesses using MCR to the following registers are trapped to EL2 and
reported using EC syndrome value 0x03, accesses using MCRR are trapped to EL2 and reported using
EC syndrome value 0x04:

◦ SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR,
PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

TVM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 write accesses to the specified EL1 virtual memory

control registers are trapped to EL2, when EL2 is enabled in
the current Security state.

HCR_EL2, Hypervisor Configuration Register

Page 282

AArch32-sctlr.html
AArch32-sctlr.html
AArch64-mdcr_el2.html
AArch64-mdcr_el2.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-tcr_el1.html
AArch64-afsr0_el1.html
AArch64-afsr1_el1.html
AArch64-mair_el1.html
AArch64-amair_el1.html
AArch64-contextidr_el1.html
AArch32-sctlr.html
AArch32-ttbr0.html
AArch32-ttbr1.html
AArch32-ttbcr.html
AArch32-ttbcr2.html
AArch32-dacr.html
AArch32-dfsr.html
AArch32-ifsr.html
AArch32-dfar.html
AArch32-ifar.html
AArch32-adfsr.html
AArch32-aifsr.html
AArch32-prrr.html
AArch32-nmrr.html
AArch32-mair0.html
AArch32-mair1.html
AArch32-amair0.html
AArch32-amair1.html
AArch32-contextidr.html

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TTLB, bit [25]

Trap TLB maintenance instructions. Traps EL1 execution of TLB maintenance instructions to EL2, when EL2 is
enabled in the current Security state, as follows:

• When EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported using EC
syndrome value 0x18:

◦ TLBI VMALLE1, TLBI VAE1, TLBI ASIDE1, TLBI VAAE1, TLBI VALE1, TLBI VAALE1.
◦ TLBI VMALLE1IS, TLBI VAE1IS, TLBI ASIDE1IS, TLBI VAAE1IS, TLBI VALE1IS, TLBI VAALE1IS.
◦ If FEAT_TLBIOS is implemented, this trap applies to TLBI VMALLE1OS, TLBI VAE1OS, TLBI

ASIDE1OS, TLBI VAAE1OS, TLBI VALE1OS, TLBI VAALE1OS.
◦ If FEAT_TLBIRANGE is implemented, this trap applies to TLBI RVAE1, TLBI RVAAE1, TLBI

RVALE1, TLBI RVAALE1, TLBI RVAE1IS, TLBI RVAAE1IS, TLBI RVALE1IS, TLBI RVAALE1IS.
◦ If FEAT_TLBIOS and FEAT_TLBIRANGE are implemented, this trap applies to TLBI RVAE1OS,

TLBI RVAAE1OS, TLBI RVALE1OS, TLBI RVAALE1OS.

• When EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported using EC
syndrome value 0x03:

◦ TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS.
◦ TLBIALL, TLBIMVA, TLBIASID, TLBIMVAA, TLBIMVAL, TLBIMVAAL
◦ ITLBIALL, ITLBIMVA, ITLBIASID.
◦ DTLBIALL, DTLBIMVA, DTLBIASID.

TTLB Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 execution of the specified TLB maintenance instructions

are trapped to EL2, when EL2 is enabled in the current
Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

Note

The TLB maintenance instructions are UNDEFINED at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of those cache
maintenance instructions to EL2, when EL2 is enabled in the current Security state as follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, the following instructions are
trapped to EL2 and reported with EC syndrome value 0x18:

◦ IC IVAU, DC CVAU. If the value of SCTLR_EL1.UCI is 0 these instructions are UNDEFINED at EL0
and any resulting exception is higher priority than this trap to EL2.

• If EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported with EC
syndrome value 0x18:

◦ IC IVAU, IC IALLU, IC IALLUIS, DC CVAU.
• If EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported with EC

syndrome value 0x18:
◦ ICIMVAU, ICIALLU, ICIALLUIS, DCCMVAU.

Note

HCR_EL2, Hypervisor Configuration Register

Page 283

AArch64-tlbi-vmalle1.html
AArch64-tlbi-vae1.html
AArch64-tlbi-aside1.html
AArch64-tlbi-vaae1.html
AArch64-tlbi-vale1.html
AArch64-tlbi-vaale1.html
AArch64-tlbi-vmalle1is.html
AArch64-tlbi-vae1is.html
AArch64-tlbi-aside1is.html
AArch64-tlbi-vaae1is.html
AArch64-tlbi-vale1is.html
AArch64-tlbi-vaale1is.html
AArch64-tlbi-vmalle1os.html
AArch64-tlbi-vae1os.html
AArch64-tlbi-aside1os.html
AArch64-tlbi-aside1os.html
AArch64-tlbi-vaae1os.html
AArch64-tlbi-vale1os.html
AArch64-tlbi-vaale1os.html
AArch32-tlbiallis.html
AArch32-tlbimvais.html
AArch32-tlbiasidis.html
AArch32-tlbimvaais.html
AArch32-tlbimvalis.html
AArch32-tlbimvaalis.html
AArch32-tlbiall.html
AArch32-tlbimva.html
AArch32-tlbiasid.html
AArch32-tlbimvaa.html
AArch32-tlbimval.html
AArch32-tlbimvaal.html
AArch32-itlbiall.html
AArch32-itlbimva.html
AArch32-itlbiasid.html
AArch32-dtlbiall.html
AArch32-dtlbimva.html
AArch32-dtlbiasid.html
AArch64-ic-ivau.html
AArch64-dc-cvau.html
AArch64-ic-ivau.html
AArch64-ic-iallu.html
AArch64-ic-ialluis.html
AArch64-dc-cvau.html
AArch32-icimvau.html
AArch32-iciallu.html
AArch32-icialluis.html
AArch32-dccmvau.html

An exception generated because an instruction is UNDEFINED at EL0 is
higher priority than this trap to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using
AArch64.

• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always
UNDEFINED at EL0 using AArch32.

TPU Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2, when

EL2 is enabled in the current Security state.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this
control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the
execution of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value
of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit[23]
When FEAT_DPB is implemented:

TPCP, bit [0] of bit [23]

Trap data or unified cache maintenance instructions that operate to the Point of Coherency or Persistence. Traps
execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state as
follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, the following instructions are
trapped to EL2 and reported using EC syndrome value 0x18:

◦ DC CIVAC, DC CVAC, DC CVAP. If the value of SCTLR_EL1.UCI is 0 these instructions are
UNDEFINED at EL0 and any resulting exception is higher priority than this trap to EL2.

• If EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported using EC
syndrome value 0x18:

◦ DC IVAC, DC CIVAC, DC CVAC, DC CVAP.
• If EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported using EC

syndrome value 0x03:
◦ DCIMVAC, DCCIMVAC, DCCMVAC.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTE is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC IGVAC, DC IGDVAC, DC
CGVAC, DC CGDVAC, DC CGVAP and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to DC CGVADP and DC CGDVADP.

Note
• An exception generated because an instruction is UNDEFINED at EL0 is

higher priority than this trap to EL2. In addition:
◦ AArch64 instructions which invalidate by VA to the Point of

Coherency are always UNDEFINED at EL0 using AArch64.
◦ DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED

at EL0 using AArch32.
• In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2, it is

named TPCP.

HCR_EL2, Hypervisor Configuration Register

Page 284

AArch64-ic-ialluis.html
AArch64-ic-iallu.html
AArch32-icimvau.html
AArch32-iciallu.html
AArch32-icialluis.html
AArch32-dccmvau.html
AArch64-dc-civac.html
AArch64-dc-cvac.html
AArch64-dc-cvap.html
AArch64-dc-ivac.html
AArch64-dc-civac.html
AArch64-dc-cvac.html
AArch64-dc-cvap.html
AArch32-dcimvac.html
AArch32-dccimvac.html
AArch32-dccmvac.html
AArch64-dc-cvadp.html
AArch64-dc-cigvac.html
AArch64-dc-cigdvac.html
AArch64-dc-igvac.html
AArch64-dc-igdvac.html
AArch64-dc-cgvac.html
AArch64-dc-cgvac.html
AArch64-dc-cgdvac.html
AArch64-dc-cgvap.html
AArch64-dc-cgdvap.html
AArch64-dc-cgvadp.html
AArch64-dc-cgdvadp.html
AArch32-dcimvac.html
AArch32-dccimvac.html
AArch32-dccmvac.html

TPCP Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2,

when EL2 is enabled in the current Security state.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean, invalidate, or clean and invalidate instruction that operates by VA to the point of
coherency can be trapped when the value of this control is 1.

If HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other than a direct read of the
value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

TPC, bit [0] of bit [23]

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps execution of
those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state as follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, accesses to the following registers
are trapped and reported using EC syndrome value 0x18:

◦ DC CIVAC, DC CVAC. However, if the value of SCTLR_EL1.UCI is 0 these instructions are
UNDEFINED at EL0 and any resulting exception is higher priority than this trap to EL2.

• If EL1 is using AArch64 state, accesses to DC IVAC, DC CIVAC, DC CVAC are trapped and reported using
EC syndrome value 0x18.

• When EL1 is using AArch32, accesses to DCIMVAC, DCCIMVAC, and DCCMVAC are trapped and reported
using EC syndrome value 0x03.

Note
• An exception generated because an instruction is UNDEFINED at EL0 is

higher priority than this trap to EL2. In addition:
◦ AArch64 instructions which invalidate by VA to the Point of

Coherency are always UNDEFINED at EL0 using AArch64.
◦ DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED

at EL0 using AArch32.
• In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2, it is

named TPCP.

TPC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2, when

EL2 is enabled in the current Security state.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean, invalidate, or clean and invalidate instruction that operates by VA to the point of
coherency can be trapped when the value of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps execution of those cache
maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state as follows:

• If EL1 is using AArch64 state, accesses to DC ISW, DC CSW, DC CISW are trapped to EL2, reported using
EC syndrome value 0x18.

• If EL1 is using AArch32 state, accesses to DCISW, DCCSW, DCCISW are trapped to EL2, reported using
EC syndrome value 0x03.

HCR_EL2, Hypervisor Configuration Register

Page 285

AArch64-dc-civac.html
AArch64-dc-cvac.html
AArch64-dc-ivac.html
AArch64-dc-civac.html
AArch64-dc-cvac.html
AArch32-dcimvac.html
AArch32-dccimvac.html
AArch32-dccmvac.html
AArch32-dcimvac.html
AArch32-dccimvac.html
AArch32-dccmvac.html
AArch64-dc-isw.html
AArch64-dc-csw.html
AArch64-dc-cisw.html
AArch32-dcisw.html
AArch32-dccsw.html
AArch32-dccisw.html

If FEAT_MTE2 is implemented, this trap also applies to DC IGSW, DC IGDSW, DC CGSW, DC CGDW, DC CIGSW,
and DC CIGDSW.

Note

An exception generated because an instruction is UNDEFINED at EL0 is
higher priority than this trap to EL2, and these instructions are always
UNDEFINED at EL0.

TSW Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2, when

EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TACR, bit [21]

Trap Auxiliary Control Registers. Traps EL1 accesses to the Auxiliary Control Registers to EL2, when EL2 is
enabled in the current Security state, as follows:

• If EL1 is using AArch64 state, accesses to ACTLR_EL1 to EL2, are trapped to EL2 and reported using EC
syndrome value 0x18.

• If EL1 is using AArch32 state, accesses to ACTLR and, if implemented, ACTLR2 are trapped to EL2 and
reported using EC syndrome value 0x03.

TACR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to the specified registers are trapped to EL2,

when EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

Note

ACTLR_EL1 is not accessible at EL0.

ACTLR and ACTLR2 are not accessible at EL0.

The Auxiliary Control Registers are IMPLEMENTATION DEFINED registers that
might implement global control bits for the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps EL1 accesses to the encodings reserved for IMPLEMENTATION
DEFINED functionality to EL2, when EL2 is enabled in the current Security state as follows:

• In AArch64 state, access to any of the encodings in the following reserved encoding spaces are trapped
and reported using EC syndrome 0x18:

◦ IMPLEMENTATION DEFINED System instructions, which are accessed using SYS and SYSL, with CRn
== {11, 15}.

◦ IMPLEMENTATION DEFINED System registers, which are accessed using MRS and MSR with the
S3_<op1>_<Cn>_<Cm>_<op2> register name.

• In AArch32 state, MCR and MRC access to instructions with the following encodings are trapped and
reported using EC syndrome 0x03:

◦ All coproc==p15, CRn==c9, opc1 == {0-7}, CRm == {c0-c2, c5-c8}, opc2 == {0-7}.
◦ All coproc==p15, CRn==c10, opc1 =={0-7}, CRm == {c0, c1, c4, c8}, opc2 == {0-7}.

HCR_EL2, Hypervisor Configuration Register

Page 286

AArch64-dc-igsw.html
AArch64-dc-igdsw.html
AArch64-dc-cgsw.html
AArch64-dc-cgdsw.html
AArch64-dc-cigsw.html
AArch64-dc-cigdsw.html
AArch64-actlr_el1.html
AArch32-actlr.html
AArch32-actlr2.html
AArch64-actlr_el1.html
AArch32-actlr.html
AArch32-actlr2.html
AArch64-s3_op1_cn_cm_op2.html

◦ All coproc==p15, CRn==c11, opc1=={0-7}, CRm == {c0-c8, c15}, opc2 == {0-7}.

When this functionality is accessed from EL0:

When the value of HCR_EL2.TIDCP is 1, it is IMPLEMENTATION DEFINED whether any of this functionality accessed
from EL0 is trapped to EL2. If it is not, then it is UNDEFINED, and any attempt to access it from EL0 generates an
exception that is taken to EL1.

• If FEAT_TIDCP1 is implemented and the Effective value of SCTLR_EL1.TIDCP is 1, any accesses from
EL0 are trapped to EL1.

• Otherwise, if FEAT_TIDCP1 is implemented and the Effective value of SCTLR_EL2.TIDCP is 1, any
accesses from EL0 are trapped to EL2.

• Otherwise:

◦ If HCR_EL2.TIDCP is 1, it is IMPLEMENTATION DEFINED whether any accesses from EL0 are
trapped to EL2.

◦ If HCR_EL2.TIDCP is 0, any accesses from EL0 are UNDEFINED and generate an exception that
is taken to EL1 or EL2.

TIDCP Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to or execution of the specified encodings

reserved for IMPLEMENTATION DEFINED functionality are
trapped to EL2, when EL2 is enabled in the current Security
state.

An implementation can also include IMPLEMENTATION DEFINED registers that provide additional controls, to give
finer-grained control of the trapping of IMPLEMENTATION DEFINED features.

Note

Arm expects the trapping of EL0 accesses to these functions to EL2 to be
unusual, and used only when the hypervisor is virtualizing EL0 operation.
Arm strongly recommends that unless the hypervisor must virtualize EL0
operation, an EL0 access to any of these functions is UNDEFINED, as it would
be if the implementation did not include EL2. The PE then takes any
resulting exception to EL1.

The trapping of accesses to these registers from EL1 is higher priority than
an exception resulting from the register access being UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TSC, bit [19]

Trap SMC instructions. Traps EL1 execution of SMC instructions to EL2, when EL2 is enabled in the current Security
state.

If execution is in AArch64 state, the trap is reported using EC syndrome value 0x17.

If execution is in AArch32 state, the trap is reported using EC syndrome value 0x13.

Note

HCR_EL2.TSC traps execution of the SMC instruction. It is not a routing
control for the SMC exception. Trap exceptions and SMC exceptions have
different preferred return addresses.

HCR_EL2, Hypervisor Configuration Register

Page 287

TSC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 If EL3 is implemented, then any attempt to execute an SMC

instruction at EL1 is trapped to EL2, when EL2 is enabled in
the current Security state, regardless of the value of
SCR_EL3.SMD.
If EL3 is not implemented, FEAT_NV is implemented, and
HCR_EL2.NV is 1, then any attempt to execute an SMC
instruction at EL1 using AArch64 is trapped to EL2, when EL2
is enabled in the current Security state.
If EL3 is not implemented, and either FEAT_NV is not
implemented or HCR_EL2.NV is 0, then it is IMPLEMENTATION
DEFINED whether:

• Any attempt to execute an SMC instruction at EL1 is
trapped to EL2, when EL2 is enabled in the current
Security state.

• Any attempt to execute an SMC instruction is UNDEFINED.

In AArch32 state, the Armv8-A architecture permits, but does not require, this trap to apply to conditional SMC
instructions that fail their condition code check, in the same way as with traps on other conditional instructions.

SMC instructions are UNDEFINED at EL0.

If EL3 is not implemented, and either FEAT_NV is not implemented or HCR_EL2.NV is 0, then it is IMPLEMENTATION
DEFINED whether this bit is:

• RES0.
• Implemented with the functionality as described in HCR_EL2.TSC.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TID3, bit [18]

Trap ID group 3. Traps EL1 reads of group 3 ID registers to EL2, when EL2 is enabled in the current Security
state, as follows:

In AArch64 state:

• Reads of the following registers are trapped to EL2, reported using EC syndrome value 0x18:

◦ ID_PFR0_EL1, ID_PFR1_EL1, ID_PFR2_EL1, ID_DFR0_EL1, ID_AFR0_EL1, ID_MMFR0_EL1,
ID_MMFR1_EL1, ID_MMFR2_EL1, ID_MMFR3_EL1, ID_ISAR0_EL1, ID_ISAR1_EL1,
ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, ID_ISAR5_EL1, MVFR0_EL1, MVFR1_EL1,
MVFR2_EL1.

◦ ID_AA64PFR0_EL1, ID_AA64PFR1_EL1, ID_AA64DFR0_EL1, ID_AA64DFR1_EL1,
ID_AA64ISAR0_EL1, ID_AA64ISAR1_EL1, ID_AA64MMFR0_EL1, ID_AA64MMFR1_EL1,
ID_AA64AFR0_EL1, ID_AA64AFR1_EL1.

◦ If FEAT_FGT is implemented:

▪ ID_MMFR4_EL1 and ID_MMFR5_EL1 are trapped to EL2.

▪ ID_AA64MMFR2_EL1 and ID_ISAR6_EL1 are trapped to EL2.

▪ ID_DFR1_EL1 is trapped to EL2.

▪ ID_AA64ZFR0_EL1 is trapped to EL2.

▪ ID_AA64SMFR0_EL1 is trapped to EL2.

▪ ID_AA64ISAR2_EL1 is trapped to EL2.

HCR_EL2, Hypervisor Configuration Register

Page 288

AArch64-id_pfr0_el1.html
AArch64-id_pfr1_el1.html
AArch64-id_pfr2_el1.html
AArch64-id_dfr0_el1.html
AArch64-id_afr0_el1.html
AArch64-id_mmfr0_el1.html
AArch64-id_mmfr1_el1.html
AArch64-id_mmfr2_el1.html
AArch64-id_mmfr3_el1.html
AArch64-id_isar0_el1.html
AArch64-id_isar1_el1.html
AArch64-id_isar2_el1.html
AArch64-id_isar3_el1.html
AArch64-id_isar4_el1.html
AArch64-id_isar5_el1.html
AArch64-mvfr0_el1.html
AArch64-mvfr1_el1.html
AArch64-mvfr2_el1.html
AArch64-id_aa64dfr0_el1.html
AArch64-id_aa64dfr1_el1.html
AArch64-id_aa64isar1_el1.html
AArch64-id_aa64afr0_el1.html
AArch64-id_aa64afr1_el1.html
AArch64-id_aa64mmfr2_el1.html
AArch64-id_isar6_el1.html
AArch64-id_dfr1_el1.html
AArch64-id_aa64isar2_el1.html

▪ This field traps all MRS accesses to registers in the following range that are not
already mentioned in this field description: Op0 == 3, op1 == 0, CRn == c0, CRm ==
{c1-c7}, op2 == {0-7}.

◦ If FEAT_FGT is not implemented:

▪ ID_MMFR4_EL1 and ID_MMFR5_EL1 are trapped to EL2, unless implemented as RAZ,
when it is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4_EL1 or
ID_MMFR5_EL1 are trapped to EL2.

▪ ID_AA64MMFR2_EL1 and ID_ISAR6_EL1 are trapped to EL2, unless implemented as
RAZ, when it is IMPLEMENTATION DEFINED whether accesses to ID_AA64MMFR2_EL1 or
ID_ISAR6_EL1 are trapped to EL2.

▪ ID_DFR1_EL1 is trapped to EL2, unless implemented as RAZ, when it is
IMPLEMENTATION DEFINED whether accesses to ID_DFR1_EL1 are trapped to EL2.

▪ ID_AA64ZFR0_EL1 is trapped to EL2, unless implemented as RAZ then it is
IMPLEMENTATION DEFINED whether accesses to ID_AA64ZFR0_EL1 are trapped to EL2.

▪ ID_AA64SMFR0_EL1 is trapped to EL2, unless implemented as RAZ then it is
IMPLEMENTATION DEFINED whether accesses to ID_AA64SMFR0_EL1 are trapped to EL2.

▪ ID_AA64ISAR2_EL1 is trapped to EL2, unless implemented as RAZ then it is
IMPLEMENTATION DEFINED whether accesses to ID_AA64ISAR2_EL1 are trapped to EL2.

▪ Otherwise, it is IMPLEMENTATION DEFINED whether this bit traps MRS accesses to
registers in the following range that are not already mentioned in this field
description: Op0 == 3, op1 == 0, CRn == c0, CRm == {c1-c7}, op2 == {0-7}.

In AArch32 state:

• VMRS access to MVFR0, MVFR1, and MVFR2, are trapped to EL2, reported using EC syndrome value
0x08, unless access is also trapped by HCPTR which takes priority.

• MRC access to the following registers are trapped to EL2, reported using EC syndrome value 0x03:

◦ ID_PFR0, ID_PFR1, ID_PFR2, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1, ID_MMFR2,
ID_MMFR3, ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, ID_ISAR5.

◦ If FEAT_FGT is implemented:

▪ ID_MMFR4 and ID_MMFR5 are trapped to EL2.

▪ ID_ISAR6 is trapped to EL2.

▪ ID_DFR1 is trapped to EL2.

▪ This field traps all MRC accesses to encodings in the following range that are not
already mentioned in this field description: coproc == p15, opc1 == 0, CRn == c0,
CRm == {c2-c7}, opc2 == {0-7}.

◦ If FEAT_FGT is not implemented:

▪ ID_MMFR4 and ID_MMFR5 are trapped to EL2, unless implemented as RAZ, when it is
IMPLEMENTATION DEFINED whether accesses to ID_MMFR4 or ID_MMFR5 are trapped.

▪ ID_ISAR6 is trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION
DEFINED whether accesses to ID_ISAR6 are trapped to EL2.

▪ ID_DFR1 is trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION
DEFINED whether accesses to ID_DFR1 are trapped to EL2.

▪ Otherwise, it is IMPLEMENTATION DEFINED whether this bit traps all MRC accesses to
registers in the following range not already mentioned in this field description with
coproc == p15, opc1 == 0, CRn == c0, CRm == {c2-c7}, opc2 == {0-7}.

HCR_EL2, Hypervisor Configuration Register

Page 289

AArch64-id_aa64mmfr2_el1.html
AArch64-id_isar6_el1.html
AArch64-id_aa64mmfr2_el1.html
AArch64-id_isar6_el1.html
AArch64-id_dfr1_el1.html
AArch64-id_dfr1_el1.html
AArch64-id_aa64isar2_el1.html
AArch64-id_aa64isar2_el1.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html
AArch32-id_pfr0.html
AArch32-id_pfr1.html
AArch32-id_pfr2.html
AArch32-id_dfr0.html
AArch32-id_afr0.html
AArch32-id_mmfr0.html
AArch32-id_mmfr1.html
AArch32-id_mmfr2.html
AArch32-id_mmfr3.html
AArch32-id_isar0.html
AArch32-id_isar1.html
AArch32-id_isar2.html
AArch32-id_isar3.html
AArch32-id_isar4.html
AArch32-id_isar5.html
AArch32-id_isar6.html
AArch32-id_dfr1.html
AArch32-id_isar6.html
AArch32-id_isar6.html
AArch32-id_dfr1.html
AArch32-id_dfr1.html

TID3 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 read accesses to ID group 3 registers are

trapped to EL2, when EL2 is enabled in the current Security
state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state,
as follows:

• If EL1 is using AArch64, reads of CTR_EL0, CCSIDR_EL1, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1
are trapped to EL2, reported using EC syndrome value 0x18.

• If EL0 is using AArch64 and the value of SCTLR_EL1.UCT is not 0, reads of CTR_EL0 are trapped to EL2,
reported using EC syndrome value 0x18. If the value of SCTLR_EL1.UCT is 0, then EL0 reads of CTR_EL0
are trapped to EL1 and the resulting exception takes precedence over this trap.

• If EL1 is using AArch64, writes to CSSELR_EL1 are trapped to EL2, reported using EC syndrome value
0x18.

• If EL1 is using AArch32, reads of CTR, CCSIDR, CCSIDR2, CLIDR, and CSSELR are trapped to EL2,
reported using EC syndrome value 0x03.

• If EL1 is using AArch32, writes to CSSELR are trapped to EL2, reported using EC syndrome value 0x03.
TID2 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 and EL0 accesses to ID group 2 registers

are trapped to EL2, when EL2 is enabled in the current
Security state.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TID1, bit [16]

Trap ID group 1. Traps EL1 reads of the following registers to EL2, when EL2 is enabled in the current Security
state as follows:

• In AArch64 state, accesses of REVIDR_EL1, AIDR_EL1, SMIDR_EL1, reported using EC syndrome value
0x18.

• In AArch32 state, accesses of TCMTR, TLBTR, REVIDR, AIDR, reported using EC syndrome value 0x03.

TID1 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 read accesses to ID group 1 registers are

trapped to EL2, when EL2 is enabled in the current Security
state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 290

AArch64-ctr_el0.html
AArch64-ccsidr2_el1.html
AArch64-csselr_el1.html
AArch64-ctr_el0.html
AArch64-ctr_el0.html
AArch64-csselr_el1.html
AArch32-ctr.html
AArch32-ccsidr2.html
AArch32-csselr.html
AArch32-csselr.html
AArch64-revidr_el1.html
AArch64-aidr_el1.html
AArch64-smidr_el1.html
AArch32-tcmtr.html
AArch32-tlbtr.html
AArch32-revidr.html
AArch32-aidr.html

TID0, bit [15]
When AArch32 is supported:

Trap ID group 0. Traps the following register accesses to EL2:

• EL1 reads of the JIDR, reported using EC syndrome value 0x05.
• If the JIDR is RAZ from EL0, EL0 reads of the JIDR, reported using EC syndrome value 0x05.
• EL1 accesses using VMRS of the FPSID, reported using EC syndrome value 0x08.

Note
• It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED

at EL0. If it is UNDEFINED at EL0, then any resulting exception takes
precedence over this trap.

• The FPSID is not accessible at EL0 using AArch32.
• Writes to the FPSID are ignored, and not trapped by this control.

TID0 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 read accesses to ID group 0 registers are

trapped to EL2, when EL2 is enabled in the current Security
state.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWE, bit [14]

Traps EL0 and EL1 execution of WFE instructions to EL2, when EL2 is enabled in the current Security state, from
both Execution states, reported using EC syndrome value 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

TWE Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFE instruction at EL0 or EL1 is

trapped to EL2, when EL2 is enabled in the current Security
state, if the instruction would otherwise have caused the PE to
enter a low-power state and it is not trapped by SCTLR.nTWE
or SCTLR_EL1.nTWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is trapped only if the instruction
passes its condition code check.

Note

Since a WFE can complete at any time, even without a Wakeup event, the
traps on WFE are not guaranteed to be taken, even if the WFE is executed
when there is no Wakeup event. The only guarantee is that if the instruction
does not complete in finite time in the absence of a Wakeup event, the trap
will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

For more information about when WFE instructions can cause the PE to enter a low-power state, see 'Wait for
Event mechanism and Send event'.

HCR_EL2, Hypervisor Configuration Register

Page 291

AArch32-jidr.html
AArch32-jidr.html
AArch32-jidr.html
AArch32-fpsid.html
AArch32-jidr.html
AArch32-fpsid.html
AArch32-fpsid.html
AArch32-sctlr.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TWI, bit [13]

Traps EL0 and EL1 execution of WFI instructions to EL2, when EL2 is enabled in the current Security state, from
both Execution states, reported using EC syndrome value 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

TWI Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFI instruction at EL0 or EL1 is

trapped to EL2, when EL2 is enabled in the current Security
state, if the instruction would otherwise have caused the PE to
enter a low-power state and it is not trapped by SCTLR.nTWI
or SCTLR_EL1.nTWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is trapped only if the instruction passes
its condition code check.

Note

Since a WFI can complete at any time, even without a Wakeup event, the
traps on WFI are not guaranteed to be taken, even if the WFI is executed
when there is no Wakeup event. The only guarantee is that if the instruction
does not complete in finite time in the absence of a Wakeup event, the trap
will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

For more information about when WFI instructions can cause the PE to enter a low-power state, see 'Wait for
Interrupt'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DC, bit [12]

Default Cacheability.

DC Meaning
0b0 This control has no effect on the EL1&0 translation regime.
0b1 In any Security state:

• When EL1 is using AArch64, the PE behaves as if the value
of the SCTLR_EL1.M field is 0 for all purposes other than
returning the value of a direct read of SCTLR_EL1.

• When EL1 is using AArch32, the PE behaves as if the value
of the SCTLR.M field is 0 for all purposes other than
returning the value of a direct read of SCTLR.

• The PE behaves as if the value of the HCR_EL2.VM field is
1 for all purposes other than returning the value of a direct
read of HCR_EL2.

• The memory type produced by stage 1 of the EL1&0
translation regime is Normal Non-Shareable, Inner Write-
Back Read-Allocate Write-Allocate, Outer Write-Back Read-
Allocate Write-Allocate.

This field has no effect on the EL2, EL2&0, and EL3 translation regimes.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this field.

HCR_EL2, Hypervisor Configuration Register

Page 292

AArch32-sctlr.html
AArch32-sctlr.html
AArch32-sctlr.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied to any barrier
instruction executed from EL1 or EL0:

BSU Meaning
0b00 No effect.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Full system.

This value is combined with the specified level of the barrier held in its instruction, using the same principles as
combining the shareability attributes from two stages of address translation.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0b00 for
all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable domain when
executed from EL1:

AArch32: BPIALL, TLBIALL, TLBIMVA, TLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, ITLBIALL, ITLBIMVA,
ITLBIASID, TLBIMVAA, ICIALLU, TLBIMVAL, TLBIMVAAL.

AArch64: TLBI VMALLE1, TLBI VAE1, TLBI ASIDE1, TLBI VAAE1, TLBI VALE1, TLBI VAALE1, IC IALLU, TLBI
RVAE1, TLBI RVAAE1, TLBI RVALE1, TLBI RVAALE1.

FB Meaning
0b0 This field has no effect on the operation of the specified

instructions.
0b1 When one of the specified instruction is executed at EL1, the

instruction is broadcast within the Inner Shareable shareability
domain.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VSE, bit [8]

Virtual SError interrupt.

VSE Meaning
0b0 This mechanism is not making a virtual SError interrupt

pending.
0b1 A virtual SError interrupt is pending because of this

mechanism.

The virtual SError interrupt is enabled only when the value of HCR_EL2.{TGE, AMO} is {0, 1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 293

AArch32-bpiall.html
AArch32-tlbiall.html
AArch32-tlbimva.html
AArch32-tlbiasid.html
AArch32-dtlbiall.html
AArch32-dtlbimva.html
AArch32-dtlbiasid.html
AArch32-itlbiall.html
AArch32-itlbimva.html
AArch32-itlbiasid.html
AArch32-tlbimvaa.html
AArch32-iciallu.html
AArch32-tlbimval.html
AArch32-tlbimvaal.html
AArch64-tlbi-vmalle1.html
AArch64-tlbi-vae1.html
AArch64-tlbi-aside1.html
AArch64-tlbi-vaae1.html
AArch64-tlbi-vale1.html
AArch64-tlbi-vaale1.html
AArch64-ic-iallu.html

VI, bit [7]

Virtual IRQ Interrupt.

VI Meaning
0b0 This mechanism is not making a virtual IRQ pending.
0b1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR_EL2.{TGE, IMO} is {0, 1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VF, bit [6]

Virtual FIQ Interrupt.

VF Meaning
0b0 This mechanism is not making a virtual FIQ pending.
0b1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR_EL2.{TGE, FMO} is {0, 1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AMO, bit [5]

Physical SError interrupt routing.

AMO Meaning
0b0 When executing at Exception levels below EL2, and EL2 is

enabled in the current Security state:
• When the value of HCR_EL2.TGE is 0, Physical SError

interrupts are not taken to EL2.
• When the value of HCR_EL2.TGE is 1, Physical SError

interrupts are taken to EL2 unless they are routed to
EL3.

• Virtual SError interrupts are disabled.
0b1 When executing at any Exception level, and EL2 is enabled in

the current Security state:
• Physical SError interrupts are taken to EL2, unless they

are routed to EL3.
• When the value of HCR_EL2.TGE is 0, then virtual SError

interrupts are enabled.

If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the AMO bit physical asynchronous External aborts and SError interrupts target
EL2 unless they are routed to EL3.

• When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other
than a direct read of the value of this bit.

• When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other
than a direct read of the value of this bit.

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMO, bit [4]

Physical IRQ Routing.

HCR_EL2, Hypervisor Configuration Register

Page 294

IMO Meaning
0b0 When executing at Exception levels below EL2, and EL2 is

enabled in the current Security state:
• When the value of HCR_EL2.TGE is 0, Physical IRQ

interrupts are not taken to EL2.
• When the value of HCR_EL2.TGE is 1, Physical IRQ

interrupts are taken to EL2 unless they are routed to EL3.
• Virtual IRQ interrupts are disabled.

0b1 When executing at any Exception level, and EL2 is enabled in
the current Security state:

• Physical IRQ interrupts are taken to EL2, unless they are
routed to EL3.

• When the value of HCR_EL2.TGE is 0, then Virtual IRQ
interrupts are enabled.

If EL2 is enabled in the current Security state, and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the IMO bit, physical IRQ Interrupts target EL2 unless they are routed to EL3.
• When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other

than a direct read of the value of this bit.
• When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other

than a direct read of the value of this bit.

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FMO, bit [3]

Physical FIQ Routing.

FMO Meaning
0b0 When executing at Exception levels below EL2, and EL2 is

enabled in the current Security state:
• When the value of HCR_EL2.TGE is 0, Physical FIQ

interrupts are not taken to EL2.
• When the value of HCR_EL2.TGE is 1, Physical FIQ

interrupts are taken to EL2 unless they are routed to
EL3.

• Virtual FIQ interrupts are disabled.
0b1 When executing at any Exception level, and EL2 is enabled in

the current Security state:
• Physical FIQ interrupts are taken to EL2, unless they are

routed to EL3.
• When HCR_EL2.TGE is 0, then Virtual FIQ interrupts are

enabled.

If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the FMO bit, physical FIQ Interrupts target EL2 unless they are routed to EL3.
• When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other

than a direct read of the value of this bit.
• When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other

than a direct read of the value of this bit.

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PTW, bit [2]

Protected Table Walk. In the EL1&0 translation regime, a translation table access made as part of a stage 1
translation table walk is subject to a stage 2 translation. The combining of the memory type attributes from the

HCR_EL2, Hypervisor Configuration Register

Page 295

two stages of translation means the access might be made to a type of Device memory. If this occurs, then the
value of this bit determines the behavior:

PTW Meaning
0b0 The translation table walk occurs as if it is to Normal Non-

cacheable memory. This means it can be made speculatively.
0b1 The memory access generates a stage 2 Permission fault.

This bit is permitted to be cached in a TLB.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SWIO, bit [1]

Set/Way Invalidation Override. Causes EL1 execution of the data cache invalidate by set/way instructions to
perform a data cache clean and invalidate by set/way:

SWIO Meaning
0b0 This control has no effect on the operation of data cache

invalidate by set/way instructions.
0b1 Data cache invalidate by set/way instructions perform a data

cache clean and invalidate by set/way.

When the value of this bit is 1:

AArch32: DCISW performs the same invalidation as a DCCISW instruction.

AArch64: DC ISW performs the same invalidation as a DC CISW instruction.

This bit can be implemented as RES1.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the EL1&0 translation regime, when EL2 is enabled
in the current Security state.

VM Meaning
0b0 EL1&0 stage 2 address translation disabled.
0b1 EL1&0 stage 2 address translation enabled.

When the value of this bit is 1, data cache invalidate instructions executed at EL1 perform a data cache clean and
invalidate. For the invalidate by set/way instruction this behavior applies regardless of the value of the
HCR_EL2.SWIO bit.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 296

AArch32-dcisw.html
AArch32-dccisw.html
AArch64-dc-isw.html
AArch64-dc-cisw.html

Accessing HCR_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

X[t, 64] = NVMem[0x078];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = HCR_EL2;
elsif PSTATE.EL == EL3 then

X[t, 64] = HCR_EL2;

MSR HCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x078] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HCR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then

HCR_EL2 = X[t, 64];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HCR_EL2, Hypervisor Configuration Register

Page 297

(old) htmldiff from- (new)

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap
Register

The HFGITR_EL2 characteristics are:

Purpose
Provides instruction trap controls.

Configuration
This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to HFGITR_EL2 are
UNDEFINED.

Attributes
HFGITR_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 nBRBIALL nBRBINJ DCCVAC SVC_EL1 SVC_EL0 ERET CPPRCTX DVPRCTX CFPRCTX TLBIVAALE1TLBIVALE1TLBIVAAE1TLBIASIDE1TLBIVAE1TLBIVMALLE1TLBIRVAALE1TLBIRVALE1TLBIRVAAE1TLBIRVAE1TLBIRVAALE1ISTLBIRVALE1ISTLBIRVAAE1ISTLBIRVAE1ISTLBIVAALE1ISTLBIVALE1IS
TLBIVAAE1ISTLBIASIDE1ISTLBIVAE1ISTLBIVMALLE1ISTLBIRVAALE1OSTLBIRVALE1OSTLBIRVAAE1OSTLBIRVAE1OSTLBIVAALE1OSTLBIVALE1OSTLBIVAAE1OSTLBIASIDE1OSTLBIVAE1OSTLBIVMALLE1OSATS1E1WPATS1E1RP ATS1E0W ATS1E0R ATS1E1W ATS1E1R DCZVA DCCIVAC DCCVADP DCCVAP DCCVAU DCCISW DCCSW DCISW DCIVAC ICIVAU ICIALLU ICIALLUIS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:57]

Reserved, RES0.

nBRBIALL, bit [56]
When FEAT_BRBE is implemented:

Trap execution of BRB IALL at EL1 using AArch64 to EL2.

nBRBIALL Meaning
0b0 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of BRB IALL at
EL1 using AArch64 is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

0b1 Execution of BRB IALL is not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 298

AArch64-brb-iall.html
AArch64-brb-iall.html
AArch64-brb-iall.html

nBRBINJ, bit [55]
When FEAT_BRBE is implemented:

Trap execution of BRB INJ at EL1 using AArch64 to EL2.

nBRBINJ Meaning
0b0 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of BRB INJ at EL1
using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

0b1 Execution of BRB INJ is not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

DCCVAC, bit [54]

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of the
following AArch64 instructions to EL2:

• DC CVAC.
• DC CGVAC, if FEAT_MTE is implemented.
• DC CGDVAC, if FEAT_MTE is implemented.

If the Point of Coherence is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
the affected instruction is trapped when the value of this control is 1.

DCCVAC Meaning
0b0 Execution of the instructions listed above is not trapped by

this mechanism.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1, then execution
at EL1 and EL0 using AArch64 of any of the instructions
listed above is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

SVC_EL1, bit [53]

Trap execution of SVC at EL1 using AArch64 to EL2.

SVC_EL1 Meaning
0b0 Execution of SVC is not trapped by this mechanism.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of SVC at EL1
using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x15, unless the instruction generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 299

AArch64-brb-inj.html
AArch64-brb-inj.html
AArch64-brb-inj.html
AArch64-dc-cvac.html
AArch64-dc-cgvac.html
AArch64-dc-cgdvac.html

SVC_EL0, bit [52]

Trap execution of SVC at EL0 using AArch64 and execution of SVC at EL0 using AArch32 when EL1 is using
AArch64 to EL2.

SVC_EL0 Meaning
0b0 Execution of SVC at EL0 using AArch64 and execution of

SVC at EL0 using AArch32 is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the instruction
generates a higher priority exception:

• Execution of SVC at EL0 using AArch64 is trapped to
EL2 and reported with EC syndrome value 0x15.

• Execution of SVC at EL0 using AArch32 is trapped to
EL2 and reported with EC syndrome value 0x11.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ERET, bit [51]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any of the following
AArch64 instructions to EL2:

• ERET.
• ERETAA, if FEAT_PAuth is implemented.
• ERETAB, if FEAT_PAuth is implemented.

ERET Meaning
0b0 Execution of the instructions listed above is not trapped by

this mechanism.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, then execution at EL1 using AArch64 of any of the
instructions listed above is trapped to EL2 and reported with
EC syndrome value 0x1A, unless the instruction generates a
higher priority exception.

If EL2 is implemented and enabled in the current Security state, HCR_EL2.API == 0, and this field enables a fine-
grained trap on the instruction, then execution at EL1 using AArch64 of ERETAA or ERETAB instructions is trapped
to EL2 and reported with EC syndrome value 0x1A with its associated ISS field, as the fine-grained trap has higher
priority than the trap enabled by HCR_EL2.API == 0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

CPPRCTX, bit [50]
When FEAT_SPECRES is implemented:

Trap execution of CPP RCTX at EL1 and EL0 using AArch64 and execution of CPPRCTX at EL0 using AArch32
when EL1 is using AArch64 to EL2.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 300

CPPRCTX Meaning
0b0 Execution of CPP RCTX at EL1 and EL0 using AArch64

and execution of CPPRCTX at EL0 using AArch32 is not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is
using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the instruction
generates a higher priority exception:

• Execution of CPP RCTX at EL1 and EL0 using
AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18.

• Execution of CPPRCTX at EL0 using AArch32 is
trapped to EL2 and reported with EC syndrome
value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

DVPRCTX, bit [49]
When FEAT_SPECRES is implemented:

Trap execution of DVP RCTX at EL1 and EL0 using AArch64 and execution of DVPRCTX at EL0 using AArch32
when EL1 is using AArch64 to EL2.

DVPRCTX Meaning
0b0 Execution of DVP RCTX at EL1 and EL0 using AArch64

and execution of DVPRCTX at EL0 using AArch32 is not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is
using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the instruction
generates a higher priority exception:

• Execution of DVP RCTX at EL1 and EL0 using
AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18.

• Execution of DVPRCTX at EL0 using AArch32 is
trapped to EL2 and reported with EC syndrome
value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

CFPRCTX, bit [48]
When FEAT_SPECRES is implemented:

Trap execution of CFP RCTX at EL1 and EL0 using AArch64 and execution of CFPRCTX at EL0 using AArch32
when EL1 is using AArch64 to EL2.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 301

AArch64-dvp-rctx.html
AArch32-dvprctx.html
AArch64-dvp-rctx.html
AArch32-dvprctx.html
AArch64-dvp-rctx.html
AArch32-dvprctx.html
AArch64-cfp-rctx.html
AArch32-cfprctx.html

CFPRCTX Meaning
0b0 Execution of CFP RCTX at EL1 and EL0 using AArch64

and execution of CFPRCTX at EL0 using AArch32 is not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is
using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the instruction
generates a higher priority exception:

• Execution of CFP RCTX at EL1 and EL0 using
AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18.

• Execution of CFPRCTX at EL0 using AArch32 is
trapped to EL2 and reported with EC syndrome
value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVAALE1, bit [47]

Trap execution of TLBI VAALE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI VAALE1NXS.

TLBIVAALE1 Meaning
0b0 Execution of TLBI VAALE1 is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of TLBI
VAALE1 at EL1 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVALE1, bit [46]

Trap execution of TLBI VALE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI VALE1NXS.

TLBIVALE1 Meaning
0b0 Execution of TLBI VALE1 is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of TLBI VALE1
at EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 302

AArch64-cfp-rctx.html
AArch32-cfprctx.html
AArch64-cfp-rctx.html
AArch32-cfprctx.html
AArch64-tlbi-vaale1.html
AArch64-hcrx_el2.html
AArch64-tlbi-vaale1.html
AArch64-tlbi-vaale1.html
AArch64-tlbi-vaale1.html
AArch64-tlbi-vale1.html
AArch64-hcrx_el2.html
AArch64-tlbi-vale1.html
AArch64-tlbi-vale1.html

TLBIVAAE1, bit [45]

Trap execution of TLBI VAAE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI VAAE1NXS.

TLBIVAAE1 Meaning
0b0 Execution of TLBI VAAE1 is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of TLBI VAAE1
at EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIASIDE1, bit [44]

Trap execution of TLBI ASIDE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI ASIDE1NXS.

TLBIASIDE1 Meaning
0b0 Execution of TLBI ASIDE1 is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of TLBI
ASIDE1 at EL1 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVAE1, bit [43]

Trap execution of TLBI VAE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI VAE1NXS.

TLBIVAE1 Meaning
0b0 Execution of TLBI VAE1 is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of TLBI VAE1 at
EL1 using AArch64 is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVMALLE1, bit [42]

Trap execution of TLBI VMALLE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI VMALLE1NXS.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 303

AArch64-tlbi-vaae1.html
AArch64-hcrx_el2.html
AArch64-tlbi-vaae1.html
AArch64-tlbi-vaae1.html
AArch64-tlbi-aside1.html
AArch64-hcrx_el2.html
AArch64-tlbi-aside1.html
AArch64-tlbi-aside1.html
AArch64-tlbi-aside1.html
AArch64-tlbi-vae1.html
AArch64-hcrx_el2.html
AArch64-tlbi-vae1.html
AArch64-tlbi-vae1.html
AArch64-tlbi-vmalle1.html
AArch64-hcrx_el2.html

TLBIVMALLE1 Meaning
0b0 Execution of TLBI VMALLE1 is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then execution of TLBI
VMALLE1 at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority
exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIRVAALE1, bit [41]
When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAALE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI RVAALE1NXS.

TLBIRVAALE1 Meaning
0b0 Execution of TLBI RVAALE1 is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of TLBI
RVAALE1 at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority
exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVALE1, bit [40]
When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVALE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI RVALE1NXS.

TLBIRVALE1 Meaning
0b0 Execution of TLBI RVALE1 is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of TLBI
RVALE1 at EL1 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 304

AArch64-tlbi-vmalle1.html
AArch64-tlbi-vmalle1.html
AArch64-tlbi-vmalle1.html
AArch64-hcrx_el2.html
AArch64-hcrx_el2.html

Otherwise:

Reserved, RES0.

TLBIRVAAE1, bit [39]
When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAAE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI RVAAE1NXS.

TLBIRVAAE1 Meaning
0b0 Execution of TLBI RVAAE1 is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of TLBI
RVAAE1 at EL1 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAE1, bit [38]
When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI RVAE1NXS.

TLBIRVAE1 Meaning
0b0 Execution of TLBI RVAE1 is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of TLBI RVAE1
at EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAALE1IS, bit [37]
When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAALE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI RVAALE1ISNXS.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 305

AArch64-hcrx_el2.html
AArch64-hcrx_el2.html
AArch64-hcrx_el2.html

TLBIRVAALE1IS Meaning
0b0 Execution of TLBI RVAALE1IS is not trapped by

this mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then execution of TLBI
RVAALE1IS at EL1 using AArch64 is trapped to
EL2 and reported with EC syndrome value 0x18,
unless the instruction generates a higher priority
exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVALE1IS, bit [36]
When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVALE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI RVALE1ISNXS.

TLBIRVALE1IS Meaning
0b0 Execution of TLBI RVALE1IS is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then execution of TLBI
RVALE1IS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority
exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAAE1IS, bit [35]
When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAAE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI RVAAE1ISNXS.

TLBIRVAAE1IS Meaning
0b0 Execution of TLBI RVAAE1IS is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then execution of TLBI
RVAAE1IS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority
exception.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 306

AArch64-hcrx_el2.html
AArch64-hcrx_el2.html

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAE1IS, bit [34]
When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI RVAE1ISNXS.

TLBIRVAE1IS Meaning
0b0 Execution of TLBI RVAE1IS is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of TLBI
RVAE1IS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVAALE1IS, bit [33]

Trap execution of TLBI VAALE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI VAALE1ISNXS.

TLBIVAALE1IS Meaning
0b0 Execution of TLBI VAALE1IS is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then execution of TLBI
VAALE1IS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority
exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVALE1IS, bit [32]

Trap execution of TLBI VALE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI VALE1ISNXS.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 307

AArch64-hcrx_el2.html
AArch64-tlbi-vaale1is.html
AArch64-hcrx_el2.html
AArch64-tlbi-vaale1is.html
AArch64-tlbi-vaale1is.html
AArch64-tlbi-vaale1is.html
AArch64-tlbi-vale1is.html
AArch64-hcrx_el2.html

TLBIVALE1IS Meaning
0b0 Execution of TLBI VALE1IS is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of TLBI
VALE1IS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVAAE1IS, bit [31]

Trap execution of TLBI VAAE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI VAAE1ISNXS.

TLBIVAAE1IS Meaning
0b0 Execution of TLBI VAAE1IS is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of TLBI
VAAE1IS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIASIDE1IS, bit [30]

Trap execution of TLBI ASIDE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI ASIDE1ISNXS.

TLBIASIDE1IS Meaning
0b0 Execution of TLBI ASIDE1IS is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then execution of TLBI
ASIDE1IS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority
exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVAE1IS, bit [29]

Trap execution of TLBI VAE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI VAE1ISNXS.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 308

AArch64-tlbi-vale1is.html
AArch64-tlbi-vale1is.html
AArch64-tlbi-vale1is.html
AArch64-tlbi-vaae1is.html
AArch64-hcrx_el2.html
AArch64-tlbi-vaae1is.html
AArch64-tlbi-vaae1is.html
AArch64-tlbi-vaae1is.html
AArch64-tlbi-aside1is.html
AArch64-hcrx_el2.html
AArch64-tlbi-aside1is.html
AArch64-tlbi-aside1is.html
AArch64-tlbi-aside1is.html
AArch64-tlbi-vae1is.html
AArch64-hcrx_el2.html

TLBIVAE1IS Meaning
0b0 Execution of TLBI VAE1IS is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of TLBI VAE1IS
at EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVMALLE1IS, bit [28]

Trap execution of TLBI VMALLE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI VMALLE1ISNXS.

TLBIVMALLE1IS Meaning
0b0 Execution of TLBI VMALLE1IS is not trapped by

this mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
execution of TLBI VMALLE1IS at EL1 using
AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIRVAALE1OS, bit [27]
When FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented:

Trap execution of TLBI RVAALE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI RVAALE1OSNXS.

TLBIRVAALE1OS Meaning
0b0 Execution of TLBI RVAALE1OS is not trapped by

this mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
execution of TLBI RVAALE1OS at EL1 using
AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 309

AArch64-tlbi-vae1is.html
AArch64-tlbi-vae1is.html
AArch64-tlbi-vmalle1is.html
AArch64-hcrx_el2.html
AArch64-tlbi-vmalle1is.html
AArch64-tlbi-vmalle1is.html
AArch64-hcrx_el2.html

TLBIRVALE1OS, bit [26]
When FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented:

Trap execution of TLBI RVALE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI RVALE1OSNXS.

TLBIRVALE1OS Meaning
0b0 Execution of TLBI RVALE1OS is not trapped by

this mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then execution of TLBI
RVALE1OS at EL1 using AArch64 is trapped to
EL2 and reported with EC syndrome value 0x18,
unless the instruction generates a higher priority
exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAAE1OS, bit [25]
When FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented:

Trap execution of TLBI RVAAE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI RVAAE1OSNXS.

TLBIRVAAE1OS Meaning
0b0 Execution of TLBI RVAAE1OS is not trapped by

this mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then execution of TLBI
RVAAE1OS at EL1 using AArch64 is trapped to
EL2 and reported with EC syndrome value 0x18,
unless the instruction generates a higher priority
exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAE1OS, bit [24]
When FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented:

Trap execution of TLBI RVAE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI RVAE1OSNXS.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 310

AArch64-hcrx_el2.html
AArch64-hcrx_el2.html
AArch64-hcrx_el2.html

TLBIRVAE1OS Meaning
0b0 Execution of TLBI RVAE1OS is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then execution of TLBI
RVAE1OS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority
exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVAALE1OS, bit [23]
When FEAT_TLBIOS is implemented:

Trap execution of TLBI VAALE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI VAALE1OSNXS.

TLBIVAALE1OS Meaning
0b0 Execution of TLBI VAALE1OS is not trapped by

this mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then execution of TLBI
VAALE1OS at EL1 using AArch64 is trapped to
EL2 and reported with EC syndrome value 0x18,
unless the instruction generates a higher priority
exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVALE1OS, bit [22]
When FEAT_TLBIOS is implemented:

Trap execution of TLBI VALE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI VALE1OSNXS.

TLBIVALE1OS Meaning
0b0 Execution of TLBI VALE1OS is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of TLBI
VALE1OS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority
exception.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 311

AArch64-tlbi-vaale1os.html
AArch64-hcrx_el2.html
AArch64-tlbi-vaale1os.html
AArch64-tlbi-vaale1os.html
AArch64-tlbi-vaale1os.html
AArch64-tlbi-vale1os.html
AArch64-hcrx_el2.html
AArch64-tlbi-vale1os.html
AArch64-tlbi-vale1os.html
AArch64-tlbi-vale1os.html

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVAAE1OS, bit [21]
When FEAT_TLBIOS is implemented:

Trap execution of TLBI VAAE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI VAAE1OSNXS.

TLBIVAAE1OS Meaning
0b0 Execution of TLBI VAAE1OS is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then execution of TLBI
VAAE1OS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority
exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIASIDE1OS, bit [20]
When FEAT_TLBIOS is implemented:

Trap execution of TLBI ASIDE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI ASIDE1OSNXS.

TLBIASIDE1OS Meaning
0b0 Execution of TLBI ASIDE1OS is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then execution of TLBI
ASIDE1OS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority
exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 312

AArch64-tlbi-vaae1os.html
AArch64-hcrx_el2.html
AArch64-tlbi-vaae1os.html
AArch64-tlbi-vaae1os.html
AArch64-tlbi-vaae1os.html
AArch64-tlbi-aside1os.html
AArch64-hcrx_el2.html
AArch64-tlbi-aside1os.html
AArch64-tlbi-aside1os.html
AArch64-tlbi-aside1os.html

TLBIVAE1OS, bit [19]
When FEAT_TLBIOS is implemented:

Trap execution of TLBI VAE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI VAE1OSNXS.

TLBIVAE1OS Meaning
0b0 Execution of TLBI VAE1OS is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of TLBI
VAE1OS at EL1 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVMALLE1OS, bit [18]
When FEAT_TLBIOS is implemented:

Trap execution of TLBI VMALLE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI VMALLE1OSNXS.

TLBIVMALLE1OS Meaning
0b0 Execution of TLBI VMALLE1OS is not trapped

by this mechanism.
0b1 If EL2 is implemented and enabled in the

current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
execution of TLBI VMALLE1OS at EL1 using
AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ATS1E1WP, bit [17]
When FEAT_PAN2 is implemented:

Trap execution of AT S1E1WP at EL1 using AArch64 to EL2.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 313

AArch64-tlbi-vae1os.html
AArch64-hcrx_el2.html
AArch64-tlbi-vae1os.html
AArch64-tlbi-vae1os.html
AArch64-tlbi-vae1os.html
AArch64-tlbi-vmalle1os.html
AArch64-hcrx_el2.html
AArch64-tlbi-vmalle1os.html
AArch64-tlbi-vmalle1os.html
AArch64-at-s1e1wp.html

ATS1E1WP Meaning
0b0 Execution of AT S1E1WP is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of AT S1E1WP
at EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ATS1E1RP, bit [16]
When FEAT_PAN2 is implemented:

Trap execution of AT S1E1RP at EL1 using AArch64 to EL2.

ATS1E1RP Meaning
0b0 Execution of AT S1E1RP is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of AT S1E1RP at
EL1 using AArch64 is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ATS1E0W, bit [15]

Trap execution of AT S1E0W at EL1 using AArch64 to EL2.

ATS1E0W Meaning
0b0 Execution of AT S1E0W is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of AT S1E0W at
EL1 using AArch64 is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ATS1E0R, bit [14]

Trap execution of AT S1E0R at EL1 using AArch64 to EL2.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 314

AArch64-at-s1e1wp.html
AArch64-at-s1e1wp.html
AArch64-at-s1e1rp.html
AArch64-at-s1e1rp.html
AArch64-at-s1e1rp.html
AArch64-at-s1e0w.html
AArch64-at-s1e0w.html
AArch64-at-s1e0w.html
AArch64-at-s1e0r.html

ATS1E0R Meaning
0b0 Execution of AT S1E0R is not trapped by this mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of AT S1E0R at
EL1 using AArch64 is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction generates
a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ATS1E1W, bit [13]

Trap execution of AT S1E1W at EL1 using AArch64 to EL2.

ATS1E1W Meaning
0b0 Execution of AT S1E1W is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of AT S1E1W at
EL1 using AArch64 is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ATS1E1R, bit [12]

Trap execution of AT S1E1R at EL1 using AArch64 to EL2.

ATS1E1R Meaning
0b0 Execution of AT S1E1R is not trapped by this mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of AT S1E1R at
EL1 using AArch64 is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction generates
a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCZVA, bit [11]

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of the
following AArch64 instructions to EL2:

• DC ZVA.
• DC GVA, if FEAT_MTE is implemented.
• DC GZVA, if FEAT_MTE is implemented.

Note

Unlike HCR_EL2.TDZ, this field has no effect on DCZID_EL0.DZP.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 315

AArch64-at-s1e0r.html
AArch64-at-s1e0r.html
AArch64-at-s1e1w.html
AArch64-at-s1e1w.html
AArch64-at-s1e1w.html
AArch64-at-s1e1r.html
AArch64-at-s1e1r.html
AArch64-at-s1e1r.html
AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html
AArch64-dczid_el0.html

DCZVA Meaning
0b0 Execution of the instructions listed above is not trapped by

this mechanism.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1, then execution
at EL1 and EL0 using AArch64 of any of the instructions
listed above is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCCIVAC, bit [10]

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of the
following AArch64 instructions to EL2:

• DC CIVAC.
• DC CIGVAC, if FEAT_MTE is implemented.
• DC CIGDVAC, if FEAT_MTE is implemented.

If the Point of Coherence is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
the affected instruction is trapped when the value of this control is 1.

DCCIVAC Meaning
0b0 Execution of the instructions listed above is not trapped

by this mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, HCR_EL2.{E2H, TGE} != {1, 1}, and
either EL3 is not implemented or SCR_EL3.FGTEn == 1,
then execution at EL1 and EL0 using AArch64 of any of
the instructions listed above is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCCVADP, bit [9]
When FEAT_DPB2 is implemented:

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of the
following AArch64 instructions to EL2:

• DC CVADP.
• DC CGVADP, if FEAT_MTE is implemented.
• DC CGDVADP, if FEAT_MTE is implemented.

If the Point of Deep Persistence is before any level of data cache, it is IMPLEMENTATION DEFINED whether the
execution of the affected instruction is trapped when the value of this control is 1.

DCCVADP Meaning
0b0 Execution of the instructions listed above is not trapped

by this mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, HCR_EL2.{E2H, TGE} != {1, 1}, and
either EL3 is not implemented or SCR_EL3.FGTEn == 1,
then execution at EL1 and EL0 using AArch64 of any of
the instructions listed above is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 316

AArch64-dc-civac.html
AArch64-dc-cigvac.html
AArch64-dc-cigdvac.html
AArch64-dc-cvadp.html
AArch64-dc-cgvadp.html
AArch64-dc-cgdvadp.html

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

DCCVAP, bit [8]

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of the
following AArch64 instructions to EL2:

• DC CVAP.
• DC CGVAP, if FEAT_MTE is implemented.
• DC CGDVAP, if FEAT_MTE is implemented.

If the Point of Persistence is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
the affected instruction is trapped when the value of this control is 1.

DCCVAP Meaning
0b0 Execution of the instructions listed above is not trapped by

this mechanism.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1, then execution
at EL1 and EL0 using AArch64 of any of the instructions
listed above is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCCVAU, bit [7]

Trap execution of DC CVAU at EL1 and EL0 using AArch64 to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
the affected instruction is trapped when the value of this control is 1.

DCCVAU Meaning
0b0 Execution of DC CVAU is not trapped by this mechanism.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1, then
execution of DC CVAU at EL1 and EL0 using AArch64 is
trapped to EL2 and reported with EC syndrome value
0x18, unless the instruction generates a higher priority
exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCCISW, bit [6]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any of the following
AArch64 instructions to EL2:

• DC CISW.
• DC CIGSW, if FEAT_MTE2 is implemented.
• DC CIGDSW, if FEAT_MTE2 is implemented.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 317

AArch64-dc-cvap.html
AArch64-dc-cgvap.html
AArch64-dc-cgdvap.html
AArch64-dc-cvau.html
AArch64-dc-cvau.html
AArch64-dc-cvau.html
AArch64-dc-cisw.html
AArch64-dc-cigsw.html
AArch64-dc-cigdsw.html

DCCISW Meaning
0b0 Execution of the instructions listed above is not trapped

by this mechanism.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution at EL1 using
AArch64 of any of the instructions listed above is trapped
to EL2 and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCCSW, bit [5]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any of the following
AArch64 instructions to EL2:

• DC CSW.
• DC CGSW, if FEAT_MTE2 is implemented.
• DC CGDSW, if FEAT_MTE2 is implemented.

DCCSW Meaning
0b0 Execution of the instructions listed above is not trapped by

this mechanism.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution at EL1 using
AArch64 of any of the instructions listed above is trapped
to EL2 and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCISW, bit [4]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any of the following
AArch64 instructions to EL2:

• DC ISW.
• DC IGSW, if FEAT_MTE2 is implemented.
• DC IGDSW, if FEAT_MTE2 is implemented.

DCISW Meaning
0b0 Execution of the instructions listed above is not trapped by

this mechanism.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution at EL1 using
AArch64 of any of the instructions listed above is trapped to
EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCIVAC, bit [3]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any of the following
AArch64 instructions to EL2:

• DC IVAC.
• DC IGVAC, if FEAT_MTE2 is implemented.
• DC IGDVAC, if FEAT_MTE2 is implemented.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 318

AArch64-dc-csw.html
AArch64-dc-cgsw.html
AArch64-dc-cgdsw.html
AArch64-dc-isw.html
AArch64-dc-igsw.html
AArch64-dc-igdsw.html
AArch64-dc-ivac.html
AArch64-dc-igvac.html
AArch64-dc-igdvac.html

If the Point of Coherence is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
the affected instruction is trapped when the value of this control is 1.

DCIVAC Meaning
0b0 Execution of the instructions listed above is not trapped by

this mechanism.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution at EL1 using
AArch64 of any of the instructions listed above is trapped
to EL2 and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ICIVAU, bit [2]

Trap execution of IC IVAU at EL1 and EL0 using AArch64 to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
the affected instruction is trapped when the value of this control is 1.

ICIVAU Meaning
0b0 Execution of IC IVAU is not trapped by this mechanism.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1, then execution
of IC IVAU at EL1 and EL0 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ICIALLU, bit [1]

Trap execution of IC IALLU at EL1 using AArch64 to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
the affected instruction is trapped when the value of this control is 1.

ICIALLU Meaning
0b0 Execution of IC IALLU is not trapped by this mechanism.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of IC IALLU at EL1
using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ICIALLUIS, bit [0]

Trap execution of IC IALLUIS at EL1 using AArch64 to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
the affected instruction is trapped when the value of this control is 1.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 319

AArch64-ic-ivau.html
AArch64-ic-ivau.html
AArch64-ic-ivau.html
AArch64-ic-iallu.html
AArch64-ic-iallu.html
AArch64-ic-iallu.html
AArch64-ic-ialluis.html

ICIALLUIS Meaning
0b0 Execution of IC IALLUIS is not trapped by this

mechanism.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of IC IALLUIS at
EL1 using AArch64 is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing HFGITR_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HFGITR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

X[t, 64] = NVMem[0x1C8];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
X[t, 64] = HFGITR_EL2;

elsif PSTATE.EL == EL3 then
X[t, 64] = HFGITR_EL2;

MSR HFGITR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b110

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 320

AArch64-ic-ialluis.html
AArch64-ic-ialluis.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x1C8] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
HFGITR_EL2 = X[t, 64];

elsif PSTATE.EL == EL3 then
HFGITR_EL2 = X[t, 64];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 321

(old) htmldiff from- (new)

HPFAR_EL2, Hypervisor IPA Fault Address Register
The HPFAR_EL2 characteristics are:

Purpose
Holds the faulting IPA for some aborts on a stage 2 translation taken to EL2.

Configuration
AArch64 System register HPFAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HPFAR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

The HPFAR_EL2 is written for:

• Translation or Access faults in the second stage of translation.
• An abort in the second stage of translation performed during the translation table walk of a first stage

translation, caused by a Translation fault, an Access flag fault, or a Permission fault.
• A stage 2 Address size fault.
• If FEAT_RME is implemented, a Granule Protection Check fault in the second stage of translation.

For all other exceptions taken to EL2, this register is UNKNOWN.

Note

The address held in this register is an address accessed by the instruction
fetch or data access that caused the exception that gave rise to the Instruction
Abort exception or Data Abort exception. It is the lowest address that gave
rise to the fault. Where different faults from different addresses arise from the
same instruction, such as for an instruction that loads or stores an unaligned
address that crosses a page boundary, the architecture does not prioritize
between those different faults.

Attributes
HPFAR_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 FIPA

FIPA RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution at EL1 or EL0 makes HPFAR_EL2 become UNKNOWN.

NS, bit [63]
When FEAT_SEL2 is implemented:

Faulting IPA address space.

HPFAR_EL2, Hypervisor IPA Fault Address Register

Page 322

AArch32-hpfar.html

NS Meaning
0b0 Faulting IPA is from the Secure IPA space.
0b1 Faulting IPA is from the Non-secure IPA space.

For Data Abort exceptions or Instruction Abort exceptions taken to Non-secure EL2:

• This field is RES0.
• The address is from the Non-secure IPA space.

If FEAT_RME is implemented, for Data Abort exceptions or Instruction Abort exceptions taken to Realm EL2:

• This field is RES0.
• The address is from the Realm IPA space.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [62:44]

Reserved, RES0.

FIPA, bits [43:4]

FIPA encoding when FEAT_LPA is implemented
38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 543210

FIPA

FIPA, bits [38:0]

Bits [51:12] of the Faulting Intermediate Physical Address.

For implementations with fewer than 52 physical address bits, the corresponding upper bits in this
field are RES0.

When FEAT_MOPS is implemented, the value presented in FIPA on a synchronous exception that set
the HPFAR_EL2 from any of the Memory Copy and Memory Set instructions is within the address
range of the current stage 2 translation granule, aligned to the size of the current stage 2 translation
granule, of the address that generated the Data abort.

Bits[(n-1):0] of the value are UNKNOWN, where 2n is the current stage 2 translation granule size in
bytes.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FIPA encoding when FEAT_LPA is not implemented
38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 543210

RES0 FIPA

Bits [38:35]

Reserved, RES0.

HPFAR_EL2, Hypervisor IPA Fault Address Register

Page 323

FIPA, bits [34:0]

Bits[47:12] Faulting Intermediate Physical Address.

For implementations with fewer than 48 physical address bits, the corresponding upper bits in this
field are RES0.

When FEAT_MOPS is implemented, the value presented in FIPA on a synchronous exception that set
the HPFAR_EL2 from any of the Memory Copy and Memory Set instructions is within the address
range of the current stage 2 translation granule, aligned to the size of the current stage 2 translation
granule, of the address that generated the Data abort.

Bits[(n-1):0] of the value are UNKNOWN, where 2n is the current stage 2 translation granule size in
bytes.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [3:0]

Reserved, RES0.

Accessing HPFAR_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HPFAR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = HPFAR_EL2;
elsif PSTATE.EL == EL3 then

X[t, 64] = HPFAR_EL2;

MSR HPFAR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HPFAR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then

HPFAR_EL2 = X[t, 64];

HPFAR_EL2, Hypervisor IPA Fault Address Register

Page 324

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HPFAR_EL2, Hypervisor IPA Fault Address Register

Page 325

(old) htmldiff from- (new)

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute
Register 0

The ID_AA64ISAR0_EL1 characteristics are:

Purpose
Provides information about the instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
There are no configuration notes.

Attributes
ID_AA64ISAR0_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RNDR TLB TS FHM DP SM4 SM3 SHA3
RDM TME Atomic CRC32 SHA2 SHA1 AES RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RNDR, bits [63:60]

Indicates support for Random Number instructions in AArch64 state.

When FEAT_RNG_TRAP is implemented, the value returned by a direct read of ID_AA64ISAR0_EL1.RNDR is
further controlled by the value of SCR_EL3.TRNDR.

Defined values are:

RNDR Meaning
0b0000 No Random Number instructions are implemented.
0b0001 RNDR and RNDRRS registers are implemented.

All other values are reserved.

FEAT_RNG implements the functionality identified by the value 0b0001.

From Armv8.5, the permitted values are 0b0000 and 0b0001.

TLB, bits [59:56]

Indicates support for Outer Shareableshareable and TLB range maintenance instructions. Defined values are:

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 326

AArch64-rndr.html
AArch64-rndrrs.html

TLB Meaning
0b0000 Outer Shareableshareable and TLB range maintenance

instructions are not implemented.
0b0001 Outer Shareableshareable TLB maintenance instructions are

implemented.
0b0010 Outer Shareableshareable and TLB range maintenance

instructions are implemented.

All other values are reserved.

FEAT_TLBIOS implements the functionality identified by the values 0b0001 and 0b0010.

FEAT_TLBIRANGE implements the functionality identified by the value 0b0010.

From Armv8.4, the only permitted value is 0b0010.

TS, bits [55:52]

Indicates support for flag manipulation instructions. Defined values are:

TS Meaning
0b0000 No flag manipulation instructions are implemented.
0b0001 CFINV, RMIF, SETF16, and SETF8 instructions are

implemented.
0b0010 CFINV, RMIF, SETF16, SETF8, AXFLAG, and XAFLAG

instructions are implemented.

All other values are reserved.

FEAT_FlagM implements the functionality identified by the value 0b0001.

FEAT_FlagM2 implements the functionality identified by the value 0b0010.

In Armv8.2, the permitted values are 0b0000 and 0b0001.

In Armv8.4, the only permitted value is 0b0001.

From Armv8.5, the only permitted value is 0b0010.

FHM, bits [51:48]

Indicates support for FMLAL and FMLSL instructions. Defined values are:

FHM Meaning
0b0000 FMLAL and FMLSL instructions are not implemented.
0b0001 FMLAL and FMLSL instructions are implemented.

All other values are reserved.

FEAT_FHM implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

DP, bits [47:44]

Indicates support for Dot Product instructions in AArch64 state. Defined values are:

DP Meaning
0b0000 No Dot Product instructions implemented.
0b0001 UDOT and SDOT instructions implemented.

All other values are reserved.

FEAT_DotProd implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 327

SM4, bits [43:40]

Indicates support for SM4 instructions in AArch64 state. Defined values are:

SM4 Meaning
0b0000 No SM4 instructions implemented.
0b0001 SM4E and SM4EKEY instructions implemented.

All other values are reserved.

If FEAT_SM4 is not implemented, the value 0b0001 is reserved.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

This field must have the same value as ID_AA64ISAR0_EL1.SM3.

SM3, bits [39:36]

Indicates support for SM3 instructions in AArch64 state. Defined values are:

SM3 Meaning
0b0000 No SM3 instructions implemented.
0b0001 SM3SS1, SM3TT1A, SM3TT1B, SM3TT2A, SM3TT2B,

SM3PARTW1, and SM3PARTW2 instructions implemented.

All other values are reserved.

If FEAT_SM3 is not implemented, the value 0b0001 is reserved.

FEAT_SM3 implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

This field must have the same value as ID_AA64ISAR0_EL1.SM4.

SHA3, bits [35:32]

Indicates support for SHA3 instructions in AArch64 state. Defined values are:

SHA3 Meaning
0b0000 No SHA3 instructions implemented.
0b0001 EOR3, RAX1, XAR, and BCAX instructions implemented.

All other values are reserved.

If FEAT_SHA3 is not implemented, the value 0b0001 is reserved.

FEAT_SHA3 implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR0_EL1.SHA1 is 0b0000, this field must have the value 0b0000.

If the value of this field is 0b0001, ID_AA64ISAR0_EL1.SHA2 must have the value 0b0010.

RDM, bits [31:28]

Indicates support for SQRDMLAH and SQRDMLSH instructions in AArch64 state. Defined values are:

RDM Meaning
0b0000 No RDMA instructions implemented.
0b0001 SQRDMLAH and SQRDMLSH instructions implemented.

All other values are reserved.

FEAT_RDM implements the functionality identified by the value 0b0001.

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 328

From Armv8.1, the only permitted value is 0b0001.

TME, bits [27:24]

Indicates support for TME instructions. Defined values are:

TME Meaning
0b0000 TME instructions are not implemented.
0b0001 TCANCEL, TCOMMIT, TSTART, and TTEST instructions are

implemented.

If HCR_EL2.TME == 0, reads of this field at EL1 return 0.

If SCR_EL3.TME == 0, reads of this field at EL1 or EL2 return 0.

All other values are reserved.

Atomic, bits [23:20]

Indicates support for Atomic instructions in AArch64 state. Defined values are:

Atomic Meaning
0b0000 No Atomic instructions implemented.
0b0010 LDADD, LDCLR, LDEOR, LDSET, LDSMAX, LDSMIN,

LDUMAX, LDUMIN, CAS, CASP, and SWP instructions
implemented.

All other values are reserved.

FEAT_LSE implements the functionality identified by the value 0b0010.

From Armv8.1, the only permitted value is 0b0010.

CRC32, bits [19:16]

Indicates support for CRC32 instructions in AArch64 state. Defined values are:

CRC32 Meaning
0b0000 No CRC32 instructions implemented.
0b0001 CRC32B, CRC32H, CRC32W, CRC32X, CRC32CB,

CRC32CH, CRC32CW, and CRC32CX instructions
implemented.

All other values are reserved.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.1, the only permitted value is 0b0001.

SHA2, bits [15:12]

Indicates support for SHA2 instructions in AArch64 state. Defined values are:

SHA2 Meaning
0b0000 No SHA2 instructions implemented.
0b0001 Implements instructions: SHA256H, SHA256H2,

SHA256SU0, and SHA256SU1.
0b0010 Implements instructions:

• SHA256H, SHA256H2, SHA256SU0, and
SHA256SU1.

• SHA512H, SHA512H2, SHA512SU0, and
SHA512SU1.

All other values are reserved.

FEAT_SHA256 implements the functionality identified by the value 0b0001.

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 329

FEAT_SHA512 implements the functionality identified by the value 0b0010.

In Armv8, the permitted values are 0b0000 and 0b0001.

From Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

If the value of ID_AA64ISAR0_EL1.SHA1 is 0b0000, this field must have the value 0b0000.

If the value of this field is 0b0010, ID_AA64ISAR0_EL1.SHA3 must have the value 0b0001.

SHA1, bits [11:8]

Indicates support for SHA1 instructions in AArch64 state. Defined values are:

SHA1 Meaning
0b0000 No SHA1 instructions implemented.
0b0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1

instructions implemented.

All other values are reserved.

FEAT_SHA1 implements the functionality identified by the value 0b0001.

From Armv8, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR0_EL1.SHA2 is 0b0000, this field must have the value 0b0000.

AES, bits [7:4]

Indicates support for AES instructions in AArch64 state. Defined values are:

AES Meaning
0b0000 No AES instructions implemented.
0b0001 AESE, AESD, AESMC, and AESIMC instructions

implemented.
0b0010 As for 0b0001, plus PMULL/PMULL2 instructions operating

on 64-bit data quantities.

FEAT_AES implements the functionality identified by the value 0b0001.

FEAT_PMULL implements the functionality identified by the value 0b0010.

All other values are reserved.

From Armv8, the permitted values are 0b0000 and 0b0010.

Bits [3:0]

Reserved, RES0.

Accessing ID_AA64ISAR0_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64ISAR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0110 0b000

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 330

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

X[t, 64] = ID_AA64ISAR0_EL1;
elsif PSTATE.EL == EL2 then

X[t, 64] = ID_AA64ISAR0_EL1;
elsif PSTATE.EL == EL3 then

X[t, 64] = ID_AA64ISAR0_EL1;

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 331

(old) htmldiff from- (new)

ID_AA64MMFR0_EL1, AArch64 Memory Model Feature
Register 0

The ID_AA64MMFR0_EL1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
There are no configuration notes.

Attributes
ID_AA64MMFR0_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ECV FGT RES0 ExS TGran4_2 TGran64_2 TGran16_2
TGran4 TGran64 TGran16 BigEndEL0 SNSMem BigEnd ASIDBits PARange

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ECV, bits [63:60]

Indicates presence of Enhanced Counter Virtualization. Defined values are:

ECV Meaning
0b0000 Enhanced Counter Virtualization is not implemented.
0b0001 Enhanced Counter Virtualization is implemented. Supports

CNTHCTL_EL2.{EL1TVT, EL1TVCT, EL1NVPCT, EL1NVVCT,
EVNTIS}, CNTKCTL_EL1.EVNTIS, CNTPCTSS_EL0 counter
views, and CNTVCTSS_EL0 counter views. Extends the
PMSCR_EL1.PCT, PMSCR_EL2.PCT, TRFCR_EL1.TS, and
TRFCR_EL2.TS fields.

0b0010 As 0b0001, and also includes support for
CNTHCTL_EL2.ECV and CNTPOFF_EL2.

All other values are reserved.

FEAT_ECV implements the functionality identified by the values 0b0001 and 0b0010.

From Armv8.6, the only permitted values are 0b0001 and 0b0010.

FGT, bits [59:56]

• If EL2 is implemented, the HAFGRTR_EL2, HDFGRTR_EL2, HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2
and HFGWTR_EL2 registers, and their associated traps.

• If EL2 is implemented, MDCR_EL2.TDCC.
• If EL3 is implemented, MDCR_EL3.TDCC.
• If both EL2 and EL3 are implemented, SCR_EL3.FGTEn.

ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

Page 332

AArch64-cnthctl_el2.html
AArch64-cntkctl_el1.html
AArch64-cntpctss_el0.html
AArch64-cntvctss_el0.html
AArch64-pmscr_el1.html
AArch64-pmscr_el2.html
AArch64-trfcr_el1.html
AArch64-trfcr_el2.html
AArch64-cnthctl_el2.html
AArch64-cntpoff_el2.html
AArch64-hafgrtr_el2.html
AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch64-hfgrtr_el2.html
AArch64-hfgwtr_el2.html
AArch64-mdcr_el2.html
AArch64-mdcr_el3.html

Defined values are:

Indicates presence of the Fine-Grained Trap controls. Defined values arecontrols:

FGT Meaning
0b0000 Fine-grainedThe fine-grained trap controls are not

implemented.
0b0001 Fine-grainedThe fine-grained trap controls are implemented.

Supports:
• If EL2 is implemented, the HAFGRTR_EL2,

HDFGRTR_EL2, HDFGWTR_EL2, HFGRTR_EL2,
HFGITR_EL2 and HFGWTR_EL2 registers, and their
associated traps.

• If EL2 is implemented, MDCR_EL2.TDCC.
• If EL3 is implemented, MDCR_EL3.TDCC.
• If both EL2 and EL3 are implemented,

SCR_EL3.FGTEn.

All other values are reserved.

FEAT_FGT implements the functionality identified by the value 0b0001.

From Armv8.6, the only permitted value is 0b00000b0001 is not permitted..

Bits [55:48]

Reserved, RES0.

ExS, bits [47:44]

Indicates support for disabling context synchronizing exception entry and exit. Defined values are:

ExS Meaning
0b0000 All exception entries and exits are context synchronization

events.
0b0001 Non-context synchronizing exception entry and exit are

supported.

All other values are reserved.

FEAT_ExS implements the functionality identified by the value 0b0001.

TGran4_2, bits [43:40]

Indicates support for 4KB memory granule size at stage 2. Defined values are:

TGran4_2 Meaning Applies
when

0b0000 Support for 4KB granule at stage 2 is
identified in the
ID_AA64MMFR0_EL1.TGran4 field.

0b0001 4KB granule not supported at stage 2.
0b0010 4KB granule supported at stage 2.
0b0011 4KB granule at stage 2 supports 52-bit

input and output addresses.
When
FEAT_LPA2 is
implemented

All other values are reserved.

The 0b0000 value is deprecated.

Note

This field does not follow the standard ID scheme. See Alternative ID
scheme used for ID_AA64MMFR0_EL1 stage 2 granule sizes for more
information.

ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

Page 333

AArch64-hafgrtr_el2.html
AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch64-hfgrtr_el2.html
AArch64-hfgwtr_el2.html
AArch64-mdcr_el2.html
AArch64-mdcr_el3.html

TGran64_2, bits [39:36]

Indicates support for 64KB memory granule size at stage 2. Defined values are:

TGran64_2 Meaning
0b0000 Support for 64KB granule at stage 2 is identified in the

ID_AA64MMFR0_EL1.TGran64 field.
0b0001 64KB granule not supported at stage 2.
0b0010 64KB granule supported at stage 2.

All other values are reserved.

The 0b0000 value is deprecated.

Note

This field does not follow the standard ID scheme. See Alternative ID
scheme used for ID_AA64MMFR0_EL1 stage 2 granule sizes for more
information.

TGran16_2, bits [35:32]

Indicates support for 16KB memory granule size at stage 2. Defined values are:

TGran16_2 Meaning Applies
when

0b0000 Support for 16KB granule at stage 2 is
identified in the
ID_AA64MMFR0_EL1.TGran16 field.

0b0001 16KB granule not supported at stage
2.

0b0010 16KB granule supported at stage 2.
0b0011 16KB granule at stage 2 supports

52-bit input and output addresses.
When
FEAT_LPA2
is
implemented

All other values are reserved.

The 0b0000 value is deprecated.

Note

This field does not follow the standard ID scheme. See Alternative ID
scheme used for ID_AA64MMFR0_EL1 stage 2 granule sizes for more
information.

TGran4, bits [31:28]

Indicates support for 4KB memory translation granule size. Defined values are:

TGran4 Meaning Applies when
0b0000 4KB granule supported.
0b0001 4KB granule supports 52-bit input

and output addresses.
When FEAT_LPA2 is
implemented

0b1111 4KB granule not supported.

All other values are reserved.

TGran64, bits [27:24]

Indicates support for 64KB memory translation granule size. Defined values are:

ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

Page 334

TGran64 Meaning
0b0000 64KB granule supported.
0b1111 64KB granule not supported.

All other values are reserved.

TGran16, bits [23:20]

Indicates support for 16KB memory translation granule size. Defined values are:

TGran16 Meaning Applies when
0b0000 16KB granule not supported.
0b0001 16KB granule supported.
0b0010 16KB granule supports 52-bit

input and output addresses.
When FEAT_LPA2
is implemented

All other values are reserved.

BigEndEL0, bits [19:16]

Indicates support for mixed-endian at EL0 only. Defined values are:

BigEndEL0 Meaning
0b0000 No mixed-endian support at EL0. The SCTLR_EL1.E0E

bit has a fixed value.
0b0001 Mixed-endian support at EL0. The SCTLR_EL1.E0E bit

can be configured.

All other values are reserved.

This field is invalid and is RES0 if ID_AA64MMFR0_EL1.BigEnd is not 0b0000.

SNSMem, bits [15:12]

Indicates support for a distinction between Secure and Non-secure Memory. Defined values are:

SNSMem Meaning
0b0000 Does not support a distinction between Secure and Non-

secure Memory.
0b0001 Does support a distinction between Secure and Non-

secure Memory.

Note

If EL3 is implemented, the value 0b0000 is not permitted.

All other values are reserved.

BigEnd, bits [11:8]

Indicates support for mixed-endian configuration. Defined values are:

BigEnd Meaning
0b0000 No mixed-endian support. The SCTLR_ELx.EE bits have a

fixed value. See the BigEndEL0 field, bits[19:16], for
whether EL0 supports mixed-endian.

0b0001 Mixed-endian support. The SCTLR_ELx.EE and
SCTLR_EL1.E0E bits can be configured.

All other values are reserved.

ASIDBits, bits [7:4]

Number of ASID bits. Defined values are:

ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

Page 335

ASIDBits Meaning
0b0000 8 bits.
0b0010 16 bits.

All other values are reserved.

PARange, bits [3:0]

Physical Address range supported. Defined values are:

PARange Meaning
0b0000 32 bits, 4GB.
0b0001 36 bits, 64GB.
0b0010 40 bits, 1TB.
0b0011 42 bits, 4TB.
0b0100 44 bits, 16TB.
0b0101 48 bits, 256TB.
0b0110 52 bits, 4PB.

All other values are reserved.

The value 0b0110 is permitted only if the implementation includes FEAT_LPA, otherwise it is reserved.

Accessing ID_AA64MMFR0_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64MMFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0111 0b000

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

X[t, 64] = ID_AA64MMFR0_EL1;
elsif PSTATE.EL == EL2 then

X[t, 64] = ID_AA64MMFR0_EL1;
elsif PSTATE.EL == EL3 then

X[t, 64] = ID_AA64MMFR0_EL1;

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

Page 336

(old) htmldiff from- (new)

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature
Register 1

The ID_AA64MMFR1_EL1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
There are no configuration notes.

Attributes
ID_AA64MMFR1_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 CMOW TIDCP1 nTLBPA AFP HCX ETS TWED
XNX SpecSEI PAN LO HPDS VH VMIDBits HAFDBS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:60]

Reserved, RES0.

CMOW, bits [59:56]

Indicates support for cache maintenance instruction permission. Defined values are:

CMOW Meaning
0b0000 SCTLR_EL1.CMOW, SCTLR_EL2.CMOW, and

HCRX_EL2.CMOW bits are not implemented.
0b0001 SCTLR_EL1.CMOW is implemented. If EL2 is implemented,

SCTLR_EL2.CMOW and HCRX_EL2.CMOW bits are
implemented.

All other values are reserved.

FEAT_CMOW implements the functionality identified by the value 0b0001.

From Armv8.8, the only permitted value is 0b0001.

TIDCP1, bits [55:52]

Indicates whether SCTLR_EL1.TIDCP and SCTLR_EL2.TIDCP are implemented in AArch64 state. Defined values
are:

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 337

AArch64-hcrx_el2.html
AArch64-hcrx_el2.html

TIDCP1 Meaning
0b0000 SCTLR_EL1.TIDCP and SCTLR_EL2.TIDCP bits are not

implemented and are RES0.
0b0001 SCTLR_EL1.TIDCP bit is implemented. If EL2 is

implemented, SCTLR_EL2.TIDCP bit is implemented.

All other values are reserved.

FEAT_TIDCP1 implements the functionality identified by the value 0b0001.

From Armv8.8, the only permitted value is 0b0001.

nTLBPA, bits [51:48]

Indicates support for intermediate caching of translation table walks. Defined values are:

nTLBPA Meaning
0b0000 • The caching is indexed by the physical address of

the location holding the translation table entry.
• The caching is used for stage 1 translations and is

indexed by the intermediate physical address of the
location holding the translation table entry.

The intermediate caching of translation table walks might
include non-coherent physicalcaches of previous valid
translation caches.table entries since the last completed
relevant TLBI applicable to the PE where either:

0b0001 • The caching is indexed by the physical address of
the location holding the translation table entry.

• The caching is used for stage 1 translations and is
indexed by the intermediate physical address of the
location holding the translation table entry.

The intermediate caching of translation table walks does
not include non-coherent physicalcaches of previous valid
translation caches.table entries since the last completed
TLBI applicable to the PE where either:

Non-coherent physical translation caches are non-coherent caches of previous valid translation table entries since
the last completed relevant TLBI applicable to the PE, where either:

• The caching is indexed by the physical address of the location holding the translation table entry.
• The caching is used for stage 1 translations and is indexed by the intermediate physical address of the

location holding the translation table entry.

All other values are reserved.

FEAT_nTLBPA implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

AFP, bits [47:44]

Indicates support for FPCR.{AH, FIZ, NEP}. Defined values are:

AFP Meaning
0b0000 The FPCR.{AH, FIZ, NEP} fields are not supported.
0b0001 The FPCR.{AH, FIZ, NEP} fields are supported.

All other values are reserved.

FEAT_AFP implements the functionality identified by the value 0b0001.

From Armv8.7, if Advanced SIMD and floating-point is implemented, the only permitted value is 0b0001.

HCX, bits [43:40]

Indicates support for HCRX_EL2 and its associated EL3 trap. Defined values are:

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 338

AArch64-hcrx_el2.html

HCX Meaning
0b0000 HCRX_EL2 and its associated EL3 trap are not supported.
0b0001 HCRX_EL2 and its associated EL3 trap are supported.

All other values are reserved.

FEAT_HCX implements the functionality identified by the value 0b0001.

From Armv8.7, if EL2 is implemented, the only permitted value is 0b0001.

ETS, bits [39:36]

Indicates support for Enhanced Translation Synchronization. Defined values are:

ETS Meaning
0b0000 Enhanced Translation Synchronization is not supported.
0b0001 Enhanced Translation Synchronization is supported.

All other values are reserved.

FEAT_ETS implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.7, the only permitted value is 0b0001.

TWED, bits [35:32]

Indicates support for the configurable delayed trapping of WFE. Defined values are:

TWED Meaning
0b0000 Configurable delayed trapping of WFE is not supported.
0b0001 Configurable delayed trapping of WFE is supported.

All other values are reserved.

FEAT_TWED implements the functionality identified by the value 0b0001.

From Armv8.6, the permitted values are 0b0000 and 0b0001.

XNX, bits [31:28]

Indicates support for execute-never control distinction by Exception level at stage 2. Defined values are:

XNX Meaning
0b0000 Distinction between EL0 and EL1 execute-never control at

stage 2 not supported.
0b0001 Distinction between EL0 and EL1 execute-never control at

stage 2 supported.

All other values are reserved.

FEAT_XNX implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

SpecSEI, bits [27:24]
When FEAT_RAS is implemented:

Describes whether the PE can generate SError interrupt exceptions from speculative reads of memory, including
speculative instruction fetches. The defined values of this field are:

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 339

AArch64-hcrx_el2.html
AArch64-hcrx_el2.html

SpecSEI Meaning
0b0000 The PE never generates an SError interrupt due to an

External abort on a speculative read.
0b0001 The PE might generate an SError interrupt due to an

External abort on a speculative read.

All other values are reserved.

Otherwise:

Reserved, RES0.

PAN, bits [23:20]

Privileged Access Never. Indicates support for the PAN bit in PSTATE, SPSR_EL1, SPSR_EL2, SPSR_EL3, and
DSPSR_EL0. Defined values are:

PAN Meaning
0b0000 PAN not supported.
0b0001 PAN supported.
0b0010 PAN supported and AT S1E1RP and AT S1E1WP instructions

supported.
0b0011 PAN supported, AT S1E1RP and AT S1E1WP instructions

supported, and SCTLR_EL1.EPAN and SCTLR_EL2.EPAN
bits supported.

All other values are reserved.

FEAT_PAN implements the functionality identified by the value 0b0001.

FEAT_PAN2 implements the functionality added by the value 0b0010.

FEAT_PAN3 implements the functionality added by the value 0b0011.

In Armv8.1, the permitted values are 0b0001, 0b0010, and 0b0011.

From Armv8.2, the permitted values are 0b0010 and 0b0011.

From Armv8.7, the only permitted value is 0b0011.

LO, bits [19:16]

LORegions. Indicates support for LORegions. Defined values are:

LO Meaning
0b0000 LORegions not supported.
0b0001 LORegions supported.

All other values are reserved.

FEAT_LOR implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.

HPDS, bits [15:12]

Hierarchical Permission Disables. Indicates support for disabling hierarchical controls in translation tables.
Defined values are:

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 340

AArch64-spsr_el1.html
AArch64-spsr_el2.html
AArch64-spsr_el3.html
AArch64-dspsr_el0.html
AArch64-at-s1e1rp.html
AArch64-at-s1e1wp.html
AArch64-at-s1e1rp.html
AArch64-at-s1e1wp.html

HPDS Meaning
0b0000 Disabling of hierarchical controls not supported.
0b0001 Disabling of hierarchical controls supported with the

TCR_EL1.{HPD1, HPD0}, TCR_EL2.HPD or
TCR_EL2.{HPD1, HPD0}, and TCR_EL3.HPD bits.

0b0010 As for value 0b0001, and adds possible hardware allocation
of bits[62:59] of the Translation table descriptors from the
final lookup level for IMPLEMENTATION DEFINED use.

All other values are reserved.

FEAT_HPDS implements the functionality identified by the value 0b0001.

FEAT_HPDS2 implements the functionality identified by the value 0b0010.

From Armv8.1, the value 0b0000 is not permitted.

VH, bits [11:8]

Virtualization Host Extensions. Defined values are:

VH Meaning
0b0000 Virtualization Host Extensions not supported.
0b0001 Virtualization Host Extensions supported.

All other values are reserved.

FEAT_VHE implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.

VMIDBits, bits [7:4]

Number of VMID bits. Defined values are:

VMIDBits Meaning
0b0000 8 bits
0b0010 16 bits

All other values are reserved.

FEAT_VMID16 implements the functionality identified by the value 0b0010.

From Armv8.1, the permitted values are 0b0000 and 0b0010.

HAFDBS, bits [3:0]

Hardware updates to Access flag and Dirty state in translation tables. Defined values are:

HAFDBS Meaning
0b0000 Hardware update of the Access flag and dirty state are not

supported.
0b0001 Hardware update of the Access flag is supported.
0b0010 Hardware update of both the Access flag and dirty state is

supported.

All other values are reserved.

FEAT_HAFDBS implements the functionality identified by the values 0b0001 and 0b0010.

From Armv8.1, the permitted values are 0b0000, 0b0001, and 0b0010.

Accessing ID_AA64MMFR1_EL1
Accesses to this register use the following encodings in the System register encoding space:

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 341

AArch64-tcr_el1.html
AArch64-tcr_el2.html
AArch64-tcr_el2.html
AArch64-tcr_el3.html

MRS <Xt>, ID_AA64MMFR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0111 0b001

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

X[t, 64] = ID_AA64MMFR1_EL1;
elsif PSTATE.EL == EL2 then

X[t, 64] = ID_AA64MMFR1_EL1;
elsif PSTATE.EL == EL3 then

X[t, 64] = ID_AA64MMFR1_EL1;

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 342

(old) htmldiff from- (new)

ID_AA64PFR0_EL1, AArch64 Processor Feature
Register 0

The ID_AA64PFR0_EL1 characteristics are:

Purpose
Provides additional information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
The external register EDPFR gives information from this register.

Attributes
ID_AA64PFR0_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CSV3 CSV2 RME DIT AMU MPAM SEL2 SVE
RAS GIC AdvSIMD FP EL3 EL2 EL1 EL0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSV3, bits [63:60]

Speculative use of faulting data. Defined values are:

CSV3 Meaning
0b0000 This PE does not disclose whether data loaded under

speculation with a permission or domain fault can be used to
form an address or generate condition codes or SVE
predicate values to be used by other instructions in the
speculative sequence.

0b0001 Data loaded under speculation with a permission or domain
fault cannot be used to form an address, generate condition
codes, or generate SVE predicate values to be used by other
instructions in the speculative sequence. The execution
timing of any other instructions in the speculative sequence
is not a function of the data loaded under speculation.

All other values are reserved.

FEAT_CSV3 implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 343

ext-edpfr.html

CSV2, bits [59:56]

Speculative use of out of context branch targets. Defined values are:

CSV2 Meaning
0b0000 This PE does not disclose whether branch targets trained in

one hardware-described context can exploitatively control
speculative execution in a different hardware-described
context.

0b0001 Branch targets trained in one hardware-described context
can exploitatively control speculative execution in a different
hardware-described context only in a hard-to-determine way.
Contexts do not include the SCXTNUM_ELx register
contexts. Support for the SCXTNUM_ELx registers is defined
in ID_AA64PFR1_EL1.CSV2_frac.

0b0010 Branch targets trained in one hardware-described context
can exploitatively control speculative execution in a different
hardware-described context only in a hard-to-determine way.
The SCXTNUM_ELx registers are supported and the
contexts include the SCXTNUM_ELx register contexts.

All other values are reserved.

FEAT_CSV2 implements the functionality identified by the value 0b0001.

FEAT_CSV2_2 implements the functionality identified by the value 0b0010.

In Armv8.0, the permitted values are 0b0000, 0b0001, and 0b0010.

From Armv8.5, the permitted values are 0b0001 and 0b0010.

RME, bits [55:52]

Realm Management Extension (RME). Defined values are:

RME Meaning
0b0000 Realm Management Extension not implemented.
0b0001 RMEv1 is implemented.

All other values are reserved.

FEAT_RME implements the functionality identified by the value 0b0001.

DIT, bits [51:48]

Data Independent Timing. Defined values are:

DIT Meaning
0b0000 AArch64 does not guarantee constant execution time of any

instructions.
0b0001 AArch64 provides the PSTATE.DIT mechanism to guarantee

constant execution time of certain instructions.

All other values are reserved.

FEAT_DIT implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

AMU, bits [47:44]

Indicates support for Activity Monitors Extension. Defined values are:

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 344

AMU Meaning
0b0000 Activity Monitors Extension is not implemented.
0b0001 FEAT_AMUv1 is implemented.
0b0010 FEAT_AMUv1p1 is implemented. As 0b0001 and adds

support for virtualization of the activity monitor event
counters.

All other values are reserved.

FEAT_AMUv1 implements the functionality identified by the value 0b0001.

FEAT_AMUv1p1 implements the functionality identified by the value 0b0010.

In Armv8.0, the only permitted value is 0b0000.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.6, the permitted values are 0b0000, 0b0001, and 0b0010.

MPAM, bits [43:40]

Indicates the major version number of support for the MPAM Extension.

Defined values are:

MPAM Meaning
0b0000 The major version number of the MPAM extension is 0.
0b0001 The major version number of the MPAM extension is 1.

All other values are reserved.

When combined with the minor version number from ID_AA64PFR1_EL1.MPAM_frac, the "major.minor" version is:

MPAM Extension version MPAM MPAM_frac
Not implemented. 0b0000 0b0000
v0.1 is implemented. 0b0000 0b0001
v1.0 is implemented. 0b0001 0b0000
v1.1 is implemented. 0b0001 0b0001

For more information, see 'The Memory Partitioning and Monitoring (MPAM) Extension'.

SEL2, bits [39:36]

Secure EL2. Defined values are:

SEL2 Meaning
0b0000 Secure EL2 is not implemented.
0b0001 Secure EL2 is implemented.

All other values are reserved.

FEAT_SEL2 implements the functionality identified by the value 0b0001.

SVE, bits [35:32]

Scalable Vector Extension. Defined values are:

SVE Meaning
0b0000 SVE architectural state and programmers' model are not

implemented.
0b0001 SVE architectural state and programmers' model are

implemented.

All other values are reserved.

FEAT_SVE implements the functionality identified by the value 0b0001.

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 345

If implemented, refer to ID_AA64ZFR0_EL1 for information about which SVE instructions are available.

RAS, bits [31:28]

RAS Extension version. Defined values are:

RAS Meaning
0b0000 No RAS Extension.
0b0001 RAS Extension implemented.
0b0010 FEAT_RASv1p1 implemented and, if EL3 is implemented,

FEAT_DoubleFault implemented. As 0b0001, and adds
support for:

• If EL3 is implemented, FEAT_DoubleFault.
• Additional ERXMISC<m>_EL1 System registers.
• Additional System registers ERXPFGCDN_EL1,

ERXPFGCTL_EL1, and ERXPFGF_EL1, and the
SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to
support the optional RAS Common Fault Injection
Model Extension.

Error records accessed through System registers conform to
RAS System Architecture v1.1, which includes
simplifications to ERR<n>STATUS and support for the
optional RAS Timestamp and RAS Common Fault Injection
Model Extensions.

All other values are reserved.

FEAT_RAS implements the functionality identified by the value 0b0001.

FEAT_RASv1p1 and FEAT_DoubleFault implement the functionality identified by the value 0b0010.

In Armv8.0 and Armv8.1, the permitted values are 0b0000 and 0b0001.

In Armv8.2, the only permitted value is 0b0001.

From Armv8.4, if FEAT_DoubleFault is implemented, the only permitted value is 0b0010.

From Armv8.4, when FEAT_DoubleFault is not implemented, and ERRIDR_EL1 is 0, the permitted values are
IMPLEMENTATION DEFINED 0b0001 or 0b0010.

Note

When the value of this field is 0b0001, ID_AA64PFR1_EL1.RAS_frac
indicates whether FEAT_RASv1p1 is implemented.

GIC, bits [27:24]

System register GIC CPU interface. Defined values are:

GIC Meaning
0b0000 GIC CPU interface system registers not implemented.
0b0001 System register interface to versions 3.0 and 4.0 of the GIC

CPU interface is supported.
0b0011 System register interface to version 4.1 of the GIC CPU

interface is supported.

All other values are reserved.

AdvSIMD, bits [23:20]

Advanced SIMD. Defined values are:

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 346

AArch64-erxpfgcdn_el1.html
AArch64-erxpfgctl_el1.html
AArch64-erxpfgf_el1.html
ext-errnstatus.html
AArch64-erridr_el1.html

AdvSIMD Meaning
0b0000 Advanced SIMD is implemented, including support for

the following SISD and SIMD operations:
• Integer byte, halfword, word and doubleword

element operations.
• Single-precision and double-precision floating-

point arithmetic.
• Conversions between single-precision and half-

precision data types, and double-precision and
half-precision data types.

0b0001 As for 0b0000, and also includes support for half-
precision floating-point arithmetic.

0b1111 Advanced SIMD is not implemented.

All other values are reserved.

This field must have the same value as the FP field.

The permitted values are:

• 0b0000 in an implementation with Advanced SIMD support that does not include the FEAT_FP16
extension.

• 0b0001 in an implementation with Advanced SIMD support that includes the FEAT_FP16 extension.
• 0b1111 in an implementation without Advanced SIMD support.

FP, bits [19:16]

Floating-point. Defined values are:

FP Meaning
0b0000 Floating-point is implemented, and includes support for:

• Single-precision and double-precision floating-point
types.

• Conversions between single-precision and half-
precision data types, and double-precision and half-
precision data types.

0b0001 As for 0b0000, and also includes support for half-precision
floating-point arithmetic.

0b1111 Floating-point is not implemented.

All other values are reserved.

This field must have the same value as the AdvSIMD field.

The permitted values are:

• 0b0000 in an implementation with floating-point support that does not include the FEAT_FP16 extension.
• 0b0001 in an implementation with floating-point support that includes the FEAT_FP16 extension.
• 0b1111 in an implementation without floating-point support.

EL3, bits [15:12]

EL3 Exception level handling. Defined values are:

EL3 Meaning
0b0000 EL3 is not implemented.
0b0001 EL3 can be executed in AArch64 state only.
0b0010 EL3 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL2, bits [11:8]

EL2 Exception level handling. Defined values are:

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 347

EL2 Meaning
0b0000 EL2 is not implemented.
0b0001 EL2 can be executed in AArch64 state only.
0b0010 EL2 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL1, bits [7:4]

EL1 Exception level handling. Defined values are:

EL1 Meaning
0b0001 EL1 can be executed in AArch64 state only.
0b0010 EL1 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL0, bits [3:0]

EL0 Exception level handling. Defined values are:

EL0 Meaning
0b0001 EL0 can be executed in AArch64 state only.
0b0010 EL0 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

Accessing ID_AA64PFR0_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64PFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0100 0b000

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

X[t, 64] = ID_AA64PFR0_EL1;
elsif PSTATE.EL == EL2 then

X[t, 64] = ID_AA64PFR0_EL1;
elsif PSTATE.EL == EL3 then

X[t, 64] = ID_AA64PFR0_EL1;

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 348

(old) htmldiff from- (new)

ID_AA64PFR1_EL1, AArch64 Processor Feature
Register 1

The ID_AA64PFR1_EL1 characteristics are:

Purpose
Reserved for future expansion of information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
There are no configuration notes.

Attributes
ID_AA64PFR1_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 NMI CSV2_frac
RNDR_trap SME RES0 MPAM_frac RAS_frac MTE SSBS BT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:40]

Reserved, RES0.

NMI, bits [39:36]

Non-maskable Interrupt. Indicates support for Non-maskable interrupts. Defined values are:

NMI Meaning
0b0000 SCTLR_ELx.{SPINTMASK, NMI} and PSTATE.ALLINT with

its associated instructions are not supported.
0b0001 SCTLR_ELx.{SPINTMASK, NMI} and PSTATE.ALLINT with

its associated instructions are supported.

All other values are reserved.

FEAT_NMI implements the functionality identified by the value 0b0001.

From Armv8.8, the only permitted value is 0b0001.

CSV2_frac, bits [35:32]

CSV2 fractional field. Defined values are:

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Page 349

CSV2_frac Meaning
0b0000 This PE does not disclose whether branch targets

trained in one hardware-described context can
exploitatively control speculative execution in a different
hardware-described context. The SCXTNUM_ELx
registers are not supported.

0b0001 If ID_AA64PFR0_EL1.CSV2 is 0b0001, branch targets
trained in one hardware-described context can
exploitatively control speculative execution in a different
hardware-described context only in a hard-to-determine
way. Within a hardware-described context, branch
targets trained for branches situated at one address can
control speculative execution of branches situated at
different addresses only in a hard-to-determine way. The
SCXTNUM_ELx registers are not supported and the
contexts do not include the SCXTNUM_ELx register
contexts.

0b0010 If ID_AA64PFR0_EL1.CSV2 is 0b0001, branch targets
trained in one hardware-described context can
exploitatively control speculative execution in a different
hardware-described context only in a hard-to-determine
way. Within a hardware-described context, branch
targets trained for branches situated at one address can
control speculative execution of branches situated at
different addresses only in a hard-to-determine way. The
SCXTNUM_ELx registers are supported, but the
contexts do not include the SCXTNUM_ELx register
contexts.

All other values are reserved.

FEAT_CSV2_1p1 implements the functionality identified by the value 0b0001.

FEAT_CSV2_1p2 implements the functionality identified by the value 0b0010.

From Armv8.0, the permitted values are 0b0000, 0b0001, and 0b0010.

This field is valid only if ID_AA64PFR0_EL1.CSV2 is 0b0001.

RNDR_trap, bits [31:28]

Random Number trap to EL3 field. Defined values are:

RNDR_trap Meaning
0b0000 Trapping of RNDR and RNDRRS to EL3 is not

supported.
0b0001 Trapping of RNDR and RNDRRS to EL3 is supported.

SCR_EL3.TRNDR is present.

All other values are reserved.

FEAT_RNG_TRAP implements the functionality identified by the value 0b0001.

SME, bits [27:24]

Scalable Matrix Extension.Extension field. Defined values are:

SME Meaning
0b0000 SME architectural state and programmers' model are not

implemented.
0b0001 SME architectural state and programmers' model are

implemented.

All other values are reserved.

FEAT_SME implements the functionality identified by the value 0b0001.

From Armv9.2, the permitted values are 0b0000 and 0b0001.

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Page 350

AArch64-rndr.html
AArch64-rndrrs.html
AArch64-rndr.html
AArch64-rndrrs.html

If implemented, refer to ID_AA64SMFR0_EL1 and ID_AA64ZFR0_EL1 for information about which SME and SVE
instructions are available.

Bits [23:20]

Reserved, RES0.

MPAM_frac, bits [19:16]

Indicates the minor version number of support for the MPAM Extension.

Defined values are:

MPAM_frac Meaning
0b0000 The minor version number of the MPAM extension is 0.
0b0001 The minor version number of the MPAM extension is 1.

All other values are reserved.

When combined with the major version number from ID_AA64PFR0_EL1.MPAM, The combined "major.minor"
version is:

MPAM Extension version MPAM MPAM_frac
Not implemented. 0b0000 0b0000
v0.1 is implemented. 0b0000 0b0001
v1.0 is implemented. 0b0001 0b0000
v1.1 is implemented. 0b0001 0b0001

For more information, see 'The Memory Partitioning and Monitoring (MPAM) Extension'.

RAS_frac, bits [15:12]

RAS Extension fractional field. Defined values are:

RAS_frac Meaning
0b0000 If ID_AA64PFR0_EL1.RAS == 0b0001, RAS Extension

implemented.
0b0001 If ID_AA64PFR0_EL1.RAS == 0b0001, as 0b0000 and

adds support for:
• Additional ERXMISC<m>_EL1 System registers.
• Additional System registers ERXPFGCDN_EL1,

ERXPFGCTL_EL1, and ERXPFGF_EL1, and the
SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to
support the optional RAS Common Fault Injection
Model Extension.

Error records accessed through System registers conform
to RAS System Architecture v1.1, which includes
simplifications to ERR<n>STATUS, and support for the
optional RAS Timestamp and RAS Common Fault Injection
Model Extensions.

All other values are reserved.

FEAT_RASv1p1 implements the functionality identified by the value 0b0001.

This field is valid only if ID_AA64PFR0_EL1.RAS == 0b0001.

MTE, bits [11:8]

Support for the Memory Tagging Extension. Defined values are:

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Page 351

AArch64-erxpfgcdn_el1.html
AArch64-erxpfgctl_el1.html
AArch64-erxpfgf_el1.html
ext-errnstatus.html

MTE Meaning
0b0000 Memory Tagging Extension is not implemented.
0b0001 Instruction-only Memory Tagging Extension is implemented.
0b0010 Full Memory Tagging Extension is implemented.
0b0011 Memory Tagging Extension is implemented with support for

asymmetric Tag Check Fault handling.

All other values are reserved.

FEAT_MTE implements the functionality identified by the value 0b0001.

FEAT_MTE2 implements the functionality identified by the value 0b0010.

FEAT_MTE3 implements the functionality identified by the value 0b0011.

In Armv8.5, the permitted values are 0b0000, 0b0001,and 0b0010, and. 0b0011.

From Armv8.7, the value 0b00100b0001 is not permitted.

SSBS, bits [7:4]

Speculative Store Bypassing controls in AArch64 state. Defined values are:

SSBS Meaning
0b0000 AArch64 provides no mechanism to control the use of

Speculative Store Bypassing.
0b0001 AArch64 provides the PSTATE.SSBS mechanism to mark

regions that are Speculative Store Bypass Safe.
0b0010 As 0b0001, and adds the MSR and MRS instructions to

directly read and write the PSTATE.SSBS field.

All other values are reserved.

FEAT_SSBS implements the functionality identified by the value 0b0001.

FEAT_SSBS2 implements the functionality identified by the value 0b0010.

BT, bits [3:0]

Branch Target Identification mechanism support in AArch64 state. Defined values are:

BT Meaning
0b0000 The Branch Target Identification mechanism is not

implemented.
0b0001 The Branch Target Identification mechanism is implemented.

All other values are reserved.

FEAT_BTI implements the functionality identified by the value 0b0001.

From Armv8.5, the only permitted value is 0b0001.

Accessing ID_AA64PFR1_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64PFR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0100 0b001

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Page 352

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

X[t, 64] = ID_AA64PFR1_EL1;
elsif PSTATE.EL == EL2 then

X[t, 64] = ID_AA64PFR1_EL1;
elsif PSTATE.EL == EL3 then

X[t, 64] = ID_AA64PFR1_EL1;

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Page 353

(old) htmldiff from- (new)

ID_AA64SMFR0_EL1, SME Feature ID register 0
The ID_AA64SMFR0_EL1 characteristics are:

Purpose
Provides information about the implemented features of the AArch64 Scalable Matrix Extension.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration

Note

Prior to the introduction of the features described by this register, this
register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

Attributes
ID_AA64SMFR0_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

FA64 RES0 SMEver I16I64 RES0 F64F64 RES0 I8I32 F16F32B16F32RES0F32F32
RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FA64, bit [63]

Indicates support for execution of the full A64 instruction set when the PE is in Streaming SVE mode. Defined
values are:

FA64 Meaning
0b0 Only those A64 instructions defined as being legal can be

executed in Streaming SVE mode.
0b1 All implemented A64 instructions arecan legalbe for

executionexecuted in Streaming SVE mode, when enabled at
the current Exception level by SMCR_EL1.FA64,
SMCR_EL2.FA64, and SMCR_EL3.FA64.

FEAT_SME_FA64 implements the functionality identified by the value 0b1.

Bits [62:60]

Reserved, RES0.

SMEver, bits [59:56]

Indicates support for SME instructions when ID_AA64PFR1_EL1.SME is not zero. Defined values are:

ID_AA64SMFR0_EL1, SME Feature ID register 0

Page 354

AArch64-smcr_el1.html
AArch64-smcr_el2.html
AArch64-smcr_el3.html

SMEver Meaning
0b0000 The mandatorynon-optional SME instructions are

implemented.

All other values are reserved.

FEAT_SME implements the functionality identified by the value 0b0000, when ID_AA64PFR1_EL1.SME is not zero.

From Armv9.2, the only permitted value is 0b0000.

I16I64, bits [55:52]

Indicates SME support for instructions that accumulate into 64-bit integer elements in the ZA array. Defined
values are:

I16I64 Meaning
0b0000 Instructions that accumulate into 64-bit integer elements in

the ZA array are not implemented.
0b1111 The variants of the ADDHA, ADDVA, SMOPA, SMOPS,

SUMOPA, SUMOPS, UMOPA, UMOPS, USMOPA, and
USMOPS instructions that accumulate into 64-bit integer
tiles are implemented.

All other values are reserved.

FEAT_SME_I16I64 implements the functionality identified by the value 0b1111.

The only permitted values are 0b0000 and 0b1111.

Bits [51:49]

Reserved, RES0.

F64F64, bit [48]

Indicates SME support for instructions that accumulate into FP64 double-precision floating-point elements in the
ZA array. Defined values are:

F64F64 Meaning
0b0 Instructions that accumulate into double-precision floating-

point elements in the ZA array are not implemented.
0b1 The variants of the FMOPA and FMOPS instructions that

accumulate into double-precision tiles are implemented.

FEAT_SME_F64F64 implements the functionality identified by the value 0b1111.

Bits [47:40]

Reserved, RES0.

I8I32, bits [39:36]

Indicates SME support for instructions that accumulate 8-bit integer outer products into 32-bit integer tiles.
Defined values are:

I8I32 Meaning
0b0000 Instructions that accumulate 8-bit outer products into 32-bit

tiles are not implemented.
0b1111 The SMOPA, SMOPS, SUMOPA, SUMOPS, UMOPA, UMOPS,

USMOPA, and USMOPS instructions that accumulate 8-bit
outer products into 32-bit tiles are implemented.

All other values are reserved.

If FEAT_SME is implemented, the only permitted value is 0b1111.

ID_AA64SMFR0_EL1, SME Feature ID register 0

Page 355

F16F32, bit [35]

Indicates SME support for instructions that accumulate FP16 half-precision floating-point outer products into
FP32 single-precision floating-point tiles. Defined values are:

F16F32 Meaning
0b0 Instructions that accumulate half-precision outer products

into single-precision tiles are not implemented.
0b1 The FMOPA and FMOPS instructions that accumulate half-

precision outer products into single-precision tiles are
implemented.

If FEAT_SME is implemented, the only permitted value is 0b1.

B16F32, bit [34]

Indicates SME support for instructions that accumulate BFloat16 outer products into FP32 single-precision
floating-point tiles. Defined values are:

B16F32 Meaning
0b0 Instructions that accumulate BFloat16 outer products into

single-precision tiles are not implemented.
0b1 The BFMOPA and BFMOPS instructions that accumulate

BFloat16 outer products into single-precision tiles are
implemented.

If FEAT_SME is implemented, the only permitted value is 0b1.

Bit [33]

Reserved, RES0.

F32F32, bit [32]

Indicates SME support for instructions that accumulate FP32 single-precision floating-point outer products into
single-precision floating-point tiles. Defined values are:

F32F32 Meaning
0b0 Instructions that accumulate single-precision outer

products into single-precision tiles are not implemented.
0b1 The FMOPA and FMOPS instructions that accumulate

single-precision outer products into single-precision tiles
are implemented.

If FEAT_SME is implemented, the only permitted value is 0b1.

Bits [31:0]

Reserved, RES0.

Accessing ID_AA64SMFR0_EL1
This register is read-only and can be accessed from EL1 and higher.

This register is only accessible from the AArch64 state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64SMFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0100 0b101

ID_AA64SMFR0_EL1, SME Feature ID register 0

Page 356

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

X[t, 64] = ID_AA64SMFR0_EL1;
elsif PSTATE.EL == EL2 then

X[t, 64] = ID_AA64SMFR0_EL1;
elsif PSTATE.EL == EL3 then

X[t, 64] = ID_AA64SMFR0_EL1;

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64SMFR0_EL1, SME Feature ID register 0

Page 357

(old) htmldiff from- (new)

ID_AA64ZFR0_EL1, SVE Feature ID register 0
The ID_AA64ZFR0_EL1 characteristics are:

Purpose
Provides additional information about the implemented features of the AArch64 Scalable Vector Extension instruction
set, when either or both of ID_AA64PFR0_EL1.SVE and ID_AA64PFR1_EL1.SME are not zero.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers'.

Configuration

Note

Prior to the introduction of the features described by this register, this
register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

If ID_AA64PFR0_EL1.SVE is zero and ID_AA64PFR1_EL1.SME is not zero,
then SVE and SVE2 instructions can only be executed when the PE is in
Streaming SVE mode, except for those instructions that are defined as illegal
in Streaming SVE mode.

Attributes
ID_AA64ZFR0_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 F64MM F32MM RES0 I8MM SM4 RES0 SHA3
RES0 BF16 BitPerm RES0 AES SVEver

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:60]

Reserved, RES0.

F64MM, bits [59:56]

Indicates support for SVE FP64 double-precision floating-point matrix multiplication instructions. Defined values
are:

F64MM Meaning
0b0000 Double-precision matrix multiplication and related

instructions are not implemented.
0b0001 Double-precision variant of the FMMLA instruction, and

the LD1RO* instructions are implemented. The 128-bit
element variations of TRN1, TRN2, UZP1, UZP2, ZIP1, and
ZIP2 are also implemented.

All other values are reserved.

FEAT_F64MM implements the functionality identified by 0b0001.

ID_AA64ZFR0_EL1, SVE Feature ID register 0

Page 358

From Armv8.2, the permitted values are 0b0000 and 0b0001.

F32MM, bits [55:52]

Indicates support for the SVE FP32 single-precision floating-point matrix multiplication instruction. Defined values
are:

F32MM Meaning
0b0000 Single-precision matrix multiplication instruction is not

implemented.
0b0001 Single-precision variant of the FMMLA instruction is

implemented.

All other values are reserved.

FEAT_F32MM implements the functionality identified by 0b0001.

From Arm v8.2, the permitted values are 0b0000 and 0b0001.

Bits [51:48]

Reserved, RES0.

I8MM, bits [47:44]

Indicates support for SVE Int8 matrix multiplication instructions. Defined values are:

I8MM Meaning
0b0000 Int8 matrix multiplication instructions are not implemented.
0b0001 SMMLA, SUDOT, UMMLA, USMMLA, and USDOT

instructions are implemented.

All other values are reserved.

FEAT_I8MM implements the functionality identified by 0b0001.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ISAR1_EL1.I8MM.

From Armv8.6, the only permitted value is 0b0001.

SM4, bits [43:40]

Indicates support for SVE SM4 instructions. Defined values are:

SM4 Meaning
0b0000 SVE SM4 instructions are not implemented.
0b0001 SVE SM4E and SM4EKEY instructions are implemented.

All other values are reserved.

FEAT_SVE_SM4 implements the functionality identified by 0b0001.

Bits [39:36]

Reserved, RES0.

SHA3, bits [35:32]

Indicates support for the SVE SHA3 instructions. Defined values are:

SHA3 Meaning
0b0000 SVE SHA3 instructions are not implemented.
0b0001 SVE RAX1 instruction is implemented.

ID_AA64ZFR0_EL1, SVE Feature ID register 0

Page 359

AArch64-id_aa64isar1_el1.html

All other values are reserved.

FEAT_SVE_SHA3 implements the functionality identified by 0b0001.

Bits [31:24]

Reserved, RES0.

BF16, bits [23:20]

Indicates support for SVE BFloat16 instructions. Defined values are:

BF16 Meaning
0b0000 BFloat16 instructions are not implemented.
0b0001 BFCVT, BFCVTNT, BFDOT, BFMLALB, BFMLALT, and

BFMMLA instructions are implemented.
0b0010 As 0b0001, but the FPCR.EBF field is also supported.

All other values are reserved.

FEAT_BF16 implements the functionality identified by 0b0001.

FEAT_EBF16 implements the functionality identified by 0b0010.

This field must return the same value as ID_AA64ISAR1_EL1.BF16.

If FEAT_SME is implemented, the permitted values are 0b0001 and 0b0010.

Otherwise, from Armv8.6, the only permitted value is 0b0001.

BitPerm, bits [19:16]

Indicates support for SVE bit permute instructions. Defined values are:

BitPerm Meaning
0b0000 SVE bit permute instructions are not implemented.
0b0001 SVE BDEP, BEXT, and BGRP instructions are implemented.

All other values are reserved.

FEAT_SVE_BitPerm implements the functionality identified by 0b0001.

Bits [15:8]

Reserved, RES0.

AES, bits [7:4]

Indicates support for SVE AES instructions. Defined values are:

AES Meaning
0b0000 SVE AES instructions are not implemented.
0b0001 SVE AESE, AESD, AESMC, and AESIMC instructions are

implemented.
0b0010 As 0b0001, plus SVE PMULLB and PMULLT instructions with

64-bit source.

All other values are reserved.

FEAT_SVE_AES implements the functionality identified by the value 0b0001.

FEAT_SVE_PMULL128 implements the functionality identified by the value 0b0010.

The permitted values are 0b0000 and 0b0010.

ID_AA64ZFR0_EL1, SVE Feature ID register 0

Page 360

AArch64-id_aa64isar1_el1.html

SVEver, bits [3:0]

Indicates support for SVESVE. instructionsDefined whenvalues one or more ofare: ID_AA64PFR0_EL1.SVE and
ID_AA64PFR1_EL1.SME is not zero. Defined values are:

SVEver Meaning
0b0000 SVE instructions are implemented.
0b0001 The SVE and mandatorynon-optional SVE2 instructions are

implemented.

All other values are reserved.

Note

Irrespective of the value of ID_AA64ZFR0_EL1.SVEver, when the PE is in
Streaming SVE mode, software should not attempt to execute any of the
SVE and SVE2 instructions that are illegal in Streaming SVE mode.

FEAT_SVE2 implementsand FEAT_SME implement the functionality identified by the value 0b0001 only if.
ID_AA64PFR0_EL1.SVE is not zero.

From Armv9, if FEAT_SME is implemented, the only permitted value is 0b0001. This value indicates that SVE and
SVE2 instructions are implemented when the PE is in Streaming SVE mode.

Accessing ID_AA64ZFR0_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64ZFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0100 0b100

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && (IsFeatureImplemented(FEAT_FGT) || !IsZero(ID_AA64ZFR0_EL1) || boolean

IMPLEMENTATION_DEFINED "ID_AA64ZFR0_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
X[t, 64] = ID_AA64ZFR0_EL1;

elsif PSTATE.EL == EL2 then
X[t, 64] = ID_AA64ZFR0_EL1;

elsif PSTATE.EL == EL3 then
X[t, 64] = ID_AA64ZFR0_EL1;

3021/03/2022 2017:2902; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64ZFR0_EL1, SVE Feature ID register 0

Page 361

(old) htmldiff from- (new)

ID_MMFR4_EL1, AArch32 Memory Model Feature
Register 4

The ID_MMFR4_EL1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch32 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
AArch64 System register ID_MMFR4_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_MMFR4[31:0].

Attributes
ID_MMFR4_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
EVT CCIDX LSM HPDS CnP XNX AC2 SpecSEI

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

EVT, bits [31:28]

Enhanced Virtualization Traps. If EL2 is implemented, indicates support for the HCR2.{TTLBIS, TOCU, TICAB,
TID4} traps. Defined values are:

EVT Meaning
0b0000 HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are not

supported.
0b0001 HCR2.{TOCU, TICAB, TID4} traps are supported.

HCR2.TTLBIS trap is not supported.
0b0010 HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are supported.

All other values are reserved.

FEAT_EVT implements the functionality identified by the values 0b0001 and 0b0010.

If EL2 is not implemented supporting AArch32, the only permitted value is 0b0000.

In Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

From Armv8.5, the permitted values are:

ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4

Page 362

• 0b0000 when EL2 is not implemented or does not support AArch32.
• 0b0010 when EL2 is implemented and supports AArch32.

CCIDX, bits [27:24]

Support for use of the revised CCSIDR format and the presence of the CCSIDR2 is indicated. Defined values are:

CCIDX Meaning
0b0000 32-bit format implemented for all levels of the CCSIDR, and

the CCSIDR2 register is not implemented.
0b0001 64-bit format implemented for all levels of the CCSIDR, and

the CCSIDR2 register is implemented.

All other values are reserved.

FEAT_CCIDX implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

LSM, bits [23:20]

Indicates support for LSMAOE and nTLSMD bits in HSCTLR and SCTLR. Defined values are:

LSM Meaning
0b0000 LSMAOE and nTLSMD bits not supported.
0b0001 LSMAOE and nTLSMD bits supported.

All other values are reserved.

FEAT_LSMAOC implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

HPDS, bits [19:16]

Hierarchical permission disables bits in translation tables. Defined values are:

HPDS Meaning
0b0000 Disabling of hierarchical controls not supported.
0b0001 Supports disabling of hierarchical controls using the

TTBCR2.HPD0, TTBCR2.HPD1, and HTCR.HPD bits.
0b0010 As for value 0b0001, and adds possible hardware allocation

of bits[62:59] of the Translation table descriptors from the
final lookup level for IMPLEMENTATION DEFINED use.

All other values are reserved.

FEAT_AA32HPD implements the functionality identified by the value 0b0001.

FEAT_HPDS2 implements the functionality added by the value 0b0010.

Note

The value 0b0000 implies that the encoding for TTBCR2 is UNDEFINED.

CnP, bits [15:12]

Common not Private translations. Defined values are:

CnP Meaning
0b0000 Common not Private translations not supported.
0b0001 Common not Private translations supported.

All other values are reserved.

ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4

Page 363

AArch32-hsctlr.html
AArch32-sctlr.html
AArch32-ttbcr2.html
AArch32-ttbcr2.html
AArch32-htcr.html
AArch32-ttbcr2.html

FEAT_TTCNP implements the functionality identified by the value 0b0001.

From Armv8.2 the only permitted value is 0b0001.

XNX, bits [11:8]

Support for execute-never control distinction by Exception level at stage 2. Defined values are:

XNX Meaning
0b0000 Distinction between EL0 and EL1 execute-never control at

stage 2 not supported.
0b0001 Distinction between EL0 and EL1 execute-never control at

stage 2 supported.

All other values are reserved.

FEAT_XNX implements the functionality identified by the value 0b0001.

When FEAT_XNX is implemented:

• If all of the following conditions are true, it is IMPLEMENTATION DEFINED whether the value of
ID_MMFR4_EL1.XNX is 0b0000 or 0b0001:

◦ ID_AA64MMFR1_EL1.XNX ==1.
◦ EL2 cannot use AArch32.
◦ EL1 can use AArch32.

• If EL2 can use AArch32 then the only permitted value is 0b0001.

AC2, bits [7:4]

Indicates the extension of the ACTLR and HACTLR registers using ACTLR2 and HACTLR2. Defined values are:

AC2 Meaning
0b0000 ACTLR2 and HACTLR2 are not implemented.
0b0001 ACTLR2 and HACTLR2 are implemented.

All other values are reserved.

In Armv8.0 and Armv8.1 the permitted values are 0b0000 and 0b0001.

From Armv8.2, the only permitted value is 0b0001.

SpecSEI, bits [3:0]
When FEAT_RAS is implemented:

Describes whether the PE can generate SError interrupt exceptions from speculative reads of memory, including
speculative instruction fetches. The defined values of this field are:

SpecSEI Meaning
0b0000 The PE never generates an SError interrupt due to an

External abort on a speculative read.
0b0001 The PE might generate an SError interrupt due to an

External abort on a speculative read.

All other values are reserved.

Otherwise:

Reserved, RES0.

ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4

Page 364

AArch32-actlr.html
AArch32-hactlr.html
AArch32-actlr2.html
AArch32-hactlr2.html
AArch32-actlr2.html
AArch32-hactlr2.html
AArch32-actlr2.html
AArch32-hactlr2.html

Otherwise:
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

UNKNOWN
UNKNOWN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_MMFR4_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_MMFR4_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0010 0b110

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && (IsFeatureImplemented(FEAT_FGT) || !IsZero(ID_MMFR4_EL1) || boolean

IMPLEMENTATION_DEFINED "ID_MMFR4_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
X[t, 64] = ID_MMFR4_EL1;

elsif PSTATE.EL == EL2 then
X[t, 64] = ID_MMFR4_EL1;

elsif PSTATE.EL == EL3 then
X[t, 64] = ID_MMFR4_EL1;

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4

Page 365

(old) htmldiff from- (new)

ID_MMFR5_EL1, AArch32 Memory Model Feature
Register 5

The ID_MMFR5_EL1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch32 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
AArch64 System register ID_MMFR5_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_MMFR5[31:0].

Attributes
ID_MMFR5_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 nTLBPA ETS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:8]

Reserved, RES0.

nTLBPA, bits [7:4]

Indicates support for intermediate caching of translation table walks. Defined values are:

ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5

Page 366

nTLBPA Meaning
0b0000 • The caching is indexed by the physical address of

the location holding the translation table entry.
• The caching is used for stage 1 translations and is

indexed by the intermediate physical address of the
location holding the translation table entry.

The intermediate caching of translation table walks might
include non-coherent physicalcaches of previous valid
translation caches.table entries since the last completed
relevant TLBI applicable to the PE where either:

0b0001 • The caching is indexed by the physical address of
the location holding the translation table entry.

• The caching is used for stage 1 translations and is
indexed by the intermediate physical address of the
location holding the translation table entry.

The intermediate caching of translation table walks does
not include non-coherent physicalcaches of previous valid
translation caches.table entries since the last completed
TLBI applicable to the PE where either:

Non-coherent physical translation caches are non-coherent caches of previous valid translation table entries since
the last completed relevant TLBI applicable to the PE, where either:

• The caching is indexed by the physical address of the location holding the translation table entry.
• The caching is used for stage 1 translations and is indexed by the intermediate physical address of the

location holding the translation table entry.

All other values are reserved.

FEAT_nTLBPA implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

ETS, bits [3:0]

Indicates support for Enhanced Translation Synchronization. Defined values are:

ETS Meaning
0b0000 Enhanced Translation Synchronization is not supported.
0b0001 Enhanced Translation Synchronization is supported.

All other values are reserved.

FEAT_ETS implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.7, the only permitted value is 0b0001.

Otherwise:
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

UNKNOWN
UNKNOWN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_MMFR5_EL1
Accesses to this register use the following encodings in the System register encoding space:

ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5

Page 367

MRS <Xt>, ID_MMFR5_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0011 0b110

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && (IsFeatureImplemented(FEAT_FGT) || !IsZero(ID_MMFR5_EL1) || boolean

IMPLEMENTATION_DEFINED "ID_MMFR5_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
X[t, 64] = ID_MMFR5_EL1;

elsif PSTATE.EL == EL2 then
X[t, 64] = ID_MMFR5_EL1;

elsif PSTATE.EL == EL3 then
X[t, 64] = ID_MMFR5_EL1;

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5

Page 368

(old) htmldiff from- (new)

PMBSR_EL1, Profiling Buffer Status/syndrome Register
The PMBSR_EL1 characteristics are:

Purpose
Provides syndrome information to software when the buffer is disabled because the management interrupt has been
raised.

Configuration
This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMBSR_EL1 are
UNDEFINED.

Attributes
PMBSR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
EC RES0 DL EA S COLL MSS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

EC, bits [31:26]

Exception class

Top-level description of the cause of the buffer management event

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 369

EC Meaning MSS Applies
when

0b000000 Other buffer
management
event. All buffer
management
events other than
those described
by other defined
Exception class
codes.

MSS encoding for
other buffer
management
events

0b011110 Granule
Protection Check
fault, other than
GPF, on write to
Profiling Buffer.

MSS encoding for
Granule Protection
Check fault

When
FEAT_RME
is
implemented

0b011111 Buffer
management
event for an
IMPLEMENTATION
DEFINED reason.

MSS encoding for a
buffer management
event for an
IMPLEMENTATION
DEFINED reason

0b100100 Stage 1 Data
Abort exception
on write to
Profiling Buffer.

MSS encoding for
stage 1 or stage 2
Data AbortsAbort
exceptions on write
to buffer

0b100101 Stage 2 Data
Abort exception
on write to
Profiling Buffer.

MSS encoding for
stage 1 or stage 2
Data AbortsAbort
exceptions on write
to buffer

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Writing a reserved value to this field will make the value of this field UNKNOWN. Values that are not supported act
as reserved values when writing to this register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [25:20]

Reserved, RES0.

DL, bit [19]

Partial record lost.

Following a buffer management event other than an asynchronous External abort, indicates whether the last
record written to the Profiling Buffer is complete.

DL Meaning
0b0 PMBPTR_EL1 points to the first byte after the last complete

record written to the Profiling Buffer.
0b1 Part of a record was lost because of a buffer management event

or synchronous External abort. PMBPTR_EL1 might not point to
the first byte after the last complete record written to the buffer,
and so restarting collection might result in a data record stream
that software cannot parse. All records prior to the last record
have been written to the buffer.

When the buffer management event was because of an asynchronous External abort, this bit is set to 1 and
software must not assume that any valid data has been written to the Profiling Buffer.

This bit is RES0 if the PE never sets this bit as a result of a buffer management event caused by an asynchronous
External abort.

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 370

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [18]

External abort.

EA Meaning
0b0 An External abort has not been asserted.
0b1 An External abort has been asserted and detected by the

Statistical Profiling Unit.

This bit is RES0 if the PE never sets this bit as the result of an External abort.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S, bit [17]

Service

S Meaning
0b0 PMBIRQ is not asserted.
0b1 PMBIRQ is asserted. All profiling data has either been written to

the buffer or discarded.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COLL, bit [16]

Collision detected.

COLL Meaning
0b0 No collision events detected.
0b1 At least one collision event was recorded.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MSS, bits [15:0]

Management Event Specific Syndrome.

Contains syndrome specific to the management event.

The syndrome contents for each management event are described in the following sections.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MSS encoding for stage 1 or stage 2 Data AbortsAbort
exceptions on write to buffer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 FSC

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 371

Bits [15:6]

Reserved, RES0.

FSC, bits [5:0]

Fault status code

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 372

FSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When

FEAT_LPA2 is
implemented

0b001100 Permission fault, level 0. When
FEAT_LPA2 is
implemented

0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort,

not on translation table walk
or hardware update of
translation table.

0b010001 Asynchronous External abort.
0b010011 Synchronous External abort

on translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented

0b010100 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 0.

0b010101 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 1.

0b010110 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 2.

0b010111 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 3.

0b011011 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented
and FEAT_RAS
is not
implemented

0b100001 Alignment fault.
0b100011 Granule Protection Fault on

translation table walk or
hardware update of
translation table, level -1.

When
FEAT_RME is
implemented
and FEAT_LPA2
is implemented

0b100100 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RME is
implemented

0b100101 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RME is
implemented

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 373

0b100110 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RME is
implemented

0b100111 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RME is
implemented

0b101000 Granule Protection Fault, not
on translation table walk or
hardware update of
translation table.

When
FEAT_RME is
implemented

0b101001 Address size fault, level -1. When
FEAT_LPA2 is
implemented

0b101011 Translation fault, level -1. When
FEAT_LPA2 is
implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic

hardware update fault.
When
FEAT_HAFDBS
is implemented

All other values are reserved.

It is IMPLEMENTATION DEFINED whether each of the Access Flag fault, asynchronous External abort and
synchronous External abort, Alignment fault, and TLB Conflict abort values can be generated by the
PE. For more information see 'Faults and Watchpoints'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MSS encoding for other buffer management events
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 BSC

Bits [15:6]

Reserved, RES0.

BSC, bits [5:0]

Buffer status code

BSC Meaning
0b000000 Buffer not filled
0b000001 Buffer filled

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

Writing a reserved value to this field will make the value of this field UNKNOWN. Values that are not
supported act as reserved values when writing to this register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MSS encoding for Granule Protection Check fault
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 374

Bits [15:0]

Reserved, RES0.

MSS encoding for a buffer management event for an
IMPLEMENTATION DEFINED reason

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [15:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMBSR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMBSR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1010 0b011

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 375

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMBSR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
X[t, 64] = NVMem[0x820];

else
X[t, 64] = PMBSR_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||

(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

X[t, 64] = PMBSR_EL1;
elsif PSTATE.EL == EL3 then

X[t, 64] = PMBSR_EL1;

MSR PMBSR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1010 0b011

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 376

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMBSR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
NVMem[0x820] = X[t, 64];

else
PMBSR_EL1 = X[t, 64];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||

(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMBSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then

PMBSR_EL1 = X[t, 64];

3021/03/2022 2017:2902; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 377

(old) htmldiff from- (new)

PMCR_EL0, Performance Monitors Control Register
The PMCR_EL0 characteristics are:

Purpose
Provides details of the Performance Monitors implementation, including the number of counters implemented, and
configures and controls the counters.

Configuration
AArch64 System register PMCR_EL0 bits [31:0] are architecturally mapped to AArch32 System register PMCR[31:0].

AArch64 System register PMCR_EL0 bits [7:0] are architecturally mapped to External register PMCR_EL0[7:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCR_EL0 are
UNDEFINED.

Attributes
PMCR_EL0 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 FZS
IMP IDCODE N RES0FZORES0 LP LC DP X D C P E

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:33]

Reserved, RES0.

FZS, bit [32]
When FEAT_SPEv1p2 is implemented:

Freeze-on-SPE event. Stop counters when PMBLIMITR_EL1.{PMFZ,E} == {1,1} and PMBSR_EL1.S == 1.

In the description of this field:

• If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, PMN is PMCR_EL0.N.

FZS Meaning
0b0 Do not freeze on Statistical Profiling Buffer Management event.
0b1 Event counter PMEVCNTR<n>_EL0 does not count following a

Statistical Profiling Buffer Management event if n is in the
range of affected event counters.

If PMN is not 0, this field affects the operation of event counters in the range [0 .. (PMN-1)].

This field does not affect the operation of other event counters and PMCCNTR_EL0.

The operation of this field applies even when EL2 is disabled in the current Security state.

PMCR_EL0, Performance Monitors Control Register

Page 378

AArch32-pmcr.html
AArch64-pmblimitr_el1.html
AArch64-mdcr_el2.html
AArch64-pmevcntrn_el0.html
AArch64-pmccntr_el0.html

The reset behavior of this field is:

• On a Warm reset:
◦ When AArch32 is supported, this field resets to 0.
◦ When the implementation only supports execution in AArch64 state, this field resets to an

architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IMP, bits [31:24]
When FEAT_PMUv3p7 is not implemented:

Implementer code.

If this field is zero, then PMCR_EL0.IDCODE is RES0 and software must use MIDR_EL1 to identify the PE.

Otherwise, this field and PMCR_EL0.IDCODE identify the PMU implementation to software. The implementer
codes are allocated by Arm. A non-zero value has the same interpretation as MIDR_EL1.Implementer.

Use of this field is deprecated.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

IDCODE, bits [23:16]
When PMCR_EL0.IMP != 0b00000000:

Identification code. Use of this field is deprecated.

Each implementer must maintain a list of identification codes that are specific to the implementer. A specific
implementation is identified by the combination of the implementer code and the identification code.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RES0.

N, bits [15:11]

Indicates the number of event counters implemented. This value is in the range of 0b00000-0b11111. If the value is
0b00000, then only PMCCNTR_EL0 is implemented. If the value is 0b11111, then PMCCNTR_EL0 and 31 event
counters are implemented.

When EL2 is implemented and enabled for the current Security state, reads of this field from EL1 and EL0 return
the value of MDCR_EL2.HPMN.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

PMCR_EL0, Performance Monitors Control Register

Page 379

AArch64-midr_el1.html
AArch64-midr_el1.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-mdcr_el2.html

Bit [10]

Reserved, RES0.

FZO, bit [9]
When FEAT_PMUv3p7 is implemented:

Freeze-on-overflow. Stop event counters on overflow.

In the description of this field:

• If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, PMN is PMCR_EL0.N.

FZO Meaning
0b0 Do not freeze on overflow.
0b1 Event counter PMEVCNTR<n>_EL0 does not count when

PMOVSCLR_EL0[(PMN-1):0] is nonzero and n is in the range of
affected event counters.

If PMN is not 0, this field affects the operation of event counters in the range [0 .. (PMN-1)].

This field does not affect the operation of other event counters and PMCCNTR_EL0.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [8]

Reserved, RES0.

LP, bit [7]
When FEAT_PMUv3p5 is implemented:

Long event counter enable. Determines when unsigned overflow is recorded by an event counter overflow bit.

In the description of this field:

• If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, PMN is PMCR_EL0.N.

LP Meaning
0b0 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[31:0].
0b1 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[63:0].

If PMN is not 0, this field affects the operation of event counters in the range [0 .. (PMN-1)].

This field does not affect the operation of other event counters and PMCCNTR_EL0.

PMCR_EL0, Performance Monitors Control Register

Page 380

AArch64-mdcr_el2.html
AArch64-pmevcntrn_el0.html
AArch64-pmovsclr_el0.html
AArch64-pmccntr_el0.html
AArch64-mdcr_el2.html
AArch64-pmevcntrn_el0.html
AArch64-pmevcntrn_el0.html
AArch64-pmccntr_el0.html

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LC, bit [6]
When AArch32 is supported:

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter overflow bit.

LC Meaning
0b0 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR_EL0[31:0].
0b1 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR_EL0[63:0].

Arm deprecates use of PMCR_EL0.LC = 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

DP, bit [5]
When EL3 is implemented or (FEAT_PMUv3p1 is implemented and EL2 is implemented):

Disable cycle counter when event counting is prohibited.

DP Meaning
0b0 Cycle counting by PMCCNTR_EL0 is not affected by this

mechanism.
0b1 Cycle counting by PMCCNTR_EL0 is disabled in prohibited

regions and when event counting is frozen:
• If FEAT_PMUv3p1 is implemented, EL2 is implemented,

and MDCR_EL2.HPMD is 1, then cycle counting by
PMCCNTR_EL0 is disabled at EL2.

• If FEAT_PMUv3p7 is implemented, EL3 is implemented
and using AArch64, and MDCR_EL3.MPMX is 1, then cycle
counting by PMCCNTR_EL0 is disabled at EL3.

• If FEAT_PMUv3p7 is implemented and event counting is
frozen by PMCR_EL0.FZO, then cycle counting by
PMCCNTR_EL0PMCCNTR is disabled.

• If EL3 is implemented, MDCR_EL3.SPME is 0, and either
FEAT_PMUv3p7 is not implemented or MDCR_EL3.MPMX
is 0, then cycle counting by PMCCNTR_EL0 is disabled at
EL3 and in Secure state.

If MDCR_EL2.HPMN is not 0, this is when event counting by
event counters in the range [0..(MDCR_EL2.HPMN-1)] is
prohibited or frozen.

For more information, see 'Prohibiting event and cycle counting'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMCR_EL0, Performance Monitors Control Register

Page 381

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-mdcr_el2.html
AArch64-pmccntr_el0.html
AArch64-mdcr_el3.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr.html
AArch64-mdcr_el3.html
AArch64-mdcr_el3.html
AArch64-pmccntr_el0.html
AArch64-mdcr_el2.html
AArch64-mdcr_el2.html

Otherwise:

Reserved, RES0.

X, bit [4]
When the implementation includes a PMU event export bus:

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

X Meaning
0b0 Do not export events.
0b1 Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus to another
device, for example to an OPTIONAL trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or signaling to a
cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

D, bit [3]
When AArch32 is supported:

Clock divider.

D Meaning
0b0 When enabled, PMCCNTR_EL0 counts every clock cycle.
0b1 When enabled, PMCCNTR_EL0 counts once every 64 clock

cycles.

If PMCR_EL0.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR_EL0.D = 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

C Meaning
0b0 No action.
0b1 Reset PMCCNTR_EL0 to zero.

Note

PMCR_EL0, Performance Monitors Control Register

Page 382

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html

Resetting PMCCNTR_EL0 does not change the cycle counter overflow bit. If
FEAT_PMUv3p5 is implemented, the value of PMCR_EL0.LC is ignored, and
bits [63:0] of the cycle counter are reset.

Access to this field is WO/RAZ.

P, bit [1]

Event counter reset.

In the description of this field:

• If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, PMN is PMCR_EL0.N.

P Meaning
0b0 No action.
0b1 If n is in the range of affected event counters, resets each event

counter PMEVCNTR<n>_EL0 to zero.

The effects of writing to this bit are:

• If EL2 is implemented and enabled in the current Security state, in EL0 and EL1, if PMN is not 0, a write
of 1 to this bit resets event counters in the range [0 .. (PMN-1)].

• If EL2 is disabled in the current Security state, a write of 1 to this bit resets all the event counters.
• In EL2 and EL3, a write of 1 to this bit resets all the event counters.
• This field does not affect the operation of other event counters and PMCCNTR_EL0.

Note

Resetting the event counters does not change the event counter overflow
bits. If FEAT_PMUv3p5 is implemented, the values of MDCR_EL2.HLP and
PMCR_EL0.LP are ignored, and bits [63:0] of all affected event counters are
reset.

Access to this field is WO/RAZ.

E, bit [0]

Enable.

If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

If EL2 is not implemented, PMN is PMCR_EL0.N.

E Meaning
0b0 PMCCNTR_EL0 is disabled and event counters

PMEVCNTR<n>_EL0, where n is in the range of affected event
counters, are disabled.

0b1 PMCCNTR_EL0 and event counters PMEVCNTR<n>_EL0,
where n is in the range of affected event counters, are enabled
by PMCNTENSET_EL0.

If PMN is not 0, this field affects the operation of event counters in the range [0 .. (PMN-1)].

This field does not affect the operation of other event counters.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

PMCR_EL0, Performance Monitors Control Register

Page 383

AArch64-pmccntr_el0.html
AArch64-mdcr_el2.html
AArch64-pmevcntrn_el0.html
AArch64-pmccntr_el0.html
AArch64-mdcr_el2.html
AArch64-mdcr_el2.html
AArch64-pmccntr_el0.html
AArch64-pmevcntrn_el0.html
AArch64-pmccntr_el0.html
AArch64-pmevcntrn_el0.html
AArch64-pmcntenset_el0.html

• On a Warm reset, this field resets to 0.

Accessing PMCR_EL0
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b000

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
X[t, 64] = PMCR_EL0;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

X[t, 64] = PMCR_EL0;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
X[t, 64] = PMCR_EL0;

elsif PSTATE.EL == EL3 then
X[t, 64] = PMCR_EL0;

MSR PMCR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b000

PMCR_EL0, Performance Monitors Control Register

Page 384

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMCR_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMCR_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCR_EL0 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMCR_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMCR_EL0 = X[t, 64];

elsif PSTATE.EL == EL3 then
PMCR_EL0 = X[t, 64];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCR_EL0, Performance Monitors Control Register

Page 385

(old) htmldiff from- (new)

SCR_EL3, Secure Configuration Register
The SCR_EL3 characteristics are:

Purpose
Defines the configuration of the current Security state. It specifies:

• The Security state of EL0, EL1, and EL2. The Security state is Secure, Non-secure, or Realm.
• The Execution state at lower Exception levels.
• Whether IRQ, FIQ, SError interrupts, and External abort exceptions are taken to EL3.
• Whether various operations are trapped to EL3.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to SCR_EL3 are UNDEFINED.

Attributes
SCR_EL3 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 565554 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0NSE RES0 GPF RES0 EnTP2TRNDRRES0HXEnADEnEnAS0AMVOFFENTMETWEDEL
TWEDEL TWEDEnECVEnFGTEnATAEnSCXT RES0 FIENNMEAEASEEEL2APIAPKTERRTLORTWETWISTRW SIF HCE SMD RES0 RES1 EA FIQ IRQ NS
31 30 29 28 27 26 25 242322 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit [63]

Reserved, RES0.

NSE, bit [62]
When FEAT_RME is implemented:

This field, evaluated with SCR_EL3.NS, selects the Security state of EL2 and lower Exception levels.

For a description of the values derived by evaluating NS and NSE together, see SCR_EL3.NS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [61:49]

Reserved, RES0.

SCR_EL3, Secure Configuration Register

Page 386

GPF, bit [48]
When FEAT_RME is implemented:

Controls the reporting of Granule protection faults at EL0, EL1 and EL2.

GPF Meaning
0b0 This control does not cause exceptions to be routed from EL0,

EL1 or EL2 to EL3.
0b1 GPFs at EL0, EL1 and EL2 are routed to EL3 and reported as

Granule Protection Check exceptions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [47:42]

Reserved, RES0.

EnTP2, bit [41]
When FEAT_SME is implemented:

Traps instructions executed at EL2, EL1, and EL0 that access TPIDR2_EL0 to EL3. The exception is reported using
ESR_ELx.EC value 0x18.

EnTP2 Meaning
0b0 This control causes execution of these instructions at EL2,

EL1, and EL0 to be trapped.
0b1 This control does not cause execution of any instructions to

be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRNDR, bit [40]
When FEAT_RNG_TRAP is implemented:

Controls trapping of reads of RNDR and RNDRRS. The exception is reported using ESR_ELx.EC value 0x18.

TRNDR Meaning
0b0 This control does not cause RNDR and RNDRRS to be

trapped.
When FEAT_RNG is implemented:

• ID_AA64ISAR0_EL1.RNDR returns the value 0b0001.
When FEAT_RNG is not implemented:

• ID_AA64ISAR0_EL1.RNDR returns the value 0b0000.
• MRS reads of RNDR and RNDRRS are UNDEFINED.

0b1 ID_AA64ISAR0_EL1.RNDR returns the value 0b0001.
Any attempt to read RNDR or RNDRRS is trapped to EL3.

When FEAT_RNG is not implemented, Arm recommends that SCR_EL3.TRNDR is initialized before entering
Exception levels below EL3 and not subsequently changed.

SCR_EL3, Secure Configuration Register

Page 387

AArch64-tpidr2_el0.html
AArch64-rndr.html
AArch64-rndrrs.html
AArch64-rndr.html
AArch64-rndrrs.html
AArch64-rndr.html
AArch64-rndrrs.html
AArch64-rndr.html
AArch64-rndrrs.html

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [39]

Reserved, RES0.

HXEn, bit [38]
When FEAT_HCX is implemented:

Enables access to the HCRX_EL2 register at EL2 from EL3.

HXEn Meaning
0b0 Accesses at EL2 to HCRX_EL2 are trapped to EL3. Indirect

reads of HCRX_EL2 return 0.
0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ADEn, bit [37]
When FEAT_LS64_ACCDATA is implemented:

Enables access to the ACCDATA_EL1 register at EL1 and EL2.

ADEn Meaning
0b0 Accesses to ACCDATA_EL1 at EL1 and EL2 are trapped to

EL3, unless the accesses are trapped to EL2 by the EL2 fine-
grained trap.

0b1 This control does not cause accesses to ACCDATA_EL1 to be
trapped.

If the HFGWTR_EL2.nACCDATA_EL1 or HFGRTR_EL2.nACCDATA_EL1 traps are enabled, they take priority over
this trap.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnAS0, bit [36]
When FEAT_LS64_ACCDATA is implemented:

Traps execution of an ST64BV0 instruction at EL0, EL1, or EL2 to EL3.

SCR_EL3, Secure Configuration Register

Page 388

AArch64-hcrx_el2.html
AArch64-hcrx_el2.html
AArch64-hcrx_el2.html
AArch64-accdata_el1.html
AArch64-accdata_el1.html
AArch64-accdata_el1.html
AArch64-hfgwtr_el2.html
AArch64-hfgrtr_el2.html

EnAS0 Meaning
0b0 EL0 execution of an ST64BV0 instruction is trapped to EL3,

unless it is trapped to EL1 by SCTLR_EL1.EnAS0, or to EL2
by either HCRX_EL2.EnAS0 or SCTLR_EL2.EnAS0.
EL1 execution of an ST64BV0 instruction is trapped to EL3,
unless it is trapped to EL2 by HCRX_EL2.EnAS0.
EL2 execution of an ST64BV0 instruction is trapped to EL3.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AMVOFFEN, bit [35]
When FEAT_AMUv1p1 is implemented:

Activity Monitors Virtual Offsets Enable.

AMVOFFEN Meaning
0b0 Accesses to AMEVCNTVOFF0<n>_EL2 and

AMEVCNTVOFF1<n>_EL2 at EL2 are trapped to EL3.
Indirect reads of the virtual offset registers are zero.

0b1 Accesses to AMEVCNTVOFF0<n>_EL2 and
AMEVCNTVOFF1<n>_EL2 are not affected by this
field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TME, bit [34]
When FEAT_TME is implemented:

Enables access to the TSTART, TCOMMIT, TTEST and TCANCEL instructions at EL0, EL1 and EL2.

TME Meaning
0b0 EL0, EL1 and EL2 accesses to TSTART, TCOMMIT, TTEST and

TCANCEL instructions are UNDEFINED.
0b1 This control does not cause any instruction to be UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCR_EL3, Secure Configuration Register

Page 389

AArch64-hcrx_el2.html
AArch64-hcrx_el2.html
AArch64-amevcntvoff0n_el2.html
AArch64-amevcntvoff1n_el2.html
AArch64-amevcntvoff0n_el2.html
AArch64-amevcntvoff1n_el2.html

TWEDEL, bits [33:30]
When FEAT_TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when SCR_EL3.TWEDEn is 1, encodes the minimum delay in taking a
trap of WFE* caused by SCR_EL3.TWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [29]
When FEAT_TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by SCR_EL3.TWE.

Traps are reported using an ESR_ELx.EC value of 0x01.

TWEDEn Meaning
0b0 The delay for taking the trap is IMPLEMENTATION DEFINED.
0b1 The delay for taking the trap is at least the number of

cycles defined in SCR_EL3.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ECVEn, bit [28]
When FEAT_ECV is implemented:

ECV Enable. Enables access to the CNTPOFF_EL2 register.

ECVEn Meaning
0b0 EL2 accesses to CNTPOFF_EL2 are trapped to EL3, and the

value of CNTPOFF_EL2 is treated as 0 for all purposes other
than direct reads or writes to the register from EL3.

0b1 EL2 accesses to CNTPOFF_EL2 are not trapped to EL3 by
this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCR_EL3, Secure Configuration Register

Page 390

AArch64-cntpoff_el2.html
AArch64-cntpoff_el2.html
AArch64-cntpoff_el2.html
AArch64-cntpoff_el2.html

FGTEn, bit [27]
When FEAT_FGT is implemented:

Fine-Grained Traps Enable. When EL2 is implemented, enables the traps to EL2 controlled by HAFGRTR_EL2,
HDFGRTR_EL2, HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2, and HFGWTR_EL2, and controls access to those
registers.

Note

If EL2 is not implemented but EL3 is implemented, FEAT_FGT implements
the MDCR_EL3.TDCC traps.

FGTEn Meaning
0b0 EL2 accesses to HAFGRTR_EL2, HDFGRTR_EL2,

HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2 and
HFGWTR_EL2 registers are trapped to EL3, and the traps to
EL2 controlled by those registers are disabled.

0b1 EL2 accesses to HAFGRTR_EL2, HDFGRTR_EL2,
HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2 and
HFGWTR_EL2 registers are not trapped to EL3 by this
mechanism.

Traps caused by accesses to the fine-grained trap registers are reported using an ESR_ELx.EC value of 0x18 and
its associated ISS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ATA, bit [26]
When FEAT_MTE2 is implemented:

Allocation Tag Access. Controls access at EL2, EL1 and EL0 to Allocation Tags.

ATA Meaning
0b0 Access to Allocation Tags is prevented. Accesses at EL1 and

EL2 to GCR_EL1, RGSR_EL1, TFSR_EL1, TFSR_EL2 or
TFSRE0_EL1 that are not UNDEFINED or trapped to a lower
Exception level are trapped to EL3. Accesses at EL2 to
TFSR_EL12 that are not UNDEFINED are trapped to EL3.

0b1 This control does not prevent access to Allocation Tags.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnSCXT, bit [25]
When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Enable access to the SCXTNUM_EL2, SCXTNUM_EL1, and SCXTNUM_EL0 registers.

SCR_EL3, Secure Configuration Register

Page 391

AArch64-hafgrtr_el2.html
AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch64-hfgrtr_el2.html
AArch64-hfgwtr_el2.html
AArch64-mdcr_el3.html
AArch64-hafgrtr_el2.html
AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch64-hfgrtr_el2.html
AArch64-hfgwtr_el2.html
AArch64-hafgrtr_el2.html
AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch64-hfgrtr_el2.html
AArch64-hfgwtr_el2.html
AArch64-gcr_el1.html
AArch64-rgsr_el1.html
AArch64-tfsr_el1.html
AArch64-tfsr_el2.html
AArch64-tfsre0_el1.html
AArch64-tfsr_el1.html
AArch64-scxtnum_el2.html
AArch64-scxtnum_el1.html
AArch64-scxtnum_el0.html

EnSCXT Meaning
0b0 Accesses at EL0, EL1 and EL2 to SCXTNUM_EL0,

SCXTNUM_EL1, or SCXTNUM_EL2 registers are trapped
to EL3 if they are not trapped by a higher priority
exception, and the values of these registers are treated as
0.

0b1 This control does not cause any accesses to be trapped, or
register values to be treated as 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [24:22]

Reserved, RES0.

FIEN, bit [21]
When FEAT_RASv1p1 is implemented:

Fault Injection enable. Trap accesses to the registers ERXPFGCDN_EL1, ERXPFGCTL_EL1, and ERXPFGF_EL1
from EL1 and EL2 to EL3, reported using an ESR_ELx.EC value of 0x18.

FIEN Meaning
0b0 Accesses to the specified registers from EL1 and EL2

generate a Trap exception to EL3.
0b1 This control does not cause any instructions to be trapped.

If EL3 is not implemented, the Effective value of SCR_EL3.FIEN is 0b1.

If ERRIDR_EL1.NUM is zero, meaning no error records are implemented, or no error record accessible using
System registers is owned by a node that implements the RAS Common Fault Injection Model Extension, then this
bit might be RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NMEA, bit [20]
When FEAT_DoubleFault is implemented:

Non-maskable External Aborts. When SCR_EL3.EA == 1, controls whether PSTATE.A masks SError interrupts at
EL3.

NMEA Meaning
0b0 If SCR_EL3.EA == 1, asserted SError interrupts are not

taken at EL3 if PSTATE.A == 1.
0b1 If SCR_EL3.EA == 1, asserted SError interrupts are taken at

EL3 regardless of the value of PSTATE.A.

When SCR_EL3.EA == 0:

• Asserted SError interrupts are not taken at EL3 regardless of the value of PSTATE.A and this field.
• This field is ignored and its Effective value is 0.

SCR_EL3, Secure Configuration Register

Page 392

AArch64-scxtnum_el0.html
AArch64-scxtnum_el1.html
AArch64-scxtnum_el2.html
AArch64-erxpfgcdn_el1.html
AArch64-erxpfgctl_el1.html
AArch64-erxpfgf_el1.html
AArch64-erridr_el1.html

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EASE, bit [19]
When FEAT_DoubleFault is implemented:

External aborts to SError interrupt vector.

EASE Meaning
0b0 Synchronous External abort exceptions taken to EL3 are

taken to the appropriate synchronous exception vector offset
from VBAR_EL3.

0b1 Synchronous External abort exceptions taken to EL3 are
taken to the appropriate SError interrupt vector offset from
VBAR_EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EEL2, bit [18]
When FEAT_SEL2 is implemented:

Secure EL2 Enable.

EEL2 Meaning
0b0 All behaviors associated with Secure EL2 are disabled. All

registers, including timer registers, defined by FEAT_SEL2
are UNDEFINED, and those timers are disabled.

0b1 All behaviors associated with Secure EL2 are enabled.

When the value of this bit is 1, then:

• When SCR_EL3.NS == 0, the SCR_EL3.RW bit is treated as 1 for all purposes other than reading or
writing the register.

• If Secure EL1 is using AArch32, then any of the following operations, executed in Secure EL1, is trapped
to Secure EL2, using the EC value of ESR_EL2.EC== 0x3 :

◦ A read or write of the SCR.
◦ A read or write of the NSACR.
◦ A read or write of the MVBAR.
◦ A read or write of the SDCR.
◦ Execution of an ATS12NSO** instruction.

• If Secure EL1 is using AArch32, then any of the following operations, executed in Secure EL1, is trapped
to Secure EL2 using the EC value of ESR_EL2.EC== 0x0 :

◦ Execution of an SRS instruction that uses R13_mon.
◦ Execution of an MRS (Banked register) or MSR (Banked register) instruction that would access

SPSR_mon, R13_mon, or R14_mon.

Note

SCR_EL3, Secure Configuration Register

Page 393

AArch64-vbar_el3.html
AArch64-vbar_el3.html
AArch32-scr.html
AArch32-nsacr.html
AArch32-mvbar.html
AArch32-sdcr.html
AArch32-spsr_mon.html

If the Effective value of SCR_EL3.EEL2 is 0, then these operations executed
in Secure EL1 using AArch32 are trapped to EL3.

A Secure only implementation that does not implement EL3 but implements EL2, behaves as if SCR_EL3.EEL2 ==
1.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

API, bit [17]
When FEAT_SEL2 is implemented and FEAT_PAuth is implemented:

Controls the use of the following instructions related to Pointer Authentication. Traps are reported using an
ESR_ELx.EC value of 0x09:

• PACGA, which is always enabled.
• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP,

AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ,
PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZB, RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB,
BRAAZ, BRABZ, BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and LDRAB when:

◦ In EL0, when HCR_EL2.TGE == 0 or HCR_EL2.E2H == 0, and the associated
SCTLR_EL1.En<N><M> == 1.

◦ In EL0, when HCR_EL2.TGE == 1 and HCR_EL2.E2H == 1, and the associated
SCTLR_EL2.En<N><M> == 1.

◦ In EL1, when the associated SCTLR_EL1.En<N><M> == 1.
◦ In EL2, when the associated SCTLR_EL2.En<N><M> == 1.

API Meaning
0b0 The use of any instruction related to pointer authentication in

any Exception level except EL3 when the instructions are
enabled are trapped to EL3 unless they are trapped to EL2 as a
result of the HCR_EL2.API bit.

0b1 This control does not cause any instructions to be trapped.

An instruction is trapped only if Pointer Authentication is enabled for that instruction, for more information, see
'System register control of pointer authentication'.

Note

If FEAT_PAuth is implemented but EL3 is not implemented, the system
behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_SEL2 is not implemented and FEAT_PAuth is implemented:

Controls the use of instructions related to Pointer Authentication:

• PACGA.
• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP,

AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ,
PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZ, RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB,
BRAAZ, BRABZ, BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and LDRAB when:

SCR_EL3, Secure Configuration Register

Page 394

◦ In Non-secure EL0, when HCR_EL2.TGE == 0 or HCR_EL2.E2H == 0, and the associated
SCTLR_EL1.En<N><M>== 1.

◦ In Non-secure EL0, when HCR_EL2.TGE == 1 and HCR_EL2.E2H == 1, and the associated
SCTLR_EL2.En<N><M> == 1.

◦ In Secure EL0, when the associated SCTLR_EL1.En<N><M> == 1.
◦ In Secure or Non-secure EL1, when the associated SCTLR_EL1.En<N><M> == 1.
◦ In EL2, when the associated SCTLR_EL2.En<N><M> == 1.

API Meaning
0b0 The use of any instruction related to pointer authentication in

any Exception level except EL3 when the instructions are
enabled are trapped to EL3 unless they are trapped to EL2 as a
result of the HCR_EL2.API bit.

0b1 This control does not cause any instructions to be trapped.

Note

If FEAT_PAuth is implemented but EL3 is not implemented, the system
behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APK, bit [16]
When FEAT_PAuth is implemented:

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following registers, using an
ESR_ELx.EC value of 0x18, from EL1 or EL2 to EL3 unless they are trapped to EL2 as a result of the
HCR_EL2.APK bit or other traps:

• APIAKeyLo_EL1, APIAKeyHi_EL1, APIBKeyLo_EL1, APIBKeyHi_EL1.

• APDAKeyLo_EL1, APDAKeyHi_EL1, APDBKeyLo_EL1, APDBKeyHi_EL1.

• APGAKeyLo_EL1, and APGAKeyHi_EL1.

APK Meaning
0b0 Access to the registers holding "key" values for pointer

authentication from EL1 or EL2 are trapped to EL3 unless they
are trapped to EL2 as a result of the HCR_EL2.APK bit or other
traps.

0b1 This control does not cause any instructions to be trapped.

For more information, see 'System register control of pointer authentication'.

Note

If FEAT_PAuth is implemented but EL3 is not implemented, the system
behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCR_EL3, Secure Configuration Register

Page 395

AArch64-apiakeylo_el1.html
AArch64-apiakeyhi_el1.html
AArch64-apibkeylo_el1.html
AArch64-apibkeyhi_el1.html
AArch64-apdakeylo_el1.html
AArch64-apdakeyhi_el1.html
AArch64-apdbkeylo_el1.html
AArch64-apdbkeyhi_el1.html
AArch64-apgakeylo_el1.html
AArch64-apgakeyhi_el1.html

TERR, bit [15]
When FEAT_RAS is implemented:

Trap Error record accesses. Accesses to the RAS ERR* and RAS ERX* registers from EL1 and EL2 to EL3 are
trapped as follows:

• Accesses from EL1 and EL2 using AArch64 to the following registers are trapped and reported using an
ESR_ELx.EC value of 0x18:

◦ ERRIDR_EL1, ERRSELR_EL1, ERXADDR_EL1, ERXCTLR_EL1, ERXFR_EL1, ERXMISC0_EL1,
ERXMISC1_EL1, and ERXSTATUS_EL1.

• If FEAT_RASv1p1 is implemented, accesses from EL1 and EL2 using AArch64 to ERXMISC2_EL1, and
ERXMISC3_EL1, are trapped and reported using an ESR_ELx.EC value of 0x18.

• Accesses from EL1 and EL2 using AArch32, to the following registers are trapped and reported using an
ESR_ELx.EC value of 0x03:

◦ ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR, ERXFR2,
ERXMISC0, ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS.

• If FEAT_RASv1p1 is implemented, accesses from EL1 and EL2 using AArch32 to the following registers
are trapped and reported using an ESR_ELx.EC value of 0x03:

◦ ERXMISC4, ERXMISC5, ERXMISC6, and ERXMISC7.
TERR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Accesses to the specified registers from EL1 and EL2

generate a Trap exception to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLOR, bit [14]
When FEAT_LOR is implemented:

Trap LOR registers. Traps accesses to the LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1, and LORID_EL1
registers from EL1 and EL2 to EL3, unless the access has been trapped to EL2.

TLOR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 and EL2 accesses to the LOR registers that are not

UNDEFINED are trapped to EL3, unless it is trapped
HCR_EL2.TLOR.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWE, bit [13]

Traps EL2, EL1, and EL0 execution of WFE instructions to EL3, from any Security state and both Execution states,
reported using an ESR_ELx.EC value of 0x01.

SCR_EL3, Secure Configuration Register

Page 396

AArch64-erridr_el1.html
AArch64-errselr_el1.html
AArch64-erxaddr_el1.html
AArch64-erxctlr_el1.html
AArch64-erxfr_el1.html
AArch64-erxmisc0_el1.html
AArch64-erxmisc1_el1.html
AArch64-erxstatus_el1.html
AArch64-erxmisc2_el1.html
AArch64-erxmisc3_el1.html
AArch32-erridr.html
AArch32-errselr.html
AArch32-erxaddr.html
AArch32-erxaddr2.html
AArch32-erxctlr.html
AArch32-erxctlr2.html
AArch32-erxfr.html
AArch32-erxfr2.html
AArch32-erxmisc0.html
AArch32-erxmisc1.html
AArch32-erxmisc2.html
AArch32-erxmisc3.html
AArch32-erxstatus.html
AArch32-erxmisc4.html
AArch32-erxmisc5.html
AArch32-erxmisc6.html
AArch32-erxmisc7.html
AArch64-lorsa_el1.html
AArch64-lorea_el1.html
AArch64-lorn_el1.html
AArch64-lorc_el1.html
AArch64-lorid_el1.html

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

TWE Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFE instruction at any Exception

level lower than EL3 is trapped to EL3, if the instruction would
otherwise have caused the PE to enter a low-power state and
it is not trapped by SCTLR.nTWE, HCR.TWE,
SCTLR_EL1.nTWE, SCTLR_EL2.nTWE, or HCR_EL2.TWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction
passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup
event, the traps on WFE of WFI are not guaranteed to be taken, even if the
WFE or WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the
absence of a Wakeup event, the trap will be taken.

For more information about when WFE instructions can cause the PE to enter a low-power state, see 'Wait for
Event mechanism and Send event'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TWI, bit [12]

Traps EL2, EL1, and EL0 execution of WFI instructions to EL3, from any Security state and both Execution states,
reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

TWI Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFI instruction at any Exception

level lower than EL3 is trapped to EL3, if the instruction would
otherwise have caused the PE to enter a low-power state and it
is not trapped by SCTLR.nTWI, HCR.TWI, SCTLR_EL1.nTWI,
SCTLR_EL2.nTWI, or HCR_EL2.TWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup
event, the traps on WFE of WFI are not guaranteed to be taken, even if the
WFE or WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the
absence of a Wakeup event, the trap will be taken.

For more information about when WFI instructions can cause the PE to enter a low-power state, see 'Wait for
Interrupt'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ST, bit [11]

Traps Secure EL1 accesses to the Counter-timer Physical Secure timer registers to EL3, from AArch64 state only,
reported using an ESR_ELx.EC value of 0x18.

SCR_EL3, Secure Configuration Register

Page 397

AArch32-sctlr.html
AArch32-sctlr.html

ST Meaning
0b0 Secure EL1 using AArch64 accesses to the CNTPS_TVAL_EL1,

CNTPS_CTL_EL1, and CNTPS_CVAL_EL1 are trapped to EL3
when Secure EL2 is disabled. If Secure EL2 is enabled, the
behavior is as if the value of this field was 0b1.

0b1 This control does not cause any instructions to be trapped.

Note

Accesses to the Counter-timer Physical Secure timer registers are always
enabled at EL3. These registers are not accessible at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RW, bit [10]
When EL1 is capable of using AArch32 or EL2 is capable of using AArch32:

Execution state control for lower Exception levels.

RW Meaning
0b0 Lower levels are all AArch32.
0b1 The next lower level is AArch64.

If EL2 is present:
• EL2 is AArch64.
• EL2 controls EL1 and EL0 behaviors.

If EL2 is not present:
• EL1 is AArch64.
• EL0 is determined by the Execution state described in

the current process state when executing at EL0.

If AArch32 state is supported by the implementation at EL1, SCR_EL3.NS == 1 and AArch32 state is not
supported by the implementation at EL2, the Effective value of this bit is 1.

If AArch32 state is supported by the implementation at EL1, FEAT_SEL2 is implemented and SCR_EL3.{EEL2,
NS} == {1, 0}, the Effective value of this bit is 1.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAO/WI.

SIF, bit [9]

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from Non-secure
memory.

SIF Meaning
0b0 Secure state instruction fetches from Non-secure memory are

permitted.
0b1 Secure state instruction fetches from Non-secure memory are

not permitted.

When FEAT_PAN3 is implemented, it is IMPLEMENTATION DEFINED whether SCR_EL3.SIF is also used to determine
instruction access permission for the purpose of PAN.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

SCR_EL3, Secure Configuration Register

Page 398

AArch64-cntps_tval_el1.html
AArch64-cntps_ctl_el1.html
AArch64-cntps_cval_el1.html

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCE, bit [8]

Hypervisor Call instruction enable. Enables HVC instructions at EL3 and, if EL2 is enabled in the current Security
state, at EL2 and EL1, in both Execution states, reported using an ESR_ELx.EC value of 0x00.

HCE Meaning
0b0 HVC instructions are UNDEFINED.
0b1 HVC instructions are enabled at EL3, EL2, and EL1.

Note

HVC instructions are always UNDEFINED at EL0 and, if Secure EL2 is
disabled, at Secure EL1. Any resulting exception is taken from the current
Exception level to the current Exception level.

If EL2 is not implemented, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SMD, bit [7]

Secure Monitor Call disable. Disables SMC instructions at EL1 and above, from any Security state and both
Execution states, reported using an ESR_ELx.EC value of 0x00.

SMD Meaning
0b0 SMC instructions are enabled at EL3, EL2 and EL1.
0b1 SMC instructions are UNDEFINED.

Note

SMC instructions are always UNDEFINED at EL0. Any resulting exception is
taken from the current Exception level to the current Exception level.

If HCR_EL2.TSC or HCR.TSC traps attempted EL1 execution of SMC
instructions to EL2, that trap has priority over this disable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

EA, bit [3]

External Abort and SError interrupt routing.

EA Meaning
0b0 When executing at Exception levels below EL3, External aborts

and SError interrupts are not taken to EL3.
In addition, when executing at EL3:

• SError interrupts are not taken.
• External aborts are taken to EL3.

0b1 When executing at any Exception level, External aborts and
SError interrupts are taken to EL3.

SCR_EL3, Secure Configuration Register

Page 399

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FIQ, bit [2]

Physical FIQ Routing.

FIQ Meaning
0b0 When executing at Exception levels below EL3, physical FIQ

interrupts are not taken to EL3.
When executing at EL3, physical FIQ interrupts are not taken.

0b1 When executing at any Exception level, physical FIQ interrupts
are taken to EL3.

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRQ, bit [1]

Physical IRQ Routing.

IRQ Meaning
0b0 When executing at Exception levels below EL3, physical IRQ

interrupts are not taken to EL3.
When executing at EL3, physical IRQ interrupts are not taken.

0b1 When executing at any Exception level, physical IRQ interrupts
are taken to EL3.

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS, bit [0]
When FEAT_RME is implemented:

Non-secure bit. This field is used in combination with SCR_EL3.NSE to select the Security state of EL2 and lower
Exception levels.

NSE NS Meaning
0b0 0b0 Secure.
0b0 0b1 Non-secure.
0b1 0b0 Reserved.
0b1 0b1 Realm.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Non-secure bit.

SCR_EL3, Secure Configuration Register

Page 400

NS Meaning
0b0 Indicates that EL0 and EL1 are in Secure state.

When FEAT_SEL2 is implemented and SCR_EL3.EEL2 == 1,
then EL2 is using AArch64 and in Secure state.

0b1 Indicates that Exception levels lower than EL3 are in Non-
secure state, so memory accesses from those Exception levels
cannot access Secure memory.

When SCR_EL3.{EEL2, NS} == {1, 0}, then EL2 is using AArch64 and in Secure state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SCR_EL3
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
X[t, 64] = SCR_EL3;

MSR SCR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
SCR_EL3 = X[t, 64];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SCR_EL3, Secure Configuration Register

Page 401

(old) htmldiff from- (new)

SCTLR_EL1, System Control Register (EL1)
The SCTLR_EL1 characteristics are:

Purpose
Provides top level control of the system, including its memory system, at EL1 and EL0.

Configuration
AArch64 System register SCTLR_EL1 bits [31:0] are architecturally mapped to AArch32 System register SCTLR[31:0].

Attributes
SCTLR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

TIDCPSPINTMASK NMI EnTP2 RES0 EPANEnALSEnAS0EnASRTME TME0 TMT TMT0 TWEDEL TWEDEnDSSBS ATA ATA0 TCF TCF0 ITFSB BT1BT0RES0MSCEnCMOW
EnIA EnIB LSMAOEnTLSMDEnDAUCI EE E0E SPAN EIS IESBTSCXTWXNnTWERES0nTWIUCTDZE EnDB I EOSEnRCTXUMASEDITDnAACP15BENSA0 SA C A M

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TIDCP, bit [63]
When FEAT_TIDCP1 is implemented:

Trap IMPLEMENTATION DEFINED functionality. When HCR_EL2.{E2H, TGE} != {1, 1}, traps EL0 accesses to the
encodings reserved for IMPLEMENTATION DEFINED functionality to EL1.

TIDCP Meaning
0b0 No instructions accessing the System register or System

instruction spaces are trapped by this mechanism.
0b1 Instructions accessing the following System register or

System instruction spaces are trapped to EL1 by this
mechanism:

• In AArch64 state, EL0 access to the encodings in the
following reserved encoding spaces are trapped and
reported using EC syndrome 0x18:

◦ IMPLEMENTATION DEFINED System instructions,
which are accessed using SYS and SYSL, with
CRn == {11, 15}.

◦ IMPLEMENTATION DEFINED System registers,
which are accessed using MRS and MSR with
the S3_<op1>_<Cn>_<Cm>_<op2> register
name.

• In AArch32 state, EL0 MCR and MRC access to the
following encodings are trapped and reported using
EC syndrome 0x03:

◦ All coproc==p15, CRn==c9, opc1 == {0-7},
CRm == {c0-c2, c5-c8}, opc2 == {0-7}.

◦ All coproc==p15, CRn==c10, opc1 =={0-7},
CRm == {c0, c1, c4, c8}, opc2 == {0-7}.

◦ All coproc==p15, CRn==c11, opc1=={0-7},
CRm == {c0-c8, c15}, opc2 == {0-7}.

The reset behavior of this field is:

SCTLR_EL1, System Control Register (EL1)

Page 402

AArch32-sctlr.html
AArch64-s3_op1_cn_cm_op2.html

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

SPINTMASK, bit [62]
When FEAT_NMI is implemented:

SP Interrupt Mask enable. When SCTLR_EL1.NMI is 1, controls whether PSTATE.SP acts as an interrupt mask,
and controls the value of PSTATE.ALLINT on taking an exception to EL1.

SPINTMASK Meaning
0b0 Does not cause PSTATE.SP to mask interrupts.

PSTATE.ALLINT is set to 1 on taking an exception to
EL1.

0b1 When PSTATE.SP is 1 and execution is at EL1, an IRQ
or FIQ interrupt that is targeted to EL1 is masked
regardless of any denotion of Superpriority.
PSTATE.ALLINT is set to 0 on taking an exception to
EL1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

NMI, bit [61]
When FEAT_NMI is implemented:

Non-maskable Interrupt enable.

NMI Meaning
0b0 This control does not affect interrupt masking behavior.
0b1 This control enables all of the following:

• The use of the PSTATE.ALLINT interrupt mask.
• IRQ and FIQ interrupts to have Superpriority as an

additional attribute.
• PSTATE.SP to be used as an interrupt mask.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to 0.

Otherwise:

Reserved, RES0.

EnTP2, bit [60]
When FEAT_SME is implemented:

Traps instructions executed at EL0 that access TPIDR2_EL0 to EL1, or to EL2 when EL2 is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1. The exception is reported using ESR_ELx.EC value
0x18.

SCTLR_EL1, System Control Register (EL1)

Page 403

AArch64-tpidr2_el0.html

EnTP2 Meaning
0b0 This control causes execution of these instructions at EL0 to

be trapped.
0b1 This control does not cause execution of any instructions to

be trapped.

If FEAT_VHE is implemented, EL2 is implemented and enabled in the current Security state, and HCR_EL2.{E2H,
TGE} == {1, 1}, this field has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

Bits [59:58]

Reserved, RES0.

EPAN, bit [57]
When FEAT_PAN3 is implemented:

Enhanced Privileged Access Never. When PSTATE.PAN is 1, determines whether an EL1 data access to a page with
stage 1 EL0 instruction access permission generates a Permission fault as a result of the Privileged Access Never
mechanism.

EPAN Meaning
0b0 No additional Permission faults are generated by this

mechanism.
0b1 An EL1 data access to a page with stage 1 EL0 data access

permission or stage 1 EL0 instruction access permission
generates a Permission fault.
Any speculative data accesses that would generate a
Permission fault if the accesses were not speculative will not
cause an allocation into a cache.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

EnALS, bit [56]
When FEAT_LS64 is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an LD64B or ST64B instruction at EL0 to EL1.

EnALS Meaning
0b0 Execution of an LD64B or ST64B instruction at EL0 is

trapped to EL1.
0b1 This control does not cause any instructions to be trapped.

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of
0x0000002.

SCTLR_EL1, System Control Register (EL1)

Page 404

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

EnAS0, bit [55]
When FEAT_LS64_ACCDATA is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV0 instruction at EL0 to EL1.

EnAS0 Meaning
0b0 Execution of an ST64BV0 instruction at EL0 is trapped to

EL1.
0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

EnASR, bit [54]
When FEAT_LS64_V is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV instruction at EL0 to EL1.

EnASR Meaning
0b0 Execution of an ST64BV instruction at EL0 is trapped to

EL1.
0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000000.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TME, bit [53]
When FEAT_TME is implemented:

Enables the Transactional Memory Extension at EL1.

SCTLR_EL1, System Control Register (EL1)

Page 405

TME Meaning
0b0 Any attempt to execute a TSTART instruction at EL1 is trapped

to EL1, unless HCR_EL2.TME or SCR_EL3.TME causes
TSTART instructions to be UNDEFINED at EL1.

0b1 This control does not cause any TSTART instruction to be
trapped.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TME0, bit [52]
When FEAT_TME is implemented:

Enables the Transactional Memory Extension at EL0.

TME0 Meaning
0b0 Any attempt to execute a TSTART instruction at EL0 is

trapped to EL1, unless HCR_EL2.TME or SCR_EL3.TME
causes TSTART instructions to be UNDEFINED at EL0.

0b1 This control does not cause any TSTART instruction to be
trapped.

If FEAT_VHE is implemented, EL2 is implemented and enabled in the current Security state, and HCR_EL2.{E2H,
TGE} == {1, 1}, this field has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TMT, bit [51]
When FEAT_TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL1.

TMT Meaning
0b0 This control does not cause any TSTART instruction to fail.
0b1 When the TSTART instruction is executed at EL1, the

transaction fails with a TRIVIAL failure cause.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

SCTLR_EL1, System Control Register (EL1)

Page 406

TMT0, bit [50]
When FEAT_TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL0.

TMT0 Meaning
0b0 This control does not cause any TSTART instruction to fail.
0b1 When the TSTART instruction is executed at EL0, the

transaction fails with a TRIVIAL failure cause.

If FEAT_VHE is implemented, EL2 is implemented and enabled in the current Security state, and HCR_EL2.{E2H,
TGE} == {1, 1}, this field has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TWEDEL, bits [49:46]
When FEAT_TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when SCTLR_EL1.TWEDEn is 1, encodes the minimum delay in taking a
trap of WFE* caused by SCTLR_EL1.nTWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [45]
When FEAT_TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by SCTLR_EL1.nTWE.

TWEDEn Meaning
0b0 The delay for taking the trap is IMPLEMENTATION DEFINED.
0b1 The delay for taking the trap is at least the number of

cycles defined in SCTLR_EL1.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

SCTLR_EL1, System Control Register (EL1)

Page 407

DSSBS, bit [44]
When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

DSSBS Meaning
0b0 PSTATE.SSBS is set to 0 on an exception to EL1.
0b1 PSTATE.SSBS is set to 1 on an exception to EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

ATA, bit [43]
When FEAT_MTE2 is implemented:

Allocation Tag Access in EL1. When SCR_EL3.ATA=1 and HCR_EL2.ATA=1, controls EL1 access to Allocation
Tags.

ATA Meaning
0b0 Access to Allocation Tags is prevented.
0b1 This control does not prevent access to Allocation Tags.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

ATA0, bit [42]
When FEAT_MTE2 is implemented:

Allocation Tag Access in EL0. When SCR_EL3.ATA=1, HCR_EL2.ATA=1, and HCR_EL2.{E2H, TGE} != {1, 1},
controls EL0 access to Allocation Tags.

ATA0 Meaning
0b0 Access to Allocation Tags is prevented.
0b1 This control does not prevent access to Allocation Tags.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

SCTLR_EL1, System Control Register (EL1)

Page 408

TCF, bits [41:40]
When FEAT_MTE2 is implemented:

Tag Check Fault in EL1. Controls the effect of Tag Check Faults due to Loads and Stores in EL1.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

TCF Meaning Applies
when

0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults cause a synchronous

exception.
0b10 Tag Check Faults are asynchronously

accumulated.
0b11 Tag Check Faults cause a synchronous

exception on reads, and are asynchronously
accumulated on writes.

When
FEAT_MTE3
is
implemented

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TCF0, bits [39:38]
When FEAT_MTE2 is implemented:

Tag Check Fault in EL0. When HCR_EL2.{E2H,TGE} != {1,1}, controls the effect of Tag Check Faults due to
Loads and Stores in EL0.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

Note

Software may change this control bit on a context switch.

TCF0 Meaning Applies
when

0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults cause a synchronous

exception.
0b10 Tag Check Faults are asynchronously

accumulated.
0b11 Tag Check Faults cause a synchronous

exception on reads, and are asynchronously
accumulated on writes.

When
FEAT_MTE3
is
implemented

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

SCTLR_EL1, System Control Register (EL1)

Page 409

ITFSB, bit [37]
When FEAT_MTE2 is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, this field controls whether on
exception entry into EL1, all Tag Check Faults due to instructions executed before exception entry, that are
reported asynchronously, are synchronized into TFSRE0_EL1 and TFSR_EL1 registers.

ITFSB Meaning
0b0 Tag Check Faults are not synchronized on entry to EL1.
0b1 Tag Check Faults are synchronized on entry to EL1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

BT1, bit [36]
When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL1.

BT1 Meaning
0b0 When the PE is executing at EL1, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL1, PACIASP and PACIBSP are

not compatible with PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

BT0, bit [35]
When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL0.

BT0 Meaning
0b0 When the PE is executing at EL0, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL0, PACIASP and PACIBSP are

not compatible with PSTATE.BTYPE == 0b11.

When the value of HCR_EL2.{E2H, TGE} is {1, 1}, the value of SCTLR_EL1.BT0 has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL1, System Control Register (EL1)

Page 410

AArch64-tfsre0_el1.html
AArch64-tfsr_el1.html

Otherwise:

Reserved, RES0.

Bit [34]

Reserved, RES0.

MSCEn, bit [33]
When FEAT_MOPS is implemented and (HCR_EL2.E2H == 0 or HCR_EL2.TGE == 0):

Memory Copy and Memory Set instructions Enable. Enables execution of the Memory Copy and Memory Set
instructions at EL0.

MSCEn Meaning
0b0 Execution of the Memory Copy and Memory Set

instructions is UNDEFINED at EL0.
0b1 This control does not cause any instructions to be

UNDEFINED.

When FEAT_MOPS is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the Effective value of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

CMOW, bit [32]
When FEAT_CMOW is implemented:

Controls cache maintenance instruction permission for the following instructions executed at EL0.

• IC IVAU, DC CIVAC, DC CIGDVAC and DC CIGVAC.
CMOW Meaning
0b0 These instructions executed at EL0 with stage 1 read

permission, but without stage 1 write permission, do not
generate a stage 1 permission fault.

0b1 If enabled as a result of SCTLR_EL1.UCI==1, these
instructions executed at EL0 with stage 1 read permission,
but without stage 1 write permission, generate a stage 1
permission fault.

When AArch64.HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

For this control, stage 1 has write permission if all of the following apply:

• AP[2] is 0 or DBM is 1 in the stage 1 descriptor.
• Where APTable is in use, APTable[1] is 0 for all levels of the translation table.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL1, System Control Register (EL1)

Page 411

AArch64-ic-ivau.html
AArch64-dc-civac.html
AArch64-dc-cigdvac.html
AArch64-dc-cigvac.html

Otherwise:

Reserved, RES0.

EnIA, bit [31]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see 'System register control of pointer authentication'.

EnIA Meaning
0b0 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode
functions. Specifically, when the field is 1, AddPACIA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIA
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

EnIB, bit [30]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see 'System register control of pointer authentication'.

EnIB Meaning
0b0 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode
functions. Specifically, when the field is 1, AddPACIB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIB
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL1, System Control Register (EL1)

Page 412

Otherwise:

Reserved, RES0.

LSMAOE, bit [29]
When FEAT_LSMAOC is implemented:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

LSMAOE Meaning
0b0 For all memory accesses at EL0, A32 and T32 Load

Multiple and Store Multiple can have an interrupt taken
during the sequence memory accesses, and the memory
accesses are not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load
Multiple and Store Multiple at EL0 is as defined for
Armv8.0.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

nTLSMD, bit [28]
When FEAT_LSMAOC is implemented:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

nTLSMD Meaning
0b0 All memory accesses by A32 and T32 Load Multiple and

Store Multiple at EL0 that are marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
trapped and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and
Store Multiple at EL0 that are marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
not trapped.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

SCTLR_EL1, System Control Register (EL1)

Page 413

EnDA, bit [27]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see 'System register control of pointer authentication'.

EnDA Meaning
0b0 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode
functions. Specifically, when the field is 1, AddPACDA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDA
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

UCI, bit [26]

Traps EL0 execution of cache maintenance instructions, to EL1, or to EL2 when it is implemented and enabled for
the current Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value
of 0x18.

This applies to DC CVAU, DC CIVAC, DC CVAC, DC CVAP, and IC IVAU.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTE is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC CGVAC, DC CGDVAC, DC
CGVAP, and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to DC CGVADP and DC CGDVADP.

UCI Meaning
0b0 Execution of the specified instructions at EL0 using AArch64 is

trapped.
0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean, or clean and invalidate instruction that operates by VA to the point of coherency
can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this
control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the
execution of any instruction cache invalidate by VA to the Point of Unification instruction can be trapped when the
value of this control is 1.

SCTLR_EL1, System Control Register (EL1)

Page 414

AArch64-dc-cvau.html
AArch64-dc-civac.html
AArch64-dc-cvac.html
AArch64-dc-cvap.html
AArch64-ic-ivau.html
AArch64-dc-cvadp.html
AArch64-dc-cigvac.html
AArch64-dc-cigdvac.html
AArch64-dc-cgvac.html
AArch64-dc-cgdvac.html
AArch64-dc-cgvap.html
AArch64-dc-cgvap.html
AArch64-dc-cgdvap.html
AArch64-dc-cgvadp.html
AArch64-dc-cgdvadp.html

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

EE, bit [25]

Endianness of data accesses at EL1, and stage 1 translation table walks in the EL1&0 translation regime.

EE Meaning
0b0 Explicit data accesses at EL1, and stage 1 translation table

walks in the EL1&0 translation regime are little-endian.
0b1 Explicit data accesses at EL1, and stage 1 translation table

walks in the EL1&0 translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

E0E, bit [24]

Endianness of data accesses at EL0.

E0E Meaning
0b0 Explicit data accesses at EL0 are little-endian.
0b1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0, then this bit is RES0. This option is not permitted
when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0, then this bit is RES1. This option is not permitted
when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at
EL1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

SPAN, bit [23]
When FEAT_PAN is implemented:

Set Privileged Access Never, on taking an exception to EL1.

SPAN Meaning
0b0 PSTATE.PAN is set to 1 on taking an exception to EL1.
0b1 The value of PSTATE.PAN is left unchanged on taking an

exception to EL1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

SCTLR_EL1, System Control Register (EL1)

Page 415

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

EIS, bit [22]
When FEAT_ExS is implemented:

Exception Entry is Context Synchronizing.

EIS Meaning
0b0 The taking of an exception to EL1 is not a context synchronizing

event.
0b1 The taking of an exception to EL1 is a context synchronizing

event.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

If SCTLR_EL1.EIS is set to 0b0:

• Indirect writes to ESR_EL1, FAR_EL1, SPSR_EL1, ELR_EL1 are synchronized on exception entry to EL1, so
that a direct read of the register after exception entry sees the indirectly written value caused by the
exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL1.EIS:

• Changes to the PSTATE information on entry to EL1.
• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores

and data processing instructions.
• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

IESB, bit [21]
When FEAT_IESB is implemented:

Implicit Error Synchronization event enable. Possible values are:

IESB Meaning
0b0 Disabled.
0b1 An implicit error synchronization event is added:

• At each exception taken to EL1.
• Before the operational pseudocode of each ERET

instruction executed at EL1.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might
be 0 or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error
synchronization event is added after each DCPSX instruction taken to EL1 and before each DRPS instruction
executed at EL1, in addition to the other cases where it is added.

SCTLR_EL1, System Control Register (EL1)

Page 416

AArch64-spsr_el1.html
AArch64-elr_el1.html

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TSCXT, bit [20]
When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Trap EL0 Access to the SCXTNUM_EL0 register, when EL0 is using AArch64.

TSCXT Meaning
0b0 EL0 access to SCXTNUM_EL0 is not disabled by this

mechanism.
0b1 EL0 access to SCXTNUM_EL0 is disabled, causing an

exception to EL1, or to EL2 when it is implemented and
enabled for the current Security state and HCR_EL2.TGE is
1.
The value of SCXTNUM_EL0 is treated as 0.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL1&0 translation regime, this bit can force all memory
regions that are writable to be treated as XN.

WXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable in the EL1&0 translation regime is

forced to XN for accesses from software executing at EL1 or
EL0.

This bit applies only when SCTLR_EL1.M bit is set.

The WXN bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to EL1, or to EL2 when it is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an ESR_ELx.EC value of 0x01.

SCTLR_EL1, System Control Register (EL1)

Page 417

AArch64-scxtnum_el0.html
AArch64-scxtnum_el0.html
AArch64-scxtnum_el0.html
AArch64-scxtnum_el0.html

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

nTWE Meaning
0b0 Any attempt to execute a WFE instruction at EL0 is trapped,

if the instruction would otherwise have caused the PE to
enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction
passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup
event, the traps on WFE of WFI are not guaranteed to be taken, even if the
WFE or WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the
absence of a Wakeup event, the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to EL1, or to EL2 when it is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

nTWI Meaning
0b0 Any attempt to execute a WFI instruction at EL0 is trapped, if

the instruction would otherwise have caused the PE to enter a
low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup
event, the traps on WFE of WFI are not guaranteed to be taken, even if the
WFE or WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the
absence of a Wakeup event, the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL1, System Control Register (EL1)

Page 418

UCT, bit [15]

Traps EL0 accesses to the CTR_EL0 to EL1, or to EL2 when it is implemented and enabled for the current Security
state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

UCT Meaning
0b0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped.
0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

DZE, bit [14]

Traps EL0 execution of DC ZVA instructions to EL1, or to EL2 when it is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

If FEAT_MTE is implemented, this trap also applies to DC GVA and DC GZVA.

DZE Meaning
0b0 Any attempt to execute an instruction that this trap applies to

at EL0 using AArch64 is trapped.
Reading DCZID_EL0.DZP from EL0 returns 1, indicating that
the instructions this trap applies to are not supported.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

EnDB, bit [13]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see 'System register control of pointer authentication'.

EnDB Meaning
0b0 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode
functions. Specifically, when the field is 1, AddPACDB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDB
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL1, System Control Register (EL1)

Page 419

AArch64-ctr_el0.html
AArch64-ctr_el0.html
AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html
AArch64-dczid_el0.html

Otherwise:

Reserved, RES0.

I, bit [12]

Stage 1 instruction access Cacheability control, for accesses at EL0 and EL1:

I Meaning
0b0 All instruction access to Stage 1 Normal memory from EL0 and

EL1 are Stage 1 Non-cacheable.
If the value of SCTLR_EL1.M is 0, instruction accesses from
stage 1 of the EL1&0 translation regime are to Normal, Outer
Shareable, Inner Non-cacheable, Outer Non-cacheable memory.

0b1 This control has no effect on the Stage 1 Cacheability of
instruction access to Stage 1 Normal memory from EL0 and
EL1.
If the value of SCTLR_EL1.M is 0, instruction accesses from
stage 1 of the EL1&0 translation regime are to Normal, Outer
Shareable, Inner Write-Through, Outer Write-Through memory.

When the value of the HCR_EL2.DC bit is 1, then instruction access to Normal memory from EL0 and EL1 are
Cacheable regardless of the value of the SCTLR_EL1.I bit.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to 0.

EOS, bit [11]
When FEAT_ExS is implemented:

Exception Exit is Context Synchronizing.

EOS Meaning
0b0 An exception return from EL1 is not a context synchronizing

event
0b1 An exception return from EL1 is a context synchronizing event

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

If SCTLR_EL1.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL1.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL1 and ELR_EL1 on exception return is
synchronized.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores
and data processing instructions.

• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL1, System Control Register (EL1)

Page 420

AArch64-spsr_el1.html
AArch64-elr_el1.html

Otherwise:

Reserved, RES1.

EnRCTX, bit [10]
When FEAT_SPECRES is implemented:

Enable EL0 Access to the following instructions:

• AArch32 CFPRCTX, DVPRCTX and CPPRCTX instructions.

• AArch64 CFP RCTX, DVP RCT and CPP RCTX instructions.

EnRCTX Meaning
0b0 EL0 access to these instructions is disabled, and these

instructions are trapped to EL1, or to EL2 when it is
implemented and enabled for the current Security state
and HCR_EL2.TGE is 1.

0b1 EL0 access to these instructions is enabled.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

UMA, bit [9]

User Mask Access. Traps EL0 execution of MSR and MRS instructions that access the PSTATE.{D, A, I, F} masks
to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from
AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

UMA Meaning
0b0 Any attempt at EL0 using AArch64 to execute an MRS,

MSR(REGISTER), or MSR(IMMEDIATE) instruction that accesses
the DAIF is trapped.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

SED, bit [8]
When EL0 is capable of using AArch32:

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

SCTLR_EL1, System Control Register (EL1)

Page 421

AArch64-daif.html

SED Meaning
0b0 SETEND instruction execution is enabled at EL0 using

AArch32.
0b1 SETEND instructions are UNDEFINED at EL0 using AArch32 and

any attempt at EL0 to access a SETEND instruction generates
an exception to EL1, or to EL2 when it is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1,
reported using an ESR_ELx.EC value of 0x00.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

ITD, bit [7]
When EL0 is capable of using AArch32:

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

SCTLR_EL1, System Control Register (EL1)

Page 422

ITD Meaning
0b0 All IT instruction functionality is enabled at EL0 using AArch32.
0b1 Any attempt at EL0 using AArch32 to execute any of the

following is UNDEFINED and generates an exception, reported
using an ESR_ELx.EC value of 0x00, to EL1 or to EL2 when it is
implemented and enabled for the current Security state and
HCR_EL2.TGE is 1:

• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the

following values for hw1:
◦ 0b11xxxxxxxxxxxxxx: All 32-bit instructions, and

the 16-bit instructions B, UDF, SVC, LDM, and
STM.

◦ 0b1011xxxxxxxxxxxx: All instructions in
'Miscellaneous 16-bit instructions' in the Arm®
Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section F3.2.5.
'Miscellaneous 16-bit instructions'.

◦ 0b10100xxxxxxxxxxx: ADD Rd, PC, #imm
◦ 0b01001xxxxxxxxxxx: LDR Rd, [PC, #imm]
◦ 0b0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC;

MOV Rd, PC; BX PC; BLX PC.
◦ 0b010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm;

MOV PC, Rm. This pattern also covers
unpredictable cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether
they would pass or fail the condition code check that applies to
them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is
treated as:

• A 16-bit instruction, that can only be followed by
another 16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either
the second 16-bit instruction or the 32-bit instruction is
UNDEFINED.
An implementation might vary dynamically as to whether IT is
treated as a 16-bit instruction or the first half of a 32-bit
instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is
CONSTRAINED UNPREDICTABLE. For more information, see 'Changes to an ITD control by an instruction in an IT
block'.

ITD is optional, but if it is implemented in the SCTLR_EL1 then it must also be implemented in the SCTLR_EL2,
HSCTLR, and SCTLR.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

When an implementation does not implement ITD, access to this field is RAZ/WI.

Otherwise:

Reserved, RES1.

nAA, bit [6]
When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL1 and EL0 under certain conditions.

SCTLR_EL1, System Control Register (EL1)

Page 423

AArch32-hsctlr.html
AArch32-sctlr.html

nAA Meaning
0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH,

LDAPURSW, LDAR, LDARH, LDLAR, LDLARH, STLLR,
STLLRH, STLR, STLRH, STLUR, and STLURH generate an
Alignment fault if all bytes being accessed are not within a
single 16-byte quantity, aligned to 16 bytes for accesses.

0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR,
LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR,
LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, or STLURH
to generate an Alignment fault if all bytes being accessed are
not within a single 16-byte quantity, aligned to 16 bytes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

CP15BEN, bit [5]
When EL0 is capable of using AArch32:

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the
(coproc==0b1111) encoding space from EL0:

CP15BEN Meaning
0b0 EL0 using AArch32: EL0 execution of the CP15DMB,

CP15DSB, and CP15ISB instructions is UNDEFINED and
generates an exception to EL1, or to EL2 when it is
implemented and enabled for the current Security state
and HCR_EL2.TGE is 1. The exception is reported using
an ESR_ELx.EC value of 0x00.

0b1 EL0 using AArch32: EL0 execution of the CP15DMB,
CP15DSB, and CP15ISB instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR_EL1 then it must also be implemented in the
SCTLR_EL2, HSCTLR, and SCTLR.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

When an implementation does not implement CP15BEN, access to this field is RAO/WI.

Otherwise:

Reserved, RES0.

SA0, bit [4]

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as the
base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated.
For more information, see 'SP alignment checking'.

SCTLR_EL1, System Control Register (EL1)

Page 424

AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html
AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html
AArch32-hsctlr.html
AArch32-sctlr.html

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL1 uses the SP as the base
address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated. For
more information, see 'SP alignment checking'.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

C, bit [2]

Stage 1 Cacheability control, for data accesses.

C Meaning
0b0 All data access to Stage 1 Normal memory from EL0 and EL1,

and all Normal memory accesses from unified cache to the
EL1&0 Stage 1 translation tables, are treated as Stage 1 Non-
cacheable.

0b1 This control has no effect on the Stage 1 Cacheability of:
• Data access to Normal memory from EL0 and EL1.
• Normal memory accesses to the EL1&0 Stage 1 translation

tables.

When the value of the HCR_EL2.DC bit is 1, the PE ignores SCTLR.C. This means that Non-secure EL0 and Non-
secure EL1 data accesses to Normal memory are Cacheable.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL1 and EL0.

A Meaning
0b0 Alignment fault checking disabled when executing at EL1 or

EL0.
Instructions that load or store one or more registers, other than
load/store exclusive and load-acquire/store-release, do not check
that the address being accessed is aligned to the size of the data
element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL1 or
EL0.
All instructions that load or store one or more registers have an
alignment check that the address being accessed is aligned to
the size of the data element(s) being accessed. If this check fails
it causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value
of the A bit.

SCTLR_EL1, System Control Register (EL1)

Page 425

If FEAT_MOPS is implemented, SETG* instructions have an alignment check regardless of the value of the A bit.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

M, bit [0]

MMU enable for EL1&0 stage 1 address translation.

M Meaning
0b0 EL1&0 stage 1 address translation disabled.

See the SCTLR_EL1.I field for the behavior of instruction
accesses to Normal memory.

0b1 EL1&0 stage 1 address translation enabled.

If the value of HCR_EL2.{DC, TGE} is not {0, 0} then in Non-secure state the PE behaves as if the value of the
SCTLR_EL1.M field is 0 for all purposes other than returning the value of a direct read of the field.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to 0.

Accessing SCTLR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SCTLR_EL1 or
SCTLR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCTLR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
X[t, 64] = NVMem[0x110];

else
X[t, 64] = SCTLR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

X[t, 64] = SCTLR_EL2;
else

X[t, 64] = SCTLR_EL1;
elsif PSTATE.EL == EL3 then

X[t, 64] = SCTLR_EL1;

SCTLR_EL1, System Control Register (EL1)

Page 426

MSR SCTLR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCTLR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x110] = X[t, 64];

else
SCTLR_EL1 = X[t, 64];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

SCTLR_EL2 = X[t, 64];
else

SCTLR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then

SCTLR_EL1 = X[t, 64];

MRS <Xt>, SCTLR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

X[t, 64] = NVMem[0x110];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
X[t, 64] = SCTLR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

X[t, 64] = SCTLR_EL1;
else

UNDEFINED;

MSR SCTLR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0000 0b000

SCTLR_EL1, System Control Register (EL1)

Page 427

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x110] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
SCTLR_EL1 = X[t, 64];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

SCTLR_EL1 = X[t, 64];
else

UNDEFINED;

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SCTLR_EL1, System Control Register (EL1)

Page 428

(old) htmldiff from- (new)

SCTLR_EL2, System Control Register (EL2)
The SCTLR_EL2 characteristics are:

Purpose
Provides top level control of the system, including its memory system, at EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, these controls apply also to
execution at EL0.

Configuration
AArch64 System register SCTLR_EL2 bits [31:0] are architecturally mapped to AArch32 System register
HSCTLR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
SCTLR_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

TIDCPSPINTMASK NMI EnTP2 RES0 EPANEnALSEnAS0EnASRTME TME0 TMT TMT0 TWEDEL TWEDEnDSSBS ATA ATA0 TCF TCF0 ITFSB BT BT0RES0MSCEnCMOW
EnIA EnIB LSMAOEnTLSMDEnDAUCI EE E0E SPAN EIS IESBTSCXTWXNnTWERES0nTWIUCTDZE EnDB I EOSEnRCTXRES0SEDITDnAACP15BENSA0 SA C A M

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TIDCP, bit [63]
When FEAT_TIDCP1 is implemented and HCR_EL2.E2H == 1:

Trap IMPLEMENTATION DEFINED functionality. Traps EL0 accesses to the encodings reserved for IMPLEMENTATION
DEFINED functionality to EL2.

SCTLR_EL2, System Control Register (EL2)

Page 429

AArch32-hsctlr.html

TIDCP Meaning
0b0 No instructions accessing the System register or System

instruction spaces are trapped by this mechanism.
0b1 If HCR_EL2.TGE==0, no instructions accessing the System

register or System instruction spaces are trapped by this
mechanism.
If HCR_EL2.TGE==1, instructions accessing the following
System register or System instruction spaces are trapped to
EL2 by this mechanism:

• In AArch64 state, EL0 access to the encodings in the
following reserved encoding spaces are trapped and
reported using EC syndrome 0x18:

◦ IMPLEMENTATION DEFINED System instructions,
which are accessed using SYS and SYSL, with
CRn == {11, 15}.

◦ IMPLEMENTATION DEFINED System registers,
which are accessed using MRS and MSR with
the S3_<op1>_<Cn>_<Cm>_<op2> register
name.

• In AArch32 state, EL0 MCR and MRC access to the
following encodings are trapped and reported using
EC syndrome 0x03:

◦ All coproc==p15, CRn==c9, opc1 == {0-7},
CRm == {c0-c2, c5-c8}, opc2 == {0-7}.

◦ All coproc==p15, CRn==c10, opc1 =={0-7},
CRm == {c0, c1, c4, c8}, opc2 == {0-7}.

◦ All coproc==p15, CRn==c11, opc1=={0-7},
CRm == {c0-c8, c15}, opc2 == {0-7}.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

SPINTMASK, bit [62]
When FEAT_NMI is implemented:

SP Interrupt Mask enable. When SCTLR_EL2.NMI is 1, controls whether PSTATE.SP acts as an interrupt mask,
and controls the value of PSTATE.ALLINT on taking an exception to EL2.

SPINTMASK Meaning
0b0 Does not cause PSTATE.SP to mask interrupts.

PSTATE.ALLINT is set to 1 on taking an exception to
EL2.

0b1 When PSTATE.SP is 1 and execution is at EL2, an IRQ
or FIQ interrupt that is targeted to EL2 is masked
regardless of any denotion of Superpriority.
PSTATE.ALLINT is set to 0 on taking an exception to
EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

SCTLR_EL2, System Control Register (EL2)

Page 430

AArch64-s3_op1_cn_cm_op2.html

NMI, bit [61]
When FEAT_NMI is implemented:

Non-maskable Interrupt enable.

NMI Meaning
0b0 This control does not affect interrupt masking behavior.
0b1 This control enables all of the following:

• The use of the PSTATE.ALLINT interrupt mask.
• IRQ and FIQ interrupts to have Superpriority as an

additional attribute.
• PSTATE.SP to be used as an interrupt mask.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

EnTP2, bit [60]
When FEAT_SME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps instructions executed at EL0 that access TPIDR2_EL0 to EL2 when EL2 is implemented and enabled for the
current Security state. The exception is reported using ESR_ELx.EC value 0x18.

EnTP2 Meaning
0b0 This control causes execution of these instructions at EL0 to

be trapped.
0b1 This control does not cause execution of any instructions to

be trapped.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When FEAT_SME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES0.

Bits [59:58]

Reserved, RES0.

EPAN, bit [57]
When FEAT_PAN3 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Enhanced Privileged Access Never. When PSTATE.PAN is 1, determines whether an EL2 data access to a page with
EL0 instruction access permission generates a Permission fault as a result of the Privileged Access Never
mechanism.

SCTLR_EL2, System Control Register (EL2)

Page 431

AArch64-tpidr2_el0.html

EPAN Meaning
0b0 No additional Permission faults are generated by this

mechanism.
0b1 An EL2 data access to a page with stage 1 EL0 data access

permission or stage 1 EL0 instruction access permission
generates a Permission fault.
Any speculative data accesses that would generate a
Permission fault if the accesses were not speculative will not
cause an allocation into a cache.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When FEAT_PAN3 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES0.

EnALS, bit [56]
When FEAT_LS64 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of an LD64B or ST64B instruction at EL0 to EL2.

EnALS Meaning
0b0 Execution of an LD64B or ST64B instruction at EL0 is

trapped to EL2.
0b1 This control does not cause any instructions to be trapped.

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of
0x0000002.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When FEAT_LS64 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES0.

EnAS0, bit [55]
When FEAT_LS64_ACCDATA is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of an ST64BV0 instruction at EL0 to EL2.

SCTLR_EL2, System Control Register (EL2)

Page 432

EnAS0 Meaning
0b0 Execution of an ST64BV0 instruction at EL0 is trapped to

EL2.
0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When FEAT_LS64_ACCDATA is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES0.

EnASR, bit [54]
When FEAT_LS64_V is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of an ST64BV instruction at EL0 to EL2.

EnASR Meaning
0b0 Execution of an ST64BV instruction at EL0 is trapped to

EL2.
0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000000.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When FEAT_LS64_V is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES0.

TME, bit [53]
When FEAT_TME is implemented:

Enables the Transactional Memory Extension at EL2.

TME Meaning
0b0 Any attempt to execute a TSTART instruction at EL2 is

trapped, unless HCR_EL2.TME or SCR_EL3.TME causes
TSTART instructions to be UNDEFINED at EL2.

0b1 This control does not cause any TSTART instruction to be
trapped.

The reset behavior of this field is:

SCTLR_EL2, System Control Register (EL2)

Page 433

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TME0, bit [52]
When FEAT_TME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Enables the Transactional Memory Extension at EL0.

TME0 Meaning
0b0 Any attempt to execute a TSTART instruction at EL0 is

trapped to EL2, unless HCR_EL2.TME or SCR_EL3.TME
causes TSTART instructions to be UNDEFINED at EL0.

0b1 This control does not cause any TSTART instruction to be
trapped.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When FEAT_TME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES0.

TMT, bit [51]
When FEAT_TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL2.

TMT Meaning
0b0 This control does not cause any TSTART instruction to fail.
0b1 When the TSTART instruction is executed at EL2, the

transaction fails with a TRIVIAL failure cause.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TMT0, bit [50]
When FEAT_TME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Forces a trivial implementation of the Transactional Memory Extension at EL0.

SCTLR_EL2, System Control Register (EL2)

Page 434

TMT0 Meaning
0b0 This control does not cause any TSTART instruction to fail.
0b1 When the TSTART instruction is executed at EL0, the

transaction fails with a TRIVIAL failure cause.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When FEAT_TME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES0.

TWEDEL, bits [49:46]
When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

TWE Delay. A 4-bit unsigned number that, when SCTLR_EL2.TWEDEn is 1, encodes the minimum delay in taking a
trap of WFE caused by SCTLR_EL2.nTWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES0.

TWEDEn, bit [45]
When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

TWE Delay Enable. Enables a configurable delayed trap of the WFE instruction caused by SCTLR_EL2.nTWE.

TWEDEn Meaning
0b0 The delay for taking a WFE trap is IMPLEMENTATION

DEFINED.
0b1 The delay for taking a WFE trap is at least the number of

cycles defined in SCTLR_EL2.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

SCTLR_EL2, System Control Register (EL2)

Page 435

Otherwise:

Reserved, RES0.

DSSBS, bit [44]
When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

DSSBS Meaning
0b0 PSTATE.SSBS is set to 0 on an exception to EL2.
0b1 PSTATE.SSBS is set to 1 on an exception to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

ATA, bit [43]
When FEAT_MTE2 is implemented:

Allocation Tag Access in EL2. When SCR_EL3.ATA is 1, controls EL2 access to Allocation Tags.

ATA Meaning
0b0 Access to Allocation Tags is prevented.
0b1 This control does not prevent access to Allocation Tags.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

ATA0, bit [42]
When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Allocation Tag Access in EL0. When SCR_EL3.ATA is 1, controls EL0 access to Allocation Tags.

ATA0 Meaning
0b0 Access to Allocation Tags is prevented.
0b1 This control does not prevent access to Allocation Tags.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL2, System Control Register (EL2)

Page 436

When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES0.

TCF, bits [41:40]
When FEAT_MTE2 is implemented:

Tag Check Fault in EL2. Controls the effect of Tag Check Faults due to Loads and Stores in EL2.

TCF Meaning Applies
when

0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults cause a synchronous

exception.
0b10 Tag Check Faults are asynchronously

accumulated.
0b11 Tag Check Faults cause a synchronous

exception on reads, and are asynchronously
accumulated on writes.

When
FEAT_MTE3
is
implemented

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TCF0, bits [39:38]
When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Tag Check Fault in EL0. Controls the effect of Tag Check Faults due to Loads and Stores in EL0.

TCF0 Meaning Applies
when

0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults cause a synchronous

exception.
0b10 Tag Check Faults are asynchronously

accumulated.
0b11 Tag Check Faults cause a synchronous

exception on reads, and are asynchronously
accumulated on writes.

When
FEAT_MTE3
is
implemented

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

SCTLR_EL2, System Control Register (EL2)

Page 437

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES0.

ITFSB, bit [37]
When FEAT_MTE2 is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, this field controls whether on
exception entry into EL2, all Tag Check Faults due to instructions executed before exception entry, that are
reported asynchronously, are synchronized into TFSRE0_EL1, TFSR_EL1 and TFSR_EL2 registers.

ITFSB Meaning
0b0 Tag Check Faults are not synchronized on entry to EL2.
0b1 Tag Check Faults are synchronized on entry to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

BT, bit [36]
When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL2.

When HCR_EL2.{E2H, TGE} == {1, 1}, this bit is named BT1.

BT Meaning
0b0 When the PE is executing at EL2, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL2, PACIASP and PACIBSP are not

compatible with PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

BT0, bit [35]
When FEAT_BTI is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

PAC Branch Type compatibility at EL0.

SCTLR_EL2, System Control Register (EL2)

Page 438

AArch64-tfsre0_el1.html
AArch64-tfsr_el1.html
AArch64-tfsr_el2.html

BT0 Meaning
0b0 When the PE is executing at EL0, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL0, PACIASP and PACIBSP are

not compatible with PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When FEAT_BTI is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES0.

Bit [34]

Reserved, RES0.

MSCEn, bit [33]
When FEAT_MOPS is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Memory Copy and Memory Set instructions Enable. Enables execution of the Memory Copy and Memory Set
instructions at EL0.

MSCEn Meaning
0b0 Execution of the Memory Copy and Memory Set

instructions is UNDEFINED at EL0.
0b1 This control does not cause any instructions to be

UNDEFINED.

When FEAT_MOPS is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the Effective value of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When FEAT_MOPS is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES0.

CMOW, bit [32]
When FEAT_CMOW is implemented and HCR_EL2.E2H == 1:

Controls cache maintenance instruction permission for the following instructions executed at EL0.

• IC IVAU, DC CIVAC, DC CIGDVAC and DC CIGVAC.

SCTLR_EL2, System Control Register (EL2)

Page 439

AArch64-ic-ivau.html
AArch64-dc-civac.html
AArch64-dc-cigdvac.html
AArch64-dc-cigvac.html

CMOW Meaning
0b0 These instructions executed at EL0 with stage 1 read

permission, but without stage 1 write permission, do not
generate a stage 1 permission fault.

0b1 If enabled as a result of SCTLR_EL2.UCI==1, these
instructions executed at EL0 with stage 1 read permission,
but without stage 1 write permission, generate a stage 1
permission fault.

When HCR_EL2.TGE is 0, this bit has no effect on execution at EL0.

For this control, stage 1 has write permission if all of the following apply:

• AP[2] is 0 or DBM is 1 in the stage 1 descriptor.
• Where APTable is in use, APTable[1] is 0 for all levels of the translation table.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

EnIA, bit [31]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL2 or
EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

EnIA Meaning
0b0 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode
functions. Specifically, when the field is 1, AddPACIA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIA
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

SCTLR_EL2, System Control Register (EL2)

Page 440

EnIB, bit [30]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL2 or
EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

EnIB Meaning
0b0 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode
functions. Specifically, when the field is 1, AddPACIB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIB
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

LSMAOE, bit [29]
When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

LSMAOE Meaning
0b0 For all memory accesses at EL0, A32 and T32 Load

Multiple and Store Multiple can have an interrupt taken
during the sequence memory accesses, and the memory
accesses are not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load
Multiple and Store Multiple at EL0 is as defined for
Armv8.0.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES1.

SCTLR_EL2, System Control Register (EL2)

Page 441

nTLSMD, bit [28]
When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

nTLSMD Meaning
0b0 All memory accesses by A32 and T32 Load Multiple and

Store Multiple at EL0 that are marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
trapped and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and
Store Multiple at EL0 that are marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
not trapped.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES1.

EnDA, bit [27]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL2 or
EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

EnDA Meaning
0b0 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode
functions. Specifically, when the field is 1, AddPACDA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDA
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

SCTLR_EL2, System Control Register (EL2)

Page 442

UCI, bit [26]
When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of cache maintenance instructions at EL0 to EL2, from AArch64 state only. This applies to DC
CVAU, DC CIVAC, DC CVAC, DC CVAP, and IC IVAU.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTE is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC CGVAC, DC CGDVAC, DC
CGVAP, and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to DC CGVADP and DC CGDVADP.

UCI Meaning
0b0 Any attempt to execute an instruction that this trap applies to

at EL0 using AArch64 is trapped to EL2.
0b1 This control does not cause any instructions to be trapped.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean, or clean and invalidate instruction that operates by VA to the point of coherency
can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this
control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the
execution of any instruction cache invalidate by VA to the Point of Unification instruction can be trapped when the
value of this control is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES0.

EE, bit [25]

Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and
stage 2 translation table walks in the EL1&0 translation regime.

EE Meaning
0b0 Explicit data accesses at EL2, stage 1 translation table walks in

the EL2 or EL2&0 translation regime, and stage 2 translation
table walks in the EL1&0 translation regime are little-endian.

0b1 Explicit data accesses at EL2, stage 1 translation table walks in
the EL2 or EL2&0 translation regime, and stage 2 translation
table walks in the EL1&0 translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

The reset behavior of this field is:

SCTLR_EL2, System Control Register (EL2)

Page 443

AArch64-dc-cvau.html
AArch64-dc-cvau.html
AArch64-dc-civac.html
AArch64-dc-cvac.html
AArch64-dc-cvap.html
AArch64-ic-ivau.html
AArch64-dc-cvadp.html
AArch64-dc-cigvac.html
AArch64-dc-cigdvac.html
AArch64-dc-cgvac.html
AArch64-dc-cgdvac.html
AArch64-dc-cgvap.html
AArch64-dc-cgvap.html
AArch64-dc-cgdvap.html
AArch64-dc-cgvadp.html
AArch64-dc-cgdvadp.html

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

E0E, bit [24]
When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Endianness of data accesses at EL0.

E0E Meaning
0b0 Explicit data accesses at EL0 are little-endian.
0b1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0, then this bit is RES0. This option is not permitted
when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0, then this bit is RES1. This option is not permitted
when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at
EL1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES0.

SPAN, bit [23]
When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Set Privileged Access Never, on taking an exception to EL2.

SPAN Meaning
0b0 PSTATE.PAN is set to 1 on taking an exception to EL2.
0b1 The value of PSTATE.PAN is left unchanged on taking an

exception to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES1.

SCTLR_EL2, System Control Register (EL2)

Page 444

EIS, bit [22]
When FEAT_ExS is implemented:

Exception entry is a context synchronization event.

EIS Meaning
0b0 The taking of an exception to EL2 is not a context

synchronization event.
0b1 The taking of an exception to EL2 is a context synchronization

event.

If SCTLR_EL2.EIS is set to 0b0:

• Indirect writes to ESR_EL2, FAR_EL2, SPSR_EL2, ELR_EL2, and HPFAR_EL2 are synchronized on
exception entry to EL2, so that a direct read of the register after exception entry sees the indirectly
written value caused by the exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EIS:

• Changes to the PSTATE information on entry to EL2.
• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores,

and data processing instructions.
• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

IESB, bit [21]
When FEAT_IESB is implemented:

Implicit Error Synchronization event enable.

IESB Meaning
0b0 Disabled.
0b1 An implicit error synchronization event is added:

• At each exception taken to EL2.
• Before the operational pseudocode of each ERET

instruction executed at EL2.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might
be 0 or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error
synchronization event is added after each DCPSX instruction taken to EL2 and before each DRPS instruction
executed at EL2, in addition to the other cases where it is added.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

SCTLR_EL2, System Control Register (EL2)

Page 445

AArch64-spsr_el2.html
AArch64-elr_el2.html

TSCXT, bit [20]
When (FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented), HCR_EL2.E2H == 1
and HCR_EL2.TGE == 1:

Trap EL0 Access to the SCXTNUM_EL0 register, when EL0 is using AArch64.

TSCXT Meaning
0b0 EL0 access to SCXTNUM_EL0 is not disabled by this

mechanism.
0b1 EL0 access to SCXTNUM_EL0 is disabled, causing an

exception to EL2, and the SCXTNUM_EL0 value is treated
as 0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When FEAT_CSV2_2 is not implemented, FEAT_CSV2_1p2 is not implemented, HCR_EL2.E2H
== 1 and HCR_EL2.TGE == 1:

Reserved, RES1.

When (FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented), HCR_EL2.E2H == 1
and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit can force all
memory regions that are writable to be treated as XN.

WXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable in the EL2 or EL2&0 translation

regime is forced to XN for accesses from software executing
at EL2.

This bit applies only when SCTLR_EL2.M bit is set.

The WXN bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

nTWE, bit [18]
When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of WFE instructions at EL0 to EL2, from both Execution states.

SCTLR_EL2, System Control Register (EL2)

Page 446

AArch64-scxtnum_el0.html
AArch64-scxtnum_el0.html
AArch64-scxtnum_el0.html

nTWE Meaning
0b0 Any attempt to execute a WFE instruction at EL0 is trapped

to EL2, if the instruction would otherwise have caused the PE
to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction
passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup
event, the traps on WFE of WFI are not guaranteed to be taken, even if the
WFE or WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the
absence of a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES1.

Bit [17]

Reserved, RES0.

nTWI, bit [16]
When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of WFI instructions at EL0 to EL2, from both Execution states.

nTWI Meaning
0b0 Any attempt to execute a WFI instruction at EL0 is trapped

EL2, if the instruction would otherwise have caused the PE to
enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup
event, the traps on WFE of WFI are not guaranteed to be taken, even if the
WFE or WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the
absence of a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL2, System Control Register (EL2)

Page 447

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES1.

UCT, bit [15]
When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps EL0 accesses to the CTR_EL0 to EL2, from AArch64 state only.

UCT Meaning
0b0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped

to EL2.
0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES0.

DZE, bit [14]
When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of DC ZVA instructions at EL0 to EL2, from AArch64 state only.

If FEAT_MTE is implemented, this trap also applies to DC GVA and DC GZVA.

DZE Meaning
0b0 Any attempt to execute an instruction that this trap applies to

at EL0 using AArch64 is trapped to EL2. Reading
DCZID_EL0.DZP from EL0 returns 1, indicating that the
instructions that this trap applies to are not supported.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

SCTLR_EL2, System Control Register (EL2)

Page 448

AArch64-ctr_el0.html
AArch64-ctr_el0.html
AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html
AArch64-dczid_el0.html

Otherwise:

Reserved, RES0.

EnDB, bit [13]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL2 or
EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

EnDB Meaning
0b0 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode
functions. Specifically, when the field is 1, AddPACDB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDB
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2 and, when EL2 is enabled in the current Security state
and HCR_EL2.{E2H,TGE} == {1,1}, EL0.

I Meaning
0b0 All instruction accesses to Normal memory from EL2 are Non-

cacheable for all levels of instruction and unified cache.
When EL2 is enabled in the current Security state and
HCR_EL2.{E2H, TGE} == {1, 1}, all instruction accesses to
Normal memory from EL0 are Non-cacheable for all levels of
instruction and unified cache.
If SCTLR_EL2.M is 0, instruction accesses from stage 1 of the
EL2 or EL2&0 translation regime are to Normal, Outer
Shareable, Inner Non-cacheable, Outer Non-cacheable memory.

0b1 This control has no effect on the Cacheability of instruction
access to Normal memory from EL2 and, when EL2 is enabled
in the current Security state and HCR_EL2.{E2H, TGE} == {1,
1}, instruction access to Normal memory from EL0.
If the value of SCTLR_EL2.M is 0, instruction accesses from
stage 1 of the EL2 or EL2&0 translation regime are to Normal,
Outer Shareable, Inner Write-Through, Outer Write-Through
memory.

This bit has no effect on the EL3 translation regime.

When EL2 is disabled in the current Security state or HCR_EL2.{E2H,TGE} != {1,1}, this bit has no effect on the
EL1&0 translation regime.

SCTLR_EL2, System Control Register (EL2)

Page 449

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

EOS, bit [11]
When FEAT_ExS is implemented:

Exception exit is a context synchronization event.

EOS Meaning
0b0 An exception return from EL2 is not a context synchronization

event.
0b1 An exception return from EL2 is a context synchronization

event.

If SCTLR_EL2.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL2 and ELR_EL2 on exception return is
synchronized.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores,
and data processing instructions.

• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

EnRCTX, bit [10]
When FEAT_SPECRES is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Enable EL0 Access to the following instructions:

• AArch32 CFPRCTX, DVPRCTX and CPPRCTX instructions.

• AArch64 CFP RCTX, DVP RCT and CPP RCTX instructions.

EnRCTX Meaning
0b0 EL0 access to these instructions is disabled, and these

instructions are trapped to EL1.
0b1 EL0 access to these instructions is enabled.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When FEAT_SPECRES is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

SCTLR_EL2, System Control Register (EL2)

Page 450

AArch64-spsr_el2.html
AArch64-elr_el2.html

Otherwise:

Reserved, RES0.

Bit [9]

Reserved, RES0.

SED, bit [8]
When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

SED Meaning
0b0 SETEND instruction execution is enabled at EL0 using

AArch32.
0b1 SETEND instructions are UNDEFINED at EL0 using AArch32.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When EL0 can only use AArch64, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Reserved, RES1.

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES0.

ITD, bit [7]
When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

SCTLR_EL2, System Control Register (EL2)

Page 451

ITD Meaning
0b0 All IT instruction functionality is enabled at EL0 using AArch32.
0b1 Any attempt at EL0 using AArch32 to execute any of the

following is UNDEFINED:
• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the

following values for hw1:
◦ 0b11xxxxxxxxxxxxxx: All 32-bit instructions, and

the 16-bit instructions B, UDF, SVC, LDM, and
STM.

◦ 0b1011xxxxxxxxxxxx: All instructions in
'Miscellaneous 16-bit instructions' in the Arm®
Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section F3.2.5.
'Miscellaneous 16-bit instructions'.

◦ 0b10100xxxxxxxxxxx: ADD Rd, PC, #imm
◦ 0b01001xxxxxxxxxxx: LDR Rd, [PC, #imm]
◦ 0b0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC;

MOV Rd, PC; BX PC; BLX PC.
◦ 0b010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm;

MOV PC, Rm. This pattern also covers
UNPREDICTABLE cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether
they would pass or fail the condition code check that applies to
them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is
treated as:

• A 16-bit instruction, that can only be followed by another
16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either
the second 16-bit instruction or the 32-bit instruction is
UNDEFINED.
An implementation might vary dynamically as to whether IT is
treated as a 16-bit instruction or the first half of a 32-bit
instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is
CONSTRAINED UNPREDICTABLE. For more information see 'Changes to an ITD control by an instruction in an IT block'.

ITD is optional, but if it is implemented in the SCTLR_EL2 then it must also be implemented in the SCTLR_EL1,
HSCTLR, and SCTLR.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When an implementation does not implement ITD, access to this field is RAZ/WI.

When EL0 can only use AArch64, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Reserved, RES1.

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

Otherwise:

Reserved, RES0.

SCTLR_EL2, System Control Register (EL2)

Page 452

AArch32-hsctlr.html
AArch32-sctlr.html

nAA, bit [6]
When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults under certain conditions at EL2, and, when
EL2 is enabled in the current Security state and HCR_EL2.{E2H, TGE} == {1, 1}, EL0.

nAA Meaning
0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH,

LDAPURSW, LDAR, LDARH, LDLAR, LDLARH, STLLR,
STLLRH, STLR, STLRH, STLUR, and STLURH generate an
Alignment fault if all bytes being accessed are not within a
single 16-byte quantity, aligned to 16 bytes for accesses.

0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR,
LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR,
LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, or STLURH
to generate an Alignment fault if all bytes being accessed are
not within a single 16-byte quantity, aligned to 16 bytes.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

CP15BEN, bit [5]
When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the
(coproc==0b1111) encoding space from EL0:

CP15BEN Meaning
0b0 EL0 using AArch32: EL0 execution of the CP15DMB,

CP15DSB, and CP15ISB instructions is UNDEFINED.
0b1 EL0 using AArch32: EL0 execution of the CP15DMB,

CP15DSB, and CP15ISB instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR_EL2 then it must also be implemented in the
SCTLR_EL1, HSCTLR, and SCTLR.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When an implementation does not implement CP15BEN, access to this field is RAO/WI.

When EL0 can only use AArch64, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Reserved, RES0.

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.Reserved, RAZ/WI.

SCTLR_EL2, System Control Register (EL2)

Page 453

AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html
AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html
AArch32-hsctlr.html
AArch32-sctlr.html

Otherwise:

Reserved, RES1.

SA0, bit [4]
When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as the
base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated.
For more information, see 'SP alignment checking'.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the SP as the base
address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated. For
more information, see 'SP alignment checking'.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

C, bit [2]

Data access Cacheability control, for accesses at EL2 and, when EL2 is enabled in the current Security state and
HCR_EL2.{E2H, TGE} == {1, 1}, EL0

C Meaning
0b0 The following are Non-cacheable for all levels of data and

unified cache:
• Data accesses to Normal memory from EL2.
• When HCR_EL2.{E2H, TGE} != {1, 1}, Normal memory

accesses to the EL2 translation tables.
• When EL2 is enabled in the current Security state and

HCR_EL2.{E2H, TGE} == {1, 1}:
◦ Data accesses to Normal memory from EL0.
◦ Normal memory accesses to the EL2&0 translation

tables.
0b1 This control has no effect on the Cacheability of:

• Data access to Normal memory from EL2.
• When HCR_EL2.{E2H, TGE} != {1, 1}, Normal memory

accesses to the EL2 translation tables.
• When EL2 is enabled in the current Security state and

HCR_EL2.{E2H, TGE} == {1, 1}:
◦ Data accesses to Normal memory from EL0.
◦ Normal memory accesses to the EL2&0 translation

tables.

This bit has no effect on the EL3 translation regime.

When EL2 is disabled in the current Security state or HCR_EL2.{E2H, TGE} != {1, 1}, this bit has no effect on the
EL1&0 translation regime.

The reset behavior of this field is:

SCTLR_EL2, System Control Register (EL2)

Page 454

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2 and, when EL2 is enabled in the
current Security state and HCR_EL2.{E2H, TGE} == {1, 1}, EL0.

A Meaning
0b0 Alignment fault checking disabled when executing at EL2.

When EL2 is enabled in the current Security state and
HCR_EL2.{E2H, TGE} == {1, 1}, alignment fault checking
disabled when executing at EL0.
Instructions that load or store one or more registers, other than
load/store exclusive and load-acquire/store-release, do not check
that the address being accessed is aligned to the size of the data
element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL2.
When EL2 is enabled in the current Security state and
HCR_EL2.{E2H, TGE} == {1, 1}, alignment fault checking
enabled when executing at EL0.
All instructions that load or store one or more registers have an
alignment check that the address being accessed is aligned to
the size of the data element(s) being accessed. If this check fails
it causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value
of the A bit.

If FEAT_MOPS is implemented, SETG* instructions have an alignment check regardless of the value of the A bit.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

M, bit [0]

MMU enable for EL2 or EL2&0 stage 1 address translation.

M Meaning
0b0 When HCR_EL2.{E2H, TGE} != {1, 1}, EL2 stage 1 address

translation disabled.
When HCR_EL2.{E2H, TGE} == {1, 1}, EL2&0 stage 1 address
translation disabled.
See the SCTLR_EL2.I field for the behavior of instruction
accesses to Normal memory.

0b1 When HCR_EL2.{E2H, TGE} != {1, 1}, EL2 stage 1 address
translation enabled.
When HCR_EL2.{E2H, TGE} == {1, 1}, EL2&0 stage 1 address
translation enabled.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing SCTLR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SCTLR_EL2 or
SCTLR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

SCTLR_EL2, System Control Register (EL2)

Page 455

MRS <Xt>, SCTLR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = SCTLR_EL2;
elsif PSTATE.EL == EL3 then

X[t, 64] = SCTLR_EL2;

MSR SCTLR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SCTLR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then

SCTLR_EL2 = X[t, 64];

MRS <Xt>, SCTLR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCTLR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
X[t, 64] = NVMem[0x110];

else
X[t, 64] = SCTLR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

X[t, 64] = SCTLR_EL2;
else

X[t, 64] = SCTLR_EL1;
elsif PSTATE.EL == EL3 then

X[t, 64] = SCTLR_EL1;

SCTLR_EL2, System Control Register (EL2)

Page 456

MSR SCTLR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCTLR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x110] = X[t, 64];

else
SCTLR_EL1 = X[t, 64];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

SCTLR_EL2 = X[t, 64];
else

SCTLR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then

SCTLR_EL1 = X[t, 64];

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SCTLR_EL2, System Control Register (EL2)

Page 457

(old) htmldiff from- (new)

SDER32_EL2, AArch32 Secure Debug Enable Register
The SDER32_EL2 characteristics are:

Purpose
Allows access to the AArch32 register SDER from Secure EL2 and EL3 only.

Configuration
AArch64 System register SDER32_EL2 bits [63:0] are architecturally mapped to AArch64 System register
SDER32_EL3[63:0] when EL3 is implemented.

AArch64 System register SDER32_EL2 bits [31:0] are architecturally mapped to AArch32 System register SDER[31:0].

This register is present only when EL2 is implemented, FEAT_SEL2 is implemented and EL1 is capable of using
AArch32. Otherwise, direct accesses to SDER32_EL2 are UNDEFINED.

This register is ignored by the PE when one or more of the following are true:

• The PE is in Non-secure state.

• EL1 is using AArch64.

Attributes
SDER32_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 SUNIDENSUIDEN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

SUNIDEN, bit [1]

Secure User Non-Invasive Debug Enable.

SUNIDEN Meaning
0b0 This bit hasdoes nonot effectaffect onPerformance non-

invasiveMonitors debug.event counting at Secure EL0.
0b1 Non-invasiveIf debugEL1 is using AArch32, Performance

Monitors event counting is allowed in Secure EL0 using
AArch32.EL0.

When Secure EL1 is using AArch32, the forms of non-invasive debug affected by this control are:

• The PC Sample-based Profiling Extension. See About the PC Sample-based Profiling Extension.
• When SelfHostedTraceEnabled() == FALSE, processor trace.
• When EL3 is implemented, Performance Monitors.

When Secure EL1 is using AArch64, this bit has no effect.

SDER32_EL2, AArch32 Secure Debug Enable Register

Page 458

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SUIDEN, bit [0]
When EL3 is implemented:

Secure User Invasive Debug Enable.

SUIDEN Meaning
0b0 This bit does not affect the generation of debug exceptions

at Secure EL0.
0b1 If EL1 is using AArch32, debug exceptions from Secure

EL0 are enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SDER32_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SDER32_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsSecure() then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
X[t, 64] = SDER32_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

X[t, 64] = SDER32_EL2;

MSR SDER32_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0011 0b001

SDER32_EL2, AArch32 Secure Debug Enable Register

Page 459

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsSecure() then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
SDER32_EL2 = X[t, 64];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

SDER32_EL2 = X[t, 64];

Otherwise:

Reserved, RES0.

Accessing SDER32_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SDER32_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsCurrentSecurityState(SS_Secure) then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsCurrentSecurityState(SS_Secure) then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
X[t, 64] = SDER32_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

X[t, 64] = SDER32_EL2;

MSR SDER32_EL2, <Xt>

op0 op1 CRn CRm op2

SDER32_EL2, AArch32 Secure Debug Enable Register

Page 460

0b11 0b100 0b0001 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsCurrentSecurityState(SS_Secure) then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsCurrentSecurityState(SS_Secure) then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
SDER32_EL2 = X[t, 64];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

SDER32_EL2 = X[t, 64];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SDER32_EL2, AArch32 Secure Debug Enable Register

Page 461

(old) htmldiff from- (new)

SDER32_EL3, AArch32 Secure Debug Enable Register
The SDER32_EL3 characteristics are:

Purpose
Allows access to the AArch32 register SDER from AArch64 state only. Its value has no effect on execution in AArch64
state.

Configuration
AArch64 System register SDER32_EL3 bits [63:0] are architecturally mapped to AArch64 System register
SDER32_EL2[63:0] when EL2 is implemented and FEAT_SEL2 is implemented.

AArch64 System register SDER32_EL3 bits [31:0] are architecturally mapped to AArch32 System register SDER[31:0].

This register is present only when EL3 is implemented and EL1 is capable of using AArch32. Otherwise, direct
accesses to SDER32_EL3 are UNDEFINED.

This register is ignored by the PE when one or more of the following are true:

• The PE is in Non-secure state.

• EL1 is using AArch64.

Attributes
SDER32_EL3 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 SUNIDENSUIDEN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

SUNIDEN, bit [1]

Secure User Non-Invasive Debug Enable.

SUNIDEN Meaning
0b0 This bit hasdoes nonot effectaffect onPerformance non-

invasiveMonitors debug.event counting at Secure EL0.
0b1 Non-invasiveIf debugEL1 is using AArch32, Performance

Monitors event counting is allowed in Secure EL0 using
AArch32.EL0.

When Secure EL1 is using AArch32, the forms of non-invasive debug affected by this control are:

• The PC Sample-based Profiling Extension. See About the PC Sample-based Profiling Extension.
• When SelfHostedTraceEnabled() == FALSE, processor trace.
• Performance Monitors.

SDER32_EL3, AArch32 Secure Debug Enable Register

Page 462

When Secure EL1 is using AArch64, this bit has no effect.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SUIDEN, bit [0]

Secure User Invasive Debug Enable.

SUIDEN Meaning
0b0 This bit does not affect the generation of debug exceptions

at Secure EL0.
0b1 If EL1 is using AArch32, debug exceptions from Secure

EL0 are enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SDER32_EL3
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SDER32_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
X[t, 64] = SDER32_EL3;

MSR SDER32_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
SDER32_EL3 = X[t, 64];

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SDER32_EL3, AArch32 Secure Debug Enable Register

Page 463

(old) htmldiff from- (new)

SPSR_abt, Saved Program Status Register (Abort
mode)

The SPSR_abt characteristics are:

Purpose
Holds the saved process state when an exception is taken to Abort mode.

Configuration
AArch64 System register SPSR_abt bits [31:0] are architecturally mapped to AArch32 System register SPSR_abt[31:0].

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes
SPSR_abt is a 64-bit register.

Field descriptions

When EL1 can only use AArch64:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0
RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, RES0.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Abort mode, and copied to
PSTATE.N on executing an illegal exception return operation in Abort mode.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 464

AArch32-spsr_abt.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Abort mode, and copied to PSTATE.Z
on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Abort mode, and copied to PSTATE.C
on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Abort mode, and copied to
PSTATE.V on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Abort mode, and copied to
PSTATE.Q on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to Abort mode, and copied to PSTATE.IT on
executing an illegal exception return operation in Abort mode.

SPSR_abt.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_abt[26:25].
• IT[7:2] is SPSR_abt[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 465

SSBS, bit [23]
When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Abort mode, and copied to
PSTATE.SSBS on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Abort mode, and copied to
PSTATE.PAN on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]
When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Abort mode, and copied to
PSTATE.DIT on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Abort mode, and copied to
PSTATE.IL on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Abort mode, and copied to
PSTATE.GE on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

SPSR_abt, Saved Program Status Register (Abort mode)

Page 466

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Abort mode, and copied to PSTATE.E on
executing an illegal exception return operation in Abort mode.

If the implementation does not support big-endian operation, SPSR_abt.E is RES0. If the implementation does not
support little-endian operation, SPSR_abt.E is RES1. On executing an illegal exception return operation in Abort
mode, if the implementation does not support big-endian operation at the Exception level being returned to,
SPSR_abt.E is RES0, and if the implementation does not support little-endian operation at the Exception level being
returned to, SPSR_abt.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Abort mode, and copied to
PSTATE.A on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Abort mode, and copied to PSTATE.I on
executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Abort mode, and copied to PSTATE.F
on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Abort mode, and copied to
PSTATE.T on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Abort mode, and copied to PSTATE.M[4:0] on
executing an illegal exception return operation in Abort mode.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 467

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_abt.M[4:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an illegal exception return operation in Abort mode is an illegal return event, as described in
'Illegal return events from AArch32 state'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_abt
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_abt

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = SPSR_abt;
elsif PSTATE.EL == EL3 then

X[t, 64] = SPSR_abt;

MSR SPSR_abt, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SPSR_abt = X[t, 64];
elsif PSTATE.EL == EL3 then

SPSR_abt = X[t, 64];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR_abt, Saved Program Status Register (Abort mode)

Page 468

(old) htmldiff from- (new)

SPSR_fiq, Saved Program Status Register (FIQ mode)
The SPSR_fiq characteristics are:

Purpose
Holds the saved process state when an exception is taken to FIQ mode.

Configuration
AArch64 System register SPSR_fiq bits [31:0] are architecturally mapped to AArch32 System register SPSR_fiq[31:0].

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes
SPSR_fiq is a 64-bit register.

Field descriptions

When EL1 can only use AArch64:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0
RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, RES0.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to FIQ mode, and copied to
PSTATE.N on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 469

AArch32-spsr_fiq.html

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to FIQ mode, and copied to PSTATE.Z on
executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to FIQ mode, and copied to PSTATE.C
on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to FIQ mode, and copied to
PSTATE.V on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to FIQ mode, and copied to
PSTATE.Q on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to FIQ mode, and copied to PSTATE.IT on executing
an illegal exception return operation in FIQ mode.

SPSR_fiq.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_fiq[26:25].
• IT[7:2] is SPSR_fiq[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 470

SSBS, bit [23]
When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to FIQ mode, and copied to
PSTATE.SSBS on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to FIQ mode, and copied to
PSTATE.PAN on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]
When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to FIQ mode, and copied to
PSTATE.DIT on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to FIQ mode, and copied to
PSTATE.IL on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to FIQ mode, and copied to
PSTATE.GE on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 471

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to FIQ mode, and copied to PSTATE.E on
executing an illegal exception return operation in FIQ mode.

If the implementation does not support big-endian operation, SPSR_fiq.E is RES0. If the implementation does not
support little-endian operation, SPSR_fiq.E is RES1. On executing an illegal exception return operation in FIQ
mode, if the implementation does not support big-endian operation at the Exception level being returned to,
SPSR_fiq.E is RES0, and if the implementation does not support little-endian operation at the Exception level being
returned to, SPSR_fiq.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to FIQ mode, and copied to PSTATE.A
on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to FIQ mode, and copied to PSTATE.I on
executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to FIQ mode, and copied to PSTATE.F on
executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to FIQ mode, and copied to
PSTATE.T on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to FIQ mode, and copied to PSTATE.M[4:0] on
executing an illegal exception return operation in FIQ mode.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 472

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_fiq.M[4:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an illegal exception return operation in FIQ mode is an illegal return event, as described in 'Illegal
return events from AArch32 state'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_fiq
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_fiq

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = SPSR_fiq;
elsif PSTATE.EL == EL3 then

X[t, 64] = SPSR_fiq;

MSR SPSR_fiq, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SPSR_fiq = X[t, 64];
elsif PSTATE.EL == EL3 then

SPSR_fiq = X[t, 64];

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 473

(old) htmldiff from- (new)

SPSR_irq, Saved Program Status Register (IRQ mode)
The SPSR_irq characteristics are:

Purpose
Holds the saved process state when an exception is taken to IRQ mode.

Configuration
AArch64 System register SPSR_irq bits [31:0] are architecturally mapped to AArch32 System register SPSR_irq[31:0].

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes
SPSR_irq is a 64-bit register.

Field descriptions

When EL1 can only use AArch64:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0
RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, RES0.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to IRQ mode, and copied to
PSTATE.N on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 474

AArch32-spsr_irq.html

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to IRQ mode, and copied to PSTATE.Z on
executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to IRQ mode, and copied to PSTATE.C
on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to IRQ mode, and copied to
PSTATE.V on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to IRQ mode, and copied to
PSTATE.Q on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to IRQ mode, and copied to PSTATE.IT on executing
an illegal exception return operation in IRQ mode.

SPSR_irq.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_irq[26:25].
• IT[7:2] is SPSR_irq[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 475

SSBS, bit [23]
When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to IRQ mode, and copied to
PSTATE.SSBS on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to IRQ mode, and copied to
PSTATE.PAN on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]
When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to IRQ mode, and copied to
PSTATE.DIT on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to IRQ mode, and copied to
PSTATE.IL on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to IRQ mode, and copied to
PSTATE.GE on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 476

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to IRQ mode, and copied to PSTATE.E on
executing an illegal exception return operation in IRQ mode.

If the implementation does not support big-endian operation, SPSR_irq.E is RES0. If the implementation does not
support little-endian operation, SPSR_irq.E is RES1. On executing an illegal exception return operation in IRQ
mode, if the implementation does not support big-endian operation at the Exception level being returned to,
SPSR_irq.E is RES0, and if the implementation does not support little-endian operation at the Exception level being
returned to, SPSR_irq.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to IRQ mode, and copied to PSTATE.A
on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to IRQ mode, and copied to PSTATE.I on
executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to IRQ mode, and copied to PSTATE.F on
executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to IRQ mode, and copied to
PSTATE.T on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to IRQ mode, and copied to PSTATE.M[4:0] on
executing an illegal exception return operation in IRQ mode.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 477

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_irq.M[4:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an illegal exception return operation in IRQ mode is an illegal return event, as described in 'Illegal
return events from AArch32 state'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_irq
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_irq

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = SPSR_irq;
elsif PSTATE.EL == EL3 then

X[t, 64] = SPSR_irq;

MSR SPSR_irq, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SPSR_irq = X[t, 64];
elsif PSTATE.EL == EL3 then

SPSR_irq = X[t, 64];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 478

(old) htmldiff from- (new)

SPSR_und, Saved Program Status Register (Undefined
mode)

The SPSR_und characteristics are:

Purpose
Holds the saved process state when an exception is taken to Undefined mode.

Configuration
AArch64 System register SPSR_und bits [31:0] are architecturally mapped to AArch32 System register
SPSR_und[31:0].

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes
SPSR_und is a 64-bit register.

Field descriptions

When EL1 can only use AArch64:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0
RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, RES0.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 479

AArch32-spsr_und.html

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Undefined mode, and copied to
PSTATE.N on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Undefined mode, and copied to
PSTATE.Z on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Undefined mode, and copied to
PSTATE.C on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Undefined mode, and copied to
PSTATE.V on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Undefined mode, and copied to
PSTATE.Q on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to Undefined mode, and copied to PSTATE.IT on
executing an illegal exception return operation in Undefined mode.

SPSR_und.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_und[26:25].
• IT[7:2] is SPSR_und[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 480

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]
When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Undefined mode, and copied
to PSTATE.SSBS on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Undefined mode, and copied to
PSTATE.PAN on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]
When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Undefined mode, and copied
to PSTATE.DIT on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Undefined mode, and copied to
PSTATE.IL on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 481

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Undefined mode, and copied
to PSTATE.GE on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Undefined mode, and copied to PSTATE.E on
executing an illegal exception return operation in Undefined mode.

If the implementation does not support big-endian operation, SPSR_und.E is RES0. If the implementation does not
support little-endian operation, SPSR_und.E is RES1. On executing an illegal exception return operation in
Undefined mode, if the implementation does not support big-endian operation at the Exception level being
returned to, SPSR_und.E is RES0, and if the implementation does not support little-endian operation at the
Exception level being returned to, SPSR_und.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Undefined mode, and copied to
PSTATE.A on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Undefined mode, and copied to
PSTATE.I on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Undefined mode, and copied to
PSTATE.F on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Undefined mode, and copied to
PSTATE.T on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Undefined mode, and copied to PSTATE.M[4:0]
on executing an illegal exception return operation in Undefined mode.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 482

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_und.M[4:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an illegal exception return operation in Undefined mode is an illegal return event, as described in
'Illegal return events from AArch32 state'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_und
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_und

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = SPSR_und;
elsif PSTATE.EL == EL3 then

X[t, 64] = SPSR_und;

MSR SPSR_und, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SPSR_und = X[t, 64];
elsif PSTATE.EL == EL3 then

SPSR_und = X[t, 64];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR_und, Saved Program Status Register (Undefined mode)

Page 483

(old) htmldiff from- (new)

SVCR, Streaming Vector Control Register
The SVCR characteristics are:

Purpose
Controls Streaming SVE mode and SME behavior.

Configuration
This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to SVCR are UNDEFINED.

Attributes
SVCR is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 ZA SM

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

ZA, bit [1]

Enables SME ZA storage.

When this storage is disabled, execution of an instruction which can access it is trapped. The exception is reported
using an ESR_ELx.{EC, SMTC} value of {0x1D, 0x3}.

The possible values of this bit are:

ZA Meaning
0b0 SME ZA storage is invalid and not accessible.

This control causes execution at any Exception level of
instructions that can access this storage to be trapped.

0b1 SME ZA storage is valid and accessible.
This control does not cause execution of any instructions to be
trapped.

When a write to SVCR.ZA changes the value of PSTATE.ZA, the following applies:

• When changed from 0 to 1, all implemented bits of the storage are set to zero.
• When changed from 1 to 0, there is no observable change to the storage.

Changes to this field do not have an affect on the SVE vector and predicate registers and FPSR.

A direct or indirect read of ZA appears to occur in program order relative to a direct write of SVCR, and to MSR
SVCRZA and MSR SVCRSMZA instructions, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

SVCR, Streaming Vector Control Register

Page 484

AArch64-fpsr.html

SM, bit [0]

Enables Streaming SVE mode.

When the PE is in Streaming SVE mode, the Streaming SVE vector length (SVL) applies to SVE instructions, and
execution at any Exception level of an instruction which is illegal in that mode is trapped. The exception is
reported using an ESR_ELx.{EC, SMTC} value of {0x1D, 0x1}.

When the PE is not in Streaming SVE mode, the SVE vector length (VL) applies to SVE instructions, and execution
at any Exception level of an instruction which is only legal in that mode is trapped. The exception is reported using
an ESR_ELx.{EC, SMTC} value of {0x1D, 0x2}.

The possible values of this bit are:

SM Meaning
0b0 The PE is not in Streaming SVE mode.
0b1 The PE is in Streaming SVE mode.

When a write to SVCR.SM changes the value of PSTATE.SM, the following applies:

• When changed from 0 to 1, an entry to Streaming SVE mode is performed.
• When changed from 1 to 0, an exit from Streaming SVE mode is performed.
• All implemented bits of the SVE registers Z0-Z31, P0-P15, and FFR in the new mode are set to zero.
• FPSR in the new mode is set to 0x0000_0000_0800_009f, in which all cumulative status bits are set to 1.

Changes to this field do not have an affect on SME ZA storage.

A direct or indirect read of SM appears to occur in program order relative to a direct write of SVCR, and to MSR
SVCRSM and MSR SVCRSMZA instructions, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing SVCR
SVCR is read/write and can be accessed from any Exception level.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SVCR

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b010

SVCR, Streaming Vector Control Register

Page 485

AArch64-fpsr.html

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.SMEN != '11' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x1D);
else

AArch64.SystemAccessTrap(EL1, 0x1D);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.SMEN != '11' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x1D);

else
X[t, 64] = Zeros(62):PSTATE.<ZA,SM>;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif CPACR_EL1.SMEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x1D);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
AArch64.SystemAccessTrap(EL2, 0x1D);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x1D);

elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x1D);
else

X[t, 64] = Zeros(62):PSTATE.<ZA,SM>;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.ESM == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x1D);

else
X[t, 64] = Zeros(62):PSTATE.<ZA,SM>;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.ESM == '0' then

AArch64.SystemAccessTrap(EL3, 0x1D);
else

X[t, 64] = Zeros(62):PSTATE.<ZA,SM>;

MSR SVCR, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b010

SVCR, Streaming Vector Control Register

Page 486

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.SMEN != '11' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x1D);
else

AArch64.SystemAccessTrap(EL1, 0x1D);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.SMEN != '11' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x1D);

else
SetPSTATE_SVCR(X[t, 32]);

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif CPACR_EL1.SMEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x1D);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
AArch64.SystemAccessTrap(EL2, 0x1D);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x1D);

elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x1D);
else

SetPSTATE_SVCR(X[t, 32]);
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.ESM == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x1D);

else
SetPSTATE_SVCR(X[t, 32]);

elsif PSTATE.EL == EL3 then
if CPTR_EL3.ESM == '0' then

AArch64.SystemAccessTrap(EL3, 0x1D);
else

SetPSTATE_SVCR(X[t, 32]);

MSR SVCRSM, #<imm>

op0 op1 CRn CRm op2
0b00 0b011 0b0100 0b001x 0b011

SVCR, Streaming Vector Control Register

Page 487

MSR SVCRZA, #<imm>

op0 op1 CRn CRm op2
0b00 0b011 0b0100 0b010x 0b011

MSR SVCRSMZA, #<imm>

op0 op1 CRn CRm op2
0b00 0b011 0b0100 0b011x 0b011

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SVCR, Streaming Vector Control Register

Page 488

(old) htmldiff from- (new)

TLBI ALLE2, TLBI ALLE2NXS, TLB Invalidate All, EL2
The TLBI ALLE2, TLBI ALLE2NXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• If FEAT_RME is implemented, one of the following applies:

◦ SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate anyan address using the
Secure EL2EL1&0 or EL2 translation regime.

◦ SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate anyan address using the
Non-secure EL2EL1&0 or EL2 translation regime.

◦ SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate anyan address using the
Realm EL2EL1&0 or EL2 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate anyan address using the Secure
EL2EL1&0 or EL2 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate anyan address using the Non-secure
EL2EL1&0 or EL2 translation regime.

The invalidation only applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI ALLE2, TLBI ALLE2NXS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE2, TLBI ALLE2NXS instruction
The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

TLBI ALLE2, TLBI ALLE2NXS, TLB Invalidate All, EL2

Page 489

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ALLE2{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0111 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_NSH, TLBI_AllAttr);

else
AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_NSH, TLBI_AllAttr);

elsif PSTATE.EL == EL3 then
if !EL2Enabled() then

UNDEFINED;
elsif HCR_EL2.E2H == '1' then

AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_NSH, TLBI_AllAttr);
else

AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_NSH, TLBI_AllAttr);

TLBI ALLE2NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0111 0b000

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_NSH, TLBI_ExcludeXS);

else
AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_NSH, TLBI_ExcludeXS);

elsif PSTATE.EL == EL3 then
if !EL2Enabled() then

UNDEFINED;
elsif HCR_EL2.E2H == '1' then

AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_NSH, TLBI_ExcludeXS);
else

AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_NSH, TLBI_ExcludeXS);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI ALLE2, TLBI ALLE2NXS, TLB Invalidate All, EL2

Page 490

(old) htmldiff from- (new)

TLBI ALLE2IS, TLBI ALLE2ISNXS, TLB Invalidate All,
EL2, Inner Shareable

The TLBI ALLE2IS, TLBI ALLE2ISNXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• If FEAT_RME is implemented, one of the following applies:

◦ SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate anyan address using the
Secure EL2EL1&0 or EL2 translation regime.

◦ SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate anyan address using the
Non-secure EL2EL1&0 or EL2 translation regime.

◦ SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate anyan address using the
Realm EL2EL1&0 or EL2 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate anyan address using the Secure
EL2EL1&0 or EL2 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate anyan address using the Non-secure
EL2EL1&0 or EL2 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI ALLE2IS, TLBI ALLE2ISNXS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE2IS, TLBI ALLE2ISNXS instruction
The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

TLBI ALLE2IS, TLBI ALLE2ISNXS, TLB Invalidate All, EL2, Inner Shareable

Page 491

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ALLE2IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_ISH, TLBI_AllAttr);

else
AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_ISH, TLBI_AllAttr);

elsif PSTATE.EL == EL3 then
if !EL2Enabled() then

UNDEFINED;
elsif HCR_EL2.E2H == '1' then

AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_ISH, TLBI_AllAttr);
else

AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_ISH, TLBI_AllAttr);

TLBI ALLE2ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0011 0b000

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_ISH, TLBI_ExcludeXS);

else
AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_ISH, TLBI_ExcludeXS);

elsif PSTATE.EL == EL3 then
if !EL2Enabled() then

UNDEFINED;
elsif HCR_EL2.E2H == '1' then

AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_ISH, TLBI_ExcludeXS);
else

AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_ISH, TLBI_ExcludeXS);

3021/03/2022 2017:2800; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ALLE2IS, TLBI ALLE2ISNXS, TLB Invalidate All, EL2, Inner Shareable

Page 492

(old) htmldiff from- (new)

TLBI ALLE2IS, TLBI ALLE2ISNXS, TLB Invalidate All, EL2, Inner Shareable

Page 493

(old) htmldiff from- (new)

TLBI ALLE2OS, TLBI ALLE2OSNXS, TLB Invalidate All,
EL2, Outer Shareable

The TLBI ALLE2OS, TLBI ALLE2OSNXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• If FEAT_RME is implemented, one of the following applies:

◦ SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate anyan address using the
Secure EL2EL1&0 or EL2 translation regime.

◦ SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate anyan address using the
Non-secure EL2EL1&0 or EL2 translation regime.

◦ SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate anyan address using the
Realm EL2EL1&0 or EL2 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate anyan address using the Secure
EL2EL1&0 or EL2 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate anyan address using the Non-secure
EL2EL1&0 or EL2 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI ALLE2OS,
TLBI ALLE2OSNXS are UNDEFINED.

Attributes
TLBI ALLE2OS, TLBI ALLE2OSNXS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE2OS, TLBI ALLE2OSNXS instruction
The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

TLBI ALLE2OS, TLBI ALLE2OSNXS, TLB Invalidate All, EL2, Outer Shareable

Page 494

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ALLE2OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_OSH, TLBI_AllAttr);

else
AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_OSH, TLBI_AllAttr);

elsif PSTATE.EL == EL3 then
if !EL2Enabled() then

UNDEFINED;
elsif HCR_EL2.E2H == '1' then

AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_OSH, TLBI_AllAttr);
else

AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_OSH, TLBI_AllAttr);

TLBI ALLE2OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0001 0b000

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_OSH, TLBI_ExcludeXS);

else
AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_OSH, TLBI_ExcludeXS);

elsif PSTATE.EL == EL3 then
if !EL2Enabled() then

UNDEFINED;
elsif HCR_EL2.E2H == '1' then

AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_OSH, TLBI_ExcludeXS);
else

AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_OSH, TLBI_ExcludeXS);

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ALLE2OS, TLBI ALLE2OSNXS, TLB Invalidate All, EL2, Outer Shareable

Page 495

(old) htmldiff from- (new)

TLBI ALLE2OS, TLBI ALLE2OSNXS, TLB Invalidate All, EL2, Outer Shareable

Page 496

(old) htmldiff from- (new)

TLBI RIPAS2E1, TLBI RIPAS2E1NXS, TLB Range
Invalidate by Intermediate Physical Address, Stage 2,

EL1
The TLBI RIPAS2E1, TLBI RIPAS2E1NXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• If FEAT_RME is implemented, one of the following applies:

◦ SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any IPA in the specified
address rangeIPA using the Secure EL1&0 translation regime.

◦ SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any IPA in the specified
address rangeIPA using the Non-secure EL1&0 translation regime.

◦ SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any IPA in the specified
address rangeIPA using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate any IPA in the specified address
rangeIPA using the Secure EL1&0 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate any IPA in the specified address
rangeIPA using the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

TLBI RIPAS2E1, TLBI RIPAS2E1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 497

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI
RIPAS2E1, TLBI RIPAS2E1NXS are UNDEFINED.

Attributes
TLBI RIPAS2E1, TLBI RIPAS2E1NXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]
When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the instruction
applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the instruction
applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TLBI RIPAS2E1, TLBI RIPAS2E1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 498

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2E1, TLBI RIPAS2E1NXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RIPAS2E1{, <Xt>}

op0 op1 CRn CRm op2

TLBI RIPAS2E1, TLBI RIPAS2E1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 499

0b01 0b100 0b1000 0b0100 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
return;

else
AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RIPAS2E1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0100 0b010

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
return;

else
AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RIPAS2E1, TLBI RIPAS2E1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 500

(old) htmldiff from- (new)

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, TLB Range
Invalidate by Intermediate Physical Address, Stage 2,

EL1, Inner Shareable
The TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• If FEAT_RME is implemented, one of the following applies:

◦ SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any IPA in the specified
address rangeIPA using the Secure EL1&0 translation regime.

◦ SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any IPA in the specified
address rangeIPA using the Non-secure EL1&0 translation regime.

◦ SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any IPA in the specified
address rangeIPA using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate any IPA in the specified address
rangeIPA using the Secure EL1&0 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate any IPA in the specified address
rangeIPA using the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner
Shareable

Page 501

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI
RIPAS2E1IS, TLBI RIPAS2E1ISNXS are UNDEFINED.

Attributes
TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]
When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the instruction
applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the instruction
applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner
Shareable

Page 502

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner
Shareable

Page 503

TLBI RIPAS2E1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
return;

else
AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RIPAS2E1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0000 0b010

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
return;

else
AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner
Shareable

Page 504

(old) htmldiff from- (new)

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range
Invalidate by Intermediate Physical Address, Stage 2,

EL1, Outer Shareable
The TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• If FEAT_RME is implemented, one of the following applies:

◦ SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any IPA in the specified
address rangeIPA using the Secure EL1&0 translation regime.

◦ SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any IPA in the specified
address rangeIPA using the Non-secure EL1&0 translation regime.

◦ SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any IPA in the specified
address rangeIPA using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate any IPA in the specified address
rangeIPA using the Secure EL1&0 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate any IPA in the specified address
rangeIPA using the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer
Shareable

Page 505

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS are UNDEFINED.

Attributes
TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]
When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the instruction
applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the instruction
applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer
Shareable

Page 506

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS
instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer
Shareable

Page 507

TLBI RIPAS2E1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0100 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
return;

else
AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RIPAS2E1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0100 0b011

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
return;

else
AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer
Shareable

Page 508

(old) htmldiff from- (new)

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, TLB Range
Invalidate by Intermediate Physical Address, Stage 2,

Last level, EL1
The TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.

• If FEAT_RME is implemented, one of the following applies:

◦ SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any IPA in the specified
address rangeIPA using the Secure EL1&0 translation regime.

◦ SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any IPA in the specified
address rangeIPA using the Non-secure EL1&0 translation regime.

◦ SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any IPA in the specified
address rangeIPA using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate any IPA in the specified address
rangeIPA using the Secure EL1&0 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate any IPA in the specified address
rangeIPA using the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation only applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1

Page 509

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI
RIPAS2LE1, TLBI RIPAS2LE1NXS are UNDEFINED.

Attributes
TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]
When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the instruction
applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the instruction
applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1

Page 510

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RIPAS2LE1{, <Xt>}

op0 op1 CRn CRm op2

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1

Page 511

0b01 0b100 0b1000 0b0100 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
return;

else
AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RIPAS2LE1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0100 0b110

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
return;

else
AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1

Page 512

(old) htmldiff from- (new)

TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range
Invalidate by Intermediate Physical Address, Stage 2,

Last level, EL1, Inner Shareable
The TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.

• If FEAT_RME is implemented, one of the following applies:

◦ SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any IPA in the specified
address rangeIPA using the Secure EL1&0 translation regime.

◦ SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any IPA in the specified
address rangeIPA using the Non-secure EL1&0 translation regime.

◦ SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any IPA in the specified
address rangeIPA using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate any IPA in the specified address
rangeIPA using the Secure EL1&0 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate any IPA in the specified address
rangeIPA using the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1, Inner Shareable

Page 513

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI
RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS are UNDEFINED.

Attributes
TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]
When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the instruction
applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the instruction
applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1, Inner Shareable

Page 514

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS
instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1, Inner Shareable

Page 515

TLBI RIPAS2LE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0000 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
return;

else
AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RIPAS2LE1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0000 0b110

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
return;

else
AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2800; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1, Inner Shareable

Page 516

(old) htmldiff from- (new)

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range
Invalidate by Intermediate Physical Address, Stage 2,

Last level, EL1, Outer Shareable
The TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.

• If FEAT_RME is implemented, one of the following applies:

◦ SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any IPA in the specified
address rangeIPA using the Secure EL1&0 translation regime.

◦ SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any IPA in the specified
address rangeIPA using the Non-secure EL1&0 translation regime.

◦ SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any IPA in the specified
address rangeIPA using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate any IPA in the specified address
rangeIPA using the Secure EL1&0 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate any IPA in the specified address
rangeIPA using the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Outer Shareable

Page 517

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS are UNDEFINED.

Attributes
TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]
When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the instruction
applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the instruction
applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Outer Shareable

Page 518

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Outer Shareable

Page 519

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS
instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RIPAS2LE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0100 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
return;

else
AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RIPAS2LE1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0100 0b111

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
return;

else
AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Outer Shareable

Page 520

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Outer Shareable

Page 521

(old) htmldiff from- (new)

TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate
by VA, All ASID, EL1

The TLBI RVAAE1, TLBI RVAAE1NXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be
required to translate any of the VAs in the specified address rangeVA using the EL1&0 translation
regime for the Security state.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate any of the VAs in the
specified address rangeVA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate any of the VAs in the specified address rangeVA using the EL1&0 translation regime for the
Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or SCR_EL3.{NSE, NS}
if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries and non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1

Page 522

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAAE1,
TLBI RVAAE1NXS are UNDEFINED.

Attributes
TLBI RVAAE1, TLBI RVAAE1NXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1

Page 523

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAAE1, TLBI RVAAE1NXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAAE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0110 0b011

TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1

Page 524

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAAE1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1'

then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RVAAE1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0110 0b011

TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1

Page 525

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVAAE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1

Page 526

(old) htmldiff from- (new)

TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range
Invalidate by VA, All ASID, EL1, Inner Shareable

The TLBI RVAAE1IS, TLBI RVAAE1ISNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be
required to translate any of the VAs in the specified address rangeVA using the EL1&0 translation
regime for the Security state.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate any of the VAs in the
specified address rangeVA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate any of the VAs in the specified address rangeVA using the EL1&0 translation regime for the
Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or SCR_EL3.{NSE, NS}
if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries and non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

Page 527

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI
RVAAE1IS, TLBI RVAAE1ISNXS are UNDEFINED.

Attributes
TLBI RVAAE1IS, TLBI RVAAE1ISNXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

Page 528

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAAE1IS, TLBI RVAAE1ISNXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAAE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0010 0b011

TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

Page 529

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAAE1IS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RVAAE1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0010 0b011

TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

Page 530

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVAAE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

Page 531

(old) htmldiff from- (new)

TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range
Invalidate by VA, All ASID, EL1, Outer Shareable

The TLBI RVAAE1OS, TLBI RVAAE1OSNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be
required to translate any of the VAs in the specified address rangeVA using the EL1&0 translation
regime for the Security state.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate any of the VAs in the
specified address rangeVA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate any of the VAs in the specified address rangeVA using the EL1&0 translation regime for the
Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or SCR_EL3.{NSE, NS}
if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries and non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

Page 532

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RVAAE1OS, TLBI RVAAE1OSNXS are UNDEFINED.

Attributes
TLBI RVAAE1OS, TLBI RVAAE1OSNXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

Page 533

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAAE1OS, TLBI RVAAE1OSNXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAAE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0101 0b011

TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

Page 534

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAAE1OS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RVAAE1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0101 0b011

TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

Page 535

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVAAE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

Page 536

(old) htmldiff from- (new)

TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range
Invalidate by VA, All ASID, Last level, EL1

The TLBI RVAALE1, TLBI RVAALE1NXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be
required to translate any of the VAs in the specified address rangeVA using the EL1&0 translation
regime for the Security state.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate any of the VAs in the
specified address rangeVA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate any of the VAs in the specified address rangeVA using the EL1&0 translation regime for the
Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or SCR_EL3.{NSE, NS}
if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries and non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last level, EL1

Page 537

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAALE1,
TLBI RVAALE1NXS are UNDEFINED.

Attributes
TLBI RVAALE1, TLBI RVAALE1NXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last level, EL1

Page 538

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAALE1, TLBI RVAALE1NXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAALE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0110 0b111

TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last level, EL1

Page 539

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAALE1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1'

then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RVAALE1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0110 0b111

TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last level, EL1

Page 540

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVAALE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last level, EL1

Page 541

(old) htmldiff from- (new)

TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range
Invalidate by VA, All ASID, Last Level, EL1, Inner

Shareable
The TLBI RVAALE1IS, TLBI RVAALE1ISNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be
required to translate any of the VAs in the specified address rangeVA using the EL1&0 translation
regime for the Security state.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate any of the VAs in the
specified address rangeVA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate any of the VAs in the specified address rangeVA using the EL1&0 translation regime for the
Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or SCR_EL3.{NSE, NS}
if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries and non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 542

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI
RVAALE1IS, TLBI RVAALE1ISNXS are UNDEFINED.

Attributes
TLBI RVAALE1IS, TLBI RVAALE1ISNXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 543

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAALE1IS, TLBI RVAALE1ISNXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAALE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0010 0b111

TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 544

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAALE1IS ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RVAALE1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0010 0b111

TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 545

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVAALE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 546

(old) htmldiff from- (new)

TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range
Invalidate by VA, All ASID, Last Level, EL1, Outer

Shareable
The TLBI RVAALE1OS, TLBI RVAALE1OSNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be
required to translate any of the VAs in the specified address rangeVA using the EL1&0 translation
regime for the Security state.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate any of the VAs in the
specified address rangeVA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate any of the VAs in the specified address rangeVA using the EL1&0 translation regime for the
Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or SCR_EL3.{NSE, NS}
if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries and non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 547

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RVAALE1OS, TLBI RVAALE1OSNXS are UNDEFINED.

Attributes
TLBI RVAALE1OS, TLBI RVAALE1OSNXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 548

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAALE1OS, TLBI RVAALE1OSNXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAALE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0101 0b111

TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 549

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAALE1OS ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RVAALE1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0101 0b111

TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 550

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVAALE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 551

(old) htmldiff from- (new)

TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by
VA, EL1

The TLBI RVAE1, TLBI RVAE1NXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate any of the VAs in the specified address rangeVA, and one of the
following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be
required to translate any of the VAs in the specified address rangeVA using the EL1&0 translation
regime for the Security state.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate any of the VAs in the
specified address rangeVA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate any of the VAs in the specified address rangeVA using the EL1&0 translation regime for the
Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or SCR_EL3.{NSE, NS}
if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAE1,
TLBI RVAE1NXS are UNDEFINED.

TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by VA, EL1

Page 552

Attributes
TLBI RVAE1, TLBI RVAE1NXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of
the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by VA, EL1

Page 553

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE1, TLBI RVAE1NXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0110 0b001

TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by VA, EL1

Page 554

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAE1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1'

then
AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RVAE1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0110 0b001

TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by VA, EL1

Page 555

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVAE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by VA, EL1

Page 556

(old) htmldiff from- (new)

TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate
by VA, EL1, Inner Shareable

The TLBI RVAE1IS, TLBI RVAE1ISNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate any of the VAs in the specified address rangeVA, and one of the
following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be
required to translate any of the VAs in the specified address rangeVA using the EL1&0 translation
regime for the Security state.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate any of the VAs in the
specified address rangeVA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate any of the VAs in the specified address rangeVA using the EL1&0 translation regime for the
Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or SCR_EL3.{NSE, NS}
if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner Shareable

Page 557

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAE1IS,
TLBI RVAE1ISNXS are UNDEFINED.

Attributes
TLBI RVAE1IS, TLBI RVAE1ISNXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of
the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner Shareable

Page 558

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE1IS, TLBI RVAE1ISNXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0010 0b001

TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner Shareable

Page 559

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAE1IS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RVAE1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0010 0b001

TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner Shareable

Page 560

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVAE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner Shareable

Page 561

(old) htmldiff from- (new)

TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range
Invalidate by VA, EL1, Outer Shareable

The TLBI RVAE1OS, TLBI RVAE1OSNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate any of the VAs in the specified address rangeVA, and one of the
following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be
required to translate any of the VAs in the specified address rangeVA using the EL1&0 translation
regime for the Security state.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate any of the VAs in the
specified address rangeVA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate any of the VAs in the specified address rangeVA using the EL1&0 translation regime for the
Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or SCR_EL3.{NSE, NS}
if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer Shareable

Page 562

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RVAE1OS, TLBI RVAE1OSNXS are UNDEFINED.

Attributes
TLBI RVAE1OS, TLBI RVAE1OSNXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of
the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer Shareable

Page 563

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE1OS, TLBI RVAE1OSNXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0101 0b001

TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer Shareable

Page 564

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAE1OS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RVAE1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0101 0b001

TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer Shareable

Page 565

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVAE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2800; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer Shareable

Page 566

(old) htmldiff from- (new)

TLBI RVAE2, TLBI RVAE2NXS, TLB Range Invalidate by
VA, EL2

The TLBI RVAE2, TLBI RVAE2NXS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate anythe specified VA in the specified range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)] using the EL2 or
EL2&0 translation regime, as determined by the current value of the HCR_EL2.E2H bit, for the Security
state.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is from a level of the translation table walk above the final level and matches the
specified ASID.

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk that matches the
specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or SCR_EL3.{NSE, NS}
if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAE2,
TLBI RVAE2NXS are UNDEFINED.

TLBI RVAE2, TLBI RVAE2NXS, TLB Range Invalidate by VA, EL2

Page 567

Attributes
TLBI RVAE2, TLBI RVAE2NXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]
When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of
the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TLBI RVAE2, TLBI RVAE2NXS, TLB Range Invalidate by VA, EL2

Page 568

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL2.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE2, TLBI RVAE2NXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE2{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0110 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RVAE2, TLBI RVAE2NXS, TLB Range Invalidate by VA, EL2

Page 569

TLBI RVAE2NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0110 0b001

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAE2, TLBI RVAE2NXS, TLB Range Invalidate by VA, EL2

Page 570

(old) htmldiff from- (new)

TLBI RVAE2IS, TLBI RVAE2ISNXS, TLB Range Invalidate
by VA, EL2, Inner Shareable

The TLBI RVAE2IS, TLBI RVAE2ISNXS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate anythe specified VA in the specified range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)] using the EL2 or
EL2&0 translation regime, as determined by the current value of the HCR_EL2.E2H bit, for the Security
state.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is from a level of the translation table walk above the final level and matches the
specified ASID.

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk that matches the
specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or SCR_EL3.{NSE, NS}
if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

TLBI RVAE2IS, TLBI RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner Shareable

Page 571

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAE2IS,
TLBI RVAE2ISNXS are UNDEFINED.

Attributes
TLBI RVAE2IS, TLBI RVAE2ISNXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]
When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of
the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TLBI RVAE2IS, TLBI RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner Shareable

Page 572

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL2.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE2IS, TLBI RVAE2ISNXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE2IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RVAE2IS, TLBI RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner Shareable

Page 573

TLBI RVAE2ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0010 0b001

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAE2IS, TLBI RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner Shareable

Page 574

(old) htmldiff from- (new)

TLBI RVAE2OS, TLBI RVAE2OSNXS, TLB Range
Invalidate by VA, EL2, Outer Shareable

The TLBI RVAE2OS, TLBI RVAE2OSNXS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate anythe specified VA in the specified range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)] using the EL2 or
EL2&0 translation regime, as determined by the current value of the HCR_EL2.E2H bit, for the Security
state.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is from a level of the translation table walk above the final level and matches the
specified ASID.

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk that matches the
specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or SCR_EL3.{NSE, NS}
if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

TLBI RVAE2OS, TLBI RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer Shareable

Page 575

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RVAE2OS, TLBI RVAE2OSNXS are UNDEFINED.

Attributes
TLBI RVAE2OS, TLBI RVAE2OSNXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]
When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of
the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TLBI RVAE2OS, TLBI RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer Shareable

Page 576

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL2.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE2OS, TLBI RVAE2OSNXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE2OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0101 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RVAE2OS, TLBI RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer Shareable

Page 577

TLBI RVAE2OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0101 0b001

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAE2OS, TLBI RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer Shareable

Page 578

(old) htmldiff from- (new)

TLBI RVAE3, TLBI RVAE3NXS, TLB Range Invalidate by
VA, EL3

The TLBI RVAE3, TLBI RVAE3NXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate any of the VAs in the specified address rangeVA using the EL3
translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAE3,
TLBI RVAE3NXS are UNDEFINED.

Attributes
TLBI RVAE3, TLBI RVAE3NXS is a 64-bit System instruction.

TLBI RVAE3, TLBI RVAE3NXS, TLB Range Invalidate by VA, EL3

Page 579

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL3.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

TLBI RVAE3, TLBI RVAE3NXS, TLB Range Invalidate by VA, EL3

Page 580

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE3, TLBI RVAE3NXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE3{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0110 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH, TLBILevel_Any,

TLBI_AllAttr, X[t, 64]);

TLBI RVAE3NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0110 0b001

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH, TLBILevel_Any,

TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAE3, TLBI RVAE3NXS, TLB Range Invalidate by VA, EL3

Page 581

(old) htmldiff from- (new)

TLBI RVAE3IS, TLBI RVAE3ISNXS, TLB Range Invalidate
by VA, EL3, Inner Shareable

The TLBI RVAE3IS, TLBI RVAE3ISNXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate any of the VAs in the specified address rangeVA using the EL3
translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAE3IS,
TLBI RVAE3ISNXS are UNDEFINED.

Attributes
TLBI RVAE3IS, TLBI RVAE3ISNXS is a 64-bit System instruction.

TLBI RVAE3IS, TLBI RVAE3ISNXS, TLB Range Invalidate by VA, EL3, Inner Shareable

Page 582

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL3.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

TLBI RVAE3IS, TLBI RVAE3ISNXS, TLB Range Invalidate by VA, EL3, Inner Shareable

Page 583

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE3IS, TLBI RVAE3ISNXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE3IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH, TLBILevel_Any,

TLBI_AllAttr, X[t, 64]);

TLBI RVAE3ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0010 0b001

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH, TLBILevel_Any,

TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2800; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAE3IS, TLBI RVAE3ISNXS, TLB Range Invalidate by VA, EL3, Inner Shareable

Page 584

(old) htmldiff from- (new)

TLBI RVAE3OS, TLBI RVAE3OSNXS, TLB Range
Invalidate by VA, EL3, Outer Shareable

The TLBI RVAE3OS, TLBI RVAE3OSNXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate any of the VAs in the specified address rangeVA using the EL3
translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RVAE3OS, TLBI RVAE3OSNXS are UNDEFINED.

Attributes
TLBI RVAE3OS, TLBI RVAE3OSNXS is a 64-bit System instruction.

TLBI RVAE3OS, TLBI RVAE3OSNXS, TLB Range Invalidate by VA, EL3, Outer Shareable

Page 585

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL3.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

TLBI RVAE3OS, TLBI RVAE3OSNXS, TLB Range Invalidate by VA, EL3, Outer Shareable

Page 586

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE3OS, TLBI RVAE3OSNXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE3OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0101 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH, TLBILevel_Any,

TLBI_AllAttr, X[t, 64]);

TLBI RVAE3OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0101 0b001

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH, TLBILevel_Any,

TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAE3OS, TLBI RVAE3OSNXS, TLB Range Invalidate by VA, EL3, Outer Shareable

Page 587

(old) htmldiff from- (new)

TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate
by VA, Last level, EL1

The TLBI RVALE1, TLBI RVALE1NXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate any of the VAs in the specified address rangeVA, and one of the
following applies:

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be
required to translate any of the VAs in the specified address rangeVA using the EL1&0 translation
regime for the Security state.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate any of the VAs in the
specified address rangeVA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate any of the VAs in the specified address rangeVA using the EL1&0 translation regime for the
Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or SCR_EL3.{NSE, NS}
if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1

Page 588

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVALE1,
TLBI RVALE1NXS are UNDEFINED.

Attributes
TLBI RVALE1, TLBI RVALE1NXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of
the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1

Page 589

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE1, TLBI RVALE1NXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0110 0b101

TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1

Page 590

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVALE1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1'

then
AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RVALE1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0110 0b101

TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1

Page 591

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVALE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1

Page 592

(old) htmldiff from- (new)

TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range
Invalidate by VA, Last level, EL1, Inner Shareable

The TLBI RVALE1IS, TLBI RVALE1ISNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate any of the VAs in the specified address rangeVA, and one of the
following applies:

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be
required to translate any of the VAs in the specified address rangeVA using the EL1&0 translation
regime for the Security state.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate any of the VAs in the
specified address rangeVA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate any of the VAs in the specified address rangeVA using the EL1&0 translation regime for the
Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or SCR_EL3.{NSE, NS}
if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

Page 593

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI
RVALE1IS, TLBI RVALE1ISNXS are UNDEFINED.

Attributes
TLBI RVALE1IS, TLBI RVALE1ISNXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of
the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

Page 594

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE1IS, TLBI RVALE1ISNXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0010 0b101

TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

Page 595

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVALE1IS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RVALE1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0010 0b101

TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

Page 596

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVALE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

Page 597

(old) htmldiff from- (new)

TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range
Invalidate by VA, Last level, EL1, Outer Shareable

The TLBI RVALE1OS, TLBI RVALE1OSNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate any of the VAs in the specified address rangeVA, and one of the
following applies:

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be
required to translate any of the VAs in the specified address rangeVA using the EL1&0 translation
regime for the Security state.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate any of the VAs in the
specified address rangeVA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate any of the VAs in the specified address rangeVA using the EL1&0 translation regime for the
Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or SCR_EL3.{NSE, NS}
if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

Page 598

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RVALE1OS, TLBI RVALE1OSNXS are UNDEFINED.

Attributes
TLBI RVALE1OS, TLBI RVALE1OSNXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of
the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

Page 599

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE1OS, TLBI RVALE1OSNXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0101 0b101

TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

Page 600

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVALE1OS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RVALE1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0101 0b101

TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

Page 601

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVALE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

Page 602

(old) htmldiff from- (new)

TLBI RVALE2, TLBI RVALE2NXS, TLB Range Invalidate
by VA, Last level, EL2

The TLBI RVALE2, TLBI RVALE2NXS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate anythe specified VA in the specified range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)] using the EL2 or
EL2&0 translation regime, as determined by the current value of the HCR_EL2.E2H bit, for the Security
state.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk that matches the
specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or SCR_EL3.{NSE, NS}
if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVALE2,
TLBI RVALE2NXS are UNDEFINED.

TLBI RVALE2, TLBI RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2

Page 603

Attributes
TLBI RVALE2, TLBI RVALE2NXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]
When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of
the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TLBI RVALE2, TLBI RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2

Page 604

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL2.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE2, TLBI RVALE2NXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE2{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0110 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RVALE2, TLBI RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2

Page 605

TLBI RVALE2NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0110 0b101

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVALE2, TLBI RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2

Page 606

(old) htmldiff from- (new)

TLBI RVALE2IS, TLBI RVALE2ISNXS, TLB Range
Invalidate by VA, Last level, EL2, Inner Shareable

The TLBI RVALE2IS, TLBI RVALE2ISNXS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate anythe specified VA in the specified range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)] using the EL2 or
EL2&0 translation regime, as determined by the current value of the HCR_EL2.E2H bit, for the Security
state.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk that matches the
specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or SCR_EL3.{NSE, NS}
if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI
RVALE2IS, TLBI RVALE2ISNXS are UNDEFINED.

TLBI RVALE2IS, TLBI RVALE2ISNXS, TLB Range Invalidate by VA, Last level, EL2, Inner Shareable

Page 607

Attributes
TLBI RVALE2IS, TLBI RVALE2ISNXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]
When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of
the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TLBI RVALE2IS, TLBI RVALE2ISNXS, TLB Range Invalidate by VA, Last level, EL2, Inner Shareable

Page 608

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL2.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE2IS, TLBI RVALE2ISNXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE2IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0010 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RVALE2IS, TLBI RVALE2ISNXS, TLB Range Invalidate by VA, Last level, EL2, Inner Shareable

Page 609

TLBI RVALE2ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0010 0b101

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVALE2IS, TLBI RVALE2ISNXS, TLB Range Invalidate by VA, Last level, EL2, Inner Shareable

Page 610

(old) htmldiff from- (new)

TLBI RVALE2OS, TLBI RVALE2OSNXS, TLB Range
Invalidate by VA, Last level, EL2, Outer Shareable

The TLBI RVALE2OS, TLBI RVALE2OSNXS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate anythe specified VA in the specified range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)] using the EL2 or
EL2&0 translation regime, as determined by the current value of the HCR_EL2.E2H bit, for the Security
state.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk that matches the
specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or SCR_EL3.{NSE, NS}
if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RVALE2OS, TLBI RVALE2OSNXS are UNDEFINED.

TLBI RVALE2OS, TLBI RVALE2OSNXS, TLB Range Invalidate by VA, Last level, EL2, Outer Shareable

Page 611

Attributes
TLBI RVALE2OS, TLBI RVALE2OSNXS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]
When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of
the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TLBI RVALE2OS, TLBI RVALE2OSNXS, TLB Range Invalidate by VA, Last level, EL2, Outer Shareable

Page 612

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL2.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE2OS, TLBI RVALE2OSNXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE2OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0101 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RVALE2OS, TLBI RVALE2OSNXS, TLB Range Invalidate by VA, Last level, EL2, Outer Shareable

Page 613

TLBI RVALE2OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0101 0b101

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
else

AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVALE2OS, TLBI RVALE2OSNXS, TLB Range Invalidate by VA, Last level, EL2, Outer Shareable

Page 614

(old) htmldiff from- (new)

TLBI RVALE3, TLBI RVALE3NXS, TLB Range Invalidate
by VA, Last level, EL3

The TLBI RVALE3, TLBI RVALE3NXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate any of the VAs in the specified address rangeVA using the EL3
translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVALE3,
TLBI RVALE3NXS are UNDEFINED.

Attributes
TLBI RVALE3, TLBI RVALE3NXS is a 64-bit System instruction.

TLBI RVALE3, TLBI RVALE3NXS, TLB Range Invalidate by VA, Last level, EL3

Page 615

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL3.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

TLBI RVALE3, TLBI RVALE3NXS, TLB Range Invalidate by VA, Last level, EL3

Page 616

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE3, TLBI RVALE3NXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE3{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0110 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH, TLBILevel_Last,

TLBI_AllAttr, X[t, 64]);

TLBI RVALE3NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0110 0b101

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH, TLBILevel_Last,

TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2800; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVALE3, TLBI RVALE3NXS, TLB Range Invalidate by VA, Last level, EL3

Page 617

(old) htmldiff from- (new)

TLBI RVALE3IS, TLBI RVALE3ISNXS, TLB Range
Invalidate by VA, Last level, EL3, Inner Shareable

The TLBI RVALE3IS, TLBI RVALE3ISNXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate any of the VAs in the specified address rangeVA using the EL3
translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI
RVALE3IS, TLBI RVALE3ISNXS are UNDEFINED.

Attributes
TLBI RVALE3IS, TLBI RVALE3ISNXS is a 64-bit System instruction.

TLBI RVALE3IS, TLBI RVALE3ISNXS, TLB Range Invalidate by VA, Last level, EL3, Inner Shareable

Page 618

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL3.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

TLBI RVALE3IS, TLBI RVALE3ISNXS, TLB Range Invalidate by VA, Last level, EL3, Inner Shareable

Page 619

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE3IS, TLBI RVALE3ISNXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE3IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0010 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH, TLBILevel_Last,

TLBI_AllAttr, X[t, 64]);

TLBI RVALE3ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0010 0b101

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH, TLBILevel_Last,

TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVALE3IS, TLBI RVALE3ISNXS, TLB Range Invalidate by VA, Last level, EL3, Inner Shareable

Page 620

(old) htmldiff from- (new)

TLBI RVALE3OS, TLBI RVALE3OSNXS, TLB Range
Invalidate by VA, Last level, EL3, Outer Shareable

The TLBI RVALE3OS, TLBI RVALE3OSNXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate any of the VAs in the specified address rangeVA using the EL3
translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RVALE3OS, TLBI RVALE3OSNXS are UNDEFINED.

Attributes
TLBI RVALE3OS, TLBI RVALE3OSNXS is a 64-bit System instruction.

TLBI RVALE3OS, TLBI RVALE3OSNXS, TLB Range Invalidate by VA, Last level, EL3, Outer Shareable

Page 621

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 TG SCALE NUM TTL BaseADDR
BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations
used a different translation granule size than the one being specified, then the architecture does not require that
the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by
the TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the

translation table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB
translation granule, this value is reserved and hardware should
treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
When FEAT_LPA2 is implemented and TCR_EL3.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all
translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

TLBI RVALE3OS, TLBI RVALE3OSNXS, TLB Range Invalidate by VA, Last level, EL3, Outer Shareable

Page 622

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE3OS, TLBI RVALE3OSNXS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE3OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0101 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH, TLBILevel_Last,

TLBI_AllAttr, X[t, 64]);

TLBI RVALE3OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0101 0b101

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH, TLBILevel_Last,

TLBI_ExcludeXS, X[t, 64]);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVALE3OS, TLBI RVALE3OSNXS, TLB Range Invalidate by VA, Last level, EL3, Outer Shareable

Page 623

(old) htmldiff from- (new)

TRBSR_EL1, Trace Buffer Status/syndrome Register
The TRBSR_EL1 characteristics are:

Purpose
Provides syndrome information to software for a trace buffer management event.

Configuration
This register is present only when FEAT_TRBE is implemented. Otherwise, direct accesses to TRBSR_EL1 are
UNDEFINED.

Attributes
TRBSR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
EC RES0 IRQTRGWRAPRES0EA S RES0 MSS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

EC, bits [31:26]

Event class. Top-level description of the cause of the trace buffer management event.

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 624

EC Meaning MSS Applies
when

0b000000 Other trace
buffer
management
event. All trace
buffer
management
events other than
those described
by the other
defined Event
class codes.

MSS encoding for
other trace buffer
management
events

0b011110 Granule
Protection Check
fault, other than
GPF, on write to
trace buffer.

MSS encoding for
Granule Protection
Check fault

When
FEAT_RME
is
implemented

0b011111 Buffer
management
event for
IMPLEMENTATION
DEFINED reason.

MSS encoding for
Buffer management
event for
IMPLEMENTATION
DEFINED reason

0b100100 Stage 1 Data
Abort exception
on write to trace
buffer.

MSS encoding for
stage 1 or stage 2
Data AbortsAbort
exceptions on write
to trace buffer

0b100101 Stage 2 Data
Abort exception
on write to trace
buffer.

MSS encoding for
stage 1 or stage 2
Data AbortsAbort
exceptions on write
to trace buffer

All other values are reserved.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [25:23]

Reserved, RES0.

IRQ, bit [22]

Maintenance interrupt status.

IRQ Meaning
0b0 Maintenance interrupt is not asserted.
0b1 Maintenance interrupt is asserted.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

TRG, bit [21]

Triggered.

TRG Meaning
0b0 No Detected Trigger has been observed since this field was

last cleared to zero.
0b1 A Detected Trigger has been observed since this field was last

cleared to zero.

The reset behavior of this field is:

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 625

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

WRAP, bit [20]

Wrapped.

WRAP Meaning
0b0 The current write pointer has not wrapped since this field

was last cleared to zero.
0b1 The current write pointer has wrapped since this field was

last cleared to zero.

For each byte of trace the Trace Buffer Unit Accepts and writes to the trace buffer at the address in the current
write pointer, if the current write pointer is equal to the Limit pointer minus one, the current write pointer is
wrapped by setting it to the Base pointer, and this field is set to 1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bit [19]

Reserved, RES0.

EA, bit [18]

External Abort.

EA Meaning
0b0 An External Abort has not been asserted.
0b1 An External Abort has been asserted and detected by the Trace

Buffer Unit.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When the PE never sets this field as the result of an External Abort, access to this field is RES0.
• Otherwise, access to this field is RW.

S, bit [17]

Stopped.

S Meaning
0b0 Collection has not been stopped.
0b1 Collection is stopped.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bit [16]

Reserved, RES0.

MSS, bits [15:0]

Management Event Specific Syndrome. Contains syndrome specific to the management event.

The syndrome contents for each management event are described in the following sections.

The reset behavior of this field is:

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 626

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

MSS encoding for other trace buffer management events
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 BSC

Bits [15:6]

Reserved, RES0.

BSC, bits [5:0]

Trace buffer status code.

BSC Meaning
0b000000 Collection not stopped.
0b000001 Trace buffer filled. Collection stopped because

the current write pointer wrapped to the base
pointer and the trace buffer mode is Fill mode.

0b000010 Trigger Event. Collection stopped because of a
Trigger Event. See TRBTRG_EL1 for more
information.

All other values are reserved.

MSS encoding for Buffer management event for
IMPLEMENTATION DEFINED reason

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [15:0]

IMPLEMENTATION DEFINED.

MSS encoding for Granule Protection Check fault
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Bits [15:0]

Reserved, RES0.

MSS encoding for stage 1 or stage 2 Data AbortsAbort
exceptions on write to trace buffer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 FSC

Bits [15:6]

Reserved, RES0.

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 627

AArch64-trbtrg_el1.html

FSC, bits [5:0]

Fault status code.

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 628

FSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When

FEAT_LPA2 is
implemented

0b001100 Permission fault, level 0. When
FEAT_LPA2 is
implemented

0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort,

not on translation table walk
or hardware update of
translation table.

0b010001 Asynchronous External abort.
0b010011 Synchronous External abort

on translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented

0b010100 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 0.

0b010101 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 1.

0b010110 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 2.

0b010111 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 3.

0b011011 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented
and FEAT_RAS
is not
implemented

0b100001 Alignment fault.
0b100011 Granule Protection Fault on

translation table walk or
hardware update of
translation table, level -1.

When
FEAT_RME is
implemented
and FEAT_LPA2
is implemented

0b100100 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RME is
implemented

0b100101 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RME is
implemented

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 629

0b100110 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RME is
implemented

0b100111 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RME is
implemented

0b101000 Granule Protection Fault, not
on translation table walk or
hardware update of
translation table.

When
FEAT_RME is
implemented

0b101001 Address size fault, level -1. When
FEAT_LPA2 is
implemented

0b101011 Translation fault, level -1. When
FEAT_LPA2 is
implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic

hardware update fault.
When
FEAT_HAFDBS
is implemented

All other values are reserved.

Accessing TRBSR_EL1
The PE might ignore a direct write to TRBSR_EL1 if TRBLIMITR_EL1.E == 1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRBSR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1011 0b011

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 630

AArch64-trblimitr_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.TRBSR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.E2TB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
X[t, 64] = TRBSR_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||

(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

X[t, 64] = TRBSR_EL1;
elsif PSTATE.EL == EL3 then

X[t, 64] = TRBSR_EL1;

MSR TRBSR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1011 0b011

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 631

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.TRBSR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.E2TB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRBSR_EL1 = X[t, 64];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||

(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRBSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then

TRBSR_EL1 = X[t, 64];

3021/03/2022 2017:2902; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 632

(old) htmldiff from- (new)

TRCRSCTLR<n>, Resource Selection Control Register
<n>, n = 2 - 31

The TRCRSCTLR<n> characteristics are:

Purpose
Controls the selection of the resources in the trace unit.

Configuration
AArch64 System register TRCRSCTLR<n> bits [31:0] are architecturally mapped to External register
TRCRSCTLR<n>[31:0].

This register is present only when FEAT_ETE is implemented and (UInt(TRCIDR4.NUMRSPAIR) + 1) * 2 > n.
Otherwise, direct accesses to TRCRSCTLR<n> are UNDEFINED.

Resource selector 0 always returns FALSE.

Resource selector 1 always returns TRUE.

Resource selectors are implemented in pairs. Each odd numbered resource selector is part of a pair with the even
numbered resource selector that is numbered as one less than it. For example, resource selectors 2 and 3 form a pair.

Attributes
TRCRSCTLR<n> is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 PAIRINVINV GROUP SELECT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:22]

Reserved, RES0.

PAIRINV, bit [21]
When n MODis 2 == 0even:

Controls whether the combined result from a resource selector pair is inverted.

PAIRINV Meaning
0b0 Do not invert the combined output of the 2 resource

selectors.
0b1 Invert the combined output of the 2 resource selectors.

If:

• A is the register TRCRSCTLR<n>.
• B is the register TRCRSCTLR<n+1>.

Then the combined output of the 2 resource selectors A and B depends on the value of (A.PAIRINV, A.INV, B.INV)
as follows:

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 633

• 0b000 -> A and B.
• 0b001 -> Reserved.
• 0b010 -> not(A) and B.
• 0b011 -> not(A) and not(B).
• 0b100 -> not(A) or not(B).
• 0b101 -> not(A) or B.
• 0b110 -> Reserved.
• 0b111 -> A or B.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

INV, bit [20]

Controls whether the resource, that TRCRSCTLR<n>.GROUP and TRCRSCTLR<n>.SELECT selects, is inverted.

INV Meaning
0b0 Do not invert the output of this selector.
0b1 Invert the output of this selector.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

GROUP, bits [19:16]

Selects a group of resources.

GROUP Meaning SELECT
0b0000 External Input

Selectors.
SELECT encoding for External
Input Selectors

0b0001 PE Comparator
Inputs.

SELECT encoding for PE
Comparator Inputs

0b0010 Counters and
Sequencer.

SELECT encoding for Counters
and Sequencer

0b0011 Single-shot
Comparator
Controls.

SELECT encoding for Single-shot
Comparator Controls

0b0100 Single Address
Comparators.

SELECT encoding for Single
Address Comparators

0b0101 Address Range
Comparators.

SELECT encoding for Address
Range Comparators

0b0110 Context Identifier
Comparators.

SELECT encoding for Context
Identifier Comparators

0b0111 Virtual Context
Identifier
Comparators.

SELECT encoding for Virtual
Context Identifier Comparators

All other values are reserved.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT, bits [15:0]

Resource Specific Controls. Contains the controls specific to the resource group selected by GROUP, described in
the following sections.

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 634

SELECT encoding for External Input Selectors
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 EXTIN[3]EXTIN[2]EXTIN[1]EXTIN[0]

Bits [15:4]

Reserved, RES0.

EXTIN[<m>], bit [m], for m = 3 to 0

Selects one or more External Inputs.

EXTIN[<m>] Meaning
0b0 Ignore EXTIN <m>.
0b1 Select EXTIN <m>.

This bit is RES0 if m >= TRCIDR5.NUMEXTINSEL.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for PE Comparator Inputs
15141312111098 7 6 5 4 3 2 1 0

RES0 PECOMP[7]PECOMP[6]PECOMP[5]PECOMP[4]PECOMP[3]PECOMP[2]PECOMP[1]PECOMP[0]

Bits [15:8]

Reserved, RES0.

PECOMP[<m>], bit [m], for m = 7 to 0

Selects one or more PE Comparator Inputs.

PECOMP[<m>] Meaning
0b0 Ignore PE Comparator Input <m>.
0b1 Select PE Comparator Input <m>.

This bit is RES0 if m >= TRCIDR4.NUMPC.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Counters and Sequencer
15141312111098 7 6 5 4 3 2 1 0

RES0 SEQUENCER[3]SEQUENCER[2]SEQUENCER[1]SEQUENCER[0]COUNTERS[3]COUNTERS[2]COUNTERS[1]COUNTERS[0]

Bits [15:8]

Reserved, RES0.

SEQUENCER[<m>], bit [m+4], for m = 3 to 0

Sequencer states.

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 635

AArch64-trcidr5.html
AArch64-trcidr4.html

SEQUENCER[<m>] Meaning
0b0 Ignore Sequencer state <m>.
0b1 Select Sequencer state <m>.

This bit is RES0 if m >= TRCIDR5.NUMSEQSTATE.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

COUNTERS[<m>], bit [m], for m = 3 to 0

Counters resources at zero.

COUNTERS[<m>] Meaning
0b0 Ignore Counter <m>.
0b1 Select Counter <m> is zero.

This bit is RES0 if m >= TRCIDR5.NUMCNTR.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Single-shot Comparator Controls
15141312111098 7 6 5 4 3 2 1 0

RES0 SINGLE_SHOT[7]SINGLE_SHOT[6]SINGLE_SHOT[5]SINGLE_SHOT[4]SINGLE_SHOT[3]SINGLE_SHOT[2]SINGLE_SHOT[1]SINGLE_SHOT[0]

Bits [15:8]

Reserved, RES0.

SINGLE_SHOT[<m>], bit [m], for m = 7 to 0

Selects one or more Single-shot Comparator Controls.

SINGLE_SHOT[<m>] Meaning
0b0 Ignore Single-shot Comparator

Control <m>.
0b1 Select Single-shot Comparator

Control <m>.

This bit is RES0 if m >= TRCIDR4.NUMSSCC.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Single Address Comparators
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SAC[15]SAC[14]SAC[13]SAC[12]SAC[11]SAC[10]SAC[9]SAC[8]SAC[7]SAC[6]SAC[5]SAC[4]SAC[3]SAC[2]SAC[1]SAC[0]

SAC[<m>], bit [m], for m = 15 to 0

Selects one or more Single Address Comparators.

SAC[<m>] Meaning
0b0 Ignore Single Address Comparator <m>.
0b1 Select Single Address Comparator <m>.

This bit is RES0 if m >= 2 × TRCIDR4.NUMACPAIRS.

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 636

AArch64-trcidr5.html
AArch64-trcidr5.html
AArch64-trcidr4.html
AArch64-trcidr4.html

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Address Range Comparators
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 ARC[7]ARC[6]ARC[5]ARC[4]ARC[3]ARC[2]ARC[1]ARC[0]

Bits [15:8]

Reserved, RES0.

ARC[<m>], bit [m], for m = 7 to 0

Selects one or more Address Range Comparators.

ARC[<m>] Meaning
0b0 Ignore Address Range Comparator <m>.
0b1 Select Address Range Comparator <m>.

This bit is RES0 if m >= TRCIDR4.NUMACPAIRS.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Context Identifier Comparators
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 CID[7]CID[6]CID[5]CID[4]CID[3]CID[2]CID[1]CID[0]

Bits [15:8]

Reserved, RES0.

CID[<m>], bit [m], for m = 7 to 0

Selects one or more Context Identifier Comparators.

CID[<m>] Meaning
0b0 Ignore Context Identifier Comparator <m>.
0b1 Select Context Identifier Comparator <m>.

This bit is RES0 if m >= TRCIDR4.NUMCIDC.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Virtual Context Identifier Comparators
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 VMID[7]VMID[6]VMID[5]VMID[4]VMID[3]VMID[2]VMID[1]VMID[0]

Bits [15:8]

Reserved, RES0.

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 637

AArch64-trcidr4.html
AArch64-trcidr4.html

VMID[<m>], bit [m], for m = 7 to 0

Selects one or more Virtual Context Identifier Comparators.

VMID[<m>] Meaning
0b0 Ignore Virtual Context Identifier Comparator

<m>.
0b1 Select Virtual Context Identifier Comparator

<m>.

This bit is RES0 if m >= TRCIDR4.NUMVMIDC.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing TRCRSCTLR<n>
Must be programmed if any of the following are true:

• TRCCNTCTLR<a>.RLDEVENT.TYPE == 0 and TRCCNTCTLR<a>.RLDEVENT.SEL == n.
• TRCCNTCTLR<a>.RLDEVENT.TYPE == 1 and TRCCNTCTLR<a>.RLDEVENT.SEL == n/2.
• TRCCNTCTLR<a>.CNTEVENT.TYPE == 0 and TRCCNTCTLR<a>.CNTEVENT.SEL == n.
• TRCCNTCTLR<a>.CNTEVENT.TYPE == 1 and TRCCNTCTLR<a>.CNTEVENT.SEL == n/2.
• TRCEVENTCTL0R.EVENT0.TYPE == 0 and TRCEVENTCTL0R.EVENT0.SEL == n.
• TRCEVENTCTL0R.EVENT0.TYPE == 1 and TRCEVENTCTL0R.EVENT0.SEL == n/2.
• TRCEVENTCTL0R.EVENT1.TYPE == 0 and TRCEVENTCTL0R.EVENT1.SEL == n.
• TRCEVENTCTL0R.EVENT1.TYPE == 1 and TRCEVENTCTL0R.EVENT1.SEL == n/2.
• TRCEVENTCTL0R.EVENT2.TYPE == 0 and TRCEVENTCTL0R.EVENT2.SEL == n.
• TRCEVENTCTL0R.EVENT2.TYPE == 1 and TRCEVENTCTL0R.EVENT2.SEL == n/2.
• TRCEVENTCTL0R.EVENT3.TYPE == 0 and TRCEVENTCTL0R.EVENT3.SEL == n.
• TRCEVENTCTL0R.EVENT3.TYPE == 1 and TRCEVENTCTL0R.EVENT3.SEL == n/2.
• TRCSEQEVR<a>.B.TYPE == 0 and TRCSEQEVR<a>.B.SEL = n.
• TRCSEQEVR<a>.B.TYPE == 1 and TRCSEQEVR<a>.B.SEL = n/2.
• TRCSEQEVR<a>.F.TYPE == 0 and TRCSEQEVR<a>.F.SEL = n.
• TRCSEQEVR<a>.F.TYPE == 1 and TRCSEQEVR<a>.F.SEL = n/2.
• TRCSEQRSTEVR.RST.TYPE == 0 and TRCSEQRSTEVR.RST.SEL == n.
• TRCSEQRSTEVR.RST.TYPE == 1 and TRCSEQRSTEVR.RST.SEL == n/2.
• TRCTSCTLR.EVENT.TYPE == 0 and TRCTSCTLR.EVENT.SEL == n.
• TRCTSCTLR.EVENT.TYPE == 1 and TRCTSCTLR.EVENT.SEL == n/2.
• TRCVICTLR.EVENT.TYPE == 0 and TRCVICTLR.EVENT.SEL == n.
• TRCVICTLR.EVENT.TYPE == 1 and TRCVICTLR.EVENT.SEL == n/2.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCRSCTLR<m> ; Where m = 2-31

op0 op1 CRn CRm op2
0b10 0b001 0b0001 m[3:0] 0b00:m[4]

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 638

AArch64-trcidr4.html
AArch64-trccntctlrn.html
AArch64-trccntctlrn.html
AArch64-trccntctlrn.html
AArch64-trccntctlrn.html
AArch64-trccntctlrn.html
AArch64-trccntctlrn.html
AArch64-trccntctlrn.html
AArch64-trccntctlrn.html
AArch64-trceventctl0r.html
AArch64-trceventctl0r.html
AArch64-trceventctl0r.html
AArch64-trceventctl0r.html
AArch64-trceventctl0r.html
AArch64-trceventctl0r.html
AArch64-trceventctl0r.html
AArch64-trceventctl0r.html
AArch64-trceventctl0r.html
AArch64-trceventctl0r.html
AArch64-trceventctl0r.html
AArch64-trceventctl0r.html
AArch64-trceventctl0r.html
AArch64-trceventctl0r.html
AArch64-trceventctl0r.html
AArch64-trceventctl0r.html
AArch64-trcseqevrn.html
AArch64-trcseqevrn.html
AArch64-trcseqevrn.html
AArch64-trcseqevrn.html
AArch64-trcseqevrn.html
AArch64-trcseqevrn.html
AArch64-trcseqevrn.html
AArch64-trcseqevrn.html
AArch64-trcseqrstevr.html
AArch64-trcseqrstevr.html
AArch64-trcseqrstevr.html
AArch64-trcseqrstevr.html
AArch64-trctsctlr.html
AArch64-trctsctlr.html
AArch64-trctsctlr.html
AArch64-trctsctlr.html
AArch64-trcvictlr.html
AArch64-trcvictlr.html
AArch64-trcvictlr.html
AArch64-trcvictlr.html

integer m = UInt(op2<0>:CRm<3:0>);

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TTA == '1' then
UNDEFINED;

elsif CPACR_EL1.TTA == '1' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

X[t, 64] = TRCRSCTLR[m];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.TTA == '1' then

UNDEFINED;
elsif CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
X[t, 64] = TRCRSCTLR[m];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

X[t, 64] = TRCRSCTLR[m];

MSR TRCRSCTLR<m>, <Xt> ; Where m = 2-31

op0 op1 CRn CRm op2
0b10 0b001 0b0001 m[3:0] 0b00:m[4]

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 639

integer m = UInt(op2<0>:CRm<3:0>);

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TTA == '1' then
UNDEFINED;

elsif CPACR_EL1.TTA == '1' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCRSCTLR[m] = X[t, 64];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.TTA == '1' then

UNDEFINED;
elsif CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCRSCTLR[m] = X[t, 64];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCRSCTLR[m] = X[t, 64];

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 640

(old) htmldiff from- (new)

VSTCR_EL2, Virtualization Secure Translation Control
Register

The VSTCR_EL2 characteristics are:

Purpose
The control register for stage 2 of the Secure EL1&0 translation regime.

Configuration
This register is present only when FEAT_SEL2 is implemented. Otherwise, direct accesses to VSTCR_EL2 are
UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VSTCR_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 SL2RES0
RES1SASW RES0 TG0 RES0 SL0 T0SZ

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the bits in VSTCR_EL2 are permitted to be cached in a TLB.

Bits [63:34]

Reserved, RES0.

SL2, bit [33]
When FEAT_LPA2 is implemented:

Starting level of the Secure stage 2 translation lookup controlled by VSTCR_EL2.

If VTCR_EL2.DS == 1, then VSTCR_EL2.SL2, in combination with VSTCR_EL2.SL0, gives encodings for the
Secure stage 2 translation table walk initial lookup level.

If VTCR_EL2.DS == 0, then VSTCR_EL2.SL2 is RES0.

If the translation granule size is not 4KB, then this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VSTCR_EL2, Virtualization Secure Translation Control Register

Page 641

AArch64-vtcr_el2.html
AArch64-vtcr_el2.html

Bit [32]

Reserved, RES0.

Bit [31]

Reserved, RES1.

SA, bit [30]

Secure stage 2 translation output address space.

SA Meaning
0b0 All stage 2 translations for the Secure IPA space access the

Secure PA space.
0b1 All stage 2 translations for the Secure IPA space access the Non-

secure PA space.

When the value of VSTCR_EL2.SW is 1, this bit behaves as 1 for all purposes other than reading back the value of
the bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SW, bit [29]

Secure stage 2 translation address space.

SW Meaning
0b0 All stage 2 translation table walks for the Secure IPA space are

to the Secure PA space.
0b1 All stage 2 translation table walks for the Secure IPA space are

to the Non-secure PA space.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [28:16]

Reserved, RES0.

TG0, bits [15:14]

Secure stage 2 granule size for VSTTBR_EL2.

TG0 Meaning
0b00 4KB.
0b01 64KB.
0b10 16KB.

Other values are reserved.

If FEAT_GTG is implemented, ID_AA64MMFR0_EL1.{TGran4_2, TGran16_2, TGran64_2} indicate which granule
sizes are supported for stage 2 translation.

If FEAT_GTG is not implemented, ID_AA64MMFR0_EL1.{TGran4, TGran16, TGran64} indicate which granule
sizes are supported.

If the value is programmed to either a reserved value, or a size that has not been implemented, then for all
purposes other than read back from this register, the hardware will treat the field as if it has been programmed to
an IMPLEMENTATION DEFINED choice of the sizes that has been implemented.

VSTCR_EL2, Virtualization Secure Translation Control Register

Page 642

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds
to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [13:8]

Reserved, RES0.

SL0, bits [7:6]
When FEAT_TTST is implemented:

Starting level of the Secure stage 2 translation lookup, controlled by VSTCR_EL2. The meaning of this field
depends on the value of VSTCR_EL2.TG0.

SL0 Meaning
0b00 If VSTCR_EL2.TG0 is 0b00 (4KB granule):

• If FEAT_LPA2 is not implemented, start at level 2.
• If FEAT_LPA2 is implemented and VSTCR_EL2.SL2 is

0b0, start at level 2.
• If FEAT_LPA2 is implemented and VSTCR_EL2.SL2 is

0b1, start at level -1.
If VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB
granule), start at level 3.

0b01 If VSTCR_EL2.TG0 is 0b00 (4KB granule):
• If FEAT_LPA2 is not implemented, start at level 1.
• If FEAT_LPA2 is implemented and VSTCR_EL2.SL2 is

0b0, start at level 1.
• If FEAT_LPA2 is implemented, the combination of

VSTCR_EL2.SL0 == 01 and VSTCR_EL2.SL2 == 1 is
reserved.

If VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB
granule), start at level 2.

0b10 If VSTCR_EL2.TG0 is 0b00 (4KB granule):
• If FEAT_LPA2 is not implemented, start at level 0.
• If FEAT_LPA2 is implemented and VSTCR_EL2.SL2 is

0b0, start at level 0.
• If FEAT_LPA2 is implemented, the combination of

VSTCR_EL2.SL0 == 10 and VSTCR_EL2.SL2 == 1 is
reserved.

If VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB
granule), start at level 1.

0b11 If VSTCR_EL2.TG0 is 0b00 (4KB granule):
• If FEAT_LPA2 is not implemented, start at level 3.
• If FEAT_LPA2 is implemented and VSTCR_EL2.SL2 is

0b0, start at level 3.
• If FEAT_LPA2 is implemented, the combination of

VSTCR_EL2.SL0 == 11 and VSTCR_EL2.SL2 == 1 is
reserved.

If VSTCR_EL2.TG0 is 0b10 (16KB granule) and FEAT_LPA2 is
implemented, start at level 0.

If this field is programmed to a value that is not consistent with the programming of VSTCR_EL2.T0SZ, then a
stage 2 level 0 Translation fault is generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Starting level of the Secure stage 2 translation lookup, controlled by VSTCR_EL2. The meaning of this field
depends on the value of VSTCR_EL2.TG0.

VSTCR_EL2, Virtualization Secure Translation Control Register

Page 643

SL0 Meaning
0b00 If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 2. If

VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB
granule), start at level 3.

0b01 If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 1. If
VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB
granule), start at level 2.

0b10 If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 0. If
VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB
granule), start at level 1.

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not consistent
with the programming of VSTCR_EL2.T0SZ, then a stage 2 level 0 Translation fault is generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T0SZ, bits [5:0]

The size offset of the memory region addressed by VSTTBR_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for this field depend on the level of translation table and the memory
translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

If this field is programmed to a value that is not consistent with the programming of SL0, then a stage 2 level 0
Translation fault is generated.

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field
is less than 16, the translation table walk begins with a level -1 initial
lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this
field is less than 17, the translation table walk begins with a level 0 initial
lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VSTCR_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VSTCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0110 0b010

VSTCR_EL2, Virtualization Secure Translation Control Register

Page 644

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsCurrentSecurityState(SS_Secure)IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

X[t, 64] = NVMem[0x048];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsCurrentSecurityState(SS_Secure)IsSecure() then
UNDEFINED;

else
X[t, 64] = VSTCR_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

X[t, 64] = VSTCR_EL2;

MSR VSTCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0110 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsCurrentSecurityState(SS_Secure)IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x048] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsCurrentSecurityState(SS_Secure)IsSecure() then
UNDEFINED;

else
VSTCR_EL2 = X[t, 64];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

VSTCR_EL2 = X[t, 64];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

VSTCR_EL2, Virtualization Secure Translation Control Register

Page 645

(old) htmldiff from- (new)

VSTTBR_EL2, Virtualization Secure Translation Table
Base Register

The VSTTBR_EL2 characteristics are:

Purpose
The base register for stage 2 of the Secure EL1&0 translation regime. Holds the base address of the translation table
for the initial lookup for stage 2 of an address translation in the Secure EL1&0 translation regime, and other
information for this translation stage.

Configuration
This register is present only when FEAT_SEL2 is implemented. Otherwise, direct accesses to VSTTBR_EL2 are
UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VSTTBR_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 BADDR
BADDR CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x].

Note

A translation table must be aligned to the size of the table, except that
when using a translation table base address larger than 48 bits the
minimum alignment of a table containing fewer than eight entries is 64
bytes.

If the value of VTCR_EL2.PS is 0b110, then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is determined as
follows:

◦ If x >= 6 then z=x.
◦ Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.

VSTTBR_EL2, Virtualization Secure Translation Table Base Register

Page 646

AArch64-vtcr_el2.html

• Bits[5:2] of the stage 1 translation table base address are zero.

Note

When the value of ID_AA64MMFR0_EL1.PARange indicates that the
implementation does not support a 52-bit PA size, if a translation table
lookup uses this register with the 64KB translation granule when the
Effective value of VTCR_EL2.PS is 0b110 and the value of register bits[5:2]
is nonzero, an Address size fault is generated.

If the Effective value of VTCR_EL2.PS is not 0b110, then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs then bits[51:48] of the translation table base addresses

used in this stage of translation are 0b0000.

If any VSTTBR_EL2[47:1] bit that is defined as RES0 has the value 1 when a translation table walk is performed
using VSTTBR_EL2, then the translation table base address might be misaligned, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back
from the corresponding register bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted
in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of
VSTCR_EL2.T0SZ, the stage of translation, and the translation granule size.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

Common not Private, for stage 2 of the Secure EL1&0 translation regime. In an implementation that includes
FEAT_TTCNP, indicates whether each entry that is pointed to by VSTTBR_EL2 is a member of a common set that
can be used by every PE in the Inner Shareable domain for which the value of VSTTBR_EL2.CnP is 1.

CnP Meaning
0b0 The translation table entries pointed to by VSTTBR_EL2 are

permitted to differ from the entries for VSTTBR_EL2 for other
PEs in the Inner Shareable domain. This is not affected by the
value of the current VMID.

0b1 The translation table entries pointed to by VSTTBR_EL2 are the
same as the translation table entries for every other PE in the
Inner Shareable domain for which the value of
VSTTBR_EL2.CnP is 1 and the VMID is the same as the current
VMID.

This bit is permitted to be cached in a TLB.

Note

If the value of VSTTBR_EL2.CnP bit is 1 on multiple PEs in the same Inner
Shareable domain and those VSTTBR_EL2s do not point to the same
translation table entries when using the current VMID, then the results of
translations using VSTTBR_EL2 are CONSTRAINED UNPREDICTABLE, see
'CONSTRAINED UNPREDICTABLE behaviors due to caching of control or
data values'.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VSTTBR_EL2, Virtualization Secure Translation Table Base Register

Page 647

AArch64-vtcr_el2.html
AArch64-vtcr_el2.html

Accessing VSTTBR_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VSTTBR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsCurrentSecurityState(SS_Secure)IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

X[t, 64] = NVMem[0x030];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsCurrentSecurityState(SS_Secure)IsSecure() then
UNDEFINED;

else
X[t, 64] = VSTTBR_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

X[t, 64] = VSTTBR_EL2;

MSR VSTTBR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsCurrentSecurityState(SS_Secure)IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x030] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsCurrentSecurityState(SS_Secure)IsSecure() then
UNDEFINED;

else
VSTTBR_EL2 = X[t, 64];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

VSTTBR_EL2 = X[t, 64];

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

VSTTBR_EL2, Virtualization Secure Translation Table Base Register

Page 648

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

VSTTBR_EL2, Virtualization Secure Translation Table Base Register

Page 649

(old) htmldiff from- (new)

AArch32 System Registers
ACTLR: Auxiliary Control Register

ACTLR2: Auxiliary Control Register 2

ADFSR: Auxiliary Data Fault Status Register

AIDR: Auxiliary ID Register

AIFSR: Auxiliary Instruction Fault Status Register

AMAIR0: Auxiliary Memory Attribute Indirection Register 0

AMAIR1: Auxiliary Memory Attribute Indirection Register 1

AMCFGR: Activity Monitors Configuration Register

AMCGCR: Activity Monitors Counter Group Configuration Register

AMCNTENCLR0: Activity Monitors Count Enable Clear Register 0

AMCNTENCLR1: Activity Monitors Count Enable Clear Register 1

AMCNTENSET0: Activity Monitors Count Enable Set Register 0

AMCNTENSET1: Activity Monitors Count Enable Set Register 1

AMCR: Activity Monitors Control Register

AMEVCNTR0<n>: Activity Monitors Event Counter Registers 0

AMEVCNTR1<n>: Activity Monitors Event Counter Registers 1

AMEVTYPER0<n>: Activity Monitors Event Type Registers 0

AMEVTYPER1<n>: Activity Monitors Event Type Registers 1

AMUSERENR: Activity Monitors User Enable Register

APSR: Application Program Status Register

CCSIDR: Current Cache Size ID Register

CCSIDR2: Current Cache Size ID Register 2

CLIDR: Cache Level ID Register

CNTFRQ: Counter-timer Frequency register

CNTHCTL: Counter-timer Hyp Control register

CNTHPS_CTL: Counter-timer Secure Physical Timer Control Register (EL2)

CNTHPS_CVAL: Counter-timer Secure Physical Timer CompareValue Register (EL2)

CNTHPS_TVAL: Counter-timer Secure Physical Timer TimerValue Register (EL2)

CNTHP_CTL: Counter-timer Hyp Physical Timer Control register

CNTHP_CVAL: Counter-timer Hyp Physical CompareValue register

CNTHP_TVAL: Counter-timer Hyp Physical Timer TimerValue register

CNTHVS_CTL: Counter-timer Secure Virtual Timer Control Register (EL2)

CNTHVS_CVAL: Counter-timer Secure Virtual Timer CompareValue Register (EL2)

AArch32 System Registers

Page 650

CNTHVS_TVAL: Counter-timer Secure Virtual Timer TimerValue Register (EL2)

CNTHV_CTL: Counter-timer Virtual Timer Control register (EL2)

CNTHV_CVAL: Counter-timer Virtual Timer CompareValue register (EL2)

CNTHV_TVAL: Counter-timer Virtual Timer TimerValue register (EL2)

CNTKCTL: Counter-timer Kernel Control register

CNTPCT: Counter-timer Physical Count register

CNTPCTSS: Counter-timer Self-Synchronized Physical Count register

CNTP_CTL: Counter-timer Physical Timer Control register

CNTP_CVAL: Counter-timer Physical Timer CompareValue register

CNTP_TVAL: Counter-timer Physical Timer TimerValue register

CNTVCT: Counter-timer Virtual Count register

CNTVCTSS: Counter-timer Self-Synchronized Virtual Count register

CNTVOFF: Counter-timer Virtual Offset register

CNTV_CTL: Counter-timer Virtual Timer Control register

CNTV_CVAL: Counter-timer Virtual Timer CompareValue register

CNTV_TVAL: Counter-timer Virtual Timer TimerValue register

CONTEXTIDR: Context ID Register

CPACR: Architectural Feature Access Control Register

CPSR: Current Program Status Register

CSSELR: Cache Size Selection Register

CTR: Cache Type Register

DACR: Domain Access Control Register

DBGAUTHSTATUS: Debug Authentication Status register

DBGBCR<n>: Debug Breakpoint Control Registers

DBGBVR<n>: Debug Breakpoint Value Registers

DBGBXVR<n>: Debug Breakpoint Extended Value Registers

DBGCLAIMCLR: Debug CLAIM Tag Clear register

DBGCLAIMSET: Debug CLAIM Tag Set register

DBGDCCINT: DCC Interrupt Enable Register

DBGDEVID: Debug Device ID register 0

DBGDEVID1: Debug Device ID register 1

DBGDEVID2: Debug Device ID register 2

DBGDIDR: Debug ID Register

DBGDRAR: Debug ROM Address Register

DBGDSAR: Debug Self Address Register

DBGDSCRext: Debug Status and Control Register, External View

AArch32 System Registers

Page 651

DBGDSCRint: Debug Status and Control Register, Internal View

DBGDTRRXext: Debug OS Lock Data Transfer Register, Receive, External View

DBGDTRRXint: Debug Data Transfer Register, Receive

DBGDTRTXext: Debug OS Lock Data Transfer Register, Transmit

DBGDTRTXint: Debug Data Transfer Register, Transmit

DBGOSDLR: Debug OS Double Lock Register

DBGOSECCR: Debug OS Lock Exception Catch Control Register

DBGOSLAR: Debug OS Lock Access Register

DBGOSLSR: Debug OS Lock Status Register

DBGPRCR: Debug Power Control Register

DBGVCR: Debug Vector Catch Register

DBGWCR<n>: Debug Watchpoint Control Registers

DBGWFAR: Debug Watchpoint Fault Address Register

DBGWVR<n>: Debug Watchpoint Value Registers

DFAR: Data Fault Address Register

DFSR: Data Fault Status Register

DISR: Deferred Interrupt Status Register

DLR: Debug Link Register

DSPSR: Debug Saved Program Status Register

ELR_hyp: Exception Link Register (Hyp mode)

ERRIDR: Error Record ID Register

ERRSELR: Error Record Select Register

ERXADDR: Selected Error Record Address Register

ERXADDR2: Selected Error Record Address Register 2

ERXCTLR: Selected Error Record Control Register

ERXCTLR2: Selected Error Record Control Register 2

ERXFR: Selected Error Record Feature Register

ERXFR2: Selected Error Record Feature Register 2

ERXMISC0: Selected Error Record Miscellaneous Register 0

ERXMISC1: Selected Error Record Miscellaneous Register 1

ERXMISC2: Selected Error Record Miscellaneous Register 2

ERXMISC3: Selected Error Record Miscellaneous Register 3

ERXMISC4: Selected Error Record Miscellaneous Register 4

ERXMISC5: Selected Error Record Miscellaneous Register 5

ERXMISC6: Selected Error Record Miscellaneous Register 6

ERXMISC7: Selected Error Record Miscellaneous Register 7

AArch32 System Registers

Page 652

ERXSTATUS: Selected Error Record Primary Status Register

FCSEIDR: FCSE Process ID register

FPEXC: Floating-Point Exception Control register

FPSCR: Floating-Point Status and Control Register

FPSID: Floating-Point System ID register

HACR: Hyp Auxiliary Configuration Register

HACTLR: Hyp Auxiliary Control Register

HACTLR2: Hyp Auxiliary Control Register 2

HADFSR: Hyp Auxiliary Data Fault Status Register

HAIFSR: Hyp Auxiliary Instruction Fault Status Register

HAMAIR0: Hyp Auxiliary Memory Attribute Indirection Register 0

HAMAIR1: Hyp Auxiliary Memory Attribute Indirection Register 1

HCPTR: Hyp Architectural Feature Trap Register

HCR: Hyp Configuration Register

HCR2: Hyp Configuration Register 2

HDCR: Hyp Debug Control Register

HDFAR: Hyp Data Fault Address Register

HIFAR: Hyp Instruction Fault Address Register

HMAIR0: Hyp Memory Attribute Indirection Register 0

HMAIR1: Hyp Memory Attribute Indirection Register 1

HPFAR: Hyp IPA Fault Address Register

HRMR: Hyp Reset Management Register

HSCTLR: Hyp System Control Register

HSR: Hyp Syndrome Register

HSTR: Hyp System Trap Register

HTCR: Hyp Translation Control Register

HTPIDR: Hyp Software Thread ID Register

HTRFCR: Hyp Trace Filter Control Register

HTTBR: Hyp Translation Table Base Register

HVBAR: Hyp Vector Base Address Register

ICC_AP0R<n>: Interrupt Controller Active Priorities Group 0 Registers

ICC_AP1R<n>: Interrupt Controller Active Priorities Group 1 Registers

ICC_ASGI1R: Interrupt Controller Alias Software Generated Interrupt Group 1 Register

ICC_BPR0: Interrupt Controller Binary Point Register 0

ICC_BPR1: Interrupt Controller Binary Point Register 1

ICC_CTLR: Interrupt Controller Control Register

AArch32 System Registers

Page 653

ICC_DIR: Interrupt Controller Deactivate Interrupt Register

ICC_EOIR0: Interrupt Controller End Of Interrupt Register 0

ICC_EOIR1: Interrupt Controller End Of Interrupt Register 1

ICC_HPPIR0: Interrupt Controller Highest Priority Pending Interrupt Register 0

ICC_HPPIR1: Interrupt Controller Highest Priority Pending Interrupt Register 1

ICC_HSRE: Interrupt Controller Hyp System Register Enable register

ICC_IAR0: Interrupt Controller Interrupt Acknowledge Register 0

ICC_IAR1: Interrupt Controller Interrupt Acknowledge Register 1

ICC_IGRPEN0: Interrupt Controller Interrupt Group 0 Enable register

ICC_IGRPEN1: Interrupt Controller Interrupt Group 1 Enable register

ICC_MCTLR: Interrupt Controller Monitor Control Register

ICC_MGRPEN1: Interrupt Controller Monitor Interrupt Group 1 Enable register

ICC_MSRE: Interrupt Controller Monitor System Register Enable register

ICC_PMR: Interrupt Controller Interrupt Priority Mask Register

ICC_RPR: Interrupt Controller Running Priority Register

ICC_SGI0R: Interrupt Controller Software Generated Interrupt Group 0 Register

ICC_SGI1R: Interrupt Controller Software Generated Interrupt Group 1 Register

ICC_SRE: Interrupt Controller System Register Enable register

ICH_AP0R<n>: Interrupt Controller Hyp Active Priorities Group 0 Registers

ICH_AP1R<n>: Interrupt Controller Hyp Active Priorities Group 1 Registers

ICH_EISR: Interrupt Controller End of Interrupt Status Register

ICH_ELRSR: Interrupt Controller Empty List Register Status Register

ICH_HCR: Interrupt Controller Hyp Control Register

ICH_LR<n>: Interrupt Controller List Registers

ICH_LRC<n>: Interrupt Controller List Registers

ICH_MISR: Interrupt Controller Maintenance Interrupt State Register

ICH_VMCR: Interrupt Controller Virtual Machine Control Register

ICH_VTR: Interrupt Controller VGIC Type Register

ICV_AP0R<n>: Interrupt Controller Virtual Active Priorities Group 0 Registers

ICV_AP1R<n>: Interrupt Controller Virtual Active Priorities Group 1 Registers

ICV_BPR0: Interrupt Controller Virtual Binary Point Register 0

ICV_BPR1: Interrupt Controller Virtual Binary Point Register 1

ICV_CTLR: Interrupt Controller Virtual Control Register

ICV_DIR: Interrupt Controller Deactivate Virtual Interrupt Register

ICV_EOIR0: Interrupt Controller Virtual End Of Interrupt Register 0

ICV_EOIR1: Interrupt Controller Virtual End Of Interrupt Register 1

AArch32 System Registers

Page 654

ICV_HPPIR0: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

ICV_HPPIR1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

ICV_IAR0: Interrupt Controller Virtual Interrupt Acknowledge Register 0

ICV_IAR1: Interrupt Controller Virtual Interrupt Acknowledge Register 1

ICV_IGRPEN0: Interrupt Controller Virtual Interrupt Group 0 Enable register

ICV_IGRPEN1: Interrupt Controller Virtual Interrupt Group 1 Enable register

ICV_PMR: Interrupt Controller Virtual Interrupt Priority Mask Register

ICV_RPR: Interrupt Controller Virtual Running Priority Register

ID_AFR0: Auxiliary Feature Register 0

ID_DFR0: Debug Feature Register 0

ID_DFR1: Debug Feature Register 1

ID_ISAR0: Instruction Set Attribute Register 0

ID_ISAR1: Instruction Set Attribute Register 1

ID_ISAR2: Instruction Set Attribute Register 2

ID_ISAR3: Instruction Set Attribute Register 3

ID_ISAR4: Instruction Set Attribute Register 4

ID_ISAR5: Instruction Set Attribute Register 5

ID_ISAR6: Instruction Set Attribute Register 6

ID_MMFR0: Memory Model Feature Register 0

ID_MMFR1: Memory Model Feature Register 1

ID_MMFR2: Memory Model Feature Register 2

ID_MMFR3: Memory Model Feature Register 3

ID_MMFR4: Memory Model Feature Register 4

ID_MMFR5: Memory Model Feature Register 5

ID_PFR0: Processor Feature Register 0

ID_PFR1: Processor Feature Register 1

ID_PFR2: Processor Feature Register 2

IFAR: Instruction Fault Address Register

IFSR: Instruction Fault Status Register

ISR: Interrupt Status Register

JIDR: Jazelle ID Register

JMCR: Jazelle Main Configuration Register

JOSCR: Jazelle OS Control Register

MAIR0: Memory Attribute Indirection Register 0

MAIR1: Memory Attribute Indirection Register 1

MIDR: Main ID Register

AArch32 System Registers

Page 655

MPIDR: Multiprocessor Affinity Register

MVBAR: Monitor Vector Base Address Register

MVFR0: Media and VFP Feature Register 0

MVFR1: Media and VFP Feature Register 1

MVFR2: Media and VFP Feature Register 2

NMRR: Normal Memory Remap Register

NSACR: Non-Secure Access Control Register

PAR: Physical Address Register

PMCCFILTR: Performance Monitors Cycle Count Filter Register

PMCCNTR: Performance Monitors Cycle Count Register

PMCEID0: Performance Monitors Common Event Identification register 0

PMCEID1: Performance Monitors Common Event Identification register 1

PMCEID2: Performance Monitors Common Event Identification register 2

PMCEID3: Performance Monitors Common Event Identification register 3

PMCNTENCLR: Performance Monitors Count Enable Clear register

PMCNTENSET: Performance Monitors Count Enable Set register

PMCR: Performance Monitors Control Register

PMEVCNTR<n>: Performance Monitors Event Count Registers

PMEVTYPER<n>: Performance Monitors Event Type Registers

PMINTENCLR: Performance Monitors Interrupt Enable Clear register

PMINTENSET: Performance Monitors Interrupt Enable Set register

PMMIR: Performance Monitors Machine Identification Register

PMOVSR: Performance Monitors Overflow Flag Status Register

PMOVSSET: Performance Monitors Overflow Flag Status Set register

PMSELR: Performance Monitors Event Counter Selection Register

PMSWINC: Performance Monitors Software Increment register

PMUSERENR: Performance Monitors User Enable Register

PMXEVCNTR: Performance Monitors Selected Event Count Register

PMXEVTYPER: Performance Monitors Selected Event Type Register

PRRR: Primary Region Remap Register

REVIDR: Revision ID Register

RMR: Reset Management Register

RVBAR: Reset Vector Base Address Register

SCR: Secure Configuration Register

SCTLR: System Control Register

SDCR: Secure Debug Control Register

AArch32 System Registers

Page 656

SDER: Secure Debug Enable Register

SPSR: Saved Program Status Register

SPSR_abt: Saved Program Status Register (Abort mode)

SPSR_fiq: Saved Program Status Register (FIQ mode)

SPSR_hyp: Saved Program Status Register (Hyp mode)

SPSR_irq: Saved Program Status Register (IRQ mode)

SPSR_mon: Saved Program Status Register (Monitor mode)

SPSR_svc: Saved Program Status Register (Supervisor mode)

SPSR_und: Saved Program Status Register (Undefined mode)

TCMTR: TCM Type Register

TLBTR: TLB Type Register

TPIDRPRW: PL1 Software Thread ID Register

TPIDRURO: PL0 Read-Only Software Thread ID Register

TPIDRURW: PL0 Read/Write Software Thread ID Register

TRFCR: Trace Filter Control Register

TTBCR: Translation Table Base Control Register

TTBCR2: Translation Table Base Control Register 2

TTBR0: Translation Table Base Register 0

TTBR1: Translation Table Base Register 1

VBAR: Vector Base Address Register

VDFSR: Virtual SError Exception Syndrome Register

VDISR: Virtual Deferred Interrupt Status Register

VMPIDR: Virtualization Multiprocessor ID Register

VPIDR: Virtualization Processor ID Register

VTCR: Virtualization Translation Control Register

VTTBR: Virtualization Translation Table Base Register

3021/03/2022 2017:3305

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AArch32 System Registers

Page 657

(old) htmldiff from- (new)

AArch32 System Instructions
ATS12NSOPR: Address Translate Stages 1 and 2 Non-secure Only PL1 Read

ATS12NSOPW: Address Translate Stages 1 and 2 Non-secure Only PL1 Write

ATS12NSOUR: Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read

ATS12NSOUW: Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write

ATS1CPR: Address Translate Stage 1 Current state PL1 Read

ATS1CPRP: Address Translate Stage 1 Current state PL1 Read PAN

ATS1CPW: Address Translate Stage 1 Current state PL1 Write

ATS1CPWP: Address Translate Stage 1 Current state PL1 Write PAN

ATS1CUR: Address Translate Stage 1 Current state Unprivileged Read

ATS1CUW: Address Translate Stage 1 Current state Unprivileged Write

ATS1HR: Address Translate Stage 1 Hyp mode Read

ATS1HW: Address Translate Stage 1 Hyp mode Write

BPIALL: Branch Predictor Invalidate All

BPIALLIS: Branch Predictor Invalidate All, Inner Shareable

BPIMVA: Branch Predictor Invalidate by VA

CFPRCTX: Control Flow Prediction Restriction by Context

CP15DMB: Data Memory Barrier System instruction

CP15DSB: Data Synchronization Barrier System instruction

CP15ISB: Instruction Synchronization Barrier System instruction

CPPRCTX: Cache Prefetch Prediction Restriction by Context

DCCIMVAC: Data Cache line Clean and Invalidate by VA to PoC

DCCISW: Data Cache line Clean and Invalidate by Set/Way

DCCMVAC: Data Cache line Clean by VA to PoC

DCCMVAU: Data Cache line Clean by VA to PoU

DCCSW: Data Cache line Clean by Set/Way

DCIMVAC: Data Cache line Invalidate by VA to PoC

DCISW: Data Cache line Invalidate by Set/Way

DTLBIALL: Data TLB Invalidate All

DTLBIASID: Data TLB Invalidate by ASID match

DTLBIMVA: Data TLB Invalidate by VA

DVPRCTX: Data Value Prediction Restriction by Context

ICIALLU: Instruction Cache Invalidate All to PoU

ICIALLUIS: Instruction Cache Invalidate All to PoU, Inner Shareable

AArch32 System Instructions

Page 658

ICIMVAU: Instruction Cache line Invalidate by VA to PoU

ITLBIALL: Instruction TLB Invalidate All

ITLBIASID: Instruction TLB Invalidate by ASID match

ITLBIMVA: Instruction TLB Invalidate by VA

TLBIALL: TLB Invalidate All

TLBIALLH: TLB Invalidate All, Hyp mode

TLBIALLHIS: TLB Invalidate All, Hyp mode, Inner Shareable

TLBIALLIS: TLB Invalidate All, Inner Shareable

TLBIALLNSNH: TLB Invalidate All, Non-Secure Non-Hyp

TLBIALLNSNHIS: TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable

TLBIASID: TLB Invalidate by ASID match

TLBIASIDIS: TLB Invalidate by ASID match, Inner Shareable

TLBIIPAS2: TLB Invalidate by Intermediate Physical Address, Stage 2

TLBIIPAS2IS: TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable

TLBIIPAS2L: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level

TLBIIPAS2LIS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable

TLBIMVA: TLB Invalidate by VA

TLBIMVAA: TLB Invalidate by VA, All ASID

TLBIMVAAIS: TLB Invalidate by VA, All ASID, Inner Shareable

TLBIMVAAL: TLB Invalidate by VA, All ASID, Last level

TLBIMVAALIS: TLB Invalidate by VA, All ASID, Last level, Inner Shareable

TLBIMVAH: TLB Invalidate by VA, Hyp mode

TLBIMVAHIS: TLB Invalidate by VA, Hyp mode, Inner Shareable

TLBIMVAIS: TLB Invalidate by VA, Inner Shareable

TLBIMVAL: TLB Invalidate by VA, Last level

TLBIMVALH: TLB Invalidate by VA, Last level, Hyp mode

TLBIMVALHIS: TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable

TLBIMVALIS: TLB Invalidate by VA, Last level, Inner Shareable

3021/03/2022 2017:3305

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AArch32 System Instructions

Page 659

(old) htmldiff from- (new)

CCSIDR, Current Cache Size ID Register
The CCSIDR characteristics are:

Purpose
Provides information about the architecture of the currently selected cache.

When FEAT_CCIDX is implemented, this register is used in conjunction with CCSIDR2.

Configuration
AArch32 System register CCSIDR bits [31:0] are architecturally mapped to AArch64 System register
CCSIDR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to CCSIDR are
UNDEFINED.

The implementation includes one CCSIDR for each cache that it can access. CSSELR and the Security state select
which Cache Size ID Register is accessible.

Attributes
CCSIDR is a 32-bit register.

Field descriptions

When FEAT_CCIDX is implemented:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 Associativity LineSize

Note

The parameters NumSets, Associativity, and LineSize in these registers define
the architecturally visible parameters that are required for the cache
maintenance by Set/Way instructions. They are not guaranteed to represent
the actual microarchitectural features of a design. You cannot make any
inference about the actual sizes of caches based on these parameters.

Bits [31:24]

Reserved, RES0.

Associativity, bits [23:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to
be a power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.

CCSIDR, Current Cache Size ID Register

Page 660

AArch32-ccsidr2.html
AArch32-csselr.html

For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

Note

The C++ 17 specification has two defined parameters relating to the
granularity of memory that does not interfere. For generic software and
tools, Arm will set the hardware_destructive_interference_size parameter to
256 bytes and the hardware_constructive_interference_size parameter to
64 bytes.

Otherwise:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
UNKNOWN NumSets Associativity LineSize

Note

The parameters NumSets, Associativity, and LineSize in these registers define
the architecturally visible parameters that are required for the cache
maintenance by Set/Way instructions. They are not guaranteed to represent
the actual microarchitectural features of a design. You cannot make any
inference about the actual sizes of caches based on these parameters.

Bits [31:28]

Reserved, UNKNOWN.

NumSets, bits [27:13]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have
to be a power of 2.

Associativity, bits [12:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to
be a power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.

For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

Note

The C++ 17 specification has two defined parameters relating to the
granularity of memory that does not interfere. For generic software and
tools, Arm will set the hardware_destructive_interference_size parameter to
256 bytes and the hardware_constructive_interference_size parameter to
64 bytes.

Accessing CCSIDR
If CSSELR.{Level, InD} is programmed to a cache level that is not implemented, then on a read of the CCSIDR the
behavior is CONSTRAINED UNPREDICTABLE, and can be one of the following:

• The CCSIDR read is treated as NOP.
• The CCSIDR read is UNDEFINED.

CCSIDR, Current Cache Size ID Register

Page 661

AArch32-csselr.html

• The CCSIDR read returns an UNKNOWN value.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b001 0b0000 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then

AArch32.TakeHypTrapException(0x03);
else

R[t] = CCSIDR;
elsif PSTATE.EL == EL2 then

R[t] = CCSIDR;
elsif PSTATE.EL == EL3 then

R[t] = CCSIDR;

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CCSIDR, Current Cache Size ID Register

Page 662

(old) htmldiff from- (new)

CLIDR, Cache Level ID Register
The CLIDR characteristics are:

Purpose
Identifies the type of cache, or caches, that are implemented at each level and can be managed using the architected
cache maintenance instructions that operate by set/way, up to a maximum of seven levels. Also identifies the Level of
Coherence (LoC) and Level of Unification (LoU) for the cache hierarchy.

Configuration
AArch32 System register CLIDR bits [31:0] are architecturally mapped to AArch64 System register CLIDR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to CLIDR are
UNDEFINED.

Attributes
CLIDR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ICB LoUU LoC LoUIS Ctype7 Ctype6 Ctype5 Ctype4 Ctype3 Ctype2 Ctype1

ICB, bits [31:30]

Inner cache boundary. This field indicates the boundary for caching Inner Cacheable memory regions.

ICB Meaning
0b00 Not disclosed by this mechanism.
0b01 L1 cache is the highest Inner Cacheable level.
0b10 L2 cache is the highest Inner Cacheable level.
0b11 L3 cache is the highest Inner Cacheable level.

LoUU, bits [29:27]

Level of Unification Uniprocessor for the cache hierarchy.

For a description of the values of this field, see Terminology for Clean, Invalidate, and Clean and Invalidate
instructions.

Note

When FEAT_S2FWB is implemented, the architecture requires that this
field is zero so that no levels of data cache need to be cleaned in order to
manage coherency with instruction fetches.

LoC, bits [26:24]

Level of Coherence for the cache hierarchy.

CLIDR, Cache Level ID Register

Page 663

For a description of the values of this field, see Terminology for Clean, Invalidate, and Clean and Invalidate
instructions.

LoUIS, bits [23:21]

Level of Unification Inner Shareable for the cache hierarchy.

For a description of the values of this field, see Terminology for Clean, Invalidate, and Clean and Invalidate
instructions.

Note

When FEAT_S2FWB is implemented, the architecture requires that this
field is zero so that no levels of data cache need to be cleaned in order to
manage coherency with instruction fetches.

Ctype<n>, bits [3(n-1)+2:3(n-1)], for n = 7 to 1

Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache
maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of
cache hierarchy.

Ctype<n> Meaning
0b000 No cache.
0b001 Instruction cache only.
0b010 Data cache only.
0b011 Separate instruction and data caches.
0b100 Unified cache.

All other values are reserved.

If software reads the Cache Type fields from Ctype1 upwards, once it has seen a value of 000, no caches that can
be managed using the architected cache maintenance instructions that operate by set/way exist at further-out
levels of the hierarchy. So, for example, if Ctype3 is the first Cache Type field with a value of 000, the values of
Ctype4 to Ctype7 must be ignored.

Accessing CLIDR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b001 0b0000 0b0000 0b001

CLIDR, Cache Level ID Register

Page 664

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then

AArch32.TakeHypTrapException(0x03);
else

R[t] = CLIDR;
elsif PSTATE.EL == EL2 then

R[t] = CLIDR;
elsif PSTATE.EL == EL3 then

R[t] = CLIDR;

3021/03/2022 2017:2800; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CLIDR, Cache Level ID Register

Page 665

(old) htmldiff from- (new)

CNTHP_CTL, Counter-timer Hyp Physical Timer Control
register

The CNTHP_CTL characteristics are:

Purpose
Control register for the Hyp mode physical timer.

Configuration
AArch32 System register CNTHP_CTL bits [31:0] are architecturally mapped to AArch64 System register
CNTHP_CTL_EL2[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to CNTHP_CTL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHP_CTL is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 666

AArch64-cnthp_ctl_el2.html

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHP_TVAL continues
to count down.

Note

Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, when the PE resets into EL2 or EL3, this field resets to 0.

Accessing CNTHP_CTL
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
R[t] = CNTHP_CTL;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

R[t] = CNTHP_CTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1110 0b0010 0b001

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 667

AArch32-cnthp_tval.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
CNTHP_CTL = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

CNTHP_CTL = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b001

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 668

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented(FEAT_SEL2) then
R[t] = CNTHPS_CTL_EL2<31:0>;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

R[t] = CNTHP_CTL_EL2<31:0>;
else

R[t] = CNTP_CTL;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
R[t] = CNTP_CTL_NS;

else
R[t] = CNTP_CTL;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

R[t] = CNTP_CTL_NS;
else

R[t] = CNTP_CTL;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
R[t] = CNTP_CTL_S;

else
R[t] = CNTP_CTL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b001

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 669

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented(FEAT_SEL2) then
CNTHPS_CTL_EL2 = R[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHP_CTL_EL2 = R[t];
else

CNTP_CTL = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_CTL_NS = R[t];

else
CNTP_CTL = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

CNTP_CTL_NS = R[t];
else

CNTP_CTL = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
CNTP_CTL_S = R[t];

else
CNTP_CTL_NS = R[t];

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 670

(old) htmldiff from- (new)

CPACR, Architectural Feature Access Control Register
The CPACR characteristics are:

Purpose
Controls access to trace, and to Advanced SIMD and floating-point functionality from EL0, EL1, and EL3.

In an implementation that includes EL2, the CPACR has no effect on instructions executed at EL2.

Configuration
AArch32 System register CPACR bits [31:0] are architecturally mapped to AArch64 System register CPACR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to CPACR are
UNDEFINED.

Bits in the NSACR control Non-secure access to the CPACR fields. See the field descriptions for more information.

Note

In the register field descriptions, controls are described as applying at
specified Privilege levels. This is because, in Secure state, a PL1 control:

• Applies to execution in a Secure EL3 mode when EL3 is using AArch32.
• Applies to execution in a Secure EL1 mode when EL3 is using AArch64.

See 'Security state, Exception levels, and AArch32 execution privilege'.

Attributes
CPACR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASEDIS RES0 TRCDIS RES0 cp11 cp10 RES0

ASEDIS, bit [31]

Disables PL0 and PL1 execution of Advanced SIMD instructions.

ASEDIS Meaning
0b0 This control permits execution of Advanced SIMD

instructions at PL0 and PL1.
0b1 All instruction encodings that are Advanced SIMD

instruction encodings, but are not also floating-point
instruction encodings, are UNDEFINED at PL0 and PL1.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0.
Otherwise, it is IMPLEMENTATION DEFINED whether this field is implemented as a RW field. If it is not implemented
as a RW field, it is RAZ/WI.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSASEDIS is 1, this field behaves as RAO/WI
in Non-secure state, regardless of its actual value. This applies even if the field is implemented as RAZ/WI.

CPACR, Architectural Feature Access Control Register

Page 671

AArch64-cpacr_el1.html
AArch32-nsacr.html
AArch32-nsacr.html

For the list of instructions affected by this field, see 'Controls of Advanced SIMD operation that do not apply to
floating-point operation'.

See the description of CPACR.cp10 for a list of other controls that can disable or trap execution of Advanced SIMD
instructions in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [30:29]

Reserved, RES0.

TRCDIS, bit [28]

Traps PL0 and PL1 System register accesses to all implemented trace registers to Undefined mode.

TRCDIS Meaning
0b0 This control has no effect on PL0 and PL1 System register

accesses to trace registers.
0b1 PL0 and PL1 System register accesses to all implemented

trace registers are trapped to Undefined mode.

If the implementation does not include a trace unit, or does not include a System register interface to the trace
unit registers, this field is RES0. Otherwise, it is IMPLEMENTATION DEFINED whether this field is implemented as a RW
field. If it is not implemented as a RW field, it is RAZ/WI.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSTRCDIS is 1, this field behaves as RAO/WI
in Non-secure state, regardless of its actual value. This applies even if the field is implemented as RAZ/WI.

Note
• The ETMv4 architecture and ETE do not permit EL0 to access the

trace registers. If the trace unit implements FEAT_ETMv4 or
FEAT_ETE, EL0 accesses to the trace registers are UNDEFINED.

• The Arm architecture does not provide traps on trace register
accesses through the optional memory-mapped external debug
interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped,
any side-effects that are normally associated with the access do not occur before the exception is taken.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:24]

Reserved, RES0.

cp11, bits [23:22]

The value of this field is ignored. If this field is programmed with a different value to the cp10 field then this field
is UNKNOWN on a direct read of the CPACR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0.

In Non-secure state, if EL3 is implemented and is using AArch32, when the value of NSACR.cp10 is 0, this field
behaves as RAZ/WI, regardless of its actual value.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

CPACR, Architectural Feature Access Control Register

Page 672

AArch32-nsacr.html
AArch32-nsacr.html

• Access is RAZ/WI if all of the following are true:
◦ EL3 is implemented
◦ EL3 is using AArch32
◦ !IsCurrentSecurityState(SS_Secure)
◦ NSACR.cp10 == 0

cp10, bits [21:20]

Defines the access rights for the Advanced SIMD and floating-point functionality. Possible values of the field are:

cp10 Meaning
0b00 PL0 and PL1 accesses to Advanced SIMD and floating-point

registers or instructions are UNDEFINED.
0b01 PL0 accesses to Advanced SIMD and floating-point registers

or instructions are UNDEFINED.
0b10 Reserved. The effect of programming this field to this value is

CONSTRAINED UNPREDICTABLE. See 'Handling of System register
control fields for Advanced SIMD and floating-point operation'.

0b11 This control permits full access to the Advanced SIMD and
floating-point functionality from PL0 and PL1.

The Advanced SIMD and floating-point features controlled by these fields are:

• Execution of any floating-point or Advanced SIMD instruction.
• Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as S0-S31 and

Q0-Q15.
• Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.

Note

The CPACR has no effect on Advanced SIMD and floating-point accesses
from PL2. These can be disabled by the HCPTR.TCP10 field.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0.

In Non-secure state, if EL3 is implemented and is using AArch32, when the value of NSACR.cp10 is 0, this field
behaves as RAZ/WI, regardless of its actual value.

Execution of Advanced SIMD and floating-point instructions in AArch32 state can be disabled or trapped by the
following controls:

• CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.
• FPEXC.EN.
• If executing in Non-secure state:

◦ HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.
◦ NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.

• For Advanced SIMD instructions only:
◦ CPACR.ASEDIS.
◦ If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

See the descriptions of the controls for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

• Access is RAZ/WI if all of the following are true:
◦ EL3 is implemented
◦ EL3 is using AArch32
◦ !IsCurrentSecurityState(SS_Secure)
◦ NSACR.cp10 == 0

Bits [19:0]

Reserved, RES0.

CPACR, Architectural Feature Access Control Register

Page 673

AArch32-fpscr.html
AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html
AArch32-nsacr.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch32-nsacr.html
AArch64-cptr_el3.html
AArch32-nsacr.html

Accessing CPACR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TCPAC == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

R[t] = CPACR;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
R[t] = CPACR;

elsif PSTATE.EL == EL3 then
R[t] = CPACR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0000 0b010

CPACR, Architectural Feature Access Control Register

Page 674

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TCPAC == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

CPACR = R[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
CPACR = R[t];

elsif PSTATE.EL == EL3 then
CPACR = R[t];

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CPACR, Architectural Feature Access Control Register

Page 675

(old) htmldiff from- (new)

CPPRCTX, Cache Prefetch Prediction Restriction by
Context

The CPPRCTX characteristics are:

Purpose
Cache Prefetch Prediction Restriction by Context applies to all Cache Allocation Resources that predict cache
allocations based on information gathered within the target execution context or contexts.

TheCache prefetch predictions determined by the actions of code in the target execution context or contexts
appearing in program order before the instruction cannot exploitativelyinfluence controlspeculative cache prefetch
predictionsexecution occurring after the instruction is complete and synchronized.

This instruction applies to all:

• Instruction caches.
• Data caches.
• TLB prefetching hardware used by the executing PE that applies to the supplied context or contexts.

This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same
PE as executed the original restriction instruction, and a subsequent context synchronization event is required to
ensure that the effect of the completion of the instructions is synchronized to the current execution.

Note

This instruction does not require the invalidation of Cache Allocation
Resources so long as the behavior described for completion of this instruction
is met by the implementation.

On some implementations the instruction is likely to take a significant number
of cycles to execute. This instruction is expected to be used very rarely, such
as on the roll-over of an ASID or VMID, but should not be used on every
context switch.

Configuration
This instruction is present only when AArch32 is supported and FEAT_SPECRES is implemented. Otherwise, direct
accesses to CPPRCTX are UNDEFINED.

Attributes
CPPRCTX is a 32-bit System instruction.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 GVMIDNS EL VMID RES0 GASID ASID

Bits [31:28]

Reserved, RES0.

CPPRCTX, Cache Prefetch Prediction Restriction by Context

Page 676

GVMID, bit [27]

Execution of this instruction applies to all VMIDs or a specified VMID.

GVMID Meaning
0b0 Applies to specified VMID for an EL0 or EL1 target

execution context.
0b1 Applies to all VMIDs for an EL0 or EL1 target execution

context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, then this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

NS, bit [26]

Security State.

NS Meaning
0b0 Secure state.
0b1 Non-secure state.

If the instruction is executed in Non-secure state, this field is treated as 1.

EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

EL Meaning
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, this instruction is treated as a
NOP.

VMID, bits [23:16]

Only applies when bit[27] is 0 and the target execution context is either:

• EL1.
• EL0 when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0) or EL2 is using AArch32 state.

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0 or ELUsingAArch32(EL2)),
this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1 and
!ELUsingAArch32(EL2)), this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

Bits [15:9]

Reserved, RES0.

GASID, bit [8]

Execution of this instruction applies to all ASIDs or a specified ASID.

CPPRCTX, Cache Prefetch Prediction Restriction by Context

Page 677

GASID Meaning
0b0 Applies to specified ASID for an EL0 target execution

context.
0b1 Applies to all ASIDs for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [7:0]

Only applies for an EL0 target execution context and when bit[8] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

Executing the CPPRCTX instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0011 0b111

CPPRCTX, Cache Prefetch Prediction Restriction by Context

Page 678

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && SCTLR.EnRCTX == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HFGITR_EL2.CPPRCTX == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX ==
'0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch32.RestrictPrediction(R[t], RestrictType_CachePrefetch);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x03);

else
AArch32.RestrictPrediction(R[t], RestrictType_CachePrefetch);

elsif PSTATE.EL == EL2 then
AArch32.RestrictPrediction(R[t], RestrictType_CachePrefetch);

elsif PSTATE.EL == EL3 then
AArch32.RestrictPrediction(R[t], RestrictType_CachePrefetch);

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CPPRCTX, Cache Prefetch Prediction Restriction by Context

Page 679

(old) htmldiff from- (new)

FPEXC, Floating-Point Exception Control register
The FPEXC characteristics are:

Purpose
Provides a global enable for the implemented Advanced SIMD and floating-point functionality, and reports floating-
point status information.

Configuration
AArch32 System register FPEXC bits [31:0] are architecturally mapped to AArch64 System register
FPEXC32_EL2[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to FPEXC are
UNDEFINED.

Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

Attributes
FPEXC is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EX ENDEXFP2VVVTFV RES0 VECITR IDF RES0 IXFUFFOFFDZFIOF

EX, bit [31]

Exception bit. From Armv8, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RAZ/WI.

EN, bit [30]

Enables access to the Advanced SIMD and floating-point functionality from all Exception levels, except that setting
this field to 0 does not disable the following:

• VMSR accesses to the FPEXC or FPSID.
• VMRS accesses from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2.

EN Meaning
0b0 Accesses to the FPSCR, and any of the SIMD and floating-point

registers Q0-Q15, including their views as D0-D31 registers or
S0-S31 registers, are UNDEFINED at all Exception levels.

0b1 This control permits access to the Advanced SIMD and floating-
point functionality at all Exception levels.

Execution of Advanced SIMD and floating-point instructions in AArch32 state can be disabled or trapped by the
following controls:

• CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.
• FPEXC.EN.

FPEXC, Floating-Point Exception Control register

Page 680

AArch32-fpsid.html
AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html
AArch32-fpscr.html
AArch64-cpacr_el1.html

• If executing in Non-secure state:
◦ HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.
◦ NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.

• For Advanced SIMD instructions only:
◦ CPACR.ASEDIS.
◦ If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

See the descriptions of the controls for more information.

Note

When executing at EL0 using AArch32:

• If EL1 is using AArch64, then the Effective value of FPEXC.EN is 1.
This includes when EL2 is using AArch64 and is enabled in the
current Security state, HCR_EL2.TGE is 1, and the Effective value of
HCR_EL2.RW is 1.

• If EL2 is using AArch64 and is enabled in the current Security state,
HCR_EL2.TGE is 1, and the Effective value of HCR_EL2.RW is 0, then
it is IMPLEMENTATION DEFINED whether the Effective value of
FPEXC.EN is 1 or the value written to FPEXC.EN. However, Arm
deprecates using the value of FPEXC.EN to determine behavior.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

DEX, bit [29]

Defined synchronous exception on floating-point execution.

This field identifies whether a synchronous exception generated by the attempted execution of an instruction was
generated by an unallocated encoding. The instruction must be in the encoding space that is identified by the
pseudocode function ExecutingCP10or11Instr() returning TRUE. This field also indicates whether the FPEXC.TFV
field is valid.

The meaning of this bit is:

DEX Meaning
0b0 The exception was generated by the attempted execution of an

unallocated instruction in the encoding space that is identified
by the pseudocode function ExecutingCP10or11Instr(). If
FPEXC.TFV is RW then it is invalid and UNKNOWN. If
FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} are RW then they are
invalid and UNKNOWN.

0b1 The exception was generated during the execution of an
allocated encoding. FPEXC.TFV is valid and indicates the cause
of the exception.

On an exception that sets this bit to 1 the exception-handling routine must clear this bit to 0.

On an implementation that both does not support trapping of floating-point exceptions and implements the
FPSCR.{Stride, Len} fields as RAZ, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FP2V, bit [28]

FPINST2 instruction valid bit. From Armv8, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RES0.

FPEXC, Floating-Point Exception Control register

Page 681

AArch64-cptr_el2.html
AArch32-nsacr.html
AArch64-cptr_el3.html
AArch32-nsacr.html
AArch32-fpscr.html

VV, bit [27]

VECITR valid bit. From Armv8, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RES0.

TFV, bit [26]

Trapped Fault Valid bit. Valid only when the value of FPEXC.DEX is 1. When valid, it indicates the cause of the
exception and therefore whether the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} bits are valid.

TFV Meaning
0b0 The exception was caused by the execution of a floating-point

VABS, VADD, VDIV, VFMA, VFMS, VFNMA, VFNMS, VMLA,
VMLS, VMOV, VMUL, VNEG, VNMLA, VNMLS, VNMUL,
VSQRT, or VSUB instruction when one or both of
FPSCR.{Stride, Len} was non-zero. If the FPEXC.{IDF, IXF,
UFF, OFF, DZF, IOF} bits are RW then they are invalid and
UNKNOWN.

0b1 FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} indicate the presence of
trapped floating-point exceptions that had occurred at the time
of the exception. Bits are set for all trapped exceptions that had
occurred at the time of the exception.

This bit returns a status value and ignores writes.

When the value of FPEXC.DEX is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On an implementation that supports the trapping of floating-point exceptions and implements FPSCR.{Stride,
Len} as RAZ, this bit is RAO/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• WhenOn !ImpDefBool("Supporta trappingWarm ofreset, this floating-pointfield exceptions"), access resets
to thisan field isarchitecturally RAZ/WIUNKNOWN.value.

• When ImpDefBool("Implemented FPSCR LEN, STRIDE as RAZ"), access to this field is RAO/WI.

Bits [25:11]

Reserved, RES0.

VECITR, bits [10:8]

Vector iteration count. From Armv8, this field is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RES1.

IDF, bit [7]

Input Denormal trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates
whether an Input Denormal exception occurred while FPSCR.IDE was 1:

FPEXC, Floating-Point Exception Control register

Page 682

AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html

IDF Meaning
0b0 Input Denormal exception has not occurred.
0b1 Input Denormal exception has occurred.

Input Denormal exceptions can occur only when FPSCR.FZ is 1.

Note

A half-precision floating-point value that is flushed to zero because the
value of FPSCR.FZ16 is 1 does not generate an Input Denormal exception.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an
Inexact exception occurred while FPSCR.IXE was 1:

IXF Meaning
0b0 Inexact exception has not occurred.
0b1 Inexact exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an
Underflow exception occurred while FPSCR.UFE was 1:

UFF Meaning
0b0 Underflow exception has not occurred.
0b1 Underflow exception has occurred.

Underflow trapped exceptions can occur:

• On half-precision data-processing instructions only when FPSCR.FZ16 is 0.
• Otherwise only when FPSCR.FZ is 0.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FPEXC, Floating-Point Exception Control register

Page 683

AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html

OFF, bit [2]

Overflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an
Overflow exception occurred while FPSCR.OFE was 1:

OFF Meaning
0b0 Overflow exception has not occurred.
0b1 Overflow exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates
whether a Divide by Zero exception occurred while FPSCR.DZE was 1:

DZF Meaning
0b0 Divide by Zero exception has not occurred.
0b1 Divide by Zero exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates
whether an Invalid Operation exception occurred while FPSCR.IOE was 1:

IOF Meaning
0b0 Invalid Operation exception has not occurred.
0b1 Invalid Operation exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing FPEXC
Accesses to this register use the following encodings in the System register encoding space:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

reg
0b1000

FPEXC, Floating-Point Exception Control register

Page 684

AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
UNDEFINED;

elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x08);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x07);

else
R[t] = FPEXC;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
UNDEFINED;

elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||
HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x00);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x07);

else
R[t] = FPEXC;

elsif PSTATE.EL == EL3 then
if CPACR.cp10 == '00' then

UNDEFINED;
else

R[t] = FPEXC;

VMSR{<c>}{<q>} <spec_reg>, <Rt>

reg
0b1000

FPEXC, Floating-Point Exception Control register

Page 685

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
UNDEFINED;

elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x08);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x07);

else
FPEXC = R[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
UNDEFINED;

elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||
HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x00);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x07);

else
FPEXC = R[t];

elsif PSTATE.EL == EL3 then
if CPACR.cp10 == '00' then

UNDEFINED;
else

FPEXC = R[t];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

FPEXC, Floating-Point Exception Control register

Page 686

(old) htmldiff from- (new)

HCPTR, Hyp Architectural Feature Trap Register
The HCPTR characteristics are:

Purpose
Controls:

• Trapping to Hyp mode of Non-secure access, at EL1 or EL0, to trace, and to Advanced SIMD and floating-point
functionality.

• Hyp mode access to trace, and to Advanced SIMD and floating-point functionality.

Note

Accesses to this functionality:

• From Non-secure modes other than Hyp mode are also affected by
settings in the CPACR and NSACR.

• From Hyp mode are also affected by settings in the NSACR.

Exceptions generated by the CPACR and NSACR controls are higher priority
than those generated by the HCPTR controls.

Configuration
AArch32 System register HCPTR bits [31:0] are architecturally mapped to AArch64 System register CPTR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to HCPTR are
UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HCPTR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TCPACTAM RES0 TTA RES0 TASERES0RES1TCP11TCP10 RES1

TCPAC, bit [31]

Traps Non-secure EL1 accesses to the CPACR to Hyp mode.

TCPAC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 accesses to the CPACR are trapped to Hyp

mode.

Note

The CPACR is not accessible at EL0.

The reset behavior of this field is:

HCPTR, Hyp Architectural Feature Trap Register

Page 687

AArch32-nsacr.html
AArch32-nsacr.html
AArch32-nsacr.html
AArch64-cptr_el2.html

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TAM, bit [30]
When FEAT_AMUv1 is implemented:

Trap Activity Monitor access. Traps Non-secure EL1 and EL0 accesses to all Activity Monitor registers to EL2.

TAM Meaning
0b0 Accesses from Non-secure EL1 and EL0 to Activity Monitor

registers are not trapped.
0b1 Accesses from Non-secure EL1 and EL0 to Activity Monitor

registers are trapped to Hyp mode.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [29:21]

Reserved, RES0.

TTA, bit [20]

Traps Non-secure System register accesses to all implemented trace registers to Hyp mode.

TTA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any Non-secure System register access to an implemented

trace register is trapped to Hyp mode, unless the access is
trapped to EL1 by a CPACR or NSACR control, or the access is
from Non-secure EL0 and the definition of the register in the
appropriate trace architecture specification indicates that the
register is not accessible from EL0. A trapped instruction
generates:

• A Hyp Trap exception, if the exception is taken from Non-
secure EL0 or EL1.

• An Undefined Instruction exception taken to Hyp mode, if
the exception is taken from Hyp mode.

If the implementation does not include a trace unit, or does not include a System register interface to the trace
unit registers, it is IMPLEMENTATION DEFINED whether this bit:

• Is RES0.
• Is RES1.
• Can be written from Hyp mode, and from Secure Monitor mode when SCR.NS is 1.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSTRCDIS is 1, in Non-secure state this field
behaves as RAO/WI, regardless of its actual value.

Note
• The ETMv4 architecture and ETE do not permit EL0 to access the

trace registers. If the trace unit implements FEAT_ETMv4 or
FEAT_ETE, EL0 accesses to the trace registers are UNDEFINED, and a

HCPTR, Hyp Architectural Feature Trap Register

Page 688

AArch32-nsacr.html
AArch32-scr.html
AArch32-nsacr.html

resulting Undefined Instruction exception is higher priority than a
HCPTR.TTA Hyp Trap exception.

• The Arm architecture does not provide traps on trace register
accesses through the optional memory-mapped debug interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped,
any side-effects that are normally associated with the access do not occur before the exception is taken.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Bits [19:16]

Reserved, RES0.

TASE, bit [15]

Traps Non-secure execution of Advanced SIMD instructions to Hyp mode when the value of HCPTR.TCP10 is 0.

TASE Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 When the value of HCPTR.TCP10 is 0, any attempt to execute

an Advanced SIMD instruction in Non-secure state is trapped
to Hyp mode, unless it is trapped to EL1 by a CPACR or
NSACR control. A trapped instruction generates:

• A Hyp Trap exception, if the exception is taken from
Non-secure EL0 or EL1.

• An Undefined Instruction exception taken to Hyp mode,
if the exception is taken from Hyp mode.

When the value of HCPTR.TCP10 is 1, the value of this field is ignored.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES1.
Otherwise, it is IMPLEMENTATION DEFINED whether this field is implemented as a RW field. If it is not implemented
as a RW field, then it is RAZ/WI.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSASEDIS is 1, in Non-secure state this field
behaves as RAO/WI, regardless of its actual value. This applies even if the field is implemented as RAZ/WI.

For the list of instructions affected by this field, see 'Controls of Advanced SIMD operation that do not apply to
floating-point operation'.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Bit [14]

Reserved, RES0.

Bits [13:12]

Reserved, RES1.

HCPTR, Hyp Architectural Feature Trap Register

Page 689

AArch32-nsacr.html
AArch32-nsacr.html

TCP11, bit [11]
When FEAT_FP is implemented and FEAT_AdvSIMD is implemented:

The value of this field is ignored. If this field is programmed with a different value to the TCP10 bit then this field
is UNKNOWN on a direct read of the HCPTR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES1.

If EL3 is implemented and is using AArch32, and the value of NSACR.cp10 is 0, in Non-secure state this field
behaves as RAO/WI, regardless of its actual value.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Accessing this field has the following behavior:

• Access is RAO/WI if all of the following are true:
◦ EL3 is implemented
◦ EL3 is using AArch32
◦ !IsCurrentSecurityState(SS_Secure)
◦ NSACR.cp10 == 0

Otherwise:

TCP10, bit [10]

TCP10 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempted access to Advanced SIMD and floating-point

functionality from Non-secure state is trapped to Hyp mode,
unless it is trapped to EL1 by a CPACR or NSACR control. A
trapped instruction generates:

• A Hyp Trap exception, if the exception is taken from
Non-secure EL0 or EL1.

• An Undefined Instruction exception taken to Hyp mode,
if the exception is taken from Hyp mode.

The Advanced SIMD and floating-point features controlled by these fields are:

• Execution of any floating-point or Advanced SIMD instruction.
• Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as S0-S31 and

Q0-Q15.
• Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES1.

If EL3 is implemented and is using AArch32, and the value of NSACR.cp10 is 0, in Non-secure state this field
behaves as RAO/WI, regardless of its actual value.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Reserved,Trap Non-secure accesses to Advanced SIMD and floating-point functionality to Hyp mode: RES1.

TCP10, bit [10]
When FEAT_FP is implemented and FEAT_AdvSIMD is implemented:

Trap Non-secure accesses to Advanced SIMD and floating-point functionality to Hyp mode:

HCPTR, Hyp Architectural Feature Trap Register

Page 690

AArch32-nsacr.html
AArch32-nsacr.html
AArch32-fpscr.html
AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html
AArch32-nsacr.html

TCP10 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempted access to Advanced SIMD and floating-point

functionality from Non-secure state is trapped to Hyp mode,
unless it is trapped to EL1 by a CPACR or NSACR control. A
trapped instruction generates:

• A Hyp Trap exception, if the exception is taken from
Non-secure EL0 or EL1.

• An Undefined Instruction exception taken to Hyp mode,
if the exception is taken from Hyp mode.

The Advanced SIMD and floating-point features controlled by these fields are:

• Execution of any floating-point or Advanced SIMD instruction.
• Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as S0-S31 and

Q0-Q15.
• Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES1.

If EL3 is implemented and is using AArch32, and the value of NSACR.cp10 is 0, in Non-secure state this field
behaves as RAO/WI, regardless of its actual value.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• Access is RAO/WI if all of the following are true:
◦ EL3 is implemented
◦ EL3 is using AArch32
◦ !IsCurrentSecurityState(SS_Secure)
◦ NSACR.cp10 == 0

Otherwise:

Reserved, RES1.

Bits [9:0]

Reserved, RES1.

Accessing HCPTR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b010

HCPTR, Hyp Architectural Feature Trap Register

Page 691

AArch32-nsacr.html
AArch32-fpscr.html
AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html
AArch32-nsacr.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
R[t] = HCPTR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

R[t] = HCPTR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
HCPTR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

HCPTR = R[t];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HCPTR, Hyp Architectural Feature Trap Register

Page 692

(old) htmldiff from- (new)

HCR, Hyp Configuration Register
The HCR characteristics are:

Purpose
Provides configuration controls for virtualization, including defining whether various Non-secure operations are
trapped to Hyp mode.

Configuration
AArch32 System register HCR bits [31:0] are architecturally mapped to AArch64 System register HCR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to HCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HCR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

RES0TRVMHCDRES0TGETVMTTLBTPUTPCTSWTACTIDCPTSCTID3TID2TID1TID0TWETWIDCBSUFBVAVIVFAMOIMOFMOPTWSWIOVM

Bit [31]

Reserved, RES0.

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps Non-secure EL1 reads of the virtual memory control registers to
EL2, when EL2 is enabled in the current Security state.

The registers for which read accesses are trapped are as follows:

SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR, NMRR, MAIR0,
MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

TRVM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 read accesses to the specified Virtual

Memory controls are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HCR, Hyp Configuration Register

Page 693

AArch32-sctlr.html
AArch32-ttbr0.html
AArch32-ttbr1.html
AArch32-ttbcr.html
AArch32-ttbcr2.html
AArch32-dacr.html
AArch32-dfsr.html
AArch32-ifsr.html
AArch32-dfar.html
AArch32-ifar.html
AArch32-adfsr.html
AArch32-aifsr.html
AArch32-prrr.html
AArch32-nmrr.html
AArch32-mair0.html
AArch32-mair1.html
AArch32-amair0.html
AArch32-amair1.html
AArch32-contextidr.html

HCD, bit [29]
When EL3 is not implemented:

HVC instruction disable. Disables Non-secure EL1 and EL2 execution of HVC instructions, when EL2 is enabled in
the current Security state.

HCD Meaning
0b0 HVC instruction execution is enabled at EL2 and EL1.
0b1 HVC instructions are UNDEFINED at EL2 and Non-secure EL1.

The Undefined Instruction exception is taken to the Exception
level at which the HVC instruction is executed.

Note

HVC instructions are always UNDEFINED at EL0.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [28]

Reserved, RES0.

TGE, bit [27]

Trap General Exceptions, from Non-secure EL0.

TGE Meaning
0b0 This control has no effect on execution at EL0.
0b1 When EL2 is not enabled in the current Security state, this

control has no effect on execution at EL0.
When EL2 is enabled in the current Security state, then:

• All exceptions that would be routed to EL1 are routed to
EL2.

• The SCTLR.M bit is treated as being 0 for all purposes
other than returning the result of a direct read of SCTLR.

• The HCR.{FMO, IMO, AMO} bits are treated as being 1
for all purposes other than returning the result of a direct
read of HCR.

• All virtual interrupts are disabled.
• Any IMPLEMENTATION DEFINED mechanisms for signaling

virtual interrupts are disabled.
• An exception return to EL1 is treated as an illegal

exception return.
• Monitor mode execution of an MSR or CPS instruction

that changes PSTATE.M to a Non-secure EL1 mode is an
illegal change to PSTATE.M. For more information see
'Illegal changes to PSTATE.M'.

Also, when HCR.TGE is 1:

• If EL3 is using AArch32, an attempt to change from a Secure PL1 mode to a Non-secure EL1 mode by
changing SCR.NS from 0 to 1 results in SCR.NS remaining as 0.

• The HDCR.{TDRA, TDOSA, TDA, TDE} bits are ignored and treated as being 1 other than for the purpose
of a direct read of HDCR.

HCR, Hyp Configuration Register

Page 694

AArch32-sctlr.html
AArch32-sctlr.html
AArch32-scr.html
AArch32-scr.html

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TVM, bit [26]

Trap Virtual Memory controls. Traps Non-secure EL1 writes to the virtual memory control registers to EL2, when
EL2 is enabled in the current Security state.

The registers for which write accesses are trapped are as follows:

SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR, NMRR, MAIR0,
MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

TVM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 write accesses to the specified virtual memory

control registers are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TTLB, bit [25]

Trap TLB maintenance instructions. Traps Non-secure EL1 execution of a TLBI instruction to EL2, when EL2 is
enabled in the current Security state.

This applies to the following instructions:

TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS, ITLBIALL, ITLBIMVA,
ITLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, TLBIALL, TLBIMVA, TLBIASID, TLBIMVAA, TLBIMVAL,
TLBIMVAAL

TTLB Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 accesses to the specified TLB maintenance

instructions are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps Non-secure EL1 execution of
those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state.

This applies to the following instructions:

• ICIMVAU, ICIALLU, ICIALLUIS, DCCMVAU.

Note

An Undefined Instruction exception generated at EL0 is higher priority than
this trap to EL2, and these instructions are always UNDEFINED at EL0.

HCR, Hyp Configuration Register

Page 695

AArch32-sctlr.html
AArch32-ttbr0.html
AArch32-ttbr1.html
AArch32-ttbcr.html
AArch32-ttbcr2.html
AArch32-dacr.html
AArch32-dfsr.html
AArch32-ifsr.html
AArch32-dfar.html
AArch32-ifar.html
AArch32-adfsr.html
AArch32-aifsr.html
AArch32-prrr.html
AArch32-nmrr.html
AArch32-mair0.html
AArch32-mair1.html
AArch32-amair0.html
AArch32-amair1.html
AArch32-contextidr.html
AArch32-tlbiallis.html
AArch32-tlbimvais.html
AArch32-tlbiasidis.html
AArch32-tlbimvaais.html
AArch32-tlbimvalis.html
AArch32-tlbimvaalis.html
AArch32-itlbiall.html
AArch32-itlbimva.html
AArch32-itlbiasid.html
AArch32-dtlbiall.html
AArch32-dtlbimva.html
AArch32-dtlbiasid.html
AArch32-tlbiall.html
AArch32-tlbimva.html
AArch32-tlbiasid.html
AArch32-tlbimvaa.html
AArch32-tlbimval.html
AArch32-tlbimvaal.html
AArch32-icimvau.html
AArch32-iciallu.html
AArch32-icialluis.html
AArch32-dccmvau.html

TPU Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 execution of the specified cache maintenance

instructions is trapped to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this
control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the
execution of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value
of this control is 1.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TPC, bit [23]

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps Non-secure EL1
execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state.

This applies to the following instructions:

• DCIMVAC, DCCIMVAC, DCCMVAC.

Note

An Undefined Instruction exception generated at EL0 is higher priority than
this trap to EL2, and these instructions are always UNDEFINED at EL0.

TPC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 execution of the specified cache maintenance

instructions is trapped to EL2.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean, invalidate, or clean and invalidate instruction that operates by VA to the point of
coherency can be trapped when the value of this control is 1.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps Non-secure EL1 execution of
those cache maintenance instructions by set/way to EL2, when EL2 is enabled in the current Security state.

This applies to the following instructions:

• DCISW, DCCSW, DCCISW.

Note

An Undefined Instruction exception generated at EL0 is higher priority than
this trap to EL2, and these instructions are always UNDEFINED at EL0.

TSW Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 execution of the specified cache maintenance

instructions is trapped to EL2.

HCR, Hyp Configuration Register

Page 696

AArch32-dcimvac.html
AArch32-dccimvac.html
AArch32-dccmvac.html
AArch32-dcisw.html
AArch32-dccsw.html
AArch32-dccisw.html

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TAC, bit [21]

Trap Auxiliary Control Registers. Traps Non-secure EL1 accesses to the Auxiliary Control Registers to EL2, when
EL2 is enabled in the current Security state, from both Execution states.

This applies to the following register accesses:

ACTLR and, if implemented, ACTLR2.

TAC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 accesses to the specified registers are trapped

to EL2.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps Non-secure EL1 accesses to the encodings for IMPLEMENTATION
DEFINED System Registers to EL2, when EL2 is enabled in the current Security state.

MCR and MRC instructions accessing the following encodings:

• All coproc==p15, CRn==c9, Opcode1 = {0-7}, CRm == {c0-c2, c5-c8}, opcode2 == {0-7}.
• All coproc==p15, CRn==c10, Opcode1 =={0-7}, CRm == {c0, c1, c4, c8}, opcode2 == {0-7}.
• All coproc==p15, CRn==c11, Opcode1=={0-7}, CRm == {c0-c8, c15}, opcode2 == {0-7}.

When HCR.TIDCP is set to 1, it is IMPLEMENTATION DEFINED whether any of this functionality accessed from Non-
secure EL0 is trapped to EL2. Otherwise, it is UNDEFINED and the PE takes an Undefined Instruction exception to
Non-secure Undefined mode.

TIDCP Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 accesses to the specified System register

encodings for IMPLEMENTATION DEFINED functionality are
trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TSC, bit [19]

Trap SMC instructions. Traps Non-secure EL1 execution of SMC instructions to Hyp mode.

TSC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute an SMC instruction at Non-secure EL1

is trapped to Hyp mode, regardless of the value of SCR.SCD.

The Armv8-A architecture permits, but does not require, this trap to apply to conditional SMC instructions that fail
their condition code check, in the same way as with traps on other conditional instructions.

HCR, Hyp Configuration Register

Page 697

AArch32-actlr.html
AArch32-actlr2.html
AArch32-scr.html

Note
• This trap is only implemented if the implementation includes EL3.
• SMC instructions are always UNDEFINED at PL0.
• This bit traps execution of the SMC instruction. It is not a routing

control for the SMC exception. Hyp Trap exceptions and SMC
exceptions have different preferred return addresses.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TID3, bit [18]

Trap ID group 3. Traps Non-secure EL1 reads of the following registers to EL2, when EL2 is enabled in the current
Security state as follows:

• VMRS access to MVFR0, MVFR1, and MVFR2, reported using EC syndrome value 0x08, unless access is
also trapped by HCPTR which takes priority.

• MRC access to the following registers are reported using EC syndrome value 0x03:

◦ ID_PFR0, ID_PFR1, ID_PFR2, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1, ID_MMFR2,
ID_MMFR3, ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, and ID_ISAR5.

◦ If FEAT_FGT is implemented:

▪ ID_MMFR4 and ID_MMFR5 are trapped to EL2.

▪ ID_ISAR6 is trapped to EL2.

▪ ID_DFR1 is trapped to EL2.

▪ This field traps all MRC accesses to registers in the following range that are not
already mentioned in this field description: coproc == p15, opc1 == 0, CRn == c0,
CRm == {c2-c7}, opc2 == {0-7}.

◦ If FEAT_FGT is not implemented:

▪ ID_MMFR4 and ID_MMFR5 are trapped to EL2, unless implemented as RAZ, when it is
IMPLEMENTATION DEFINED whether accesses to ID_MMFR4 or ID_MMFR5 are trapped.

▪ ID_ISAR6 is trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION
DEFINED whether accesses to ID_ISAR6 are trapped to EL2.

▪ ID_DFR1 is trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION
DEFINED whether accesses to ID_DFR1 are trapped to EL2.

▪ Otherwise, it is IMPLEMENTATION DEFINED whether this bit traps MRC accesses to
registers not already mentioned, with coproc == p15, opc1 == 0, CRn == c0, CRm
== {c2-c7}, opc2 == {0-7}.

TID3 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified Non-secure EL1 read accesses to ID group 3

registers are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:

HCR, Hyp Configuration Register

Page 698

AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html
AArch32-id_pfr0.html
AArch32-id_pfr1.html
AArch32-id_pfr2.html
AArch32-id_dfr0.html
AArch32-id_afr0.html
AArch32-id_mmfr0.html
AArch32-id_mmfr1.html
AArch32-id_mmfr2.html
AArch32-id_mmfr3.html
AArch32-id_isar0.html
AArch32-id_isar1.html
AArch32-id_isar2.html
AArch32-id_isar3.html
AArch32-id_isar4.html
AArch32-id_isar5.html
AArch32-id_isar6.html
AArch32-id_dfr1.html
AArch32-id_isar6.html
AArch32-id_isar6.html
AArch32-id_dfr1.html
AArch32-id_dfr1.html

• Non-secure EL1 and EL0 reads of the CTR, CCSIDR, CCSIDR2, CLIDR, and CSSELR.
• Non-secure EL1 and EL0 writes to the CSSELR.

TID2 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified Non-secure EL1 and EL0 accesses to ID group 2

registers are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TID1, bit [16]

Trap ID group 1. Traps Non-secure EL1 reads of the following registers to EL2, when EL2 is enabled in the current
Security state:

TCMTR, TLBTR, REVIDR, AIDR.

TID1 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified Non-secure EL1 read accesses to ID group 1

registers are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TID0, bit [15]

Trap ID group 0. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:

• Non-secure EL1 reads of the JIDR and FPSID.
• If the JIDR is RAZ from Non-secure EL0, Non-secure EL0 reads of the JIDR.

Note
• It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED

at EL0. If it is UNDEFINED at EL0 then the Undefined Instruction
exception takes precedence over this trap.

• The FPSID is not accessible at EL0.
• Writes to the FPSID are ignored, and not trapped by this control.

TID0 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified Non-secure EL1 read accesses to ID group 0

registers are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TWE, bit [14]

Traps Non-secure EL0 and EL1 execution of WFE instructions to EL2, when EL2 is enabled in the current Security
state.

HCR, Hyp Configuration Register

Page 699

AArch32-ctr.html
AArch32-ccsidr2.html
AArch32-csselr.html
AArch32-csselr.html
AArch32-tcmtr.html
AArch32-tlbtr.html
AArch32-revidr.html
AArch32-aidr.html
AArch32-jidr.html
AArch32-fpsid.html
AArch32-jidr.html
AArch32-jidr.html
AArch32-jidr.html
AArch32-fpsid.html
AArch32-fpsid.html

TWE Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFE instruction at Non-secure EL0

or EL1 is trapped to EL2, if the instruction would otherwise
have caused the PE to enter a low-power state and it is not
trapped by SCTLR.nTWE.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition
code check.

Note

Since a WFE can complete at any time, even without a Wakeup event, the
traps on WFE are not guaranteed to be taken, even if the WFE is executed
when there is no Wakeup event. The only guarantee is that if the instruction
does not complete in finite time in the absence of a Wakeup event, the trap
will be taken.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TWI, bit [13]

Traps Non-secure EL0 and EL1 execution of WFI instructions to EL2, when EL2 is enabled in the current Security
state.

TWI Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFI instruction at Non-secure EL0 or

EL1 is trapped to EL2, if the instruction would otherwise have
caused the PE to enter a low-power state and it is not trapped
by SCTLR.nTWI.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition
code check.

Note

Since a WFI can complete at any time, even without a Wakeup event, the
traps on WFI are not guaranteed to be taken, even if the WFI is executed
when there is no Wakeup event. The only guarantee is that if the instruction
does not complete in finite time in the absence of a Wakeup event, the trap
will be taken.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

DC, bit [12]

Default Cacheability.

HCR, Hyp Configuration Register

Page 700

AArch32-sctlr.html
AArch32-sctlr.html

DC Meaning
0b0 This control has no effect on the Non-secure EL1&0 translation

regime.
0b1 In Non-secure state:

• The SCTLR.M field behaves as 0 for all purposes other
than a direct read of the value of the field.

• The HCR.VM field behaves as 1 for all purposes other than
a direct read of the value of the field.

• The memory type produced by the first stage of the EL1&0
translation regime is Normal Non-Shareable, Inner Write-
Back Read-Allocate Write-Allocate, Outer Write-Back Read-
Allocate Write-Allocate.

This field has no effect on the EL2 and EL3 translation regimes.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied to any barrier
instruction executed from Non-secure EL1 or Non-secure EL0:

BSU Meaning
0b00 No effect.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Full system.

This value is combined with the specified level of the barrier held in its instruction, using the same principles as
combining the shareability attributes from two stages of address translation.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable domain when
executed from Non-secure EL1:

BPIALL, TLBIALL, TLBIMVA, TLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, ITLBIALL, ITLBIMVA, ITLBIASID,
TLBIMVAA, ICIALLU, TLBIMVAL, TLBIMVAAL.

FB Meaning
0b0 This field has no effect on the operation of the specified

instructions.
0b1 When one of the specified instruction is executed at Non-secure

EL1, the instruction is broadcast within the Inner Shareable
shareability domain.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HCR, Hyp Configuration Register

Page 701

AArch32-sctlr.html
AArch32-bpiall.html
AArch32-tlbiall.html
AArch32-tlbimva.html
AArch32-tlbiasid.html
AArch32-dtlbiall.html
AArch32-dtlbimva.html
AArch32-dtlbiasid.html
AArch32-itlbiall.html
AArch32-itlbimva.html
AArch32-itlbiasid.html
AArch32-tlbimvaa.html
AArch32-iciallu.html
AArch32-tlbimval.html
AArch32-tlbimvaal.html

VA, bit [8]

Virtual SError interrupt exception.

VA Meaning
0b0 This mechanism is not making a virtual SError interrupt

pending.
0b1 A virtual SError interrupt is pending because of this

mechanism.

The virtual SError interrupt is enabled only when the value of HCR.{TGE, AMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

VI, bit [7]

Virtual IRQ exception.

VI Meaning
0b0 This mechanism is not making a virtual IRQ pending.
0b1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR.{TGE, IMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

VF, bit [6]

Virtual FIQ exception.

VF Meaning
0b0 This mechanism is not making a virtual FIQ pending.
0b1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR.{TGE, FMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

AMO, bit [5]

SError interrupt Mask Override. When this bit is set to 1, it overrides the effect of PSTATE.A, and enables virtual
exception signaling by the VA bit.

If the value of HCR.TGE is 0, then virtual SError interrupts are enabled in Non-secure state.

HCR, Hyp Configuration Register

Page 702

If the value of HCR.TGE is 1, then in Non-secure state the HCR.AMO bit behaves as 1 for all purposes other than a
direct read of the value of the bit.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

IMO, bit [4]

IRQ Mask Override. When this bit is set to 1, it overrides the effect of PSTATE.I, and enables virtual exception
signaling by the VI bit.

If the value of HCR.TGE is 0, then Virtual IRQ interrupts are enabled in the Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.IMO bit behaves as 1 for all purposes other than a
direct read of the value of the bit.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

FMO, bit [3]

FIQ Mask Override. When this bit is set to 1, it overrides the effect of PSTATE.F, and enables virtual exception
signaling by the VF bit.

If the value of HCR.TGE is 0, then Virtual FIQ interrupts are enabled in the Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.FMO bit behaves as 1 for all purposes other than a
direct read of the value of the bit.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

PTW, bit [2]

Protected Table Walk. In the Non-secure PL1&0 translation regime, a translation table access made as part of a
stage 1 translation table walk is subject to a stage 2 translation. The combining of the memory type attributes
from the two stages of translation means the access might be made to a type of Device memory. If this occurs then
the value of this bit determines the behavior:

PTW Meaning
0b0 The translation table walk occurs as if it is to Normal Non-

cacheable memory. This means it can be made speculatively.
0b1 The memory access generates a stage 2 Permission fault.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HCR, Hyp Configuration Register

Page 703

SWIO, bit [1]

Set/Way Invalidation Override. Causes Non-secure EL1 execution of the data cache invalidate by set/way
instructions to perform a data cache clean and invalidate by set/way.

SWIO Meaning
0b0 This control has no effect on the operation of data cache

invalidate by set/way instructions.
0b1 Data cache invalidate by set/way instructions perform a data

cache clean and invalidate by set/way.

When this bit is set to 1, DCISW performs the same invalidation as a DCCISW instruction.

As a result of changes to the behavior of DCISW, this bit is redundant in Armv8. This bit can be implemented as
RES1.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the Non-secure EL1&0 translation regime.

VM Meaning
0b0 Non-secure EL1&0 stage 2 address translation disabled.
0b1 Non-secure EL1&0 stage 2 address translation enabled.

If the HCR.DC bit is set to 1, then the behavior of the PE when executing in a Non-secure mode other than Hyp
mode is consistent with HCR.VM being 1, regardless of the actual value of HCR.VM, other than the value returned
by an explicit read of HCR.VM.

When the value of this bit is 1, data cache invalidate instructions executed at Non-secure EL1 perform a data
cache clean and invalidate. For the invalidate by set/way instruction this behavior applies regardless of the value
of the HCR.SWIO bit.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Accessing HCR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b000

HCR, Hyp Configuration Register

Page 704

AArch32-dcisw.html
AArch32-dccisw.html
AArch32-dcisw.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

R[t] = HCR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
R[t] = HCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HCR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HCR = R[t];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HCR, Hyp Configuration Register

Page 705

(old) htmldiff from- (new)

HCR2, Hyp Configuration Register 2
The HCR2 characteristics are:

Purpose
Provides additional configuration controls for virtualization.

Configuration
AArch32 System register HCR2 bits [31:0] are architecturally mapped to AArch64 System register HCR_EL2[63:32].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to HCR2 are
UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HCR2 is a 32-bit register.

Field descriptions
313029282726252423 22 21 20 19 18 17 16151413121110 9 8 7 6 5 4 3 2 1 0

RES0 TTLBISRES0TOCURES0TICABTID4 RES0 MIOCNCETEATERRRES0IDCD

Bits [31:23]

Reserved, RES0.

TTLBIS, bit [22]
When FEAT_EVT is implemented:

Trap TLB maintenance instructions that operate on the Inner Shareable domain. Traps execution of the following
TLB maintenance instructions at EL1 to EL2:

TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS

TTLBIS Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 execution of the specified TLB

maintenance instructions is trapped to EL2.

When FEAT_VHE and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other
than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HCR2, Hyp Configuration Register 2

Page 706

AArch32-tlbiallis.html
AArch32-tlbimvais.html
AArch32-tlbiasidis.html
AArch32-tlbimvaais.html
AArch32-tlbimvalis.html
AArch32-tlbimvaalis.html

Otherwise:

Reserved, RES0.

Bit [21]

Reserved, RES0.

TOCU, bit [20]
When FEAT_EVT is implemented:

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of those cache
maintenance instructions at EL1 or EL0 using AArch64, and at EL1 using AArch32, to EL2.

This applies to the following instructions:

• When Non-secure EL0 is using AArch64, IC IVAU, DC CVAU. However, if the value of SCTLR_EL1.UCI is 0
these instructions are UNDEFINED at EL0 and any resulting exception is higher priority than this trap to
EL2.

• When EL1 is using AArch64, IC IVAU, IC IALLU, DC CVAU.
• When Non-secure EL1 is using AArch32, ICIMVAU, ICIALLU, DCCMVAU.

Note

An exception generated because an instruction is UNDEFINED at EL0 is
higher priority than this trap to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using
AArch64.

• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always
UNDEFINED at EL0 using AArch32.

TOCU Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure execution of the specified cache maintenance

instructions is trapped to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this
control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the
execution of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value
of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [19]

Reserved, RES0.

HCR2, Hyp Configuration Register 2

Page 707

AArch64-ic-ivau.html
AArch64-dc-cvau.html
AArch64-ic-ivau.html
AArch64-ic-iallu.html
AArch64-dc-cvau.html
AArch32-icimvau.html
AArch32-iciallu.html
AArch32-dccmvau.html
AArch64-ic-ialluis.html
AArch64-ic-iallu.html
AArch32-icimvau.html
AArch32-iciallu.html
AArch32-icialluis.html
AArch32-dccmvau.html

TICAB, bit [18]
When FEAT_EVT is implemented:

Trap ICIALLUIS cache maintenance instructions. Traps execution of those cache maintenance instructions at EL1
to EL2.

This applies to the following instructions:

ICIALLUIS.

TICAB Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 execution of the specified cache

maintenance instructions is trapped to EL2.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the
execution of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value
of this control is 1.

When FEAT_VHE and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other
than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

TID4, bit [17]
When FEAT_EVT is implemented:

Trap ID group 4. Traps the following register accesses to EL2:

• EL1 reads of CCSIDR, CCSIDR2, CLIDR, and CSSELR.
• EL1 writes to CSSELR.

TID4 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified Non-secure EL1 and EL0 accesses to ID group 4

registers are trapped to EL2.

When FEAT_VHE is implemented and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [16:7]

Reserved, RES0.

HCR2, Hyp Configuration Register 2

Page 708

AArch32-icialluis.html
AArch32-ccsidr2.html
AArch32-csselr.html
AArch32-csselr.html

MIOCNCE, bit [6]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the Non-secure PL1&0 translation regime.

MIOCNCE Meaning
0b0 For the Non-secure PL1&0 translation regime, for

permitted accesses to a memory location that use a
common definition of the Shareability and Cacheability
of the location, there must be no loss of coherency if the
Inner Cacheability attribute for those accesses differs
from the Outer Cacheability attribute.

0b1 For the Non-secure PL1&0 translation regime, for
permitted accesses to a memory location that use a
common definition of the Shareability and Cacheability
of the location, there might be a loss of coherency if the
Inner Cacheability attribute for those accesses differs
from the Outer Cacheability attribute.

For more information, see 'Mismatched memory attributes'.

This field can be implemented as RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an architecturally
UNKNOWN value.

TEA, bit [5]
When FEAT_RAS is implemented:

Route synchronous External abort exceptions from EL0 and EL1 to EL2.

TEA Meaning
0b0 Does not route synchronous External abort exceptions from

Non-secure EL0 and EL1 to EL2.
0b1 Route synchronous External abort exceptions from Non-secure

EL0 and EL1 to EL2, if not routed to EL3.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

TERR, bit [4]
When FEAT_RAS is implemented:

Trap Error record accesses from EL1 to EL2. Trap accesses to the following registers from EL1 to EL2:

ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR, ERXFR2, ERXMISC0, ERXMISC1,
ERXMISC2, ERXMISC3, and ERXSTATUS.

When FEAT_RASv1p1 is implemented, ERXMISC4, ERXMISC5, ERXMISC6, and ERXMISC7.

TERR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Accesses to the specified registers from EL1 generate a Trap

exception to EL2.

The reset behavior of this field is:

HCR2, Hyp Configuration Register 2

Page 709

AArch32-erridr.html
AArch32-errselr.html
AArch32-erxaddr.html
AArch32-erxaddr2.html
AArch32-erxctlr.html
AArch32-erxctlr2.html
AArch32-erxfr.html
AArch32-erxfr2.html
AArch32-erxmisc0.html
AArch32-erxmisc1.html
AArch32-erxmisc2.html
AArch32-erxmisc3.html
AArch32-erxstatus.html
AArch32-erxmisc4.html
AArch32-erxmisc5.html
AArch32-erxmisc6.html
AArch32-erxmisc7.html

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [3:2]

Reserved, RES0.

ID, bit [1]

Stage 2 Instruction access cacheability disable. For the Non-secure PL1&0 translation regime, when HCR.VM==1,
this control forces all stage 2 translations for instruction accesses to Normal memory to be Non-cacheable.

ID Meaning
0b0 This control has no effect on stage 2 of the Non-secure PL1&0

translation regime.
0b1 For the Non-secure PL1&0 translation regime, forces all stage 2

translations for instruction accesses to Normal memory to be
Non-cacheable.

This bit has no effect on the EL2 translation regime.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

CD, bit [0]

Stage 2 Data access cacheability disable. When HCR.VM==1, this forces all stage 2 translations for data accesses
and translation table walks to Normal memory to be Non-cacheable for the Non-secure PL1&0 translation regime.

CD Meaning
0b0 This control has no effect on stage 2 of the Non-secure PL1&0

translation regime for data accesses and translation table walks.
0b1 For the Non-secure PL1&0 translation regime, forces all stage 2

translations for data accesses and translation table walks to
Normal memory to be Non-cacheable.

This bit has no effect on the EL2 translation regime.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Accessing HCR2
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

HCR2, Hyp Configuration Register 2

Page 710

0b1111 0b100 0b0001 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

R[t] = HCR2;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
R[t] = HCR2;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HCR2 = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HCR2 = R[t];

3021/03/2022 2017:2800; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HCR2, Hyp Configuration Register 2

Page 711

(old) htmldiff from- (new)

HDCR, Hyp Debug Control Register
The HDCR characteristics are:

Purpose
Controls the trapping to Hyp mode of Non-secure accesses, at EL1 or lower, to functions provided by the debug and
trace architectures and the Performance Monitors Extension.

Configuration
AArch32 System register HDCR bits [31:0] are architecturally mapped to AArch64 System register MDCR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to HDCR are
UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3, and other than for a direct read of the register, the PE
behaves as if HDCR.HPMN == PMCR.N.

Attributes
HDCR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 222120 19 18 17 1615141312 11 10 9 8 7 6 5 43210
RES0HPMFZOMTPMETDCCHLPRES0HCCD RES0 TTRFRES0HPMD RES0 TDRATDOSATDATDEHPMETPMTPMCRHPMN

Bits [31:30]

Reserved, RES0.

HPMFZO, bit [29]
When FEAT_PMUv3p7 is implemented:

Hyp Performance Monitors Freeze-on-overflow. Stop event counters on overflow.

HPMFZO Meaning
0b0 Do not freeze on overflow.
0b1 Event counters do not count when

PMOVSR[(PMCR.N-1):HDCR.HPMN] is nonzero.

If HDCR.HPMN is less than PMCR.N, this field affects the operation of event counters in the range [HDCR.HPMN
.. (PMCR.N-1)].

This field does not affect the operation of other event counters and PMCCNTR.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an architecturally
UNKNOWN value.

HDCR, Hyp Debug Control Register

Page 712

AArch64-mdcr_el2.html
AArch32-pmcr.html
AArch32-pmovsr.html
AArch32-pmcr.html
AArch32-pmcr.html
AArch32-pmcr.html
AArch32-pmccntr.html

Otherwise:

Reserved, RES0.

MTPME, bit [28]
When FEAT_MTPMU is implemented and EL3 is not implemented:

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>.MT bits.

MTPME Meaning
0b0 FEAT_MTPMU is disabled. The Effective value of

PMEVTYPER<n>.MT is zero.
0b1 PMEVTYPER<n>.MT bits not affected by this bit.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as the PE, it is
IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0b0.

The reset behavior of this field is:

• On a Cold reset:
◦ When the PE resets into EL2 or EL3, this field resets to 1.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Cold reset, in a system where the PE resets into EL2 or EL3, this field resets to 1.

Otherwise:

Reserved, RES0.

TDCC, bit [27]
When FEAT_FGT is implemented:

Trap DCC. Traps use of the Debug Comms Channel at EL1 and EL0 to EL2.

TDCC Meaning
0b0 This control does not cause any register accesses to be

trapped.
0b1 If EL2 is implemented and enabled in the current Security

state, accesses to the DCC registers at EL1 and EL0 generate
a Hyp Trap exception, unless the access also generates a
higher priority exception.
Traps on the DCC data transfer registers are ignored when
the PE is in Debug state.

The DCC registers trapped by this control are:

• DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is in Non-debug state,
DBGDTRRXint and DBGDTRTXint.

The traps are reported with EC syndrome value:

• 0x05 for trapped MRC and MCR accesses with coproc == 0b1110.
• 0x06 for trapped LDC to DBGDTRTXint and STC from DBGDTRRXint.

When the PE is in Debug state, HDCR.TDCC does not trap any accesses to:

• DBGDTRRXint and DBGDTRTXint.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HDCR, Hyp Debug Control Register

Page 713

AArch32-pmevtypern.html
AArch32-pmevtypern.html
AArch32-pmevtypern.html
AArch32-dbgdtrrxext.html
AArch32-dbgdtrtxext.html
AArch32-dbgdscrint.html
AArch32-dbgdccint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html

Otherwise:

Reserved, RES0.

HLP, bit [26]
When FEAT_PMUv3p5 is implemented:

Hypervisor Long event counter enable. Determines when unsigned overflow is recorded by an event counter
overflow bit.

HLP Meaning
0b0 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>[31:0].
0b1 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>[63:0].

If the highest implemented Exception level is using AArch32, it is IMPLEMENTATION DEFINED whether this bit is read/
write or RAZ/WI.

If HDCR.HPMN is less than PMCR.N, this bit affects the operation of event counters in the range
[HDCR.HPMN..(PMCR.N-1)].

This field does not affect the operation of other event counters.

The operation of this field applies even when EL2 is disabled in the current Security state.

Note

PMEVCNTR<n>[63:32] cannot be accessed directly in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an architecturally
UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [25:24]

Reserved, RES0.

HCCD, bit [23]
When FEAT_PMUv3p5 is implemented:

Hypervisor Cycle Counter Disable. Prohibits PMCCNTR from counting at EL2.

HCCD Meaning
0b0 Cycle counting by PMCCNTR is not affected by this

mechanism.
0b1 Cycle counting by PMCCNTR is prohibited at EL2.

This field does not affect the CPU_CYCLES event or any other event that counts cycles.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HDCR, Hyp Debug Control Register

Page 714

AArch32-pmevcntrn.html
AArch32-pmevcntrn.html
AArch32-pmcr.html
AArch32-pmevcntrn.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html

Otherwise:

Reserved, RES0.

Bits [22:20]

Reserved, RES0.

TTRF, bit [19]
When FEAT_TRF is implemented:

Traps use of the Trace Filter Control registers at EL1 to EL2.

TTRF Meaning
0b0 Accesses to TRFCR at EL1 are not affected by this control bit.
0b1 Accesses to TRFCR at EL1 generate a Hyp Trap exception.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [18]

Reserved, RES0.

HPMD, bit [17]
When FEAT_PMUv3p1 is implemented and FEAT_Debugv8p2 is implemented:

Guest Performance Monitors Disable. Controls event counting by some event counters at EL2.

HPMD Meaning
0b0 Event counting and PMCCNTR are not affected by this

mechanism.
0b1 Event counting by some event counters is prohibited in Hyp

mode. If PMCR.DP is 1, PMCCNTR is disabled in Hyp mode.
Otherwise, PMCCNTR is not affected by this mechanism.

If HDCR.HPMN is not 0, this field affects the operation of event counters in the range [0 .. (HDCR.HPMN-1)].

This field does not affect the operation of other event counters.

If PMCR.DP is 1, this field affects PMCCNTR.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HDCR, Hyp Debug Control Register

Page 715

AArch32-trfcr.html
AArch32-trfcr.html
AArch32-pmccntr.html
AArch32-pmcr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmcr.html
AArch32-pmccntr.html

When FEAT_PMUv3p1 is implemented:

Guest Performance Monitors Disable. Controls event counting by some event counters at EL2.

HPMD Meaning
0b0 Event counting and PMCCNTR are not affected by this

mechanism.
0b1 If ExternalSecureNoninvasiveDebugEnabled() is FALSE,

event counting by some event counters is prohibited in Hyp
mode, and if PMCR.DP is 1, PMCCNTR is disabled in Hyp
mode.

If ExternalSecureNoninvasiveDebugEnabled() is TRUE, this field does not affect the event counters and does not
affect PMCCNTR.

Otherwise:

• If HDCR.HPMN is not 0, this field affects the operation of event counters in the range [0 ..
(HDCR.HPMN-1)].

• This field does not affect the operation of other event counters.
• If PMCR.DP is 1, this field affects PMCCNTR.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [16:12]

Reserved, RES0.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps Non-secure EL0 and EL1 System register accesses to the Debug
ROM registers to Hyp mode.

TDRA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL0 and EL1 System register accesses to the

DBGDRAR or DBGDSAR are trapped to Hyp mode, unless it
is trapped by DBGDSCRext.UDCCdis.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TDOSA, bit [10]
When FEAT_DoubleLock is implemented:

Trap debug OS-related register access. Traps Non-secure EL1 System register accesses to the powerdown debug
registers to Hyp mode.

HDCR, Hyp Debug Control Register

Page 716

AArch32-pmccntr.html
AArch32-pmcr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmcr.html
AArch32-pmccntr.html
AArch32-dbgdrar.html
AArch32-dbgdsar.html
AArch32-dbgdscrext.html

TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 System register accesses to the powerdown

debug registers are trapped to Hyp mode.

The registers for which accesses are trapped are as follows:

• DBGOSLSR, DBGOSLAR, DBGOSDLR, and DBGPRCR.
• Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as

trapped by this bit.

Note

These registers are not accessible at EL0.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Trap debug OS-related register access. Traps Non-secure EL1 System register accesses to the powerdown debug
registers to Hyp mode.

TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 System register accesses to the powerdown

debug registers are trapped to Hyp mode.

The registers for which accesses are trapped are as follows:

• DBGOSLSR, DBGOSLAR, and DBGPRCR.
• Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as

trapped by this bit.

It is IMPLEMENTATION DEFINED whether accesses to DBGOSDLR are trapped.

Note

These registers are not accessible at EL0.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TDA, bit [9]

Trap debug access. Traps Non-secure EL0 and EL1 System register accesses to those debug System registers in
the (coproc==0b1110) encoding space that are not trapped by either of the following:

• HDCR.TDRA.
• HDCR.TDOSA.

HDCR, Hyp Debug Control Register

Page 717

AArch32-dbgoslsr.html
AArch32-dbgoslar.html
AArch32-dbgosdlr.html
AArch32-dbgprcr.html
AArch32-dbgoslsr.html
AArch32-dbgoslar.html
AArch32-dbgprcr.html
AArch32-dbgosdlr.html

TDA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL0 or EL1 System register accesses to the debug

registers, other than the registers trapped by HDCR.TDRA and
HDCR.TDOSA, are trapped to Hyp mode, unless it is trapped
by DBGDSCRext.UDCCdis.

Traps of AArch32 accesses to DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TDE, bit [8]

Trap Debug exceptions. Controls routing of Debug exceptions, and defines the debug target Exception level, ELD.

TDE Meaning
0b0 The debug target Exception level is EL1.
0b1 If EL2 is enabled for the current Effective value of SCR.NS, the

debug target Exception level is EL2, otherwise the debug
target Exception level is EL1.
The HDCR.{TDRA, TDOSA, TDA} fields are treated as being 1
for all purposes other than returning the result of a direct read
of the register.

For more information, see 'Routing debug exceptions'.

When HCR.TGE == 1, the PE behaves as if the value of this field is 1 for all purposes other than returning the
value of a direct read of the register.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HPME, bit [7]
When FEAT_PMUv3 is implemented:

[HDCR.HPMN..(N-1)] event counters enable.

HPME Meaning
0b0 Event counters in the range [HDCR.HPMN..(PMCR.N-1)] are

disabled.
0b1 Event counters in the range [HDCR.HPMN..(PMCR.N-1)] are

enabled by PMCNTENSET.

If HDCR.HPMN is less than PMCR.N, this field affects the operation of event counters in the range
[HDCR.HPMN..(PMCR.N-1)].

This field does not affect the operation of other event counters.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an architecturally
UNKNOWN value.

HDCR, Hyp Debug Control Register

Page 718

AArch32-dbgdscrext.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch32-scr.html
AArch32-pmcr.html
AArch32-pmcr.html
AArch32-pmcntenset.html
AArch32-pmcr.html
AArch32-pmcr.html

Otherwise:

Reserved, RES0.

TPM, bit [6]
When FEAT_PMUv3 is implemented:

Trap Performance Monitors accesses. Traps Non-secure EL0 and EL1 accesses to all Performance Monitors
registers to Hyp mode.

TPM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL0 and EL1 accesses to all Performance Monitors

registers are trapped to Hyp mode.

Note

EL2 does not provide traps on Performance Monitor register accesses
through the optional memory-mapped external debug interface.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

TPMCR, bit [5]
When FEAT_PMUv3 is implemented:

Trap PMCR accesses. Traps Non-secure EL0 and EL1 accesses to the PMCR to Hyp mode.

TPMCR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL0 and EL1 accesses to the PMCR are

trapped to Hyp mode, unless it is trapped by
PMUSERENR.EN.

Note

EL2 does not provide traps on Performance Monitor register accesses
through the optional memory-mapped external debug interface.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

HDCR, Hyp Debug Control Register

Page 719

AArch32-pmcr.html
AArch32-pmcr.html
AArch32-pmcr.html
AArch32-pmuserenr.html

HPMN, bits [4:0]
When FEAT_PMUv3 is implemented:

Defines the number of event counters that are accessible from Non-secure EL1 modes, and from Non-secure EL0
modes if unprivileged access is enabled.

If HPMN is not 0 and is less than PMCR.N, HPMN divides the event counters into a first range [0..(HPMN-1)], and
a second range [HPMN..(PMCR.N-1)].

If FEAT_HPMN0 is implemented and this field is 0, all event counters are in the second range and none are in the
first range.

If HPMN is equal to PMCR.N, all event counters are in the first range, and none are in the second range.

For an event counter <n> in the first range:

• The counter is accessible from EL1, EL2, EL3.
• The counter is accessible from EL0 if permitted by PMUSERENR.
• If FEAT_PMUv3p5 is implemented, PMCR.LP determines whether the counter overflows at

PMEVCNTR<n>[31:0] or PMEVCNTR<n>[63:0].
• PMCR.E and PMCNTENSET[n] enable the operation of event counter n.

For an event counter <n> in the second range:

• The counter is accessible from EL2 and EL3.
• If EL2 is disabled in the current Security state, the event counter is also accessible from EL1, and from

EL0 if permitted by PMUSERENR.
• If FEAT_PMUv3p5 is implemented, HDCR.HLP determines whether the counter overflows at

PMEVCNTR<n>[31:0] or PMEVCNTR<n>[63:0].
• HDCR.HPME and PMCNTENSET[n] enable the operation of event counter n.

If HPMN is larger than PMCR.N, or if FEAT_HPMN0 is not implemented and HPMN is 0, the following
CONSTRAINED UNPREDICTABLE behaviors apply:

• The value returned by a direct read of HDCR.HPMN is UNKNOWN.
• Either:

◦ An UNKNOWN number of counters are reserved for EL2 use. That is, the PE behaves as if
HDCR.HPMN is set to an UNKNOWN non-zero value less than or equal to PMCR.N.

◦ All counters are reserved for EL2 use, meaning no counters are accessible from Non-secure EL1
and Non-secure EL0.

The reset behavior of this field is:

• On a Warm reset:, in a system where the PE resets into EL2 or EL3, this field resets to the value
inPMCR.N.

◦ When the PE resets into EL2 or EL3, this field resets to the value in PMCR.N.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing HDCR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b001

HDCR, Hyp Debug Control Register

Page 720

AArch32-pmcr.html
AArch32-pmcr.html
AArch32-pmcr.html
AArch32-pmuserenr.html
AArch32-pmcr.html
AArch32-pmevcntrn.html
AArch32-pmevcntrn.html
AArch32-pmcr.html
AArch32-pmcntenset.html
AArch32-pmuserenr.html
AArch32-pmevcntrn.html
AArch32-pmevcntrn.html
AArch32-pmcntenset.html
AArch32-pmcr.html
AArch32-pmcr.html
AArch32-pmcr.html
AArch32-pmcr.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
R[t] = HDCR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

R[t] = HDCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
HDCR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

HDCR = R[t];

3021/03/2022 2017:2800; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HDCR, Hyp Debug Control Register

Page 721

(old) htmldiff from- (new)

HSR, Hyp Syndrome Register
The HSR characteristics are:

Purpose
Holds syndrome information for an exception taken to Hyp mode.

Configuration
AArch32 System register HSR bits [31:0] are architecturally mapped to AArch64 System register ESR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to HSR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HSR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EC IL ISS

Execution in any Non-secure PE mode other than Hyp mode makes this register UNKNOWN.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL2, the value of HSR is
UNKNOWN. The value written to HSR must be consistent with a value that could be created as a result of an exception
from the same Exception level that generated the exception as a result of a situation that is not UNPREDICTABLE at that
Exception level, in order to avoid the possibility of a privilege violation.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about. Possible values
of this field are:

HSR, Hyp Syndrome Register

Page 722

EC Meaning ISS
0b000000 Unknown reason. ISS encoding for

exceptions with an
unknown reason

0b000001 Trapped WFI or WFE
instruction execution.
Conditional WFE and WFI
instructions that fail their
condition code check do not
cause an exception.

ISS encoding for
Exception from a WFI
or WFE instruction

0b000011 Trapped MCR or MRC access
with (coproc==0b1111) that is
not reported using EC
0b000000.

ISS encoding for
Exception from an
MCR or MRC access

0b000100 Trapped MCRR or MRRC
access with (coproc==0b1111)
that is not reported using EC
0b000000.

ISS encoding for
Exception from an
MCRR or MRRC access

0b000101 Trapped MCR or MRC access
with (coproc==0b1110).

ISS encoding for
Exception from an
MCR or MRC access

0b000110 Trapped LDC or STC access.
The only architected uses of
these instructions are:

• An STC to write data to
memory from
DBGDTRRXint.

• An LDC to read data from
memory to
DBGDTRTXint.

ISS encoding for
Exception from an LDC
or STC instruction

0b000111 Access to Advanced SIMD or
floating-point functionality
trapped by a HCPTR.{TASE,
TCP10} control.
Excludes exceptions generated
because Advanced SIMD and
floating-point are not
implemented. These are
reported with EC value
0b000000.

ISS encoding for
Exception from an
access to SIMD or
floating-point
functionality, resulting
from HCPTR

0b001000 Trapped VMRS access, from ID
group trap, that is not reported
using EC 0b000111.

ISS encoding for
Exception from an
MCR or MRC access

0b001100 Trapped MRRC access with
(coproc==0b1110).

ISS encoding for
Exception from an
MCRR or MRRC access

0b001110 Illegal exception return to
AArch32 state.

ISS encoding for
Exception from an
Illegal state or PC
alignment fault

0b010001 Exception on SVC instruction
execution in AArch32 state
routed to EL2.

ISS encoding for
Exception from HVC or
SVC instruction
execution

0b010010 HVC instruction execution in
AArch32 state, when HVC is
not disabled.

ISS encoding for
Exception from HVC or
SVC instruction
execution

0b010011 Trapped execution of SMC
instruction in AArch32 state.

ISS encoding for
Exception from SMC
instruction execution

0b100000 Prefetch Abort from a lower
Exception level.

ISS encoding for
Exception from a
Prefetch Abort

0b100001 Prefetch Abort taken without a
change in Exception level.

ISS encoding for
Exception from a
Prefetch Abort

0b100010 PC alignment fault exception. ISS encoding for
Exception from an

HSR, Hyp Syndrome Register

Page 723

AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html

Illegal state or PC
alignment fault

0b100100 Data Abort exception from a
lower Exception level.

ISS encoding for
Exception from a Data
Abort

0b100101 Data Abort exception taken
without a change in Exception
level.

ISS encoding for
Exception from a Data
Abort

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous
exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be
used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction length bit. Indicates the size of the instruction that has been trapped to Hyp mode. When this bit is
valid, possible values of this bit are:

IL Meaning
0b0 16-bit instruction trapped.
0b1 32-bit instruction trapped.

This field is RES1 and not valid for the following cases:

• When the EC field is 0b000000, indicating an exception with an unknown reason.
• Prefetch Aborts.
• Data Abort exceptions for which the HSR.ISS.ISV field is 0.
• When the EC value is 0b001110, indicating an Illegal state exception.

The IL field is not valid and is UNKNOWN on an exception from a PC alignment fault.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception
class. However, in practice, some ISS encodings are used for more than one Exception class.

ISS encoding for exceptions with an unknown reason
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Bits [24:0]

Reserved, RES0.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions
that are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or is not
accessible in the current PE mode in the current Security state, including:

◦ A read access using a System register encoding pattern that is not allocated for reads or that
does not permit reads in the current PE mode and Security state.

HSR, Hyp Syndrome Register

Page 724

◦ A write access using a System register encoding pattern that is not allocated for writes or
that does not permit writes in the current PE mode and Security state.

◦ Instruction encodings that are unallocated.
◦ Instruction encodings for instructions not implemented in the implementation.

• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug
state.

• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-
debug state.

• The attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an

attempted access to Advanced SIMD or floating-point functionality under conditions where that access
would be permitted if that functionality was present. This includes the attempted execution of an
Advanced SIMD or floating-point instruction, and attempted accesses to Advanced SIMD and floating-
point System registers.

• An exception generated because of the value of one of the SCTLR.{ITD, SED, CP15BEN} control bits.
• Attempted execution of:

◦ An HVC instruction when disabled by HCR.HCD, SCR.HCE, or SCR_EL3.HCE.
◦ An SMC instruction when disabled by SCR.SCD or SCR_EL3.SMD.
◦ An HLT instruction when disabled by EDSCR.HDE.

• An HVC instruction when disabled by HCR.HCD, SCR.HCE, or SCR_EL3.HCE.An SMC instruction
when disabled by SCR.SCD or SCR_EL3.SMD.An HLT instruction when disabled by EDSCR.HDE.

• An exception generated because of the attempted execution of an MSR (Banked register) or MRS
(Banked register) instruction that would access a Banked register that is not accessible from the
Security state and PE mode at which the instruction was executed.

Note

An exception is generated only if the CONSTRAINED UNPREDICTABLE
behavior of the instruction is that it is UNDEFINED, see 'MSR (banked
register) and MRS (banked register)'.

• Attempted execution, in Debug state, of:
◦ A DCPS1 instruction in Non-secure state from EL0 when EL2 is using AArch32 and the value

of HCR.TGE is 1.
◦ A DCPS2 instruction at EL1 or EL0 when EL2 is not implemented, or when EL3 is using

AArch32 and the value of SCR.NS is 0, or when EL3 is using AArch64 and the value of
SCR_EL3.NS is 0.

◦ A DCPS3 instruction when EL3 is not implemented, or when the value of EDSCR.SDD is 1.
• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an

instruction that is configured to trap to EL3.

'Undefined Instruction exception, when the value of HCR.TGE is 1' describes the configuration settings for a
trap that returns an HSR.EC value of 0b000000.

ISS encoding for Exception from a WFI or WFE instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0 TI

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. For
more information, see the description of the COND field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HSR, Hyp Syndrome Register

Page 725

AArch32-sctlr.html
AArch32-scr.html
AArch32-scr.html
AArch32-scr.html
AArch32-scr.html
AArch32-scr.html

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field
to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:1]

Reserved, RES0.

TI, bit [0]

Trapped instruction. Possible values of this bit are:

TI Meaning
0b0 WFI trapped.
0b1 WFE trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

'Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions' describes the
configuration settings for this trap.

ISS encoding for Exception from an MCR or MRC access
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc2 Opc1 CRn RES0 Rt CRm Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

HSR, Hyp Syndrome Register

Page 726

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. For
more information, see the description of the COND field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field
to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HSR, Hyp Syndrome Register

Page 727

Bit [9]

Reserved, RES0.

Rt, bits [8:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to System register space. MCR instruction.
0b1 Read from System register space. MRC or VMRS

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following sections describe configuration settings for traps that are reported using EC value 0b000011:

• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the ID registers'.
• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to lockdown, DMA, and TCM operations'.
• 'Traps to Hyp mode of Non-secure EL1 execution of cache maintenance instructions'.
• 'Traps to Hyp mode of Non-secure EL1 execution of TLB maintenance instructions'.
• 'Traps to Hyp mode of Non-secure EL1 accesses to the Auxiliary Control Register'.
• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Performance Monitors registers'.
• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Activity Monitors registers'.
• 'Traps to Hyp mode of Non-secure EL1 accesses to the CPACR'.
• 'Traps to Hyp mode of Non-secure EL1 accesses to virtual memory control registers'.
• 'General trapping to Hyp mode of Non-secure EL0 and EL1 accesses to System registers in the

(coproc == 1111) encoding space'.

The following sections describe configuration settings for traps that are reported using EC value 0b000101:

• 'ID group 0, Primary device identification registers'.
• 'Traps to Hyp mode of Non-secure System register accesses to trace registers'.
• 'Trapping Non-secure System register accesses to Debug ROM registers'.
• 'Trapping Non-secure System register accesses to powerdown debug registers'.
• 'Trapping general Non-secure System register accesses to debug registers'.

The following sections describes configuration settings for traps that are reported using EC value 0b001000:

• 'ID group 0, Primary device identification registers'.
• 'ID group 3, Detailed feature identification registers'.

HSR, Hyp Syndrome Register

Page 728

ISS encoding for Exception from an MCRR or MRRC access
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc1 RES0 Rt2 RES0 Rt CRm Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. For
more information, see the description of the COND field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field
to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:14]

Reserved, RES0.

HSR, Hyp Syndrome Register

Page 729

Rt2, bits [13:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES0.

Rt, bits [8:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to System register space. MCRR

instruction.
0b1 Read from System register space. MRRC

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following sections describe configuration settings for traps that are reported using EC value 0b000100:

• 'Traps to Hyp mode of Non-secure EL1 accesses to virtual memory control registers'.
• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Performance Monitors registers'.
• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Activity Monitors registers'.
• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the Generic Timer registers'.
• 'General trapping to Hyp mode of Non-secure EL0 and EL1 accesses to System registers in the

(coproc == 1111) encoding space'.

The following sections describe configuration settings for traps that are reported using EC value 0b001100:

• 'Traps to Hyp mode of Non-secure System register accesses to trace registers'.
• 'Trapping Non-secure System register accesses to Debug ROM registers'.

ISS encoding for Exception from an LDC or STC instruction
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND imm8 RES0 Rn Offset AM Direction

HSR, Hyp Syndrome Register

Page 730

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. For
more information, see the description of the COND field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field
to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:9]

Reserved, RES0.

Rn, bits [8:5]

The Rn value from the issued instruction. Valid only when AM[2] is 0, indicating an immediate form of
the LDC or STC instruction.

When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

HSR, Hyp Syndrome Register

Page 731

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Offset Meaning
0b0 Subtract offset.
0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

AM Meaning
0b000 Immediate unindexed.
0b001 Immediate post-indexed.
0b010 Immediate offset.
0b011 Immediate pre-indexed.
0b100 Literal unindexed.

LDC instruction in A32 instruction set only.
For a trapped STC instruction or a trapped T32 LDC
instruction this encoding is reserved.

0b110 Literal offset.
LDC instruction only.
For a trapped STC instruction, this encoding is
reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is
that behavior is CONSTRAINED UNPREDICTABLE.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to memory. STC instruction.
0b1 Read from memory. LDC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

'Trapping general Non-secure System register accesses to debug registers' describes the configuration
settings for the trap that is reported using EC value 0b000110.

HSR, Hyp Syndrome Register

Page 732

ISS encoding for Exception from an access to SIMD or floating-
point functionality, resulting from HCPTR
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0 TA RES0 coproc

Excludes exceptions that occur because Advanced SIMD and floating-point functionality is not
implemented, or because the value of HCR.TGE or HCR_EL2.TGE is 1. These are reported with EC value
0b000000.

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. For
more information, see the description of the COND field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field
to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:6]

Reserved, RES0.

TA, bit [5]

Indicates trapped use of Advanced SIMD functionality.

HSR, Hyp Syndrome Register

Page 733

TA Meaning
0b0 Exception was not caused by trapped use of Advanced

SIMD functionality.
0b1 Exception was caused by trapped use of Advanced

SIMD functionality.

Any use of an Advanced SIMD instruction that is not also a floating-point instruction that is trapped to
Hyp mode because of a trap configured in the HCPTR sets this bit to 1.

For a list of these instructions, see 'Controls of Advanced SIMD operation that do not apply to floating-
point operation'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [4]

Reserved, RES0.

coproc, bits [3:0]

When the HSR.TA field returns the value 1, this field returns the value 0b1010. Otherwise, this field is
RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following sections describe the configuration settings for the traps that are reported using EC value
0b000111:

• 'General trapping to Hyp mode of Non-secure accesses to the SIMD and floating-point registers'.
• 'Traps to Hyp mode of Non-secure accesses to Advanced SIMD functionality'.

ISS encoding for Exception from HVC or SVC instruction
execution
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, this is the value of the imm16 field of the issued instruction.

For an SVC instruction:

• If the instruction is unconditional, then:
◦ For the T32 instruction, this field is zero-extended from the imm8 field of the

instruction.
◦ For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the

instruction.
• For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.For

the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.
• If the instruction is conditional, this field is UNKNOWN.

The reset behavior of this field is:

HSR, Hyp Syndrome Register

Page 734

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The HVC instruction is unconditional, and a conditional SVC instruction generates an exception only if it
passes its condition code check. Therefore, the syndrome information for these exceptions does not require
conditionality information.

'Supervisor Call exception, when the value of HCR.TGE is 1' describes the configuration settings for the trap
reported with EC value 0b010001.

ISS encoding for Exception from SMC instruction execution
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND CCKNOWNPASS RES0

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. For
more information, see the description of the COND field.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field
to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HSR, Hyp Syndrome Register

Page 735

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

CCKNOWNPASS Meaning
0b0 The instruction was unconditional, or

was conditional and passed its condition
code check.

0b1 The instruction was conditional, and
might have failed its condition code
check.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

'Traps to Hyp mode of Non-secure EL1 execution of SMC instructions' describes the configuration settings for
this trap, for instructions executed in Non-secure EL1.

ISS encoding for Exception from a Prefetch Abort
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 FnV EA RES0S1PTWRES0 IFSC

Bits [24:11]

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

FnV Meaning
0b0 HIFAR is valid.
0b1 HIFAR is not valid, and holds an UNKNOWN value.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

HSR, Hyp Syndrome Register

Page 736

AArch32-hifar.html
AArch32-hifar.html

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code. Possible values of this field are:

IFSC Meaning Applies
when

0b000000 Address size fault in translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not

on translation table walk.
0b010101 Synchronous External abort on

translation table walk, level 1.
0b010110 Synchronous External abort on

translation table walk, level 2.
0b010111 Synchronous External abort on

translation table walk, level 3.
0b011000 Synchronous parity or ECC

error on memory access, not on
translation table walk.

When
FEAT_RAS is
not
implemented

0b011101 Synchronous parity or ECC
error on memory access on
translation table walk, level 1.

When
FEAT_RAS is
not
implemented

0b011110 Synchronous parity or ECC
error on memory access on
translation table walk, level 2.

When
FEAT_RAS is
not
implemented

0b011111 Synchronous parity or ECC
error on memory access on
translation table walk, level 3.

When
FEAT_RAS is
not
implemented

0b100010 Debug exception.
0b110000 TLB conflict abort.

HSR, Hyp Syndrome Register

Page 737

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults on a Long-descriptor translation table lookup'.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following sections describe cases where Prefetch Abort exceptions can be routed to Hyp mode,
generating exceptions that are reported in the HSR with EC value 0b100000:

• 'Abort exceptions, when the value of HCR.TGE is 1'.
• 'Routing debug exceptions to EL2 using AArch32'.

ISS encoding for Exception from an Illegal state or PC alignment
fault
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Bits [24:0]

Reserved, RES0.

For more information about the Illegal state exception, see:

• 'Illegal changes to PSTATE.M'.
• 'Illegal return events from AArch32 state'.
• 'Legal returns that set PSTATE.IL to 1'.
• 'The Illegal Execution state exception'.

For more information about the PC alignment fault exception, see 'Branching to an unaligned PC'.

ISS encoding for Exception from a Data Abort
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV SAS SSERES0 SRT RES0AR RES0 Bits[11:10] EA CMS1PTWWnR DFSC

ISV, bit [24]

Instruction Syndromesyndrome Valid.valid. Indicates whether the syndrome information in ISS[23:14]
is valid.

ISV Meaning
0b0 No valid instruction syndrome. ISS[23:14] are RES0.
0b1 ISS[23:14] hold a valid instruction syndrome.

This bit is 0 for all faults except Data Abort exceptions generated by stage 2 address translations for
which all the following apply to the instruction that generated the Data Abort exception:

• The instruction is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB,
LDRSBT, LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT
instruction.

• The instruction is not performing register writeback.
• The instruction is not using the PC as a source or destination register.

For these cases, ISV is UNKNOWN if the exception was generated in Debug state in memory access
mode, as described in 'Data Abort exceptions in Memory access mode', and otherwise indicates
whether ISS[23:14] hold a valid syndrome.

HSR, Hyp Syndrome Register

Page 738

Note

In the A32 instruction set, LDR*T and STR*T instructions always
perform register writeback and therefore never return a valid
instruction syndrome.

When FEAT_RAS is implemented, ISV is 0 for any synchronous External abort.

ISV is set to 0 on a stage 2 abort on a stage 1 translation table walk.

When FEAT_RAS is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0 on a
synchronous External abort on a stage 2 translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting
operation.

SAS Meaning
0b00 Byte
0b01 Halfword
0b10 Word
0b11 Doubleword

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SSE, bit [21]

Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates whether
the data item must be sign extended. For these cases, the possible values of this bit are:

SSE Meaning
0b0 Sign-extension not required.
0b1 Data item must be sign-extended.

For all other operations this bit is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [20]

Reserved, RES0.

SRT, bits [19:16]

Syndrome Register Transfer.transfer. When ISV is 1, the register number of the Rt operand of the
faulting instruction.

This field is UNKNOWN when the value of ISV is UNKNOWN.

HSR, Hyp Syndrome Register

Page 739

This field is RES0 when the value of ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

AR, bit [14]

Acquire/Release. When ISV is 1, the possible values of this bit are:

AR Meaning
0b0 Instruction did not have acquire/release semantics.
0b1 Instruction did have acquire/release semantics.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [13:12]

Reserved, RES0.

Bits[11:10]
When FEAT_RAS is implemented:

AET, bits [1:0] of bits [11:10]

Asynchronous Error Type. When DFSC is 0b010001, describes the PE error state after taking the
SError interrupt exception.

AET Meaning
0b00 Uncontainable (UC).
0b01 Unrecoverable state (UEU).
0b10 Restartable state (UEO).
0b11 Recoverable state (UER).

On a synchronous Data Abort exception, this field is RES0.

In the event of multiple errors taken as a single SError interrupt exception, the overall PE error state
is reported.

Note

Software can use this information to determine what recovery
might be possible. The recovery software must also examine any
implemented fault records to determine the location and extent of
the error.

When FEAT_RAS is not implemented, or when DFSC is not 0b010001:

• Bit[11] is RES0.
• Bit[10] forms the FnV field.

Note

HSR, Hyp Syndrome Register

Page 740

Armv8.2 requires the implementation of FEAT_RAS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Bit [1] of bits [11:10]

Reserved, RES0.

FnV, bit [0] of bits [11:10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

FnV Meaning
0b0 HDFAR is valid.
0b1 HDFAR is not valid, and holds an UNKNOWN value.

When FEAT_RAS is not implemented, this field is valid only if DFSC is 0b010000. It is RES0 for all
other aborts.

When FEAT_RAS is implemented:

• If DFSC is 0b010000, this field is valid.
• If DFSC is 0b010001, this bit forms part of the AET field, becoming AET[0].
• This field is RES0 for all other aborts.

Note

Armv8.2 requires the implementation of FEAT_RAS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External Abortabort type. This bit can provide an IMPLEMENTATION DEFINED classification of External
aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache Maintenance.maintenance. For a synchronous fault, identifies fault that comes from a cache
maintenance or address translation instruction. For synchronous faults, the possible values of this bit
are:

CM Meaning
0b0 Fault not generated by a cache maintenance or address

translation instruction.
0b1 Fault generated by a cache maintenance or address

translation instruction.

For an asynchronous Data Abort exception, this bit is 0.

HSR, Hyp Syndrome Register

Page 741

AArch32-hdfar.html
AArch32-hdfar.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by a write instruction or a read
instruction.

WnR Meaning
0b0 Abort caused by a read instruction.
0b1 Abort caused by a write instruction.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

On an asynchronous Data Abort exception:

• When FEAT_RAS is not implemented, this bit is UNKNOWN.
• When FEAT_RAS is implemented, this bit is RES0.

Note

Armv8.2 requires the implementation of FEAT_RAS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code. Possible values of this field are:

HSR, Hyp Syndrome Register

Page 742

DFSC Meaning Applies
when

0b000000 Address size fault in translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not

on translation table walk.
0b010001 Asynchronous SError interrupt.
0b010101 Synchronous External abort on

translation table walk, level 1.
0b010110 Synchronous External abort on

translation table walk, level 2.
0b010111 Synchronous External abort on

translation table walk, level 3.
0b011000 Synchronous parity or ECC

error on memory access, not on
translation table walk.

When
FEAT_RAS is
not
implemented

0b011001 Asynchronous SError interrupt,
from a parity or ECC error on
memory access.

When
FEAT_RAS is
not
implemented

0b011101 Synchronous parity or ECC
error on memory access on
translation table walk, level 1.

When
FEAT_RAS is
not
implemented

0b011110 Synchronous parity or ECC
error on memory access on
translation table walk, level 2.

When
FEAT_RAS is
not
implemented

0b011111 Synchronous parity or ECC
error on memory access on
translation table walk, level 3.

When
FEAT_RAS is
not
implemented

0b100001 Alignment fault.
0b100010 Debug exception.
0b110000 TLB conflict abort.
0b110100 IMPLEMENTATION DEFINED fault

(Lockdown).
0b110101 IMPLEMENTATION DEFINED fault

(Unsupported Exclusive access).

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults on a Long-descriptor translation table lookup'.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following describe cases where Data Abort exceptions can be routed to Hyp mode, generating exceptions
that are reported in the HSR with EC value 0b100100:

• 'Abort exceptions, when the value of HCR.TGE is 1'.
• 'Routing debug exceptions to EL2 using AArch32'.

HSR, Hyp Syndrome Register

Page 743

The following describe cases that can cause a Data Abort exception that is taken to Hyp mode, and reported
in the HSR with EC value of 0b100000 or 0b100100:

• 'Hyp mode control of Non-secure access permissions'.
• 'Memory fault reporting in Hyp mode'.

Accessing HSR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

R[t] = HSR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
R[t] = HSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HSR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HSR = R[t];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HSR, Hyp Syndrome Register

Page 744

(old) htmldiff from- (new)

HSTR, Hyp System Trap Register
The HSTR characteristics are:

Purpose
Controls trapping to Hyp mode of Non-secure accesses, at EL1 or lower, to System registers in the coproc == 0b1111
encoding space:

• By the CRn value used to access the register using MCR or MRC instruction.
• By the CRm value used to access the register using MCRR or MRRC instruction.

Configuration
AArch32 System register HSTR bits [31:0] are architecturally mapped to AArch64 System register HSTR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to HSTR are
UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HSTR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 T15RES0T13T12T11T10 T9 T8 T7 T6 T5 RES0 T3 T2 T1 T0

Bits [31:16, 14, 4]

Reserved, RES0.

T<n>, bit [n], for n = 15, 13 to 5, 3 to 0

The remaining fields control whether Non-secure EL0 and EL1 accesses, using MCR, MRC, MCRR, and MRRC
instructions, to the System registers in the coproc == 0b1111 encoding space are trapped to Hyp mode:

T<n> Meaning
0b0 This control has no effect on Non-secure EL0 or EL1 accesses

to System registers.
0b1 Any Non-secure EL1 MCR or MRC access with coproc ==

0b1111 and CRn == <n> is trapped to Hyp mode. A Non-
secure EL0 MCR or MRC access with these values is trapped
to Hyp mode only if the access is not UNDEFINED when the
value of this field is 0.
Any Non-secure EL1 MCRR or MRRC access with coproc ==
0b1111 and CRm == <n> is trapped to Hyp mode. A Non-
secure EL0 MCRR or MRRC access with these values is
trapped to Hyp mode only if the access is not UNDEFINED
when the value of this field is 0.

For example, when HSTR.T7 is 1, for instructions executed at Non-secure EL1:

• An MCR or MRC instruction with coproc set to 0b1111 and <CRn> set to c7 is trapped to Hyp mode.
• An MCRR or MRRC instruction with coproc set to 0b1111 and <CRm> set to c7 is trapped to Hyp mode.

HSTR, Hyp System Trap Register

Page 745

AArch64-hstr_el2.html

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Accessing HSTR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

R[t] = HSTR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
R[t] = HSTR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HSTR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HSTR = R[t];

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HSTR, Hyp System Trap Register

Page 746

(old) htmldiff from- (new)

HTRFCR, Hyp Trace Filter Control Register
The HTRFCR characteristics are:

Purpose
Provides EL2 controls for Trace.

Configuration
AArch32 System register HTRFCR bits [31:0] are architecturally mapped to AArch64 System register
TRFCR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32 and FEAT_TRF is implemented. Otherwise, direct
accesses to HTRFCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from Monitor mode when SCR.NS == 1.

Attributes
HTRFCR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 TS RES0CXRES0E2TREE0HTRE

Bits [31:7]

Reserved, RES0.

TS, bits [6:5]

Timestamp Control. Controls which timebase is used for trace timestamps.

TS Meaning
0b00 The timestamp is controlled by TRFCR.TS.
0b01 Virtual timestamp. The traced timestamp is the physical

counter value minus the value of CNTVOFF.
0b11 Physical timestamp. The traced timestamp is the physical

counter value.

When SelfHostedTraceEnabled() == FALSE, this field is ignored.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Bit [4]

Reserved, RES0.

HTRFCR, Hyp Trace Filter Control Register

Page 747

AArch64-trfcr_el2.html
AArch32-scr.html
AArch32-trfcr.html
AArch32-cntvoff.html

CX, bit [3]

VMID Trace Enable.

CX Meaning
0b0 VMID tracing is not allowed.
0b1 VMID tracing is allowed.

When SelfHostedTraceEnabled() == FALSE, this field is ignored.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Bit [2]

Reserved, RES0.

E2TRE, bit [1]

EL2 Trace Enable.

E2TRE Meaning
0b0 Tracing is prohibited at EL2.
0b1 Tracing is allowed at EL2.

When SelfHostedTraceEnabled() == FALSE, this field is ignored.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

E0HTRE, bit [0]

EL0 Trace Enable.

E0HTRE Meaning
0b0 Tracing is prohibited at EL0 when HCR.TGE == 1.
0b1 Tracing is allowed at EL0 when HCR.TGE == 1.

This field is ignored if any of the following are true:

• The PE is in Secure state.
• SelfHostedTraceEnabled() == FALSE.
• HCR.TGE == 0.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Accessing HTRFCR
Accesses to this register use the following encodings in the System register encoding space:

HTRFCR, Hyp Trace Filter Control Register

Page 748

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch32.TakeMonitorTrapException();

else
R[t] = HTRFCR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

R[t] = HTRFCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0010 0b001

HTRFCR, Hyp Trace Filter Control Register

Page 749

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch32.TakeMonitorTrapException();

else
HTRFCR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

HTRFCR = R[t];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HTRFCR, Hyp Trace Filter Control Register

Page 750

(old) htmldiff from- (new)

ID_MMFR4, Memory Model Feature Register 4
The ID_MMFR4 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch32 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
AArch32 System register ID_MMFR4 bits [31:0] are architecturally mapped to AArch64 System register
ID_MMFR4_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to ID_MMFR4 are
UNDEFINED.

Attributes
ID_MMFR4 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EVT CCIDX LSM HPDS CnP XNX AC2 SpecSEI

EVT, bits [31:28]

Enhanced Virtualization Traps. If EL2 is implemented, indicates support for the HCR2.{TTLBIS, TOCU, TICAB,
TID4} traps. Defined values are:

EVT Meaning
0b0000 HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are not

supported.
0b0001 HCR2.{TOCU, TICAB, TID4} traps are supported.

HCR2.TTLBIS trap is not supported.
0b0010 HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are supported.

All other values are reserved.

FEAT_EVT implements the functionality identified by the values 0b0001 and 0b0010.

If EL2 is not implemented supporting AArch32, the only permitted value is 0b0000.

In Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

From Armv8.5, the permitted values are:

• 0b0000 when EL2 is not implemented or does not support AArch32.
• 0b0010 when EL2 is implemented and supports AArch32.

CCIDX, bits [27:24]

Support for use of the revised CCSIDR format and the presence of the CCSIDR2 is indicated. Defined values are:

ID_MMFR4, Memory Model Feature Register 4

Page 751

CCIDX Meaning
0b0000 32-bit format implemented for all levels of the CCSIDR, and

the CCSIDR2 register is not implemented.
0b0001 64-bit format implemented for all levels of the CCSIDR, and

the CCSIDR2 register is implemented.

All other values are reserved.

FEAT_CCIDX implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

LSM, bits [23:20]

Indicates support for LSMAOE and nTLSMD bits in HSCTLR and SCTLR. Defined values are:

LSM Meaning
0b0000 LSMAOE and nTLSMD bits not supported.
0b0001 LSMAOE and nTLSMD bits supported.

All other values are reserved.

FEAT_LSMAOC implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

HPDS, bits [19:16]

Hierarchical permission disables bits in translation tables. Defined values are:

HPDS Meaning
0b0000 Disabling of hierarchical controls not supported.
0b0001 Supports disabling of hierarchical controls using the

TTBCR2.HPD0, TTBCR2.HPD1, and HTCR.HPD bits.
0b0010 As for value 0b0001, and adds possible hardware allocation

of bits[62:59] of the Translation table descriptors from the
final lookup level for IMPLEMENTATION DEFINED use.

All other values are reserved.

FEAT_AA32HPD implements the functionality identified by the value 0b0001.

FEAT_HPDS2 implements the functionality added by the value 0b0010.

Note

The value 0b0000 implies that the encoding for TTBCR2 is UNDEFINED.

CnP, bits [15:12]

Common not Private translations. Defined values are:

CnP Meaning
0b0000 Common not Private translations not supported.
0b0001 Common not Private translations supported.

All other values are reserved.

FEAT_TTCNP implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

XNX, bits [11:8]

Support for execute-never control distinction by Exception level at stage 2. Defined values are:

ID_MMFR4, Memory Model Feature Register 4

Page 752

AArch32-hsctlr.html
AArch32-sctlr.html
AArch32-ttbcr2.html
AArch32-ttbcr2.html
AArch32-htcr.html
AArch32-ttbcr2.html

XNX Meaning
0b0000 Distinction between EL0 and EL1 execute-never control at

stage 2 not supported.
0b0001 Distinction between EL0 and EL1 execute-never control at

stage 2 supported.

All other values are reserved.

FEAT_XNX implements the functionality identified by the value 0b0001.

When FEAT_XNX is implemented:

• If all of the following conditions are true, it is IMPLEMENTATION DEFINED whether the value of
ID_MMFR4.XNX is 0b0000 or 0b0001:

◦ ID_AA64MMFR1_EL1.XNX ==1.
◦ EL2 cannot use AArch32.
◦ EL1 can use AArch32.

• If EL2 can use AArch32 then the only permitted value is 0b0001.

AC2, bits [7:4]

Indicates the extension of the ACTLR and HACTLR registers using ACTLR2 and HACTLR2. Defined values are:

AC2 Meaning
0b0000 ACTLR2 and HACTLR2 are not implemented.
0b0001 ACTLR2 and HACTLR2 are implemented.

All other values are reserved.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.2, the only permitted value is 0b0001.

SpecSEI, bits [3:0]
When FEAT_RAS is implemented:

Describes whether the PE can generate SError interrupt exceptions from speculative reads of memory, including
speculative instruction fetches. The defined values of this field are:

SpecSEI Meaning
0b0000 The PE never generates an SError interrupt due to an

External abort on a speculative read.
0b0001 The PE might generate an SError interrupt due to an

External abort on a speculative read.

All other values are reserved.

Otherwise:

Reserved, RES0.

Accessing ID_MMFR4
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0010 0b110

ID_MMFR4, Memory Model Feature Register 4

Page 753

AArch32-actlr.html
AArch32-hactlr.html
AArch32-actlr2.html
AArch32-hactlr2.html
AArch32-actlr2.html
AArch32-hactlr2.html
AArch32-actlr2.html
AArch32-hactlr2.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (IsFeatureImplemented(FEAT_FGT) ||

!IsZero(ID_MMFR4) || boolean IMPLEMENTATION_DEFINED "ID_MMFR4 trapped by HCR_EL2.TID3") &&
HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && (IsFeatureImplemented(FEAT_FGT) ||

!IsZero(ID_MMFR4) || boolean IMPLEMENTATION_DEFINED "ID_MMFR4 trapped by HCR.TID3") && HCR.TID3 ==
'1' then

AArch32.TakeHypTrapException(0x03);
else

R[t] = ID_MMFR4;
elsif PSTATE.EL == EL2 then

R[t] = ID_MMFR4;
elsif PSTATE.EL == EL3 then

R[t] = ID_MMFR4;

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_MMFR4, Memory Model Feature Register 4

Page 754

(old) htmldiff from- (new)

ID_MMFR5, Memory Model Feature Register 5
The ID_MMFR5 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch32 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
AArch32 System register ID_MMFR5 bits [31:0] are architecturally mapped to AArch64 System register
ID_MMFR5_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to ID_MMFR5 are
UNDEFINED.

Attributes
ID_MMFR5 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 nTLBPA ETS

Bits [31:8]

Reserved, RES0.

nTLBPA, bits [7:4]

Indicates support for intermediate caching of translation table walks. Defined values are:

nTLBPA Meaning
0b0000 • The caching is indexed by the physical address of

the location holding the translation table entry.
• The caching is used for stage 1 translations and is

indexed by the intermediate physical address of the
location holding the translation table entry.

The intermediate caching of translation table walks might
include non-coherent physicalcaches of previous valid
translation caches.table entries since the last completed
relevant TLBI applicable to the PE where either:

0b0001 • The caching is indexed by the physical address of
the location holding the translation table entry.

• The caching is used for stage 1 translations and is
indexed by the intermediate physical address of the
location holding the translation table entry.

The intermediate caching of translation table walks does
not include non-coherent physicalcaches of previous valid
translation caches.table entries since the last completed
TLBI applicable to the PE where either:

ID_MMFR5, Memory Model Feature Register 5

Page 755

Non-coherent physical translation caches are non-coherent caches of previous valid translation table entries since
the last completed relevant TLBI applicable to the PE, where either:

• The caching is indexed by the physical address of the location holding the translation table entry.
• The caching is used for stage 1 translations and is indexed by the intermediate physical address of the

location holding the translation table entry.

All other values are reserved.

FEAT_nTLBPA implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

ETS, bits [3:0]

Indicates support for Enhanced Translation Synchronization. Defined values are:

ETS Meaning
0b0000 Enhanced Translation Synchronization is not supported.
0b0001 Enhanced Translation Synchronization is supported.

All other values are reserved.

FEAT_ETS implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.7, the only permitted value is 0b0001.

Accessing ID_MMFR5
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0011 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (IsFeatureImplemented(FEAT_FGT) ||

!IsZero(ID_MMFR5) || boolean IMPLEMENTATION_DEFINED "ID_MMFR5 trapped by HCR_EL2.TID3") &&
HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && (IsFeatureImplemented(FEAT_FGT) ||

!IsZero(ID_MMFR5) || boolean IMPLEMENTATION_DEFINED "ID_MMFR5 trapped by HCR.TID3") && HCR.TID3 ==
'1' then

AArch32.TakeHypTrapException(0x03);
else

R[t] = ID_MMFR5;
elsif PSTATE.EL == EL2 then

R[t] = ID_MMFR5;
elsif PSTATE.EL == EL3 then

R[t] = ID_MMFR5;

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

ID_MMFR5, Memory Model Feature Register 5

Page 756

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_MMFR5, Memory Model Feature Register 5

Page 757

(old) htmldiff from- (new)

SDER, Secure Debug Enable Register
The SDER characteristics are:

Purpose
Controls invasive and non-invasive debug in the Secure EL0 mode.

Configuration
AArch32 System register SDER bits [31:0] are architecturally mapped to AArch64 System register SDER32_EL2[31:0]
when EL2 is implemented and FEAT_SEL2 is implemented.

AArch32 System register SDER bits [31:0] are architecturally mapped to AArch64 System register SDER32_EL3[31:0]
when EL3 is implemented.

This register is present only when (EL3 is implemented and EL3 is capable of using AArch32) or (EL1 is capable of
using AArch32 and Secure EL1 is implemented). Otherwise, direct accesses to SDER are UNDEFINED.

This register is ignored by the PE when one or more of the following are true:

• The PE is in Non-secure state.

• EL1 is using AArch64.

Attributes
SDER is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 SUNIDENSUIDEN

Bits [31:2]

Reserved, RES0.

SUNIDEN, bit [1]

Secure User Non-Invasive Debug Enable.

SUNIDEN Meaning
0b0 This bit hasdoes nonot effectaffect onPerformance non-

invasiveMonitors debug.event counting at Secure EL0
0b1 Non-invasiveIf debugEL3 or EL1 is using AArch32,

Performance Monitors event counting is allowed in
Secure EL0 using AArch32.EL0.

When EL3 or Secure EL1 is using AArch32, the forms of non-invasive debug affected by this control are:

• The PC Sample-based Profiling Extension. See About the PC Sample-based Profiling Extension.
• When SelfHostedTraceEnabled() == FALSE, processor trace.
• When EL3 is implemented, Performance Monitors.

When Secure EL1 is using AArch64, this bit has no effect.

SDER, Secure Debug Enable Register

Page 758

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

SUIDEN, bit [0]
When EL3 is implemented:

Secure User Invasive Debug Enable.

SUIDEN Meaning
0b0 This bit does not affect the generation of debug exceptions

at Secure EL0.
0b1 If EL3 or EL1 is using AArch32, debug exceptions from

Secure EL0 are enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing SDER
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !IsSecure() then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

R[t] = SDER;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

R[t] = SDER;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0001 0b001

SDER, Secure Debug Enable Register

Page 759

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !IsSecure() then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

SDER = R[t];
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if CP15SDISABLE2 == HIGH then
UNDEFINED;

else
SDER = R[t];

Otherwise:

Reserved, RES0.

Accessing SDER
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !IsCurrentSecurityState(SS_Secure) then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

R[t] = SDER;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

R[t] = SDER;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0001 0b001

SDER, Secure Debug Enable Register

Page 760

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !IsCurrentSecurityState(SS_Secure) then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

SDER = R[t];
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if CP15SDISABLE2 == HIGH then
UNDEFINED;

else
SDER = R[t];

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SDER, Secure Debug Enable Register

Page 761

(old) htmldiff from- (new)

VMPIDR, Virtualization Multiprocessor ID Register
The VMPIDR characteristics are:

Purpose
Holds the value of the Virtualization Multiprocessor ID. This is the value returned by Non-secure EL1 reads of MPIDR.

Configuration
AArch32 System register VMPIDR bits [31:0] are architecturally mapped to AArch64 System register
VMPIDR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to VMPIDR are
UNDEFINED.

If EL2 is not implemented but EL3 is implemented, this register takes the value of the MPIDR.

Attributes
VMPIDR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
M U RES0 MT Aff2 Aff1 Aff0

M, bit [31]

Indicates whether this implementation includes the functionality introduced by the Armv7 Multiprocessing
Extensions.

M Meaning
0b0 This implementation does not include the Armv7

Multiprocessing Extensions functionality.
0b1 This implementation includes the Armv7 Multiprocessing

Extensions functionality.

Access to this field is RES1.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system.

U Meaning
0b0 Processor is part of a multiprocessor system.
0b1 Processor is part of a uniprocessor system.

The reset behavior of this field is:

• On a Warm reset:, in a system where the PE resets into EL2 or EL3, this field resets to the value
inMPIDR.U.

◦ When the PE resets into EL2 or EL3, this field resets to the value in MPIDR.U.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

VMPIDR, Virtualization Multiprocessor ID Register

Page 762

AArch32-mpidr.html
AArch64-vmpidr_el2.html
AArch32-mpidr.html
AArch32-mpidr.html
AArch32-mpidr.html

Bits [29:25]

Reserved, RES0.

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading
type approach. See the description of Aff0 for more information about affinity levels.

MT Meaning
0b0 Performance of PEs at the lowest affinity level is largely

independent.
0b1 Performance of PEs at the lowest affinity level is very

interdependent.

The reset behavior of this field is:

• On a Warm reset:, in a system where the PE resets into EL2 or EL3, this field resets to the value
inMPIDR.MT.

◦ When the PE resets into EL2 or EL3, this field resets to the value in MPIDR.MT.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

Aff2, bits [23:16]

Affinity level 2. See the description of Aff0 for more information.

The reset behavior of this field is:

• On a Warm reset:, in a system where the PE resets into EL2 or EL3, this field resets to the value
inMPIDR.Aff2.

◦ When the PE resets into EL2 or EL3, this field resets to the value in MPIDR.Aff2.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

Aff1, bits [15:8]

Affinity level 1. See the description of Aff0 for more information.

The reset behavior of this field is:

• On a Warm reset:, in a system where the PE resets into EL2 or EL3, this field resets to the value
inMPIDR.Aff1.

◦ When the PE resets into EL2 or EL3, this field resets to the value in MPIDR.Aff1.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

Aff0, bits [7:0]

Affinity level 0. This is the affinity level that is most significant for determining PE behavior. Higher affinity levels
are increasingly less significant in determining PE behavior. The assigned value of the MPIDR.{Aff2, Aff1, Aff0} or
MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set of fields of each PE must be unique within the system as a whole.

The reset behavior of this field is:

• On a Warm reset:, in a system where the PE resets into EL2 or EL3, this field resets to the value
inMPIDR.Aff0.

◦ When the PE resets into EL2 or EL3, this field resets to the value in MPIDR.Aff0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

Accessing VMPIDR
Accesses to this register use the following encodings in the System register encoding space:

VMPIDR, Virtualization Multiprocessor ID Register

Page 763

AArch32-mpidr.html
AArch32-mpidr.html
AArch32-mpidr.html
AArch32-mpidr.html
AArch32-mpidr.html
AArch32-mpidr.html
AArch64-mpidr_el1.html
AArch32-mpidr.html
AArch32-mpidr.html

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0000 0b0000 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

R[t] = VMPIDR;
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
R[t] = MPIDR;

elsif SCR.NS == '0' then
UNDEFINED;

else
R[t] = VMPIDR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0000 0b0000 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VMPIDR = R[t];
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
return;

elsif SCR.NS == '0' then
UNDEFINED;

else
VMPIDR = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0000 0b101

VMPIDR, Virtualization Multiprocessor ID Register

Page 764

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) then

R[t] = VMPIDR_EL2<31:0>;
elsif EL2Enabled() && ELUsingAArch32(EL2) then

R[t] = VMPIDR;
else

R[t] = MPIDR;
elsif PSTATE.EL == EL2 then

R[t] = MPIDR;
elsif PSTATE.EL == EL3 then

R[t] = MPIDR;

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

VMPIDR, Virtualization Multiprocessor ID Register

Page 765

(old) htmldiff from- (new)

VPIDR, Virtualization Processor ID Register
The VPIDR characteristics are:

Purpose
Holds the value of the Virtualization Processor ID. This is the value returned by Non-secure EL1 reads of MIDR.

Configuration
AArch32 System register VPIDR bits [31:0] are architecturally mapped to AArch64 System register VPIDR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to VPIDR are
UNDEFINED.

If EL2 is not implemented but EL3 is implemented, this register takes the value of the MIDR.

Attributes
VPIDR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementer Variant Architecture PartNum Revision

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm. Assigned codes
include the following:

Implementer Meaning
0x00 Reserved for software use.
0x41 Arm Limited.
0x42 Broadcom Corporation.
0x43 Cavium Inc.
0x44 Digital Equipment Corporation.
0x46 Fujitsu Ltd.
0x49 Infineon Technologies AG.
0x4D Motorola or Freescale Semiconductor Inc.
0x4E NVIDIA Corporation.
0x50 Applied Micro Circuits Corporation.
0x51 Qualcomm Inc.
0x56 Marvell International Ltd.
0x69 Intel Corporation.
0xC0 Ampere Computing.

Arm can assign codes that are not published in this manual. All values not assigned by Arm are reserved and must
not be used.

The reset behavior of this field is:

• On a Warm reset:, in a system where the PE resets into EL2 or EL3, this field resets to the value
inMIDR.Implementer.

◦ When the PE resets into EL2 or EL3, this field resets to the value in MIDR.Implementer.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

VPIDR, Virtualization Processor ID Register

Page 766

AArch32-midr.html
AArch64-vpidr_el2.html
AArch32-midr.html
AArch32-midr.html
AArch32-midr.html

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product
variants, or major revisions of a product.

The reset behavior of this field is:

• On a Warm reset:, in a system where the PE resets into EL2 or EL3, this field resets to the value
inMIDR.Variant.

◦ When the PE resets into EL2 or EL3, this field resets to the value in MIDR.Variant.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

Architecture, bits [19:16]

Architecture version. Defined values are:

Architecture Meaning
0b0001 Armv4.
0b0010 Armv4T.
0b0011 Armv5 (obsolete).
0b0100 Armv5T.
0b0101 Armv5TE.
0b0110 Armv5TEJ.
0b0111 Armv6.
0b1111 Architectural features are individually identified in

the ID_* registers.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset:, in a system where the PE resets into EL2 or EL3, this field resets to the value
inMIDR.Architecture.

◦ When the PE resets into EL2 or EL3, this field resets to the value in MIDR.Architecture.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7, the variant and
architecture are encoded differently.

The reset behavior of this field is:

• On a Warm reset:, in a system where the PE resets into EL2 or EL3, this field resets to the value
inMIDR.PartNum.

◦ When the PE resets into EL2 or EL3, this field resets to the value in MIDR.PartNum.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

The reset behavior of this field is:

• On a Warm reset:, in a system where the PE resets into EL2 or EL3, this field resets to the value
inMIDR.Revision.

◦ When the PE resets into EL2 or EL3, this field resets to the value in MIDR.Revision.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

Accessing VPIDR
Accesses to this register use the following encodings in the System register encoding space:

VPIDR, Virtualization Processor ID Register

Page 767

AArch32-midr.html
AArch32-midr.html
AArch32-midr.html
AArch32-midr.html
AArch32-midr.html
AArch32-midr.html
AArch32-midr.html
AArch32-midr.html

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0000 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

R[t] = VPIDR;
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
R[t] = MIDR;

elsif SCR.NS == '0' then
UNDEFINED;

else
R[t] = VPIDR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0000 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VPIDR = R[t];
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
return;

elsif SCR.NS == '0' then
UNDEFINED;

else
VPIDR = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0000 0b000

VPIDR, Virtualization Processor ID Register

Page 768

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) then

R[t] = VPIDR_EL2<31:0>;
elsif EL2Enabled() && ELUsingAArch32(EL2) then

R[t] = VPIDR;
else

R[t] = MIDR;
elsif PSTATE.EL == EL2 then

R[t] = MIDR;
elsif PSTATE.EL == EL3 then

R[t] = MIDR;

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

VPIDR, Virtualization Processor ID Register

Page 769

(old) htmldiff from- (new)

VTTBR, Virtualization Translation Table Base Register
The VTTBR characteristics are:

Purpose
Holds the base address of the translation table for the initial lookup for stage 2 of an address translation in the Non-
secure PL1&0 translation regime, and other information for this translation regime.

Configuration
AArch32 System register VTTBR bits [63:0] are architecturally mapped to AArch64 System register VTTBR_EL2[63:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to VTTBR are
UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
VTTBR is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 VMID BADDR
BADDR CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

VMID, bits [55:48]

The VMID for the translation table.

The reset behavior of this field is:

• On a Warm reset:
◦ When the PE resets into EL2 or EL3, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

BADDR, bits [47:1]

Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that if bits[x-1:3]
are not all zero, this is a misaligned translation table base address, with effects that are CONSTRAINED
UNPREDICTABLE, and must be one of the following:

• Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits is either the
value written or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted
in those bits that are nonzero.

x is determined from the value of VTCR.SL0 and VTCR.T0SZ as follows:

VTTBR, Virtualization Translation Table Base Register

Page 770

AArch64-vttbr_el2.html
AArch32-vtcr.html
AArch32-vtcr.html

• If VTCR.SL0 is 0b00, meaning that lookup starts at level 2, then x is 14 - VTCR.T0SZ.
• If VTCR.SL0 is 0b01, meaning that lookup starts at level 1, then x is 5 - VTCR.T0SZ.
• If VTCR.SL0 is either 0b10 or 0b11 then a stage 2 level 1 Translation fault is generated.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an architecturally
UNKNOWN value.

CnP, bit [0]
When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by VTTBR is a member of a common
set that can be used by every PE in the Inner Shareable domain for which the value of VTTBR.CnP is 1.

CnP Meaning
0b0 The translation table entries pointed to by VTTBR are

permitted to differ from the entries for VTTBR for other PEs in
the Inner Shareable domain. This is not affected by the value of
the current VMID.

0b1 The translation table entries pointed to by VTTBR are the same
as the translation table entries for every other PE in the Inner
Shareable domain for which the value of VTTBR.CnP is 1 and
the VMID is the same as the current VMID.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry, that entry can
only be shared between different PEs if the value of the CnP bit is 1 for both stage 1 and stage 2.

Note

If the value of the VTTBR.CnP bit is 1 on multiple PEs in the same Inner
Shareable domain and those VTTBRs do not point to the same translation
table entries when the VMID value is the same as the current VMID, then
the results of translations are CONSTRAINED UNPREDICTABLE, see
'CONSTRAINED UNPREDICTABLE behaviors due to caching of control or
data values'.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an architecturally
UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing VTTBR
Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b0010 0b0110

VTTBR, Virtualization Translation Table Base Register

Page 771

AArch32-vtcr.html
AArch32-vtcr.html
AArch32-vtcr.html
AArch32-vtcr.html
AArch32-vtcr.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x04);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

(R[t2], R[t]) = (VTTBR<63:32>, VTTBR<31:0>);
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
(R[t2], R[t]) = (VTTBR<63:32>, VTTBR<31:0>);

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b0010 0b0110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x04);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VTTBR = R[t2]:R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
VTTBR = R[t2]:R[t];

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

VTTBR, Virtualization Translation Table Base Register

Page 772

(old) htmldiff from- (new)

System Register index by instruction and encoding
Below are indexes for registers and operations accessed in the following ways:

For AArch32

• MCR/MRC
• MCRR/MRRC
• MRS/MSR
• VMRS/VMSR

For AArch64

• AT
• BRB
• CFP
• CPP
• DC
• DVP
• IC
• MRS/MSR
• TLBI

Registers and operations in AArch32

Accessed using MCR/MRC:
Register selectors

coproc opc1 CRn CRm opc2 Name Description

0b1110 0b000 0b0000 0b0000 0b000 DBGDIDR Debug ID
Register

0b1110 0b000 0b0000 0b0000 0b010 DBGDTRRXext Debug OS Lock
Data Transfer
Register,
Receive,
External View

0b1110 0b000 0b0000 0b0001 0b000 DBGDSCRint Debug Status
and Control
Register,
Internal View

0b1110 0b000 0b0000 0b0010 0b000 DBGDCCINT DCC Interrupt
Enable Register

0b1110 0b000 0b0000 0b0010 0b010 DBGDSCRext Debug Status
and Control
Register,
External View

0b1110 0b000 0b0000 0b0011 0b010 DBGDTRTXext Debug OS Lock
Data Transfer
Register,
Transmit

0b1110 0b000 0b0000 0b0101 0b000 DBGDTRRXint Debug Data
Transfer
Register,
Receive

0b1110 0b000 0b0000 0b0101 0b000 DBGDTRTXint Debug Data
Transfer
Register,
Transmit

System Register index by instruction and encoding

Page 773

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1110 0b000 0b0000 0b0110 0b000 DBGWFAR Debug
Watchpoint
Fault Address
Register

0b1110 0b000 0b0000 0b0110 0b010 DBGOSECCR Debug OS Lock
Exception
Catch Control
Register

0b1110 0b000 0b0000 0b0111 0b000 DBGVCR Debug Vector
Catch Register

0b1110 0b000 0b0000 m[3:0] 0b100 DBGBVR<m> Debug
Breakpoint
Value Registers

0b1110 0b000 0b0000 m[3:0] 0b101 DBGBCR<m> Debug
Breakpoint
Control
Registers

0b1110 0b000 0b0000 m[3:0] 0b110 DBGWVR<m> Debug
Watchpoint
Value Registers

0b1110 0b000 0b0000 m[3:0] 0b111 DBGWCR<m> Debug
Watchpoint
Control
Registers

0b1110 0b000 0b0001 0b0000 0b000 DBGDRAR Debug ROM
Address
Register

0b1110 0b000 0b0001 0b0000 0b100 DBGOSLAR Debug OS Lock
Access Register

0b1110 0b000 0b0001 0b0001 0b100 DBGOSLSR Debug OS Lock
Status Register

0b1110 0b000 0b0001 0b0011 0b100 DBGOSDLR Debug OS
Double Lock
Register

0b1110 0b000 0b0001 0b0100 0b100 DBGPRCR Debug Power
Control
Register

0b1110 0b000 0b0001 m[3:0] 0b001 DBGBXVR<m> Debug
Breakpoint
Extended Value
Registers

0b1110 0b000 0b0010 0b0000 0b000 DBGDSAR Debug Self
Address
Register

0b1110 0b000 0b0111 0b0000 0b111 DBGDEVID2 Debug Device
ID register 2

0b1110 0b000 0b0111 0b0001 0b111 DBGDEVID1 Debug Device
ID register 1

0b1110 0b000 0b0111 0b0010 0b111 DBGDEVID Debug Device
ID register 0

0b1110 0b000 0b0111 0b1000 0b110 DBGCLAIMSET Debug CLAIM
Tag Set register

0b1110 0b000 0b0111 0b1001 0b110 DBGCLAIMCLR Debug CLAIM
Tag Clear
register

0b1110 0b000 0b0111 0b1110 0b110 DBGAUTHSTATUS Debug
Authentication
Status register

0b1110 0b111 0b0000 0b0000 0b000 JIDR Jazelle ID
Register

System Register index by instruction and encoding

Page 774

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1110 0b111 0b0001 0b0000 0b000 JOSCR Jazelle OS
Control
Register

0b1110 0b111 0b0010 0b0000 0b000 JMCR Jazelle Main
Configuration
Register

0b1111 0b000 0b0000 0b0000 0b000 MIDR Main ID
Register

0b1111 0b000 0b0000 0b0000 0b001 CTR Cache Type
Register

0b1111 0b000 0b0000 0b0000 0b010 TCMTR TCM Type
Register

0b1111 0b000 0b0000 0b0000 0b011 TLBTR TLB Type
Register

0b1111 0b000 0b0000 0b0000 0b101 MPIDR Multiprocessor
Affinity
Register

0b1111 0b000 0b0000 0b0000 0b110 REVIDR Revision ID
Register

0b1111 0b000 0b0000 0b0001 0b000 ID_PFR0 Processor
Feature
Register 0

0b1111 0b000 0b0000 0b0001 0b001 ID_PFR1 Processor
Feature
Register 1

0b1111 0b000 0b0000 0b0001 0b010 ID_DFR0 Debug Feature
Register 0

0b1111 0b000 0b0000 0b0001 0b011 ID_AFR0 Auxiliary
Feature
Register 0

0b1111 0b000 0b0000 0b0001 0b100 ID_MMFR0 Memory Model
Feature
Register 0

0b1111 0b000 0b0000 0b0001 0b101 ID_MMFR1 Memory Model
Feature
Register 1

0b1111 0b000 0b0000 0b0001 0b110 ID_MMFR2 Memory Model
Feature
Register 2

0b1111 0b000 0b0000 0b0001 0b111 ID_MMFR3 Memory Model
Feature
Register 3

0b1111 0b000 0b0000 0b0010 0b000 ID_ISAR0 Instruction Set
Attribute
Register 0

0b1111 0b000 0b0000 0b0010 0b001 ID_ISAR1 Instruction Set
Attribute
Register 1

0b1111 0b000 0b0000 0b0010 0b010 ID_ISAR2 Instruction Set
Attribute
Register 2

0b1111 0b000 0b0000 0b0010 0b011 ID_ISAR3 Instruction Set
Attribute
Register 3

0b1111 0b000 0b0000 0b0010 0b100 ID_ISAR4 Instruction Set
Attribute
Register 4

0b1111 0b000 0b0000 0b0010 0b101 ID_ISAR5 Instruction Set
Attribute
Register 5

System Register index by instruction and encoding

Page 775

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b0000 0b0010 0b110 ID_MMFR4 Memory Model
Feature
Register 4

0b1111 0b000 0b0000 0b0010 0b111 ID_ISAR6 Instruction Set
Attribute
Register 6

0b1111 0b000 0b0000 0b0011 0b100 ID_PFR2 Processor
Feature
Register 2

0b1111 0b000 0b0000 0b0011 0b101 ID_DFR1 Debug Feature
Register 1

0b1111 0b000 0b0000 0b0011 0b110 ID_MMFR5 Memory Model
Feature
Register 5

0b1111 0b000 0b0001 0b0000 0b000 SCTLR System Control
Register

0b1111 0b000 0b0001 0b0000 0b001 ACTLR Auxiliary
Control
Register

0b1111 0b000 0b0001 0b0000 0b010 CPACR Architectural
Feature Access
Control
Register

0b1111 0b000 0b0001 0b0000 0b011 ACTLR2 Auxiliary
Control
Register 2

0b1111 0b000 0b0001 0b0001 0b000 SCR Secure
Configuration
Register

0b1111 0b000 0b0001 0b0001 0b001 SDER Secure Debug
Enable Register

0b1111 0b000 0b0001 0b0001 0b010 NSACR Non-Secure
Access Control
Register

0b1111 0b000 0b0001 0b0010 0b001 TRFCR Trace Filter
Control
Register

0b1111 0b000 0b0001 0b0011 0b001 SDCR Secure Debug
Control
Register

0b1111 0b000 0b0010 0b0000 0b000 TTBR0 Translation
Table Base
Register 0

0b1111 0b000 0b0010 0b0000 0b001 TTBR1 Translation
Table Base
Register 1

0b1111 0b000 0b0010 0b0000 0b010 TTBCR Translation
Table Base
Control
Register

0b1111 0b000 0b0010 0b0000 0b011 TTBCR2 Translation
Table Base
Control
Register 2

0b1111 0b000 0b0011 0b0000 0b000 DACR Domain Access
Control
Register

0b1111 0b000 0b0100 0b0110 0b000 ICC_PMR Interrupt
Controller
Interrupt

System Register index by instruction and encoding

Page 776

Register selectors
coproc opc1 CRn CRm opc2 Name Description

Priority Mask
Register

0b1111 0b000 0b0101 0b0000 0b000 DFSR Data Fault
Status Register

0b1111 0b000 0b0101 0b0000 0b001 IFSR Instruction
Fault Status
Register

0b1111 0b000 0b0101 0b0001 0b000 ADFSR Auxiliary Data
Fault Status
Register

0b1111 0b000 0b0101 0b0001 0b001 AIFSR Auxiliary
Instruction
Fault Status
Register

0b1111 0b000 0b0101 0b0011 0b000 ERRIDR Error Record ID
Register

0b1111 0b000 0b0101 0b0011 0b001 ERRSELR Error Record
Select Register

0b1111 0b000 0b0101 0b0100 0b000 ERXFR Selected Error
Record Feature
Register

0b1111 0b000 0b0101 0b0100 0b001 ERXCTLR Selected Error
Record Control
Register

0b1111 0b000 0b0101 0b0100 0b010 ERXSTATUS Selected Error
Record Primary
Status Register

0b1111 0b000 0b0101 0b0100 0b011 ERXADDR Selected Error
Record Address
Register

0b1111 0b000 0b0101 0b0100 0b100 ERXFR2 Selected Error
Record Feature
Register 2

0b1111 0b000 0b0101 0b0100 0b101 ERXCTLR2 Selected Error
Record Control
Register 2

0b1111 0b000 0b0101 0b0100 0b111 ERXADDR2 Selected Error
Record Address
Register 2

0b1111 0b000 0b0101 0b0101 0b000 ERXMISC0 Selected Error
Record
Miscellaneous
Register 0

0b1111 0b000 0b0101 0b0101 0b001 ERXMISC1 Selected Error
Record
Miscellaneous
Register 1

0b1111 0b000 0b0101 0b0101 0b010 ERXMISC4 Selected Error
Record
Miscellaneous
Register 4

0b1111 0b000 0b0101 0b0101 0b011 ERXMISC5 Selected Error
Record
Miscellaneous
Register 5

0b1111 0b000 0b0101 0b0101 0b100 ERXMISC2 Selected Error
Record
Miscellaneous
Register 2

0b1111 0b000 0b0101 0b0101 0b101 ERXMISC3 Selected Error
Record

System Register index by instruction and encoding

Page 777

Register selectors
coproc opc1 CRn CRm opc2 Name Description

Miscellaneous
Register 3

0b1111 0b000 0b0101 0b0101 0b110 ERXMISC6 Selected Error
Record
Miscellaneous
Register 6

0b1111 0b000 0b0101 0b0101 0b111 ERXMISC7 Selected Error
Record
Miscellaneous
Register 7

0b1111 0b000 0b0110 0b0000 0b000 DFAR Data Fault
Address
Register

0b1111 0b000 0b0110 0b0000 0b010 IFAR Instruction
Fault Address
Register

0b1111 0b000 0b0111 0b0001 0b000 ICIALLUIS Instruction
Cache
Invalidate All to
PoU, Inner
Shareable

0b1111 0b000 0b0111 0b0001 0b110 BPIALLIS Branch
Predictor
Invalidate All,
Inner Shareable

0b1111 0b000 0b0111 0b0011 0b100 CFPRCTX Control Flow
Prediction
Restriction by
Context

0b1111 0b000 0b0111 0b0011 0b101 DVPRCTX Data Value
Prediction
Restriction by
Context

0b1111 0b000 0b0111 0b0011 0b111 CPPRCTX Cache Prefetch
Prediction
Restriction by
Context

0b1111 0b000 0b0111 0b0100 0b000 PAR Physical
Address
Register

0b1111 0b000 0b0111 0b0101 0b000 ICIALLU Instruction
Cache
Invalidate All to
PoU

0b1111 0b000 0b0111 0b0101 0b001 ICIMVAU Instruction
Cache line
Invalidate by
VA to PoU

0b1111 0b000 0b0111 0b0101 0b100 CP15ISB Instruction
Synchronization
Barrier System
instruction

0b1111 0b000 0b0111 0b0101 0b110 BPIALL Branch
Predictor
Invalidate All

0b1111 0b000 0b0111 0b0101 0b111 BPIMVA Branch
Predictor
Invalidate by
VA

0b1111 0b000 0b0111 0b0110 0b001 DCIMVAC Data Cache line
Invalidate by
VA to PoC

System Register index by instruction and encoding

Page 778

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b0111 0b0110 0b010 DCISW Data Cache line
Invalidate by
Set/Way

0b1111 0b000 0b0111 0b1000 0b000 ATS1CPR Address
Translate Stage
1 Current state
PL1 Read

0b1111 0b000 0b0111 0b1000 0b001 ATS1CPW Address
Translate Stage
1 Current state
PL1 Write

0b1111 0b000 0b0111 0b1000 0b010 ATS1CUR Address
Translate Stage
1 Current state
Unprivileged
Read

0b1111 0b000 0b0111 0b1000 0b011 ATS1CUW Address
Translate Stage
1 Current state
Unprivileged
Write

0b1111 0b000 0b0111 0b1000 0b100 ATS12NSOPR Address
Translate
Stages 1 and 2
Non-secure
Only PL1 Read

0b1111 0b000 0b0111 0b1000 0b101 ATS12NSOPW Address
Translate
Stages 1 and 2
Non-secure
Only PL1 Write

0b1111 0b000 0b0111 0b1000 0b110 ATS12NSOUR Address
Translate
Stages 1 and 2
Non-secure
Only
Unprivileged
Read

0b1111 0b000 0b0111 0b1000 0b111 ATS12NSOUW Address
Translate
Stages 1 and 2
Non-secure
Only
Unprivileged
Write

0b1111 0b000 0b0111 0b1001 0b000 ATS1CPRP Address
Translate Stage
1 Current state
PL1 Read PAN

0b1111 0b000 0b0111 0b1001 0b001 ATS1CPWP Address
Translate Stage
1 Current state
PL1 Write PAN

0b1111 0b000 0b0111 0b1010 0b001 DCCMVAC Data Cache line
Clean by VA to
PoC

0b1111 0b000 0b0111 0b1010 0b010 DCCSW Data Cache line
Clean by Set/
Way

0b1111 0b000 0b0111 0b1010 0b100 CP15DSB Data
Synchronization
Barrier System
instruction

System Register index by instruction and encoding

Page 779

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b0111 0b1010 0b101 CP15DMB Data Memory
Barrier System
instruction

0b1111 0b000 0b0111 0b1011 0b001 DCCMVAU Data Cache line
Clean by VA to
PoU

0b1111 0b000 0b0111 0b1110 0b001 DCCIMVAC Data Cache line
Clean and
Invalidate by
VA to PoC

0b1111 0b000 0b0111 0b1110 0b010 DCCISW Data Cache line
Clean and
Invalidate by
Set/Way

0b1111 0b000 0b1000 0b0011 0b000 TLBIALLIS TLB Invalidate
All, Inner
Shareable

0b1111 0b000 0b1000 0b0011 0b001 TLBIMVAIS TLB Invalidate
by VA, Inner
Shareable

0b1111 0b000 0b1000 0b0011 0b010 TLBIASIDIS TLB Invalidate
by ASID match,
Inner Shareable

0b1111 0b000 0b1000 0b0011 0b011 TLBIMVAAIS TLB Invalidate
by VA, All ASID,
Inner Shareable

0b1111 0b000 0b1000 0b0011 0b101 TLBIMVALIS TLB Invalidate
by VA, Last
level, Inner
Shareable

0b1111 0b000 0b1000 0b0011 0b111 TLBIMVAALIS TLB Invalidate
by VA, All ASID,
Last level,
Inner Shareable

0b1111 0b000 0b1000 0b0101 0b000 ITLBIALL Instruction TLB
Invalidate All

0b1111 0b000 0b1000 0b0101 0b001 ITLBIMVA Instruction TLB
Invalidate by
VA

0b1111 0b000 0b1000 0b0101 0b010 ITLBIASID Instruction TLB
Invalidate by
ASID match

0b1111 0b000 0b1000 0b0110 0b000 DTLBIALL Data TLB
Invalidate All

0b1111 0b000 0b1000 0b0110 0b001 DTLBIMVA Data TLB
Invalidate by
VA

0b1111 0b000 0b1000 0b0110 0b010 DTLBIASID Data TLB
Invalidate by
ASID match

0b1111 0b000 0b1000 0b0111 0b000 TLBIALL TLB Invalidate
All

0b1111 0b000 0b1000 0b0111 0b001 TLBIMVA TLB Invalidate
by VA

0b1111 0b000 0b1000 0b0111 0b010 TLBIASID TLB Invalidate
by ASID match

0b1111 0b000 0b1000 0b0111 0b011 TLBIMVAA TLB Invalidate
by VA, All ASID

0b1111 0b000 0b1000 0b0111 0b101 TLBIMVAL TLB Invalidate
by VA, Last
level

System Register index by instruction and encoding

Page 780

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b1000 0b0111 0b111 TLBIMVAAL TLB Invalidate
by VA, All ASID,
Last level

0b1111 0b000 0b1001 0b1100 0b000 PMCR Performance
Monitors
Control
Register

0b1111 0b000 0b1001 0b1100 0b001 PMCNTENSET Performance
Monitors Count
Enable Set
register

0b1111 0b000 0b1001 0b1100 0b010 PMCNTENCLR Performance
Monitors Count
Enable Clear
register

0b1111 0b000 0b1001 0b1100 0b011 PMOVSR Performance
Monitors
Overflow Flag
Status Register

0b1111 0b000 0b1001 0b1100 0b100 PMSWINC Performance
Monitors
Software
Increment
register

0b1111 0b000 0b1001 0b1100 0b101 PMSELR Performance
Monitors Event
Counter
Selection
Register

0b1111 0b000 0b1001 0b1100 0b110 PMCEID0 Performance
Monitors
Common Event
Identification
register 0

0b1111 0b000 0b1001 0b1100 0b111 PMCEID1 Performance
Monitors
Common Event
Identification
register 1

0b1111 0b000 0b1001 0b1101 0b000 PMCCNTR Performance
Monitors Cycle
Count Register

0b1111 0b000 0b1001 0b1101 0b001 PMXEVTYPER Performance
Monitors
Selected Event
Type Register

0b1111 0b000 0b1001 0b1101 0b010 PMXEVCNTR Performance
Monitors
Selected Event
Count Register

0b1111 0b000 0b1001 0b1110 0b000 PMUSERENR Performance
Monitors User
Enable Register

0b1111 0b000 0b1001 0b1110 0b001 PMINTENSET Performance
Monitors
Interrupt
Enable Set
register

0b1111 0b000 0b1001 0b1110 0b010 PMINTENCLR Performance
Monitors
Interrupt
Enable Clear
register

System Register index by instruction and encoding

Page 781

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b1001 0b1110 0b011 PMOVSSET Performance
Monitors
Overflow Flag
Status Set
register

0b1111 0b000 0b1001 0b1110 0b100 PMCEID2 Performance
Monitors
Common Event
Identification
register 2

0b1111 0b000 0b1001 0b1110 0b101 PMCEID3 Performance
Monitors
Common Event
Identification
register 3

0b1111 0b000 0b1001 0b1110 0b110 PMMIR Performance
Monitors
Machine
Identification
Register

0b1111 0b000 0b1010 0b0011 0b000 AMAIR0 Auxiliary
Memory
Attribute
Indirection
Register 0

0b1111 0b000 0b1010 0b0011 0b001 AMAIR1 Auxiliary
Memory
Attribute
Indirection
Register 1

0b1111 0b000 0b1100 0b0000 0b000 VBAR Vector Base
Address
Register

0b1111 0b000 0b1100 0b0000 0b010 RMR Reset
Management
Register

0b1111 0b000 0b1100 0b0001 0b000 ISR Interrupt
Status Register

0b1111 0b000 0b1100 0b0001 0b001 DISR Deferred
Interrupt
Status Register

0b1111 0b000 0b1100 0b1000 0b000 ICC_IAR0 Interrupt
Controller
Interrupt
Acknowledge
Register 0

0b1111 0b000 0b1100 0b1000 0b001 ICC_EOIR0 Interrupt
Controller End
Of Interrupt
Register 0

0b1111 0b000 0b1100 0b1000 0b010 ICC_HPPIR0 Interrupt
Controller
Highest Priority
Pending
Interrupt
Register 0

0b1111 0b000 0b1100 0b1000 0b011 ICC_BPR0 Interrupt
Controller
Binary Point
Register 0

0b1111 0b000 0b1100 0b1000 0b1:m[1:0] ICC_AP0R<m> Interrupt
Controller
Active Priorities

System Register index by instruction and encoding

Page 782

Register selectors
coproc opc1 CRn CRm opc2 Name Description

Group 0
Registers

0b1111 0b000 0b1100 0b1001 0b0:m[1:0] ICC_AP1R<m> Interrupt
Controller
Active Priorities
Group 1
Registers

0b1111 0b000 0b1100 0b1011 0b001 ICC_DIR Interrupt
Controller
Deactivate
Interrupt
Register

0b1111 0b000 0b1100 0b1011 0b011 ICC_RPR Interrupt
Controller
Running
Priority
Register

0b1111 0b000 0b1100 0b1100 0b000 ICC_IAR1 Interrupt
Controller
Interrupt
Acknowledge
Register 1

0b1111 0b000 0b1100 0b1100 0b001 ICC_EOIR1 Interrupt
Controller End
Of Interrupt
Register 1

0b1111 0b000 0b1100 0b1100 0b010 ICC_HPPIR1 Interrupt
Controller
Highest Priority
Pending
Interrupt
Register 1

0b1111 0b000 0b1100 0b1100 0b011 ICC_BPR1 Interrupt
Controller
Binary Point
Register 1

0b1111 0b000 0b1100 0b1100 0b100 ICC_CTLR Interrupt
Controller
Control
Register

0b1111 0b000 0b1100 0b1100 0b101 ICC_SRE Interrupt
Controller
System
Register Enable
register

0b1111 0b000 0b1100 0b1100 0b110 ICC_IGRPEN0 Interrupt
Controller
Interrupt Group
0 Enable
register

0b1111 0b000 0b1100 0b1100 0b111 ICC_IGRPEN1 Interrupt
Controller
Interrupt Group
1 Enable
register

0b1111 0b000 0b1101 0b0000 0b000 FCSEIDR FCSE Process
ID register

0b1111 0b000 0b1101 0b0000 0b001 CONTEXTIDR Context ID
Register

0b1111 0b000 0b1101 0b0000 0b010 TPIDRURW PL0 Read/Write
Software
Thread ID
Register

System Register index by instruction and encoding

Page 783

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b1101 0b0000 0b011 TPIDRURO PL0 Read-Only
Software
Thread ID
Register

0b1111 0b000 0b1101 0b0000 0b100 TPIDRPRW PL1 Software
Thread ID
Register

0b1111 0b000 0b1101 0b0010 0b000 AMCR Activity
Monitors
Control
Register

0b1111 0b000 0b1101 0b0010 0b001 AMCFGR Activity
Monitors
Configuration
Register

0b1111 0b000 0b1101 0b0010 0b010 AMCGCR Activity
Monitors
Counter Group
Configuration
Register

0b1111 0b000 0b1101 0b0010 0b011 AMUSERENR Activity
Monitors User
Enable Register

0b1111 0b000 0b1101 0b0010 0b100 AMCNTENCLR0 Activity
Monitors Count
Enable Clear
Register 0

0b1111 0b000 0b1101 0b0010 0b101 AMCNTENSET0 Activity
Monitors Count
Enable Set
Register 0

0b1111 0b000 0b1101 0b0011 0b000 AMCNTENCLR1 Activity
Monitors Count
Enable Clear
Register 1

0b1111 0b000 0b1101 0b0011 0b001 AMCNTENSET1 Activity
Monitors Count
Enable Set
Register 1

0b1111 0b000 0b1101 0b011:m[3] m[2:0] AMEVTYPER0<m> Activity
Monitors Event
Type Registers
0

0b1111 0b000 0b1101 0b111:m[3] m[2:0] AMEVTYPER1<m> Activity
Monitors Event
Type Registers
1

0b1111 0b000 0b1110 0b0000 0b000 CNTFRQ Counter-timer
Frequency
register

0b1111 0b000 0b1110 0b0001 0b000 CNTKCTL Counter-timer
Kernel Control
register

0b1111 0b000 0b1110 0b0010 0b000 CNTP_TVAL Counter-timer
Physical Timer
TimerValue
register

0b1111 0b000 0b1110 0b0010 0b001 CNTP_CTL Counter-timer
Physical Timer
Control register

0b1111 0b000 0b1110 0b0011 0b000 CNTV_TVAL Counter-timer
Virtual Timer

System Register index by instruction and encoding

Page 784

Register selectors
coproc opc1 CRn CRm opc2 Name Description

TimerValue
register

0b1111 0b000 0b1110 0b0011 0b001 CNTV_CTL Counter-timer
Virtual Timer
Control register

0b1111 0b000 0b1110 0b10:m[4:3] m[2:0] PMEVCNTR<m> Performance
Monitors Event
Count Registers

0b1111 0b000 0b1110 0b1111 0b111 PMCCFILTR Performance
Monitors Cycle
Count Filter
Register

0b1111 0b000 0b1110 0b11:m[4:3] m[2:0] PMEVTYPER<m> Performance
Monitors Event
Type Registers

0b1111 0b001 0b0000 0b0000 0b000 CCSIDR Current Cache
Size ID
Register

0b1111 0b001 0b0000 0b0000 0b001 CLIDR Cache Level ID
Register

0b1111 0b001 0b0000 0b0000 0b010 CCSIDR2 Current Cache
Size ID
Register 2

0b1111 0b001 0b0000 0b0000 0b111 AIDR Auxiliary ID
Register

0b1111 0b010 0b0000 0b0000 0b000 CSSELR Cache Size
Selection
Register

0b1111 0b011 0b0100 0b0101 0b000 DSPSR Debug Saved
Program Status
Register

0b1111 0b011 0b0100 0b0101 0b001 DLR Debug Link
Register

0b1111 0b100 0b0000 0b0000 0b000 VPIDR Virtualization
Processor ID
Register

0b1111 0b100 0b0000 0b0000 0b101 VMPIDR Virtualization
Multiprocessor
ID Register

0b1111 0b100 0b0001 0b0000 0b000 HSCTLR Hyp System
Control
Register

0b1111 0b100 0b0001 0b0000 0b001 HACTLR Hyp Auxiliary
Control
Register

0b1111 0b100 0b0001 0b0000 0b011 HACTLR2 Hyp Auxiliary
Control
Register 2

0b1111 0b100 0b0001 0b0001 0b000 HCR Hyp
Configuration
Register

0b1111 0b100 0b0001 0b0001 0b001 HDCR Hyp Debug
Control
Register

0b1111 0b100 0b0001 0b0001 0b010 HCPTR Hyp
Architectural
Feature Trap
Register

0b1111 0b100 0b0001 0b0001 0b011 HSTR Hyp System
Trap Register

System Register index by instruction and encoding

Page 785

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b100 0b0001 0b0001 0b100 HCR2 Hyp
Configuration
Register 2

0b1111 0b100 0b0001 0b0001 0b111 HACR Hyp Auxiliary
Configuration
Register

0b1111 0b100 0b0001 0b0010 0b001 HTRFCR Hyp Trace
Filter Control
Register

0b1111 0b100 0b0010 0b0000 0b010 HTCR Hyp Translation
Control
Register

0b1111 0b100 0b0010 0b0001 0b010 VTCR Virtualization
Translation
Control
Register

0b1111 0b100 0b0101 0b0001 0b000 HADFSR Hyp Auxiliary
Data Fault
Status Register

0b1111 0b100 0b0101 0b0001 0b001 HAIFSR Hyp Auxiliary
Instruction
Fault Status
Register

0b1111 0b100 0b0101 0b0010 0b000 HSR Hyp Syndrome
Register

0b1111 0b100 0b0101 0b0010 0b011 VDFSR Virtual SError
Exception
Syndrome
Register

0b1111 0b100 0b0110 0b0000 0b000 HDFAR Hyp Data Fault
Address
Register

0b1111 0b100 0b0110 0b0000 0b010 HIFAR Hyp Instruction
Fault Address
Register

0b1111 0b100 0b0110 0b0000 0b100 HPFAR Hyp IPA Fault
Address
Register

0b1111 0b100 0b0111 0b1000 0b000 ATS1HR Address
Translate Stage
1 Hyp mode
Read

0b1111 0b100 0b0111 0b1000 0b001 ATS1HW Address
Translate Stage
1 Hyp mode
Write

0b1111 0b100 0b1000 0b0000 0b001 TLBIIPAS2IS TLB Invalidate
by Intermediate
Physical
Address, Stage
2, Inner
Shareable

0b1111 0b100 0b1000 0b0000 0b101 TLBIIPAS2LIS TLB Invalidate
by Intermediate
Physical
Address, Stage
2, Last level,
Inner Shareable

0b1111 0b100 0b1000 0b0011 0b000 TLBIALLHIS TLB Invalidate
All, Hyp mode,
Inner Shareable

System Register index by instruction and encoding

Page 786

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b100 0b1000 0b0011 0b001 TLBIMVAHIS TLB Invalidate
by VA, Hyp
mode, Inner
Shareable

0b1111 0b100 0b1000 0b0011 0b100 TLBIALLNSNHIS TLB Invalidate
All, Non-Secure
Non-Hyp, Inner
Shareable

0b1111 0b100 0b1000 0b0011 0b101 TLBIMVALHIS TLB Invalidate
by VA, Last
level, Hyp
mode, Inner
Shareable

0b1111 0b100 0b1000 0b0100 0b001 TLBIIPAS2 TLB Invalidate
by Intermediate
Physical
Address, Stage
2

0b1111 0b100 0b1000 0b0100 0b101 TLBIIPAS2L TLB Invalidate
by Intermediate
Physical
Address, Stage
2, Last level

0b1111 0b100 0b1000 0b0111 0b000 TLBIALLH TLB Invalidate
All, Hyp mode

0b1111 0b100 0b1000 0b0111 0b001 TLBIMVAH TLB Invalidate
by VA, Hyp
mode

0b1111 0b100 0b1000 0b0111 0b100 TLBIALLNSNH TLB Invalidate
All, Non-Secure
Non-Hyp

0b1111 0b100 0b1000 0b0111 0b101 TLBIMVALH TLB Invalidate
by VA, Last
level, Hyp mode

0b1111 0b100 0b1010 0b0010 0b000 HMAIR0 Hyp Memory
Attribute
Indirection
Register 0

0b1111 0b100 0b1010 0b0010 0b001 HMAIR1 Hyp Memory
Attribute
Indirection
Register 1

0b1111 0b100 0b1010 0b0011 0b000 HAMAIR0 Hyp Auxiliary
Memory
Attribute
Indirection
Register 0

0b1111 0b100 0b1010 0b0011 0b001 HAMAIR1 Hyp Auxiliary
Memory
Attribute
Indirection
Register 1

0b1111 0b100 0b1100 0b0000 0b000 HVBAR Hyp Vector
Base Address
Register

0b1111 0b100 0b1100 0b0000 0b010 HRMR Hyp Reset
Management
Register

0b1111 0b100 0b1100 0b0001 0b001 VDISR Virtual
Deferred
Interrupt
Status Register

System Register index by instruction and encoding

Page 787

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b100 0b1100 0b1000 0b0:m[1:0] ICH_AP0R<m> Interrupt
Controller Hyp
Active Priorities
Group 0
Registers

0b1111 0b100 0b1100 0b1001 0b0:m[1:0] ICH_AP1R<m> Interrupt
Controller Hyp
Active Priorities
Group 1
Registers

0b1111 0b100 0b1100 0b1001 0b101 ICC_HSRE Interrupt
Controller Hyp
System
Register Enable
register

0b1111 0b100 0b1100 0b1011 0b000 ICH_HCR Interrupt
Controller Hyp
Control
Register

0b1111 0b100 0b1100 0b1011 0b001 ICH_VTR Interrupt
Controller VGIC
Type Register

0b1111 0b100 0b1100 0b1011 0b010 ICH_MISR Interrupt
Controller
Maintenance
Interrupt State
Register

0b1111 0b100 0b1100 0b1011 0b011 ICH_EISR Interrupt
Controller End
of Interrupt
Status Register

0b1111 0b100 0b1100 0b1011 0b101 ICH_ELRSR Interrupt
Controller
Empty List
Register Status
Register

0b1111 0b100 0b1100 0b1011 0b111 ICH_VMCR Interrupt
Controller
Virtual Machine
Control
Register

0b1111 0b100 0b1100 0b110:m[3] m[2:0] ICH_LR<m> Interrupt
Controller List
Registers

0b1111 0b100 0b1100 0b111:m[3] m[2:0] ICH_LRC<m> Interrupt
Controller List
Registers

0b1111 0b100 0b1101 0b0000 0b010 HTPIDR Hyp Software
Thread ID
Register

0b1111 0b100 0b1110 0b0001 0b000 CNTHCTL Counter-timer
Hyp Control
register

0b1111 0b100 0b1110 0b0010 0b000 CNTHP_TVAL Counter-timer
Hyp Physical
Timer
TimerValue
register

0b1111 0b100 0b1110 0b0010 0b001 CNTHP_CTL Counter-timer
Hyp Physical
Timer Control
register

System Register index by instruction and encoding

Page 788

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b110 0b1100 0b1100 0b100 ICC_MCTLR Interrupt
Controller
Monitor Control
Register

0b1111 0b110 0b1100 0b1100 0b101 ICC_MSRE Interrupt
Controller
Monitor System
Register Enable
register

0b1111 0b110 0b1100 0b1100 0b111 ICC_MGRPEN1 Interrupt
Controller
Monitor
Interrupt Group
1 Enable
register

Accessed using MCRR/MRRC:
Register selectors

coproc CRm opc1 Name Description

0b1110 0b0001 0b0000 DBGDRAR Debug ROM Address Register
0b1110 0b0010 0b0000 DBGDSAR Debug Self Address Register
0b1111 0b000:m[3] 0b0:m[2:0] AMEVCNTR0<m> Activity Monitors Event Counter

Registers 0
0b1111 0b0010 0b0000 TTBR0 Translation Table Base Register 0
0b1111 0b0010 0b0001 TTBR1 Translation Table Base Register 1
0b1111 0b0010 0b0100 HTTBR Hyp Translation Table Base Register
0b1111 0b0010 0b0110 VTTBR Virtualization Translation Table Base

Register
0b1111 0b010:m[3] 0b0:m[2:0] AMEVCNTR1<m> Activity Monitors Event Counter

Registers 1
0b1111 0b0111 0b0000 PAR Physical Address Register
0b1111 0b1001 0b0000 PMCCNTR Performance Monitors Cycle Count

Register
0b1111 0b1100 0b0000 ICC_SGI1R Interrupt Controller Software

Generated Interrupt Group 1
Register

0b1111 0b1100 0b0001 ICC_ASGI1R Interrupt Controller Alias Software
Generated Interrupt Group 1
Register

0b1111 0b1100 0b0010 ICC_SGI0R Interrupt Controller Software
Generated Interrupt Group 0
Register

0b1111 0b1110 0b0000 CNTPCT Counter-timer Physical Count
register

0b1111 0b1110 0b0001 CNTVCT Counter-timer Virtual Count register
0b1111 0b1110 0b0010 CNTP_CVAL Counter-timer Physical Timer

CompareValue register
0b1111 0b1110 0b0011 CNTV_CVAL Counter-timer Virtual Timer

CompareValue register
0b1111 0b1110 0b0100 CNTVOFF Counter-timer Virtual Offset register
0b1111 0b1110 0b0110 CNTHP_CVAL Counter-timer Hyp Physical

CompareValue register
0b1111 0b1110 0b1000 CNTPCTSS Counter-timer Self-Synchronized

Physical Count register
0b1111 0b1110 0b1001 CNTVCTSS Counter-timer Self-Synchronized

Virtual Count register

System Register index by instruction and encoding

Page 789

Accessed using MRS/MSR:
Register selectors

R M M1 Name Description

0b0 0b1 0b1110 ELR_hyp Exception Link Register (Hyp mode)
0b1 0b0 0b1110 SPSR_fiq Saved Program Status Register (FIQ mode)
0b1 0b1 0b0000 SPSR_irq Saved Program Status Register (IRQ mode)
0b1 0b1 0b0010 SPSR_svc Saved Program Status Register (Supervisor mode)
0b1 0b1 0b0100 SPSR_abt Saved Program Status Register (Abort mode)
0b1 0b1 0b0110 SPSR_und Saved Program Status Register (Undefined mode)
0b1 0b1 0b1100 SPSR_mon Saved Program Status Register (Monitor mode)
0b1 0b1 0b1110 SPSR_hyp Saved Program Status Register (Hyp mode)

Accessed using VMRS/VMSR:
Register
selectors

reg
Name Description

0b0000 FPSID Floating-Point System ID register
0b0001 FPSCR Floating-Point Status and Control Register
0b0101 MVFR2 Media and VFP Feature Register 2
0b0110 MVFR1 Media and VFP Feature Register 1
0b0111 MVFR0 Media and VFP Feature Register 0
0b1000 FPEXC Floating-Point Exception Control register

Registers and operations in AArch64

Accessed using AT:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b0111 0b1000 0b000 AT
S1E1R

Address Translate Stage 1 EL1
Read

0b01 0b000 0b0111 0b1000 0b001 AT
S1E1W

Address Translate Stage 1 EL1
Write

0b01 0b000 0b0111 0b1000 0b010 AT
S1E0R

Address Translate Stage 1 EL0
Read

0b01 0b000 0b0111 0b1000 0b011 AT
S1E0W

Address Translate Stage 1 EL0
Write

0b01 0b000 0b0111 0b1001 0b000 AT
S1E1RP

Address Translate Stage 1 EL1
Read PAN

0b01 0b000 0b0111 0b1001 0b001 AT
S1E1WP

Address Translate Stage 1 EL1
Write PAN

0b01 0b100 0b0111 0b1000 0b000 AT
S1E2R

Address Translate Stage 1 EL2
Read

0b01 0b100 0b0111 0b1000 0b001 AT
S1E2W

Address Translate Stage 1 EL2
Write

0b01 0b100 0b0111 0b1000 0b100 AT
S12E1R

Address Translate Stages 1 and 2
EL1 Read

0b01 0b100 0b0111 0b1000 0b101 AT
S12E1W

Address Translate Stages 1 and 2
EL1 Write

0b01 0b100 0b0111 0b1000 0b110 AT
S12E0R

Address Translate Stages 1 and 2
EL0 Read

0b01 0b100 0b0111 0b1000 0b111 AT
S12E0W

Address Translate Stages 1 and 2
EL0 Write

System Register index by instruction and encoding

Page 790

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b110 0b0111 0b1000 0b000 AT
S1E3R

Address Translate Stage 1 EL3
Read

0b01 0b110 0b0111 0b1000 0b001 AT
S1E3W

Address Translate Stage 1 EL3
Write

Accessed using BRB:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b001 0b0111 0b0010 0b100 BRB
IALL

Invalidate the Branch Record Buffer

0b01 0b001 0b0111 0b0010 0b101 BRB
INJ

Branch Record Injection into the
Branch Record Buffer

Accessed using CFP:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b011 0b0111 0b0011 0b100 CFP
RCTX

Control Flow Prediction Restriction
by Context

Accessed using CPP:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b011 0b0111 0b0011 0b111 CPP
RCTX

Cache Prefetch Prediction
Restriction by Context

Accessed using DC:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b0111 0b0110 0b001 DC IVAC Data or unified Cache line
Invalidate by VA to PoC

0b01 0b000 0b0111 0b0110 0b010 DC ISW Data or unified Cache line
Invalidate by Set/Way

0b01 0b000 0b0111 0b0110 0b011 DC IGVAC Invalidate of Allocation Tags by
VA to PoC

0b01 0b000 0b0111 0b0110 0b100 DC IGSW Invalidate of Allocation Tags by
Set/Way

0b01 0b000 0b0111 0b0110 0b101 DC
IGDVAC

Invalidate of Data and Allocation
Tags by VA to PoC

0b01 0b000 0b0111 0b0110 0b110 DC
IGDSW

Invalidate of Data and Allocation
Tags by Set/Way

0b01 0b000 0b0111 0b1010 0b010 DC CSW Data or unified Cache line Clean
by Set/Way

0b01 0b000 0b0111 0b1010 0b100 DC CGSW Clean of Allocation Tags by Set/
Way

0b01 0b000 0b0111 0b1010 0b110 DC
CGDSW

Clean of Data and Allocation Tags
by Set/Way

0b01 0b000 0b0111 0b1110 0b010 DC CISW Data or unified Cache line Clean
and Invalidate by Set/Way

0b01 0b000 0b0111 0b1110 0b100 DC
CIGSW

Clean and Invalidate of Allocation
Tags by Set/Way

0b01 0b000 0b0111 0b1110 0b110 DC
CIGDSW

Clean and Invalidate of Data and
Allocation Tags by Set/Way

System Register index by instruction and encoding

Page 791

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b011 0b0111 0b0100 0b001 DC ZVA Data Cache Zero by VA
0b01 0b011 0b0111 0b0100 0b011 DC GVA Data Cache set Allocation Tag by

VA
0b01 0b011 0b0111 0b0100 0b100 DC GZVA Data Cache set Allocation Tags

and Zero by VA
0b01 0b011 0b0111 0b1010 0b001 DC CVAC Data or unified Cache line Clean

by VA to PoC
0b01 0b011 0b0111 0b1010 0b011 DC

CGVAC
Clean of Allocation Tags by VA to
PoC

0b01 0b011 0b0111 0b1010 0b101 DC
CGDVAC

Clean of Data and Allocation Tags
by VA to PoC

0b01 0b011 0b0111 0b1011 0b001 DC CVAU Data or unified Cache line Clean
by VA to PoU

0b01 0b011 0b0111 0b1100 0b001 DC CVAP Data or unified Cache line Clean
by VA to PoP

0b01 0b011 0b0111 0b1100 0b011 DC
CGVAP

Clean of Allocation Tags by VA to
PoP

0b01 0b011 0b0111 0b1100 0b101 DC
CGDVAP

Clean of Data and Allocation Tags
by VA to PoP

0b01 0b011 0b0111 0b1101 0b001 DC
CVADP

Data or unified Cache line Clean
by VA to PoDP

0b01 0b011 0b0111 0b1101 0b011 DC
CGVADP

Clean of Allocation Tags by VA to
PoDP

0b01 0b011 0b0111 0b1101 0b101 DC
CGDVADP

Clean of Data and Allocation Tags
by VA to PoDP

0b01 0b011 0b0111 0b1110 0b001 DC CIVAC Data or unified Cache line Clean
and Invalidate by VA to PoC

0b01 0b011 0b0111 0b1110 0b011 DC
CIGVAC

Clean and Invalidate of Allocation
Tags by VA to PoC

0b01 0b011 0b0111 0b1110 0b101 DC
CIGDVAC

Clean and Invalidate of Data and
Allocation Tags by VA to PoC

0b01 0b110 0b0111 0b1110 0b001 DC
CIPAPA

Data or unified Cache line Clean
and Invalidate by PA to PoPA

0b01 0b110 0b0111 0b1110 0b101 DC
CIGDPAPA

Clean and Invalidate of Data and
Allocation Tags by PA to PoPA

Accessed using DVP:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b011 0b0111 0b0011 0b101 DVP
RCTX

Data Value Prediction Restriction by
Context

Accessed using IC:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b0111 0b0001 0b000 IC
IALLUIS

Instruction Cache Invalidate All to
PoU, Inner Shareable

0b01 0b000 0b0111 0b0101 0b000 IC
IALLU

Instruction Cache Invalidate All to
PoU

0b01 0b011 0b0111 0b0101 0b001 IC IVAU Instruction Cache line Invalidate by
VA to PoU

System Register index by instruction and encoding

Page 792

Accessed using MRS/MSR:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b10 0b000 0b0000 0b0000 0b010 OSDTRRX_EL1 OS Lock Data
Transfer
Register,
Receive

0b10 0b000 0b0000 0b0010 0b000 MDCCINT_EL1 Monitor DCC
Interrupt
Enable Register

0b10 0b000 0b0000 0b0010 0b010 MDSCR_EL1 Monitor Debug
System Control
Register

0b10 0b000 0b0000 0b0011 0b010 OSDTRTX_EL1 OS Lock Data
Transfer
Register,
Transmit

0b10 0b000 0b0000 0b0110 0b010 OSECCR_EL1 OS Lock
Exception
Catch Control
Register

0b10 0b000 0b0000 m[3:0] 0b100 DBGBVR<m>_EL1 Debug
Breakpoint
Value Registers

0b10 0b000 0b0000 m[3:0] 0b101 DBGBCR<m>_EL1 Debug
Breakpoint
Control
Registers

0b10 0b000 0b0000 m[3:0] 0b110 DBGWVR<m>_EL1 Debug
Watchpoint
Value Registers

0b10 0b000 0b0000 m[3:0] 0b111 DBGWCR<m>_EL1 Debug
Watchpoint
Control
Registers

0b10 0b000 0b0001 0b0000 0b000 MDRAR_EL1 Monitor Debug
ROM Address
Register

0b10 0b000 0b0001 0b0000 0b100 OSLAR_EL1 OS Lock Access
Register

0b10 0b000 0b0001 0b0001 0b100 OSLSR_EL1 OS Lock Status
Register

0b10 0b000 0b0001 0b0011 0b100 OSDLR_EL1 OS Double Lock
Register

0b10 0b000 0b0001 0b0100 0b100 DBGPRCR_EL1 Debug Power
Control
Register

0b10 0b000 0b0111 0b1000 0b110 DBGCLAIMSET_EL1 Debug CLAIM
Tag Set register

0b10 0b000 0b0111 0b1001 0b110 DBGCLAIMCLR_EL1 Debug CLAIM
Tag Clear
register

0b10 0b000 0b0111 0b1110 0b110 DBGAUTHSTATUS_EL1 Debug
Authentication
Status register

0b10 0b001 0b0000 0b0000 0b001 TRCTRACEIDR Trace ID
Register

0b10 0b001 0b0000 0b0000 0b010 TRCVICTLR ViewInst Main
Control
Register

0b10 0b001 0b0000 0b0000 0b110 TRCIDR8 ID Register 8

System Register index by instruction and encoding

Page 793

Register selectors
op0 op1 CRn CRm op2 Name Description

0b10 0b001 0b0000 0b0000 0b111 TRCIMSPEC0 IMP DEF
Register 0

0b10 0b001 0b0000 0b0001 0b000 TRCPRGCTLR Programming
Control
Register

0b10 0b001 0b0000 0b0001 0b001 TRCQCTLR Q Element
Control
Register

0b10 0b001 0b0000 0b0001 0b010 TRCVIIECTLR ViewInst
Include/Exclude
Control
Register

0b10 0b001 0b0000 0b0001 0b110 TRCIDR9 ID Register 9
0b10 0b001 0b0000 0b0010 0b010 TRCVISSCTLR ViewInst Start/

Stop Control
Register

0b10 0b001 0b0000 0b0010 0b110 TRCIDR10 ID Register 10
0b10 0b001 0b0000 0b0011 0b000 TRCSTATR Trace Status

Register
0b10 0b001 0b0000 0b0011 0b010 TRCVIPCSSCTLR ViewInst Start/

Stop PE
Comparator
Control
Register

0b10 0b001 0b0000 0b0011 0b110 TRCIDR11 ID Register 11
0b10 0b001 0b0000 0b00:m[1:0] 0b100 TRCSEQEVR<m> Sequencer

State Transition
Control
Register <n>

0b10 0b001 0b0000 0b00:m[1:0] 0b101 TRCCNTRLDVR<m> Counter Reload
Value Register
<n>

0b10 0b001 0b0000 0b0100 0b000 TRCCONFIGR Trace
Configuration
Register

0b10 0b001 0b0000 0b0100 0b110 TRCIDR12 ID Register 12
0b10 0b001 0b0000 0b0101 0b110 TRCIDR13 ID Register 13
0b10 0b001 0b0000 0b0110 0b000 TRCAUXCTLR Auxiliary

Control
Register

0b10 0b001 0b0000 0b0110 0b100 TRCSEQRSTEVR Sequencer
Reset Control
Register

0b10 0b001 0b0000 0b0111 0b100 TRCSEQSTR Sequencer
State Register

0b10 0b001 0b0000 0b01:m[1:0] 0b101 TRCCNTCTLR<m> Counter
Control
Register <n>

0b10 0b001 0b0000 0b0:m[2:0] 0b111 TRCIMSPEC<m> IMP DEF
Register <n>

0b10 0b001 0b0000 0b1000 0b000 TRCEVENTCTL0R Event Control 0
Register

0b10 0b001 0b0000 0b1000 0b111 TRCIDR0 ID Register 0
0b10 0b001 0b0000 0b1001 0b000 TRCEVENTCTL1R Event Control 1

Register
0b10 0b001 0b0000 0b1001 0b111 TRCIDR1 ID Register 1
0b10 0b001 0b0000 0b1010 0b000 TRCRSR Resources

Status Register
0b10 0b001 0b0000 0b1010 0b111 TRCIDR2 ID Register 2

System Register index by instruction and encoding

Page 794

Register selectors
op0 op1 CRn CRm op2 Name Description

0b10 0b001 0b0000 0b1011 0b000 TRCSTALLCTLR Stall Control
Register

0b10 0b001 0b0000 0b1011 0b111 TRCIDR3 ID Register 3
0b10 0b001 0b0000 0b10:m[1:0] 0b100 TRCEXTINSELR<m> External Input

Select Register
<n>

0b10 0b001 0b0000 0b10:m[1:0] 0b101 TRCCNTVR<m> Counter Value
Register <n>

0b10 0b001 0b0000 0b1100 0b000 TRCTSCTLR Timestamp
Control
Register

0b10 0b001 0b0000 0b1100 0b111 TRCIDR4 ID Register 4
0b10 0b001 0b0000 0b1101 0b000 TRCSYNCPR Synchronization

Period Register
0b10 0b001 0b0000 0b1101 0b111 TRCIDR5 ID Register 5
0b10 0b001 0b0000 0b1110 0b000 TRCCCCTLR Cycle Count

Control
Register

0b10 0b001 0b0000 0b1110 0b111 TRCIDR6 ID Register 6
0b10 0b001 0b0000 0b1111 0b000 TRCBBCTLR Branch

Broadcast
Control
Register

0b10 0b001 0b0000 0b1111 0b111 TRCIDR7 ID Register 7
0b10 0b001 0b0001 0b0001 0b100 TRCOSLSR Trace OS Lock

Status Register
0b10 0b001 0b0001 0b0:m[2:0] 0b010 TRCSSCCR<m> Single-shot

Comparator
Control
Register <n>

0b10 0b001 0b0001 0b0:m[2:0] 0b011 TRCSSPCICR<m> Single-shot
Processing
Element
Comparator
Input Control
Register <n>

0b10 0b001 0b0001 0b1:m[2:0] 0b010 TRCSSCSR<m> Single-shot
Comparator
Control Status
Register <n>

0b10 0b001 0b0001 m[3:0] 0b00:m[4] TRCRSCTLR<m> Resource
Selection
Control
Register <n>

0b10 0b001 0b0010 m[2:0]:0b0 0b00:m[3] TRCACVR<m> Address
Comparator
Value Register
<n>

0b10 0b001 0b0010 m[2:0]:0b0 0b01:m[3] TRCACATR<m> Address
Comparator
Access Type
Register <n>

0b10 0b001 0b0011 0b0000 0b010 TRCCIDCCTLR0 Context
Identifier
Comparator
Control
Register 0

0b10 0b001 0b0011 0b0001 0b010 TRCCIDCCTLR1 Context
Identifier
Comparator

System Register index by instruction and encoding

Page 795

Register selectors
op0 op1 CRn CRm op2 Name Description

Control
Register 1

0b10 0b001 0b0011 0b0010 0b010 TRCVMIDCCTLR0 Virtual Context
Identifier
Comparator
Control
Register 0

0b10 0b001 0b0011 0b0011 0b010 TRCVMIDCCTLR1 Virtual Context
Identifier
Comparator
Control
Register 1

0b10 0b001 0b0011 m[2:0]:0b0 0b000 TRCCIDCVR<m> Context
Identifier
Comparator
Value Registers
<n>

0b10 0b001 0b0011 m[2:0]:0b0 0b001 TRCVMIDCVR<m> Virtual Context
Identifier
Comparator
Value Register
<n>

0b10 0b001 0b0111 0b0010 0b111 TRCDEVID Device
Configuration
Register

0b10 0b001 0b0111 0b1000 0b110 TRCCLAIMSET Claim Tag Set
Register

0b10 0b001 0b0111 0b1001 0b110 TRCCLAIMCLR Claim Tag Clear
Register

0b10 0b001 0b0111 0b1110 0b110 TRCAUTHSTATUS Authentication
Status Register

0b10 0b001 0b0111 0b1111 0b110 TRCDEVARCH Device
Architecture
Register

0b10 0b001 0b1000 m[3:0] m[4]:0b00 BRBINF<m>_EL1 Branch Record
Buffer
Information
Register <n>

0b10 0b001 0b1000 m[3:0] m[4]:0b01 BRBSRC<m>_EL1 Branch Record
Buffer Source
Address
Register <n>

0b10 0b001 0b1000 m[3:0] m[4]:0b10 BRBTGT<m>_EL1 Branch Record
Buffer Target
Address
Register <n>

0b10 0b001 0b1001 0b0000 0b000 BRBCR_EL1 Branch Record
Buffer Control
Register (EL1)

0b10 0b001 0b1001 0b0000 0b001 BRBFCR_EL1 Branch Record
Buffer Function
Control
Register

0b10 0b001 0b1001 0b0000 0b010 BRBTS_EL1 Branch Record
Buffer
Timestamp
Register

0b10 0b001 0b1001 0b0001 0b000 BRBINFINJ_EL1 Branch Record
Buffer
Information
Injection
Register

System Register index by instruction and encoding

Page 796

Register selectors
op0 op1 CRn CRm op2 Name Description

0b10 0b001 0b1001 0b0001 0b001 BRBSRCINJ_EL1 Branch Record
Buffer Source
Address
Injection
Register

0b10 0b001 0b1001 0b0001 0b010 BRBTGTINJ_EL1 Branch Record
Buffer Target
Address
Injection
Register

0b10 0b001 0b1001 0b0010 0b000 BRBIDR0_EL1 Branch Record
Buffer ID0
Register

0b10 0b011 0b0000 0b0001 0b000 MDCCSR_EL0 Monitor DCC
Status Register

0b10 0b011 0b0000 0b0100 0b000 DBGDTR_EL0 Debug Data
Transfer
Register, half-
duplex

0b10 0b011 0b0000 0b0101 0b000 DBGDTRRX_EL0 Debug Data
Transfer
Register,
Receive

0b10 0b011 0b0000 0b0101 0b000 DBGDTRTX_EL0 Debug Data
Transfer
Register,
Transmit

0b10 0b100 0b0000 0b0111 0b000 DBGVCR32_EL2 Debug Vector
Catch Register

0b10 0b100 0b1001 0b0000 0b000 BRBCR_EL2 Branch Record
Buffer Control
Register (EL2)

0b11 0b000 0b0000 0b0000 0b000 MIDR_EL1 Main ID
Register

0b11 0b000 0b0000 0b0000 0b101 MPIDR_EL1 Multiprocessor
Affinity
Register

0b11 0b000 0b0000 0b0000 0b110 REVIDR_EL1 Revision ID
Register

0b11 0b000 0b0000 0b0001 0b000 ID_PFR0_EL1 AArch32
Processor
Feature
Register 0

0b11 0b000 0b0000 0b0001 0b001 ID_PFR1_EL1 AArch32
Processor
Feature
Register 1

0b11 0b000 0b0000 0b0001 0b010 ID_DFR0_EL1 AArch32 Debug
Feature
Register 0

0b11 0b000 0b0000 0b0001 0b011 ID_AFR0_EL1 AArch32
Auxiliary
Feature
Register 0

0b11 0b000 0b0000 0b0001 0b100 ID_MMFR0_EL1 AArch32
Memory Model
Feature
Register 0

0b11 0b000 0b0000 0b0001 0b101 ID_MMFR1_EL1 AArch32
Memory Model
Feature
Register 1

System Register index by instruction and encoding

Page 797

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b0000 0b0001 0b110 ID_MMFR2_EL1 AArch32
Memory Model
Feature
Register 2

0b11 0b000 0b0000 0b0001 0b111 ID_MMFR3_EL1 AArch32
Memory Model
Feature
Register 3

0b11 0b000 0b0000 0b0010 0b000 ID_ISAR0_EL1 AArch32
Instruction Set
Attribute
Register 0

0b11 0b000 0b0000 0b0010 0b001 ID_ISAR1_EL1 AArch32
Instruction Set
Attribute
Register 1

0b11 0b000 0b0000 0b0010 0b010 ID_ISAR2_EL1 AArch32
Instruction Set
Attribute
Register 2

0b11 0b000 0b0000 0b0010 0b011 ID_ISAR3_EL1 AArch32
Instruction Set
Attribute
Register 3

0b11 0b000 0b0000 0b0010 0b100 ID_ISAR4_EL1 AArch32
Instruction Set
Attribute
Register 4

0b11 0b000 0b0000 0b0010 0b101 ID_ISAR5_EL1 AArch32
Instruction Set
Attribute
Register 5

0b11 0b000 0b0000 0b0010 0b110 ID_MMFR4_EL1 AArch32
Memory Model
Feature
Register 4

0b11 0b000 0b0000 0b0010 0b111 ID_ISAR6_EL1 AArch32
Instruction Set
Attribute
Register 6

0b11 0b000 0b0000 0b0011 0b000 MVFR0_EL1 AArch32 Media
and VFP
Feature
Register 0

0b11 0b000 0b0000 0b0011 0b001 MVFR1_EL1 AArch32 Media
and VFP
Feature
Register 1

0b11 0b000 0b0000 0b0011 0b010 MVFR2_EL1 AArch32 Media
and VFP
Feature
Register 2

0b11 0b000 0b0000 0b0011 0b100 ID_PFR2_EL1 AArch32
Processor
Feature
Register 2

0b11 0b000 0b0000 0b0011 0b101 ID_DFR1_EL1 Debug Feature
Register 1

0b11 0b000 0b0000 0b0011 0b110 ID_MMFR5_EL1 AArch32
Memory Model
Feature
Register 5

System Register index by instruction and encoding

Page 798

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b0000 0b0100 0b000 ID_AA64PFR0_EL1 AArch64
Processor
Feature
Register 0

0b11 0b000 0b0000 0b0100 0b001 ID_AA64PFR1_EL1 AArch64
Processor
Feature
Register 1

0b11 0b000 0b0000 0b0100 0b100 ID_AA64ZFR0_EL1 SVE Feature ID
register 0

0b11 0b000 0b0000 0b0100 0b101 ID_AA64SMFR0_EL1 SME Feature ID
register 0

0b11 0b000 0b0000 0b0101 0b000 ID_AA64DFR0_EL1 AArch64 Debug
Feature
Register 0

0b11 0b000 0b0000 0b0101 0b001 ID_AA64DFR1_EL1 AArch64 Debug
Feature
Register 1

0b11 0b000 0b0000 0b0101 0b100 ID_AA64AFR0_EL1 AArch64
Auxiliary
Feature
Register 0

0b11 0b000 0b0000 0b0101 0b101 ID_AA64AFR1_EL1 AArch64
Auxiliary
Feature
Register 1

0b11 0b000 0b0000 0b0110 0b000 ID_AA64ISAR0_EL1 AArch64
Instruction Set
Attribute
Register 0

0b11 0b000 0b0000 0b0110 0b001 ID_AA64ISAR1_EL1 AArch64
Instruction Set
Attribute
Register 1

0b11 0b000 0b0000 0b0110 0b010 ID_AA64ISAR2_EL1 AArch64
Instruction Set
Attribute
Register 2

0b11 0b000 0b0000 0b0111 0b000 ID_AA64MMFR0_EL1 AArch64
Memory Model
Feature
Register 0

0b11 0b000 0b0000 0b0111 0b001 ID_AA64MMFR1_EL1 AArch64
Memory Model
Feature
Register 1

0b11 0b000 0b0000 0b0111 0b010 ID_AA64MMFR2_EL1 AArch64
Memory Model
Feature
Register 2

0b11 0b000 0b0001 0b0000 0b000 SCTLR_EL1 System Control
Register (EL1)

0b11 0b000 0b0001 0b0000 0b001 ACTLR_EL1 Auxiliary
Control
Register (EL1)

0b11 0b000 0b0001 0b0000 0b010 CPACR_EL1 Architectural
Feature Access
Control
Register

0b11 0b000 0b0001 0b0000 0b101 RGSR_EL1 Random
Allocation Tag
Seed Register.

System Register index by instruction and encoding

Page 799

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b0001 0b0000 0b110 GCR_EL1 Tag Control
Register.

0b11 0b000 0b0001 0b0010 0b000 ZCR_EL1 SVE Control
Register (EL1)

0b11 0b000 0b0001 0b0010 0b001 TRFCR_EL1 Trace Filter
Control
Register (EL1)

0b11 0b000 0b0001 0b0010 0b100 SMPRI_EL1 Streaming
Mode Priority
Register

0b11 0b000 0b0001 0b0010 0b110 SMCR_EL1 SME Control
Register (EL1)

0b11 0b000 0b0010 0b0000 0b000 TTBR0_EL1 Translation
Table Base
Register 0
(EL1)

0b11 0b000 0b0010 0b0000 0b001 TTBR1_EL1 Translation
Table Base
Register 1
(EL1)

0b11 0b000 0b0010 0b0000 0b010 TCR_EL1 Translation
Control
Register (EL1)

0b11 0b000 0b0010 0b0001 0b000 APIAKeyLo_EL1 Pointer
Authentication
Key A for
Instruction
(bits[63:0])

0b11 0b000 0b0010 0b0001 0b001 APIAKeyHi_EL1 Pointer
Authentication
Key A for
Instruction
(bits[127:64])

0b11 0b000 0b0010 0b0001 0b010 APIBKeyLo_EL1 Pointer
Authentication
Key B for
Instruction
(bits[63:0])

0b11 0b000 0b0010 0b0001 0b011 APIBKeyHi_EL1 Pointer
Authentication
Key B for
Instruction
(bits[127:64])

0b11 0b000 0b0010 0b0010 0b000 APDAKeyLo_EL1 Pointer
Authentication
Key A for Data
(bits[63:0])

0b11 0b000 0b0010 0b0010 0b001 APDAKeyHi_EL1 Pointer
Authentication
Key A for Data
(bits[127:64])

0b11 0b000 0b0010 0b0010 0b010 APDBKeyLo_EL1 Pointer
Authentication
Key B for Data
(bits[63:0])

0b11 0b000 0b0010 0b0010 0b011 APDBKeyHi_EL1 Pointer
Authentication
Key B for Data
(bits[127:64])

0b11 0b000 0b0010 0b0011 0b000 APGAKeyLo_EL1 Pointer
Authentication

System Register index by instruction and encoding

Page 800

Register selectors
op0 op1 CRn CRm op2 Name Description

Key A for Code
(bits[63:0])

0b11 0b000 0b0010 0b0011 0b001 APGAKeyHi_EL1 Pointer
Authentication
Key A for Code
(bits[127:64])

0b11 0b000 0b0100 0b0000 0b000 SPSR_EL1 Saved Program
Status Register
(EL1)

0b11 0b000 0b0100 0b0000 0b001 ELR_EL1 Exception Link
Register (EL1)

0b11 0b000 0b0100 0b0001 0b000 SP_EL0 Stack Pointer
(EL0)

0b11 0b000 0b0100 0b0010 0b000 SPSel Stack Pointer
Select

0b00 0b000 0b0100 - 0b101 SPSel Stack Pointer
Select

0b11 0b000 0b0100 0b0010 0b010 CurrentEL Current
Exception Level

0b11 0b000 0b0100 0b0010 0b011 PAN Privileged
Access Never

0b00 0b000 0b0100 - 0b100 PAN Privileged
Access Never

0b11 0b000 0b0100 0b0010 0b100 UAO User Access
Override

0b00 0b000 0b0100 - 0b011 UAO User Access
Override

0b11 0b000 0b0100 0b0011 0b000 ALLINT All Interrupt
Mask Bit

0b00 0b001 0b0100 0b000x 0b000 ALLINT All Interrupt
Mask Bit

0b11 0b000 0b0100 0b0110 0b000 ICC_PMR_EL1 Interrupt
Controller
Interrupt
Priority Mask
Register

0b11 0b000 0b0101 0b0001 0b000 AFSR0_EL1 Auxiliary Fault
Status Register
0 (EL1)

0b11 0b000 0b0101 0b0001 0b001 AFSR1_EL1 Auxiliary Fault
Status Register
1 (EL1)

0b11 0b000 0b0101 0b0010 0b000 ESR_EL1 Exception
Syndrome
Register (EL1)

0b11 0b000 0b0101 0b0011 0b000 ERRIDR_EL1 Error Record ID
Register

0b11 0b000 0b0101 0b0011 0b001 ERRSELR_EL1 Error Record
Select Register

0b11 0b000 0b0101 0b0100 0b000 ERXFR_EL1 Selected Error
Record Feature
Register

0b11 0b000 0b0101 0b0100 0b001 ERXCTLR_EL1 Selected Error
Record Control
Register

0b11 0b000 0b0101 0b0100 0b010 ERXSTATUS_EL1 Selected Error
Record Primary
Status Register

System Register index by instruction and encoding

Page 801

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b0101 0b0100 0b011 ERXADDR_EL1 Selected Error
Record Address
Register

0b11 0b000 0b0101 0b0100 0b100 ERXPFGF_EL1 Selected
Pseudo-fault
Generation
Feature
register

0b11 0b000 0b0101 0b0100 0b101 ERXPFGCTL_EL1 Selected
Pseudo-fault
Generation
Control register

0b11 0b000 0b0101 0b0100 0b110 ERXPFGCDN_EL1 Selected
Pseudo-fault
Generation
Countdown
register

0b11 0b000 0b0101 0b0101 0b000 ERXMISC0_EL1 Selected Error
Record
Miscellaneous
Register 0

0b11 0b000 0b0101 0b0101 0b001 ERXMISC1_EL1 Selected Error
Record
Miscellaneous
Register 1

0b11 0b000 0b0101 0b0101 0b010 ERXMISC2_EL1 Selected Error
Record
Miscellaneous
Register 2

0b11 0b000 0b0101 0b0101 0b011 ERXMISC3_EL1 Selected Error
Record
Miscellaneous
Register 3

0b11 0b000 0b0101 0b0110 0b000 TFSR_EL1 Tag Fault
Status Register
(EL1)

0b11 0b000 0b0101 0b0110 0b001 TFSRE0_EL1 Tag Fault
Status Register
(EL0).

0b11 0b000 0b0110 0b0000 0b000 FAR_EL1 Fault Address
Register (EL1)

0b11 0b000 0b0111 0b0100 0b000 PAR_EL1 Physical
Address
Register

0b11 0b000 0b1001 0b1001 0b000 PMSCR_EL1 Statistical
Profiling
Control
Register (EL1)

0b11 0b000 0b1001 0b1001 0b001 PMSNEVFR_EL1 Sampling
Inverted Event
Filter Register

0b11 0b000 0b1001 0b1001 0b010 PMSICR_EL1 Sampling
Interval
Counter
Register

0b11 0b000 0b1001 0b1001 0b011 PMSIRR_EL1 Sampling
Interval Reload
Register

0b11 0b000 0b1001 0b1001 0b100 PMSFCR_EL1 Sampling Filter
Control
Register

System Register index by instruction and encoding

Page 802

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b1001 0b1001 0b101 PMSEVFR_EL1 Sampling Event
Filter Register

0b11 0b000 0b1001 0b1001 0b110 PMSLATFR_EL1 Sampling
Latency Filter
Register

0b11 0b000 0b1001 0b1001 0b111 PMSIDR_EL1 Sampling
Profiling ID
Register

0b11 0b000 0b1001 0b1010 0b000 PMBLIMITR_EL1 Profiling Buffer
Limit Address
Register

0b11 0b000 0b1001 0b1010 0b001 PMBPTR_EL1 Profiling Buffer
Write Pointer
Register

0b11 0b000 0b1001 0b1010 0b011 PMBSR_EL1 Profiling Buffer
Status/
syndrome
Register

0b11 0b000 0b1001 0b1010 0b111 PMBIDR_EL1 Profiling Buffer
ID Register

0b11 0b000 0b1001 0b1011 0b000 TRBLIMITR_EL1 Trace Buffer
Limit Address
Register

0b11 0b000 0b1001 0b1011 0b001 TRBPTR_EL1 Trace Buffer
Write Pointer
Register

0b11 0b000 0b1001 0b1011 0b010 TRBBASER_EL1 Trace Buffer
Base Address
Register

0b11 0b000 0b1001 0b1011 0b011 TRBSR_EL1 Trace Buffer
Status/
syndrome
Register

0b11 0b000 0b1001 0b1011 0b100 TRBMAR_EL1 Trace Buffer
Memory
Attribute
Register

0b11 0b000 0b1001 0b1011 0b110 TRBTRG_EL1 Trace Buffer
Trigger
Counter
Register

0b11 0b000 0b1001 0b1011 0b111 TRBIDR_EL1 Trace Buffer ID
Register

0b11 0b000 0b1001 0b1110 0b001 PMINTENSET_EL1 Performance
Monitors
Interrupt
Enable Set
register

0b11 0b000 0b1001 0b1110 0b010 PMINTENCLR_EL1 Performance
Monitors
Interrupt
Enable Clear
register

0b11 0b000 0b1001 0b1110 0b110 PMMIR_EL1 Performance
Monitors
Machine
Identification
Register

0b11 0b000 0b1010 0b0010 0b000 MAIR_EL1 Memory
Attribute
Indirection
Register (EL1)

System Register index by instruction and encoding

Page 803

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b1010 0b0011 0b000 AMAIR_EL1 Auxiliary
Memory
Attribute
Indirection
Register (EL1)

0b11 0b000 0b1010 0b0100 0b000 LORSA_EL1 LORegion Start
Address (EL1)

0b11 0b000 0b1010 0b0100 0b001 LOREA_EL1 LORegion End
Address (EL1)

0b11 0b000 0b1010 0b0100 0b010 LORN_EL1 LORegion
Number (EL1)

0b11 0b000 0b1010 0b0100 0b011 LORC_EL1 LORegion
Control (EL1)

0b11 0b000 0b1010 0b0100 0b100 MPAMIDR_EL1 MPAM ID
Register (EL1)

0b11 0b000 0b1010 0b0100 0b111 LORID_EL1 LORegionID
(EL1)

0b11 0b000 0b1010 0b0101 0b000 MPAM1_EL1 MPAM1
Register (EL1)

0b11 0b000 0b1010 0b0101 0b001 MPAM0_EL1 MPAM0
Register (EL1)

0b11 0b000 0b1010 0b0101 0b011 MPAMSM_EL1 MPAM
Streaming
Mode Register

0b11 0b000 0b1100 0b0000 0b000 VBAR_EL1 Vector Base
Address
Register (EL1)

0b11 0b000 0b1100 0b0000 0b001 RVBAR_EL1 Reset Vector
Base Address
Register (if EL2
and EL3 not
implemented)

0b11 0b000 0b1100 0b0000 0b010 RMR_EL1 Reset
Management
Register (EL1)

0b11 0b000 0b1100 0b0001 0b000 ISR_EL1 Interrupt
Status Register

0b11 0b000 0b1100 0b0001 0b001 DISR_EL1 Deferred
Interrupt
Status Register

0b11 0b000 0b1100 0b1000 0b000 ICC_IAR0_EL1 Interrupt
Controller
Interrupt
Acknowledge
Register 0

0b11 0b000 0b1100 0b1000 0b001 ICC_EOIR0_EL1 Interrupt
Controller End
Of Interrupt
Register 0

0b11 0b000 0b1100 0b1000 0b010 ICC_HPPIR0_EL1 Interrupt
Controller
Highest Priority
Pending
Interrupt
Register 0

0b11 0b000 0b1100 0b1000 0b011 ICC_BPR0_EL1 Interrupt
Controller
Binary Point
Register 0

0b11 0b000 0b1100 0b1000 0b1:m[1:0] ICC_AP0R<m>_EL1 Interrupt
Controller

System Register index by instruction and encoding

Page 804

Register selectors
op0 op1 CRn CRm op2 Name Description

Active Priorities
Group 0
Registers

0b11 0b000 0b1100 0b1001 0b0:m[1:0] ICC_AP1R<m>_EL1 Interrupt
Controller
Active Priorities
Group 1
Registers

0b11 0b000 0b1100 0b1001 0b101 ICC_NMIAR1_EL1 Interrupt
Controller Non-
maskable
Interrupt
Acknowledge
Register 1

0b11 0b000 0b1100 0b1011 0b001 ICC_DIR_EL1 Interrupt
Controller
Deactivate
Interrupt
Register

0b11 0b000 0b1100 0b1011 0b011 ICC_RPR_EL1 Interrupt
Controller
Running
Priority
Register

0b11 0b000 0b1100 0b1011 0b101 ICC_SGI1R_EL1 Interrupt
Controller
Software
Generated
Interrupt Group
1 Register

0b11 0b000 0b1100 0b1011 0b110 ICC_ASGI1R_EL1 Interrupt
Controller Alias
Software
Generated
Interrupt Group
1 Register

0b11 0b000 0b1100 0b1011 0b111 ICC_SGI0R_EL1 Interrupt
Controller
Software
Generated
Interrupt Group
0 Register

0b11 0b000 0b1100 0b1100 0b000 ICC_IAR1_EL1 Interrupt
Controller
Interrupt
Acknowledge
Register 1

0b11 0b000 0b1100 0b1100 0b001 ICC_EOIR1_EL1 Interrupt
Controller End
Of Interrupt
Register 1

0b11 0b000 0b1100 0b1100 0b010 ICC_HPPIR1_EL1 Interrupt
Controller
Highest Priority
Pending
Interrupt
Register 1

0b11 0b000 0b1100 0b1100 0b011 ICC_BPR1_EL1 Interrupt
Controller
Binary Point
Register 1

0b11 0b000 0b1100 0b1100 0b100 ICC_CTLR_EL1 Interrupt
Controller

System Register index by instruction and encoding

Page 805

Register selectors
op0 op1 CRn CRm op2 Name Description

Control
Register (EL1)

0b11 0b000 0b1100 0b1100 0b101 ICC_SRE_EL1 Interrupt
Controller
System
Register Enable
register (EL1)

0b11 0b000 0b1100 0b1100 0b110 ICC_IGRPEN0_EL1 Interrupt
Controller
Interrupt Group
0 Enable
register

0b11 0b000 0b1100 0b1100 0b111 ICC_IGRPEN1_EL1 Interrupt
Controller
Interrupt Group
1 Enable
register

0b11 0b000 0b1101 0b0000 0b001 CONTEXTIDR_EL1 Context ID
Register (EL1)

0b11 0b000 0b1101 0b0000 0b100 TPIDR_EL1 EL1 Software
Thread ID
Register

0b11 0b000 0b1101 0b0000 0b101 ACCDATA_EL1 Accelerator
Data

0b11 0b000 0b1101 0b0000 0b111 SCXTNUM_EL1 EL1 Read/Write
Software
Context
Number

0b11 0b000 0b1110 0b0001 0b000 CNTKCTL_EL1 Counter-timer
Kernel Control
register

0b11 0b001 0b0000 0b0000 0b000 CCSIDR_EL1 Current Cache
Size ID
Register

0b11 0b001 0b0000 0b0000 0b001 CLIDR_EL1 Cache Level ID
Register

0b11 0b001 0b0000 0b0000 0b010 CCSIDR2_EL1 Current Cache
Size ID
Register 2

0b11 0b001 0b0000 0b0000 0b100 GMID_EL1 Multiple tag
transfer ID
register

0b11 0b001 0b0000 0b0000 0b110 SMIDR_EL1 Streaming
Mode
Identification
Register

0b11 0b001 0b0000 0b0000 0b111 AIDR_EL1 Auxiliary ID
Register

0b11 0b010 0b0000 0b0000 0b000 CSSELR_EL1 Cache Size
Selection
Register

0b11 0b011 0b0000 0b0000 0b001 CTR_EL0 Cache Type
Register

0b11 0b011 0b0000 0b0000 0b111 DCZID_EL0 Data Cache
Zero ID register

0b11 0b011 0b0010 0b0100 0b000 RNDR Random
Number

0b11 0b011 0b0010 0b0100 0b001 RNDRRS Reseeded
Random
Number

0b11 0b011 0b0100 0b0010 0b000 NZCV Condition Flags

System Register index by instruction and encoding

Page 806

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b011 0b0100 0b0010 0b001 DAIF Interrupt Mask
Bits

0b11 0b011 0b0100 0b0010 0b010 SVCR Streaming
Vector Control
Register

0b11 0b011 0b0100 0b0010 0b101 DIT Data
Independent
Timing

0b00 0b011 0b0100 - 0b010 DIT Data
Independent
Timing

0b11 0b011 0b0100 0b0010 0b110 SSBS Speculative
Store Bypass
Safe

0b00 0b011 0b0100 - 0b001 SSBS Speculative
Store Bypass
Safe

0b11 0b011 0b0100 0b0010 0b111 TCO Tag Check
Override

0b00 0b011 0b0100 - 0b100 TCO Tag Check
Override

0b11 0b011 0b0100 0b0100 0b000 FPCR Floating-point
Control
Register

0b11 0b011 0b0100 0b0100 0b001 FPSR Floating-point
Status Register

0b11 0b011 0b0100 0b0101 0b000 DSPSR_EL0 Debug Saved
Program Status
Register

0b11 0b011 0b0100 0b0101 0b001 DLR_EL0 Debug Link
Register

0b11 0b011 0b1001 0b1100 0b000 PMCR_EL0 Performance
Monitors
Control
Register

0b11 0b011 0b1001 0b1100 0b001 PMCNTENSET_EL0 Performance
Monitors Count
Enable Set
register

0b11 0b011 0b1001 0b1100 0b010 PMCNTENCLR_EL0 Performance
Monitors Count
Enable Clear
register

0b11 0b011 0b1001 0b1100 0b011 PMOVSCLR_EL0 Performance
Monitors
Overflow Flag
Status Clear
Register

0b11 0b011 0b1001 0b1100 0b100 PMSWINC_EL0 Performance
Monitors
Software
Increment
register

0b11 0b011 0b1001 0b1100 0b101 PMSELR_EL0 Performance
Monitors Event
Counter
Selection
Register

0b11 0b011 0b1001 0b1100 0b110 PMCEID0_EL0 Performance
Monitors
Common Event

System Register index by instruction and encoding

Page 807

Register selectors
op0 op1 CRn CRm op2 Name Description

Identification
register 0

0b11 0b011 0b1001 0b1100 0b111 PMCEID1_EL0 Performance
Monitors
Common Event
Identification
register 1

0b11 0b011 0b1001 0b1101 0b000 PMCCNTR_EL0 Performance
Monitors Cycle
Count Register

0b11 0b011 0b1001 0b1101 0b001 PMXEVTYPER_EL0 Performance
Monitors
Selected Event
Type Register

0b11 0b011 0b1001 0b1101 0b010 PMXEVCNTR_EL0 Performance
Monitors
Selected Event
Count Register

0b11 0b011 0b1001 0b1110 0b000 PMUSERENR_EL0 Performance
Monitors User
Enable Register

0b11 0b011 0b1001 0b1110 0b011 PMOVSSET_EL0 Performance
Monitors
Overflow Flag
Status Set
register

0b11 0b011 0b1101 0b0000 0b010 TPIDR_EL0 EL0 Read/Write
Software
Thread ID
Register

0b11 0b011 0b1101 0b0000 0b011 TPIDRRO_EL0 EL0 Read-Only
Software
Thread ID
Register

0b11 0b011 0b1101 0b0000 0b101 TPIDR2_EL0 EL0 Read/Write
Software
Thread ID
Register 2

0b11 0b011 0b1101 0b0000 0b111 SCXTNUM_EL0 EL0 Read/Write
Software
Context
Number

0b11 0b011 0b1101 0b0010 0b000 AMCR_EL0 Activity
Monitors
Control
Register

0b11 0b011 0b1101 0b0010 0b001 AMCFGR_EL0 Activity
Monitors
Configuration
Register

0b11 0b011 0b1101 0b0010 0b010 AMCGCR_EL0 Activity
Monitors
Counter Group
Configuration
Register

0b11 0b011 0b1101 0b0010 0b011 AMUSERENR_EL0 Activity
Monitors User
Enable Register

0b11 0b011 0b1101 0b0010 0b100 AMCNTENCLR0_EL0 Activity
Monitors Count
Enable Clear
Register 0

System Register index by instruction and encoding

Page 808

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b011 0b1101 0b0010 0b101 AMCNTENSET0_EL0 Activity
Monitors Count
Enable Set
Register 0

0b11 0b011 0b1101 0b0010 0b110 AMCG1IDR_EL0 Activity
Monitors
Counter Group
1 Identification
Register

0b11 0b011 0b1101 0b0011 0b000 AMCNTENCLR1_EL0 Activity
Monitors Count
Enable Clear
Register 1

0b11 0b011 0b1101 0b0011 0b001 AMCNTENSET1_EL0 Activity
Monitors Count
Enable Set
Register 1

0b11 0b011 0b1101 0b010:m[3] m[2:0] AMEVCNTR0<m>_EL0 Activity
Monitors Event
Counter
Registers 0

0b11 0b011 0b1101 0b011:m[3] m[2:0] AMEVTYPER0<m>_EL0 Activity
Monitors Event
Type Registers
0

0b11 0b011 0b1101 0b110:m[3] m[2:0] AMEVCNTR1<m>_EL0 Activity
Monitors Event
Counter
Registers 1

0b11 0b011 0b1101 0b111:m[3] m[2:0] AMEVTYPER1<m>_EL0 Activity
Monitors Event
Type Registers
1

0b11 0b011 0b1110 0b0000 0b000 CNTFRQ_EL0 Counter-timer
Frequency
register

0b11 0b011 0b1110 0b0000 0b001 CNTPCT_EL0 Counter-timer
Physical Count
register

0b11 0b011 0b1110 0b0000 0b010 CNTVCT_EL0 Counter-timer
Virtual Count
register

0b11 0b011 0b1110 0b0000 0b101 CNTPCTSS_EL0 Counter-timer
Self-
Synchronized
Physical Count
register

0b11 0b011 0b1110 0b0000 0b110 CNTVCTSS_EL0 Counter-timer
Self-
Synchronized
Virtual Count
register

0b11 0b011 0b1110 0b0010 0b000 CNTP_TVAL_EL0 Counter-timer
Physical Timer
TimerValue
register

0b11 0b011 0b1110 0b0010 0b001 CNTP_CTL_EL0 Counter-timer
Physical Timer
Control register

0b11 0b011 0b1110 0b0010 0b010 CNTP_CVAL_EL0 Counter-timer
Physical Timer
CompareValue
register

System Register index by instruction and encoding

Page 809

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b011 0b1110 0b0011 0b000 CNTV_TVAL_EL0 Counter-timer
Virtual Timer
TimerValue
register

0b11 0b011 0b1110 0b0011 0b001 CNTV_CTL_EL0 Counter-timer
Virtual Timer
Control register

0b11 0b011 0b1110 0b0011 0b010 CNTV_CVAL_EL0 Counter-timer
Virtual Timer
CompareValue
register

0b11 0b011 0b1110 0b10:m[4:3] m[2:0] PMEVCNTR<m>_EL0 Performance
Monitors Event
Count Registers

0b11 0b011 0b1110 0b1111 0b111 PMCCFILTR_EL0 Performance
Monitors Cycle
Count Filter
Register

0b11 0b011 0b1110 0b11:m[4:3] m[2:0] PMEVTYPER<m>_EL0 Performance
Monitors Event
Type Registers

0b11 0b100 0b0000 0b0000 0b000 VPIDR_EL2 Virtualization
Processor ID
Register

0b11 0b100 0b0000 0b0000 0b101 VMPIDR_EL2 Virtualization
Multiprocessor
ID Register

0b11 0b100 0b0001 0b0000 0b000 SCTLR_EL2 System Control
Register (EL2)

0b11 0b100 0b0001 0b0000 0b001 ACTLR_EL2 Auxiliary
Control
Register (EL2)

0b11 0b100 0b0001 0b0001 0b000 HCR_EL2 Hypervisor
Configuration
Register

0b11 0b100 0b0001 0b0001 0b001 MDCR_EL2 Monitor Debug
Configuration
Register (EL2)

0b11 0b100 0b0001 0b0001 0b010 CPTR_EL2 Architectural
Feature Trap
Register (EL2)

0b11 0b100 0b0001 0b0001 0b011 HSTR_EL2 Hypervisor
System Trap
Register

0b11 0b100 0b0001 0b0001 0b100 HFGRTR_EL2 Hypervisor
Fine-Grained
Read Trap
Register

0b11 0b100 0b0001 0b0001 0b101 HFGWTR_EL2 Hypervisor
Fine-Grained
Write Trap
Register

0b11 0b100 0b0001 0b0001 0b110 HFGITR_EL2 Hypervisor
Fine-Grained
Instruction
Trap Register

0b11 0b100 0b0001 0b0001 0b111 HACR_EL2 Hypervisor
Auxiliary
Control
Register

0b11 0b100 0b0001 0b0010 0b000 ZCR_EL2 SVE Control
Register (EL2)

System Register index by instruction and encoding

Page 810

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b100 0b0001 0b0010 0b001 TRFCR_EL2 Trace Filter
Control
Register (EL2)

0b11 0b100 0b0001 0b0010 0b010 HCRX_EL2 Extended
Hypervisor
Configuration
Register

0b11 0b100 0b0001 0b0010 0b101 SMPRIMAP_EL2 Streaming
Mode Priority
Mapping
Register

0b11 0b100 0b0001 0b0010 0b110 SMCR_EL2 SME Control
Register (EL2)

0b11 0b100 0b0001 0b0011 0b001 SDER32_EL2 AArch32
Secure Debug
Enable Register

0b11 0b100 0b0010 0b0000 0b000 TTBR0_EL2 Translation
Table Base
Register 0
(EL2)

0b11 0b100 0b0010 0b0000 0b001 TTBR1_EL2 Translation
Table Base
Register 1
(EL2)

0b11 0b100 0b0010 0b0000 0b010 TCR_EL2 Translation
Control
Register (EL2)

0b11 0b100 0b0010 0b0001 0b000 VTTBR_EL2 Virtualization
Translation
Table Base
Register

0b11 0b100 0b0010 0b0001 0b010 VTCR_EL2 Virtualization
Translation
Control
Register

0b11 0b100 0b0010 0b0010 0b000 VNCR_EL2 Virtual Nested
Control
Register

0b11 0b100 0b0010 0b0110 0b000 VSTTBR_EL2 Virtualization
Secure
Translation
Table Base
Register

0b11 0b100 0b0010 0b0110 0b010 VSTCR_EL2 Virtualization
Secure
Translation
Control
Register

0b11 0b100 0b0011 0b0000 0b000 DACR32_EL2 Domain Access
Control
Register

0b11 0b100 0b0011 0b0001 0b100 HDFGRTR_EL2 Hypervisor
Debug Fine-
Grained Read
Trap Register

0b11 0b100 0b0011 0b0001 0b101 HDFGWTR_EL2 Hypervisor
Debug Fine-
Grained Write
Trap Register

0b11 0b100 0b0011 0b0001 0b110 HAFGRTR_EL2 Hypervisor
Activity
Monitors Fine-

System Register index by instruction and encoding

Page 811

Register selectors
op0 op1 CRn CRm op2 Name Description

Grained Read
Trap Register

0b11 0b100 0b0100 0b0000 0b000 SPSR_EL2 Saved Program
Status Register
(EL2)

0b11 0b100 0b0100 0b0000 0b001 ELR_EL2 Exception Link
Register (EL2)

0b11 0b100 0b0100 0b0001 0b000 SP_EL1 Stack Pointer
(EL1)

0b11 0b100 0b0100 0b0011 0b000 SPSR_irq Saved Program
Status Register
(IRQ mode)

0b11 0b100 0b0100 0b0011 0b001 SPSR_abt Saved Program
Status Register
(Abort mode)

0b11 0b100 0b0100 0b0011 0b010 SPSR_und Saved Program
Status Register
(Undefined
mode)

0b11 0b100 0b0100 0b0011 0b011 SPSR_fiq Saved Program
Status Register
(FIQ mode)

0b11 0b100 0b0101 0b0000 0b001 IFSR32_EL2 Instruction
Fault Status
Register (EL2)

0b11 0b100 0b0101 0b0001 0b000 AFSR0_EL2 Auxiliary Fault
Status Register
0 (EL2)

0b11 0b100 0b0101 0b0001 0b001 AFSR1_EL2 Auxiliary Fault
Status Register
1 (EL2)

0b11 0b100 0b0101 0b0010 0b000 ESR_EL2 Exception
Syndrome
Register (EL2)

0b11 0b100 0b0101 0b0010 0b011 VSESR_EL2 Virtual SError
Exception
Syndrome
Register

0b11 0b100 0b0101 0b0011 0b000 FPEXC32_EL2 Floating-Point
Exception
Control register

0b11 0b100 0b0101 0b0110 0b000 TFSR_EL2 Tag Fault
Status Register
(EL2)

0b11 0b100 0b0110 0b0000 0b000 FAR_EL2 Fault Address
Register (EL2)

0b11 0b100 0b0110 0b0000 0b100 HPFAR_EL2 Hypervisor IPA
Fault Address
Register

0b11 0b100 0b1001 0b1001 0b000 PMSCR_EL2 Statistical
Profiling
Control
Register (EL2)

0b11 0b100 0b1010 0b0010 0b000 MAIR_EL2 Memory
Attribute
Indirection
Register (EL2)

0b11 0b100 0b1010 0b0011 0b000 AMAIR_EL2 Auxiliary
Memory
Attribute
Indirection
Register (EL2)

System Register index by instruction and encoding

Page 812

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b100 0b1010 0b0100 0b000 MPAMHCR_EL2 MPAM
Hypervisor
Control
Register (EL2)

0b11 0b100 0b1010 0b0100 0b001 MPAMVPMV_EL2 MPAM Virtual
Partition
Mapping Valid
Register

0b11 0b100 0b1010 0b0101 0b000 MPAM2_EL2 MPAM2
Register (EL2)

0b11 0b100 0b1010 0b0110 0b000 MPAMVPM0_EL2 MPAM Virtual
PARTID
Mapping
Register 0

0b11 0b100 0b1010 0b0110 0b001 MPAMVPM1_EL2 MPAM Virtual
PARTID
Mapping
Register 1

0b11 0b100 0b1010 0b0110 0b010 MPAMVPM2_EL2 MPAM Virtual
PARTID
Mapping
Register 2

0b11 0b100 0b1010 0b0110 0b011 MPAMVPM3_EL2 MPAM Virtual
PARTID
Mapping
Register 3

0b11 0b100 0b1010 0b0110 0b100 MPAMVPM4_EL2 MPAM Virtual
PARTID
Mapping
Register 4

0b11 0b100 0b1010 0b0110 0b101 MPAMVPM5_EL2 MPAM Virtual
PARTID
Mapping
Register 5

0b11 0b100 0b1010 0b0110 0b110 MPAMVPM6_EL2 MPAM Virtual
PARTID
Mapping
Register 6

0b11 0b100 0b1010 0b0110 0b111 MPAMVPM7_EL2 MPAM Virtual
PARTID
Mapping
Register 7

0b11 0b100 0b1100 0b0000 0b000 VBAR_EL2 Vector Base
Address
Register (EL2)

0b11 0b100 0b1100 0b0000 0b001 RVBAR_EL2 Reset Vector
Base Address
Register (if EL3
not
implemented)

0b11 0b100 0b1100 0b0000 0b010 RMR_EL2 Reset
Management
Register (EL2)

0b11 0b100 0b1100 0b0001 0b001 VDISR_EL2 Virtual
Deferred
Interrupt
Status Register

0b11 0b100 0b1100 0b1000 0b0:m[1:0] ICH_AP0R<m>_EL2 Interrupt
Controller Hyp
Active Priorities
Group 0
Registers

System Register index by instruction and encoding

Page 813

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b100 0b1100 0b1001 0b0:m[1:0] ICH_AP1R<m>_EL2 Interrupt
Controller Hyp
Active Priorities
Group 1
Registers

0b11 0b100 0b1100 0b1001 0b101 ICC_SRE_EL2 Interrupt
Controller
System
Register Enable
register (EL2)

0b11 0b100 0b1100 0b1011 0b000 ICH_HCR_EL2 Interrupt
Controller Hyp
Control
Register

0b11 0b100 0b1100 0b1011 0b001 ICH_VTR_EL2 Interrupt
Controller VGIC
Type Register

0b11 0b100 0b1100 0b1011 0b010 ICH_MISR_EL2 Interrupt
Controller
Maintenance
Interrupt State
Register

0b11 0b100 0b1100 0b1011 0b011 ICH_EISR_EL2 Interrupt
Controller End
of Interrupt
Status Register

0b11 0b100 0b1100 0b1011 0b101 ICH_ELRSR_EL2 Interrupt
Controller
Empty List
Register Status
Register

0b11 0b100 0b1100 0b1011 0b111 ICH_VMCR_EL2 Interrupt
Controller
Virtual Machine
Control
Register

0b11 0b100 0b1100 0b110:m[3] m[2:0] ICH_LR<m>_EL2 Interrupt
Controller List
Registers

0b11 0b100 0b1101 0b0000 0b001 CONTEXTIDR_EL2 Context ID
Register (EL2)

0b11 0b100 0b1101 0b0000 0b010 TPIDR_EL2 EL2 Software
Thread ID
Register

0b11 0b100 0b1101 0b0000 0b111 SCXTNUM_EL2 EL2 Read/Write
Software
Context
Number

0b11 0b100 0b1101 0b100:m[3] m[2:0] AMEVCNTVOFF0<m>_EL2 Activity
Monitors Event
Counter Virtual
Offset Registers
0

0b11 0b100 0b1101 0b101:m[3] m[2:0] AMEVCNTVOFF1<m>_EL2 Activity
Monitors Event
Counter Virtual
Offset Registers
1

0b11 0b100 0b1110 0b0000 0b011 CNTVOFF_EL2 Counter-timer
Virtual Offset
register

System Register index by instruction and encoding

Page 814

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b100 0b1110 0b0000 0b110 CNTPOFF_EL2 Counter-timer
Physical Offset
register

0b11 0b100 0b1110 0b0001 0b000 CNTHCTL_EL2 Counter-timer
Hypervisor
Control register

0b11 0b100 0b1110 0b0010 0b000 CNTHP_TVAL_EL2 Counter-timer
Physical Timer
TimerValue
register (EL2)

0b11 0b100 0b1110 0b0010 0b001 CNTHP_CTL_EL2 Counter-timer
Hypervisor
Physical Timer
Control register

0b11 0b100 0b1110 0b0010 0b010 CNTHP_CVAL_EL2 Counter-timer
Physical Timer
CompareValue
register (EL2)

0b11 0b100 0b1110 0b0011 0b000 CNTHV_TVAL_EL2 Counter-timer
Virtual Timer
TimerValue
Register (EL2)

0b11 0b100 0b1110 0b0011 0b001 CNTHV_CTL_EL2 Counter-timer
Virtual Timer
Control register
(EL2)

0b11 0b100 0b1110 0b0011 0b010 CNTHV_CVAL_EL2 Counter-timer
Virtual Timer
CompareValue
register (EL2)

0b11 0b100 0b1110 0b0100 0b000 CNTHVS_TVAL_EL2 Counter-timer
Secure Virtual
Timer
TimerValue
register (EL2)

0b11 0b100 0b1110 0b0100 0b001 CNTHVS_CTL_EL2 Counter-timer
Secure Virtual
Timer Control
register (EL2)

0b11 0b100 0b1110 0b0100 0b010 CNTHVS_CVAL_EL2 Counter-timer
Secure Virtual
Timer
CompareValue
register (EL2)

0b11 0b100 0b1110 0b0101 0b000 CNTHPS_TVAL_EL2 Counter-timer
Secure Physical
Timer
TimerValue
register (EL2)

0b11 0b100 0b1110 0b0101 0b001 CNTHPS_CTL_EL2 Counter-timer
Secure Physical
Timer Control
register (EL2)

0b11 0b100 0b1110 0b0101 0b010 CNTHPS_CVAL_EL2 Counter-timer
Secure Physical
Timer
CompareValue
register (EL2)

0b11 0b110 0b0001 0b0000 0b000 SCTLR_EL3 System Control
Register (EL3)

0b11 0b110 0b0001 0b0000 0b001 ACTLR_EL3 Auxiliary
Control
Register (EL3)

System Register index by instruction and encoding

Page 815

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b110 0b0001 0b0001 0b000 SCR_EL3 Secure
Configuration
Register

0b11 0b110 0b0001 0b0001 0b001 SDER32_EL3 AArch32
Secure Debug
Enable Register

0b11 0b110 0b0001 0b0001 0b010 CPTR_EL3 Architectural
Feature Trap
Register (EL3)

0b11 0b110 0b0001 0b0010 0b000 ZCR_EL3 SVE Control
Register (EL3)

0b11 0b110 0b0001 0b0010 0b110 SMCR_EL3 SME Control
Register (EL3)

0b11 0b110 0b0001 0b0011 0b001 MDCR_EL3 Monitor Debug
Configuration
Register (EL3)

0b11 0b110 0b0010 0b0000 0b000 TTBR0_EL3 Translation
Table Base
Register 0
(EL3)

0b11 0b110 0b0010 0b0000 0b010 TCR_EL3 Translation
Control
Register (EL3)

0b11 0b110 0b0010 0b0001 0b100 GPTBR_EL3 Granule
Protection
Table Base
Register

0b11 0b110 0b0010 0b0001 0b110 GPCCR_EL3 Granule
Protection
Check Control
Register (EL3)

0b11 0b110 0b0100 0b0000 0b000 SPSR_EL3 Saved Program
Status Register
(EL3)

0b11 0b110 0b0100 0b0000 0b001 ELR_EL3 Exception Link
Register (EL3)

0b11 0b110 0b0100 0b0001 0b000 SP_EL2 Stack Pointer
(EL2)

0b11 0b110 0b0101 0b0001 0b000 AFSR0_EL3 Auxiliary Fault
Status Register
0 (EL3)

0b11 0b110 0b0101 0b0001 0b001 AFSR1_EL3 Auxiliary Fault
Status Register
1 (EL3)

0b11 0b110 0b0101 0b0010 0b000 ESR_EL3 Exception
Syndrome
Register (EL3)

0b11 0b110 0b0101 0b0110 0b000 TFSR_EL3 Tag Fault
Status Register
(EL3)

0b11 0b110 0b0110 0b0000 0b000 FAR_EL3 Fault Address
Register (EL3)

0b11 0b110 0b0110 0b0000 0b101 MFAR_EL3 PA Fault
Address
Register

0b11 0b110 0b1010 0b0010 0b000 MAIR_EL3 Memory
Attribute
Indirection
Register (EL3)

0b11 0b110 0b1010 0b0011 0b000 AMAIR_EL3 Auxiliary
Memory

System Register index by instruction and encoding

Page 816

Register selectors
op0 op1 CRn CRm op2 Name Description

Attribute
Indirection
Register (EL3)

0b11 0b110 0b1010 0b0101 0b000 MPAM3_EL3 MPAM3
Register (EL3)

0b11 0b110 0b1100 0b0000 0b000 VBAR_EL3 Vector Base
Address
Register (EL3)

0b11 0b110 0b1100 0b0000 0b001 RVBAR_EL3 Reset Vector
Base Address
Register (if EL3
implemented)

0b11 0b110 0b1100 0b0000 0b010 RMR_EL3 Reset
Management
Register (EL3)

0b11 0b110 0b1100 0b1100 0b100 ICC_CTLR_EL3 Interrupt
Controller
Control
Register (EL3)

0b11 0b110 0b1100 0b1100 0b101 ICC_SRE_EL3 Interrupt
Controller
System
Register Enable
register (EL3)

0b11 0b110 0b1100 0b1100 0b111 ICC_IGRPEN1_EL3 Interrupt
Controller
Interrupt Group
1 Enable
register (EL3)

0b11 0b110 0b1101 0b0000 0b010 TPIDR_EL3 EL3 Software
Thread ID
Register

0b11 0b110 0b1101 0b0000 0b111 SCXTNUM_EL3 EL3 Read/Write
Software
Context
Number

0b11 0b111 0b1110 0b0010 0b000 CNTPS_TVAL_EL1 Counter-timer
Physical Secure
Timer
TimerValue
register

0b11 0b111 0b1110 0b0010 0b001 CNTPS_CTL_EL1 Counter-timer
Physical Secure
Timer Control
register

0b11 0b111 0b1110 0b0010 0b010 CNTPS_CVAL_EL1 Counter-timer
Physical Secure
Timer
CompareValue
register

Accessed using TLBI:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b1000 0b0001 0b000 TLBI VMALLE1OS TLB Invalidate by
VMID, All at stage 1,
EL1, Outer Shareable

0b01 0b000 0b1001 0b0001 0b000 TLBI
VMALLE1OSNXS

TLB Invalidate by
VMID, All at stage 1,
EL1, Outer Shareable

System Register index by instruction and encoding

Page 817

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b1000 0b0001 0b001 TLBI VAE1OS TLB Invalidate by VA,
EL1, Outer Shareable

0b01 0b000 0b1001 0b0001 0b001 TLBI VAE1OSNXS TLB Invalidate by VA,
EL1, Outer Shareable

0b01 0b000 0b1000 0b0001 0b010 TLBI ASIDE1OS TLB Invalidate by
ASID, EL1, Outer
Shareable

0b01 0b000 0b1001 0b0001 0b010 TLBI ASIDE1OSNXS TLB Invalidate by
ASID, EL1, Outer
Shareable

0b01 0b000 0b1000 0b0001 0b011 TLBI VAAE1OS TLB Invalidate by VA,
All ASID, EL1, Outer
Shareable

0b01 0b000 0b1001 0b0001 0b011 TLBI VAAE1OSNXS TLB Invalidate by VA,
All ASID, EL1, Outer
Shareable

0b01 0b000 0b1000 0b0001 0b101 TLBI VALE1OS TLB Invalidate by VA,
Last level, EL1, Outer
Shareable

0b01 0b000 0b1001 0b0001 0b101 TLBI VALE1OSNXS TLB Invalidate by VA,
Last level, EL1, Outer
Shareable

0b01 0b000 0b1000 0b0001 0b111 TLBI VAALE1OS TLB Invalidate by VA,
All ASID, Last Level,
EL1, Outer Shareable

0b01 0b000 0b1001 0b0001 0b111 TLBI VAALE1OSNXS TLB Invalidate by VA,
All ASID, Last Level,
EL1, Outer Shareable

0b01 0b000 0b1000 0b0010 0b001 TLBI RVAE1IS TLB Range Invalidate
by VA, EL1, Inner
Shareable

0b01 0b000 0b1001 0b0010 0b001 TLBI RVAE1ISNXS TLB Range Invalidate
by VA, EL1, Inner
Shareable

0b01 0b000 0b1000 0b0010 0b011 TLBI RVAAE1IS TLB Range Invalidate
by VA, All ASID, EL1,
Inner Shareable

0b01 0b000 0b1001 0b0010 0b011 TLBI RVAAE1ISNXS TLB Range Invalidate
by VA, All ASID, EL1,
Inner Shareable

0b01 0b000 0b1000 0b0010 0b101 TLBI RVALE1IS TLB Range Invalidate
by VA, Last level, EL1,
Inner Shareable

0b01 0b000 0b1001 0b0010 0b101 TLBI RVALE1ISNXS TLB Range Invalidate
by VA, Last level, EL1,
Inner Shareable

0b01 0b000 0b1000 0b0010 0b111 TLBI RVAALE1IS TLB Range Invalidate
by VA, All ASID, Last
Level, EL1, Inner
Shareable

0b01 0b000 0b1001 0b0010 0b111 TLBI
RVAALE1ISNXS

TLB Range Invalidate
by VA, All ASID, Last
Level, EL1, Inner
Shareable

0b01 0b000 0b1000 0b0011 0b000 TLBI VMALLE1IS TLB Invalidate by
VMID, All at stage 1,
EL1, Inner Shareable

0b01 0b000 0b1001 0b0011 0b000 TLBI
VMALLE1ISNXS

TLB Invalidate by
VMID, All at stage 1,
EL1, Inner Shareable

System Register index by instruction and encoding

Page 818

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b1000 0b0011 0b001 TLBI VAE1IS TLB Invalidate by VA,
EL1, Inner Shareable

0b01 0b000 0b1001 0b0011 0b001 TLBI VAE1ISNXS TLB Invalidate by VA,
EL1, Inner Shareable

0b01 0b000 0b1000 0b0011 0b010 TLBI ASIDE1IS TLB Invalidate by
ASID, EL1, Inner
Shareable

0b01 0b000 0b1001 0b0011 0b010 TLBI ASIDE1ISNXS TLB Invalidate by
ASID, EL1, Inner
Shareable

0b01 0b000 0b1000 0b0011 0b011 TLBI VAAE1IS TLB Invalidate by VA,
All ASID, EL1, Inner
Shareable

0b01 0b000 0b1001 0b0011 0b011 TLBI VAAE1ISNXS TLB Invalidate by VA,
All ASID, EL1, Inner
Shareable

0b01 0b000 0b1000 0b0011 0b101 TLBI VALE1IS TLB Invalidate by VA,
Last level, EL1, Inner
Shareable

0b01 0b000 0b1001 0b0011 0b101 TLBI VALE1ISNXS TLB Invalidate by VA,
Last level, EL1, Inner
Shareable

0b01 0b000 0b1000 0b0011 0b111 TLBI VAALE1IS TLB Invalidate by VA,
All ASID, Last Level,
EL1, Inner Shareable

0b01 0b000 0b1001 0b0011 0b111 TLBI VAALE1ISNXS TLB Invalidate by VA,
All ASID, Last Level,
EL1, Inner Shareable

0b01 0b000 0b1000 0b0101 0b001 TLBI RVAE1OS TLB Range Invalidate
by VA, EL1, Outer
Shareable

0b01 0b000 0b1001 0b0101 0b001 TLBI RVAE1OSNXS TLB Range Invalidate
by VA, EL1, Outer
Shareable

0b01 0b000 0b1000 0b0101 0b011 TLBI RVAAE1OS TLB Range Invalidate
by VA, All ASID, EL1,
Outer Shareable

0b01 0b000 0b1001 0b0101 0b011 TLBI RVAAE1OSNXS TLB Range Invalidate
by VA, All ASID, EL1,
Outer Shareable

0b01 0b000 0b1000 0b0101 0b101 TLBI RVALE1OS TLB Range Invalidate
by VA, Last level, EL1,
Outer Shareable

0b01 0b000 0b1001 0b0101 0b101 TLBI RVALE1OSNXS TLB Range Invalidate
by VA, Last level, EL1,
Outer Shareable

0b01 0b000 0b1000 0b0101 0b111 TLBI RVAALE1OS TLB Range Invalidate
by VA, All ASID, Last
Level, EL1, Outer
Shareable

0b01 0b000 0b1001 0b0101 0b111 TLBI
RVAALE1OSNXS

TLB Range Invalidate
by VA, All ASID, Last
Level, EL1, Outer
Shareable

0b01 0b000 0b1000 0b0110 0b001 TLBI RVAE1 TLB Range Invalidate
by VA, EL1

0b01 0b000 0b1001 0b0110 0b001 TLBI RVAE1NXS TLB Range Invalidate
by VA, EL1

0b01 0b000 0b1000 0b0110 0b011 TLBI RVAAE1 TLB Range Invalidate
by VA, All ASID, EL1

System Register index by instruction and encoding

Page 819

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b1001 0b0110 0b011 TLBI RVAAE1NXS TLB Range Invalidate
by VA, All ASID, EL1

0b01 0b000 0b1000 0b0110 0b101 TLBI RVALE1 TLB Range Invalidate
by VA, Last level, EL1

0b01 0b000 0b1001 0b0110 0b101 TLBI RVALE1NXS TLB Range Invalidate
by VA, Last level, EL1

0b01 0b000 0b1000 0b0110 0b111 TLBI RVAALE1 TLB Range Invalidate
by VA, All ASID, Last
level, EL1

0b01 0b000 0b1001 0b0110 0b111 TLBI RVAALE1NXS TLB Range Invalidate
by VA, All ASID, Last
level, EL1

0b01 0b000 0b1000 0b0111 0b000 TLBI VMALLE1 TLB Invalidate by
VMID, All at stage 1,
EL1

0b01 0b000 0b1001 0b0111 0b000 TLBI VMALLE1NXS TLB Invalidate by
VMID, All at stage 1,
EL1

0b01 0b000 0b1000 0b0111 0b001 TLBI VAE1 TLB Invalidate by VA,
EL1

0b01 0b000 0b1001 0b0111 0b001 TLBI VAE1NXS TLB Invalidate by VA,
EL1

0b01 0b000 0b1000 0b0111 0b010 TLBI ASIDE1 TLB Invalidate by
ASID, EL1

0b01 0b000 0b1001 0b0111 0b010 TLBI ASIDE1NXS TLB Invalidate by
ASID, EL1

0b01 0b000 0b1000 0b0111 0b011 TLBI VAAE1 TLB Invalidate by VA,
All ASID, EL1

0b01 0b000 0b1001 0b0111 0b011 TLBI VAAE1NXS TLB Invalidate by VA,
All ASID, EL1

0b01 0b000 0b1000 0b0111 0b101 TLBI VALE1 TLB Invalidate by VA,
Last level, EL1

0b01 0b000 0b1001 0b0111 0b101 TLBI VALE1NXS TLB Invalidate by VA,
Last level, EL1

0b01 0b000 0b1000 0b0111 0b111 TLBI VAALE1 TLB Invalidate by VA,
All ASID, Last level,
EL1

0b01 0b000 0b1001 0b0111 0b111 TLBI VAALE1NXS TLB Invalidate by VA,
All ASID, Last level,
EL1

0b01 0b100 0b1000 0b0000 0b001 TLBI IPAS2E1IS TLB Invalidate by
Intermediate Physical
Address, Stage 2, EL1,
Inner Shareable

0b01 0b100 0b1001 0b0000 0b001 TLBI IPAS2E1ISNXS TLB Invalidate by
Intermediate Physical
Address, Stage 2, EL1,
Inner Shareable

0b01 0b100 0b1000 0b0000 0b010 TLBI RIPAS2E1IS TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, EL1, Inner
Shareable

0b01 0b100 0b1001 0b0000 0b010 TLBI
RIPAS2E1ISNXS

TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, EL1, Inner
Shareable

0b01 0b100 0b1000 0b0000 0b101 TLBI IPAS2LE1IS TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last

System Register index by instruction and encoding

Page 820

Register selectors
op0 op1 CRn CRm op2 Name Description

level, EL1, Inner
Shareable

0b01 0b100 0b1001 0b0000 0b101 TLBI
IPAS2LE1ISNXS

TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last
level, EL1, Inner
Shareable

0b01 0b100 0b1000 0b0000 0b110 TLBI RIPAS2LE1IS TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, Last level,
EL1, Inner Shareable

0b01 0b100 0b1001 0b0000 0b110 TLBI
RIPAS2LE1ISNXS

TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, Last level,
EL1, Inner Shareable

0b01 0b100 0b1000 0b0001 0b000 TLBI ALLE2OS TLB Invalidate All,
EL2, Outer Shareable

0b01 0b100 0b1001 0b0001 0b000 TLBI ALLE2OSNXS TLB Invalidate All,
EL2, Outer Shareable

0b01 0b100 0b1000 0b0001 0b001 TLBI VAE2OS TLB Invalidate by VA,
EL2, Outer Shareable

0b01 0b100 0b1001 0b0001 0b001 TLBI VAE2OSNXS TLB Invalidate by VA,
EL2, Outer Shareable

0b01 0b100 0b1000 0b0001 0b100 TLBI ALLE1OS TLB Invalidate All,
EL1, Outer Shareable

0b01 0b100 0b1001 0b0001 0b100 TLBI ALLE1OSNXS TLB Invalidate All,
EL1, Outer Shareable

0b01 0b100 0b1000 0b0001 0b101 TLBI VALE2OS TLB Invalidate by VA,
Last level, EL2, Outer
Shareable

0b01 0b100 0b1001 0b0001 0b101 TLBI VALE2OSNXS TLB Invalidate by VA,
Last level, EL2, Outer
Shareable

0b01 0b100 0b1000 0b0001 0b110 TLBI
VMALLS12E1OS

TLB Invalidate by
VMID, All at Stage 1
and 2, EL1, Outer
Shareable

0b01 0b100 0b1001 0b0001 0b110 TLBI
VMALLS12E1OSNXS

TLB Invalidate by
VMID, All at Stage 1
and 2, EL1, Outer
Shareable

0b01 0b100 0b1000 0b0010 0b001 TLBI RVAE2IS TLB Range Invalidate
by VA, EL2, Inner
Shareable

0b01 0b100 0b1001 0b0010 0b001 TLBI RVAE2ISNXS TLB Range Invalidate
by VA, EL2, Inner
Shareable

0b01 0b100 0b1000 0b0010 0b101 TLBI RVALE2IS TLB Range Invalidate
by VA, Last level, EL2,
Inner Shareable

0b01 0b100 0b1001 0b0010 0b101 TLBI RVALE2ISNXS TLB Range Invalidate
by VA, Last level, EL2,
Inner Shareable

0b01 0b100 0b1000 0b0011 0b000 TLBI ALLE2IS TLB Invalidate All,
EL2, Inner Shareable

0b01 0b100 0b1001 0b0011 0b000 TLBI ALLE2ISNXS TLB Invalidate All,
EL2, Inner Shareable

0b01 0b100 0b1000 0b0011 0b001 TLBI VAE2IS TLB Invalidate by VA,
EL2, Inner Shareable

System Register index by instruction and encoding

Page 821

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b100 0b1001 0b0011 0b001 TLBI VAE2ISNXS TLB Invalidate by VA,
EL2, Inner Shareable

0b01 0b100 0b1000 0b0011 0b100 TLBI ALLE1IS TLB Invalidate All,
EL1, Inner Shareable

0b01 0b100 0b1001 0b0011 0b100 TLBI ALLE1ISNXS TLB Invalidate All,
EL1, Inner Shareable

0b01 0b100 0b1000 0b0011 0b101 TLBI VALE2IS TLB Invalidate by VA,
Last level, EL2, Inner
Shareable

0b01 0b100 0b1001 0b0011 0b101 TLBI VALE2ISNXS TLB Invalidate by VA,
Last level, EL2, Inner
Shareable

0b01 0b100 0b1000 0b0011 0b110 TLBI
VMALLS12E1IS

TLB Invalidate by
VMID, All at Stage 1
and 2, EL1, Inner
Shareable

0b01 0b100 0b1001 0b0011 0b110 TLBI
VMALLS12E1ISNXS

TLB Invalidate by
VMID, All at Stage 1
and 2, EL1, Inner
Shareable

0b01 0b100 0b1000 0b0100 0b000 TLBI IPAS2E1OS TLB Invalidate by
Intermediate Physical
Address, Stage 2, EL1,
Outer Shareable

0b01 0b100 0b1001 0b0100 0b000 TLBI
IPAS2E1OSNXS

TLB Invalidate by
Intermediate Physical
Address, Stage 2, EL1,
Outer Shareable

0b01 0b100 0b1000 0b0100 0b001 TLBI IPAS2E1 TLB Invalidate by
Intermediate Physical
Address, Stage 2, EL1

0b01 0b100 0b1001 0b0100 0b001 TLBI IPAS2E1NXS TLB Invalidate by
Intermediate Physical
Address, Stage 2, EL1

0b01 0b100 0b1000 0b0100 0b010 TLBI RIPAS2E1 TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, EL1

0b01 0b100 0b1001 0b0100 0b010 TLBI RIPAS2E1NXS TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, EL1

0b01 0b100 0b1000 0b0100 0b011 TLBI RIPAS2E1OS TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, EL1, Outer
Shareable

0b01 0b100 0b1001 0b0100 0b011 TLBI
RIPAS2E1OSNXS

TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, EL1, Outer
Shareable

0b01 0b100 0b1000 0b0100 0b100 TLBI IPAS2LE1OS TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last
level, EL1, Outer
Shareable

0b01 0b100 0b1001 0b0100 0b100 TLBI
IPAS2LE1OSNXS

TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last
level, EL1, Outer
Shareable

System Register index by instruction and encoding

Page 822

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b100 0b1000 0b0100 0b101 TLBI IPAS2LE1 TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last
level, EL1

0b01 0b100 0b1001 0b0100 0b101 TLBI IPAS2LE1NXS TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last
level, EL1

0b01 0b100 0b1000 0b0100 0b110 TLBI RIPAS2LE1 TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, Last level,
EL1

0b01 0b100 0b1001 0b0100 0b110 TLBI RIPAS2LE1NXS TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, Last level,
EL1

0b01 0b100 0b1000 0b0100 0b111 TLBI RIPAS2LE1OS TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, Last level,
EL1, Outer Shareable

0b01 0b100 0b1001 0b0100 0b111 TLBI
RIPAS2LE1OSNXS

TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, Last level,
EL1, Outer Shareable

0b01 0b100 0b1000 0b0101 0b001 TLBI RVAE2OS TLB Range Invalidate
by VA, EL2, Outer
Shareable

0b01 0b100 0b1001 0b0101 0b001 TLBI RVAE2OSNXS TLB Range Invalidate
by VA, EL2, Outer
Shareable

0b01 0b100 0b1000 0b0101 0b101 TLBI RVALE2OS TLB Range Invalidate
by VA, Last level, EL2,
Outer Shareable

0b01 0b100 0b1001 0b0101 0b101 TLBI RVALE2OSNXS TLB Range Invalidate
by VA, Last level, EL2,
Outer Shareable

0b01 0b100 0b1000 0b0110 0b001 TLBI RVAE2 TLB Range Invalidate
by VA, EL2

0b01 0b100 0b1001 0b0110 0b001 TLBI RVAE2NXS TLB Range Invalidate
by VA, EL2

0b01 0b100 0b1000 0b0110 0b101 TLBI RVALE2 TLB Range Invalidate
by VA, Last level, EL2

0b01 0b100 0b1001 0b0110 0b101 TLBI RVALE2NXS TLB Range Invalidate
by VA, Last level, EL2

0b01 0b100 0b1000 0b0111 0b000 TLBI ALLE2 TLB Invalidate All, EL2
0b01 0b100 0b1001 0b0111 0b000 TLBI ALLE2NXS TLB Invalidate All, EL2
0b01 0b100 0b1000 0b0111 0b001 TLBI VAE2 TLB Invalidate by VA,

EL2
0b01 0b100 0b1001 0b0111 0b001 TLBI VAE2NXS TLB Invalidate by VA,

EL2
0b01 0b100 0b1000 0b0111 0b100 TLBI ALLE1 TLB Invalidate All, EL1
0b01 0b100 0b1001 0b0111 0b100 TLBI ALLE1NXS TLB Invalidate All, EL1
0b01 0b100 0b1000 0b0111 0b101 TLBI VALE2 TLB Invalidate by VA,

Last level, EL2
0b01 0b100 0b1001 0b0111 0b101 TLBI VALE2NXS TLB Invalidate by VA,

Last level, EL2

System Register index by instruction and encoding

Page 823

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b100 0b1000 0b0111 0b110 TLBI VMALLS12E1 TLB Invalidate by
VMID, All at Stage 1
and 2, EL1

0b01 0b100 0b1001 0b0111 0b110 TLBI
VMALLS12E1NXS

TLB Invalidate by
VMID, All at Stage 1
and 2, EL1

0b01 0b110 0b1000 0b0001 0b000 TLBI ALLE3OS TLB Invalidate All,
EL3, Outer Shareable

0b01 0b110 0b1001 0b0001 0b000 TLBI ALLE3OSNXS TLB Invalidate All,
EL3, Outer Shareable

0b01 0b110 0b1000 0b0001 0b001 TLBI VAE3OS TLB Invalidate by VA,
EL3, Outer Shareable

0b01 0b110 0b1001 0b0001 0b001 TLBI VAE3OSNXS TLB Invalidate by VA,
EL3, Outer Shareable

0b01 0b110 0b1000 0b0001 0b100 TLBI PAALLOS TLB Invalidate GPT
Information by PA, All
Entries, Outer
Shareable

0b01 0b110 0b1000 0b0001 0b101 TLBI VALE3OS TLB Invalidate by VA,
Last level, EL3, Outer
Shareable

0b01 0b110 0b1001 0b0001 0b101 TLBI VALE3OSNXS TLB Invalidate by VA,
Last level, EL3, Outer
Shareable

0b01 0b110 0b1000 0b0010 0b001 TLBI RVAE3IS TLB Range Invalidate
by VA, EL3, Inner
Shareable

0b01 0b110 0b1001 0b0010 0b001 TLBI RVAE3ISNXS TLB Range Invalidate
by VA, EL3, Inner
Shareable

0b01 0b110 0b1000 0b0010 0b101 TLBI RVALE3IS TLB Range Invalidate
by VA, Last level, EL3,
Inner Shareable

0b01 0b110 0b1001 0b0010 0b101 TLBI RVALE3ISNXS TLB Range Invalidate
by VA, Last level, EL3,
Inner Shareable

0b01 0b110 0b1000 0b0011 0b000 TLBI ALLE3IS TLB Invalidate All,
EL3, Inner Shareable

0b01 0b110 0b1001 0b0011 0b000 TLBI ALLE3ISNXS TLB Invalidate All,
EL3, Inner Shareable

0b01 0b110 0b1000 0b0011 0b001 TLBI VAE3IS TLB Invalidate by VA,
EL3, Inner Shareable

0b01 0b110 0b1001 0b0011 0b001 TLBI VAE3ISNXS TLB Invalidate by VA,
EL3, Inner Shareable

0b01 0b110 0b1000 0b0011 0b101 TLBI VALE3IS TLB Invalidate by VA,
Last level, EL3, Inner
Shareable

0b01 0b110 0b1001 0b0011 0b101 TLBI VALE3ISNXS TLB Invalidate by VA,
Last level, EL3, Inner
Shareable

0b01 0b110 0b1000 0b0100 0b011 TLBI RPAOS TLB Range Invalidate
GPT Information by PA,
Outer Shareable

0b01 0b110 0b1000 0b0100 0b111 TLBI RPALOS TLB Range Invalidate
GPT Information by PA,
Last level, Outer
Shareable

0b01 0b110 0b1000 0b0101 0b001 TLBI RVAE3OS TLB Range Invalidate
by VA, EL3, Outer
Shareable

System Register index by instruction and encoding

Page 824

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b110 0b1001 0b0101 0b001 TLBI RVAE3OSNXS TLB Range Invalidate
by VA, EL3, Outer
Shareable

0b01 0b110 0b1000 0b0101 0b101 TLBI RVALE3OS TLB Range Invalidate
by VA, Last level, EL3,
Outer Shareable

0b01 0b110 0b1001 0b0101 0b101 TLBI RVALE3OSNXS TLB Range Invalidate
by VA, Last level, EL3,
Outer Shareable

0b01 0b110 0b1000 0b0110 0b001 TLBI RVAE3 TLB Range Invalidate
by VA, EL3

0b01 0b110 0b1001 0b0110 0b001 TLBI RVAE3NXS TLB Range Invalidate
by VA, EL3

0b01 0b110 0b1000 0b0110 0b101 TLBI RVALE3 TLB Range Invalidate
by VA, Last level, EL3

0b01 0b110 0b1001 0b0110 0b101 TLBI RVALE3NXS TLB Range Invalidate
by VA, Last level, EL3

0b01 0b110 0b1000 0b0111 0b000 TLBI ALLE3 TLB Invalidate All, EL3
0b01 0b110 0b1001 0b0111 0b000 TLBI ALLE3NXS TLB Invalidate All, EL3
0b01 0b110 0b1000 0b0111 0b001 TLBI VAE3 TLB Invalidate by VA,

EL3
0b01 0b110 0b1001 0b0111 0b001 TLBI VAE3NXS TLB Invalidate by VA,

EL3
0b01 0b110 0b1000 0b0111 0b100 TLBI PAALL TLB Invalidate GPT

Information by PA, All
Entries, Local

0b01 0b110 0b1000 0b0111 0b101 TLBI VALE3 TLB Invalidate by VA,
Last level, EL3

0b01 0b110 0b1001 0b0111 0b101 TLBI VALE3NXS TLB Invalidate by VA,
Last level, EL3

3021/03/2022 2017:3305

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

System Register index by instruction and encoding

Page 825

(old) htmldiff from- (new)

System Register index by functional group
Below are indexes for registers with the following main functional groups:

• ID
• Memory
• Other
• Exception
• Special
• PSTATE
• Cache
• Address
• TLB
• PMU
• Reset
• Thread
• IMP DEF
• Timer
• Debug
• CTI
• Virt
• Secure
• Float
• Legacy
• Trace
• GIC
• GICD
• GICR
• GICC
• GICV
• GICH
• GITS
• RAS
• MPAM
• Pointer authentication
• AMU
• Root
• GIC ITS registers

In the ID functional group:
Exec state Name Description
AArch32 CCSIDR Current Cache Size ID Register
AArch32 CCSIDR2 Current Cache Size ID Register 2
AArch32 CLIDR Cache Level ID Register
AArch32 CSSELR Cache Size Selection Register
AArch32 CTR Cache Type Register
AArch32 ID_AFR0 Auxiliary Feature Register 0
AArch32 ID_DFR0 Debug Feature Register 0
AArch32 ID_DFR1 Debug Feature Register 1
AArch32 ID_ISAR0 Instruction Set Attribute Register 0
AArch32 ID_ISAR1 Instruction Set Attribute Register 1
AArch32 ID_ISAR2 Instruction Set Attribute Register 2
AArch32 ID_ISAR3 Instruction Set Attribute Register 3
AArch32 ID_ISAR4 Instruction Set Attribute Register 4
AArch32 ID_ISAR5 Instruction Set Attribute Register 5
AArch32 ID_ISAR6 Instruction Set Attribute Register 6
AArch32 ID_MMFR0 Memory Model Feature Register 0
AArch32 ID_MMFR1 Memory Model Feature Register 1
AArch32 ID_MMFR2 Memory Model Feature Register 2
AArch32 ID_MMFR3 Memory Model Feature Register 3
AArch32 ID_MMFR4 Memory Model Feature Register 4

System Register index by functional group

Page 826

Exec state Name Description
AArch32 ID_MMFR5 Memory Model Feature Register 5
AArch32 ID_PFR0 Processor Feature Register 0
AArch32 ID_PFR1 Processor Feature Register 1
AArch32 ID_PFR2 Processor Feature Register 2
AArch32 MIDR Main ID Register
AArch32 MPIDR Multiprocessor Affinity Register
AArch32 REVIDR Revision ID Register
AArch32 TCMTR TCM Type Register
AArch32 TLBTR TLB Type Register
AArch64 CCSIDR2_EL1 Current Cache Size ID Register 2
AArch64 CCSIDR_EL1 Current Cache Size ID Register
AArch64 CLIDR_EL1 Cache Level ID Register
AArch64 CSSELR_EL1 Cache Size Selection Register
AArch64 CTR_EL0 Cache Type Register
AArch64 DCZID_EL0 Data Cache Zero ID register
AArch64 GMID_EL1 Multiple tag transfer ID register
AArch64 ID_AA64AFR0_EL1 AArch64 Auxiliary Feature Register 0
AArch64 ID_AA64AFR1_EL1 AArch64 Auxiliary Feature Register 1
AArch64 ID_AA64DFR0_EL1 AArch64 Debug Feature Register 0
AArch64 ID_AA64DFR1_EL1 AArch64 Debug Feature Register 1
AArch64 ID_AA64ISAR0_EL1 AArch64 Instruction Set Attribute Register 0
AArch64 ID_AA64ISAR1_EL1 AArch64 Instruction Set Attribute Register 1
AArch64 ID_AA64ISAR2_EL1 AArch64 Instruction Set Attribute Register 2
AArch64 ID_AA64MMFR0_EL1 AArch64 Memory Model Feature Register 0
AArch64 ID_AA64MMFR1_EL1 AArch64 Memory Model Feature Register 1
AArch64 ID_AA64MMFR2_EL1 AArch64 Memory Model Feature Register 2
AArch64 ID_AA64PFR0_EL1 AArch64 Processor Feature Register 0
AArch64 ID_AA64PFR1_EL1 AArch64 Processor Feature Register 1
AArch64 ID_AA64SMFR0_EL1 SME Feature ID register 0
AArch64 ID_AA64ZFR0_EL1 SVE Feature ID register 0
AArch64 ID_AFR0_EL1 AArch32 Auxiliary Feature Register 0
AArch64 ID_DFR0_EL1 AArch32 Debug Feature Register 0
AArch64 ID_DFR1_EL1 Debug Feature Register 1
AArch64 ID_ISAR0_EL1 AArch32 Instruction Set Attribute Register 0
AArch64 ID_ISAR1_EL1 AArch32 Instruction Set Attribute Register 1
AArch64 ID_ISAR2_EL1 AArch32 Instruction Set Attribute Register 2
AArch64 ID_ISAR3_EL1 AArch32 Instruction Set Attribute Register 3
AArch64 ID_ISAR4_EL1 AArch32 Instruction Set Attribute Register 4
AArch64 ID_ISAR5_EL1 AArch32 Instruction Set Attribute Register 5
AArch64 ID_ISAR6_EL1 AArch32 Instruction Set Attribute Register 6
AArch64 ID_MMFR0_EL1 AArch32 Memory Model Feature Register 0
AArch64 ID_MMFR1_EL1 AArch32 Memory Model Feature Register 1
AArch64 ID_MMFR2_EL1 AArch32 Memory Model Feature Register 2
AArch64 ID_MMFR3_EL1 AArch32 Memory Model Feature Register 3
AArch64 ID_MMFR4_EL1 AArch32 Memory Model Feature Register 4
AArch64 ID_MMFR5_EL1 AArch32 Memory Model Feature Register 5
AArch64 ID_PFR0_EL1 AArch32 Processor Feature Register 0
AArch64 ID_PFR1_EL1 AArch32 Processor Feature Register 1
AArch64 ID_PFR2_EL1 AArch32 Processor Feature Register 2
AArch64 MIDR_EL1 Main ID Register
AArch64 MPAMIDR_EL1 MPAM ID Register (EL1)
AArch64 MPIDR_EL1 Multiprocessor Affinity Register
AArch64 REVIDR_EL1 Revision ID Register
AArch64 SMIDR_EL1 Streaming Mode Identification Register
External EDAA32PFR External Debug Auxiliary Processor Feature Register
External EDDFR External Debug Feature Register
External EDPFR External Debug Processor Feature Register
External MIDR_EL1 Main ID Register

In the Memory functional group:
Exec state Name Description
AArch32 AMAIR0 Auxiliary Memory Attribute Indirection Register 0

System Register index by functional group

Page 827

Exec state Name Description
AArch32 AMAIR1 Auxiliary Memory Attribute Indirection Register 1
AArch32 CONTEXTIDR Context ID Register
AArch32 DACR Domain Access Control Register
AArch32 HAMAIR0 Hyp Auxiliary Memory Attribute Indirection Register 0
AArch32 HAMAIR1 Hyp Auxiliary Memory Attribute Indirection Register 1
AArch32 HMAIR0 Hyp Memory Attribute Indirection Register 0
AArch32 HMAIR1 Hyp Memory Attribute Indirection Register 1
AArch32 HTCR Hyp Translation Control Register
AArch32 HTTBR Hyp Translation Table Base Register
AArch32 MAIR0 Memory Attribute Indirection Register 0
AArch32 MAIR1 Memory Attribute Indirection Register 1
AArch32 NMRR Normal Memory Remap Register
AArch32 PRRR Primary Region Remap Register
AArch32 TTBCR Translation Table Base Control Register
AArch32 TTBCR2 Translation Table Base Control Register 2
AArch32 TTBR0 Translation Table Base Register 0
AArch32 TTBR1 Translation Table Base Register 1
AArch32 VTCR Virtualization Translation Control Register
AArch32 VTTBR Virtualization Translation Table Base Register
AArch64 AMAIR_EL1 Auxiliary Memory Attribute Indirection Register (EL1)
AArch64 AMAIR_EL2 Auxiliary Memory Attribute Indirection Register (EL2)
AArch64 AMAIR_EL3 Auxiliary Memory Attribute Indirection Register (EL3)
AArch64 CONTEXTIDR_EL1 Context ID Register (EL1)
AArch64 CONTEXTIDR_EL2 Context ID Register (EL2)
AArch64 DACR32_EL2 Domain Access Control Register
AArch64 GPCCR_EL3 Granule Protection Check Control Register (EL3)
AArch64 GPTBR_EL3 Granule Protection Table Base Register
AArch64 LORC_EL1 LORegion Control (EL1)
AArch64 LOREA_EL1 LORegion End Address (EL1)
AArch64 LORID_EL1 LORegionID (EL1)
AArch64 LORN_EL1 LORegion Number (EL1)
AArch64 LORSA_EL1 LORegion Start Address (EL1)
AArch64 MAIR_EL1 Memory Attribute Indirection Register (EL1)
AArch64 MAIR_EL2 Memory Attribute Indirection Register (EL2)
AArch64 MAIR_EL3 Memory Attribute Indirection Register (EL3)
AArch64 TCR_EL1 Translation Control Register (EL1)
AArch64 TCR_EL2 Translation Control Register (EL2)
AArch64 TCR_EL3 Translation Control Register (EL3)
AArch64 TTBR0_EL1 Translation Table Base Register 0 (EL1)
AArch64 TTBR0_EL2 Translation Table Base Register 0 (EL2)
AArch64 TTBR0_EL3 Translation Table Base Register 0 (EL3)
AArch64 TTBR1_EL1 Translation Table Base Register 1 (EL1)
AArch64 TTBR1_EL2 Translation Table Base Register 1 (EL2)
AArch64 VTCR_EL2 Virtualization Translation Control Register
AArch64 VTTBR_EL2 Virtualization Translation Table Base Register

In the Other functional group:
Exec state Name Description
AArch32 CPACR Architectural Feature Access Control Register
AArch32 SCTLR System Control Register
AArch64 CPACR_EL1 Architectural Feature Access Control Register
AArch64 SCTLR_EL1 System Control Register (EL1)
AArch64 SCTLR_EL3 System Control Register (EL3)
AArch64 SMCR_EL1 SME Control Register (EL1)
AArch64 SMCR_EL2 SME Control Register (EL2)
AArch64 SMCR_EL3 SME Control Register (EL3)
AArch64 SMPRIMAP_EL2 Streaming Mode Priority Mapping Register
AArch64 SMPRI_EL1 Streaming Mode Priority Register
AArch64 ZCR_EL1 SVE Control Register (EL1)
AArch64 ZCR_EL2 SVE Control Register (EL2)
AArch64 ZCR_EL3 SVE Control Register (EL3)

System Register index by functional group

Page 828

In the Exception functional group:
Exec state Name Description
AArch32 ADFSR Auxiliary Data Fault Status Register
AArch32 AIFSR Auxiliary Instruction Fault Status Register
AArch32 DFAR Data Fault Address Register
AArch32 DFSR Data Fault Status Register
AArch32 HADFSR Hyp Auxiliary Data Fault Status Register
AArch32 HAIFSR Hyp Auxiliary Instruction Fault Status Register
AArch32 HDFAR Hyp Data Fault Address Register
AArch32 HIFAR Hyp Instruction Fault Address Register
AArch32 HPFAR Hyp IPA Fault Address Register
AArch32 HSR Hyp Syndrome Register
AArch32 HVBAR Hyp Vector Base Address Register
AArch32 IFAR Instruction Fault Address Register
AArch32 IFSR Instruction Fault Status Register
AArch32 ISR Interrupt Status Register
AArch32 MVBAR Monitor Vector Base Address Register
AArch32 VBAR Vector Base Address Register
AArch64 AFSR0_EL1 Auxiliary Fault Status Register 0 (EL1)
AArch64 AFSR0_EL2 Auxiliary Fault Status Register 0 (EL2)
AArch64 AFSR0_EL3 Auxiliary Fault Status Register 0 (EL3)
AArch64 AFSR1_EL1 Auxiliary Fault Status Register 1 (EL1)
AArch64 AFSR1_EL2 Auxiliary Fault Status Register 1 (EL2)
AArch64 AFSR1_EL3 Auxiliary Fault Status Register 1 (EL3)
AArch64 ESR_EL1 Exception Syndrome Register (EL1)
AArch64 ESR_EL2 Exception Syndrome Register (EL2)
AArch64 ESR_EL3 Exception Syndrome Register (EL3)
AArch64 FAR_EL1 Fault Address Register (EL1)
AArch64 FAR_EL2 Fault Address Register (EL2)
AArch64 FAR_EL3 Fault Address Register (EL3)
AArch64 HPFAR_EL2 Hypervisor IPA Fault Address Register
AArch64 IFSR32_EL2 Instruction Fault Status Register (EL2)
AArch64 ISR_EL1 Interrupt Status Register
AArch64 MFAR_EL3 PA Fault Address Register
AArch64 VBAR_EL1 Vector Base Address Register (EL1)
AArch64 VBAR_EL2 Vector Base Address Register (EL2)
AArch64 VBAR_EL3 Vector Base Address Register (EL3)

In the Special functional group:
Exec state Name Description
AArch32 DLR Debug Link Register
AArch32 DSPSR Debug Saved Program Status Register
AArch32 ELR_hyp Exception Link Register (Hyp mode)
AArch32 SPSR Saved Program Status Register
AArch32 SPSR_abt Saved Program Status Register (Abort mode)
AArch32 SPSR_fiq Saved Program Status Register (FIQ mode)
AArch32 SPSR_hyp Saved Program Status Register (Hyp mode)
AArch32 SPSR_irq Saved Program Status Register (IRQ mode)
AArch32 SPSR_mon Saved Program Status Register (Monitor mode)
AArch32 SPSR_svc Saved Program Status Register (Supervisor mode)
AArch32 SPSR_und Saved Program Status Register (Undefined mode)
AArch64 ELR_EL1 Exception Link Register (EL1)
AArch64 ELR_EL2 Exception Link Register (EL2)
AArch64 ELR_EL3 Exception Link Register (EL3)
AArch64 SPSR_EL1 Saved Program Status Register (EL1)
AArch64 SPSR_EL2 Saved Program Status Register (EL2)
AArch64 SPSR_EL3 Saved Program Status Register (EL3)
AArch64 SPSR_abt Saved Program Status Register (Abort mode)
AArch64 SPSR_fiq Saved Program Status Register (FIQ mode)
AArch64 SPSR_irq Saved Program Status Register (IRQ mode)
AArch64 SPSR_und Saved Program Status Register (Undefined mode)

System Register index by functional group

Page 829

Exec state Name Description
AArch64 SP_EL0 Stack Pointer (EL0)
AArch64 SP_EL1 Stack Pointer (EL1)
AArch64 SP_EL2 Stack Pointer (EL2)
AArch64 SP_EL3 Stack Pointer (EL3)

In the PSTATE functional group:
Exec state Name Description
AArch32 APSR Application Program Status Register
AArch32 CPSR Current Program Status Register
AArch64 ALLINT All Interrupt Mask Bit
AArch64 CurrentEL Current Exception Level
AArch64 DAIF Interrupt Mask Bits
AArch64 DIT Data Independent Timing
AArch64 NZCV Condition Flags
AArch64 PAN Privileged Access Never
AArch64 SPSel Stack Pointer Select
AArch64 SSBS Speculative Store Bypass Safe
AArch64 SVCR Streaming Vector Control Register
AArch64 TCO Tag Check Override
AArch64 UAO User Access Override

In the Cache functional group:
Exec state Name Description
AArch32 BPIALL Branch Predictor Invalidate All
AArch32 BPIALLIS Branch Predictor Invalidate All, Inner Shareable
AArch32 BPIMVA Branch Predictor Invalidate by VA
AArch32 DCCIMVAC Data Cache line Clean and Invalidate by VA to PoC
AArch32 DCCISW Data Cache line Clean and Invalidate by Set/Way
AArch32 DCCMVAC Data Cache line Clean by VA to PoC
AArch32 DCCMVAU Data Cache line Clean by VA to PoU
AArch32 DCCSW Data Cache line Clean by Set/Way
AArch32 DCIMVAC Data Cache line Invalidate by VA to PoC
AArch32 DCISW Data Cache line Invalidate by Set/Way
AArch32 ICIALLU Instruction Cache Invalidate All to PoU
AArch32 ICIALLUIS Instruction Cache Invalidate All to PoU, Inner Shareable
AArch32 ICIMVAU Instruction Cache line Invalidate by VA to PoU
AArch64 DC CGDSW Clean of Data and Allocation Tags by Set/Way
AArch64 DC CGDVAC Clean of Data and Allocation Tags by VA to PoC
AArch64 DC CGDVADP Clean of Data and Allocation Tags by VA to PoDP
AArch64 DC CGDVAP Clean of Data and Allocation Tags by VA to PoP
AArch64 DC CGSW Clean of Allocation Tags by Set/Way
AArch64 DC CGVAC Clean of Allocation Tags by VA to PoC
AArch64 DC CGVADP Clean of Allocation Tags by VA to PoDP
AArch64 DC CGVAP Clean of Allocation Tags by VA to PoP
AArch64 DC CIGDPAPA Clean and Invalidate of Data and Allocation Tags by PA to PoPA
AArch64 DC CIGDSW Clean and Invalidate of Data and Allocation Tags by Set/Way
AArch64 DC CIGDVAC Clean and Invalidate of Data and Allocation Tags by VA to PoC
AArch64 DC CIGSW Clean and Invalidate of Allocation Tags by Set/Way
AArch64 DC CIGVAC Clean and Invalidate of Allocation Tags by VA to PoC
AArch64 DC CIPAPA Data or unified Cache line Clean and Invalidate by PA to PoPA
AArch64 DC CISW Data or unified Cache line Clean and Invalidate by Set/Way
AArch64 DC CIVAC Data or unified Cache line Clean and Invalidate by VA to PoC
AArch64 DC CSW Data or unified Cache line Clean by Set/Way
AArch64 DC CVAC Data or unified Cache line Clean by VA to PoC
AArch64 DC CVADP Data or unified Cache line Clean by VA to PoDP
AArch64 DC CVAP Data or unified Cache line Clean by VA to PoP
AArch64 DC CVAU Data or unified Cache line Clean by VA to PoU
AArch64 DC GVA Data Cache set Allocation Tag by VA
AArch64 DC GZVA Data Cache set Allocation Tags and Zero by VA
AArch64 DC IGDSW Invalidate of Data and Allocation Tags by Set/Way

System Register index by functional group

Page 830

Exec state Name Description
AArch64 DC IGDVAC Invalidate of Data and Allocation Tags by VA to PoC
AArch64 DC IGSW Invalidate of Allocation Tags by Set/Way
AArch64 DC IGVAC Invalidate of Allocation Tags by VA to PoC
AArch64 DC ISW Data or unified Cache line Invalidate by Set/Way
AArch64 DC IVAC Data or unified Cache line Invalidate by VA to PoC
AArch64 DC ZVA Data Cache Zero by VA
AArch64 IC IALLU Instruction Cache Invalidate All to PoU
AArch64 IC IALLUIS Instruction Cache Invalidate All to PoU, Inner Shareable
AArch64 IC IVAU Instruction Cache line Invalidate by VA to PoU

In the Address functional group:
Exec state Name Description
AArch32 ATS12NSOPR Address Translate Stages 1 and 2 Non-secure Only PL1 Read
AArch32 ATS12NSOPW Address Translate Stages 1 and 2 Non-secure Only PL1 Write
AArch32 ATS12NSOUR Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read
AArch32 ATS12NSOUW Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write
AArch32 ATS1CPR Address Translate Stage 1 Current state PL1 Read
AArch32 ATS1CPRP Address Translate Stage 1 Current state PL1 Read PAN
AArch32 ATS1CPW Address Translate Stage 1 Current state PL1 Write
AArch32 ATS1CPWP Address Translate Stage 1 Current state PL1 Write PAN
AArch32 ATS1CUR Address Translate Stage 1 Current state Unprivileged Read
AArch32 ATS1CUW Address Translate Stage 1 Current state Unprivileged Write
AArch32 ATS1HR Address Translate Stage 1 Hyp mode Read
AArch32 ATS1HW Address Translate Stage 1 Hyp mode Write
AArch32 PAR Physical Address Register
AArch64 AT S12E0R Address Translate Stages 1 and 2 EL0 Read
AArch64 AT S12E0W Address Translate Stages 1 and 2 EL0 Write
AArch64 AT S12E1R Address Translate Stages 1 and 2 EL1 Read
AArch64 AT S12E1W Address Translate Stages 1 and 2 EL1 Write
AArch64 AT S1E0R Address Translate Stage 1 EL0 Read
AArch64 AT S1E0W Address Translate Stage 1 EL0 Write
AArch64 AT S1E1R Address Translate Stage 1 EL1 Read
AArch64 AT S1E1RP Address Translate Stage 1 EL1 Read PAN
AArch64 AT S1E1W Address Translate Stage 1 EL1 Write
AArch64 AT S1E1WP Address Translate Stage 1 EL1 Write PAN
AArch64 AT S1E2R Address Translate Stage 1 EL2 Read
AArch64 AT S1E2W Address Translate Stage 1 EL2 Write
AArch64 AT S1E3R Address Translate Stage 1 EL3 Read
AArch64 AT S1E3W Address Translate Stage 1 EL3 Write
AArch64 PAR_EL1 Physical Address Register

In the TLB functional group:
Exec
state Name Description

AArch32 CFPRCTX Control Flow Prediction Restriction by Context
AArch32 CPPRCTX Cache Prefetch Prediction Restriction by Context
AArch32 DTLBIALL Data TLB Invalidate All
AArch32 DTLBIASID Data TLB Invalidate by ASID match
AArch32 DTLBIMVA Data TLB Invalidate by VA
AArch32 DVPRCTX Data Value Prediction Restriction by Context
AArch32 ITLBIALL Instruction TLB Invalidate All
AArch32 ITLBIASID Instruction TLB Invalidate by ASID match
AArch32 ITLBIMVA Instruction TLB Invalidate by VA
AArch32 TLBIALL TLB Invalidate All
AArch32 TLBIALLH TLB Invalidate All, Hyp mode
AArch32 TLBIALLHIS TLB Invalidate All, Hyp mode, Inner Shareable
AArch32 TLBIALLIS TLB Invalidate All, Inner Shareable
AArch32 TLBIALLNSNH TLB Invalidate All, Non-Secure Non-Hyp
AArch32 TLBIALLNSNHIS TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
AArch32 TLBIASID TLB Invalidate by ASID match

System Register index by functional group

Page 831

Exec
state Name Description

AArch32 TLBIASIDIS TLB Invalidate by ASID match, Inner Shareable
AArch32 TLBIIPAS2 TLB Invalidate by Intermediate Physical Address, Stage 2
AArch32 TLBIIPAS2IS TLB Invalidate by Intermediate Physical Address, Stage 2, Inner

Shareable
AArch32 TLBIIPAS2L TLB Invalidate by Intermediate Physical Address, Stage 2, Last

level
AArch32 TLBIIPAS2LIS TLB Invalidate by Intermediate Physical Address, Stage 2, Last

level, Inner Shareable
AArch32 TLBIMVA TLB Invalidate by VA
AArch32 TLBIMVAA TLB Invalidate by VA, All ASID
AArch32 TLBIMVAAIS TLB Invalidate by VA, All ASID, Inner Shareable
AArch32 TLBIMVAAL TLB Invalidate by VA, All ASID, Last level
AArch32 TLBIMVAALIS TLB Invalidate by VA, All ASID, Last level, Inner Shareable
AArch32 TLBIMVAH TLB Invalidate by VA, Hyp mode
AArch32 TLBIMVAHIS TLB Invalidate by VA, Hyp mode, Inner Shareable
AArch32 TLBIMVAIS TLB Invalidate by VA, Inner Shareable
AArch32 TLBIMVAL TLB Invalidate by VA, Last level
AArch32 TLBIMVALH TLB Invalidate by VA, Last level, Hyp mode
AArch32 TLBIMVALHIS TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable
AArch32 TLBIMVALIS TLB Invalidate by VA, Last level, Inner Shareable
AArch64 TLBI ALLE1, TLBI ALLE1NXS TLB Invalidate All, EL1
AArch64 TLBI ALLE1IS, TLBI

ALLE1ISNXS
TLB Invalidate All, EL1, Inner Shareable

AArch64 TLBI ALLE1OS, TLBI
ALLE1OSNXS

TLB Invalidate All, EL1, Outer Shareable

AArch64 TLBI ALLE2, TLBI ALLE2NXS TLB Invalidate All, EL2
AArch64 TLBI ALLE2IS, TLBI

ALLE2ISNXS
TLB Invalidate All, EL2, Inner Shareable

AArch64 TLBI ALLE2OS, TLBI
ALLE2OSNXS

TLB Invalidate All, EL2, Outer Shareable

AArch64 TLBI ALLE3, TLBI ALLE3NXS TLB Invalidate All, EL3
AArch64 TLBI ALLE3IS, TLBI

ALLE3ISNXS
TLB Invalidate All, EL3, Inner Shareable

AArch64 TLBI ALLE3OS, TLBI
ALLE3OSNXS

TLB Invalidate All, EL3, Outer Shareable

AArch64 TLBI ASIDE1, TLBI ASIDE1NXS TLB Invalidate by ASID, EL1
AArch64 TLBI ASIDE1IS, TLBI

ASIDE1ISNXS
TLB Invalidate by ASID, EL1, Inner Shareable

AArch64 TLBI ASIDE1OS, TLBI
ASIDE1OSNXS

TLB Invalidate by ASID, EL1, Outer Shareable

AArch64 TLBI IPAS2E1, TLBI
IPAS2E1NXS

TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

AArch64 TLBI IPAS2E1IS, TLBI
IPAS2E1ISNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, EL1,
Inner Shareable

AArch64 TLBI IPAS2E1OS, TLBI
IPAS2E1OSNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, EL1,
Outer Shareable

AArch64 TLBI IPAS2LE1, TLBI
IPAS2LE1NXS

TLB Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1

AArch64 TLBI IPAS2LE1IS, TLBI
IPAS2LE1ISNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Inner Shareable

AArch64 TLBI IPAS2LE1OS, TLBI
IPAS2LE1OSNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Outer Shareable

AArch64 TLBI PAALL TLB Invalidate GPT Information by PA, All Entries, Local
AArch64 TLBI PAALLOS TLB Invalidate GPT Information by PA, All Entries, Outer

Shareable
AArch64 TLBI RIPAS2E1, TLBI

RIPAS2E1NXS
TLB Range Invalidate by Intermediate Physical Address, Stage 2,
EL1

AArch64 TLBI RIPAS2E1IS, TLBI
RIPAS2E1ISNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
EL1, Inner Shareable

AArch64 TLBI RIPAS2E1OS, TLBI
RIPAS2E1OSNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
EL1, Outer Shareable

AArch64 TLBI RIPAS2LE1, TLBI
RIPAS2LE1NXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1

AArch64 TLBI RIPAS2LE1IS, TLBI
RIPAS2LE1ISNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1, Inner Shareable

System Register index by functional group

Page 832

Exec
state Name Description

AArch64 TLBI RIPAS2LE1OS, TLBI
RIPAS2LE1OSNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1, Outer Shareable

AArch64 TLBI RPALOS TLB Range Invalidate GPT Information by PA, Last level, Outer
Shareable

AArch64 TLBI RPAOS TLB Range Invalidate GPT Information by PA, Outer Shareable
AArch64 TLBI RVAAE1, TLBI RVAAE1NXS TLB Range Invalidate by VA, All ASID, EL1
AArch64 TLBI RVAAE1IS, TLBI

RVAAE1ISNXS
TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

AArch64 TLBI RVAAE1OS, TLBI
RVAAE1OSNXS

TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

AArch64 TLBI RVAALE1, TLBI
RVAALE1NXS

TLB Range Invalidate by VA, All ASID, Last level, EL1

AArch64 TLBI RVAALE1IS, TLBI
RVAALE1ISNXS

TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner
Shareable

AArch64 TLBI RVAALE1OS, TLBI
RVAALE1OSNXS

TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer
Shareable

AArch64 TLBI RVAE1, TLBI RVAE1NXS TLB Range Invalidate by VA, EL1
AArch64 TLBI RVAE1IS, TLBI

RVAE1ISNXS
TLB Range Invalidate by VA, EL1, Inner Shareable

AArch64 TLBI RVAE1OS, TLBI
RVAE1OSNXS

TLB Range Invalidate by VA, EL1, Outer Shareable

AArch64 TLBI RVAE2, TLBI RVAE2NXS TLB Range Invalidate by VA, EL2
AArch64 TLBI RVAE2IS, TLBI

RVAE2ISNXS
TLB Range Invalidate by VA, EL2, Inner Shareable

AArch64 TLBI RVAE2OS, TLBI
RVAE2OSNXS

TLB Range Invalidate by VA, EL2, Outer Shareable

AArch64 TLBI RVAE3, TLBI RVAE3NXS TLB Range Invalidate by VA, EL3
AArch64 TLBI RVAE3IS, TLBI

RVAE3ISNXS
TLB Range Invalidate by VA, EL3, Inner Shareable

AArch64 TLBI RVAE3OS, TLBI
RVAE3OSNXS

TLB Range Invalidate by VA, EL3, Outer Shareable

AArch64 TLBI RVALE1, TLBI RVALE1NXS TLB Range Invalidate by VA, Last level, EL1
AArch64 TLBI RVALE1IS, TLBI

RVALE1ISNXS
TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

AArch64 TLBI RVALE1OS, TLBI
RVALE1OSNXS

TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

AArch64 TLBI RVALE2, TLBI RVALE2NXS TLB Range Invalidate by VA, Last level, EL2
AArch64 TLBI RVALE2IS, TLBI

RVALE2ISNXS
TLB Range Invalidate by VA, Last level, EL2, Inner Shareable

AArch64 TLBI RVALE2OS, TLBI
RVALE2OSNXS

TLB Range Invalidate by VA, Last level, EL2, Outer Shareable

AArch64 TLBI RVALE3, TLBI RVALE3NXS TLB Range Invalidate by VA, Last level, EL3
AArch64 TLBI RVALE3IS, TLBI

RVALE3ISNXS
TLB Range Invalidate by VA, Last level, EL3, Inner Shareable

AArch64 TLBI RVALE3OS, TLBI
RVALE3OSNXS

TLB Range Invalidate by VA, Last level, EL3, Outer Shareable

AArch64 TLBI VAAE1, TLBI VAAE1NXS TLB Invalidate by VA, All ASID, EL1
AArch64 TLBI VAAE1IS, TLBI

VAAE1ISNXS
TLB Invalidate by VA, All ASID, EL1, Inner Shareable

AArch64 TLBI VAAE1OS, TLBI
VAAE1OSNXS

TLB Invalidate by VA, All ASID, EL1, Outer Shareable

AArch64 TLBI VAALE1, TLBI VAALE1NXS TLB Invalidate by VA, All ASID, Last level, EL1
AArch64 TLBI VAALE1IS, TLBI

VAALE1ISNXS
TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

AArch64 TLBI VAALE1OS, TLBI
VAALE1OSNXS

TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

AArch64 TLBI VAE1, TLBI VAE1NXS TLB Invalidate by VA, EL1
AArch64 TLBI VAE1IS, TLBI VAE1ISNXS TLB Invalidate by VA, EL1, Inner Shareable
AArch64 TLBI VAE1OS, TLBI VAE1OSNXS TLB Invalidate by VA, EL1, Outer Shareable
AArch64 TLBI VAE2, TLBI VAE2NXS TLB Invalidate by VA, EL2
AArch64 TLBI VAE2IS, TLBI VAE2ISNXS TLB Invalidate by VA, EL2, Inner Shareable
AArch64 TLBI VAE2OS, TLBI VAE2OSNXS TLB Invalidate by VA, EL2, Outer Shareable
AArch64 TLBI VAE3, TLBI VAE3NXS TLB Invalidate by VA, EL3
AArch64 TLBI VAE3IS, TLBI VAE3ISNXS TLB Invalidate by VA, EL3, Inner Shareable
AArch64 TLBI VAE3OS, TLBI VAE3OSNXS TLB Invalidate by VA, EL3, Outer Shareable

System Register index by functional group

Page 833

Exec
state Name Description

AArch64 TLBI VALE1, TLBI VALE1NXS TLB Invalidate by VA, Last level, EL1
AArch64 TLBI VALE1IS, TLBI

VALE1ISNXS
TLB Invalidate by VA, Last level, EL1, Inner Shareable

AArch64 TLBI VALE1OS, TLBI
VALE1OSNXS

TLB Invalidate by VA, Last level, EL1, Outer Shareable

AArch64 TLBI VALE2, TLBI VALE2NXS TLB Invalidate by VA, Last level, EL2
AArch64 TLBI VALE2IS, TLBI

VALE2ISNXS
TLB Invalidate by VA, Last level, EL2, Inner Shareable

AArch64 TLBI VALE2OS, TLBI
VALE2OSNXS

TLB Invalidate by VA, Last level, EL2, Outer Shareable

AArch64 TLBI VALE3, TLBI VALE3NXS TLB Invalidate by VA, Last level, EL3
AArch64 TLBI VALE3IS, TLBI

VALE3ISNXS
TLB Invalidate by VA, Last level, EL3, Inner Shareable

AArch64 TLBI VALE3OS, TLBI
VALE3OSNXS

TLB Invalidate by VA, Last level, EL3, Outer Shareable

AArch64 TLBI VMALLE1, TLBI
VMALLE1NXS

TLB Invalidate by VMID, All at stage 1, EL1

AArch64 TLBI VMALLE1IS, TLBI
VMALLE1ISNXS

TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable

AArch64 TLBI VMALLE1OS, TLBI
VMALLE1OSNXS

TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable

AArch64 TLBI VMALLS12E1, TLBI
VMALLS12E1NXS

TLB Invalidate by VMID, All at Stage 1 and 2, EL1

AArch64 TLBI VMALLS12E1IS, TLBI
VMALLS12E1ISNXS

TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner
Shareable

AArch64 TLBI VMALLS12E1OS, TLBI
VMALLS12E1OSNXS

TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Outer
Shareable

In the PMU functional group:
Exec state Name Description
AArch32 PMCCFILTR Performance Monitors Cycle Count Filter Register
AArch32 PMCCNTR Performance Monitors Cycle Count Register
AArch32 PMCEID0 Performance Monitors Common Event Identification register 0
AArch32 PMCEID1 Performance Monitors Common Event Identification register 1
AArch32 PMCEID2 Performance Monitors Common Event Identification register 2
AArch32 PMCEID3 Performance Monitors Common Event Identification register 3
AArch32 PMCNTENCLR Performance Monitors Count Enable Clear register
AArch32 PMCNTENSET Performance Monitors Count Enable Set register
AArch32 PMCR Performance Monitors Control Register
AArch32 PMEVCNTR<n> Performance Monitors Event Count Registers
AArch32 PMEVTYPER<n> Performance Monitors Event Type Registers
AArch32 PMINTENCLR Performance Monitors Interrupt Enable Clear register
AArch32 PMINTENSET Performance Monitors Interrupt Enable Set register
AArch32 PMMIR Performance Monitors Machine Identification Register
AArch32 PMOVSR Performance Monitors Overflow Flag Status Register
AArch32 PMOVSSET Performance Monitors Overflow Flag Status Set register
AArch32 PMSELR Performance Monitors Event Counter Selection Register
AArch32 PMSWINC Performance Monitors Software Increment register
AArch32 PMUSERENR Performance Monitors User Enable Register
AArch32 PMXEVCNTR Performance Monitors Selected Event Count Register
AArch32 PMXEVTYPER Performance Monitors Selected Event Type Register
AArch64 PMCCFILTR_EL0 Performance Monitors Cycle Count Filter Register
AArch64 PMCCNTR_EL0 Performance Monitors Cycle Count Register
AArch64 PMCEID0_EL0 Performance Monitors Common Event Identification register 0
AArch64 PMCEID1_EL0 Performance Monitors Common Event Identification register 1
AArch64 PMCNTENCLR_EL0 Performance Monitors Count Enable Clear register
AArch64 PMCNTENSET_EL0 Performance Monitors Count Enable Set register
AArch64 PMCR_EL0 Performance Monitors Control Register
AArch64 PMEVCNTR<n>_EL0 Performance Monitors Event Count Registers
AArch64 PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers
AArch64 PMINTENCLR_EL1 Performance Monitors Interrupt Enable Clear register
AArch64 PMINTENSET_EL1 Performance Monitors Interrupt Enable Set register

System Register index by functional group

Page 834

Exec state Name Description
AArch64 PMMIR_EL1 Performance Monitors Machine Identification Register
AArch64 PMOVSCLR_EL0 Performance Monitors Overflow Flag Status Clear Register
AArch64 PMOVSSET_EL0 Performance Monitors Overflow Flag Status Set register
AArch64 PMSELR_EL0 Performance Monitors Event Counter Selection Register
AArch64 PMSWINC_EL0 Performance Monitors Software Increment register
AArch64 PMUSERENR_EL0 Performance Monitors User Enable Register
AArch64 PMXEVCNTR_EL0 Performance Monitors Selected Event Count Register
AArch64 PMXEVTYPER_EL0 Performance Monitors Selected Event Type Register
External PMAUTHSTATUS Performance Monitors Authentication Status register
External PMCCFILTR_EL0 Performance Monitors Cycle Counter Filter Register
External PMCCNTR_EL0 Performance Monitors Cycle Counter
External PMCEID0 Performance Monitors Common Event Identification register 0
External PMCEID1 Performance Monitors Common Event Identification register 1
External PMCEID2 Performance Monitors Common Event Identification register 2
External PMCEID3 Performance Monitors Common Event Identification register 3
External PMCFGR Performance Monitors Configuration Register
External PMCID1SR CONTEXTIDR_EL1 Sample Register
External PMCID2SR CONTEXTIDR_EL2 Sample Register
External PMCIDR0 Performance Monitors Component Identification Register 0
External PMCIDR1 Performance Monitors Component Identification Register 1
External PMCIDR2 Performance Monitors Component Identification Register 2
External PMCIDR3 Performance Monitors Component Identification Register 3
External PMCNTENCLR_EL0 Performance Monitors Count Enable Clear register
External PMCNTENSET_EL0 Performance Monitors Count Enable Set register
External PMCR_EL0 Performance Monitors Control Register
External PMDEVAFF0 Performance Monitors Device Affinity register 0
External PMDEVAFF1 Performance Monitors Device Affinity register 1
External PMDEVARCH Performance Monitors Device Architecture register
External PMDEVID Performance Monitors Device ID register
External PMDEVTYPE Performance Monitors Device Type register
External PMEVCNTR<n>_EL0 Performance Monitors Event Count Registers
External PMEVFILTR<n> Performance Monitors Event Type Select Register <n>
External PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers
External PMINTENCLR_EL1 Performance Monitors Interrupt Enable Clear register
External PMINTENSET_EL1 Performance Monitors Interrupt Enable Set register
External PMITCTRL Performance Monitors Integration mode Control register
External PMLAR Performance Monitors Lock Access Register
External PMLSR Performance Monitors Lock Status Register
External PMMIR Performance Monitors Machine Identification Register
External PMOVSCLR_EL0 Performance Monitors Overflow Flag Status Clear register
External PMOVSSET_EL0 Performance Monitors Overflow Flag Status Set register
External PMPCSR Program Counter Sample Register
External PMPIDR0 Performance Monitors Peripheral Identification Register 0
External PMPIDR1 Performance Monitors Peripheral Identification Register 1
External PMPIDR2 Performance Monitors Peripheral Identification Register 2
External PMPIDR3 Performance Monitors Peripheral Identification Register 3
External PMPIDR4 Performance Monitors Peripheral Identification Register 4
External PMSWINC_EL0 Performance Monitors Software Increment register
External PMVIDSR VMID Sample Register

In the Reset functional group:
Exec state Name Description
AArch32 HRMR Hyp Reset Management Register
AArch32 RMR Reset Management Register
AArch32 RVBAR Reset Vector Base Address Register
AArch64 RMR_EL1 Reset Management Register (EL1)
AArch64 RMR_EL2 Reset Management Register (EL2)
AArch64 RMR_EL3 Reset Management Register (EL3)
AArch64 RVBAR_EL1 Reset Vector Base Address Register (if EL2 and EL3 not implemented)
AArch64 RVBAR_EL2 Reset Vector Base Address Register (if EL3 not implemented)
AArch64 RVBAR_EL3 Reset Vector Base Address Register (if EL3 implemented)

System Register index by functional group

Page 835

In the Thread functional group:
Exec state Name Description
AArch32 HTPIDR Hyp Software Thread ID Register
AArch32 TPIDRPRW PL1 Software Thread ID Register
AArch32 TPIDRURO PL0 Read-Only Software Thread ID Register
AArch32 TPIDRURW PL0 Read/Write Software Thread ID Register
AArch64 SCXTNUM_EL0 EL0 Read/Write Software Context Number
AArch64 SCXTNUM_EL1 EL1 Read/Write Software Context Number
AArch64 SCXTNUM_EL2 EL2 Read/Write Software Context Number
AArch64 SCXTNUM_EL3 EL3 Read/Write Software Context Number
AArch64 TPIDR2_EL0 EL0 Read/Write Software Thread ID Register 2
AArch64 TPIDRRO_EL0 EL0 Read-Only Software Thread ID Register
AArch64 TPIDR_EL0 EL0 Read/Write Software Thread ID Register
AArch64 TPIDR_EL1 EL1 Software Thread ID Register
AArch64 TPIDR_EL2 EL2 Software Thread ID Register
AArch64 TPIDR_EL3 EL3 Software Thread ID Register

In the IMP DEF functional group:
Exec
state Name Description

AArch32 ACTLR Auxiliary Control Register
AArch32 ACTLR2 Auxiliary Control Register 2
AArch32 ADFSR Auxiliary Data Fault Status Register
AArch32 AIDR Auxiliary ID Register
AArch32 AIFSR Auxiliary Instruction Fault Status

Register
AArch32 AMAIR0 Auxiliary Memory Attribute Indirection

Register 0
AArch32 AMAIR1 Auxiliary Memory Attribute Indirection

Register 1
AArch32 HACTLR Hyp Auxiliary Control Register
AArch32 HACTLR2 Hyp Auxiliary Control Register 2
AArch32 HADFSR Hyp Auxiliary Data Fault Status Register
AArch32 HAIFSR Hyp Auxiliary Instruction Fault Status

Register
AArch32 HAMAIR0 Hyp Auxiliary Memory Attribute

Indirection Register 0
AArch32 HAMAIR1 Hyp Auxiliary Memory Attribute

Indirection Register 1
AArch64 ACTLR_EL1 Auxiliary Control Register (EL1)
AArch64 ACTLR_EL2 Auxiliary Control Register (EL2)
AArch64 ACTLR_EL3 Auxiliary Control Register (EL3)
AArch64 AFSR0_EL1 Auxiliary Fault Status Register 0 (EL1)
AArch64 AFSR0_EL2 Auxiliary Fault Status Register 0 (EL2)
AArch64 AFSR0_EL3 Auxiliary Fault Status Register 0 (EL3)
AArch64 AFSR1_EL1 Auxiliary Fault Status Register 1 (EL1)
AArch64 AFSR1_EL2 Auxiliary Fault Status Register 1 (EL2)
AArch64 AFSR1_EL3 Auxiliary Fault Status Register 1 (EL3)
AArch64 AIDR_EL1 Auxiliary ID Register
AArch64 AMAIR_EL1 Auxiliary Memory Attribute Indirection

Register (EL1)
AArch64 AMAIR_EL2 Auxiliary Memory Attribute Indirection

Register (EL2)
AArch64 AMAIR_EL3 Auxiliary Memory Attribute Indirection

Register (EL3)
AArch64 HACR_EL2 Hypervisor Auxiliary Control Register
AArch64 S3_<op1>_<Cn>_<Cm>_<op2> IMPLEMENTATION DEFINED registers
AArch64 SYS S1_<op1>_<Cn>_<Cm>_<op2>, SYSL

S1_<op1>_<Cn>_<Cm>_<op2>
IMPLEMENTATION DEFINED
maintenance instructions

System Register index by functional group

Page 836

In the Timer functional group:
Exec state Name Description
AArch32 CNTFRQ Counter-timer Frequency register
AArch32 CNTHPS_CTL Counter-timer Secure Physical Timer Control Register (EL2)
AArch32 CNTHPS_CVAL Counter-timer Secure Physical Timer CompareValue Register (EL2)
AArch32 CNTHPS_TVAL Counter-timer Secure Physical Timer TimerValue Register (EL2)
AArch32 CNTHP_CTL Counter-timer Hyp Physical Timer Control register
AArch32 CNTHVS_CTL Counter-timer Secure Virtual Timer Control Register (EL2)
AArch32 CNTHVS_CVAL Counter-timer Secure Virtual Timer CompareValue Register (EL2)
AArch32 CNTHVS_TVAL Counter-timer Secure Virtual Timer TimerValue Register (EL2)
AArch32 CNTHV_CTL Counter-timer Virtual Timer Control register (EL2)
AArch32 CNTHV_CVAL Counter-timer Virtual Timer CompareValue register (EL2)
AArch32 CNTHV_TVAL Counter-timer Virtual Timer TimerValue register (EL2)
AArch32 CNTKCTL Counter-timer Kernel Control register
AArch32 CNTPCT Counter-timer Physical Count register
AArch32 CNTPCTSS Counter-timer Self-Synchronized Physical Count register
AArch32 CNTP_CTL Counter-timer Physical Timer Control register
AArch32 CNTP_CVAL Counter-timer Physical Timer CompareValue register
AArch32 CNTP_TVAL Counter-timer Physical Timer TimerValue register
AArch32 CNTVCT Counter-timer Virtual Count register
AArch32 CNTVCTSS Counter-timer Self-Synchronized Virtual Count register
AArch32 CNTV_CTL Counter-timer Virtual Timer Control register
AArch32 CNTV_CVAL Counter-timer Virtual Timer CompareValue register
AArch32 CNTV_TVAL Counter-timer Virtual Timer TimerValue register
AArch64 CNTFRQ_EL0 Counter-timer Frequency register
AArch64 CNTHVS_CTL_EL2 Counter-timer Secure Virtual Timer Control register (EL2)
AArch64 CNTHVS_CVAL_EL2 Counter-timer Secure Virtual Timer CompareValue register (EL2)
AArch64 CNTHVS_TVAL_EL2 Counter-timer Secure Virtual Timer TimerValue register (EL2)
AArch64 CNTHV_CTL_EL2 Counter-timer Virtual Timer Control register (EL2)
AArch64 CNTHV_CVAL_EL2 Counter-timer Virtual Timer CompareValue register (EL2)
AArch64 CNTHV_TVAL_EL2 Counter-timer Virtual Timer TimerValue Register (EL2)
AArch64 CNTKCTL_EL1 Counter-timer Kernel Control register
AArch64 CNTPCTSS_EL0 Counter-timer Self-Synchronized Physical Count register
AArch64 CNTPCT_EL0 Counter-timer Physical Count register
AArch64 CNTPOFF_EL2 Counter-timer Physical Offset register
AArch64 CNTPS_CTL_EL1 Counter-timer Physical Secure Timer Control register
AArch64 CNTPS_CVAL_EL1 Counter-timer Physical Secure Timer CompareValue register
AArch64 CNTPS_TVAL_EL1 Counter-timer Physical Secure Timer TimerValue register
AArch64 CNTP_CTL_EL0 Counter-timer Physical Timer Control register
AArch64 CNTP_CVAL_EL0 Counter-timer Physical Timer CompareValue register
AArch64 CNTP_TVAL_EL0 Counter-timer Physical Timer TimerValue register
AArch64 CNTVCTSS_EL0 Counter-timer Self-Synchronized Virtual Count register
AArch64 CNTVCT_EL0 Counter-timer Virtual Count register
AArch64 CNTV_CTL_EL0 Counter-timer Virtual Timer Control register
AArch64 CNTV_CVAL_EL0 Counter-timer Virtual Timer CompareValue register
AArch64 CNTV_TVAL_EL0 Counter-timer Virtual Timer TimerValue register
External CNTACR<n> Counter-timer Access Control Registers
External CNTCR Counter Control Register
External CNTCV Counter Count Value register
External CNTEL0ACR Counter-timer EL0 Access Control Register
External CNTFID0 Counter Frequency ID
External CNTFID<n> Counter Frequency IDs, n > 0
External CNTFRQ Counter-timer Frequency
External CNTID Counter Identification Register
External CNTNSAR Counter-timer Non-secure Access Register
External CNTPCT Counter-timer Physical Count
External CNTP_CTL Counter-timer Physical Timer Control
External CNTP_CVAL Counter-timer Physical Timer CompareValue
External CNTP_TVAL Counter-timer Physical Timer TimerValue
External CNTSCR Counter Scale Register
External CNTSR Counter Status Register
External CNTTIDR Counter-timer Timer ID Register
External CNTVCT Counter-timer Virtual Count
External CNTVOFF Counter-timer Virtual Offset

System Register index by functional group

Page 837

Exec state Name Description
External CNTVOFF<n> Counter-timer Virtual Offsets
External CNTV_CTL Counter-timer Virtual Timer Control
External CNTV_CVAL Counter-timer Virtual Timer CompareValue
External CNTV_TVAL Counter-timer Virtual Timer TimerValue
External CounterID<n> Counter ID registers

In the Debug functional group:
Exec state Name Description
AArch32 DBGAUTHSTATUS Debug Authentication Status register
AArch32 DBGBCR<n> Debug Breakpoint Control Registers
AArch32 DBGBVR<n> Debug Breakpoint Value Registers
AArch32 DBGBXVR<n> Debug Breakpoint Extended Value Registers
AArch32 DBGCLAIMCLR Debug CLAIM Tag Clear register
AArch32 DBGCLAIMSET Debug CLAIM Tag Set register
AArch32 DBGDCCINT DCC Interrupt Enable Register
AArch32 DBGDEVID Debug Device ID register 0
AArch32 DBGDEVID1 Debug Device ID register 1
AArch32 DBGDEVID2 Debug Device ID register 2
AArch32 DBGDIDR Debug ID Register
AArch32 DBGDRAR Debug ROM Address Register
AArch32 DBGDSAR Debug Self Address Register
AArch32 DBGDSCRext Debug Status and Control Register, External View
AArch32 DBGDSCRint Debug Status and Control Register, Internal View
AArch32 DBGDTRRXext Debug OS Lock Data Transfer Register, Receive, External View
AArch32 DBGDTRRXint Debug Data Transfer Register, Receive
AArch32 DBGDTRTXext Debug OS Lock Data Transfer Register, Transmit
AArch32 DBGDTRTXint Debug Data Transfer Register, Transmit
AArch32 DBGOSDLR Debug OS Double Lock Register
AArch32 DBGOSECCR Debug OS Lock Exception Catch Control Register
AArch32 DBGOSLAR Debug OS Lock Access Register
AArch32 DBGOSLSR Debug OS Lock Status Register
AArch32 DBGPRCR Debug Power Control Register
AArch32 DBGVCR Debug Vector Catch Register
AArch32 DBGWCR<n> Debug Watchpoint Control Registers
AArch32 DBGWFAR Debug Watchpoint Fault Address Register
AArch32 DBGWVR<n> Debug Watchpoint Value Registers
AArch32 TRFCR Trace Filter Control Register
AArch64 DBGAUTHSTATUS_EL1 Debug Authentication Status register
AArch64 DBGBCR<n>_EL1 Debug Breakpoint Control Registers
AArch64 DBGBVR<n>_EL1 Debug Breakpoint Value Registers
AArch64 DBGCLAIMCLR_EL1 Debug CLAIM Tag Clear register
AArch64 DBGCLAIMSET_EL1 Debug CLAIM Tag Set register
AArch64 DBGDTRRX_EL0 Debug Data Transfer Register, Receive
AArch64 DBGDTRTX_EL0 Debug Data Transfer Register, Transmit
AArch64 DBGDTR_EL0 Debug Data Transfer Register, half-duplex
AArch64 DBGPRCR_EL1 Debug Power Control Register
AArch64 DBGVCR32_EL2 Debug Vector Catch Register
AArch64 DBGWCR<n>_EL1 Debug Watchpoint Control Registers
AArch64 DBGWVR<n>_EL1 Debug Watchpoint Value Registers
AArch64 DLR_EL0 Debug Link Register
AArch64 DSPSR_EL0 Debug Saved Program Status Register
AArch64 MDCCINT_EL1 Monitor DCC Interrupt Enable Register
AArch64 MDCCSR_EL0 Monitor DCC Status Register
AArch64 MDRAR_EL1 Monitor Debug ROM Address Register
AArch64 MDSCR_EL1 Monitor Debug System Control Register
AArch64 OSDLR_EL1 OS Double Lock Register
AArch64 OSDTRRX_EL1 OS Lock Data Transfer Register, Receive
AArch64 OSDTRTX_EL1 OS Lock Data Transfer Register, Transmit
AArch64 OSECCR_EL1 OS Lock Exception Catch Control Register
AArch64 OSLAR_EL1 OS Lock Access Register
AArch64 OSLSR_EL1 OS Lock Status Register
AArch64 TRFCR_EL1 Trace Filter Control Register (EL1)

System Register index by functional group

Page 838

Exec state Name Description
AArch64 TRFCR_EL2 Trace Filter Control Register (EL2)
External DBGAUTHSTATUS_EL1 Debug Authentication Status register
External DBGBCR<n>_EL1 Debug Breakpoint Control Registers
External DBGBVR<n>_EL1 Debug Breakpoint Value Registers
External DBGCLAIMCLR_EL1 Debug CLAIM Tag Clear register
External DBGCLAIMSET_EL1 Debug CLAIM Tag Set register
External DBGDTRRX_EL0 Debug Data Transfer Register, Receive
External DBGDTRTX_EL0 Debug Data Transfer Register, Transmit
External DBGWCR<n>_EL1 Debug Watchpoint Control Registers
External DBGWVR<n>_EL1 Debug Watchpoint Value Registers
External EDACR External Debug Auxiliary Control Register
External EDCIDR0 External Debug Component Identification Register 0
External EDCIDR1 External Debug Component Identification Register 1
External EDCIDR2 External Debug Component Identification Register 2
External EDCIDR3 External Debug Component Identification Register 3
External EDCIDSR External Debug Context ID Sample Register
External EDDEVAFF0 External Debug Device Affinity register 0
External EDDEVAFF1 External Debug Device Affinity register 1
External EDDEVARCH External Debug Device Architecture register
External EDDEVID External Debug Device ID register 0
External EDDEVID1 External Debug Device ID register 1
External EDDEVID2 External Debug Device ID register 2
External EDDEVTYPE External Debug Device Type register
External EDECCR External Debug Exception Catch Control Register
External EDECR External Debug Execution Control Register
External EDESR External Debug Event Status Register
External EDHSR External Debug Halt Status Register
External EDITCTRL External Debug Integration mode Control register
External EDITR External Debug Instruction Transfer Register
External EDLAR External Debug Lock Access Register
External EDLSR External Debug Lock Status Register
External EDPCSR External Debug Program Counter Sample Register
External EDPIDR0 External Debug Peripheral Identification Register 0
External EDPIDR1 External Debug Peripheral Identification Register 1
External EDPIDR2 External Debug Peripheral Identification Register 2
External EDPIDR3 External Debug Peripheral Identification Register 3
External EDPIDR4 External Debug Peripheral Identification Register 4
External EDPRCR External Debug Power/Reset Control Register
External EDPRSR External Debug Processor Status Register
External EDRCR External Debug Reserve Control Register
External EDSCR External Debug Status and Control Register
External EDVIDSR External Debug Virtual Context Sample Register
External EDWAR External Debug Watchpoint Address Register
External OSLAR_EL1 OS Lock Access Register

In the CTI functional group:
Exec state Name Description
External ASICCTL CTI External Multiplexer Control register
External CTIAPPCLEAR CTI Application Trigger Clear register
External CTIAPPPULSE CTI Application Pulse register
External CTIAPPSET CTI Application Trigger Set register
External CTIAUTHSTATUS CTI Authentication Status register
External CTICHINSTATUS CTI Channel In Status register
External CTICHOUTSTATUS CTI Channel Out Status register
External CTICIDR0 CTI Component Identification Register 0
External CTICIDR1 CTI Component Identification Register 1
External CTICIDR2 CTI Component Identification Register 2
External CTICIDR3 CTI Component Identification Register 3
External CTICLAIMCLR CTI CLAIM Tag Clear register
External CTICLAIMSET CTI CLAIM Tag Set register
External CTICONTROL CTI Control register
External CTIDEVAFF0 CTI Device Affinity register 0

System Register index by functional group

Page 839

Exec state Name Description
External CTIDEVAFF1 CTI Device Affinity register 1
External CTIDEVARCH CTI Device Architecture register
External CTIDEVCTL CTI Device Control register
External CTIDEVID CTI Device ID register 0
External CTIDEVID1 CTI Device ID register 1
External CTIDEVID2 CTI Device ID register 2
External CTIDEVTYPE CTI Device Type register
External CTIGATE CTI Channel Gate Enable register
External CTIINEN<n> CTI Input Trigger to Output Channel Enable registers
External CTIINTACK CTI Output Trigger Acknowledge register
External CTIITCTRL CTI Integration mode Control register
External CTILAR CTI Lock Access Register
External CTILSR CTI Lock Status Register
External CTIOUTEN<n> CTI Input Channel to Output Trigger Enable registers
External CTIPIDR0 CTI Peripheral Identification Register 0
External CTIPIDR1 CTI Peripheral Identification Register 1
External CTIPIDR2 CTI Peripheral Identification Register 2
External CTIPIDR3 CTI Peripheral Identification Register 3
External CTIPIDR4 CTI Peripheral Identification Register 4
External CTITRIGINSTATUS CTI Trigger In Status register
External CTITRIGOUTSTATUS CTI Trigger Out Status register

In the Virt functional group:
Exec
state Name Description

AArch32 ATS1HR Address Translate Stage 1 Hyp mode Read
AArch32 ATS1HW Address Translate Stage 1 Hyp mode Write
AArch32 CNTHCTL Counter-timer Hyp Control register
AArch32 CNTHP_CVAL Counter-timer Hyp Physical CompareValue register
AArch32 CNTHP_TVAL Counter-timer Hyp Physical Timer TimerValue register
AArch32 CNTVOFF Counter-timer Virtual Offset register
AArch32 HACR Hyp Auxiliary Configuration Register
AArch32 HACTLR Hyp Auxiliary Control Register
AArch32 HACTLR2 Hyp Auxiliary Control Register 2
AArch32 HADFSR Hyp Auxiliary Data Fault Status Register
AArch32 HAIFSR Hyp Auxiliary Instruction Fault Status Register
AArch32 HAMAIR0 Hyp Auxiliary Memory Attribute Indirection Register 0
AArch32 HAMAIR1 Hyp Auxiliary Memory Attribute Indirection Register 1
AArch32 HCPTR Hyp Architectural Feature Trap Register
AArch32 HCR Hyp Configuration Register
AArch32 HCR2 Hyp Configuration Register 2
AArch32 HDCR Hyp Debug Control Register
AArch32 HDFAR Hyp Data Fault Address Register
AArch32 HIFAR Hyp Instruction Fault Address Register
AArch32 HMAIR0 Hyp Memory Attribute Indirection Register 0
AArch32 HMAIR1 Hyp Memory Attribute Indirection Register 1
AArch32 HPFAR Hyp IPA Fault Address Register
AArch32 HRMR Hyp Reset Management Register
AArch32 HSCTLR Hyp System Control Register
AArch32 HSR Hyp Syndrome Register
AArch32 HSTR Hyp System Trap Register
AArch32 HTCR Hyp Translation Control Register
AArch32 HTPIDR Hyp Software Thread ID Register
AArch32 HTRFCR Hyp Trace Filter Control Register
AArch32 HTTBR Hyp Translation Table Base Register
AArch32 HVBAR Hyp Vector Base Address Register
AArch32 ICC_HSRE Interrupt Controller Hyp System Register Enable register
AArch32 ICH_AP0R<n> Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch32 ICH_AP1R<n> Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch32 ICH_EISR Interrupt Controller End of Interrupt Status Register
AArch32 ICH_ELRSR Interrupt Controller Empty List Register Status Register
AArch32 ICH_HCR Interrupt Controller Hyp Control Register

System Register index by functional group

Page 840

Exec
state Name Description

AArch32 ICH_LR<n> Interrupt Controller List Registers
AArch32 ICH_LRC<n> Interrupt Controller List Registers
AArch32 ICH_MISR Interrupt Controller Maintenance Interrupt State Register
AArch32 ICH_VMCR Interrupt Controller Virtual Machine Control Register
AArch32 ICH_VTR Interrupt Controller VGIC Type Register
AArch32 TLBIALLH TLB Invalidate All, Hyp mode
AArch32 TLBIALLHIS TLB Invalidate All, Hyp mode, Inner Shareable
AArch32 TLBIIPAS2 TLB Invalidate by Intermediate Physical Address, Stage 2
AArch32 TLBIIPAS2IS TLB Invalidate by Intermediate Physical Address, Stage 2, Inner

Shareable
AArch32 TLBIIPAS2L TLB Invalidate by Intermediate Physical Address, Stage 2, Last level
AArch32 TLBIIPAS2LIS TLB Invalidate by Intermediate Physical Address, Stage 2, Last level,

Inner Shareable
AArch32 TLBIMVAH TLB Invalidate by VA, Hyp mode
AArch32 TLBIMVAHIS TLB Invalidate by VA, Hyp mode, Inner Shareable
AArch32 TLBIMVALH TLB Invalidate by VA, Last level, Hyp mode
AArch32 TLBIMVALHIS TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable
AArch32 VMPIDR Virtualization Multiprocessor ID Register
AArch32 VPIDR Virtualization Processor ID Register
AArch32 VTCR Virtualization Translation Control Register
AArch32 VTTBR Virtualization Translation Table Base Register
AArch64 ACTLR_EL2 Auxiliary Control Register (EL2)
AArch64 AFSR0_EL2 Auxiliary Fault Status Register 0 (EL2)
AArch64 AFSR1_EL2 Auxiliary Fault Status Register 1 (EL2)
AArch64 AMAIR_EL2 Auxiliary Memory Attribute Indirection Register (EL2)
AArch64 CNTHCTL_EL2 Counter-timer Hypervisor Control register
AArch64 CNTHPS_CTL_EL2 Counter-timer Secure Physical Timer Control register (EL2)
AArch64 CNTHPS_CVAL_EL2 Counter-timer Secure Physical Timer CompareValue register (EL2)
AArch64 CNTHPS_TVAL_EL2 Counter-timer Secure Physical Timer TimerValue register (EL2)
AArch64 CNTHP_CTL_EL2 Counter-timer Hypervisor Physical Timer Control register
AArch64 CNTHP_CVAL_EL2 Counter-timer Physical Timer CompareValue register (EL2)
AArch64 CNTHP_TVAL_EL2 Counter-timer Physical Timer TimerValue register (EL2)
AArch64 CNTVOFF_EL2 Counter-timer Virtual Offset register
AArch64 CPTR_EL2 Architectural Feature Trap Register (EL2)
AArch64 ESR_EL2 Exception Syndrome Register (EL2)
AArch64 FAR_EL2 Fault Address Register (EL2)
AArch64 HACR_EL2 Hypervisor Auxiliary Control Register
AArch64 HCRX_EL2 Extended Hypervisor Configuration Register
AArch64 HCR_EL2 Hypervisor Configuration Register
AArch64 HPFAR_EL2 Hypervisor IPA Fault Address Register
AArch64 HSTR_EL2 Hypervisor System Trap Register
AArch64 ICC_SRE_EL2 Interrupt Controller System Register Enable register (EL2)
AArch64 ICH_AP0R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch64 ICH_AP1R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch64 ICH_EISR_EL2 Interrupt Controller End of Interrupt Status Register
AArch64 ICH_ELRSR_EL2 Interrupt Controller Empty List Register Status Register
AArch64 ICH_HCR_EL2 Interrupt Controller Hyp Control Register
AArch64 ICH_LR<n>_EL2 Interrupt Controller List Registers
AArch64 ICH_MISR_EL2 Interrupt Controller Maintenance Interrupt State Register
AArch64 ICH_VMCR_EL2 Interrupt Controller Virtual Machine Control Register
AArch64 ICH_VTR_EL2 Interrupt Controller VGIC Type Register
AArch64 MAIR_EL2 Memory Attribute Indirection Register (EL2)
AArch64 MDCR_EL2 Monitor Debug Configuration Register (EL2)
AArch64 RMR_EL2 Reset Management Register (EL2)
AArch64 SCTLR_EL2 System Control Register (EL2)
AArch64 TCR_EL2 Translation Control Register (EL2)
AArch64 TLBI IPAS2E1, TLBI

IPAS2E1NXS
TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

AArch64 TLBI IPAS2E1IS, TLBI
IPAS2E1ISNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, EL1,
Inner Shareable

AArch64 TLBI IPAS2E1OS, TLBI
IPAS2E1OSNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, EL1,
Outer Shareable

AArch64 TLBI IPAS2LE1, TLBI
IPAS2LE1NXS

TLB Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1

System Register index by functional group

Page 841

Exec
state Name Description

AArch64 TLBI IPAS2LE1IS, TLBI
IPAS2LE1ISNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1, Inner Shareable

AArch64 TLBI IPAS2LE1OS, TLBI
IPAS2LE1OSNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1, Outer Shareable

AArch64 TLBI RIPAS2E1, TLBI
RIPAS2E1NXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
EL1

AArch64 TLBI RIPAS2E1IS, TLBI
RIPAS2E1ISNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
EL1, Inner Shareable

AArch64 TLBI RIPAS2E1OS, TLBI
RIPAS2E1OSNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
EL1, Outer Shareable

AArch64 TLBI RIPAS2LE1, TLBI
RIPAS2LE1NXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1

AArch64 TLBI RIPAS2LE1IS, TLBI
RIPAS2LE1ISNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1, Inner Shareable

AArch64 TLBI RIPAS2LE1OS, TLBI
RIPAS2LE1OSNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1, Outer Shareable

AArch64 TPIDR_EL2 EL2 Software Thread ID Register
AArch64 TTBR0_EL2 Translation Table Base Register 0 (EL2)
AArch64 TTBR1_EL2 Translation Table Base Register 1 (EL2)
AArch64 VBAR_EL2 Vector Base Address Register (EL2)
AArch64 VMPIDR_EL2 Virtualization Multiprocessor ID Register
AArch64 VPIDR_EL2 Virtualization Processor ID Register
AArch64 VTCR_EL2 Virtualization Translation Control Register
AArch64 VTTBR_EL2 Virtualization Translation Table Base Register

In the Secure functional group:
Exec state Name Description
AArch32 ICC_MCTLR Interrupt Controller Monitor Control Register
AArch32 ICC_MSRE Interrupt Controller Monitor System Register Enable register
AArch32 MVBAR Monitor Vector Base Address Register
AArch32 NSACR Non-Secure Access Control Register
AArch32 SCR Secure Configuration Register
AArch32 SDCR Secure Debug Control Register
AArch32 SDER Secure Debug Enable Register
AArch64 ACTLR_EL3 Auxiliary Control Register (EL3)
AArch64 AFSR0_EL3 Auxiliary Fault Status Register 0 (EL3)
AArch64 AFSR1_EL3 Auxiliary Fault Status Register 1 (EL3)
AArch64 AMAIR_EL3 Auxiliary Memory Attribute Indirection Register (EL3)
AArch64 CPTR_EL3 Architectural Feature Trap Register (EL3)
AArch64 ICC_CTLR_EL3 Interrupt Controller Control Register (EL3)
AArch64 ICC_SRE_EL3 Interrupt Controller System Register Enable register (EL3)
AArch64 MDCR_EL3 Monitor Debug Configuration Register (EL3)
AArch64 SCR_EL3 Secure Configuration Register
AArch64 SDER32_EL3 AArch32 Secure Debug Enable Register
AArch64 VBAR_EL3 Vector Base Address Register (EL3)

In the Float functional group:
Exec state Name Description
AArch32 FPEXC Floating-Point Exception Control register
AArch32 FPSCR Floating-Point Status and Control Register
AArch32 FPSID Floating-Point System ID register
AArch32 MVFR0 Media and VFP Feature Register 0
AArch32 MVFR1 Media and VFP Feature Register 1
AArch32 MVFR2 Media and VFP Feature Register 2
AArch64 FPCR Floating-point Control Register
AArch64 FPEXC32_EL2 Floating-Point Exception Control register
AArch64 FPSR Floating-point Status Register
AArch64 MVFR0_EL1 AArch32 Media and VFP Feature Register 0
AArch64 MVFR1_EL1 AArch32 Media and VFP Feature Register 1
AArch64 MVFR2_EL1 AArch32 Media and VFP Feature Register 2

System Register index by functional group

Page 842

In the Legacy functional group:
Exec state Name Description
AArch32 CP15DMB Data Memory Barrier System instruction
AArch32 CP15DSB Data Synchronization Barrier System instruction
AArch32 CP15ISB Instruction Synchronization Barrier System instruction
AArch32 FCSEIDR FCSE Process ID register
AArch32 JIDR Jazelle ID Register
AArch32 JMCR Jazelle Main Configuration Register
AArch32 JOSCR Jazelle OS Control Register

In the Trace functional group:
Exec state Name Description
AArch64 TRCACATR<n> Address Comparator Access Type Register <n>
AArch64 TRCACVR<n> Address Comparator Value Register <n>
AArch64 TRCAUXCTLR Auxiliary Control Register
AArch64 TRCBBCTLR Branch Broadcast Control Register
AArch64 TRCCCCTLR Cycle Count Control Register
AArch64 TRCCIDCCTLR0 Context Identifier Comparator Control Register 0
AArch64 TRCCIDCCTLR1 Context Identifier Comparator Control Register 1
AArch64 TRCCIDCVR<n> Context Identifier Comparator Value Registers <n>
AArch64 TRCCLAIMCLR Claim Tag Clear Register
AArch64 TRCCLAIMSET Claim Tag Set Register
AArch64 TRCCNTCTLR<n> Counter Control Register <n>
AArch64 TRCCNTRLDVR<n> Counter Reload Value Register <n>
AArch64 TRCCNTVR<n> Counter Value Register <n>
AArch64 TRCCONFIGR Trace Configuration Register
AArch64 TRCEVENTCTL0R Event Control 0 Register
AArch64 TRCEVENTCTL1R Event Control 1 Register
AArch64 TRCEXTINSELR<n> External Input Select Register <n>
AArch64 TRCIDR0 ID Register 0
AArch64 TRCIDR1 ID Register 1
AArch64 TRCIDR10 ID Register 10
AArch64 TRCIDR11 ID Register 11
AArch64 TRCIDR12 ID Register 12
AArch64 TRCIDR13 ID Register 13
AArch64 TRCIDR2 ID Register 2
AArch64 TRCIDR3 ID Register 3
AArch64 TRCIDR4 ID Register 4
AArch64 TRCIDR5 ID Register 5
AArch64 TRCIDR6 ID Register 6
AArch64 TRCIDR7 ID Register 7
AArch64 TRCIDR8 ID Register 8
AArch64 TRCIDR9 ID Register 9
AArch64 TRCIMSPEC0 IMP DEF Register 0
AArch64 TRCIMSPEC<n> IMP DEF Register <n>
AArch64 TRCPRGCTLR Programming Control Register
AArch64 TRCQCTLR Q Element Control Register
AArch64 TRCRSCTLR<n> Resource Selection Control Register <n>
AArch64 TRCRSR Resources Status Register
AArch64 TRCSEQEVR<n> Sequencer State Transition Control Register <n>
AArch64 TRCSEQRSTEVR Sequencer Reset Control Register
AArch64 TRCSEQSTR Sequencer State Register
AArch64 TRCSSCCR<n> Single-shot Comparator Control Register <n>
AArch64 TRCSSCSR<n> Single-shot Comparator Control Status Register <n>
AArch64 TRCSSPCICR<n> Single-shot Processing Element Comparator Input Control Register <n>
AArch64 TRCSTALLCTLR Stall Control Register
AArch64 TRCSTATR Trace Status Register
AArch64 TRCSYNCPR Synchronization Period Register
AArch64 TRCTRACEIDR Trace ID Register
AArch64 TRCTSCTLR Timestamp Control Register
AArch64 TRCVICTLR ViewInst Main Control Register

System Register index by functional group

Page 843

Exec state Name Description
AArch64 TRCVIIECTLR ViewInst Include/Exclude Control Register
AArch64 TRCVIPCSSCTLR ViewInst Start/Stop PE Comparator Control Register
AArch64 TRCVISSCTLR ViewInst Start/Stop Control Register
AArch64 TRCVMIDCCTLR0 Virtual Context Identifier Comparator Control Register 0
AArch64 TRCVMIDCCTLR1 Virtual Context Identifier Comparator Control Register 1
AArch64 TRCVMIDCVR<n> Virtual Context Identifier Comparator Value Register <n>
External TRCACATR<n> Address Comparator Access Type Register <n>
External TRCACVR<n> Address Comparator Value Register <n>
External TRCAUXCTLR Auxiliary Control Register
External TRCBBCTLR Branch Broadcast Control Register
External TRCCCCTLR Cycle Count Control Register
External TRCCIDCCTLR0 Context Identifier Comparator Control Register 0
External TRCCIDCCTLR1 Context Identifier Comparator Control Register 1
External TRCCIDCVR<n> Context Identifier Comparator Value Registers <n>
External TRCCLAIMCLR Claim Tag Clear Register
External TRCCLAIMSET Claim Tag Set Register
External TRCCNTCTLR<n> Counter Control Register <n>
External TRCCNTRLDVR<n> Counter Reload Value Register <n>
External TRCCNTVR<n> Counter Value Register <n>
External TRCCONFIGR Trace Configuration Register
External TRCEVENTCTL0R Event Control 0 Register
External TRCEVENTCTL1R Event Control 1 Register
External TRCEXTINSELR<n> External Input Select Register <n>
External TRCIDR0 ID Register 0
External TRCIDR1 ID Register 1
External TRCIDR10 ID Register 10
External TRCIDR11 ID Register 11
External TRCIDR12 ID Register 12
External TRCIDR13 ID Register 13
External TRCIDR2 ID Register 2
External TRCIDR3 ID Register 3
External TRCIDR4 ID Register 4
External TRCIDR5 ID Register 5
External TRCIDR6 ID Register 6
External TRCIDR7 ID Register 7
External TRCIDR8 ID Register 8
External TRCIDR9 ID Register 9
External TRCIMSPEC0 IMP DEF Register 0
External TRCIMSPEC<n> IMP DEF Register <n>
External TRCPRGCTLR Programming Control Register
External TRCQCTLR Q Element Control Register
External TRCRSCTLR<n> Resource Selection Control Register <n>
External TRCRSR Resources Status Register
External TRCSEQEVR<n> Sequencer State Transition Control Register <n>
External TRCSEQRSTEVR Sequencer Reset Control Register
External TRCSEQSTR Sequencer State Register
External TRCSSCCR<n> Single-shot Comparator Control Register <n>
External TRCSSCSR<n> Single-shot Comparator Control Status Register <n>
External TRCSSPCICR<n> Single-shot Processing Element Comparator Input Control Register <n>
External TRCSTALLCTLR Stall Control Register
External TRCSTATR Trace Status Register
External TRCSYNCPR Synchronization Period Register
External TRCTRACEIDR Trace ID Register
External TRCTSCTLR Timestamp Control Register
External TRCVICTLR ViewInst Main Control Register
External TRCVIIECTLR ViewInst Include/Exclude Control Register
External TRCVIPCSSCTLR ViewInst Start/Stop PE Comparator Control Register
External TRCVISSCTLR ViewInst Start/Stop Control Register
External TRCVMIDCCTLR0 Virtual Context Identifier Comparator Control Register 0
External TRCVMIDCCTLR1 Virtual Context Identifier Comparator Control Register 1
External TRCVMIDCVR<n> Virtual Context Identifier Comparator Value Register <n>

System Register index by functional group

Page 844

In the GIC functional group:
Exec state Name Description
AArch32 ICC_AP0R<n> Interrupt Controller Active Priorities Group 0 Registers
AArch32 ICC_AP1R<n> Interrupt Controller Active Priorities Group 1 Registers
AArch32 ICC_ASGI1R Interrupt Controller Alias Software Generated Interrupt Group 1 Register
AArch32 ICC_BPR0 Interrupt Controller Binary Point Register 0
AArch32 ICC_BPR1 Interrupt Controller Binary Point Register 1
AArch32 ICC_CTLR Interrupt Controller Control Register
AArch32 ICC_DIR Interrupt Controller Deactivate Interrupt Register
AArch32 ICC_EOIR0 Interrupt Controller End Of Interrupt Register 0
AArch32 ICC_EOIR1 Interrupt Controller End Of Interrupt Register 1
AArch32 ICC_HPPIR0 Interrupt Controller Highest Priority Pending Interrupt Register 0
AArch32 ICC_HPPIR1 Interrupt Controller Highest Priority Pending Interrupt Register 1
AArch32 ICC_HSRE Interrupt Controller Hyp System Register Enable register
AArch32 ICC_IAR0 Interrupt Controller Interrupt Acknowledge Register 0
AArch32 ICC_IAR1 Interrupt Controller Interrupt Acknowledge Register 1
AArch32 ICC_IGRPEN0 Interrupt Controller Interrupt Group 0 Enable register
AArch32 ICC_IGRPEN1 Interrupt Controller Interrupt Group 1 Enable register
AArch32 ICC_MCTLR Interrupt Controller Monitor Control Register
AArch32 ICC_MGRPEN1 Interrupt Controller Monitor Interrupt Group 1 Enable register
AArch32 ICC_MSRE Interrupt Controller Monitor System Register Enable register
AArch32 ICC_PMR Interrupt Controller Interrupt Priority Mask Register
AArch32 ICC_RPR Interrupt Controller Running Priority Register
AArch32 ICC_SGI0R Interrupt Controller Software Generated Interrupt Group 0 Register
AArch32 ICC_SGI1R Interrupt Controller Software Generated Interrupt Group 1 Register
AArch32 ICC_SRE Interrupt Controller System Register Enable register
AArch32 ICH_AP0R<n> Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch32 ICH_AP1R<n> Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch32 ICH_EISR Interrupt Controller End of Interrupt Status Register
AArch32 ICH_ELRSR Interrupt Controller Empty List Register Status Register
AArch32 ICH_HCR Interrupt Controller Hyp Control Register
AArch32 ICH_LR<n> Interrupt Controller List Registers
AArch32 ICH_LRC<n> Interrupt Controller List Registers
AArch32 ICH_MISR Interrupt Controller Maintenance Interrupt State Register
AArch32 ICH_VMCR Interrupt Controller Virtual Machine Control Register
AArch32 ICH_VTR Interrupt Controller VGIC Type Register
AArch32 ICV_AP0R<n> Interrupt Controller Virtual Active Priorities Group 0 Registers
AArch32 ICV_AP1R<n> Interrupt Controller Virtual Active Priorities Group 1 Registers
AArch32 ICV_BPR0 Interrupt Controller Virtual Binary Point Register 0
AArch32 ICV_BPR1 Interrupt Controller Virtual Binary Point Register 1
AArch32 ICV_CTLR Interrupt Controller Virtual Control Register
AArch32 ICV_DIR Interrupt Controller Deactivate Virtual Interrupt Register
AArch32 ICV_EOIR0 Interrupt Controller Virtual End Of Interrupt Register 0
AArch32 ICV_EOIR1 Interrupt Controller Virtual End Of Interrupt Register 1
AArch32 ICV_HPPIR0 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
AArch32 ICV_HPPIR1 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
AArch32 ICV_IAR0 Interrupt Controller Virtual Interrupt Acknowledge Register 0
AArch32 ICV_IAR1 Interrupt Controller Virtual Interrupt Acknowledge Register 1
AArch32 ICV_IGRPEN0 Interrupt Controller Virtual Interrupt Group 0 Enable register
AArch32 ICV_IGRPEN1 Interrupt Controller Virtual Interrupt Group 1 Enable register
AArch32 ICV_PMR Interrupt Controller Virtual Interrupt Priority Mask Register
AArch32 ICV_RPR Interrupt Controller Virtual Running Priority Register
AArch64 ICC_AP0R<n>_EL1 Interrupt Controller Active Priorities Group 0 Registers
AArch64 ICC_AP1R<n>_EL1 Interrupt Controller Active Priorities Group 1 Registers
AArch64 ICC_ASGI1R_EL1 Interrupt Controller Alias Software Generated Interrupt Group 1 Register
AArch64 ICC_BPR0_EL1 Interrupt Controller Binary Point Register 0
AArch64 ICC_BPR1_EL1 Interrupt Controller Binary Point Register 1
AArch64 ICC_CTLR_EL1 Interrupt Controller Control Register (EL1)
AArch64 ICC_CTLR_EL3 Interrupt Controller Control Register (EL3)
AArch64 ICC_DIR_EL1 Interrupt Controller Deactivate Interrupt Register
AArch64 ICC_EOIR0_EL1 Interrupt Controller End Of Interrupt Register 0
AArch64 ICC_EOIR1_EL1 Interrupt Controller End Of Interrupt Register 1
AArch64 ICC_HPPIR0_EL1 Interrupt Controller Highest Priority Pending Interrupt Register 0
AArch64 ICC_HPPIR1_EL1 Interrupt Controller Highest Priority Pending Interrupt Register 1

System Register index by functional group

Page 845

Exec state Name Description
AArch64 ICC_IAR0_EL1 Interrupt Controller Interrupt Acknowledge Register 0
AArch64 ICC_IAR1_EL1 Interrupt Controller Interrupt Acknowledge Register 1
AArch64 ICC_IGRPEN0_EL1 Interrupt Controller Interrupt Group 0 Enable register
AArch64 ICC_IGRPEN1_EL1 Interrupt Controller Interrupt Group 1 Enable register
AArch64 ICC_IGRPEN1_EL3 Interrupt Controller Interrupt Group 1 Enable register (EL3)
AArch64 ICC_NMIAR1_EL1 Interrupt Controller Non-maskable Interrupt Acknowledge Register 1
AArch64 ICC_PMR_EL1 Interrupt Controller Interrupt Priority Mask Register
AArch64 ICC_RPR_EL1 Interrupt Controller Running Priority Register
AArch64 ICC_SGI0R_EL1 Interrupt Controller Software Generated Interrupt Group 0 Register
AArch64 ICC_SGI1R_EL1 Interrupt Controller Software Generated Interrupt Group 1 Register
AArch64 ICC_SRE_EL1 Interrupt Controller System Register Enable register (EL1)
AArch64 ICC_SRE_EL2 Interrupt Controller System Register Enable register (EL2)
AArch64 ICC_SRE_EL3 Interrupt Controller System Register Enable register (EL3)
AArch64 ICH_AP0R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch64 ICH_AP1R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch64 ICH_EISR_EL2 Interrupt Controller End of Interrupt Status Register
AArch64 ICH_ELRSR_EL2 Interrupt Controller Empty List Register Status Register
AArch64 ICH_HCR_EL2 Interrupt Controller Hyp Control Register
AArch64 ICH_LR<n>_EL2 Interrupt Controller List Registers
AArch64 ICH_MISR_EL2 Interrupt Controller Maintenance Interrupt State Register
AArch64 ICH_VMCR_EL2 Interrupt Controller Virtual Machine Control Register
AArch64 ICH_VTR_EL2 Interrupt Controller VGIC Type Register
AArch64 ICV_AP0R<n>_EL1 Interrupt Controller Virtual Active Priorities Group 0 Registers
AArch64 ICV_AP1R<n>_EL1 Interrupt Controller Virtual Active Priorities Group 1 Registers
AArch64 ICV_BPR0_EL1 Interrupt Controller Virtual Binary Point Register 0
AArch64 ICV_BPR1_EL1 Interrupt Controller Virtual Binary Point Register 1
AArch64 ICV_CTLR_EL1 Interrupt Controller Virtual Control Register
AArch64 ICV_DIR_EL1 Interrupt Controller Deactivate Virtual Interrupt Register
AArch64 ICV_EOIR0_EL1 Interrupt Controller Virtual End Of Interrupt Register 0
AArch64 ICV_EOIR1_EL1 Interrupt Controller Virtual End Of Interrupt Register 1
AArch64 ICV_HPPIR0_EL1 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
AArch64 ICV_HPPIR1_EL1 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
AArch64 ICV_IAR0_EL1 Interrupt Controller Virtual Interrupt Acknowledge Register 0
AArch64 ICV_IAR1_EL1 Interrupt Controller Virtual Interrupt Acknowledge Register 1
AArch64 ICV_IGRPEN0_EL1 Interrupt Controller Virtual Interrupt Group 0 Enable register
AArch64 ICV_IGRPEN1_EL1 Interrupt Controller Virtual Interrupt Group 1 Enable register
AArch64 ICV_NMIAR1_EL1 Interrupt Controller Virtual Non-maskable Interrupt Acknowledge Register 1
AArch64 ICV_PMR_EL1 Interrupt Controller Virtual Interrupt Priority Mask Register
AArch64 ICV_RPR_EL1 Interrupt Controller Virtual Running Priority Register

In the GICD functional group:
Exec
state Name Description

External GICD_CLRSPI_NSR Clear Non-secure SPI Pending Register
External GICD_CLRSPI_SR Clear Secure SPI Pending Register
External GICD_CPENDSGIR<n> SGI Clear-Pending Registers
External GICD_CTLR Distributor Control Register
External GICD_ICACTIVER<n> Interrupt Clear-Active Registers
External GICD_ICACTIVER<n>E Interrupt Clear-Active Registers (extended SPI range)
External GICD_ICENABLER<n> Interrupt Clear-Enable Registers
External GICD_ICENABLER<n>E Interrupt Clear-Enable Registers
External GICD_ICFGR<n> Interrupt Configuration Registers
External GICD_ICFGR<n>E Interrupt Configuration Registers (Extended SPI Range)
External GICD_ICPENDR<n> Interrupt Clear-Pending Registers
External GICD_ICPENDR<n>E Interrupt Clear-Pending Registers (extended SPI range)
External GICD_IGROUPR<n> Interrupt Group Registers
External GICD_IGROUPR<n>E Interrupt Group Registers (extended SPI range)
External GICD_IGRPMODR<n> Interrupt Group Modifier Registers
External GICD_IGRPMODR<n>E Interrupt Group Modifier Registers (extended SPI range)
External GICD_IIDR Distributor Implementer Identification Register
External GICD_INMIR<n> Non-maskable Interrupt Registers, x = 0 to 31
External GICD_INMIR<n>E Non-maskable Interrupt Registers for Extended SPIs, x = 0 to 31

System Register index by functional group

Page 846

Exec
state Name Description

External GICD_IPRIORITYR<n> Interrupt Priority Registers
External GICD_IPRIORITYR<n>E Holds the priority of the corresponding interrupt for each extended SPI

supported by the GIC.
External GICD_IROUTER<n> Interrupt Routing Registers
External GICD_IROUTER<n>E Interrupt Routing Registers (Extended SPI Range)
External GICD_ISACTIVER<n> Interrupt Set-Active Registers
External GICD_ISACTIVER<n>E Interrupt Set-Active Registers (extended SPI range)
External GICD_ISENABLER<n> Interrupt Set-Enable Registers
External GICD_ISENABLER<n>E Interrupt Set-Enable Registers
External GICD_ISPENDR<n> Interrupt Set-Pending Registers
External GICD_ISPENDR<n>E Interrupt Set-Pending Registers (extended SPI range)
External GICD_ITARGETSR<n> Interrupt Processor Targets Registers
External GICD_NSACR<n> Non-secure Access Control Registers
External GICD_NSACR<n>E Non-secure Access Control Registers
External GICD_SETSPI_NSR Set Non-secure SPI Pending Register
External GICD_SETSPI_SR Set Secure SPI Pending Register
External GICD_SGIR Software Generated Interrupt Register
External GICD_SPENDSGIR<n> SGI Set-Pending Registers
External GICD_STATUSR Error Reporting Status Register
External GICD_TYPER Interrupt Controller Type Register
External GICD_TYPER2 Interrupt Controller Type Register 2
External GICM_CLRSPI_NSR Clear Non-secure SPI Pending Register
External GICM_CLRSPI_SR Clear Secure SPI Pending Register
External GICM_IIDR Distributor Implementer Identification Register
External GICM_SETSPI_NSR Set Non-secure SPI Pending Register
External GICM_SETSPI_SR Set Secure SPI Pending Register
External GICM_TYPER Distributor MSI Type Register

In the GICR functional group:
Exec state Name Description
External GICR_CLRLPIR Clear LPI Pending Register
External GICR_CTLR Redistributor Control Register
External GICR_ICACTIVER0 Interrupt Clear-Active Register 0
External GICR_ICACTIVER<n>E Interrupt Clear-Active Registers
External GICR_ICENABLER0 Interrupt Clear-Enable Register 0
External GICR_ICENABLER<n>E Interrupt Clear-Enable Registers
External GICR_ICFGR0 Interrupt Configuration Register 0
External GICR_ICFGR1 Interrupt Configuration Register 1
External GICR_ICFGR<n>E Interrupt configuration registers
External GICR_ICPENDR0 Interrupt Clear-Pending Register 0
External GICR_ICPENDR<n>E Interrupt Clear-Pending Registers
External GICR_IGROUPR0 Interrupt Group Register 0
External GICR_IGROUPR<n>E Interrupt Group Registers
External GICR_IGRPMODR0 Interrupt Group Modifier Register 0
External GICR_IGRPMODR<n>E Interrupt Group Modifier Registers
External GICR_IIDR Redistributor Implementer Identification Register
External GICR_INMIR0 Non-maskable Interrupt Register for PPIs.
External GICR_INMIR<n>E Non-maskable Interrupt Registers for Extended PPIs, x = 1 to 2.
External GICR_INVALLR Redistributor Invalidate All Register
External GICR_INVLPIR Redistributor Invalidate LPI Register
External GICR_IPRIORITYR<n> Interrupt Priority Registers
External GICR_IPRIORITYR<n>E Interrupt Priority Registers (extended PPI range)
External GICR_ISACTIVER0 Interrupt Set-Active Register 0
External GICR_ISACTIVER<n>E Interrupt Set-Active Registers
External GICR_ISENABLER0 Interrupt Set-Enable Register 0
External GICR_ISENABLER<n>E Interrupt Set-Enable Registers
External GICR_ISPENDR0 Interrupt Set-Pending Register 0
External GICR_ISPENDR<n>E Interrupt Set-Pending Registers
External GICR_MPAMIDR Report maximum PARTID and PMG Register
External GICR_NSACR Non-secure Access Control Register
External GICR_PARTIDR Set PARTID and PMG Register

System Register index by functional group

Page 847

Exec state Name Description
External GICR_PENDBASER Redistributor LPI Pending Table Base Address Register
External GICR_PROPBASER Redistributor Properties Base Address Register
External GICR_SETLPIR Set LPI Pending Register
External GICR_STATUSR Error Reporting Status Register
External GICR_SYNCR Redistributor Synchronize Register
External GICR_TYPER Redistributor Type Register
External GICR_VPENDBASER Virtual Redistributor LPI Pending Table Base Address Register
External GICR_VPROPBASER Virtual Redistributor Properties Base Address Register
External GICR_VSGIPENDR Redistributor virtual SGI pending state register
External GICR_VSGIR Redistributor virtual SGI pending state request register
External GICR_WAKER Redistributor Wake Register

In the GICC functional group:
Exec state Name Description
External GICC_ABPR CPU Interface Aliased Binary Point Register
External GICC_AEOIR CPU Interface Aliased End Of Interrupt Register
External GICC_AHPPIR CPU Interface Aliased Highest Priority Pending Interrupt Register
External GICC_AIAR CPU Interface Aliased Interrupt Acknowledge Register
External GICC_APR<n> CPU Interface Active Priorities Registers
External GICC_BPR CPU Interface Binary Point Register
External GICC_CTLR CPU Interface Control Register
External GICC_DIR CPU Interface Deactivate Interrupt Register
External GICC_EOIR CPU Interface End Of Interrupt Register
External GICC_HPPIR CPU Interface Highest Priority Pending Interrupt Register
External GICC_IAR CPU Interface Interrupt Acknowledge Register
External GICC_IIDR CPU Interface Identification Register
External GICC_NSAPR<n> CPU Interface Non-secure Active Priorities Registers
External GICC_PMR CPU Interface Priority Mask Register
External GICC_RPR CPU Interface Running Priority Register
External GICC_STATUSR CPU Interface Status Register

In the GICV functional group:
Exec state Name Description
External GICV_ABPR Virtual Machine Aliased Binary Point Register
External GICV_AEOIR Virtual Machine Aliased End Of Interrupt Register
External GICV_AHPPIR Virtual Machine Aliased Highest Priority Pending Interrupt Register
External GICV_AIAR Virtual Machine Aliased Interrupt Acknowledge Register
External GICV_APR<n> Virtual Machine Active Priorities Registers
External GICV_BPR Virtual Machine Binary Point Register
External GICV_CTLR Virtual Machine Control Register
External GICV_DIR Virtual Machine Deactivate Interrupt Register
External GICV_EOIR Virtual Machine End Of Interrupt Register
External GICV_HPPIR Virtual Machine Highest Priority Pending Interrupt Register
External GICV_IAR Virtual Machine Interrupt Acknowledge Register
External GICV_IIDR Virtual Machine CPU Interface Identification Register
External GICV_PMR Virtual Machine Priority Mask Register
External GICV_RPR Virtual Machine Running Priority Register
External GICV_STATUSR Virtual Machine Error Reporting Status Register

In the GICH functional group:
Exec state Name Description
External GICH_APR<n> Active Priorities Registers
External GICH_EISR End Interrupt Status Register
External GICH_ELRSR Empty List Register Status Register
External GICH_HCR Hypervisor Control Register
External GICH_LR<n> List Registers
External GICH_MISR Maintenance Interrupt Status Register
External GICH_VMCR Virtual Machine Control Register

System Register index by functional group

Page 848

Exec state Name Description
External GICH_VTR Virtual Type Register

In the GITS functional group:
Exec state Name Description
External GITS_BASER<n> ITS Translation Table Descriptors
External GITS_CBASER ITS Command Queue Descriptor
External GITS_CREADR ITS Read Register
External GITS_CTLR ITS Control Register
External GITS_CWRITER ITS Write Register
External GITS_IIDR ITS Identification Register
External GITS_MPAMIDR Report maximum PARTID and PMG Register
External GITS_MPIDR Report ITS's affinity.
External GITS_PARTIDR Set PARTID and PMG Register
External GITS_SGIR ITS SGI Register
External GITS_STATUSR ITS Error Reporting Status Register
External GITS_TRANSLATER ITS Translation Register
External GITS_TYPER ITS Type Register
External GITS_UMSIR ITS Unmapped MSI register

In the RAS functional group:
Exec state Name Description
AArch32 DISR Deferred Interrupt Status Register
AArch32 ERRIDR Error Record ID Register
AArch32 ERRSELR Error Record Select Register
AArch32 ERXADDR Selected Error Record Address Register
AArch32 ERXADDR2 Selected Error Record Address Register 2
AArch32 ERXCTLR Selected Error Record Control Register
AArch32 ERXCTLR2 Selected Error Record Control Register 2
AArch32 ERXFR Selected Error Record Feature Register
AArch32 ERXFR2 Selected Error Record Feature Register 2
AArch32 ERXMISC0 Selected Error Record Miscellaneous Register 0
AArch32 ERXMISC1 Selected Error Record Miscellaneous Register 1
AArch32 ERXMISC2 Selected Error Record Miscellaneous Register 2
AArch32 ERXMISC3 Selected Error Record Miscellaneous Register 3
AArch32 ERXMISC4 Selected Error Record Miscellaneous Register 4
AArch32 ERXMISC5 Selected Error Record Miscellaneous Register 5
AArch32 ERXMISC6 Selected Error Record Miscellaneous Register 6
AArch32 ERXMISC7 Selected Error Record Miscellaneous Register 7
AArch32 ERXSTATUS Selected Error Record Primary Status Register
AArch32 VDFSR Virtual SError Exception Syndrome Register
AArch32 VDISR Virtual Deferred Interrupt Status Register
AArch64 DISR_EL1 Deferred Interrupt Status Register
AArch64 ERRIDR_EL1 Error Record ID Register
AArch64 ERRSELR_EL1 Error Record Select Register
AArch64 ERXADDR_EL1 Selected Error Record Address Register
AArch64 ERXCTLR_EL1 Selected Error Record Control Register
AArch64 ERXFR_EL1 Selected Error Record Feature Register
AArch64 ERXMISC0_EL1 Selected Error Record Miscellaneous Register 0
AArch64 ERXMISC1_EL1 Selected Error Record Miscellaneous Register 1
AArch64 ERXMISC2_EL1 Selected Error Record Miscellaneous Register 2
AArch64 ERXMISC3_EL1 Selected Error Record Miscellaneous Register 3
AArch64 ERXPFGCDN_EL1 Selected Pseudo-fault Generation Countdown register
AArch64 ERXPFGCTL_EL1 Selected Pseudo-fault Generation Control register
AArch64 ERXPFGF_EL1 Selected Pseudo-fault Generation Feature register
AArch64 ERXSTATUS_EL1 Selected Error Record Primary Status Register
AArch64 VDISR_EL2 Virtual Deferred Interrupt Status Register
AArch64 VSESR_EL2 Virtual SError Exception Syndrome Register
External ERR<n>ADDR Error Record <n> Address Register
External ERR<n>CTLR Error Record <n> Control Register
External ERR<n>FR Error Record <n> Feature Register

System Register index by functional group

Page 849

Exec state Name Description
External ERR<n>MISC0 Error Record <n> Miscellaneous Register 0
External ERR<n>MISC1 Error Record <n> Miscellaneous Register 1
External ERR<n>MISC2 Error Record <n> Miscellaneous Register 2
External ERR<n>MISC3 Error Record <n> Miscellaneous Register 3
External ERR<n>PFGCDN Error Record <n> Pseudo-fault Generation Countdown Register
External ERR<n>PFGCTL Error Record <n> Pseudo-fault Generation Control Register
External ERR<n>PFGF Error Record <n> Pseudo-fault Generation Feature Register
External ERR<n>STATUS Error Record <n> Primary Status Register
External ERRCIDR0 Component Identification Register 0
External ERRCIDR1 Component Identification Register 1
External ERRCIDR2 Component Identification Register 2
External ERRCIDR3 Component Identification Register 3
External ERRCRICR0 Critical Error Interrupt Configuration Register 0
External ERRCRICR1 Critical Error Interrupt Configuration Register 1
External ERRCRICR2 Critical Error Interrupt Configuration Register 2
External ERRDEVAFF Device Affinity Register
External ERRDEVARCH Device Architecture Register
External ERRDEVID Device Configuration Register
External ERRERICR0 Error Recovery Interrupt Configuration Register 0
External ERRERICR1 Error Recovery Interrupt Configuration Register 1
External ERRERICR2 Error Recovery Interrupt Configuration Register 2
External ERRFHICR0 Fault Handling Interrupt Configuration Register 0
External ERRFHICR1 Fault Handling Interrupt Configuration Register 1
External ERRFHICR2 Fault Handling Interrupt Configuration Register 2
External ERRGSR Error Group Status Register
External ERRIIDR Implementation Identification Register
External ERRIMPDEF<n> IMPLEMENTATION DEFINED Register <n>
External ERRIRQCR<n> Generic Error Interrupt Configuration Register <n>
External ERRIRQSR Error Interrupt Status Register
External ERRPIDR0 Peripheral Identification Register 0
External ERRPIDR1 Peripheral Identification Register 1
External ERRPIDR2 Peripheral Identification Register 2
External ERRPIDR3 Peripheral Identification Register 3
External ERRPIDR4 Peripheral Identification Register 4

In the MPAM functional group:
Exec
state Name Description

AArch64 MPAM0_EL1 MPAM0 Register (EL1)
AArch64 MPAM1_EL1 MPAM1 Register (EL1)
AArch64 MPAM2_EL2 MPAM2 Register (EL2)
AArch64 MPAM3_EL3 MPAM3 Register (EL3)
AArch64 MPAMHCR_EL2 MPAM Hypervisor Control Register (EL2)
AArch64 MPAMSM_EL1 MPAM Streaming Mode Register
AArch64 MPAMVPM0_EL2 MPAM Virtual PARTID Mapping Register 0
AArch64 MPAMVPM1_EL2 MPAM Virtual PARTID Mapping Register 1
AArch64 MPAMVPM2_EL2 MPAM Virtual PARTID Mapping Register 2
AArch64 MPAMVPM3_EL2 MPAM Virtual PARTID Mapping Register 3
AArch64 MPAMVPM4_EL2 MPAM Virtual PARTID Mapping Register 4
AArch64 MPAMVPM5_EL2 MPAM Virtual PARTID Mapping Register 5
AArch64 MPAMVPM6_EL2 MPAM Virtual PARTID Mapping Register 6
AArch64 MPAMVPM7_EL2 MPAM Virtual PARTID Mapping Register 7
AArch64 MPAMVPMV_EL2 MPAM Virtual Partition Mapping Valid Register
External MPAMCFG_CASSOC MPAM Cache Maximum Associativity Partition Configuration

Register
External MPAMCFG_CMAX MPAM Cache Maximum Capacity Partition Configuration Register
External MPAMCFG_CMIN MPAM Cache Minimum Capacity Partition Configuration Register
External MPAMCFG_CPBM<n> MPAM Cache Portion Bitmap Partition Configuration Register
External MPAMCFG_DIS MPAM Partition Configuration Disable Register
External MPAMCFG_EN MPAM Partition Configuration Enable Register
External MPAMCFG_EN_FLAGS MPAM Partition Configuration Enable Flags Register
External MPAMCFG_INTPARTID MPAM Internal PARTID Narrowing Configuration Register

System Register index by functional group

Page 850

Exec
state Name Description

External MPAMCFG_MBW_MAX MPAM Memory Bandwidth Maximum Partition Configuration
Register

External MPAMCFG_MBW_MIN MPAM Memory Bandwidth Minimum Partition Configuration
Register

External MPAMCFG_MBW_PBM<n> MPAM Bandwidth Portion Bitmap Partition Configuration Register
External MPAMCFG_MBW_PROP MPAM Memory Bandwidth Proportional Stride Partition

Configuration Register
External MPAMCFG_MBW_WINWD MPAM Memory Bandwidth Partitioning Window Width

Configuration Register
External MPAMCFG_PART_SEL MPAM Partition Configuration Selection Register
External MPAMCFG_PRI MPAM Priority Partition Configuration Register
External MPAMF_AIDR MPAM Architecture Identification Register
External MPAMF_CCAP_IDR MPAM Features Cache Capacity Partitioning ID register
External MPAMF_CPOR_IDR MPAM Features Cache Portion Partitioning ID register
External MPAMF_CSUMON_IDR MPAM Features Cache Storage Usage Monitoring ID register
External MPAMF_ECR MPAM Error Control Register
External MPAMF_ERR_MSI_ADDR_H MPAM Error MSI High-part Address Register
External MPAMF_ERR_MSI_ADDR_L MPAM Error MSI Low-part Address Register
External MPAMF_ERR_MSI_ATTR MPAM Error MSI Write Attributes Register
External MPAMF_ERR_MSI_DATA MPAM Error MSI Data Register
External MPAMF_ERR_MSI_MPAM MPAM Error MSI Write MPAM Information Register
External MPAMF_ESR MPAM Error Status Register
External MPAMF_IDR MPAM Features Identification Register
External MPAMF_IIDR MPAM Implementation Identification Register
External MPAMF_IMPL_IDR MPAM Implementation-Specific Partitioning Feature Identification

Register
External MPAMF_MBWUMON_IDR MPAM Features Memory Bandwidth Usage Monitoring ID register
External MPAMF_MBW_IDR MPAM Memory Bandwidth Partitioning Identification Register
External MPAMF_MSMON_IDR MPAM Resource Monitoring Identification Register
External MPAMF_PARTID_NRW_IDR MPAM PARTID Narrowing ID register
External MPAMF_PRI_IDR MPAM Priority Partitioning Identification Register
External MPAMF_SIDR MPAM Features Secure Identification Register
External MSMON_CAPT_EVNT MPAM Capture Event Generation Register
External MSMON_CFG_CSU_CTL MPAM Memory System Monitor Configure Cache Storage Usage

Monitor Control Register
External MSMON_CFG_CSU_FLT MPAM Memory System Monitor Configure Cache Storage Usage

Monitor Filter Register
External MSMON_CFG_MBWU_CTL MPAM Memory System Monitor Configure Memory Bandwidth

Usage Monitor Control Register
External MSMON_CFG_MBWU_FLT MPAM Memory System Monitor Configure Memory Bandwidth

Usage Monitor Filter Register
External MSMON_CFG_MON_SEL MPAM Monitor Instance Selection Register
External MSMON_CSU MPAM Cache Storage Usage Monitor Register
External MSMON_CSU_CAPTURE MPAM Cache Storage Usage Monitor Capture Register
External MSMON_CSU_OFSR MPAM CSU Monitor Overflow Status Register
External MSMON_MBWU MPAM Memory Bandwidth Usage Monitor Register
External MSMON_MBWU_CAPTURE MPAM Memory Bandwidth Usage Monitor Capture Register
External MSMON_MBWU_L MPAM Long Memory Bandwidth Usage Monitor Register
External MSMON_MBWU_L_CAPTURE MPAM Long Memory Bandwidth Usage Monitor Capture Register
External MSMON_MBWU_OFSR MPAM MBWU Monitor Overflow Status Register
External MSMON_OFLOW_MSI_ADDR_H MPAM Monitor Overflow MSI Write High-part Address Register
External MSMON_OFLOW_MSI_ADDR_L MPAM Monitor Overflow MSI Low-part Address Register
External MSMON_OFLOW_MSI_ATTR MPAM Monitor Overflow MSI Write Attributes Register
External MSMON_OFLOW_MSI_DATA MPAM Monitor Overflow MSI Write Data Register
External MSMON_OFLOW_MSI_MPAM MPAM Monitor Overflow MSI Write MPAM Information Register
External MSMON_OFLOW_SR MPAM Monitor Overflow Status Register

In the Pointer authentication functional group:
Exec state Name Description
AArch64 APDAKeyHi_EL1 Pointer Authentication Key A for Data (bits[127:64])
AArch64 APDAKeyLo_EL1 Pointer Authentication Key A for Data (bits[63:0])
AArch64 APDBKeyHi_EL1 Pointer Authentication Key B for Data (bits[127:64])

System Register index by functional group

Page 851

Exec state Name Description
AArch64 APDBKeyLo_EL1 Pointer Authentication Key B for Data (bits[63:0])
AArch64 APGAKeyHi_EL1 Pointer Authentication Key A for Code (bits[127:64])
AArch64 APGAKeyLo_EL1 Pointer Authentication Key A for Code (bits[63:0])
AArch64 APIAKeyHi_EL1 Pointer Authentication Key A for Instruction (bits[127:64])
AArch64 APIAKeyLo_EL1 Pointer Authentication Key A for Instruction (bits[63:0])
AArch64 APIBKeyHi_EL1 Pointer Authentication Key B for Instruction (bits[127:64])
AArch64 APIBKeyLo_EL1 Pointer Authentication Key B for Instruction (bits[63:0])

In the AMU functional group:
Exec state Name Description
AArch32 AMCFGR Activity Monitors Configuration Register
AArch32 AMCGCR Activity Monitors Counter Group Configuration Register
AArch32 AMCNTENCLR0 Activity Monitors Count Enable Clear Register 0
AArch32 AMCNTENCLR1 Activity Monitors Count Enable Clear Register 1
AArch32 AMCNTENSET0 Activity Monitors Count Enable Set Register 0
AArch32 AMCNTENSET1 Activity Monitors Count Enable Set Register 1
AArch32 AMCR Activity Monitors Control Register
AArch32 AMEVCNTR0<n> Activity Monitors Event Counter Registers 0
AArch32 AMEVCNTR1<n> Activity Monitors Event Counter Registers 1
AArch32 AMEVTYPER0<n> Activity Monitors Event Type Registers 0
AArch32 AMEVTYPER1<n> Activity Monitors Event Type Registers 1
AArch32 AMUSERENR Activity Monitors User Enable Register
AArch64 AMCFGR_EL0 Activity Monitors Configuration Register
AArch64 AMCG1IDR_EL0 Activity Monitors Counter Group 1 Identification Register
AArch64 AMCGCR_EL0 Activity Monitors Counter Group Configuration Register
AArch64 AMCNTENCLR0_EL0 Activity Monitors Count Enable Clear Register 0
AArch64 AMCNTENCLR1_EL0 Activity Monitors Count Enable Clear Register 1
AArch64 AMCNTENSET0_EL0 Activity Monitors Count Enable Set Register 0
AArch64 AMCNTENSET1_EL0 Activity Monitors Count Enable Set Register 1
AArch64 AMCR_EL0 Activity Monitors Control Register
AArch64 AMEVCNTR0<n>_EL0 Activity Monitors Event Counter Registers 0
AArch64 AMEVCNTR1<n>_EL0 Activity Monitors Event Counter Registers 1
AArch64 AMEVCNTVOFF0<n>_EL2 Activity Monitors Event Counter Virtual Offset Registers 0
AArch64 AMEVCNTVOFF1<n>_EL2 Activity Monitors Event Counter Virtual Offset Registers 1
AArch64 AMEVTYPER0<n>_EL0 Activity Monitors Event Type Registers 0
AArch64 AMEVTYPER1<n>_EL0 Activity Monitors Event Type Registers 1
AArch64 AMUSERENR_EL0 Activity Monitors User Enable Register
External AMCFGR Activity Monitors Configuration Register
External AMCGCR Activity Monitors Counter Group Configuration Register
External AMCIDR0 Activity Monitors Component Identification Register 0
External AMCIDR1 Activity Monitors Component Identification Register 1
External AMCIDR2 Activity Monitors Component Identification Register 2
External AMCIDR3 Activity Monitors Component Identification Register 3
External AMCNTENCLR0 Activity Monitors Count Enable Clear Register 0
External AMCNTENCLR1 Activity Monitors Count Enable Clear Register 1
External AMCNTENSET0 Activity Monitors Count Enable Set Register 0
External AMCNTENSET1 Activity Monitors Count Enable Set Register 1
External AMCR Activity Monitors Control Register
External AMDEVAFF0 Activity Monitors Device Affinity Register 0
External AMDEVAFF1 Activity Monitors Device Affinity Register 1
External AMDEVARCH Activity Monitors Device Architecture Register
External AMDEVTYPE Activity Monitors Device Type Register
External AMEVCNTR0<n> Activity Monitors Event Counter Registers 0
External AMEVCNTR1<n> Activity Monitors Event Counter Registers 1
External AMEVTYPER0<n> Activity Monitors Event Type Registers 0
External AMEVTYPER1<n> Activity Monitors Event Type Registers 1
External AMIIDR Activity Monitors Implementation Identification Register
External AMPIDR0 Activity Monitors Peripheral Identification Register 0
External AMPIDR1 Activity Monitors Peripheral Identification Register 1
External AMPIDR2 Activity Monitors Peripheral Identification Register 2
External AMPIDR3 Activity Monitors Peripheral Identification Register 3
External AMPIDR4 Activity Monitors Peripheral Identification Register 4

System Register index by functional group

Page 852

In the Root functional group:
Exec state Name Description
AArch64 GPCCR_EL3 Granule Protection Check Control Register (EL3)
AArch64 GPTBR_EL3 Granule Protection Table Base Register
AArch64 MFAR_EL3 PA Fault Address Register

In the GIC ITS registers functional group:
Exec state Name Description
External GITS_BASER<n> ITS Translation Table Descriptors
External GITS_CBASER ITS Command Queue Descriptor
External GITS_CREADR ITS Read Register
External GITS_CTLR ITS Control Register
External GITS_CWRITER ITS Write Register
External GITS_IIDR ITS Identification Register
External GITS_MPAMIDR Report maximum PARTID and PMG Register
External GITS_MPIDR Report ITS's affinity.
External GITS_PARTIDR Set PARTID and PMG Register
External GITS_SGIR ITS SGI Register
External GITS_STATUSR ITS Error Reporting Status Register
External GITS_TRANSLATER ITS Translation Register
External GITS_TYPER ITS Type Register
External GITS_UMSIR ITS Unmapped MSI register

3021/03/2022 2017:3305

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

System Register index by functional group

Page 853

(old) htmldiff from- (new)

External registers
AMCFGR: Activity Monitors Configuration Register

AMCGCR: Activity Monitors Counter Group Configuration Register

AMCIDR0: Activity Monitors Component Identification Register 0

AMCIDR1: Activity Monitors Component Identification Register 1

AMCIDR2: Activity Monitors Component Identification Register 2

AMCIDR3: Activity Monitors Component Identification Register 3

AMCNTENCLR0: Activity Monitors Count Enable Clear Register 0

AMCNTENCLR1: Activity Monitors Count Enable Clear Register 1

AMCNTENSET0: Activity Monitors Count Enable Set Register 0

AMCNTENSET1: Activity Monitors Count Enable Set Register 1

AMCR: Activity Monitors Control Register

AMDEVAFF0: Activity Monitors Device Affinity Register 0

AMDEVAFF1: Activity Monitors Device Affinity Register 1

AMDEVARCH: Activity Monitors Device Architecture Register

AMDEVTYPE: Activity Monitors Device Type Register

AMEVCNTR0<n>: Activity Monitors Event Counter Registers 0

AMEVCNTR1<n>: Activity Monitors Event Counter Registers 1

AMEVTYPER0<n>: Activity Monitors Event Type Registers 0

AMEVTYPER1<n>: Activity Monitors Event Type Registers 1

AMIIDR: Activity Monitors Implementation Identification Register

AMPIDR0: Activity Monitors Peripheral Identification Register 0

AMPIDR1: Activity Monitors Peripheral Identification Register 1

AMPIDR2: Activity Monitors Peripheral Identification Register 2

AMPIDR3: Activity Monitors Peripheral Identification Register 3

AMPIDR4: Activity Monitors Peripheral Identification Register 4

ASICCTL: CTI External Multiplexer Control register

CNTACR<n>: Counter-timer Access Control Registers

CNTCR: Counter Control Register

CNTCV: Counter Count Value register

CNTEL0ACR: Counter-timer EL0 Access Control Register

CNTFID0: Counter Frequency ID

CNTFID<n>: Counter Frequency IDs, n > 0

CNTFRQ: Counter-timer Frequency

External registers

Page 854

CNTID: Counter Identification Register

CNTNSAR: Counter-timer Non-secure Access Register

CNTPCT: Counter-timer Physical Count

CNTP_CTL: Counter-timer Physical Timer Control

CNTP_CVAL: Counter-timer Physical Timer CompareValue

CNTP_TVAL: Counter-timer Physical Timer TimerValue

CNTSCR: Counter Scale Register

CNTSR: Counter Status Register

CNTTIDR: Counter-timer Timer ID Register

CNTVCT: Counter-timer Virtual Count

CNTVOFF: Counter-timer Virtual Offset

CNTVOFF<n>: Counter-timer Virtual Offsets

CNTV_CTL: Counter-timer Virtual Timer Control

CNTV_CVAL: Counter-timer Virtual Timer CompareValue

CNTV_TVAL: Counter-timer Virtual Timer TimerValue

CounterID<n>: Counter ID registers

CTIAPPCLEAR: CTI Application Trigger Clear register

CTIAPPPULSE: CTI Application Pulse register

CTIAPPSET: CTI Application Trigger Set register

CTIAUTHSTATUS: CTI Authentication Status register

CTICHINSTATUS: CTI Channel In Status register

CTICHOUTSTATUS: CTI Channel Out Status register

CTICIDR0: CTI Component Identification Register 0

CTICIDR1: CTI Component Identification Register 1

CTICIDR2: CTI Component Identification Register 2

CTICIDR3: CTI Component Identification Register 3

CTICLAIMCLR: CTI CLAIM Tag Clear register

CTICLAIMSET: CTI CLAIM Tag Set register

CTICONTROL: CTI Control register

CTIDEVAFF0: CTI Device Affinity register 0

CTIDEVAFF1: CTI Device Affinity register 1

CTIDEVARCH: CTI Device Architecture register

CTIDEVCTL: CTI Device Control register

CTIDEVID: CTI Device ID register 0

CTIDEVID1: CTI Device ID register 1

CTIDEVID2: CTI Device ID register 2

External registers

Page 855

CTIDEVTYPE: CTI Device Type register

CTIGATE: CTI Channel Gate Enable register

CTIINEN<n>: CTI Input Trigger to Output Channel Enable registers

CTIINTACK: CTI Output Trigger Acknowledge register

CTIITCTRL: CTI Integration mode Control register

CTILAR: CTI Lock Access Register

CTILSR: CTI Lock Status Register

CTIOUTEN<n>: CTI Input Channel to Output Trigger Enable registers

CTIPIDR0: CTI Peripheral Identification Register 0

CTIPIDR1: CTI Peripheral Identification Register 1

CTIPIDR2: CTI Peripheral Identification Register 2

CTIPIDR3: CTI Peripheral Identification Register 3

CTIPIDR4: CTI Peripheral Identification Register 4

CTITRIGINSTATUS: CTI Trigger In Status register

CTITRIGOUTSTATUS: CTI Trigger Out Status register

DBGAUTHSTATUS_EL1: Debug Authentication Status register

DBGBCR<n>_EL1: Debug Breakpoint Control Registers

DBGBVR<n>_EL1: Debug Breakpoint Value Registers

DBGCLAIMCLR_EL1: Debug CLAIM Tag Clear register

DBGCLAIMSET_EL1: Debug CLAIM Tag Set register

DBGDTRRX_EL0: Debug Data Transfer Register, Receive

DBGDTRTX_EL0: Debug Data Transfer Register, Transmit

DBGWCR<n>_EL1: Debug Watchpoint Control Registers

DBGWVR<n>_EL1: Debug Watchpoint Value Registers

EDAA32PFR: External Debug Auxiliary Processor Feature Register

EDACR: External Debug Auxiliary Control Register

EDCIDR0: External Debug Component Identification Register 0

EDCIDR1: External Debug Component Identification Register 1

EDCIDR2: External Debug Component Identification Register 2

EDCIDR3: External Debug Component Identification Register 3

EDCIDSR: External Debug Context ID Sample Register

EDDEVAFF0: External Debug Device Affinity register 0

EDDEVAFF1: External Debug Device Affinity register 1

EDDEVARCH: External Debug Device Architecture register

EDDEVID: External Debug Device ID register 0

EDDEVID1: External Debug Device ID register 1

External registers

Page 856

EDDEVID2: External Debug Device ID register 2

EDDEVTYPE: External Debug Device Type register

EDDFR: External Debug Feature Register

EDECCR: External Debug Exception Catch Control Register

EDECR: External Debug Execution Control Register

EDESR: External Debug Event Status Register

EDHSR: External Debug Halt Status Register

EDITCTRL: External Debug Integration mode Control register

EDITR: External Debug Instruction Transfer Register

EDLAR: External Debug Lock Access Register

EDLSR: External Debug Lock Status Register

EDPCSR: External Debug Program Counter Sample Register

EDPFR: External Debug Processor Feature Register

EDPIDR0: External Debug Peripheral Identification Register 0

EDPIDR1: External Debug Peripheral Identification Register 1

EDPIDR2: External Debug Peripheral Identification Register 2

EDPIDR3: External Debug Peripheral Identification Register 3

EDPIDR4: External Debug Peripheral Identification Register 4

EDPRCR: External Debug Power/Reset Control Register

EDPRSR: External Debug Processor Status Register

EDRCR: External Debug Reserve Control Register

EDSCR: External Debug Status and Control Register

EDVIDSR: External Debug Virtual Context Sample Register

EDWAR: External Debug Watchpoint Address Register

ERR<n>ADDR: Error Record <n> Address Register

ERR<n>CTLR: Error Record <n> Control Register

ERR<n>FR: Error Record <n> Feature Register

ERR<n>MISC0: Error Record <n> Miscellaneous Register 0

ERR<n>MISC1: Error Record <n> Miscellaneous Register 1

ERR<n>MISC2: Error Record <n> Miscellaneous Register 2

ERR<n>MISC3: Error Record <n> Miscellaneous Register 3

ERR<n>PFGCDN: Error Record <n> Pseudo-fault Generation Countdown Register

ERR<n>PFGCTL: Error Record <n> Pseudo-fault Generation Control Register

ERR<n>PFGF: Error Record <n> Pseudo-fault Generation Feature Register

ERR<n>STATUS: Error Record <n> Primary Status Register

ERRCIDR0: Component Identification Register 0

External registers

Page 857

ERRCIDR1: Component Identification Register 1

ERRCIDR2: Component Identification Register 2

ERRCIDR3: Component Identification Register 3

ERRCRICR0: Critical Error Interrupt Configuration Register 0

ERRCRICR1: Critical Error Interrupt Configuration Register 1

ERRCRICR2: Critical Error Interrupt Configuration Register 2

ERRDEVAFF: Device Affinity Register

ERRDEVARCH: Device Architecture Register

ERRDEVID: Device Configuration Register

ERRERICR0: Error Recovery Interrupt Configuration Register 0

ERRERICR1: Error Recovery Interrupt Configuration Register 1

ERRERICR2: Error Recovery Interrupt Configuration Register 2

ERRFHICR0: Fault Handling Interrupt Configuration Register 0

ERRFHICR1: Fault Handling Interrupt Configuration Register 1

ERRFHICR2: Fault Handling Interrupt Configuration Register 2

ERRGSR: Error Group Status Register

ERRIIDR: Implementation Identification Register

ERRIMPDEF<n>: IMPLEMENTATION DEFINED Register <n>

ERRIRQCR<n>: Generic Error Interrupt Configuration Register <n>

ERRIRQSR: Error Interrupt Status Register

ERRPIDR0: Peripheral Identification Register 0

ERRPIDR1: Peripheral Identification Register 1

ERRPIDR2: Peripheral Identification Register 2

ERRPIDR3: Peripheral Identification Register 3

ERRPIDR4: Peripheral Identification Register 4

GICC_ABPR: CPU Interface Aliased Binary Point Register

GICC_AEOIR: CPU Interface Aliased End Of Interrupt Register

GICC_AHPPIR: CPU Interface Aliased Highest Priority Pending Interrupt Register

GICC_AIAR: CPU Interface Aliased Interrupt Acknowledge Register

GICC_APR<n>: CPU Interface Active Priorities Registers

GICC_BPR: CPU Interface Binary Point Register

GICC_CTLR: CPU Interface Control Register

GICC_DIR: CPU Interface Deactivate Interrupt Register

GICC_EOIR: CPU Interface End Of Interrupt Register

GICC_HPPIR: CPU Interface Highest Priority Pending Interrupt Register

GICC_IAR: CPU Interface Interrupt Acknowledge Register

External registers

Page 858

GICC_IIDR: CPU Interface Identification Register

GICC_NSAPR<n>: CPU Interface Non-secure Active Priorities Registers

GICC_PMR: CPU Interface Priority Mask Register

GICC_RPR: CPU Interface Running Priority Register

GICC_STATUSR: CPU Interface Status Register

GICD_CLRSPI_NSR: Clear Non-secure SPI Pending Register

GICD_CLRSPI_SR: Clear Secure SPI Pending Register

GICD_CPENDSGIR<n>: SGI Clear-Pending Registers

GICD_CTLR: Distributor Control Register

GICD_ICACTIVER<n>: Interrupt Clear-Active Registers

GICD_ICACTIVER<n>E: Interrupt Clear-Active Registers (extended SPI range)

GICD_ICENABLER<n>: Interrupt Clear-Enable Registers

GICD_ICENABLER<n>E: Interrupt Clear-Enable Registers

GICD_ICFGR<n>: Interrupt Configuration Registers

GICD_ICFGR<n>E: Interrupt Configuration Registers (Extended SPI Range)

GICD_ICPENDR<n>: Interrupt Clear-Pending Registers

GICD_ICPENDR<n>E: Interrupt Clear-Pending Registers (extended SPI range)

GICD_IGROUPR<n>: Interrupt Group Registers

GICD_IGROUPR<n>E: Interrupt Group Registers (extended SPI range)

GICD_IGRPMODR<n>: Interrupt Group Modifier Registers

GICD_IGRPMODR<n>E: Interrupt Group Modifier Registers (extended SPI range)

GICD_IIDR: Distributor Implementer Identification Register

GICD_INMIR<n>: Non-maskable Interrupt Registers, x = 0 to 31

GICD_INMIR<n>E: Non-maskable Interrupt Registers for Extended SPIs, x = 0 to 31

GICD_IPRIORITYR<n>: Interrupt Priority Registers

GICD_IPRIORITYR<n>E: Holds the priority of the corresponding interrupt for each extended SPI supported by the
GIC.

GICD_IROUTER<n>: Interrupt Routing Registers

GICD_IROUTER<n>E: Interrupt Routing Registers (Extended SPI Range)

GICD_ISACTIVER<n>: Interrupt Set-Active Registers

GICD_ISACTIVER<n>E: Interrupt Set-Active Registers (extended SPI range)

GICD_ISENABLER<n>: Interrupt Set-Enable Registers

GICD_ISENABLER<n>E: Interrupt Set-Enable Registers

GICD_ISPENDR<n>: Interrupt Set-Pending Registers

GICD_ISPENDR<n>E: Interrupt Set-Pending Registers (extended SPI range)

GICD_ITARGETSR<n>: Interrupt Processor Targets Registers

GICD_NSACR<n>: Non-secure Access Control Registers

External registers

Page 859

GICD_NSACR<n>E: Non-secure Access Control Registers

GICD_SETSPI_NSR: Set Non-secure SPI Pending Register

GICD_SETSPI_SR: Set Secure SPI Pending Register

GICD_SGIR: Software Generated Interrupt Register

GICD_SPENDSGIR<n>: SGI Set-Pending Registers

GICD_STATUSR: Error Reporting Status Register

GICD_TYPER: Interrupt Controller Type Register

GICD_TYPER2: Interrupt Controller Type Register 2

GICH_APR<n>: Active Priorities Registers

GICH_EISR: End Interrupt Status Register

GICH_ELRSR: Empty List Register Status Register

GICH_HCR: Hypervisor Control Register

GICH_LR<n>: List Registers

GICH_MISR: Maintenance Interrupt Status Register

GICH_VMCR: Virtual Machine Control Register

GICH_VTR: Virtual Type Register

GICM_CLRSPI_NSR: Clear Non-secure SPI Pending Register

GICM_CLRSPI_SR: Clear Secure SPI Pending Register

GICM_IIDR: Distributor Implementer Identification Register

GICM_SETSPI_NSR: Set Non-secure SPI Pending Register

GICM_SETSPI_SR: Set Secure SPI Pending Register

GICM_TYPER: Distributor MSI Type Register

GICR_CLRLPIR: Clear LPI Pending Register

GICR_CTLR: Redistributor Control Register

GICR_ICACTIVER0: Interrupt Clear-Active Register 0

GICR_ICACTIVER<n>E: Interrupt Clear-Active Registers

GICR_ICENABLER0: Interrupt Clear-Enable Register 0

GICR_ICENABLER<n>E: Interrupt Clear-Enable Registers

GICR_ICFGR0: Interrupt Configuration Register 0

GICR_ICFGR1: Interrupt Configuration Register 1

GICR_ICFGR<n>E: Interrupt configuration registers

GICR_ICPENDR0: Interrupt Clear-Pending Register 0

GICR_ICPENDR<n>E: Interrupt Clear-Pending Registers

GICR_IGROUPR0: Interrupt Group Register 0

GICR_IGROUPR<n>E: Interrupt Group Registers

GICR_IGRPMODR0: Interrupt Group Modifier Register 0

External registers

Page 860

GICR_IGRPMODR<n>E: Interrupt Group Modifier Registers

GICR_IIDR: Redistributor Implementer Identification Register

GICR_INMIR0: Non-maskable Interrupt Register for PPIs.

GICR_INMIR<n>E: Non-maskable Interrupt Registers for Extended PPIs, x = 1 to 2.

GICR_INVALLR: Redistributor Invalidate All Register

GICR_INVLPIR: Redistributor Invalidate LPI Register

GICR_IPRIORITYR<n>: Interrupt Priority Registers

GICR_IPRIORITYR<n>E: Interrupt Priority Registers (extended PPI range)

GICR_ISACTIVER0: Interrupt Set-Active Register 0

GICR_ISACTIVER<n>E: Interrupt Set-Active Registers

GICR_ISENABLER0: Interrupt Set-Enable Register 0

GICR_ISENABLER<n>E: Interrupt Set-Enable Registers

GICR_ISPENDR0: Interrupt Set-Pending Register 0

GICR_ISPENDR<n>E: Interrupt Set-Pending Registers

GICR_MPAMIDR: Report maximum PARTID and PMG Register

GICR_NSACR: Non-secure Access Control Register

GICR_PARTIDR: Set PARTID and PMG Register

GICR_PENDBASER: Redistributor LPI Pending Table Base Address Register

GICR_PROPBASER: Redistributor Properties Base Address Register

GICR_SETLPIR: Set LPI Pending Register

GICR_STATUSR: Error Reporting Status Register

GICR_SYNCR: Redistributor Synchronize Register

GICR_TYPER: Redistributor Type Register

GICR_VPENDBASER: Virtual Redistributor LPI Pending Table Base Address Register

GICR_VPROPBASER: Virtual Redistributor Properties Base Address Register

GICR_VSGIPENDR: Redistributor virtual SGI pending state register

GICR_VSGIR: Redistributor virtual SGI pending state request register

GICR_WAKER: Redistributor Wake Register

GICV_ABPR: Virtual Machine Aliased Binary Point Register

GICV_AEOIR: Virtual Machine Aliased End Of Interrupt Register

GICV_AHPPIR: Virtual Machine Aliased Highest Priority Pending Interrupt Register

GICV_AIAR: Virtual Machine Aliased Interrupt Acknowledge Register

GICV_APR<n>: Virtual Machine Active Priorities Registers

GICV_BPR: Virtual Machine Binary Point Register

GICV_CTLR: Virtual Machine Control Register

GICV_DIR: Virtual Machine Deactivate Interrupt Register

External registers

Page 861

GICV_EOIR: Virtual Machine End Of Interrupt Register

GICV_HPPIR: Virtual Machine Highest Priority Pending Interrupt Register

GICV_IAR: Virtual Machine Interrupt Acknowledge Register

GICV_IIDR: Virtual Machine CPU Interface Identification Register

GICV_PMR: Virtual Machine Priority Mask Register

GICV_RPR: Virtual Machine Running Priority Register

GICV_STATUSR: Virtual Machine Error Reporting Status Register

GITS_BASER<n>: ITS Translation Table Descriptors

GITS_CBASER: ITS Command Queue Descriptor

GITS_CREADR: ITS Read Register

GITS_CTLR: ITS Control Register

GITS_CWRITER: ITS Write Register

GITS_IIDR: ITS Identification Register

GITS_MPAMIDR: Report maximum PARTID and PMG Register

GITS_MPIDR: Report ITS's affinity.

GITS_PARTIDR: Set PARTID and PMG Register

GITS_SGIR: ITS SGI Register

GITS_STATUSR: ITS Error Reporting Status Register

GITS_TRANSLATER: ITS Translation Register

GITS_TYPER: ITS Type Register

GITS_UMSIR: ITS Unmapped MSI register

MIDR_EL1: Main ID Register

MPAMCFG_CASSOC: MPAM Cache Maximum Associativity Partition Configuration Register

MPAMCFG_CMAX: MPAM Cache Maximum Capacity Partition Configuration Register

MPAMCFG_CMIN: MPAM Cache Minimum Capacity Partition Configuration Register

MPAMCFG_CPBM<n>: MPAM Cache Portion Bitmap Partition Configuration Register

MPAMCFG_DIS: MPAM Partition Configuration Disable Register

MPAMCFG_EN: MPAM Partition Configuration Enable Register

MPAMCFG_EN_FLAGS: MPAM Partition Configuration Enable Flags Register

MPAMCFG_INTPARTID: MPAM Internal PARTID Narrowing Configuration Register

MPAMCFG_MBW_MAX: MPAM Memory Bandwidth Maximum Partition Configuration Register

MPAMCFG_MBW_MIN: MPAM Memory Bandwidth Minimum Partition Configuration Register

MPAMCFG_MBW_PBM<n>: MPAM Bandwidth Portion Bitmap Partition Configuration Register

MPAMCFG_MBW_PROP: MPAM Memory Bandwidth Proportional Stride Partition Configuration Register

MPAMCFG_MBW_WINWD: MPAM Memory Bandwidth Partitioning Window Width Configuration Register

MPAMCFG_PART_SEL: MPAM Partition Configuration Selection Register

External registers

Page 862

MPAMCFG_PRI: MPAM Priority Partition Configuration Register

MPAMF_AIDR: MPAM Architecture Identification Register

MPAMF_CCAP_IDR: MPAM Features Cache Capacity Partitioning ID register

MPAMF_CPOR_IDR: MPAM Features Cache Portion Partitioning ID register

MPAMF_CSUMON_IDR: MPAM Features Cache Storage Usage Monitoring ID register

MPAMF_ECR: MPAM Error Control Register

MPAMF_ERR_MSI_ADDR_H: MPAM Error MSI High-part Address Register

MPAMF_ERR_MSI_ADDR_L: MPAM Error MSI Low-part Address Register

MPAMF_ERR_MSI_ATTR: MPAM Error MSI Write Attributes Register

MPAMF_ERR_MSI_DATA: MPAM Error MSI Data Register

MPAMF_ERR_MSI_MPAM: MPAM Error MSI Write MPAM Information Register

MPAMF_ESR: MPAM Error Status Register

MPAMF_IDR: MPAM Features Identification Register

MPAMF_IIDR: MPAM Implementation Identification Register

MPAMF_IMPL_IDR: MPAM Implementation-Specific Partitioning Feature Identification Register

MPAMF_MBWUMON_IDR: MPAM Features Memory Bandwidth Usage Monitoring ID register

MPAMF_MBW_IDR: MPAM Memory Bandwidth Partitioning Identification Register

MPAMF_MSMON_IDR: MPAM Resource Monitoring Identification Register

MPAMF_PARTID_NRW_IDR: MPAM PARTID Narrowing ID register

MPAMF_PRI_IDR: MPAM Priority Partitioning Identification Register

MPAMF_SIDR: MPAM Features Secure Identification Register

MSMON_CAPT_EVNT: MPAM Capture Event Generation Register

MSMON_CFG_CSU_CTL: MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register

MSMON_CFG_CSU_FLT: MPAM Memory System Monitor Configure Cache Storage Usage Monitor Filter Register

MSMON_CFG_MBWU_CTL: MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

MSMON_CFG_MBWU_FLT: MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Filter
Register

MSMON_CFG_MON_SEL: MPAM Monitor Instance Selection Register

MSMON_CSU: MPAM Cache Storage Usage Monitor Register

MSMON_CSU_CAPTURE: MPAM Cache Storage Usage Monitor Capture Register

MSMON_CSU_OFSR: MPAM CSU Monitor Overflow Status Register

MSMON_MBWU: MPAM Memory Bandwidth Usage Monitor Register

MSMON_MBWU_CAPTURE: MPAM Memory Bandwidth Usage Monitor Capture Register

MSMON_MBWU_L: MPAM Long Memory Bandwidth Usage Monitor Register

MSMON_MBWU_L_CAPTURE: MPAM Long Memory Bandwidth Usage Monitor Capture Register

MSMON_MBWU_OFSR: MPAM MBWU Monitor Overflow Status Register

External registers

Page 863

MSMON_OFLOW_MSI_ADDR_H: MPAM Monitor Overflow MSI Write High-part Address Register

MSMON_OFLOW_MSI_ADDR_L: MPAM Monitor Overflow MSI Low-part Address Register

MSMON_OFLOW_MSI_ATTR: MPAM Monitor Overflow MSI Write Attributes Register

MSMON_OFLOW_MSI_DATA: MPAM Monitor Overflow MSI Write Data Register

MSMON_OFLOW_MSI_MPAM: MPAM Monitor Overflow MSI Write MPAM Information Register

MSMON_OFLOW_SR: MPAM Monitor Overflow Status Register

OSLAR_EL1: OS Lock Access Register

PMAUTHSTATUS: Performance Monitors Authentication Status register

PMCCFILTR_EL0: Performance Monitors Cycle Counter Filter Register

PMCCNTR_EL0: Performance Monitors Cycle Counter

PMCEID0: Performance Monitors Common Event Identification register 0

PMCEID1: Performance Monitors Common Event Identification register 1

PMCEID2: Performance Monitors Common Event Identification register 2

PMCEID3: Performance Monitors Common Event Identification register 3

PMCFGR: Performance Monitors Configuration Register

PMCID1SR: CONTEXTIDR_EL1 Sample Register

PMCID2SR: CONTEXTIDR_EL2 Sample Register

PMCIDR0: Performance Monitors Component Identification Register 0

PMCIDR1: Performance Monitors Component Identification Register 1

PMCIDR2: Performance Monitors Component Identification Register 2

PMCIDR3: Performance Monitors Component Identification Register 3

PMCNTENCLR_EL0: Performance Monitors Count Enable Clear register

PMCNTENSET_EL0: Performance Monitors Count Enable Set register

PMCR_EL0: Performance Monitors Control Register

PMDEVAFF0: Performance Monitors Device Affinity register 0

PMDEVAFF1: Performance Monitors Device Affinity register 1

PMDEVARCH: Performance Monitors Device Architecture register

PMDEVID: Performance Monitors Device ID register

PMDEVTYPE: Performance Monitors Device Type register

PMEVCNTR<n>_EL0: Performance Monitors Event Count Registers

PMEVFILTR<n>: Performance Monitors Event Type Select Register <n>

PMEVTYPER<n>_EL0: Performance Monitors Event Type Registers

PMINTENCLR_EL1: Performance Monitors Interrupt Enable Clear register

PMINTENSET_EL1: Performance Monitors Interrupt Enable Set register

PMITCTRL: Performance Monitors Integration mode Control register

PMLAR: Performance Monitors Lock Access Register

External registers

Page 864

PMLSR: Performance Monitors Lock Status Register

PMMIR: Performance Monitors Machine Identification Register

PMOVSCLR_EL0: Performance Monitors Overflow Flag Status Clear register

PMOVSSET_EL0: Performance Monitors Overflow Flag Status Set register

PMPCSR: Program Counter Sample Register

PMPIDR0: Performance Monitors Peripheral Identification Register 0

PMPIDR1: Performance Monitors Peripheral Identification Register 1

PMPIDR2: Performance Monitors Peripheral Identification Register 2

PMPIDR3: Performance Monitors Peripheral Identification Register 3

PMPIDR4: Performance Monitors Peripheral Identification Register 4

PMSWINC_EL0: Performance Monitors Software Increment register

PMVIDSR: VMID Sample Register

TRCACATR<n>: Address Comparator Access Type Register <n>

TRCACVR<n>: Address Comparator Value Register <n>

TRCAUTHSTATUS: Authentication Status Register

TRCAUXCTLR: Auxiliary Control Register

TRCBBCTLR: Branch Broadcast Control Register

TRCCCCTLR: Cycle Count Control Register

TRCCIDCCTLR0: Context Identifier Comparator Control Register 0

TRCCIDCCTLR1: Context Identifier Comparator Control Register 1

TRCCIDCVR<n>: Context Identifier Comparator Value Registers <n>

TRCCIDR0: Component Identification Register 0

TRCCIDR1: Component Identification Register 1

TRCCIDR2: Component Identification Register 2

TRCCIDR3: Component Identification Register 3

TRCCLAIMCLR: Claim Tag Clear Register

TRCCLAIMSET: Claim Tag Set Register

TRCCNTCTLR<n>: Counter Control Register <n>

TRCCNTRLDVR<n>: Counter Reload Value Register <n>

TRCCNTVR<n>: Counter Value Register <n>

TRCCONFIGR: Trace Configuration Register

TRCDEVAFF: Device Affinity Register

TRCDEVARCH: Device Architecture Register

TRCDEVID: Device Configuration Register

TRCDEVID1: Device Configuration Register 1

TRCDEVID2: Device Configuration Register 2

External registers

Page 865

TRCDEVTYPE: Device Type Register

TRCEVENTCTL0R: Event Control 0 Register

TRCEVENTCTL1R: Event Control 1 Register

TRCEXTINSELR<n>: External Input Select Register <n>

TRCIDR0: ID Register 0

TRCIDR1: ID Register 1

TRCIDR10: ID Register 10

TRCIDR11: ID Register 11

TRCIDR12: ID Register 12

TRCIDR13: ID Register 13

TRCIDR2: ID Register 2

TRCIDR3: ID Register 3

TRCIDR4: ID Register 4

TRCIDR5: ID Register 5

TRCIDR6: ID Register 6

TRCIDR7: ID Register 7

TRCIDR8: ID Register 8

TRCIDR9: ID Register 9

TRCIMSPEC0: IMP DEF Register 0

TRCIMSPEC<n>: IMP DEF Register <n>

TRCITCTRL: Integration Mode Control Register

TRCLAR: Lock Access Register

TRCLSR: Lock Status Register

TRCOSLSR: Trace OS Lock Status Register

TRCPDCR: PowerDown Control Register

TRCPDSR: PowerDown Status Register

TRCPIDR0: Peripheral Identification Register 0

TRCPIDR1: Peripheral Identification Register 1

TRCPIDR2: Peripheral Identification Register 2

TRCPIDR3: Peripheral Identification Register 3

TRCPIDR4: Peripheral Identification Register 4

TRCPIDR5: Peripheral Identification Register 5

TRCPIDR6: Peripheral Identification Register 6

TRCPIDR7: Peripheral Identification Register 7

TRCPRGCTLR: Programming Control Register

TRCQCTLR: Q Element Control Register

External registers

Page 866

TRCRSCTLR<n>: Resource Selection Control Register <n>

TRCRSR: Resources Status Register

TRCSEQEVR<n>: Sequencer State Transition Control Register <n>

TRCSEQRSTEVR: Sequencer Reset Control Register

TRCSEQSTR: Sequencer State Register

TRCSSCCR<n>: Single-shot Comparator Control Register <n>

TRCSSCSR<n>: Single-shot Comparator Control Status Register <n>

TRCSSPCICR<n>: Single-shot Processing Element Comparator Input Control Register <n>

TRCSTALLCTLR: Stall Control Register

TRCSTATR: Trace Status Register

TRCSYNCPR: Synchronization Period Register

TRCTRACEIDR: Trace ID Register

TRCTSCTLR: Timestamp Control Register

TRCVICTLR: ViewInst Main Control Register

TRCVIIECTLR: ViewInst Include/Exclude Control Register

TRCVIPCSSCTLR: ViewInst Start/Stop PE Comparator Control Register

TRCVISSCTLR: ViewInst Start/Stop Control Register

TRCVMIDCCTLR0: Virtual Context Identifier Comparator Control Register 0

TRCVMIDCCTLR1: Virtual Context Identifier Comparator Control Register 1

TRCVMIDCVR<n>: Virtual Context Identifier Comparator Value Register <n>

3021/03/2022 2017:3305

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

External registers

Page 867

(old) htmldiff from- (new)

External register index by offset
Below are indexes for external registers in the following blocks:

• DebugGIC Distributor
• GIC Virtual interface controlDebug
• PMUGIC Virtual interface control
• GIC RedistributorPMU
• GIC Virtual CPU interfaceGIC Redistributor
• CTIGIC Virtual CPU interface
• GIC ITS controlCTI
• GIC CPU interfaceGIC ITS control
• GIC DistributorGIC CPU interface
• Timer
• GIC ITS translation
• AMU
• ETE
• MPAM
• RAS

In the GIC Distributor block:
Frame Offset Name Description

Dist_base 0x0000 GICD_CTLR Distributor Control Register
Dist_base 0x0004 GICD_TYPER Interrupt Controller Type Register
Dist_base 0x0008 GICD_IIDR Distributor Implementer Identification

Register
Dist_base 0x000C GICD_TYPER2 Interrupt Controller Type Register 2
Dist_base 0x0010 GICD_STATUSR Error Reporting Status Register
Dist_base 0x0010 GICD_STATUSR Error Reporting Status Register
Dist_base 0x0040 GICD_SETSPI_NSR Set Non-secure SPI Pending Register
Dist_base 0x0048 GICD_CLRSPI_NSR Clear Non-secure SPI Pending Register
Dist_base 0x0050 GICD_SETSPI_SR Set Secure SPI Pending Register
Dist_base 0x0058 GICD_CLRSPI_SR Clear Secure SPI Pending Register
Dist_base 0x0080 + (4 * n) GICD_IGROUPR<n> Interrupt Group Registers
Dist_base 0x0100 + (4 * n) GICD_ISENABLER<n> Interrupt Set-Enable Registers
Dist_base 0x0180 + (4 * n) GICD_ICENABLER<n> Interrupt Clear-Enable Registers
Dist_base 0x0200 + (4 * n) GICD_ISPENDR<n> Interrupt Set-Pending Registers
Dist_base 0x0280 + (4 * n) GICD_ICPENDR<n> Interrupt Clear-Pending Registers
Dist_base 0x0300 + (4 * n) GICD_ISACTIVER<n> Interrupt Set-Active Registers
Dist_base 0x0380 + (4 * n) GICD_ICACTIVER<n> Interrupt Clear-Active Registers
Dist_base 0x0400 + (4 * n) GICD_IPRIORITYR<n> Interrupt Priority Registers
Dist_base 0x0800 + (4 * n) GICD_ITARGETSR<n> Interrupt Processor Targets Registers
Dist_base 0x0C00 + (4 * n) GICD_ICFGR<n> Interrupt Configuration Registers
Dist_base 0x0D00 + (4 * n) GICD_IGRPMODR<n> Interrupt Group Modifier Registers
Dist_base 0x0E00 + (4 * n) GICD_NSACR<n> Non-secure Access Control Registers
Dist_base 0x0F00 GICD_SGIR Software Generated Interrupt Register
Dist_base 0x0F10 + (4 * n) GICD_CPENDSGIR<n> SGI Clear-Pending Registers
Dist_base 0x0F20 + (4 * n) GICD_SPENDSGIR<n> SGI Set-Pending Registers
Dist_base 0x0F80 + (4 * n) GICD_INMIR<n> Non-maskable Interrupt Registers, x = 0 to

31

External register index by offset

Page 868

Frame Offset Name Description
Dist_base 0x1000 + (4 * n) GICD_IGROUPR<n>E Interrupt Group Registers (extended SPI

range)
Dist_base 0x1200 + (4 * n) GICD_ISENABLER<n>E Interrupt Set-Enable Registers
Dist_base 0x1400 + (4 * n) GICD_ICENABLER<n>E Interrupt Clear-Enable Registers
Dist_base 0x1600 + (4 * n) GICD_ISPENDR<n>E Interrupt Set-Pending Registers (extended

SPI range)
Dist_base 0x1800 + (4 * n) GICD_ICPENDR<n>E Interrupt Clear-Pending Registers

(extended SPI range)
Dist_base 0x1A00 + (4 * n) GICD_ISACTIVER<n>E Interrupt Set-Active Registers (extended

SPI range)
Dist_base 0x1C00 + (4 * n) GICD_ICACTIVER<n>E Interrupt Clear-Active Registers (extended

SPI range)
Dist_base 0x2000 + (4 * n) GICD_IPRIORITYR<n>E Holds the priority of the corresponding

interrupt for each extended SPI supported
by the GIC.

Dist_base 0x3000 + (4 * n) GICD_ICFGR<n>E Interrupt Configuration Registers
(Extended SPI Range)

Dist_base 0x3400 + (4 * n) GICD_IGRPMODR<n>E Interrupt Group Modifier Registers
(extended SPI range)

Dist_base 0x3600 + (4 * n) GICD_NSACR<n>E Non-secure Access Control Registers
Dist_base 0x3B00 + (4 * n) GICD_INMIR<n>E Non-maskable Interrupt Registers for

Extended SPIs, x = 0 to 31
Dist_base 0x6000 + (8 * n) GICD_IROUTER<n> Interrupt Routing Registers
Dist_base 0x8000 + (8 * n) GICD_IROUTER<n>E Interrupt Routing Registers (Extended SPI

Range)
MSI_base 0x0004 GICM_TYPER Distributor MSI Type Register
MSI_base 0x0040 GICM_SETSPI_NSR Set Non-secure SPI Pending Register
MSI_base 0x0048 GICM_CLRSPI_NSR Clear Non-secure SPI Pending Register
MSI_base 0x0050 GICM_SETSPI_SR Set Secure SPI Pending Register
MSI_base 0x0058 GICM_CLRSPI_SR Clear Secure SPI Pending Register
MSI_base 0x0FCC GICM_IIDR Distributor Implementer Identification

Register

In the Debug block:
Offset Name Description
0x020 EDESR External Debug Event Status Register
0x024 EDECR External Debug Execution Control Register
0x030 EDWAR[31:0] External Debug Watchpoint Address Register
0x034 EDWAR[63:32] External Debug Watchpoint Address Register
0x038 EDHSR[31:0] External Debug Halt Status Register
0x03C EDHSR[63:32] External Debug Halt Status Register
0x080 DBGDTRRX_EL0 Debug Data Transfer Register, Receive
0x084 EDITR External Debug Instruction Transfer Register
0x088 EDSCR External Debug Status and Control Register
0x08C DBGDTRTX_EL0 Debug Data Transfer Register, Transmit
0x090 EDRCR External Debug Reserve Control Register
0x094 EDACR External Debug Auxiliary Control Register
0x098 EDECCR External Debug Exception Catch Control Register
0x0A0 EDPCSR[31:0] External Debug Program Counter Sample Register
0x0A4 EDCIDSR External Debug Context ID Sample Register
0x0A8 EDVIDSR External Debug Virtual Context Sample Register
0x0AC EDPCSR[63:32] External Debug Program Counter Sample Register

External register index by offset

Page 869

Offset Name Description
0x300 OSLAR_EL1 OS Lock Access Register
0x310 EDPRCR External Debug Power/Reset Control Register
0x314 EDPRSR External Debug Processor Status Register

0x400 + (16 * n) DBGBVR<n>_EL1[63:0] Debug Breakpoint Value Registers
0x408 + (16 * n) DBGBCR<n>_EL1 Debug Breakpoint Control Registers
0x800 + (16 * n) DBGWVR<n>_EL1[63:0] Debug Watchpoint Value Registers
0x808 + (16 * n) DBGWCR<n>_EL1 Debug Watchpoint Control Registers

0xD00 MIDR_EL1 Main ID Register
0xD20 EDPFR[31:0] External Debug Processor Feature Register
0xD24 EDPFR[63:32] External Debug Processor Feature Register
0xD28 EDDFR[31:0] External Debug Feature Register
0xD2C EDDFR[63:32] External Debug Feature Register
0xD60 EDAA32PFR External Debug Auxiliary Processor Feature Register
0xF00 EDITCTRL External Debug Integration mode Control register
0xFA0 DBGCLAIMSET_EL1 Debug CLAIM Tag Set register
0xFA4 DBGCLAIMCLR_EL1 Debug CLAIM Tag Clear register
0xFA8 EDDEVAFF0 External Debug Device Affinity register 0
0xFAC EDDEVAFF1 External Debug Device Affinity register 1
0xFB0 EDLAR External Debug Lock Access Register
0xFB4 EDLSR External Debug Lock Status Register
0xFB8 DBGAUTHSTATUS_EL1 Debug Authentication Status register
0xFBC EDDEVARCH External Debug Device Architecture register
0xFC0 EDDEVID2 External Debug Device ID register 2
0xFC4 EDDEVID1 External Debug Device ID register 1
0xFC8 EDDEVID External Debug Device ID register 0
0xFCC EDDEVTYPE External Debug Device Type register
0xFD0 EDPIDR4 External Debug Peripheral Identification Register 4
0xFE0 EDPIDR0 External Debug Peripheral Identification Register 0
0xFE4 EDPIDR1 External Debug Peripheral Identification Register 1
0xFE8 EDPIDR2 External Debug Peripheral Identification Register 2
0xFEC EDPIDR3 External Debug Peripheral Identification Register 3
0xFF0 EDCIDR0 External Debug Component Identification Register 0
0xFF4 EDCIDR1 External Debug Component Identification Register 1
0xFF8 EDCIDR2 External Debug Component Identification Register 2
0xFFC EDCIDR3 External Debug Component Identification Register 3

In the GIC Virtual interface control block:
Offset Name Description
0x0000 GICH_HCR Hypervisor Control Register
0x0004 GICH_VTR Virtual Type Register
0x0008 GICH_VMCR Virtual Machine Control Register
0x0010 GICH_MISR Maintenance Interrupt Status Register
0x0020 GICH_EISR End Interrupt Status Register
0x0030 GICH_ELRSR Empty List Register Status Register

0x00F0 + (4 * n) GICH_APR<n> Active Priorities Registers
0x0100 + (4 * n) GICH_LR<n> List Registers

External register index by offset

Page 870

In the PMU block:
Offset Name Description

0x000 + (8 * n) PMEVCNTR<n>_EL0 Performance Monitors Event Count Registers
0x0F8 PMCCNTR_EL0[31:0] Performance Monitors Cycle Counter
0x0FC PMCCNTR_EL0[63:32] Performance Monitors Cycle Counter
0x200 PMPCSR[31:0] Program Counter Sample Register
0x204 PMPCSR[63:32] Program Counter Sample Register
0x208 PMCID1SR CONTEXTIDR_EL1 Sample Register
0x20C PMVIDSR VMID Sample Register
0x220 PMPCSR[31:0] Program Counter Sample Register
0x224 PMPCSR[63:32] Program Counter Sample Register
0x228 PMCID1SR CONTEXTIDR_EL1 Sample Register
0x22C PMCID2SR CONTEXTIDR_EL2 Sample Register

0x400 + (4 * n) PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers
0x47C PMCCFILTR_EL0 Performance Monitors Cycle Counter Filter Register

0xA00 + (4 * n) PMEVFILTR<n> Performance Monitors Event Type Select Register <n>
0xC00 PMCNTENSET_EL0 Performance Monitors Count Enable Set register
0xC20 PMCNTENCLR_EL0 Performance Monitors Count Enable Clear register
0xC40 PMINTENSET_EL1 Performance Monitors Interrupt Enable Set register
0xC60 PMINTENCLR_EL1 Performance Monitors Interrupt Enable Clear register
0xC80 PMOVSCLR_EL0 Performance Monitors Overflow Flag Status Clear register
0xCA0 PMSWINC_EL0 Performance Monitors Software Increment register
0xCC0 PMOVSSET_EL0 Performance Monitors Overflow Flag Status Set register
0xE00 PMCFGR Performance Monitors Configuration Register
0xE04 PMCR_EL0 Performance Monitors Control Register
0xE20 PMCEID0 Performance Monitors Common Event Identification register

0
0xE24 PMCEID1 Performance Monitors Common Event Identification register

1
0xE28 PMCEID2 Performance Monitors Common Event Identification register

2
0xE2C PMCEID3 Performance Monitors Common Event Identification register

3
0xE40 PMMIR Performance Monitors Machine Identification Register
0xF00 PMITCTRL Performance Monitors Integration mode Control register
0xFA8 PMDEVAFF0 Performance Monitors Device Affinity register 0
0xFAC PMDEVAFF1 Performance Monitors Device Affinity register 1
0xFB0 PMLAR Performance Monitors Lock Access Register
0xFB4 PMLSR Performance Monitors Lock Status Register
0xFB8 PMAUTHSTATUS Performance Monitors Authentication Status register
0xFBC PMDEVARCH Performance Monitors Device Architecture register
0xFC8 PMDEVID Performance Monitors Device ID register
0xFCC PMDEVTYPE Performance Monitors Device Type register
0xFD0 PMPIDR4 Performance Monitors Peripheral Identification Register 4
0xFE0 PMPIDR0 Performance Monitors Peripheral Identification Register 0
0xFE4 PMPIDR1 Performance Monitors Peripheral Identification Register 1
0xFE8 PMPIDR2 Performance Monitors Peripheral Identification Register 2
0xFEC PMPIDR3 Performance Monitors Peripheral Identification Register 3
0xFF0 PMCIDR0 Performance Monitors Component Identification Register 0
0xFF4 PMCIDR1 Performance Monitors Component Identification Register 1

External register index by offset

Page 871

Offset Name Description
0xFF8 PMCIDR2 Performance Monitors Component Identification Register 2
0xFFC PMCIDR3 Performance Monitors Component Identification Register 3

In the GIC Redistributor block:
Frame Offset Name Description

RD_base 0x0000 GICR_CTLR Redistributor Control Register
RD_base 0x0004 GICR_IIDR Redistributor Implementer Identification

Register
RD_base 0x0008 GICR_TYPER Redistributor Type Register
RD_base 0x0010 GICR_STATUSR Error Reporting Status Register
RD_base 0x0010 GICR_STATUSR Error Reporting Status Register
RD_base 0x0014 GICR_WAKER Redistributor Wake Register
RD_base 0x0018 GICR_MPAMIDR Report maximum PARTID and PMG

Register
RD_base 0x001C GICR_PARTIDR Set PARTID and PMG Register
RD_base 0x0040 GICR_SETLPIR Set LPI Pending Register
RD_base 0x0048 GICR_CLRLPIR Clear LPI Pending Register
RD_base 0x0070 GICR_PROPBASER Redistributor Properties Base Address

Register
RD_base 0x0078 GICR_PENDBASER Redistributor LPI Pending Table Base

Address Register
RD_base 0x00A0 GICR_INVLPIR Redistributor Invalidate LPI Register
RD_base 0x00B0 GICR_INVALLR Redistributor Invalidate All Register
RD_base 0x00C0 GICR_SYNCR Redistributor Synchronize Register
SGI_base 0x0080 GICR_IGROUPR0 Interrupt Group Register 0
SGI_base 0x0080 + (4 * n) GICR_IGROUPR<n>E Interrupt Group Registers
SGI_base 0x0100 GICR_ISENABLER0 Interrupt Set-Enable Register 0
SGI_base 0x0100 + (4 * n) GICR_ISENABLER<n>E Interrupt Set-Enable Registers
SGI_base 0x0180 GICR_ICENABLER0 Interrupt Clear-Enable Register 0
SGI_base 0x0180 + (4 * n) GICR_ICENABLER<n>E Interrupt Clear-Enable Registers
SGI_base 0x0200 GICR_ISPENDR0 Interrupt Set-Pending Register 0
SGI_base 0x0200 + (4 * n) GICR_ISPENDR<n>E Interrupt Set-Pending Registers
SGI_base 0x0280 GICR_ICPENDR0 Interrupt Clear-Pending Register 0
SGI_base 0x0280 + (4 * n) GICR_ICPENDR<n>E Interrupt Clear-Pending Registers
SGI_base 0x0300 GICR_ISACTIVER0 Interrupt Set-Active Register 0
SGI_base 0x0300 + (4 * n) GICR_ISACTIVER<n>E Interrupt Set-Active Registers
SGI_base 0x0380 GICR_ICACTIVER0 Interrupt Clear-Active Register 0
SGI_base 0x0380 + (4 * n) GICR_ICACTIVER<n>E Interrupt Clear-Active Registers
SGI_base 0x0400 + (4 * n) GICR_IPRIORITYR<n>E Interrupt Priority Registers (extended PPI

range)
SGI_base 0x0400 + (4 * n) GICR_IPRIORITYR<n> Interrupt Priority Registers
SGI_base 0x0C00 GICR_ICFGR0 Interrupt Configuration Register 0
SGI_base 0x0C00 + (4 * n) GICR_ICFGR<n>E Interrupt configuration registers
SGI_base 0x0C04 GICR_ICFGR1 Interrupt Configuration Register 1
SGI_base 0x0D00 GICR_IGRPMODR0 Interrupt Group Modifier Register 0
SGI_base 0x0D00 + (4 * n) GICR_IGRPMODR<n>E Interrupt Group Modifier Registers
SGI_base 0x0E00 GICR_NSACR Non-secure Access Control Register
SGI_base 0x0F80 GICR_INMIR0 Non-maskable Interrupt Register for PPIs.
SGI_base 0x0F80 + (4 * n) GICR_INMIR<n>E Non-maskable Interrupt Registers for

Extended PPIs, x = 1 to 2.

External register index by offset

Page 872

Frame Offset Name Description
VLPI_base 0x0070 GICR_VPROPBASER Virtual Redistributor Properties Base

Address Register
VLPI_base 0x0078 GICR_VPENDBASER Virtual Redistributor LPI Pending Table

Base Address Register
VLPI_base 0x0080 GICR_VSGIR Redistributor virtual SGI pending state

request register
VLPI_base 0x0088 GICR_VSGIPENDR Redistributor virtual SGI pending state

register

In the GIC Virtual CPU interface block:
Offset Name Description
0x0000 GICV_CTLR Virtual Machine Control Register
0x0004 GICV_PMR Virtual Machine Priority Mask Register
0x0008 GICV_BPR Virtual Machine Binary Point Register
0x000C GICV_IAR Virtual Machine Interrupt Acknowledge Register
0x0010 GICV_EOIR Virtual Machine End Of Interrupt Register
0x0014 GICV_RPR Virtual Machine Running Priority Register
0x0018 GICV_HPPIR Virtual Machine Highest Priority Pending Interrupt Register
0x001C GICV_ABPR Virtual Machine Aliased Binary Point Register
0x0020 GICV_AIAR Virtual Machine Aliased Interrupt Acknowledge Register
0x0024 GICV_AEOIR Virtual Machine Aliased End Of Interrupt Register
0x0028 GICV_AHPPIR Virtual Machine Aliased Highest Priority Pending Interrupt

Register
0x002C GICV_STATUSR Virtual Machine Error Reporting Status Register

0x00D0 + (4 * n) GICV_APR<n> Virtual Machine Active Priorities Registers
0x00FC GICV_IIDR Virtual Machine CPU Interface Identification Register
0x1000 GICV_DIR Virtual Machine Deactivate Interrupt Register

In the CTI block:
Offset Name Description
0x000 CTICONTROL CTI Control register
0x010 CTIINTACK CTI Output Trigger Acknowledge register
0x014 CTIAPPSET CTI Application Trigger Set register
0x018 CTIAPPCLEAR CTI Application Trigger Clear register
0x01C CTIAPPPULSE CTI Application Pulse register

0x020 + (4 * n) CTIINEN<n> CTI Input Trigger to Output Channel Enable registers
0x0A0 + (4 * n) CTIOUTEN<n> CTI Input Channel to Output Trigger Enable registers

0x130 CTITRIGINSTATUS CTI Trigger In Status register
0x134 CTITRIGOUTSTATUS CTI Trigger Out Status register
0x138 CTICHINSTATUS CTI Channel In Status register
0x13C CTICHOUTSTATUS CTI Channel Out Status register
0x140 CTIGATE CTI Channel Gate Enable register
0x144 ASICCTL CTI External Multiplexer Control register
0x150 CTIDEVCTL CTI Device Control register
0xF00 CTIITCTRL CTI Integration mode Control register
0xFA0 CTICLAIMSET CTI CLAIM Tag Set register
0xFA4 CTICLAIMCLR CTI CLAIM Tag Clear register
0xFA8 CTIDEVAFF0 CTI Device Affinity register 0
0xFAC CTIDEVAFF1 CTI Device Affinity register 1

External register index by offset

Page 873

Offset Name Description
0xFB0 CTILAR CTI Lock Access Register
0xFB4 CTILSR CTI Lock Status Register
0xFB8 CTIAUTHSTATUS CTI Authentication Status register
0xFBC CTIDEVARCH CTI Device Architecture register
0xFC0 CTIDEVID2 CTI Device ID register 2
0xFC4 CTIDEVID1 CTI Device ID register 1
0xFC8 CTIDEVID CTI Device ID register 0
0xFCC CTIDEVTYPE CTI Device Type register
0xFD0 CTIPIDR4 CTI Peripheral Identification Register 4
0xFE0 CTIPIDR0 CTI Peripheral Identification Register 0
0xFE4 CTIPIDR1 CTI Peripheral Identification Register 1
0xFE8 CTIPIDR2 CTI Peripheral Identification Register 2
0xFEC CTIPIDR3 CTI Peripheral Identification Register 3
0xFF0 CTICIDR0 CTI Component Identification Register 0
0xFF4 CTICIDR1 CTI Component Identification Register 1
0xFF8 CTICIDR2 CTI Component Identification Register 2
0xFFC CTICIDR3 CTI Component Identification Register 3

In the GIC ITS control block:
Offset Name Description
0x0000 GITS_CTLR ITS Control Register
0x0004 GITS_IIDR ITS Identification Register
0x0008 GITS_TYPER ITS Type Register
0x0010 GITS_MPAMIDR Report maximum PARTID and PMG Register
0x0014 GITS_PARTIDR Set PARTID and PMG Register
0x0018 GITS_MPIDR Report ITS's affinity.
0x0040 GITS_STATUSR ITS Error Reporting Status Register
0x0048 GITS_UMSIR ITS Unmapped MSI register
0x0080 GITS_CBASER ITS Command Queue Descriptor
0x0088 GITS_CWRITER ITS Write Register
0x0090 GITS_CREADR ITS Read Register

0x0100 + (8 * n) GITS_BASER<n> ITS Translation Table Descriptors
0x20020 GITS_SGIR ITS SGI Register

In the GIC CPU interface block:
Offset Name Description
0x0000 GICC_CTLR CPU Interface Control Register
0x0004 GICC_PMR CPU Interface Priority Mask Register
0x0008 GICC_BPR CPU Interface Binary Point Register
0x000C GICC_IAR CPU Interface Interrupt Acknowledge Register
0x0010 GICC_EOIR CPU Interface End Of Interrupt Register
0x0014 GICC_RPR CPU Interface Running Priority Register
0x0018 GICC_HPPIR CPU Interface Highest Priority Pending Interrupt Register
0x001C GICC_ABPR CPU Interface Aliased Binary Point Register
0x0020 GICC_AIAR CPU Interface Aliased Interrupt Acknowledge Register
0x0024 GICC_AEOIR CPU Interface Aliased End Of Interrupt Register
0x0028 GICC_AHPPIR CPU Interface Aliased Highest Priority Pending Interrupt

Register

External register index by offset

Page 874

Offset Name Description
0x002C GICC_STATUSR CPU Interface Status Register
0x002C GICC_STATUSR CPU Interface Status Register

0x00D0 + (4 * n) GICC_APR<n> CPU Interface Active Priorities Registers
0x00E0 + (4 * n) GICC_NSAPR<n> CPU Interface Non-secure Active Priorities Registers

0x00FC GICC_IIDR CPU Interface Identification Register
0x1000 GICC_DIR CPU Interface Deactivate Interrupt Register

In the GIC Distributor block:
Frame Offset Name Description

Dist_base 0x0000 GICD_CTLR Distributor Control Register
Dist_base 0x0004 GICD_TYPER Interrupt Controller Type Register
Dist_base 0x0008 GICD_IIDR Distributor Implementer Identification

Register
Dist_base 0x000C GICD_TYPER2 Interrupt Controller Type Register 2
Dist_base 0x0010 GICD_STATUSR Error Reporting Status Register
Dist_base 0x0010 GICD_STATUSR Error Reporting Status Register
Dist_base 0x0040 GICD_SETSPI_NSR Set Non-secure SPI Pending Register
Dist_base 0x0048 GICD_CLRSPI_NSR Clear Non-secure SPI Pending Register
Dist_base 0x0050 GICD_SETSPI_SR Set Secure SPI Pending Register
Dist_base 0x0058 GICD_CLRSPI_SR Clear Secure SPI Pending Register
Dist_base 0x0080 + (4 * n) GICD_IGROUPR<n> Interrupt Group Registers
Dist_base 0x0100 + (4 * n) GICD_ISENABLER<n> Interrupt Set-Enable Registers
Dist_base 0x0180 + (4 * n) GICD_ICENABLER<n> Interrupt Clear-Enable Registers
Dist_base 0x0200 + (4 * n) GICD_ISPENDR<n> Interrupt Set-Pending Registers
Dist_base 0x0280 + (4 * n) GICD_ICPENDR<n> Interrupt Clear-Pending Registers
Dist_base 0x0300 + (4 * n) GICD_ISACTIVER<n> Interrupt Set-Active Registers
Dist_base 0x0380 + (4 * n) GICD_ICACTIVER<n> Interrupt Clear-Active Registers
Dist_base 0x0400 + (4 * n) GICD_IPRIORITYR<n> Interrupt Priority Registers
Dist_base 0x0800 + (4 * n) GICD_ITARGETSR<n> Interrupt Processor Targets Registers
Dist_base 0x0C00 + (4 * n) GICD_ICFGR<n> Interrupt Configuration Registers
Dist_base 0x0D00 + (4 * n) GICD_IGRPMODR<n> Interrupt Group Modifier Registers
Dist_base 0x0E00 + (4 * n) GICD_NSACR<n> Non-secure Access Control Registers
Dist_base 0x0F00 GICD_SGIR Software Generated Interrupt Register
Dist_base 0x0F10 + (4 * n) GICD_CPENDSGIR<n> SGI Clear-Pending Registers
Dist_base 0x0F20 + (4 * n) GICD_SPENDSGIR<n> SGI Set-Pending Registers
Dist_base 0x0F80 + (4 * n) GICD_INMIR<n> Non-maskable Interrupt Registers, x = 0 to

31
Dist_base 0x1000 + (4 * n) GICD_IGROUPR<n>E Interrupt Group Registers (extended SPI

range)
Dist_base 0x1200 + (4 * n) GICD_ISENABLER<n>E Interrupt Set-Enable Registers
Dist_base 0x1400 + (4 * n) GICD_ICENABLER<n>E Interrupt Clear-Enable Registers
Dist_base 0x1600 + (4 * n) GICD_ISPENDR<n>E Interrupt Set-Pending Registers (extended

SPI range)
Dist_base 0x1800 + (4 * n) GICD_ICPENDR<n>E Interrupt Clear-Pending Registers

(extended SPI range)
Dist_base 0x1A00 + (4 * n) GICD_ISACTIVER<n>E Interrupt Set-Active Registers (extended

SPI range)
Dist_base 0x1C00 + (4 * n) GICD_ICACTIVER<n>E Interrupt Clear-Active Registers (extended

SPI range)

External register index by offset

Page 875

Frame Offset Name Description
Dist_base 0x2000 + (4 * n) GICD_IPRIORITYR<n>E Holds the priority of the corresponding

interrupt for each extended SPI supported
by the GIC.

Dist_base 0x3000 + (4 * n) GICD_ICFGR<n>E Interrupt Configuration Registers
(Extended SPI Range)

Dist_base 0x3400 + (4 * n) GICD_IGRPMODR<n>E Interrupt Group Modifier Registers
(extended SPI range)

Dist_base 0x3600 + (4 * n) GICD_NSACR<n>E Non-secure Access Control Registers
Dist_base 0x3B00 + (4 * n) GICD_INMIR<n>E Non-maskable Interrupt Registers for

Extended SPIs, x = 0 to 31
Dist_base 0x6000 + (8 * n) GICD_IROUTER<n> Interrupt Routing Registers
Dist_base 0x8000 + (8 * n) GICD_IROUTER<n>E Interrupt Routing Registers (Extended SPI

Range)
MSI_base 0x0004 GICM_TYPER Distributor MSI Type Register
MSI_base 0x0040 GICM_SETSPI_NSR Set Non-secure SPI Pending Register
MSI_base 0x0048 GICM_CLRSPI_NSR Clear Non-secure SPI Pending Register
MSI_base 0x0050 GICM_SETSPI_SR Set Secure SPI Pending Register
MSI_base 0x0058 GICM_CLRSPI_SR Clear Secure SPI Pending Register
MSI_base 0x0FCC GICM_IIDR Distributor Implementer Identification

Register

In the Timer block:
Frame Offset Name Description

CNTBaseN 0x000 CNTPCT[31:0] Counter-timer Physical Count
CNTBaseN 0x004 CNTPCT[63:32] Counter-timer Physical Count
CNTBaseN 0x008 CNTVCT[31:0] Counter-timer Virtual Count
CNTBaseN 0x00C CNTVCT[63:32] Counter-timer Virtual Count
CNTBaseN 0x010 CNTFRQ Counter-timer Frequency
CNTBaseN 0x014 CNTEL0ACR Counter-timer EL0 Access Control

Register
CNTBaseN 0x018 CNTVOFF[31:0] Counter-timer Virtual Offset
CNTBaseN 0x01C CNTVOFF[63:32] Counter-timer Virtual Offset
CNTBaseN 0x020 CNTP_CVAL[31:0] Counter-timer Physical Timer

CompareValue
CNTBaseN 0x024 CNTP_CVAL[63:32] Counter-timer Physical Timer

CompareValue
CNTBaseN 0x028 CNTP_TVAL Counter-timer Physical Timer

TimerValue
CNTBaseN 0x02C CNTP_CTL Counter-timer Physical Timer Control
CNTBaseN 0x030 CNTV_CVAL[31:0] Counter-timer Virtual Timer

CompareValue
CNTBaseN 0x034 CNTV_CVAL[63:32] Counter-timer Virtual Timer

CompareValue
CNTBaseN 0x038 CNTV_TVAL Counter-timer Virtual Timer TimerValue
CNTBaseN 0x03C CNTV_CTL Counter-timer Virtual Timer Control
CNTBaseN 0xFD0 + (4 * n) CounterID<n> Counter ID registers
CNTCTLBase 0x000 CNTFRQ Counter-timer Frequency
CNTCTLBase 0x004 CNTNSAR Counter-timer Non-secure Access

Register
CNTCTLBase 0x008 CNTTIDR Counter-timer Timer ID Register
CNTCTLBase 0x040 + (4 * n) CNTACR<n> Counter-timer Access Control Registers
CNTCTLBase 0x080 + (8 * n) CNTVOFF<n>[31:0] Counter-timer Virtual Offsets
CNTCTLBase 0x084 + (8 * n) CNTVOFF<n>[63:32] Counter-timer Virtual Offsets

External register index by offset

Page 876

Frame Offset Name Description
CNTCTLBase 0xFD0 + (4 * n) CounterID<n> Counter ID registers
CNTControlBase 0x000 CNTCR Counter Control Register
CNTControlBase 0x004 CNTSR Counter Status Register
CNTControlBase 0x008 CNTCV[63:0] Counter Count Value register
CNTControlBase 0x020 CNTFID0 Counter Frequency ID
CNTControlBase 0x020 + (4 * n) CNTFID<n> Counter Frequency IDs, n > 0
CNTControlBase 0x10 CNTSCR Counter Scale Register
CNTControlBase 0x1C CNTID Counter Identification Register
CNTControlBase 0xFD0 + (4 * n) CounterID<n> Counter ID registers
CNTEL0BaseN 0x000 CNTPCT[31:0] Counter-timer Physical Count
CNTEL0BaseN 0x004 CNTPCT[63:32] Counter-timer Physical Count
CNTEL0BaseN 0x008 CNTVCT[31:0] Counter-timer Virtual Count
CNTEL0BaseN 0x00C CNTVCT[63:32] Counter-timer Virtual Count
CNTEL0BaseN 0x010 CNTFRQ Counter-timer Frequency
CNTEL0BaseN 0x020 CNTP_CVAL[31:0] Counter-timer Physical Timer

CompareValue
CNTEL0BaseN 0x024 CNTP_CVAL[63:32] Counter-timer Physical Timer

CompareValue
CNTEL0BaseN 0x028 CNTP_TVAL Counter-timer Physical Timer

TimerValue
CNTEL0BaseN 0x02C CNTP_CTL Counter-timer Physical Timer Control
CNTEL0BaseN 0x030 CNTV_CVAL[31:0] Counter-timer Virtual Timer

CompareValue
CNTEL0BaseN 0x034 CNTV_CVAL[63:32] Counter-timer Virtual Timer

CompareValue
CNTEL0BaseN 0x038 CNTV_TVAL Counter-timer Virtual Timer TimerValue
CNTEL0BaseN 0x03C CNTV_CTL Counter-timer Virtual Timer Control
CNTEL0BaseN 0xFD0 + (4 * n) CounterID<n> Counter ID registers
CNTReadBase 0x000 CNTCV[63:0] Counter Count Value register
CNTReadBase 0xFD0 + (4 * n) CounterID<n> Counter ID registers

In the GIC ITS translation block:
Offset Name Description
0x0040 GITS_TRANSLATER ITS Translation Register

In the AMU block:
Offset Name Description

0x000 + (8 * n) AMEVCNTR0<n>[31:0] Activity Monitors Event Counter Registers 0
0x004 + (8 * n) AMEVCNTR0<n>[63:32] Activity Monitors Event Counter Registers 0
0x100 + (8 * n) AMEVCNTR1<n>[31:0] Activity Monitors Event Counter Registers 1
0x104 + (8 * n) AMEVCNTR1<n>[63:32] Activity Monitors Event Counter Registers 1
0x400 + (4 * n) AMEVTYPER0<n> Activity Monitors Event Type Registers 0
0x480 + (4 * n) AMEVTYPER1<n> Activity Monitors Event Type Registers 1

0xC00 AMCNTENSET0 Activity Monitors Count Enable Set Register 0
0xC04 AMCNTENSET1 Activity Monitors Count Enable Set Register 1
0xC20 AMCNTENCLR0 Activity Monitors Count Enable Clear Register 0
0xC24 AMCNTENCLR1 Activity Monitors Count Enable Clear Register 1
0xCE0 AMCGCR Activity Monitors Counter Group Configuration Register
0xE00 AMCFGR Activity Monitors Configuration Register

External register index by offset

Page 877

Offset Name Description
0xE04 AMCR Activity Monitors Control Register
0xE08 AMIIDR Activity Monitors Implementation Identification Register
0xFA8 AMDEVAFF0 Activity Monitors Device Affinity Register 0
0xFAC AMDEVAFF1 Activity Monitors Device Affinity Register 1
0xFBC AMDEVARCH Activity Monitors Device Architecture Register
0xFCC AMDEVTYPE Activity Monitors Device Type Register
0xFD0 AMPIDR4 Activity Monitors Peripheral Identification Register 4
0xFE0 AMPIDR0 Activity Monitors Peripheral Identification Register 0
0xFE4 AMPIDR1 Activity Monitors Peripheral Identification Register 1
0xFE8 AMPIDR2 Activity Monitors Peripheral Identification Register 2
0xFEC AMPIDR3 Activity Monitors Peripheral Identification Register 3
0xFF0 AMCIDR0 Activity Monitors Component Identification Register 0
0xFF4 AMCIDR1 Activity Monitors Component Identification Register 1
0xFF8 AMCIDR2 Activity Monitors Component Identification Register 2
0xFFC AMCIDR3 Activity Monitors Component Identification Register 3

In the ETE block:
Offset Name Description
0x004 TRCPRGCTLR Programming Control Register
0x00C TRCSTATR Trace Status Register
0x010 TRCCONFIGR Trace Configuration Register
0x018 TRCAUXCTLR Auxiliary Control Register
0x020 TRCEVENTCTL0R Event Control 0 Register
0x024 TRCEVENTCTL1R Event Control 1 Register
0x028 TRCRSR Resources Status Register
0x02C TRCSTALLCTLR Stall Control Register
0x030 TRCTSCTLR Timestamp Control Register
0x034 TRCSYNCPR Synchronization Period Register
0x038 TRCCCCTLR Cycle Count Control Register
0x03C TRCBBCTLR Branch Broadcast Control Register
0x040 TRCTRACEIDR Trace ID Register
0x044 TRCQCTLR Q Element Control Register
0x080 TRCVICTLR ViewInst Main Control Register
0x084 TRCVIIECTLR ViewInst Include/Exclude Control Register
0x088 TRCVISSCTLR ViewInst Start/Stop Control Register
0x08C TRCVIPCSSCTLR ViewInst Start/Stop PE Comparator Control Register

0x100 + (4 * n) TRCSEQEVR<n> Sequencer State Transition Control Register <n>
0x118 TRCSEQRSTEVR Sequencer Reset Control Register
0x11C TRCSEQSTR Sequencer State Register

0x120 + (4 * n) TRCEXTINSELR<n> External Input Select Register <n>
0x140 + (4 * n) TRCCNTRLDVR<n> Counter Reload Value Register <n>
0x150 + (4 * n) TRCCNTCTLR<n> Counter Control Register <n>
0x160 + (4 * n) TRCCNTVR<n> Counter Value Register <n>

0x180 TRCIDR8 ID Register 8
0x184 TRCIDR9 ID Register 9
0x188 TRCIDR10 ID Register 10
0x18C TRCIDR11 ID Register 11
0x190 TRCIDR12 ID Register 12

External register index by offset

Page 878

Offset Name Description
0x194 TRCIDR13 ID Register 13
0x1C0 TRCIMSPEC0 IMP DEF Register 0

0x1C0 + (4 * n) TRCIMSPEC<n> IMP DEF Register <n>
0x1E0 TRCIDR0 ID Register 0
0x1E4 TRCIDR1 ID Register 1
0x1E8 TRCIDR2 ID Register 2
0x1EC TRCIDR3 ID Register 3
0x1F0 TRCIDR4 ID Register 4
0x1F4 TRCIDR5 ID Register 5
0x1F8 TRCIDR6 ID Register 6
0x1FC TRCIDR7 ID Register 7

0x200 + (4 * n) TRCRSCTLR<n> Resource Selection Control Register <n>
0x280 + (4 * n) TRCSSCCR<n> Single-shot Comparator Control Register <n>
0x2A0 + (4 * n) TRCSSCSR<n> Single-shot Comparator Control Status Register <n>
0x2C0 + (4 * n) TRCSSPCICR<n> Single-shot Processing Element Comparator Input Control

Register <n>
0x304 TRCOSLSR Trace OS Lock Status Register
0x310 TRCPDCR PowerDown Control Register
0x314 TRCPDSR PowerDown Status Register

0x400 + (8 * n) TRCACVR<n> Address Comparator Value Register <n>
0x480 + (8 * n) TRCACATR<n> Address Comparator Access Type Register <n>
0x600 + (8 * n) TRCCIDCVR<n> Context Identifier Comparator Value Registers <n>
0x640 + (8 * n) TRCVMIDCVR<n> Virtual Context Identifier Comparator Value Register <n>

0x680 TRCCIDCCTLR0 Context Identifier Comparator Control Register 0
0x684 TRCCIDCCTLR1 Context Identifier Comparator Control Register 1
0x688 TRCVMIDCCTLR0 Virtual Context Identifier Comparator Control Register 0
0x68C TRCVMIDCCTLR1 Virtual Context Identifier Comparator Control Register 1
0xF00 TRCITCTRL Integration Mode Control Register
0xFA0 TRCCLAIMSET Claim Tag Set Register
0xFA4 TRCCLAIMCLR Claim Tag Clear Register
0xFA8 TRCDEVAFF Device Affinity Register
0xFB0 TRCLAR Lock Access Register
0xFB4 TRCLSR Lock Status Register
0xFB8 TRCAUTHSTATUS Authentication Status Register
0xFBC TRCDEVARCH Device Architecture Register
0xFC0 TRCDEVID2 Device Configuration Register 2
0xFC4 TRCDEVID1 Device Configuration Register 1
0xFC8 TRCDEVID Device Configuration Register
0xFCC TRCDEVTYPE Device Type Register
0xFD0 TRCPIDR4 Peripheral Identification Register 4
0xFD4 TRCPIDR5 Peripheral Identification Register 5
0xFD8 TRCPIDR6 Peripheral Identification Register 6
0xFDC TRCPIDR7 Peripheral Identification Register 7
0xFE0 TRCPIDR0 Peripheral Identification Register 0
0xFE4 TRCPIDR1 Peripheral Identification Register 1
0xFE8 TRCPIDR2 Peripheral Identification Register 2
0xFEC TRCPIDR3 Peripheral Identification Register 3
0xFF0 TRCCIDR0 Component Identification Register 0
0xFF4 TRCCIDR1 Component Identification Register 1

External register index by offset

Page 879

Offset Name Description
0xFF8 TRCCIDR2 Component Identification Register 2
0xFFC TRCCIDR3 Component Identification Register 3

In the MPAM block:
Frame Offset Name Description

MPAMF_BASE_ns 0x0000 MPAMF_IDR MPAM Features
Identification Register

MPAMF_BASE_ns 0x0018 MPAMF_IIDR MPAM Implementation
Identification Register

MPAMF_BASE_ns 0x0020 MPAMF_AIDR MPAM Architecture
Identification Register

MPAMF_BASE_ns 0x0028 MPAMF_IMPL_IDR MPAM Implementation-
Specific Partitioning
Feature Identification
Register

MPAMF_BASE_ns 0x0030 MPAMF_CPOR_IDR MPAM Features Cache
Portion Partitioning ID
register

MPAMF_BASE_ns 0x0038 MPAMF_CCAP_IDR MPAM Features Cache
Capacity Partitioning ID
register

MPAMF_BASE_ns 0x0040 MPAMF_MBW_IDR MPAM Memory Bandwidth
Partitioning Identification
Register

MPAMF_BASE_ns 0x0048 MPAMF_PRI_IDR MPAM Priority Partitioning
Identification Register

MPAMF_BASE_ns 0x0050 MPAMF_PARTID_NRW_IDR MPAM PARTID Narrowing
ID register

MPAMF_BASE_ns 0x0080 MPAMF_MSMON_IDR MPAM Resource
Monitoring Identification
Register

MPAMF_BASE_ns 0x0088 MPAMF_CSUMON_IDR MPAM Features Cache
Storage Usage Monitoring
ID register

MPAMF_BASE_ns 0x0090 MPAMF_MBWUMON_IDR MPAM Features Memory
Bandwidth Usage
Monitoring ID register

MPAMF_BASE_ns 0x00DC MPAMF_ERR_MSI_MPAM MPAM Error MSI Write
MPAM Information
Register

MPAMF_BASE_ns 0x00E0 MPAMF_ERR_MSI_ADDR_L MPAM Error MSI Low-part
Address Register

MPAMF_BASE_ns 0x00E4 MPAMF_ERR_MSI_ADDR_H MPAM Error MSI High-part
Address Register

MPAMF_BASE_ns 0x00E8 MPAMF_ERR_MSI_DATA MPAM Error MSI Data
Register

MPAMF_BASE_ns 0x00EC MPAMF_ERR_MSI_ATTR MPAM Error MSI Write
Attributes Register

MPAMF_BASE_ns 0x00F0 MPAMF_ECR MPAM Error Control
Register

MPAMF_BASE_ns 0x00F8 MPAMF_ESR MPAM Error Status
Register

MPAMF_BASE_ns 0x0100 MPAMCFG_PART_SEL MPAM Partition
Configuration Selection
Register

MPAMF_BASE_ns 0x0108 MPAMCFG_CMAX MPAM Cache Maximum
Capacity Partition
Configuration Register

External register index by offset

Page 880

Frame Offset Name Description
MPAMF_BASE_ns 0x0110 MPAMCFG_CMIN MPAM Cache Minimum

Capacity Partition
Configuration Register

MPAMF_BASE_ns 0x0118 MPAMCFG_CASSOC MPAM Cache Maximum
Associativity Partition
Configuration Register

MPAMF_BASE_ns 0x0200 MPAMCFG_MBW_MIN MPAM Memory Bandwidth
Minimum Partition
Configuration Register

MPAMF_BASE_ns 0x0208 MPAMCFG_MBW_MAX MPAM Memory Bandwidth
Maximum Partition
Configuration Register

MPAMF_BASE_ns 0x0220 MPAMCFG_MBW_WINWD MPAM Memory Bandwidth
Partitioning Window Width
Configuration Register

MPAMF_BASE_ns 0x0300 MPAMCFG_EN MPAM Partition
Configuration Enable
Register

MPAMF_BASE_ns 0x0310 MPAMCFG_DIS MPAM Partition
Configuration Disable
Register

MPAMF_BASE_ns 0x0320 MPAMCFG_EN_FLAGS MPAM Partition
Configuration Enable Flags
Register

MPAMF_BASE_ns 0x0400 MPAMCFG_PRI MPAM Priority Partition
Configuration Register

MPAMF_BASE_ns 0x0500 MPAMCFG_MBW_PROP MPAM Memory Bandwidth
Proportional Stride
Partition Configuration
Register

MPAMF_BASE_ns 0x0600 MPAMCFG_INTPARTID MPAM Internal PARTID
Narrowing Configuration
Register

MPAMF_BASE_ns 0x0800 MSMON_CFG_MON_SEL MPAM Monitor Instance
Selection Register

MPAMF_BASE_ns 0x0808 MSMON_CAPT_EVNT MPAM Capture Event
Generation Register

MPAMF_BASE_ns 0x0810 MSMON_CFG_CSU_FLT MPAM Memory System
Monitor Configure Cache
Storage Usage Monitor
Filter Register

MPAMF_BASE_ns 0x0818 MSMON_CFG_CSU_CTL MPAM Memory System
Monitor Configure Cache
Storage Usage Monitor
Control Register

MPAMF_BASE_ns 0x0820 MSMON_CFG_MBWU_FLT MPAM Memory System
Monitor Configure Memory
Bandwidth Usage Monitor
Filter Register

MPAMF_BASE_ns 0x0828 MSMON_CFG_MBWU_CTL MPAM Memory System
Monitor Configure Memory
Bandwidth Usage Monitor
Control Register

MPAMF_BASE_ns 0x0840 MSMON_CSU MPAM Cache Storage
Usage Monitor Register

MPAMF_BASE_ns 0x0848 MSMON_CSU_CAPTURE MPAM Cache Storage
Usage Monitor Capture
Register

MPAMF_BASE_ns 0x0858 MSMON_CSU_OFSR MPAM CSU Monitor
Overflow Status Register

MPAMF_BASE_ns 0x0860 MSMON_MBWU MPAM Memory Bandwidth
Usage Monitor Register

External register index by offset

Page 881

Frame Offset Name Description
MPAMF_BASE_ns 0x0868 MSMON_MBWU_CAPTURE MPAM Memory Bandwidth

Usage Monitor Capture
Register

MPAMF_BASE_ns 0x0880 MSMON_MBWU_L MPAM Long Memory
Bandwidth Usage Monitor
Register

MPAMF_BASE_ns 0x0890 MSMON_MBWU_L_CAPTURE MPAM Long Memory
Bandwidth Usage Monitor
Capture Register

MPAMF_BASE_ns 0x0898 MSMON_MBWU_OFSR MPAM MBWU Monitor
Overflow Status Register

MPAMF_BASE_ns 0x08DC MSMON_OFLOW_MSI_MPAM MPAM Monitor Overflow
MSI Write MPAM
Information Register

MPAMF_BASE_ns 0x08E0 MSMON_OFLOW_MSI_ADDR_L MPAM Monitor Overflow
MSI Low-part Address
Register

MPAMF_BASE_ns 0x08E4 MSMON_OFLOW_MSI_ADDR_H MPAM Monitor Overflow
MSI Write High-part
Address Register

MPAMF_BASE_ns 0x08E8 MSMON_OFLOW_MSI_DATA MPAM Monitor Overflow
MSI Write Data Register

MPAMF_BASE_ns 0x08EC MSMON_OFLOW_MSI_ATTR MPAM Monitor Overflow
MSI Write Attributes
Register

MPAMF_BASE_ns 0x08F0 MSMON_OFLOW_SR MPAM Monitor Overflow
Status Register

MPAMF_BASE_ns 0x1000 + (4 * n) MPAMCFG_CPBM<n> MPAM Cache Portion
Bitmap Partition
Configuration Register

MPAMF_BASE_ns 0x2000 + (4 * n) MPAMCFG_MBW_PBM<n> MPAM Bandwidth Portion
Bitmap Partition
Configuration Register

MPAMF_BASE_rl 0x0000 MPAMF_IDR MPAM Features
Identification Register

MPAMF_BASE_rl 0x0018 MPAMF_IIDR MPAM Implementation
Identification Register

MPAMF_BASE_rl 0x0020 MPAMF_AIDR MPAM Architecture
Identification Register

MPAMF_BASE_rl 0x0028 MPAMF_IMPL_IDR MPAM Implementation-
Specific Partitioning
Feature Identification
Register

MPAMF_BASE_rl 0x0030 MPAMF_CPOR_IDR MPAM Features Cache
Portion Partitioning ID
register

MPAMF_BASE_rl 0x0038 MPAMF_CCAP_IDR MPAM Features Cache
Capacity Partitioning ID
register

MPAMF_BASE_rl 0x0040 MPAMF_MBW_IDR MPAM Memory Bandwidth
Partitioning Identification
Register

MPAMF_BASE_rl 0x0048 MPAMF_PRI_IDR MPAM Priority Partitioning
Identification Register

MPAMF_BASE_rl 0x0050 MPAMF_PARTID_NRW_IDR MPAM PARTID Narrowing
ID register

MPAMF_BASE_rl 0x0080 MPAMF_MSMON_IDR MPAM Resource
Monitoring Identification
Register

External register index by offset

Page 882

Frame Offset Name Description
MPAMF_BASE_rl 0x0088 MPAMF_CSUMON_IDR MPAM Features Cache

Storage Usage Monitoring
ID register

MPAMF_BASE_rl 0x0090 MPAMF_MBWUMON_IDR MPAM Features Memory
Bandwidth Usage
Monitoring ID register

MPAMF_BASE_rl 0x00DC MPAMF_ERR_MSI_MPAM MPAM Error MSI Write
MPAM Information
Register

MPAMF_BASE_rl 0x00E0 MPAMF_ERR_MSI_ADDR_L MPAM Error MSI Low-part
Address Register

MPAMF_BASE_rl 0x00E4 MPAMF_ERR_MSI_ADDR_H MPAM Error MSI High-part
Address Register

MPAMF_BASE_rl 0x00E8 MPAMF_ERR_MSI_DATA MPAM Error MSI Data
Register

MPAMF_BASE_rl 0x00EC MPAMF_ERR_MSI_ATTR MPAM Error MSI Write
Attributes Register

MPAMF_BASE_rl 0x00F0 MPAMF_ECR MPAM Error Control
Register

MPAMF_BASE_rl 0x00F8 MPAMF_ESR MPAM Error Status
Register

MPAMF_BASE_rl 0x0100 MPAMCFG_PART_SEL MPAM Partition
Configuration Selection
Register

MPAMF_BASE_rl 0x0108 MPAMCFG_CMAX MPAM Cache Maximum
Capacity Partition
Configuration Register

MPAMF_BASE_rl 0x0110 MPAMCFG_CMIN MPAM Cache Minimum
Capacity Partition
Configuration Register

MPAMF_BASE_rl 0x0118 MPAMCFG_CASSOC MPAM Cache Maximum
Associativity Partition
Configuration Register

MPAMF_BASE_rl 0x0200 MPAMCFG_MBW_MIN MPAM Memory Bandwidth
Minimum Partition
Configuration Register

MPAMF_BASE_rl 0x0208 MPAMCFG_MBW_MAX MPAM Memory Bandwidth
Maximum Partition
Configuration Register

MPAMF_BASE_rl 0x0220 MPAMCFG_MBW_WINWD MPAM Memory Bandwidth
Partitioning Window Width
Configuration Register

MPAMF_BASE_rl 0x0300 MPAMCFG_EN MPAM Partition
Configuration Enable
Register

MPAMF_BASE_rl 0x0310 MPAMCFG_DIS MPAM Partition
Configuration Disable
Register

MPAMF_BASE_rl 0x0320 MPAMCFG_EN_FLAGS MPAM Partition
Configuration Enable Flags
Register

MPAMF_BASE_rl 0x0400 MPAMCFG_PRI MPAM Priority Partition
Configuration Register

MPAMF_BASE_rl 0x0500 MPAMCFG_MBW_PROP MPAM Memory Bandwidth
Proportional Stride
Partition Configuration
Register

MPAMF_BASE_rl 0x0600 MPAMCFG_INTPARTID MPAM Internal PARTID
Narrowing Configuration
Register

External register index by offset

Page 883

Frame Offset Name Description
MPAMF_BASE_rl 0x0800 MSMON_CFG_MON_SEL MPAM Monitor Instance

Selection Register
MPAMF_BASE_rl 0x0808 MSMON_CAPT_EVNT MPAM Capture Event

Generation Register
MPAMF_BASE_rl 0x0810 MSMON_CFG_CSU_FLT MPAM Memory System

Monitor Configure Cache
Storage Usage Monitor
Filter Register

MPAMF_BASE_rl 0x0818 MSMON_CFG_CSU_CTL MPAM Memory System
Monitor Configure Cache
Storage Usage Monitor
Control Register

MPAMF_BASE_rl 0x0820 MSMON_CFG_MBWU_FLT MPAM Memory System
Monitor Configure Memory
Bandwidth Usage Monitor
Filter Register

MPAMF_BASE_rl 0x0828 MSMON_CFG_MBWU_CTL MPAM Memory System
Monitor Configure Memory
Bandwidth Usage Monitor
Control Register

MPAMF_BASE_rl 0x0840 MSMON_CSU MPAM Cache Storage
Usage Monitor Register

MPAMF_BASE_rl 0x0848 MSMON_CSU_CAPTURE MPAM Cache Storage
Usage Monitor Capture
Register

MPAMF_BASE_rl 0x0858 MSMON_CSU_OFSR MPAM CSU Monitor
Overflow Status Register

MPAMF_BASE_rl 0x0860 MSMON_MBWU MPAM Memory Bandwidth
Usage Monitor Register

MPAMF_BASE_rl 0x0868 MSMON_MBWU_CAPTURE MPAM Memory Bandwidth
Usage Monitor Capture
Register

MPAMF_BASE_rl 0x0880 MSMON_MBWU_L MPAM Long Memory
Bandwidth Usage Monitor
Register

MPAMF_BASE_rl 0x0890 MSMON_MBWU_L_CAPTURE MPAM Long Memory
Bandwidth Usage Monitor
Capture Register

MPAMF_BASE_rl 0x0898 MSMON_MBWU_OFSR MPAM MBWU Monitor
Overflow Status Register

MPAMF_BASE_rl 0x08DC MSMON_OFLOW_MSI_MPAM MPAM Monitor Overflow
MSI Write MPAM
Information Register

MPAMF_BASE_rl 0x08E0 MSMON_OFLOW_MSI_ADDR_L MPAM Monitor Overflow
MSI Low-part Address
Register

MPAMF_BASE_rl 0x08E4 MSMON_OFLOW_MSI_ADDR_H MPAM Monitor Overflow
MSI Write High-part
Address Register

MPAMF_BASE_rl 0x08E8 MSMON_OFLOW_MSI_DATA MPAM Monitor Overflow
MSI Write Data Register

MPAMF_BASE_rl 0x08EC MSMON_OFLOW_MSI_ATTR MPAM Monitor Overflow
MSI Write Attributes
Register

MPAMF_BASE_rl 0x08F0 MSMON_OFLOW_SR MPAM Monitor Overflow
Status Register

MPAMF_BASE_rl 0x1000 + (4 * n) MPAMCFG_CPBM<n> MPAM Cache Portion
Bitmap Partition
Configuration Register

MPAMF_BASE_rl 0x2000 + (4 * n) MPAMCFG_MBW_PBM<n> MPAM Bandwidth Portion
Bitmap Partition
Configuration Register

External register index by offset

Page 884

Frame Offset Name Description
MPAMF_BASE_rt 0x0000 MPAMF_IDR MPAM Features

Identification Register
MPAMF_BASE_rt 0x0018 MPAMF_IIDR MPAM Implementation

Identification Register
MPAMF_BASE_rt 0x0020 MPAMF_AIDR MPAM Architecture

Identification Register
MPAMF_BASE_rt 0x0028 MPAMF_IMPL_IDR MPAM Implementation-

Specific Partitioning
Feature Identification
Register

MPAMF_BASE_rt 0x0030 MPAMF_CPOR_IDR MPAM Features Cache
Portion Partitioning ID
register

MPAMF_BASE_rt 0x0038 MPAMF_CCAP_IDR MPAM Features Cache
Capacity Partitioning ID
register

MPAMF_BASE_rt 0x0040 MPAMF_MBW_IDR MPAM Memory Bandwidth
Partitioning Identification
Register

MPAMF_BASE_rt 0x0048 MPAMF_PRI_IDR MPAM Priority Partitioning
Identification Register

MPAMF_BASE_rt 0x0050 MPAMF_PARTID_NRW_IDR MPAM PARTID Narrowing
ID register

MPAMF_BASE_rt 0x0080 MPAMF_MSMON_IDR MPAM Resource
Monitoring Identification
Register

MPAMF_BASE_rt 0x0088 MPAMF_CSUMON_IDR MPAM Features Cache
Storage Usage Monitoring
ID register

MPAMF_BASE_rt 0x0090 MPAMF_MBWUMON_IDR MPAM Features Memory
Bandwidth Usage
Monitoring ID register

MPAMF_BASE_rt 0x00DC MPAMF_ERR_MSI_MPAM MPAM Error MSI Write
MPAM Information
Register

MPAMF_BASE_rt 0x00E0 MPAMF_ERR_MSI_ADDR_L MPAM Error MSI Low-part
Address Register

MPAMF_BASE_rt 0x00E4 MPAMF_ERR_MSI_ADDR_H MPAM Error MSI High-part
Address Register

MPAMF_BASE_rt 0x00E8 MPAMF_ERR_MSI_DATA MPAM Error MSI Data
Register

MPAMF_BASE_rt 0x00EC MPAMF_ERR_MSI_ATTR MPAM Error MSI Write
Attributes Register

MPAMF_BASE_rt 0x00F0 MPAMF_ECR MPAM Error Control
Register

MPAMF_BASE_rt 0x00F8 MPAMF_ESR MPAM Error Status
Register

MPAMF_BASE_rt 0x0100 MPAMCFG_PART_SEL MPAM Partition
Configuration Selection
Register

MPAMF_BASE_rt 0x0108 MPAMCFG_CMAX MPAM Cache Maximum
Capacity Partition
Configuration Register

MPAMF_BASE_rt 0x0110 MPAMCFG_CMIN MPAM Cache Minimum
Capacity Partition
Configuration Register

MPAMF_BASE_rt 0x0118 MPAMCFG_CASSOC MPAM Cache Maximum
Associativity Partition
Configuration Register

External register index by offset

Page 885

Frame Offset Name Description
MPAMF_BASE_rt 0x0200 MPAMCFG_MBW_MIN MPAM Memory Bandwidth

Minimum Partition
Configuration Register

MPAMF_BASE_rt 0x0208 MPAMCFG_MBW_MAX MPAM Memory Bandwidth
Maximum Partition
Configuration Register

MPAMF_BASE_rt 0x0220 MPAMCFG_MBW_WINWD MPAM Memory Bandwidth
Partitioning Window Width
Configuration Register

MPAMF_BASE_rt 0x0300 MPAMCFG_EN MPAM Partition
Configuration Enable
Register

MPAMF_BASE_rt 0x0310 MPAMCFG_DIS MPAM Partition
Configuration Disable
Register

MPAMF_BASE_rt 0x0320 MPAMCFG_EN_FLAGS MPAM Partition
Configuration Enable Flags
Register

MPAMF_BASE_rt 0x0400 MPAMCFG_PRI MPAM Priority Partition
Configuration Register

MPAMF_BASE_rt 0x0500 MPAMCFG_MBW_PROP MPAM Memory Bandwidth
Proportional Stride
Partition Configuration
Register

MPAMF_BASE_rt 0x0600 MPAMCFG_INTPARTID MPAM Internal PARTID
Narrowing Configuration
Register

MPAMF_BASE_rt 0x0800 MSMON_CFG_MON_SEL MPAM Monitor Instance
Selection Register

MPAMF_BASE_rt 0x0808 MSMON_CAPT_EVNT MPAM Capture Event
Generation Register

MPAMF_BASE_rt 0x0810 MSMON_CFG_CSU_FLT MPAM Memory System
Monitor Configure Cache
Storage Usage Monitor
Filter Register

MPAMF_BASE_rt 0x0818 MSMON_CFG_CSU_CTL MPAM Memory System
Monitor Configure Cache
Storage Usage Monitor
Control Register

MPAMF_BASE_rt 0x0820 MSMON_CFG_MBWU_FLT MPAM Memory System
Monitor Configure Memory
Bandwidth Usage Monitor
Filter Register

MPAMF_BASE_rt 0x0828 MSMON_CFG_MBWU_CTL MPAM Memory System
Monitor Configure Memory
Bandwidth Usage Monitor
Control Register

MPAMF_BASE_rt 0x0840 MSMON_CSU MPAM Cache Storage
Usage Monitor Register

MPAMF_BASE_rt 0x0848 MSMON_CSU_CAPTURE MPAM Cache Storage
Usage Monitor Capture
Register

MPAMF_BASE_rt 0x0858 MSMON_CSU_OFSR MPAM CSU Monitor
Overflow Status Register

MPAMF_BASE_rt 0x0860 MSMON_MBWU MPAM Memory Bandwidth
Usage Monitor Register

MPAMF_BASE_rt 0x0868 MSMON_MBWU_CAPTURE MPAM Memory Bandwidth
Usage Monitor Capture
Register

MPAMF_BASE_rt 0x0880 MSMON_MBWU_L MPAM Long Memory
Bandwidth Usage Monitor
Register

External register index by offset

Page 886

Frame Offset Name Description
MPAMF_BASE_rt 0x0890 MSMON_MBWU_L_CAPTURE MPAM Long Memory

Bandwidth Usage Monitor
Capture Register

MPAMF_BASE_rt 0x0898 MSMON_MBWU_OFSR MPAM MBWU Monitor
Overflow Status Register

MPAMF_BASE_rt 0x08DC MSMON_OFLOW_MSI_MPAM MPAM Monitor Overflow
MSI Write MPAM
Information Register

MPAMF_BASE_rt 0x08E0 MSMON_OFLOW_MSI_ADDR_L MPAM Monitor Overflow
MSI Low-part Address
Register

MPAMF_BASE_rt 0x08E4 MSMON_OFLOW_MSI_ADDR_H MPAM Monitor Overflow
MSI Write High-part
Address Register

MPAMF_BASE_rt 0x08E8 MSMON_OFLOW_MSI_DATA MPAM Monitor Overflow
MSI Write Data Register

MPAMF_BASE_rt 0x08EC MSMON_OFLOW_MSI_ATTR MPAM Monitor Overflow
MSI Write Attributes
Register

MPAMF_BASE_rt 0x08F0 MSMON_OFLOW_SR MPAM Monitor Overflow
Status Register

MPAMF_BASE_rt 0x1000 + (4 * n) MPAMCFG_CPBM<n> MPAM Cache Portion
Bitmap Partition
Configuration Register

MPAMF_BASE_rt 0x2000 + (4 * n) MPAMCFG_MBW_PBM<n> MPAM Bandwidth Portion
Bitmap Partition
Configuration Register

MPAMF_BASE_s 0x0000 MPAMF_IDR MPAM Features
Identification Register

MPAMF_BASE_s 0x0008 MPAMF_SIDR MPAM Features Secure
Identification Register

MPAMF_BASE_s 0x0018 MPAMF_IIDR MPAM Implementation
Identification Register

MPAMF_BASE_s 0x0020 MPAMF_AIDR MPAM Architecture
Identification Register

MPAMF_BASE_s 0x0028 MPAMF_IMPL_IDR MPAM Implementation-
Specific Partitioning
Feature Identification
Register

MPAMF_BASE_s 0x0030 MPAMF_CPOR_IDR MPAM Features Cache
Portion Partitioning ID
register

MPAMF_BASE_s 0x0038 MPAMF_CCAP_IDR MPAM Features Cache
Capacity Partitioning ID
register

MPAMF_BASE_s 0x0040 MPAMF_MBW_IDR MPAM Memory Bandwidth
Partitioning Identification
Register

MPAMF_BASE_s 0x0048 MPAMF_PRI_IDR MPAM Priority Partitioning
Identification Register

MPAMF_BASE_s 0x0050 MPAMF_PARTID_NRW_IDR MPAM PARTID Narrowing
ID register

MPAMF_BASE_s 0x0080 MPAMF_MSMON_IDR MPAM Resource
Monitoring Identification
Register

MPAMF_BASE_s 0x0088 MPAMF_CSUMON_IDR MPAM Features Cache
Storage Usage Monitoring
ID register

MPAMF_BASE_s 0x0090 MPAMF_MBWUMON_IDR MPAM Features Memory
Bandwidth Usage
Monitoring ID register

External register index by offset

Page 887

Frame Offset Name Description
MPAMF_BASE_s 0x00DC MPAMF_ERR_MSI_MPAM MPAM Error MSI Write

MPAM Information
Register

MPAMF_BASE_s 0x00E0 MPAMF_ERR_MSI_ADDR_L MPAM Error MSI Low-part
Address Register

MPAMF_BASE_s 0x00E4 MPAMF_ERR_MSI_ADDR_H MPAM Error MSI High-part
Address Register

MPAMF_BASE_s 0x00E8 MPAMF_ERR_MSI_DATA MPAM Error MSI Data
Register

MPAMF_BASE_s 0x00EC MPAMF_ERR_MSI_ATTR MPAM Error MSI Write
Attributes Register

MPAMF_BASE_s 0x00F0 MPAMF_ECR MPAM Error Control
Register

MPAMF_BASE_s 0x00F8 MPAMF_ESR MPAM Error Status
Register

MPAMF_BASE_s 0x0100 MPAMCFG_PART_SEL MPAM Partition
Configuration Selection
Register

MPAMF_BASE_s 0x0108 MPAMCFG_CMAX MPAM Cache Maximum
Capacity Partition
Configuration Register

MPAMF_BASE_s 0x0110 MPAMCFG_CMIN MPAM Cache Minimum
Capacity Partition
Configuration Register

MPAMF_BASE_s 0x0118 MPAMCFG_CASSOC MPAM Cache Maximum
Associativity Partition
Configuration Register

MPAMF_BASE_s 0x0200 MPAMCFG_MBW_MIN MPAM Memory Bandwidth
Minimum Partition
Configuration Register

MPAMF_BASE_s 0x0208 MPAMCFG_MBW_MAX MPAM Memory Bandwidth
Maximum Partition
Configuration Register

MPAMF_BASE_s 0x0220 MPAMCFG_MBW_WINWD MPAM Memory Bandwidth
Partitioning Window Width
Configuration Register

MPAMF_BASE_s 0x0300 MPAMCFG_EN MPAM Partition
Configuration Enable
Register

MPAMF_BASE_s 0x0310 MPAMCFG_DIS MPAM Partition
Configuration Disable
Register

MPAMF_BASE_s 0x0320 MPAMCFG_EN_FLAGS MPAM Partition
Configuration Enable Flags
Register

MPAMF_BASE_s 0x0400 MPAMCFG_PRI MPAM Priority Partition
Configuration Register

MPAMF_BASE_s 0x0500 MPAMCFG_MBW_PROP MPAM Memory Bandwidth
Proportional Stride
Partition Configuration
Register

MPAMF_BASE_s 0x0600 MPAMCFG_INTPARTID MPAM Internal PARTID
Narrowing Configuration
Register

MPAMF_BASE_s 0x0800 MSMON_CFG_MON_SEL MPAM Monitor Instance
Selection Register

MPAMF_BASE_s 0x0808 MSMON_CAPT_EVNT MPAM Capture Event
Generation Register

MPAMF_BASE_s 0x0810 MSMON_CFG_CSU_FLT MPAM Memory System
Monitor Configure Cache

External register index by offset

Page 888

Frame Offset Name Description
Storage Usage Monitor
Filter Register

MPAMF_BASE_s 0x0818 MSMON_CFG_CSU_CTL MPAM Memory System
Monitor Configure Cache
Storage Usage Monitor
Control Register

MPAMF_BASE_s 0x0820 MSMON_CFG_MBWU_FLT MPAM Memory System
Monitor Configure Memory
Bandwidth Usage Monitor
Filter Register

MPAMF_BASE_s 0x0828 MSMON_CFG_MBWU_CTL MPAM Memory System
Monitor Configure Memory
Bandwidth Usage Monitor
Control Register

MPAMF_BASE_s 0x0840 MSMON_CSU MPAM Cache Storage
Usage Monitor Register

MPAMF_BASE_s 0x0848 MSMON_CSU_CAPTURE MPAM Cache Storage
Usage Monitor Capture
Register

MPAMF_BASE_s 0x0858 MSMON_CSU_OFSR MPAM CSU Monitor
Overflow Status Register

MPAMF_BASE_s 0x0860 MSMON_MBWU MPAM Memory Bandwidth
Usage Monitor Register

MPAMF_BASE_s 0x0868 MSMON_MBWU_CAPTURE MPAM Memory Bandwidth
Usage Monitor Capture
Register

MPAMF_BASE_s 0x0880 MSMON_MBWU_L MPAM Long Memory
Bandwidth Usage Monitor
Register

MPAMF_BASE_s 0x0890 MSMON_MBWU_L_CAPTURE MPAM Long Memory
Bandwidth Usage Monitor
Capture Register

MPAMF_BASE_s 0x0898 MSMON_MBWU_OFSR MPAM MBWU Monitor
Overflow Status Register

MPAMF_BASE_s 0x08DC MSMON_OFLOW_MSI_MPAM MPAM Monitor Overflow
MSI Write MPAM
Information Register

MPAMF_BASE_s 0x08E0 MSMON_OFLOW_MSI_ADDR_L MPAM Monitor Overflow
MSI Low-part Address
Register

MPAMF_BASE_s 0x08E4 MSMON_OFLOW_MSI_ADDR_H MPAM Monitor Overflow
MSI Write High-part
Address Register

MPAMF_BASE_s 0x08E8 MSMON_OFLOW_MSI_DATA MPAM Monitor Overflow
MSI Write Data Register

MPAMF_BASE_s 0x08EC MSMON_OFLOW_MSI_ATTR MPAM Monitor Overflow
MSI Write Attributes
Register

MPAMF_BASE_s 0x08F0 MSMON_OFLOW_SR MPAM Monitor Overflow
Status Register

MPAMF_BASE_s 0x1000 + (4 * n) MPAMCFG_CPBM<n> MPAM Cache Portion
Bitmap Partition
Configuration Register

MPAMF_BASE_s 0x2000 + (4 * n) MPAMCFG_MBW_PBM<n> MPAM Bandwidth Portion
Bitmap Partition
Configuration Register

In the RAS block:
Offset Name Description

0x000 + (64 * n) ERR<n>FR Error Record <n> Feature Register

External register index by offset

Page 889

Offset Name Description
0x008 + (64 * n) ERR<n>CTLR Error Record <n> Control Register
0x010 + (64 * n) ERR<n>STATUS Error Record <n> Primary Status Register
0x018 + (64 * n) ERR<n>ADDR Error Record <n> Address Register
0x020 + (64 * n) ERR<n>MISC0 Error Record <n> Miscellaneous Register 0
0x028 + (64 * n) ERR<n>MISC1 Error Record <n> Miscellaneous Register 1
0x030 + (64 * n) ERR<n>MISC2 Error Record <n> Miscellaneous Register 2
0x038 + (64 * n) ERR<n>MISC3 Error Record <n> Miscellaneous Register 3
0x800 + (64 * n) ERR<n>PFGF Error Record <n> Pseudo-fault Generation Feature Register
0x800 + (8 * n) ERRIMPDEF<n> IMPLEMENTATION DEFINED Register <n>
0x808 + (64 * n) ERR<n>PFGCTL Error Record <n> Pseudo-fault Generation Control Register
0x810 + (64 * n) ERR<n>PFGCDN Error Record <n> Pseudo-fault Generation Countdown Register

0xE00 ERRGSR Error Group Status Register
0xE10 ERRIIDR Implementation Identification Register
0xE80 ERRFHICR0 Fault Handling Interrupt Configuration Register 0

0xE80 + (8 * n) ERRIRQCR<n> Generic Error Interrupt Configuration Register <n>
0xE88 ERRFHICR1 Fault Handling Interrupt Configuration Register 1
0xE8C ERRFHICR2 Fault Handling Interrupt Configuration Register 2
0xE90 ERRERICR0 Error Recovery Interrupt Configuration Register 0
0xE98 ERRERICR1 Error Recovery Interrupt Configuration Register 1
0xE9C ERRERICR2 Error Recovery Interrupt Configuration Register 2
0xEA0 ERRCRICR0 Critical Error Interrupt Configuration Register 0
0xEA8 ERRCRICR1 Critical Error Interrupt Configuration Register 1
0xEAC ERRCRICR2 Critical Error Interrupt Configuration Register 2
0xEF8 ERRIRQSR Error Interrupt Status Register
0xFA8 ERRDEVAFF Device Affinity Register
0xFBC ERRDEVARCH Device Architecture Register
0xFC8 ERRDEVID Device Configuration Register
0xFD0 ERRPIDR4 Peripheral Identification Register 4
0xFE0 ERRPIDR0 Peripheral Identification Register 0
0xFE4 ERRPIDR1 Peripheral Identification Register 1
0xFE8 ERRPIDR2 Peripheral Identification Register 2
0xFEC ERRPIDR3 Peripheral Identification Register 3
0xFF0 ERRCIDR0 Component Identification Register 0
0xFF4 ERRCIDR1 Component Identification Register 1
0xFF8 ERRCIDR2 Component Identification Register 2
0xFFC ERRCIDR3 Component Identification Register 3

3021/03/2022 2017:2902; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

External register index by offset

Page 890

(old) htmldiff from- (new)

CTIDEVID, CTI Device ID register 0
The CTIDEVID characteristics are:

Purpose
Describes the CTI component to the debugger.

Configuration
CTIDEVID is in the Debug power domain.

Attributes
CTIDEVID is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 INOUT RES0 NUMCHAN RES0 NUMTRIG RES0 EXTMUXNUM

Bits [31:26]

Reserved, RES0.

INOUT, bits [25:24]

Input/output options. Indicates presence of the input gate. If the CTM is not implemented or CTIv2 is not
implemented, this field is RAZ.

INOUT Meaning
0b00 CTIGATE does not mask propagation of input events from

external channels.
0b01 CTIGATE masks propagation of input events from external

channels.

All other values are reserved.

Bits [23:22]

Reserved, RES0.

NUMCHAN, bits [21:16]

Number of ECT channels implemented. For Armv8, valid values are:

• 0b000011 3 channels (0..2) implemented.
• 0b000100 4 channels (0..3) implemented.
• 0b000101 5 channels (0..4) implemented.
• 0b000110 6 channels (0..5) implemented.

and so on up to 0b100000, 32 channels (0..31) implemented.

All other values are reserved.

CTIDEVID, CTI Device ID register 0

Page 891

ext-ctigate.html
ext-ctigate.html

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [15:14]

Reserved, RES0.

NUMTRIG, bits [13:8]

UpperNumber boundof fortriggers numberimplemented. ofThis triggers.is Theone indicesmore than the index of
allthe implementedlargest inputtrigger, andrather outputthan triggersthe areactual lessnumber thanof
thistriggers. value.For Armv8, valid values are:

• 0b000011 Up to 3 triggers (0..2) implemented.
• 0b001000 Up to 8 triggers (0..7) implemented.
• 0b001001 Up to 9 triggers (0..8) implemented.
• 0b001010 Up to 10 triggers (0..9) implemented.

and so on up to 0b100000, 32 triggers (0..31) implemented.

All other values are reserved. If the PE contains a Trace extension, this field must be at least 0b001000. There is no
guarantee that any of the implemented triggers, including the highest numbered, are connected to any
components.

All other values are reserved. If the PE contains a Trace extension, this field must be at least 0b001000. There is no
guarantee that all of the input and output triggers, including the highest numbered, are connected to any
components, or that the implementation of input and output triggers is symmetrical.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [7:5]

Reserved, RES0.

EXTMUXNUM, bits [4:0]

Number of multiplexors available on triggers. This value is used in conjunction with External Control register,
ASICCTL.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing CTIDEVID
CTIDEVID can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFC8 CTIDEVID

Accesses to this interface are RO.

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CTIDEVID, CTI Device ID register 0

Page 892

ext-asicctl.html

(old) htmldiff from- (new)

CTIINEN<n>, CTI Input Trigger to Output Channel
Enable registers, n = 0 - 31

The CTIINEN<n> characteristics are:

Purpose
Enables the signaling of an event on output channels when input trigger event n is received by the CTI.

Configuration
CTIINEN<n> is in the Debug power domain.

If input trigger n is not implementedconnected, orthe notbehavior connected,of CTIINEN<n> is RES0IMPLEMENTATION
DEFINED.

Attributes
CTIINEN<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INEN31INEN30INEN29INEN28INEN27INEN26INEN25INEN24INEN23INEN22INEN21INEN20INEN19INEN18INEN17INEN16INEN15INEN14INEN13INEN12INEN11INEN10INEN9INEN8INEN7INEN6INEN5INEN4INEN3INEN2INEN1INEN0

INEN<x>, bit [x], for x = 31 to 0

Input trigger <n> to output channel <x> enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN
field.

INEN<x> Meaning
0b0 Input trigger <n> will not generate an event on output

channel <x>.
0b1 Input trigger <n> will generate an event on output

channel <x>.

The reset behavior of this field is:

• On an External debug reset, this field resets to an architecturally UNKNOWN value.

Accessing CTIINEN<n>
CTIINEN<n> can be accessed through the external debug interface:

Component Offset Instance
CTI 0x020 + (4 * n) CTIINEN<n>

This interface is accessible as follows:

• When SoftwareLockStatus(), accesses to this register are RO.
• When !SoftwareLockStatus(), accesses to this register are RW.

CTIINEN<n>, CTI Input Trigger to Output Channel Enable registers, n = 0 - 31

Page 893

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CTIINEN<n>, CTI Input Trigger to Output Channel Enable registers, n = 0 - 31

Page 894

(old) htmldiff from- (new)

CTIINTACK, CTI Output Trigger Acknowledge register
The CTIINTACK characteristics are:

Purpose
Can be used to deactivate the output triggers.

Configuration
CTIINTACK is in the Debug power domain.

Attributes
CTIINTACK is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACK31ACK30ACK29ACK28ACK27ACK26ACK25ACK24ACK23ACK22ACK21ACK20ACK19ACK18ACK17ACK16ACK15ACK14ACK13ACK12ACK11ACK10ACK9ACK8ACK7ACK6ACK5ACK4ACK3ACK2ACK1ACK0

ACK<n>, bit [n], for n = 31 to 0

Acknowledge for output trigger <n>.

Bits [31:N] are RAZ/WI. N is the number of CTI triggers implemented as defined by the CTIDEVID.NUMTRIG field.

If any of the following is true, writes to ACK<n> are ignored:

• n >= CTIDEVID.NUMTRIG, the number of implemented triggers.
• Output trigger n is not active.
• The channel mapping function output, as controlled by CTIOUTEN<n>, is still active.

Otherwise, if any of the following are true, ACK<n>it is RES0IMPLEMENTATION DEFINEDwhether writes to ACK<n>
are ignored:

• Output trigger n is not implemented.
• Output trigger n is not connected.
• Output trigger n is self-acknowledging and does not require software acknowledge.

Otherwise, the behavior on writes to ACK<n> is as follows:

ACK<n> Meaning
0b0 No effect
0b1 Deactivate the trigger.

Accessing CTIINTACK
A debugger must read CTITRIGOUTSTATUS to confirm that the output trigger has been acknowledged before
generating any event that must be ordered after the write to CTIINTACK, such as a write to CTIAPPPULSE to activate
another trigger.

CTIINTACK can be accessed through the external debug interface:

Component Offset Instance

CTIINTACK, CTI Output Trigger Acknowledge register

Page 895

ext-ctitrigoutstatus.html

CTI 0x010 CTIINTACK

This interface is accessible as follows:

• When SoftwareLockStatus(), accesses to this register are WI.
• When !SoftwareLockStatus(), accesses to this register are WO.

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CTIINTACK, CTI Output Trigger Acknowledge register

Page 896

(old) htmldiff from- (new)

CTIOUTEN<n>, CTI Input Channel to Output Trigger
Enable registers, n = 0 - 31

The CTIOUTEN<n> characteristics are:

Purpose
Defines which input channels generate output trigger n.

Configuration
CTIOUTEN<n> is in the Debug power domain.

If output trigger n is not implementedconnected, orthe notbehavior connected,of CTIOUTEN<n> is
RES0IMPLEMENTATION DEFINED.

Attributes
CTIOUTEN<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OUTEN31OUTEN30OUTEN29OUTEN28OUTEN27OUTEN26OUTEN25OUTEN24OUTEN23OUTEN22OUTEN21OUTEN20OUTEN19OUTEN18OUTEN17OUTEN16OUTEN15OUTEN14OUTEN13OUTEN12OUTEN11OUTEN10OUTEN9OUTEN8OUTEN7OUTEN6OUTEN5OUTEN4OUTEN3OUTEN2OUTEN1OUTEN0

OUTEN<x>, bit [x], for x = 31 to 0

Input channel <x> to output trigger <n> enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN
field.

Possible values of this bit are:

OUTEN<x> Meaning
0b0 An event on input channel <x> will not cause output

trigger <n> to be asserted.
0b1 An event on input channel <x> will cause output

trigger <n> to be asserted.

The reset behavior of this field is:

• On an External debug reset, this field resets to an architecturally UNKNOWN value.

Accessing CTIOUTEN<n>
CTIOUTEN<n> can be accessed through the external debug interface:

Component Offset Instance
CTI 0x0A0 + (4 * n) CTIOUTEN<n>

This interface is accessible as follows:

• When SoftwareLockStatus(), accesses to this register are RO.

CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable registers, n = 0 - 31

Page 897

• When !SoftwareLockStatus(), accesses to this register are RW.

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable registers, n = 0 - 31

Page 898

(old) htmldiff from- (new)

EDECCR, External Debug Exception Catch Control
Register

The EDECCR characteristics are:

Purpose
Controls Exception Catch debug events. For more information, see 'Summary of Exception Catch debug event control'.

Configuration
External register EDECCR bits [31:0] are architecturally mapped to AArch64 System register OSECCR_EL1[31:0].

External register EDECCR bits [31:0] are architecturally mapped to AArch32 System register DBGOSECCR[31:0].

EDECCR is in the Core power domain.

Attributes
EDECCR is a 32-bit register.

Field descriptions
313029282726252423 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 RLR2RLR1RLR0RES0RLE2RLE1RLE0NSR3NSR2NSR1NSR0SR3SR2SR1SR0NSE3NSE2NSE1NSE0SE3SE2SE1SE0

Bits [31:23]

Reserved, RES0.

RLR2, bit [22]
When FEAT_RME is implemented:

Controls exception catch on exception return to Realm EL2 in conjunction with EDECCR.RLE2.

RLR2 Meaning
0b0 If EDECCR.RLE2 is 0, then Exception Catch debug events are

disabled for Realm EL2.
If EDECCR.RLE2 is 1, then Exception Catch debug events are
enabled for exception entry and exception return to Realm
EL2.

0b1 If EDECCR.RLE2 is 0, then Exception Catch debug events are
enabled for exception returns to Realm EL2.
If EDECCR.RLE2 is 1, then Exception Catch debug events are
enabled for exception entry to Realm EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EDECCR, External Debug Exception Catch Control Register

Page 899

AArch64-oseccr_el1.html
AArch32-dbgoseccr.html

RLR1, bit [21]
When FEAT_RME is implemented:

Controls exception catch on exception return to Realm EL1 in conjunction with EDECCR.RLE1.

RLR1 Meaning
0b0 If EDECCR.RLE1 is 0, then Exception Catch debug events are

disabled for Realm EL1.
If EDECCR.RLE1 is 1, then Exception Catch debug events are
enabled for exception entry and exception return to Realm
EL1.

0b1 If EDECCR.RLE1 is 0, then Exception Catch debug events are
enabled for exception returns to Realm EL1.
If EDECCR.RLE1 is 1, then Exception Catch debug events are
enabled for exception entry to Realm EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

RLR0, bit [20]
When FEAT_RME is implemented:

Controls exception catch on exception return to Realm EL0.

RLR0 Meaning
0b0 Exception Catch debug events are disabled for Realm EL0.
0b1 Exception Catch debug events are enabled for exception

returns to Realm EL0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [19]

Reserved, RES0.

RLE2, bit [18]
When FEAT_RME is implemented:

Controls exception catch on exception entry to Realm EL2. Also controls exception catch on exception return to
Realm EL2 in conjunction with EDECCR.RLR2.

EDECCR, External Debug Exception Catch Control Register

Page 900

RLE2 Meaning
0b0 If EDECCR.RLR2 is 0, then Exception Catch debug events are

disabled for Realm EL2.
If EDECCR.RLR2 is 1, then Exception Catch debug events are
enabled for exception returns to Realm EL2.

0b1 If EDECCR.RLR2 is 0, then Exception Catch debug events are
enabled for exception entry and exception return to Realm
EL2.
If EDECCR.RLR2 is 1, then Exception Catch debug events are
enabled for exception entry to Realm EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

RLE1, bit [17]
When FEAT_RME is implemented:

Controls exception catch on exception entry to Realm EL1. Also controls exception catch on exception return to
Realm EL1 in conjunction with EDECCR.RLR1.

RLE1 Meaning
0b0 If EDECCR.RLR1 is 0, then Exception Catch debug events are

disabled for Realm EL1.
If EDECCR.RLR1 is 1, then Exception Catch debug events are
enabled for exception returns to Realm EL1.

0b1 If EDECCR.RLR1 is 0, then Exception Catch debug events are
enabled for exception entry and exception return to Realm
EL1.
If EDECCR.RLR1 is 1, then Exception Catch debug events are
enabled for exception entry to Realm EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

RLE0, bit [16]

Access to this field is RES0.

NSR3, bit [15]

Access to this field is RES0.

NSR2, bit [14]
When FEAT_Debugv8p2 is implemented and Non-secure EL2 is implemented:

Controls exception catch on exception return to Non-secure EL2 in conjunction with EDECCR.NSE2.

EDECCR, External Debug Exception Catch Control Register

Page 901

NSR2 Meaning
0b0 If EDECCR.NSE2 is 0, then Exception Catch debug events

are disabled for Non-secure EL2.
If EDECCR.NSE2 is 1, then Exception Catch debug events
are enabled for exception entry, reset entry, and exception
return to Non-secure EL2.

0b1 If EDECCR.NSE2 is 0, then Exception Catch debug events
are enabled for exception returns to Non-secure EL2.
If EDECCR.NSE2 is 1, then Exception Catch debug events
are enabled for exception entry and reset entry to Non-secure
EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NSR1, bit [13]
When FEAT_Debugv8p2 is implemented and Non-secure EL1 is implemented:

Controls exception catch on exception return to Non-secure EL1 in conjunction with EDECCR.NSE1.

NSR1 Meaning
0b0 If EDECCR.NSE1 is 0, then Exception Catch debug events

are disabled for Non-secure EL1.
If EDECCR.NSE1 is 1, then Exception Catch debug events
are enabled for exception entry, reset entry, and exception
return to Non-secure EL1.

0b1 If EDECCR.NSE1 is 0, then Exception Catch debug events
are enabled for exception returns to Non-secure EL1.
If EDECCR.NSE1 is 1, then Exception Catch debug events
are enabled for exception entry and reset entry to Non-secure
EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NSR0, bit [12]
When FEAT_Debugv8p2 is implemented and Non-secure EL0 is implemented:

Controls exception catch on exception return to Non-secure EL0.

NSR0 Meaning
0b0 Exception Catch debug events are disabled for Non-secure

EL0.
0b1 Exception Catch debug events are enabled for exception

returns to Non-secure EL0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

EDECCR, External Debug Exception Catch Control Register

Page 902

Otherwise:

Reserved, RES0.

SR3, bit [11]
When FEAT_Debugv8p2 is implemented and EL3 is implemented:

Controls exception catch on exception return to EL3 in conjunction with EDECCR.SE3.

SR3 Meaning
0b0 If EDECCR.SE3 is 0, then Exception Catch debug events are

disabled for EL3.
If EDECCR.SE3 is 1, then Exception Catch debug events are
enabled for exception entry, reset entry, and exception return
to EL3.

0b1 If EDECCR.SE3 is 0, then Exception Catch debug events are
enabled for exception returns to EL3.
If EDECCR.SE3 is 1, then Exception Catch debug events are
enabled for exception entry and reset entry to EL3.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SR2, bit [10]
When FEAT_Debugv8p2 is implemented and FEAT_SEL2 is implemented:

Controls exception catch on exception return to Secure EL2 in conjunction with EDECCR.SE2.

SR2 Meaning
0b0 If EDECCR.SE2 is 0, then Exception Catch debug events are

disabled for Secure EL2.
If EDECCR.SE2 is 1, then Exception Catch debug events are
enabled for exception entry, reset entry, and exception return
to Secure EL2.

0b1 If EDECCR.SE2 is 0, then Exception Catch debug events are
enabled for exception returns to Secure EL2.
If EDECCR.SE2 is 1, then Exception Catch debug events are
enabled for exception entry and reset entry to Secure EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SR1, bit [9]
When FEAT_Debugv8p2 is implemented and Secure EL1 is implemented:

Controls exception catch on exception return to Secure EL1 in conjunction with EDECCR.SE1.

EDECCR, External Debug Exception Catch Control Register

Page 903

SR1 Meaning
0b0 If EDECCR.SE1 is 0, then Exception Catch debug events are

disabled for Secure EL1.
If EDECCR.SE1 is 1, then Exception Catch debug events are
enabled for exception entry, reset entry, and exception return
to Secure EL1.

0b1 If EDECCR.SE1 is 0, then Exception Catch debug events are
enabled for exception returns to Secure EL1.
If EDECCR.SE1 is 1, then Exception Catch debug events are
enabled for exception entry and reset entry to Secure EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SR0, bit [8]
When FEAT_Debugv8p2 is implemented and Secure EL0 is implemented:

Controls exception catch on exception return to Secure EL0.

SR0 Meaning
0b0 Exception Catch debug events are disabled for Secure EL0.
0b1 Exception Catch debug events are enabled for exception

returns to Secure EL0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NSE3, bit [7]

Access to this field is RES0.

NSE2, bit [6]
When FEAT_Debugv8p2 is implemented and Non-secure EL2 is implemented:

Controls exception catch on exception entry to Non-secure EL2. Also controls exception catch on exception return
to Non-secure EL2 in conjunction with EDECCR.NSR2.

NSE2 Meaning
0b0 If EDECCR.NSR2 is 0, then Exception Catch debug events are

disabled for Non-secure EL2.
If EDECCR.NSR2 is 1, then Exception Catch debug events are
enabled for exception returns to Non-secure EL2.

0b1 If EDECCR.NSR2 is 0, then Exception Catch debug events are
enabled for exception entry, reset entry, and exception return
to Non-secure EL2.
If EDECCR.NSR2 is 1, then Exception Catch debug events are
enabled for exception entry and reset entry to Non-secure
EL2.

Note

EDECCR, External Debug Exception Catch Control Register

Page 904

It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level
will generate an Exception Catch debug event.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

When Non-secure EL2 is implemented:

Coarse-grained exception catch for Non-secure EL2. Controls Exception Catch debug events for Non-secure EL2.

NSE2 Meaning
0b0 Exception Catch debug events are disabled for Non-secure

EL2.
0b1 Exception Catch debug events are enabled for Non-secure

EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NSE1, bit [5]
When FEAT_Debugv8p2 is implemented and Non-secure EL1 is implemented:

Controls exception catch on exception entry to Non-secure EL1. Also controls exception catch on exception return
to Non-secure EL1 in conjunction with EDECCR.NSR1.

NSE1 Meaning
0b0 If EDECCR.NSR1 is 0, then Exception Catch debug events are

disabled for Non-secure EL1.
If EDECCR.NSR1 is 1, then Exception Catch debug events are
enabled for exception returns to Non-secure EL1.

0b1 If EDECCR.NSR1 is 0, then Exception Catch debug events are
enabled for exception entry, reset entry, and exception return
to Non-secure EL1.
If EDECCR.NSR1 is 1, then Exception Catch debug events are
enabled for exception entry and reset entry to Non-secure
EL1.

Note

It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level
will generate an Exception Catch debug event.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

When Non-secure EL1 is implemented:

Coarse-grained exception catch for Non-secure EL1. Controls Exception Catch debug events for Non-secure EL1.

EDECCR, External Debug Exception Catch Control Register

Page 905

NSE1 Meaning
0b0 Exception Catch debug events are disabled for Non-secure

EL1.
0b1 Exception Catch debug events are enabled for Non-secure

EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NSE0, bit [4]

Access to this field is RES0.

SE3, bit [3]
When FEAT_Debugv8p2 is implemented and EL3 is implemented:

Controls exception catch on exception entry to EL3. Also controls exception catch on exception return to EL3 in
conjunction with EDECCR.SR3.

SE3 Meaning
0b0 If EDECCR.SR3 is 0, then Exception Catch debug events are

disabled for EL3.
If EDECCR.SR3 is 1, then Exception Catch debug events are
enabled for exception returns to EL3.

0b1 If EDECCR.SR3 is 0, then Exception Catch debug events are
enabled for exception entry, reset entry, and exception return to
EL3.
If EDECCR.SR3 is 1, then Exception Catch debug events are
enabled for exception entry and reset entry to EL3.

Note

It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level
will generate an Exception Catch debug event.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

When FEAT_Debugv8p2 is not implemented and EL3 is implemented:

Coarse-grained exception catch for EL3. Controls Exception Catch debug events for EL3.

SE3 Meaning
0b0 Exception Catch debug events are disabled for EL3.
0b1 Exception Catch debug events are enabled for EL3.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EDECCR, External Debug Exception Catch Control Register

Page 906

SE2, bit [2]
When FEAT_Debugv8p2 is implemented and FEAT_SEL2 is implemented:

Controls exception catch on exception entry to Secure EL2. Also controls exception catch on exception return to
Secure EL2 in conjunction with EDECCR.SR2.

SE2 Meaning
0b0 If EDECCR.SR2 is 0, then Exception Catch debug events are

disabled for Secure EL2.
If EDECCR.SR2 is 1, then Exception Catch debug events are
enabled for exception returns to Secure EL2.

0b1 If EDECCR.SR2 is 0, then Exception Catch debug events are
enabled for exception entry, reset entry, and exception return to
Secure EL2.
If EDECCR.SR2 is 1, then Exception Catch debug events are
enabled for exception entry and reset entry to Secure EL2.

Note

It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level
will generate an Exception Catch debug event.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SE1, bit [1]
When FEAT_Debugv8p2 is implemented and Secure EL1 is implemented:

Controls exception catch on exception entry to Secure EL1. Also controls exception catch on exception return to
Secure EL1 in conjunction with EDECCR.SR1.

SE1 Meaning
0b0 If EDECCR.SR1 is 0, then Exception Catch debug events are

disabled for Secure EL1.
If EDECCR.SR1 is 1, then Exception Catch debug events are
enabled for exception returns to Secure EL1.

0b1 If EDECCR.SR1 is 0, then Exception Catch debug events are
enabled for exception entry, reset entry, and exception return to
Secure EL1.
If EDECCR.SR1 is 1, then Exception Catch debug events are
enabled for exception entry and reset entry to Secure EL1.

Note

It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level
will generate an Exception Catch debug event.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

When Secure EL1 is implemented:

Coarse-grained exception catch for Secure EL1. Controls Exception Catch debug events for Secure EL1.

EDECCR, External Debug Exception Catch Control Register

Page 907

SE1 Meaning
0b0 Exception Catch debug events are disabled for Secure EL1.
0b1 Exception Catch debug events are enabled for Secure EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SE0, bit [0]

Access to this field is RES0.

Accessing EDECCR
EDECCR can be accessed through the external debug interface:

Component Offset Instance
Debug 0x098 EDECCR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus(), accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus(), accesses to this
register are RW.

• Otherwise, accesses to this register generate an error response.

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

EDECCR, External Debug Exception Catch Control Register

Page 908

(old) htmldiff from- (new)

EDHSR, External Debug Halt Status Register
The EDHSR characteristics are:

Purpose
Provides Debug Halt Status information.

Configuration
EDHSR is in the Core power domain.

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to EDHSR are RES0.

This register is only valid when the PE is in Debug state and EDSCR.STATUS is 0b101011, indicating a Watchpoint
debug event. Otherwise, it has an UNKNOWN value.

The field EDDEVID1.HSR indicates support for this register.

Attributes
EDHSR is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 WPT WPTVWPFFnP RES0 FnV RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

WPT, bits [23:18]

Watchpoint number, 0 to 15 inclusive.

All other values are reserved.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

WPTV, bit [17]

Watchpoint number Valid.

WPTV Meaning
0b0 The WPT field is invalid, and holds an UNKNOWN value.
0b1 The WPT field is valid, and holds the number of a watchpoint

that triggered ana entryWatchpoint to Debug state.exception.

When an entry to Debug state is triggered by a watchpoint match:

• If the PE sets any of FnV, FnP, or WPF to 1, then the PE sets WPTV to 1.

EDHSR, External Debug Halt Status Register

Page 909

ext-eddevid1.html

• If the PE sets all of FnV, FnP, and WPF to 0, then the PE sets WPTV to an IMPLEMENTATION DEFINED value, 0
or 1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

WPF, bit [16]

Watchpoint might be false-positive.

WPF Meaning
0b0 The watchpoint matched the original access or set of

contiguous accesses.
0b1 The watchpoint matched an access or set of contiguous

accesses where the lowest accessed address was rounded
down to the nearest multiple of 16 bytes and the highest
accessed address was rounded up to the nearest multiple of 16
bytes minus 1, but the watchpoint might not have matched the
original access or set of contiguous accesses.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

FnP, bit [15]

FAR not Precise.

This field only has meaning if the EDWAR is valid; that is, when the FnV field is 0. If the FnV field is 1, the FnP
field is 0.

FnP Meaning
0b0 If the FnV field is 0, the EDWAR holds the virtual address of an

access or set of contiguous accesses that triggered ana
entryWatchpoint to Debug state.exception.

0b1 The EDWAR holds any address within the smallest implemented
translation granule that contains the virtual address of an
access or set of contiguous accesses that triggered ana
entryWatchpoint to Debug state.exception.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [14:11]

Reserved, RES0.

FnV, bit [10]

FAR not Valid.

FnV Meaning
0b0 The EDWAR is valid, and its value is as described by the FnP

field.
0b1 The EDWAR is invalid, and holds an UNKNOWN value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [9:0]

Reserved, RES0.

EDHSR, External Debug Halt Status Register

Page 910

Accessing EDHSR
EDHSR can be accessed through the external debug interface:

Component Offset Instance Range
Debug 0x038 EDHSR 31:0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus(), accesses to this register are RO.
• Otherwise, accesses to this register generate an error response.

Component Offset Instance Range
Debug 0x03C EDHSR 63:32

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus(), accesses to this register are RO.
• Otherwise, accesses to this register generate an error response.

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

EDHSR, External Debug Halt Status Register

Page 911

(old) htmldiff from- (new)

EDSCR, External Debug Status and Control Register
The EDSCR characteristics are:

Purpose
Main control register for the debug implementation.

Configuration
External register EDSCR bits [30:29] are architecturally mapped to AArch64 System register MDCCSR_EL0[30:29].

EDSCR is in the Core power domain.

Attributes
EDSCR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 131211109 8 7 6 5 4 3 2 1 0

TFORXfullTXfullITORXOTXUPipeAdvITEINTdisTDAMASC2NSRES0SDDNSEHDE RW EL AERR STATUS

TFO, bit [31]
When FEAT_TRF is implemented:

Trace Filter Override. Overrides the Trace Filter controls allowing the external debugger to trace any visible
Exception level.

TFO Meaning
0b0 Trace Filter controls are not affected.
0b1 Trace Filter controls in TRFCR_EL1 and TRFCR_EL2 are

ignored.
Trace Filter controls TRFCR and HTRFCR are ignored.

When OSLSR_EL1.OSLK is 1, this bit can be indirectly read and written through the MDSCR_EL1 and
DBGDSCRext System registers.

This bit is ignored by the PE when any of the following is true:

• ExternalSecureNoninvasiveDebugEnabled() is FALSE and the Effective value of MDCR_EL3.STE is 1.
• FEAT_RME is implemented, ExternalRealmNoninvasiveDebugEnabled() is FALSE, and the Effective value

of MDCR_EL3.RLTE is 1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EDSCR, External Debug Status and Control Register

Page 912

AArch64-mdccsr_el0.html
AArch64-trfcr_el1.html
AArch64-trfcr_el2.html
AArch32-trfcr.html
AArch64-oslsr_el1.html
AArch64-mdscr_el1.html
AArch32-dbgdscrext.html
AArch64-mdcr_el3.html
AArch64-mdcr_el3.html

RXfull, bit [30]

DTRRX full.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.

TXfull, bit [29]

DTRTX full.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.

ITO, bit [28]

ITR overrun. Set to 0 on entry to Debug state.

Accessing this field has the following behavior:

• When the PE is in Non-debug state, access to this field is UNKNOWN/WI.
• Otherwise, access to this field is RO.

RXO, bit [27]

DTRRX overrun.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.

TXU, bit [26]

DTRTX underrun.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.

PipeAdv, bit [25]

Pipeline Advance. Indicates that software execution is progressing.

PipeAdv Meaning
0b0 No progress has been made by the PE since the last time

this field was cleared to zero by writing 1 to EDRCR.CSPA.
0b1 Progress has been made by the PE since the last time this

field was cleared to zero by writing 1 to EDRCR.CSPA.

The architecture does not define precisely when this field is set to 1. It requires only that this happen periodically
in Non-debug state to indicate that software execution is progressing. For example, a PE might set this field to 1
each time the PE retires one or more instructions, or at periodic intervals during the progression of an instruction.

When FEAT_MOPS is implemented, CPY, CPYF, SET, and SETG are examples of instructions that periodically make
forward progress.

EDSCR, External Debug Status and Control Register

Page 913

ext-edrcr.html
ext-edrcr.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

ITE, bit [24]

ITR empty.

Accessing this field has the following behavior:

• When the PE is in Non-debug state, access to this field is UNKNOWN/WI.
• Otherwise, access to this field is RO.

INTdis, bits [23:22]
When FEAT_RME is implemented:

Interrupt disable. Disables taking interrupts in Non-debug state.

INTdis Meaning
0b00 This bit has no effect on the masking of interrupts.
0b01 If ExternalInvasiveDebugEnabled() is TRUE, then all

interrupts taken to Non-secure state are masked.
If ExternalSecureInvasiveDebugEnabled() is TRUE, then all
interrupts taken to Secure state are masked.
If ExternalRootInvasiveDebugEnabled() is TRUE, then all
interrupts taken to Root state are masked.
If ExternalRealmInvasiveDebugEnabled() is TRUE, then all
interrupts taken to Realm state are masked.

Note

All interrupts includes virtual and SError interrupts.

When OSLSR_EL1.OSLK is 1, this field can be indirectly read and written through the MDSCR_EL1 and
DBGDSCRext System registers.

The Effective value of this field is 0b00 when ExternalInvasiveDebugEnabled() is FALSE.

When FEAT_RME is implemented, bit[23] of this register is RES0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

When FEAT_Debugv8p4 is implemented:

Interrupt disable. Disables taking interrupts in Non-debug state.

INTdis Meaning
0b00 Masking of interrupts is controlled by PSTATE and interrupt

routing controls.
0b01 If ExternalInvasiveDebugEnabled() is TRUE, then all

interrupts taken to Non-secure state are masked.
If ExternalSecureInvasiveDebugEnabled() is TRUE, then all
interrupts taken to Secure state are masked.

Note

All interrupts includes virtual and SError interrupts.

When OSLSR_EL1.OSLK is 1, this field can be indirectly read and written through the MDSCR_EL1 and
DBGDSCRext System registers.

EDSCR, External Debug Status and Control Register

Page 914

AArch64-oslsr_el1.html
AArch64-mdscr_el1.html
AArch32-dbgdscrext.html
AArch64-oslsr_el1.html
AArch64-mdscr_el1.html
AArch32-dbgdscrext.html

The Effective value of this field is 0b00 when ExternalInvasiveDebugEnabled() is FALSE.

When FEAT_Debugv8p4 is implemented, bit[23] of this register is RES0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Interrupt disable. Disables taking interrupts in Non-debug state.

INTdis Meaning
0b00 Masking of interrupts is controlled by PSTATE and interrupt

routing controls.
0b01 If ExternalInvasiveDebugEnabled() is TRUE, then all

interrupts taken to Non-secure EL1 are masked.
0b10 If ExternalInvasiveDebugEnabled() is TRUE, then all

interrupts taken to Non-secure state are masked.
If ExternalSecureInvasiveDebugEnabled() is TRUE, then all
interrupts taken to Secure EL1 are masked.

0b11 If ExternalInvasiveDebugEnabled() is TRUE, then all
interrupts taken to Non-secure state are masked.
If ExternalSecureInvasiveDebugEnabled() is TRUE, then all
interrupts taken to Secure state are masked.

Note

All interrupts includes virtual and SError interrupts.

When OSLSR_EL1.OSLK is 1, this field can be indirectly read and written through the MDSCR_EL1 and
DBGDSCRext System registers.

The Effective value of this field is 0b00 when ExternalInvasiveDebugEnabled() is FALSE.

Support for the values 0b01 and 0b10 is IMPLEMENTATION DEFINED. If these values are not supported, they are
reserved. If programmed with a reserved value, the PE behaves as if INTdis has been programmed with a defined
value, other than for a direct read of EDSCR, and the value returned by a read of EDSCR.INTdis is UNKNOWN.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

TDA, bit [21]

Traps accesses to the following debug System registers:

• AArch64: DBGBCR<n>_EL1, DBGBVR<n>_EL1, DBGWCR<n>_EL1, DBGWVR<n>_EL1.
• AArch32: DBGBCR<n>, DBGBVR<n>, DBGBXVR<n>, DBGWCR<n>, DBGWVR<n>.

TDA Meaning
0b0 Accesses to debug System registers do not generate a

Software Access Debug event.
0b1 Accesses to debug System registers generate a Software

Access Debug event, if OSLSR_EL1.OSLK is 0 and if halting is
allowed.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

MA, bit [20]

Memory access mode. Controls the use of memory-access mode for accessing ITR and the DCC. This bit is ignored
if in Non-debug state and set to zero on entry to Debug state.

EDSCR, External Debug Status and Control Register

Page 915

AArch64-oslsr_el1.html
AArch64-mdscr_el1.html
AArch32-dbgdscrext.html
AArch64-dbgbcrn_el1.html
AArch64-dbgbvrn_el1.html
AArch64-dbgwcrn_el1.html
AArch64-dbgwvrn_el1.html
AArch32-dbgbcrn.html
AArch32-dbgbvrn.html
AArch32-dbgbxvrn.html
AArch32-dbgwcrn.html
AArch32-dbgwvrn.html
AArch64-oslsr_el1.html

Possible values of this field are:

MA Meaning
0b0 Normal access mode.
0b1 Memory access mode.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

SC2, bit [19]
When FEAT_PCSRv8 is implemented, (FEAT_VHE is implemented or FEAT_Debugv8p2 is
implemented) and FEAT_PCSRv8p2 is not implemented:

Sample CONTEXTIDR_EL2. Controls whether the PC Sample-based Profiling Extension samples
CONTEXTIDR_EL2 or VTTBR_EL2.VMID.

SC2 Meaning
0b0 Sample VTTBR_EL2.VMID.
0b1 Sample CONTEXTIDR_EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NS, bit [18]
When FEAT_RME is implemented:

Non-secure status. Together with the NSE field, gives the current Security state:

NSE NS Meaning
0b0 0b0 Secure.
0b0 0b1 Non-secure.
0b1 0b0 Root.
0b1 0b1 Realm.

Accessing this field has the following behavior:

• When the PE is in Non-debug state, access to this field is UNKNOWN/WI.
• Otherwise, access to this field is RO.

Otherwise:

Non-secure status. In Debug state, gives the current Security state:

NS Meaning
0b0 Secure state.
0b1 Non-secure state.

Accessing this field has the following behavior:

• When the PE is in Non-debug state, access to this field is UNKNOWN/WI.
• Otherwise, access to this field is RO.

Bit [17]

Reserved, RES0.

EDSCR, External Debug Status and Control Register

Page 916

AArch64-contextidr_el2.html
AArch64-contextidr_el2.html
AArch64-vttbr_el2.html
AArch64-vttbr_el2.html
AArch64-contextidr_el2.html

SDD, bit [16]
When FEAT_RME is implemented:

EL3Secure debug disabled.

On entry to Debug state:

Reports the inverse of ExternalRootInvasiveDebugEnabled().

• If entering from EL3, SDD is set to 0.
• Otherwise, SDD is set to the inverse of ExternalRootInvasiveDebugEnabled().

In Debug state, the value of SDD does not change, even if ExternalRootInvasiveDebugEnabled() changes.

In Non-debug state, SDD returns the inverse of ExternalRootInvasiveDebugEnabled().

Access to this field is RO.

Otherwise:

Secure debug disabled.

On entry to Debug state:

• If entering in Secure state, SDD is set to 0.
• If entering in Non-secure state, SDD is set to the inverse of ExternalSecureInvasiveDebugEnabled().

In Debug state, the value of the SDD bit does not change, even if ExternalSecureInvasiveDebugEnabled()
changes.

In Non-debug state:

• SDD returns the inverse of ExternalSecureInvasiveDebugEnabled(). If the authentication signals that
control ExternalSecureInvasiveDebugEnabled() change, a context synchronization event is required to
guarantee their effect.

• This bit is unaffected by the Security state of the PE.

If EL3 is not implemented and the implementation is Non-secure, this bit is RES1.

Access to this field is RO.

NSE, bit [15]
When FEAT_RME is implemented:

Together with the NS field, this field gives the current Security state.

For a description of the values derived by evaluating NS and NSE together, see EDSCR.NS.

In Non-debug state, this bit is UNKNOWN.

Access to this field is RO.

Otherwise:

Reserved, RES0.

HDE, bit [14]

Halting debug enable.

EDSCR, External Debug Status and Control Register

Page 917

HDE Meaning
0b0 Halting disabled for Breakpoint, Watchpoint and Halt

Instruction debug events.
0b1 Halting enabled for Breakpoint, Watchpoint and Halt

Instruction debug events.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

RW, bits [13:10]

Exception level Execution state status. In Debug state, each bit gives the current Execution state of each
Exception level.

RW Meaning Applies
when

0b1111 Any of the following:
• The PE is in Non-debug state.
• The PE is at EL0 using AArch64.
• The PE is not at EL0, and EL1, EL2,

and EL3 are using AArch64.
0b1110 The PE is in Debug state at EL0. EL0 is

using AArch32. EL1, EL2, and EL3 are
using AArch64.

When
AArch32 is
supported

0b110x The PE is in Debug state. EL0 and EL1 are
using AArch32. EL2 is enabled in the
current Security state and is using
AArch64. If implemented, EL3 is using
AArch64.

When
AArch32 is
supported
and EL2 is
implemented

0b10xx The PE is in Debug state. EL0 and EL1 are
using AArch32. EL2 is not implemented,
disabled in the current Security state, or
using AArch32. EL3 is using AArch64.

When
AArch32 is
supported
and EL3 is
implemented

0b0xxx The PE is in Debug state. All Exception
levels are using AArch32.

When
AArch32 is
supported

Accessing this field has the following behavior:

• When the PE is in Non-debug state, access to this field is RAO/WI.
• Otherwise, access to this field is RO.

EL, bits [9:8]

Exception level. In Debug state, gives the current Exception level of the PE.

Accessing this field has the following behavior:

• When the PE is in Non-debug state, access to this field is RAZ/WI.
• Otherwise, access to this field is RO.

A, bit [7]

SError interrupt pending. In Debug state, indicates whether an SError interrupt is pending:

• If HCR_EL2.{AMO, TGE} = {1, 0}, EL2 is enabled in the current Security state, and the PE is executing at
EL0 or EL1, a virtual SError interrupt.

• Otherwise, a physical SError interrupt.
A Meaning
0b0 No SError interrupt pending.
0b1 SError interrupt pending.

A debugger can read EDSCR to check whether an SError interrupt is pending without having to execute further
instructions. A pending SError might indicate data from target memory is corrupted.

EDSCR, External Debug Status and Control Register

Page 918

Accessing this field has the following behavior:

• When the PE is in Non-debug state, access to this field is UNKNOWN/WI.
• Otherwise, access to this field is RO.

ERR, bit [6]

Cumulative error flag. This bit is set to 1 following exceptions in Debug state and on any signaled overrun or
underrun on the DTR or EDITR.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.

STATUS, bits [5:0]

Debug status flags.

STATUS Meaning
0b000001 PE is restarting, exiting Debug state.
0b000010 PE is in Non-debug state.
0b000111 Breakpoint.
0b010011 External debug request.
0b011011 Halting step, normal.
0b011111 Halting step, exclusive.
0b100011 OS Unlock Catch.
0b100111 Reset Catch.
0b101011 Watchpoint.
0b101111 HLT instruction.
0b110011 Software access to debug register.
0b110111 Exception Catch.
0b111011 Halting step, no syndrome.

All other values of STATUS are reserved.

Access to this field is RO.

Accessing EDSCR
EDSCR can be accessed through the external debug interface:

Component Offset Instance
Debug 0x088 EDSCR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus(), accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus(), accesses to this
register are RW.

• Otherwise, accesses to this register generate an error response.

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

EDSCR, External Debug Status and Control Register

Page 919

(old) htmldiff from- (new)

ERR<n>PFGCTL, Error Record <n> Pseudo-fault
Generation Control Register, n = 0 - 65534

The ERR<n>PFGCTL characteristics are:

Purpose
Enables controlled fault generation.

Configuration
This register is present only when error record <n> is implemented, the node implements the Common Fault Injection
Model Extension (ERR<n>FR.INJ != 0b00) and error record <n> is the first error record owned by a node. Otherwise,
direct accesses to ERR<n>PFGCTL are RES0.

ERR<n>PFGF describes the Common Fault Injection features implemented by the node.

Attributes
ERR<n>PFGCTL is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
CDNEN R RES0 RAO/

WI
RAO/
WI PNER CI CE DEUEOUERUEUUCOF

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

CDNEN, bit [31]

Countdown Enable. Controls transfers of the value held in ERR<n>PFGCDN to the Error Generation Counter and
enables this counter.

CDNEN Meaning
0b0 The Error Generation Counter is disabled.
0b1 The Error Generation Counter is enabled. On a write of 1 to

this field, the Error Generation Counter is set to
ERR<n>PFGCDN.CDN.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

R, bit [30]
When the node supports this control:

Restart. Controls whether the Error Generation Counter restarts or stops counting on reaching zero.

ERR<n>PFGCTL, Error Record <n> Pseudo-fault Generation Control Register, n = 0 - 65534

Page 920

ext-errnpfgf.html
ext-errnpfgcdn.html
ext-errnpfgcdn.html

R Meaning
0b0 On reaching zero, the Error Generation Counter will stop

counting.
0b1 On reaching zero, the Error Generation Counter is set to

ERR<n>PFGCDN.CDN.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:13]

Reserved, RES0.

Bit [12]
When the node supports this control, and the node always sets ERR<n>STATUS.MV to 0b1
when an injected error is recorded:

Reserved, RAO/WI.

When the node supports this control:

Miscellaneous syndrome. The value written to ERR<n>STATUS.MV when an injected error is recorded.

MV Meaning
0b0 ERR<n>STATUS.MV is set to 0 when an injected error is

recorded.
0b1 ERR<n>STATUS.MV is set to 1 when an injected error is

recorded.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

When the node always sets ERR<n>STATUS.MV to 0b1 when an injected error is recorded
and this field is RAO/WI:

Reserved, RAO/WI.

Otherwise:

Reserved, RES0.

Bit [11]
When the node supports this control, and the node always sets ERR<n>STATUS.AV to 0b1
when an injected error is recorded:

Reserved, RAO/WI.

ERR<n>PFGCTL, Error Record <n> Pseudo-fault Generation Control Register, n = 0 - 65534

Page 921

ext-errnpfgcdn.html
ext-errnstatus.html
ext-errnstatus.html
ext-errnstatus.html

When the node supports this control:

Address syndrome. The value written to ERR<n>STATUS.AV when an injected error is recorded.

AV Meaning
0b0 ERR<n>STATUS.AV is set to 0 when an injected error is

recorded.
0b1 ERR<n>STATUS.AV is set to 1 when an injected error is

recorded.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PN, bit [10]
When the node supports this control:

Poison flag. The value written to ERR<n>STATUS.PN when an injected error is recorded.

PN Meaning
0b0 ERR<n>STATUS.PN is set to 0 when an injected error is

recorded.
0b1 ERR<n>STATUS.PN is set to 1 when an injected error is

recorded.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ER, bit [9]
When the node supports this control:

Error Reported flag. The value written to ERR<n>STATUS.ER when an injected error is recorded.

ER Meaning
0b0 ERR<n>STATUS.ER is set to 0 when an injected error is

recorded.
0b1 ERR<n>STATUS.ER is set to 1 when an injected error is

recorded.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ERR<n>PFGCTL, Error Record <n> Pseudo-fault Generation Control Register, n = 0 - 65534

Page 922

ext-errnstatus.html
ext-errnstatus.html
ext-errnstatus.html
ext-errnstatus.html
ext-errnstatus.html
ext-errnstatus.html
ext-errnstatus.html
ext-errnstatus.html
ext-errnstatus.html

CI, bit [8]
When the node supports this control:

Critical Error flag. The value written to ERR<n>STATUS.CI when an injected error is recorded.

CI Meaning
0b0 ERR<n>STATUS.CI is set to 0 when an injected error is

recorded.
0b1 ERR<n>STATUS.CI is set to 1 when an injected error is

recorded.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CE, bits [7:6]
When the node supports this control:

Corrected Error generation enable. Controls the type of injected Corrected error generated by the fault injection
feature of the node.

CE Meaning
0b00 An injected Corrected error will not be generated by the fault

injection feature of the node.
0b01 An injected non-specific Corrected error is generated in the

fault injection state. ERR<n>STATUS.CE is set to 0b10 when
the injected error is recorded.

0b10 An injected transient Corrected error is generated in the fault
injection state. ERR<n>STATUS.CE is set to 0b01 when the
injected error is recorded.

0b11 An injected persistent Corrected error is generated in the fault
injection state. ERR<n>STATUS.CE is set to 0b11 when the
injected error is recorded.

The set of permitted values for this field is defined by ERR<n>PFGF.CE.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It is
IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on an access to the
component in the fault injection state and the data is not consumed.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DE, bit [5]
When the node supports this control:

Deferred Error generation enable. Controls whether an injected Deferred error is generated by the fault injection
feature of the node.

ERR<n>PFGCTL, Error Record <n> Pseudo-fault Generation Control Register, n = 0 - 65534

Page 923

ext-errnstatus.html
ext-errnstatus.html
ext-errnstatus.html
ext-errnstatus.html
ext-errnstatus.html
ext-errnstatus.html
ext-errnpfgf.html

DE Meaning
0b0 An injected Deferred error will not be generated by the fault

generation feature of the node.
0b1 An injected Deferred error is generated in the fault injection

state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It is
IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on an access to the
component in the fault injection state and the data is not consumed.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UEO, bit [4]
When the node supports this control:

Latent or Restartable Error generation enable. Controls whether an injected Latent or Restartable error is
generated by the fault injection feature of the node.

UEO Meaning
0b0 An injected Latent or Restartable error will not be generated

by the fault generation feature of the node.
0b1 An injected Latent or Restartable error is generated in the

fault injection state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It is
IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on an access to the
component in the fault injection state and the data is not consumed.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UER, bit [3]
When the node supports this control:

Signaled or Recoverable Error generation enable. Controls whether an injected Signaled or Recoverable error is
generated by the fault injection feature of the node.

UER Meaning
0b0 An injected Signaled or Recoverable error will not be

generated by the fault generation feature of the node.
0b1 An injected Signaled or Recoverable error is generated in the

fault injection state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It is
IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on an access to the
component in the fault injection state and the data is not consumed.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

ERR<n>PFGCTL, Error Record <n> Pseudo-fault Generation Control Register, n = 0 - 65534

Page 924

Otherwise:

Reserved, RES0.

UEU, bit [2]
When the node supports this control:

Unrecoverable Error generation enable. Controls whether an injected Unrecoverable error is generated by the
fault injection feature of the node.

UEU Meaning
0b0 An injected Unrecoverable error will not be generated by the

fault generation feature of the node.
0b1 An injected Unrecoverable error is generated in the fault

injection state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It is
IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on an access to the
component in the fault injection state and the data is not consumed.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UC, bit [1]
When the node supports this control:

Uncontainable Error generation enable. Controls whether an injected Uncontainable error is generated by the
fault injection feature of the node.

UC Meaning
0b0 An injected Uncontainable error will not be generated by the

fault generation feature of the node.
0b1 An injected Uncontainable error is generated in the fault

injection state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It is
IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on an access to the
component in the fault injection state and the data is not consumed.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

OF, bit [0]
When the node supports this control:

Overflow flag. The value written to ERR<n>STATUS.OF when an injected error is recorded.

ERR<n>PFGCTL, Error Record <n> Pseudo-fault Generation Control Register, n = 0 - 65534

Page 925

ext-errnstatus.html

OF Meaning
0b0 ERR<n>STATUS.OF is set to 0 when an injected error is

recorded.
0b1 ERR<n>STATUS.OF is set to 1 when an injected error is

recorded.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing ERR<n>PFGCTL
ERR<n>PFGCTL can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0x808 + (64 * n) ERR<n>PFGCTL

Accesses to this interface are RW.

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ERR<n>PFGCTL, Error Record <n> Pseudo-fault Generation Control Register, n = 0 - 65534

Page 926

ext-errnstatus.html
ext-errnstatus.html

(old) htmldiff from- (new)

GICR_VPROPBASER, Virtual Redistributor Properties
Base Address Register

The GICR_VPROPBASER characteristics are:

Purpose
In GICv4.0, specifiesSpecifies the base address of the memory that holds the virtual LPI Configuration table for the
currently scheduled virtual machine.

In GICv4.1, specifies the base address of the memory that holds the vPE Configuration table.

Configuration
This register is provided in FEAT_GICv4 implementations only.

Attributes
GICR_VPROPBASER is a 64-bit register.

Field descriptions

When FEAT_GICv4 is implemented:
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 OuterCache RES0 Physical_Address
Physical_Address ShareabilityInnerCache RES0 IDbits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:59]

Reserved, RES0.

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to the LPI Configuration table.

OuterCache Meaning
0b000 Memory type defined in InnerCache field. For Normal

memory, Outer Cacheability is the same as Inner
Cacheability.

0b001 Normal Outer Non-cacheable.
0b010 Normal Outer Cacheable Read-allocate, Write-through.
0b011 Normal Outer Cacheable Read-allocate, Write-back.
0b100 Normal Outer Cacheable Write-allocate, Write-

through.
0b101 Normal Outer Cacheable Write-allocate, Write-back.
0b110 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software.
Implementing this field with a fixed value is deprecated.

GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

Page 927

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [55:52]

Reserved, RES0.

Physical_Address, bits [51:12]

Bits [51:12] of the physical address containing the virtual LPI Configuration table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are RES0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the LPI Configuration table.

Shareability Meaning
0b00 Non-shareable.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Reserved. Treated as 0b00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software.
Implementing this field with a fixed value is deprecated.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the LPI Configuration table.

InnerCache Meaning
0b000 Device-nGnRnE.
0b001 Normal Inner Non-cacheable.
0b010 Normal Inner Cacheable Read-allocate, Write-through.
0b011 Normal Inner Cacheable Read-allocate, Write-back.
0b100 Normal Inner Cacheable Write-allocate, Write-through.
0b101 Normal Inner Cacheable Write-allocate, Write-back.
0b110 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-back.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IDbits, bits [4:0]

The number of bits of virtual LPI INTID supported, minus one.

If the value of this field is less than 0b1101, indicating that the largest INTID is less than 8192 (the smallest LPI
interrupt ID), the GIC will behave as if all virtual LPIs are out of range.

GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

Page 928

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

When FEAT_GICv4p1 is implemented:
63 62 61 60 59 58 57 56 55 54 53 525150494847464544 43 42 41 40 39 38373635343332

ValidRES0Entry_SizeOuterCacheIndirectPage_Size Z Physical_Address
Physical_Address ShareabilityInnerCache Size

31 30 29 28 27 26 25 24 23 22 21 201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Valid, bit [63]

This bit controls whether the vPE Configuration Table is valid.

Valid Meaning
0b0 The vPE Configuration table is not valid.
0b1 The vPE Configuration table is valid.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Bit [62]

Reserved, RES0.

Entry_Size, bits [61:59]

Specifies the number 64-bit doublewords per table entry, minus one.

This bit is read-only.

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to the table.

OuterCache Meaning
0b000 Memory type defined in InnerCache field. For Normal

memory, Outer Cacheability is the same as Inner
Cacheability.

0b001 Normal Outer Non-cacheable.
0b010 Normal Outer Cacheable Read-allocate, Write-through.
0b011 Normal Outer Cacheable Read-allocate, Write-back.
0b100 Normal Outer Cacheable Write-allocate, Write-

through.
0b101 Normal Outer Cacheable Write-allocate, Write-back.
0b110 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software.
Implementing this field with a fixed value is deprecated.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Indirect, bit [55]

This field indicates whether GICR_VPROPBASER specifies a single, flat table or a two-level table where the first
level contains a list of descriptors.

GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

Page 929

Indirect Meaning
0b0 Single Level. The Size field indicates the number of pages

used to store data associated with each table entry.
0b1 Two Level. The Size field indicates the number of pages

that contain an array of 64-bit descriptors to pages that
are used to store the data associated with each table entry.
A little endian memory order model is used.

This field is RAZ/WI for GIC implementations that only support flat tables.

If the supported vPEID width indicated by GICD_TYPER2.VIL and GICD_TYPER2.VID, and the smallest page size
that is supported result in a single level table that requires multiple pages, then implementing this bit as RAZ/WI
is deprecated.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Page_Size, bits [54:53]

The following values indicate the size of page that the translation table uses:

Page_Size Meaning
0b00 4KB.
0b01 16KB.
0b10 64KB.
0b11 Reserved. Treated as 0b10.

Note

If the GIC implementation supports only a single, fixed page size, this field
might be RO.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Z, bit [52]

When GICR_VPROPBASER.Valid is written from 0 to 1, GICR_VPROPBASER.Z indicates whether the vPE
Configuration table is known to contain all zeros.

Z Meaning
0b0 The vPE Configutation table is not zero, and contains live data.
0b1 The vPE Configuration table is zero.

Setting GICR_VPROPBASER.Z to 0 causes the IRI to reload configuration from memory

When GICR_VPROPBASER.Valid is written from 0 to 1, if GICR_VPROPBASER.Z==1 behavior is UNPREDICTABLE if
the allocated memory does not contain all zeros.

This field is WO, and reads as 0.

Physical_Address, bits [51:12]

Bits [51:12] of the physical address containing the LPI Configuration table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are RES0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the LPI Configuration table.

GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

Page 930

ext-gicd_typer2.html
ext-gicd_typer2.html

Shareability Meaning
0b00 Non-shareable.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Reserved. Treated as 0b00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software.
Implementing this field with a fixed value is deprecated.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the LPI Configuration table.

InnerCache Meaning
0b000 Device-nGnRnE.
0b001 Normal Inner Non-cacheable.
0b010 Normal Inner Cacheable Read-allocate, Write-through.
0b011 Normal Inner Cacheable Read-allocate, Write-back.
0b100 Normal Inner Cacheable Write-allocate, Write-through.
0b101 Normal Inner Cacheable Write-allocate, Write-back.
0b110 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-back.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Size, bits [6:0]

The number of pages of physical memory allocated to the table, minus one.

GICR_VPROPBASER.Page_Size specifies the size of each page.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing GICR_VPROPBASER
GICR_VPROPBASER can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
VLPI_base 0x0070 GICR_VPROPBASER

Accesses to this interface are RW.

3021/03/2022 2017:2800; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

Page 931

(old) htmldiff from- (new)

GITS_CTLR, ITS Control Register
The GITS_CTLR characteristics are:

Purpose
Controls the operation of an ITS.

Configuration
The ITS_Number (bits [7:4]) and bit [1] fields apply only in FEAT_GICv4 implementations, and are RES0 in FEAT_GICv3
implementations.

Attributes
GITS_CTLR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Quiescent RES0 UMSIirqITS_NumberRES0ImDeEnabled

Quiescent, bit [31]

Read-only. Indicates completion of all ITS operations when GITS_CTLR.Enabled == 0.

Quiescent Meaning
0b0 The ITS is not quiescent and cannot be powered down.
0b1 The ITS is quiescent and can be powered down.

For the ITS to be considered inactive, there must be no transactions in progress. In addition, all operations
required to ensure that mapping data is consistent with external memory must be complete.

Note

In distributed GIC implementations, this bit is set to 1 only after the ITS
forwards any operations that have not yet been completed to the
Redistributors and receives confirmation that all such operations have
reached the appropriate Redistributor.

In FEAT_GICv3, FEAT_GICv3p1, and FEAT_GICv4, when GITS_CTLR.Enabled == 1, the value of
GITS_CTLR.Quiescent is UNKNOWN.

In FEAT_GICv4p1, when GITS_CTLR.Enabled == 1, the value of GITS_CTLR.Quiescent reads as 1 until the write to
Enabled has taken effect and then reads as 0.

The reset behavior of this field is:

• On a GIC reset, this field resets to 1.

Bits [30:9]

Reserved, RES0.

GITS_CTLR, ITS Control Register

Page 932

UMSIirq, bit [8]

Unmapped MSI reporting interrupt enable.

UMSIirq Meaning
0b0 The ITS does not assert an interrupt signal when

GITS_STATUSR.UMSI is 1.
0b1 The ITS asserts an interrupt signal when

GITS_STATUSR.UMSI is 1.

If GITS_TYPER.UMSIirq is 0, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

ITS_Number, bits [7:4]

In FEAT_GICv3 implementations this field is RES0.

In FEAT_GICv4 implementations with more than one ITS instance, this field indicates the ITS number for use with
'VMOVP GICv4.0' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0
and version 4.0 (ARM IHI 0069).

When GITS_TYPER.VMOVP is 1, this field may be implemented as RES0.

It is IMPLEMENTATION DEFINED whether this field is programmable or RO.

If this field is programmable, changing this field when GITS_CTLR.Quiescent == 0 or GITS_CTLR.Enabled == 1 is
UNPREDICTABLE.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [3:2]

Reserved, RES0.

ImDe, bit [1]

In GICv3 implementations, this bit is RES0.

In GICv4 implementations, this bit is IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Enabled, bit [0]

Controls whether the ITS is enabled:

Enabled Meaning
0b0 The ITS is not enabled. Writes to GITS_TRANSLATER are

ignored and no further command queue entries are
processed.

0b1 The ITS is enabled. Writes to GITS_TRANSLATER result in
interrupt translations and the command queue is
processed.

If a write to this register changes this field from 1 to 0, the ITS must ensure that both:

• Any caches containing mapping data are made consistent with external memory.
• GITS_CTLR.Quiescent == 0 until all caches are consistent with external memory.

GITS_CTLR, ITS Control Register

Page 933

ext-gits_statusr.html
ext-gits_statusr.html
ext-gits_typer.html
ext-gits_typer.html
ext-gits_translater.html
ext-gits_translater.html

Changing GITS_CTLR.Enabled from 0 to 1 when GITS_CTLR.Quiescent is 0 results in UNPREDICTABLE behavior.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Accessing GITS_CTLR
GITS_CTLR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS control 0x0000 GITS_CTLR

Accesses to this interface are RW.

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GITS_CTLR, ITS Control Register

Page 934

(old) htmldiff from- (new)

MPAMF_IDR, MPAM Features Identification Register
The MPAMF_IDR characteristics are:

Purpose
Indicates which memory partitioning and monitoring features are present on this MSC.

MPAMF_IDR_s indicates the MPAM features accessed from the Secure MPAM feature page. MPAMF_IDR_ns indicates
the MPAM features accessed from the Non-secure MPAM feature page. MPAMF_IDR_rt indicates the MPAM features
accessed from the Root MPAM feature page. MPAMF_IDR_rl indicates the MPAM features accessed from the Realm
MPAM feature page.

When MPAMF_IDR.HAS_RIS is 1, some fields in this register give information for the resource instance selected by
MPAMCFG_PART_SEL.RIS. The description of every field that is affected by MPAMCFG_PART_SEL.RIS has that
information within the field description.

Configuration
The power domain of MPAMF_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to MPAMF_IDR are RES0.

MPAMF_IDR is 64-bit register when MPAM v0.1 or v1.1 is implemented.

Otherwise, MPAMF_IDR is a 32-bit register.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMF_IDR is a:

• 64-bit register when FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented
• 32-bit register otherwise

Field descriptions

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is
implemented:

63 62 61 60 59 58 57 56 555453525150494847464544 43 42 41 40 39 38 37 36 353433 32
RES0 RIS_MAX RES0 HAS_NFUHAS_ENDISSP4HAS_ERR_MSIHAS_ESRHAS_EXTD_ESRNO_IMPL_MSMONNO_IMPL_PART RES0 HAS_RIS

HAS_PARTID_NRWHAS_MSMONHAS_IMPL_IDREXTHAS_PRI_PARTHAS_MBW_PARTHAS_CPOR_PARTHAS_CCAP_PART PMG_MAX PARTID_MAX
31 30 29 28 27 26 25 24 232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:60]

Reserved, RES0.

RIS_MAX, bits [59:56]
When MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_RIS == 1:

Maximum RIS value supported in MPAMCFG_PART_SEL. Must be 0b0000 if MPAMF_IDR.HAS_RIS == 0.

MPAMF_IDR, MPAM Features Identification Register

Page 935

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Otherwise:

Reserved, RES0.

Bits [55:44]

Reserved, RES0.

HAS_NFU, bit [43]
When FEAT_MPAMv1p1 is implemented or FEAT_MPAMv0p1 is implemented:

Has No Future Use field in MPAMCFG_DIS. Indicates that MPAMCFG_DIS.NFU is implemented.

HAS_NFU Meaning
0b0 MPAMCFG_DIS.NFU is not implemented. A PARTID

disabled through access to MPAMCFG_DIS must
preserve the control settings of the disabled PARTID.

0b1 Implements MPAMCFG_DIS.NFU. A PARTID disabled
with NFU as 1 may have its control settings forgotten.

If MPAMF_IDR.HAS_ENDIS is 0b0, this field must also be 0b0.

This field must be the same in each instance of this register and for any value in MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

HAS_ENDIS, bit [42]
When FEAT_MPAMv1p1 is implemented or FEAT_MPAMv0p1 is implemented:

Has PARTID enable and disable. Indicates that this MSC supports PARTID disable and enable via MPAMCFG_DIS,
MPAMCFG_EN and MPAMCFG_EN_FLAGS registers.

HAS_ENDIS Meaning
0b0 Does not support PARTID enable and disable

functionality, and MPAMCFG_EN, MPAMCFG_DIS and
MPAMCFG_EN_FLAGS registers are not implemented.

0b1 Supports PARTID enable and disable through the
MPAMCFG_EN, MPAMCFG_DIS and
MPAMCFG_EN_FLAGS registers.

All three registers must be implemented when this field is 1, MPAMCFG_EN, MPAMCFG_DIS, and
MPAMCFG_EN_FLAGS.

This field must be the same in each instance of this register and for any value in MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

SP4, bit [41]
When FEAT_RME is implemented:

Indicates whether this MSC supports 4 PARTID spaces.

SP4 Meaning
0b0 This MSC supports two PARTID spaces.
0b1 This MSC supports four PARTID spaces.

MPAMF_IDR, MPAM Features Identification Register

Page 936

ext-mpamcfg_dis.html
ext-mpamcfg_dis.html
ext-mpamcfg_dis.html
ext-mpamcfg_dis.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_dis.html
ext-mpamcfg_en.html
ext-mpamcfg_en_flags.html
ext-mpamcfg_en.html
ext-mpamcfg_dis.html
ext-mpamcfg_en.html
ext-mpamcfg_dis.html
ext-mpamcfg_en.html
ext-mpamcfg_dis.html
ext-mpamcfg_en_flags.html
ext-mpamcfg_part_sel.html

This field must read the same in each instance of this register and for any value in MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

HAS_ERR_MSI, bit [40]
When MPAMF_IDR.EXT == 1:

Has support for MSI writes to signal MPAM error interrupts. These registers are implemented:
MPAMF_ERR_MSI_ADDR_L, MPAMF_ERR_MSI_ADDR_H, MPAMF_ERR_MSI_ATTR, MPAMF_ERR_MSI_DATA, and
MPAMF_ERR_MSI_MPAM.

HAS_ERR_MSI Meaning
0b0 MPAMF_ERR_MSI_ADDR_L,

MPAMF_ERR_MSI_ADDR_H,
MPAMF_ERR_MSI_ATTR, MPAMF_ERR_MSI_DATA,
and MPAMF_ERR_MSI_MPAM registers are not
implemented.

0b1 MPAMF_ERR_MSI_ADDR_L,
MPAMF_ERR_MSI_ADDR_H,
MPAMF_ERR_MSI_ATTR, MPAMF_ERR_MSI_DATA,
and MPAMF_ERR_MSI_MPAM are implemented and
can be used to generate writes to signal error
interrupts.

If MPAMF_IDR.HAS_ESR is 0, this bit must also be 0.

Otherwise:

Reserved, RES0.

HAS_ESR, bit [39]
When MPAMF_IDR.EXT == 1:

MPAMF_ESR is implemented.

HAS_ESR Meaning
0b0 MPAMF_ESR, MPAMF_ECR, and MPAM error handling

are not implemented.
0b1 MPAMF_ESR, MPAMF_ECR, and MPAM error handling

are implemented.

If an MSC cannot encounter any of the error conditions listed in 'Errors in MSCs' in Arm® Architecture Reference
Manual Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A (ARM DDI
0598), both the MPAMF_ESR and MPAMF_ECR must be RAZ/WI.

Otherwise:

Reserved, RES0.

HAS_EXTD_ESR, bit [38]
When MPAMF_IDR.EXT == 1:

MPAMF_ESR is 64 bits.

HAS_EXTD_ESR Meaning
0b0 MPAMF_ESR is 32 bits.
0b1 MPAMF_ESR is 64 bits.

MPAMF_IDR, MPAM Features Identification Register

Page 937

ext-mpamcfg_part_sel.html
ext-mpamf_err_msi_addr_l.html
ext-mpamf_err_msi_addr_h.html
ext-mpamf_err_msi_attr.html
ext-mpamf_err_msi_data.html
ext-mpamf_err_msi_mpam.html
ext-mpamf_err_msi_addr_l.html
ext-mpamf_err_msi_addr_h.html
ext-mpamf_err_msi_attr.html
ext-mpamf_err_msi_data.html
ext-mpamf_err_msi_mpam.html
ext-mpamf_err_msi_addr_l.html
ext-mpamf_err_msi_addr_h.html
ext-mpamf_err_msi_attr.html
ext-mpamf_err_msi_data.html
ext-mpamf_err_msi_mpam.html
ext-mpamf_esr.html
ext-mpamf_esr.html
ext-mpamf_ecr.html
ext-mpamf_esr.html
ext-mpamf_ecr.html
ext-mpamf_ecr.html
ext-mpamf_esr.html
ext-mpamf_esr.html
ext-mpamf_esr.html

When MPAMF_IDR.HAS_RIS and MPAMF_IDR.HAS_ESR, this field must be 1.

Otherwise:

Reserved, RES0.

NO_IMPL_MSMON, bit [37]
When MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_IMPL_IDR == 1:

MPAMF_IMPL_IDR defines no IMPLEMENTATION DEFINED resource monitors.

NO_IMPL_MSMON Meaning
0b0 MPAMF_IMPL_IDR defines at least one

IMPLEMENTATION DEFINED resource monitor.
0b1 MPAMF_IMPL_IDR does not define any

IMPLEMENTATION DEFINED resource monitors.

If RIS is implemented, this field indicates the presence of IMPLEMENTATION DEFINED resource monitors described in
MPAMF_IMPL_IDR for the selected resource instance.

Otherwise:

Reserved, RES0.

NO_IMPL_PART, bit [36]
When MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_IMPL_IDR == 1:

MPAMF_IMPL_IDR defines no IMPLEMENTATION DEFINED resource controls.

NO_IMPL_PART Meaning
0b0 MPAMF_IMPL_IDR defines at least one

IMPLEMENTATION DEFINED resource control.
0b1 MPAMF_IMPL_IDR does not define any

IMPLEMENTATION DEFINED resource controls.

If RIS is implemented, this field indicates the presence of IMPLEMENTATION DEFINED resource controls described in
MPAMF_IMPL_IDR for the selected resource instance.

Otherwise:

Reserved, RES0.

Bits [35:33]

Reserved, RES0.

HAS_RIS, bit [32]
When MPAMF_IDR.EXT == 1:

Has resource instance selector. Indicates that MPAMCFG_PART_SEL contains the RIS field that selects a resource
instance to control.

MPAMF_IDR, MPAM Features Identification Register

Page 938

ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamcfg_part_sel.html

HAS_RIS Meaning
0b0 MPAMCFG_PART_SEL does not implement the

MPAMCFG_PART_SEL.RIS field or multiple resource
instance support.

0b1 MPAMCFG_PART_SEL implements the
MPAMCFG_PART_SEL.RIS field and MPAM resource
instance numbers up to and including
MPAMF_IDR.RIS_MAX.

Otherwise:

Reserved, RES0.

HAS_PARTID_NRW, bit [31]

Has PARTID narrowing.

HAS_PARTID_NRW Meaning
0b0 Does not have MPAMF_PARTID_NRW_IDR,

MPAMCFG_INTPARTID, or intPARTID mapping
support.

0b1 Supports the MPAMF_PARTID_NRW_IDR,
MPAMCFG_INTPARTID registers.

HAS_MSMON, bit [30]

Has resource Monitors. Indicates whether this MSC has MPAM resource monitors.

HAS_MSMON Meaning
0b0 Does not support MPAM resource monitoring by

groups or MPAMF_MSMON_IDR.
0b1 Supports resource monitoring by matching a

combination of PARTID and PMG. See
MPAMF_MSMON_IDR.

HAS_IMPL_IDR, bit [29]

Has MPAMF_IMPL_IDR. Indicates whether this MSC has the IMPLEMENTATION SPECIFIC MPAM features register,
MPAMF_IMPL_IDR.

HAS_IMPL_IDR Meaning
0b0 Does not have MPAMF_IMPL_IDR.
0b1 Has MPAMF_IMPL_IDR.

EXT, bit [28]
When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Extended MPAMF_IDR.

EXT Meaning
0b0 MPAMF_IDR has no defined bits in [63:32]. The register is

effectively 32 bits.
0b1 MPAMF_IDR has bits defined in [63:32]. The register is 64-bits.

Otherwise:

Reserved, RES0.

MPAMF_IDR, MPAM Features Identification Register

Page 939

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamf_partid_nrw_idr.html
ext-mpamcfg_intpartid.html
ext-mpamf_partid_nrw_idr.html
ext-mpamcfg_intpartid.html
ext-mpamf_msmon_idr.html
ext-mpamf_msmon_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html

HAS_PRI_PART, bit [27]

Has Priority Partitioning. Indicates that MPAM priority partitioning is implemented and MPAMF_PRI_IDR exists.

HAS_PRI_PART Meaning
0b0 Does not support priority partitioning or have

MPAMF_PRI_IDR.
0b1 Has priority partitioning and MPAMF_PRI_IDR.

If RIS is implemented, this field indicates the presence of priority partitioning resource controls as described in
MPAMF_PRI_IDR for the selected resource instance.

HAS_MBW_PART, bit [26]

Has Memory Bandwidth Partitioning. Indicates whether this MSC implements MPAM memory bandwidth
partitioning and MPAMF_MBW_IDR.

HAS_MBW_PART Meaning
0b0 Does not support memory bandwidth partitioning

or have MPAMF_MBW_IDR register.
0b1 Has MPAMF_MBW_IDR register.

If RIS is implemented, this field indicates the presence of memory bandwidth partitioning resource controls as
described in MPAMF_MBW_IDR for the selected resource instance.

HAS_CPOR_PART, bit [25]

Has Cache Portion Partitioning. Indicates whether this MSC implements MPAM cache portion partitioning and
MPAMF_CPOR_IDR.

HAS_CPOR_PART Meaning
0b0 Does not support cache portion partitioning or

have MPAMF_CPOR_IDR or
MPAMCFG_CPBM<n> registers.

0b1 Has MPAMF_CPOR_IDR and
MPAMCFG_CPBM<n> registers.

If RIS is implemented, this field indicates the presence of cache portion partitioning resource controls as described
in MPAMF_CPOR_IDR for the selected resource instance.

HAS_CCAP_PART, bit [24]

Has Cache Capacity Partitioning. Indicates whether this MSC implements MPAM cache capacity partitioning and
the MPAMF_CCAP_IDR and MPAMCFG_CMAX registers.

HAS_CCAP_PART Meaning
0b0 Does not support cache capacity partitioning or

have MPAMF_CCAP_IDR and MPAMCFG_CMAX
registers.

0b1 Has MPAMF_CCAP_IDR and MPAMCFG_CMAX
registers.

If RIS is implemented, this field indicates the presence of cache capacity partitioning resource controls as
described in MPAMF_CPOR_IDR for the selected resource instance.

PMG_MAX, bits [23:16]

Maximum supported value of PMG.

The value of this field is permitted to vary between the instances of MPAMF_IDRMPAM_IDR, each reporting the
maximum supported PMG value in the PARTID space associated with that instance.

In MPAMF_IDR_s, this field is permitted to report the maximum PMG value for the Non-secure PARTID space or
for the Secure PARTID space. The maximum PMG value for the Secure PARTID space can be read from
MPAMF_SIDR.PMG_MAX.

MPAMF_IDR, MPAM Features Identification Register

Page 940

ext-mpamf_pri_idr.html
ext-mpamf_pri_idr.html
ext-mpamf_pri_idr.html
ext-mpamf_pri_idr.html
ext-mpamf_mbw_idr.html
ext-mpamf_mbw_idr.html
ext-mpamf_mbw_idr.html
ext-mpamf_mbw_idr.html
ext-mpamf_cpor_idr.html
ext-mpamf_cpor_idr.html
ext-mpamcfg_cpbmn.html
ext-mpamf_cpor_idr.html
ext-mpamcfg_cpbmn.html
ext-mpamf_cpor_idr.html
ext-mpamf_ccap_idr.html
ext-mpamcfg_cmax.html
ext-mpamf_ccap_idr.html
ext-mpamcfg_cmax.html
ext-mpamf_ccap_idr.html
ext-mpamcfg_cmax.html
ext-mpamf_cpor_idr.html
ext-mpam_idr.html
ext-mpamf_sidr.html

PARTID_MAX, bits [15:0]

Maximum supported value of PARTID.

The value of this field is permitted to vary between the instances of MPAMF_IDRMPAM_IDR, each reporting the
maximum supported PARTID value in the PARTID space associated with that instance.

In MPAMF_IDR_s, this field is permitted to report the maximum PARTID value for the Non-secure PARTID space or
for the Secure PARTID space. The maximum PARTID value for the Secure PARTID space can be read from
MPAMF_SIDR.PARTID_MAX.

Otherwise:
31 30 29 28 27 26 25 24 23222120191817161514131211109876543210

HAS_PARTID_NRWHAS_MSMONHAS_IMPL_IDREXTHAS_PRI_PARTHAS_MBW_PARTHAS_CPOR_PARTHAS_CCAP_PART PMG_MAX PARTID_MAX

HAS_PARTID_NRW, bit [31]

Has PARTID Narrowing.

HAS_PARTID_NRW Meaning
0b0 Does not have MPAMF_PARTID_NRW_IDR,

MPAMCFG_INTPARTID, or intPARTID mapping
support.

0b1 Supports the MPAMF_PARTID_NRW_IDR,
MPAMCFG_INTPARTID registers.

HAS_MSMON, bit [30]

Has resource Monitors. Indicates whether this MSC has MPAM resource monitors.

HAS_MSMON Meaning
0b0 Does not support MPAM resource monitoring by

groups or MPAMF_MSMON_IDR.
0b1 Supports resource monitoring by matching a

combination of PARTID and PMG. See
MPAMF_MSMON_IDR.

HAS_IMPL_IDR, bit [29]

Has MPAMF_IMPL_IDR. Indicates whether this MSC has the IMPLEMENTATION SPECIFIC MPAM features register,
MPAMF_IMPL_IDR.

HAS_IMPL_IDR Meaning
0b0 Does not have MPAMF_IMPL_IDR.
0b1 Has MPAMF_IMPL_IDR.

EXT, bit [28]
When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Extended MPAMF_IDR.

EXT Meaning
0b0 MPAMF_IDR has no defined bits in [63:32]. The register is

effectively 32 bits.
0b1 MPAMF_IDR has bits defined in [63:32]. The register is 64-bits.

Otherwise:

Reserved, RES0.

MPAMF_IDR, MPAM Features Identification Register

Page 941

ext-mpam_idr.html
ext-mpamf_sidr.html
ext-mpamf_partid_nrw_idr.html
ext-mpamcfg_intpartid.html
ext-mpamf_partid_nrw_idr.html
ext-mpamcfg_intpartid.html
ext-mpamf_msmon_idr.html
ext-mpamf_msmon_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html

HAS_PRI_PART, bit [27]

Has Priority Partitioning. Indicates whether this MSC implements MPAM priority partitioning and
MPAMF_PRI_IDR.

HAS_PRI_PART Meaning
0b0 Does not support priority partitioning or have

MPAMF_PRI_IDR.
0b1 Has MPAMF_PRI_IDR.

HAS_MBW_PART, bit [26]

Has Memory Bandwidth Partitioning. Indicates whether this MSC implements MPAM memory bandwidth
partitioning and MPAMF_MBW_IDR.

HAS_MBW_PART Meaning
0b0 Does not support memory bandwidth partitioning

or have MPAMF_MBW_IDR register.
0b1 Has MPAMF_MBW_IDR register.

HAS_CPOR_PART, bit [25]

Has Cache Portion Partitioning. Indicates whether this MSC implements MPAM cache portion partitioning and
MPAMF_CPOR_IDR.

HAS_CPOR_PART Meaning
0b0 Does not support cache portion partitioning or

have MPAMF_CPOR_IDR or
MPAMCFG_CPBM<n> registers.

0b1 Has MPAMF_CPOR_IDR and
MPAMCFG_CPBM<n> registers.

HAS_CCAP_PART, bit [24]

Has Cache Capacity Partitioning. Indicates whether this MSC implements MPAM cache capacity partitioning and
the MPAMF_CCAP_IDR and MPAMCFG_CMAX registers.

HAS_CCAP_PART Meaning
0b0 Does not support cache capacity partitioning or

have MPAMF_CCAP_IDR and MPAMCFG_CMAX
registers.

0b1 Has MPAMF_CCAP_IDR and MPAMCFG_CMAX
registers.

PMG_MAX, bits [23:16]

Maximum supported value of PMG.

The value of this field is permitted to vary between the instances of MPAMF_IDRMPAM_IDR, each reporting the
maximum supported PMG value in the PARTID space associated with that instance.

In MPAMF_IDR_s this field is permitted to report the maximum PMG value for the Non-secure PARTID space or for
the Secure PARTID space. The maximum PMG value for the Secure PARTID space can be read from
MPAMF_SIDR.PMG_MAX.

PARTID_MAX, bits [15:0]

Maximum supported value of PARTID.

The value of this field is permitted to vary between the instances of MPAMF_IDRMPAM_IDR, each reporting the
maximum supported PARTID value in the PARTID space associated with that instance.

MPAMF_IDR, MPAM Features Identification Register

Page 942

ext-mpamf_pri_idr.html
ext-mpamf_pri_idr.html
ext-mpamf_pri_idr.html
ext-mpamf_mbw_idr.html
ext-mpamf_mbw_idr.html
ext-mpamf_cpor_idr.html
ext-mpamf_cpor_idr.html
ext-mpamcfg_cpbmn.html
ext-mpamf_cpor_idr.html
ext-mpamcfg_cpbmn.html
ext-mpamf_ccap_idr.html
ext-mpamcfg_cmax.html
ext-mpamf_ccap_idr.html
ext-mpamcfg_cmax.html
ext-mpam_idr.html
ext-mpamf_sidr.html
ext-mpam_idr.html

In MPAMF_IDR_s this field is permitted to report the maximum PARTID value for the Non-secure PARTID space or
for the Secure PARTID space. The maximum PARTID value for the Secure PARTID space can be read from
MPAMF_SIDR.PARTID_MAX.

Accessing MPAMF_IDR
This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_IDR is read-only.

MPAMF_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and Realm MPAM
feature pages unless the register contents are different for the different versions:

• MPAMF_IDR_s is permitted to have either the same or different contents to MPAMF_IDR_ns, MPAMF_IDR_rt,
or MPAMF_IDR_rl.

• MPAMF_IDR_ns is permitted to have either the same or different contents to MPAMF_IDR_rt or
MPAMF_IDR_rl.

• MPAMF_IDR_rt is permitted to have either the same or different contents to MPAMF_IDR_rl.

There must be separate registers in the Secure (MPAMF_IDR_s), Non-secure (MPAMF_IDR_ns), Root (MPAMF_IDR_rt),
and Realm (MPAMF_IDR_rl) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_IDR shows the configuration of MSC MPAM for the resource instance
selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field descriptions have values that track the
implemented properties of the resource instance. Fields that do not mention RIS are constant across all resource
instances.

MPAMF_IDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0000 MPAMF_IDR_s

Accesses to this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0000 MPAMF_IDR_ns

Accesses to this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0000 MPAMF_IDR_rt

When FEAT_RME is implemented, accesses to this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0000 MPAMF_IDR_rl

When FEAT_RME is implemented, accesses to this interface are RO.

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMF_IDR, MPAM Features Identification Register

Page 943

ext-mpamf_sidr.html
ext-mpamcfg_part_sel.html

(old) htmldiff from- (new)

PMCR_EL0, Performance Monitors Control Register
The PMCR_EL0 characteristics are:

Purpose
Provides details of the Performance Monitors implementation, including the number of counters implemented, and
configures and controls the counters.

Configuration
External register PMCR_EL0 bits [7:0] are architecturally mapped to AArch32 System register PMCR[7:0].

External register PMCR_EL0 bits [7:0] are architecturally mapped to AArch64 System register PMCR_EL0[7:0].

PMCR_EL0 is in the Core power domain.

This register is only partially mapped to the internal PMCR System register. An external agent must use other means
to discover the information held in PMCR[31:11], such as accessing PMCFGR and the ID registers.

Attributes
PMCR_EL0 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RAZ/WI RES0FZORES0 LP LC DP X D C P E

Bits [31:11]

Reserved, RAZ/WI.

Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as zero, and must
use a read-modify-write sequence to write to the register.

Bit [10]

Reserved, RES0.

FZO, bit [9]
When FEAT_PMUv3p7 is implemented:

Freeze-on-overflow. Stop event counters on overflow.

In the description of this field:

• If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, PMN is PMCR_EL0.N.

PMCR_EL0, Performance Monitors Control Register

Page 944

AArch32-pmcr.html
AArch32-pmcr.html
AArch32-pmcr.html
ext-pmcfgr.html
AArch64-mdcr_el2.html

FZO Meaning
0b0 Do not freeze on overflow.
0b1 Event counter PMEVCNTR<n>_EL0 does not count when

PMOVSCLR_EL0[(PMN-1):0] is nonzero and n is in the range of
affected event counters.

If PMN is not 0, this field affects the operation of event counters in the range [0 .. (PMN-1)].

This field does not affect the operation of other event counters and PMCCNTR_EL0.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [8]

Reserved, RES0.

LP, bit [7]
When FEAT_PMUv3p5 is implemented:

Long event counter enable. Determines when unsigned overflow is recorded by an event counter overflow bit.

In the description of this field:

• If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, PMN is PMCR_EL0.N.

LP Meaning
0b0 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[31:0].
0b1 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[63:0].

If PMN is not 0, this bit affects the operation of event counters in the range [0 .. (PMN-1)].

The field does not affect the operation of other event counters and PMCCNTR_EL0.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LC, bit [6]
When AArch32 is supported:

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter overflow bit.

PMCR_EL0, Performance Monitors Control Register

Page 945

ext-pmevcntrn_el0.html
AArch64-pmovsclr_el0.html
ext-pmccntr_el0.html
AArch64-mdcr_el2.html
ext-pmevcntrn_el0.html
ext-pmevcntrn_el0.html
ext-pmccntr_el0.html

LC Meaning
0b0 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR_EL0[31:0].
0b1 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR_EL0[63:0].

Arm deprecates use of PMCR_EL0.LC = 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

DP, bit [5]
When EL3 is implemented or (FEAT_PMUv3p1 is implemented and EL2 is implemented):

Disable cycle counter when event counting is prohibited. The possible values of this bit are:

DP Meaning
0b0 Cycle counting by PMCCNTR_EL0 is not affected by this

mechanism.
0b1 Cycle counting by PMCCNTR_EL0 is disabled in prohibited

regions and when event counting is frozen:
• If FEAT_PMUv3p1 is implemented, EL2 is implemented,

and MDCR_EL2.HPMD is 1, then cycle counting by
PMCCNTR_EL0 is disabled at EL2.

• If FEAT_PMUv3p7 is implemented, EL3 is implemented
and using AArch64, and MDCR_EL3.MPMX is 1, then cycle
counting by PMCCNTR_EL0 is disabled at EL3.

• If FEAT_PMUv3p7 is implemented and event counting is
frozen by PMCR_EL0.FZO, then cycle counting by
PMCCNTR_EL0PMCCNTR is disabled.

• If EL3 is implemented, MDCR_EL3.SPME is 0, and either
FEAT_PMUv3p7 is not implemented or MDCR_EL3.MPMX
is 0, then cycle counting by PMCCNTR_EL0 is disabled at
EL3 and in Secure state.

If MDCR_EL2.HPMN is not 0, this is when event counting by
event counters in the range [0..(MDCR_EL2.HPMN-1)] is
prohibited or frozen.

For more information, see 'Prohibiting event and cycle counting'.

The reset behavior of this field is:

• On a Warm reset:
◦ When the implementation only supports execution in AArch32 state, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

X, bit [4]
When the implementation includes a PMU event export bus:

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

X Meaning
0b0 Do not export events.
0b1 Export events where not prohibited.

PMCR_EL0, Performance Monitors Control Register

Page 946

ext-pmccntr_el0.html
ext-pmccntr_el0.html
ext-pmccntr_el0.html
ext-pmccntr_el0.html
AArch64-mdcr_el2.html
ext-pmccntr_el0.html
AArch64-mdcr_el3.html
ext-pmccntr_el0.html
ext-pmccntr_el0.html
AArch64-pmccntr.html
AArch64-mdcr_el3.html
AArch64-mdcr_el3.html
ext-pmccntr_el0.html
AArch64-mdcr_el2.html
AArch64-mdcr_el2.html

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus to another
device, for example to an OPTIONAL trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or signaling to a
cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field it resets
to:

• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using AArch64.
• 0 if the reset is into an Exception level that is using AArch32.

Otherwise:

Reserved, RAZ/WI.

D, bit [3]
When AArch32 is supported:

Clock divider.

D Meaning
0b0 When enabled, PMCCNTR_EL0 counts every clock cycle.
0b1 When enabled, PMCCNTR_EL0 counts once every 64 clock

cycles.

If PMCR_EL0.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR_EL0.D = 1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field it resets
to:

• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using AArch64.
• 0 if the reset is into an Exception level that is using AArch32.

Otherwise:

Reserved, RES0.

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

C Meaning
0b0 No action.
0b1 Reset PMCCNTR_EL0 to zero.

Note

Resetting PMCCNTR_EL0 does not change the cycle counter overflow bit. If
FEAT_PMUv3p5 is implemented, the value of PMCR_EL0.LC is ignored, and
bits [63:0] of the cycle counter are reset.

Access to this field is WO/RAZ.

P, bit [1]

Event counter reset. The effects of writing to this bit are:

PMCR_EL0, Performance Monitors Control Register

Page 947

ext-pmccntr_el0.html
ext-pmccntr_el0.html
ext-pmccntr_el0.html
ext-pmccntr_el0.html

P Meaning
0b0 No action.
0b1 Reset all event counters, not including PMCCNTR_EL0, to zero.

Note

Resetting the event counters does not change the event counter overflow
bits. If FEAT_PMUv3p5 is implemented, the value of MDCR_EL2.HLP, or
PMCR_EL0.LP is ignored and bits [63:0] of all affected event counters are
reset.

Access to this field is WO/RAZ.

E, bit [0]

Enable.

In the description of this field:

• If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, PMN is PMCR_EL0.N.

E Meaning
0b0 PMCCNTR_EL0 is disabled and event counters

PMEVCNTR<n>_EL0, where n is in the range of affected event
counters, are disabled.

0b1 PMCCNTR_EL0 and event counters PMEVCNTR<n>_EL0,
where n is in the range of affected event counters, are enabled
by PMCNTENSET_EL0.

If PMN is not 0, this field affects the operation of event counters in the range [0 .. (PMN-1)].

This field does not affect the operation of other event counters.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PMCR_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMCR_EL0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xE04 PMCR_EL0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus(), accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus(), accesses to this register are RW.

• Otherwise, accesses to this register generate an error response.

PMCR_EL0, Performance Monitors Control Register

Page 948

ext-pmccntr_el0.html
AArch64-mdcr_el2.html
AArch64-mdcr_el2.html
ext-pmccntr_el0.html
ext-pmevcntrn_el0.html
ext-pmccntr_el0.html
ext-pmevcntrn_el0.html
ext-pmcntenset_el0.html

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCR_EL0, Performance Monitors Control Register

Page 949

(old) htmldiff from- (new)

PMPCSR, Program Counter Sample Register
The PMPCSR characteristics are:

Purpose
Holds a sampled instruction address value.

Configuration
PMPCSR is in the Core power domain.

This register is present only when FEAT_PCSRv8p2 is implemented. Otherwise, direct accesses to PMPCSR are RES0.

Note

Before Armv8.2, the PC Sample-based Profiling Extension can be implemented
in the external debug register space, as indicated by the value of
EDDEVID.PCSample.

Support for 64-bit atomic reads is IMPLEMENTATION DEFINED. If 64-bit atomic reads are implemented, a 64-bit read of
PMPCSR has the same side-effect as a 32-bit read of PMCSR[31:0] followed by a 32-bit read of PMPCSR[63:32],
returning the combined value. For example, if the PE is in Debug state then a 64-bit atomic read returns bits[31:0] ==
0xFFFFFFFF and bits[63:32] UNKNOWN.

Attributes
PMPCSR is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS EL T NSE RES0 PCSample[55:32]

PCSample[31:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]
When FEAT_RME is implemented:

Together with the NSE field, indicates the Security state that is associated with the most recent PMPCSR sample
or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

NSE NS Meaning
0b0 0b0 Secure.
0b0 0b1 Non-secure.
0b1 0b0 Root.
0b1 0b1 Realm.

Otherwise:

Non-secure state sample. Indicates the Security state that is associated with the most recent PMPCSR sample or,
when it is read as a single atomic 64-bit read, the current PMPCSR sample.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

PMPCSR, Program Counter Sample Register

Page 950

ext-eddevid.html

NS Meaning
0b0 Sample is from Secure state.
0b1 Sample is from Non-secure state.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

EL, bits [62:61]

Exception level status sample. Indicates the Exception level that is associated with the most recent PMPCSR
sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

EL Meaning
0b00 Sample is from EL0.
0b01 Sample is from EL1.
0b10 Sample is from EL2.
0b11 Sample is from EL3.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

T, bit [60]
When FEAT_TME is implemented:

Transactional state of the sample. Indicates the Transactional state that is associated with the most recent
PMPCSR sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

T Meaning
0b0 Sample is from Non-transactional state.
0b1 Sample is from Transactional state.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSE, bit [59]
When FEAT_RME is implemented:

Together with the NS field, indicates the Security state that is associated with the most recent PMPCSR sample or,
when it is read as a single atomic 64-bit read, the current PMPCSR sample.

For a description of the values derived by evaluating NS and NSE together, see PMPCSR.NS.

Otherwise:

Reserved, RES0.

Bits [58:56]

Reserved, RES0.

PMPCSR, Program Counter Sample Register

Page 951

PCSample[55:32], bits [55:32]

Bits[55:32] of the sampled instruction address value. The translation regime that PMPCSR samples can be
determined from PMPCSR.{NS,EL}.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

PCSample[31:0], bits [31:0]

Bits[31:0] of the sampled instruction address value.

PMPCSR[31:0] reads as 0xFFFFFFFF when any of the following are true:

• The PE is in Debug state.
• PC Sample-based profiling is prohibited.

If a branch instruction has retired since the PE left reset state, then the first read of PMPCSR[31:0] is permitted
but not required to return 0xFFFFFFFF.

PMPCSR[31:0] reads as an UNKNOWN value when any of the following are true:

• The PE is in reset state.
• No branch instruction has retired since the PE left reset state, Debug state, or a state where PC Sample-

based Profiling is prohibited.
• No branch instruction has retired since the last read of PMPCSR[31:0].

For the cases where a read of PMPCSR[31:0] returns 0xFFFFFFFF or an UNKNOWN value, the read has the side-
effect of setting PMPCSR[63:32], PMCID1SR, PMCID2SR, and PMVIDSR to UNKNOWN values.

Otherwise, a read of PMPCSR[31:0] returns bits [31:0] of the sampled instruction address value and has the side-
effect of indirectly writing to PMPCSR[63:32], PMCID1SR, PMCID2SR, and PMVIDSR. The translation regime that
PMPCSR samples can be determined from PMPCSR.{NS,EL}.

For a read of PMPCSR[31:0] from the memory-mapped interface, if PMLSR.SLK == 1, meaning the OPTIONAL
Software Lock is locked, then the side-effect of the access does not occur and PMPCSR[63:32], PMCID1SR,
PMCID2SR, and PMVIDSR are unchanged.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing PMPCSR
IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see 'Permitted
behavior that might make the PC Sample-based profiling registers UNKNOWN'.

Note

A 32-bit access to PMPCSR[63:32] does not update the PC sample registers.
Only a 64-bit access to PMPCSR[63:0] or a 32-bit access to PMPCSR[31:0]
updates the PC sample registers. This includes the value a subsequent 32-bit
read of PMPCSR[63:32] will return.

PMPCSR can be accessed through the external debug interface:

Component Offset Instance Range
PMU 0x200 PMPCSR 31:0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus(), accesses to this register are RO.
• Otherwise, accesses to this register generate an error response.

PMPCSR, Program Counter Sample Register

Page 952

ext-pmcid1sr.html
ext-pmcid2sr.html
ext-pmvidsr.html
ext-pmcid1sr.html
ext-pmcid2sr.html
ext-pmvidsr.html
ext-pmcid1sr.html
ext-pmcid2sr.html
ext-pmvidsr.html

Component Offset Instance Range
PMU 0x204 PMPCSR 63:32

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus(), accesses to this register are RO.
• Otherwise, accesses to this register generate an error response.

Component Offset Instance Range
PMU 0x220 PMPCSR 31:0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus(), accesses to this register are RO.
• Otherwise, accesses to this register generate an error response.

Component Offset Instance Range
PMU 0x224 PMPCSR 63:32

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus(), accesses to this register are RO.
• Otherwise, accesses to this register generate an error response.

3021/03/2022 2017:2801; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMPCSR, Program Counter Sample Register

Page 953

(old) htmldiff from- (new)

TRCRSCTLR<n>, Resource Selection Control Register
<n>, n = 2 - 31

The TRCRSCTLR<n> characteristics are:

Purpose
Controls the selection of the resources in the trace unit.

Configuration
External register TRCRSCTLR<n> bits [31:0] are architecturally mapped to AArch64 System register
TRCRSCTLR<n>[31:0].

This register is present only when FEAT_ETE is implemented and (UInt(TRCIDR4.NUMRSPAIR) + 1) * 2 > n.
Otherwise, direct accesses to TRCRSCTLR<n> are RES0.

Resource selector 0 always returns FALSE.

Resource selector 1 always returns TRUE.

Resource selectors are implemented in pairs. Each odd numbered resource selector is part of a pair with the even
numbered resource selector that is numbered as one less than it. For example, resource selectors 2 and 3 form a pair.

Attributes
TRCRSCTLR<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 PAIRINVINV GROUP SELECT

Bits [31:22]

Reserved, RES0.

PAIRINV, bit [21]
When n MODis 2 == 0even:

Controls whether the combined result from a resource selector pair is inverted.

PAIRINV Meaning
0b0 Do not invert the combined output of the 2 resource

selectors.
0b1 Invert the combined output of the 2 resource selectors.

If:

• A is the register TRCRSCTLR<n>.
• B is the register TRCRSCTLR<n+1>.

Then the combined output of the 2 resource selectors A and B depends on the value of (A.PAIRINV, A.INV, B.INV)
as follows:

• 0b000 -> A and B.

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 954

• 0b001 -> Reserved.
• 0b010 -> not(A) and B.
• 0b011 -> not(A) and not(B).
• 0b100 -> not(A) or not(B).
• 0b101 -> not(A) or B.
• 0b110 -> Reserved.
• 0b111 -> A or B.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

INV, bit [20]

Controls whether the resource, that TRCRSCTLR<n>.GROUP and TRCRSCTLR<n>.SELECT selects, is inverted.

INV Meaning
0b0 Do not invert the output of this selector.
0b1 Invert the output of this selector.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

GROUP, bits [19:16]

Selects a group of resources.

GROUP Meaning SELECT
0b0000 External Input

Selectors.
SELECT encoding for External
Input Selectors

0b0001 PE Comparator
Inputs.

SELECT encoding for PE
Comparator Inputs

0b0010 Counters and
Sequencer.

SELECT encoding for Counters
and Sequencer

0b0011 Single-shot
Comparator
Controls.

SELECT encoding for Single-shot
Comparator Controls

0b0100 Single Address
Comparators.

SELECT encoding for Single
Address Comparators

0b0101 Address Range
Comparators.

SELECT encoding for Address
Range Comparators

0b0110 Context Identifier
Comparators.

SELECT encoding for Context
Identifier Comparators

0b0111 Virtual Context
Identifier
Comparators.

SELECT encoding for Virtual
Context Identifier Comparators

All other values are reserved.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT, bits [15:0]

Resource Specific Controls. Contains the controls specific to the resource group selected by GROUP, described in
the following sections.

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 955

SELECT encoding for External Input Selectors
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 EXTIN[3]EXTIN[2]EXTIN[1]EXTIN[0]

Bits [15:4]

Reserved, RES0.

EXTIN[<m>], bit [m], for m = 3 to 0

Selects one or more External Inputs.

EXTIN[<m>] Meaning
0b0 Ignore EXTIN <m>.
0b1 Select EXTIN <m>.

This bit is RES0 if m >= TRCIDR5.NUMEXTINSEL.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for PE Comparator Inputs
15141312111098 7 6 5 4 3 2 1 0

RES0 PECOMP[7]PECOMP[6]PECOMP[5]PECOMP[4]PECOMP[3]PECOMP[2]PECOMP[1]PECOMP[0]

Bits [15:8]

Reserved, RES0.

PECOMP[<m>], bit [m], for m = 7 to 0

Selects one or more PE Comparator Inputs.

PECOMP[<m>] Meaning
0b0 Ignore PE Comparator Input <m>.
0b1 Select PE Comparator Input <m>.

This bit is RES0 if m >= TRCIDR4.NUMPC.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Counters and Sequencer
15141312111098 7 6 5 4 3 2 1 0

RES0 SEQUENCER[3]SEQUENCER[2]SEQUENCER[1]SEQUENCER[0]COUNTERS[3]COUNTERS[2]COUNTERS[1]COUNTERS[0]

Bits [15:8]

Reserved, RES0.

SEQUENCER[<m>], bit [m+4], for m = 3 to 0

Sequencer states.

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 956

ext-trcidr5.html
ext-trcidr4.html

SEQUENCER[<m>] Meaning
0b0 Ignore Sequencer state <m>.
0b1 Select Sequencer state <m>.

This bit is RES0 if m >= TRCIDR5.NUMSEQSTATE.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

COUNTERS[<m>], bit [m], for m = 3 to 0

Counters resources at zero.

COUNTERS[<m>] Meaning
0b0 Ignore Counter <m>.
0b1 Select Counter <m> is zero.

This bit is RES0 if m >= TRCIDR5.NUMCNTR.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Single-shot Comparator Controls
15141312111098 7 6 5 4 3 2 1 0

RES0 SINGLE_SHOT[7]SINGLE_SHOT[6]SINGLE_SHOT[5]SINGLE_SHOT[4]SINGLE_SHOT[3]SINGLE_SHOT[2]SINGLE_SHOT[1]SINGLE_SHOT[0]

Bits [15:8]

Reserved, RES0.

SINGLE_SHOT[<m>], bit [m], for m = 7 to 0

Selects one or more Single-shot Comparator Controls.

SINGLE_SHOT[<m>] Meaning
0b0 Ignore Single-shot Comparator

Control <m>.
0b1 Select Single-shot Comparator

Control <m>.

This bit is RES0 if m >= TRCIDR4.NUMSSCC.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Single Address Comparators
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SAC[15]SAC[14]SAC[13]SAC[12]SAC[11]SAC[10]SAC[9]SAC[8]SAC[7]SAC[6]SAC[5]SAC[4]SAC[3]SAC[2]SAC[1]SAC[0]

SAC[<m>], bit [m], for m = 15 to 0

Selects one or more Single Address Comparators.

SAC[<m>] Meaning
0b0 Ignore Single Address Comparator <m>.
0b1 Select Single Address Comparator <m>.

This bit is RES0 if m >= 2 × TRCIDR4.NUMACPAIRS.

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 957

ext-trcidr5.html
ext-trcidr5.html
ext-trcidr4.html
ext-trcidr4.html

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Address Range Comparators
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 ARC[7]ARC[6]ARC[5]ARC[4]ARC[3]ARC[2]ARC[1]ARC[0]

Bits [15:8]

Reserved, RES0.

ARC[<m>], bit [m], for m = 7 to 0

Selects one or more Address Range Comparators.

ARC[<m>] Meaning
0b0 Ignore Address Range Comparator <m>.
0b1 Select Address Range Comparator <m>.

This bit is RES0 if m >= TRCIDR4.NUMACPAIRS.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Context Identifier Comparators
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 CID[7]CID[6]CID[5]CID[4]CID[3]CID[2]CID[1]CID[0]

Bits [15:8]

Reserved, RES0.

CID[<m>], bit [m], for m = 7 to 0

Selects one or more Context Identifier Comparators.

CID[<m>] Meaning
0b0 Ignore Context Identifier Comparator <m>.
0b1 Select Context Identifier Comparator <m>.

This bit is RES0 if m >= TRCIDR4.NUMCIDC.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Virtual Context Identifier Comparators
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 VMID[7]VMID[6]VMID[5]VMID[4]VMID[3]VMID[2]VMID[1]VMID[0]

Bits [15:8]

Reserved, RES0.

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 958

ext-trcidr4.html
ext-trcidr4.html

VMID[<m>], bit [m], for m = 7 to 0

Selects one or more Virtual Context Identifier Comparators.

VMID[<m>] Meaning
0b0 Ignore Virtual Context Identifier Comparator

<m>.
0b1 Select Virtual Context Identifier Comparator

<m>.

This bit is RES0 if m >= TRCIDR4.NUMVMIDC.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing TRCRSCTLR<n>
Must be programmed if any of the following are true:

• TRCCNTCTLR<a>.RLDEVENT.TYPE == 0 and TRCCNTCTLR<a>.RLDEVENT.SEL == n.
• TRCCNTCTLR<a>.RLDEVENT.TYPE == 1 and TRCCNTCTLR<a>.RLDEVENT.SEL == n/2.
• TRCCNTCTLR<a>.CNTEVENT.TYPE == 0 and TRCCNTCTLR<a>.CNTEVENT.SEL == n.
• TRCCNTCTLR<a>.CNTEVENT.TYPE == 1 and TRCCNTCTLR<a>.CNTEVENT.SEL == n/2.
• TRCEVENTCTL0R.EVENT0.TYPE == 0 and TRCEVENTCTL0R.EVENT0.SEL == n.
• TRCEVENTCTL0R.EVENT0.TYPE == 1 and TRCEVENTCTL0R.EVENT0.SEL == n/2.
• TRCEVENTCTL0R.EVENT1.TYPE == 0 and TRCEVENTCTL0R.EVENT1.SEL == n.
• TRCEVENTCTL0R.EVENT1.TYPE == 1 and TRCEVENTCTL0R.EVENT1.SEL == n/2.
• TRCEVENTCTL0R.EVENT2.TYPE == 0 and TRCEVENTCTL0R.EVENT2.SEL == n.
• TRCEVENTCTL0R.EVENT2.TYPE == 1 and TRCEVENTCTL0R.EVENT2.SEL == n/2.
• TRCEVENTCTL0R.EVENT3.TYPE == 0 and TRCEVENTCTL0R.EVENT3.SEL == n.
• TRCEVENTCTL0R.EVENT3.TYPE == 1 and TRCEVENTCTL0R.EVENT3.SEL == n/2.
• TRCSEQEVR<a>.B.TYPE == 0 and TRCSEQEVR<a>.B.SEL = n.
• TRCSEQEVR<a>.B.TYPE == 1 and TRCSEQEVR<a>.B.SEL = n/2.
• TRCSEQEVR<a>.F.TYPE == 0 and TRCSEQEVR<a>.F.SEL = n.
• TRCSEQEVR<a>.F.TYPE == 1 and TRCSEQEVR<a>.F.SEL = n/2.
• TRCSEQRSTEVR.RST.TYPE == 0 and TRCSEQRSTEVR.RST.SEL == n.
• TRCSEQRSTEVR.RST.TYPE == 1 and TRCSEQRSTEVR.RST.SEL == n/2.
• TRCTSCTLR.EVENT.TYPE == 0 and TRCTSCTLR.EVENT.SEL == n.
• TRCTSCTLR.EVENT.TYPE == 1 and TRCTSCTLR.EVENT.SEL == n/2.
• TRCVICTLR.EVENT.TYPE == 0 and TRCVICTLR.EVENT.SEL == n.
• TRCVICTLR.EVENT.TYPE == 1 and TRCVICTLR.EVENT.SEL == n/2.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCRSCTLR<n> can be accessed through the external debug interface:

Component Offset Instance
ETE 0x200 + (4 * n) TRCRSCTLR<n>

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered(), accesses to this register
generate an error response.

• Otherwise, accesses to this register are RW.

3021/03/2022 2017:2901; e344038e0763eca303ad46aebdccfd32fa23654b3e5b5dc965b4baee9b0e6c74839475369ac387af

Copyright © 2010-20222010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 959

ext-trcidr4.html
ext-trccntctlrn.html
ext-trccntctlrn.html
ext-trccntctlrn.html
ext-trccntctlrn.html
ext-trccntctlrn.html
ext-trccntctlrn.html
ext-trccntctlrn.html
ext-trccntctlrn.html
ext-trceventctl0r.html
ext-trceventctl0r.html
ext-trceventctl0r.html
ext-trceventctl0r.html
ext-trceventctl0r.html
ext-trceventctl0r.html
ext-trceventctl0r.html
ext-trceventctl0r.html
ext-trceventctl0r.html
ext-trceventctl0r.html
ext-trceventctl0r.html
ext-trceventctl0r.html
ext-trceventctl0r.html
ext-trceventctl0r.html
ext-trceventctl0r.html
ext-trceventctl0r.html
ext-trcseqevrn.html
ext-trcseqevrn.html
ext-trcseqevrn.html
ext-trcseqevrn.html
ext-trcseqevrn.html
ext-trcseqevrn.html
ext-trcseqevrn.html
ext-trcseqevrn.html
ext-trcseqrstevr.html
ext-trcseqrstevr.html
ext-trcseqrstevr.html
ext-trcseqrstevr.html
ext-trctsctlr.html
ext-trctsctlr.html
ext-trctsctlr.html
ext-trctsctlr.html
ext-trcvictlr.html
ext-trcvictlr.html
ext-trcvictlr.html
ext-trcvictlr.html

	Proprietary Notice
	AArch64 System Registers
	AArch64 System Instructions
	CCSIDR_EL1, Current Cache Size ID Register
	CLIDR_EL1, Cache Level ID Register
	CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)
	CNTHPS_CVAL_EL2, Counter-timer Secure Physical Timer CompareValue register (EL2)
	CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)
	CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)
	CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register (EL2)
	CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)
	CPP RCTX, Cache Prefetch Prediction Restriction by Context
	CurrentEL, Current Exception Level
	DIT, Data Independent Timing
	ESR_EL1, Exception Syndrome Register (EL1)
	SF, bit [0] of bit [15]
	FnP, bit [0] of bit [15]
	SET, bits [1:0] of bits [12:11]
	LST, bits [1:0] of bits [12:11]
	SET, bits [1:0] of bits [12:11]

	ESR_EL2, Exception Syndrome Register (EL2)
	SF, bit [0] of bit [15]
	FnP, bit [0] of bit [15]
	SET, bits [1:0] of bits [12:11]
	LST, bits [1:0] of bits [12:11]
	SET, bits [1:0] of bits [12:11]

	ESR_EL3, Exception Syndrome Register (EL3)
	SF, bit [0] of bit [15]
	FnP, bit [0] of bit [15]
	SET, bits [1:0] of bits [12:11]
	LST, bits [1:0] of bits [12:11]
	SET, bits [1:0] of bits [12:11]

	FAR_EL1, Fault Address Register (EL1)
	FAR_EL2, Fault Address Register (EL2)
	FAR_EL3, Fault Address Register (EL3)
	FPCR, Floating-point Control Register
	FPEXC32_EL2, Floating-Point Exception Control register
	HCR_EL2, Hypervisor Configuration Register
	TPCP, bit [0] of bit [23]
	TPC, bit [0] of bit [23]

	HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register
	HPFAR_EL2, Hypervisor IPA Fault Address Register
	ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0
	ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0
	ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1
	ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0
	ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1
	ID_AA64SMFR0_EL1, SME Feature ID register 0
	ID_AA64ZFR0_EL1, SVE Feature ID register 0
	ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4
	ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5
	PMBSR_EL1, Profiling Buffer Status/syndrome Register
	PMCR_EL0, Performance Monitors Control Register
	SCR_EL3, Secure Configuration Register
	SCTLR_EL1, System Control Register (EL1)
	SCTLR_EL2, System Control Register (EL2)
	SDER32_EL2, AArch32 Secure Debug Enable Register
	SDER32_EL3, AArch32 Secure Debug Enable Register
	SPSR_abt, Saved Program Status Register (Abort mode)
	SPSR_fiq, Saved Program Status Register (FIQ mode)
	SPSR_irq, Saved Program Status Register (IRQ mode)
	SPSR_und, Saved Program Status Register (Undefined mode)
	SVCR, Streaming Vector Control Register
	TLBI ALLE2, TLBI ALLE2NXS, TLB Invalidate All, EL2
	TLBI ALLE2IS, TLBI ALLE2ISNXS, TLB Invalidate All, EL2, Inner Shareable
	TLBI ALLE2OS, TLBI ALLE2OSNXS, TLB Invalidate All, EL2, Outer Shareable
	TLBI RIPAS2E1, TLBI RIPAS2E1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1
	TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable
	TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable
	TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1
	TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable
	TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable
	TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1
	TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable
	TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable
	TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last level, EL1
	TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable
	TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable
	TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by VA, EL1
	TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner Shareable
	TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer Shareable
	TLBI RVAE2, TLBI RVAE2NXS, TLB Range Invalidate by VA, EL2
	TLBI RVAE2IS, TLBI RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner Shareable
	TLBI RVAE2OS, TLBI RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer Shareable
	TLBI RVAE3, TLBI RVAE3NXS, TLB Range Invalidate by VA, EL3
	TLBI RVAE3IS, TLBI RVAE3ISNXS, TLB Range Invalidate by VA, EL3, Inner Shareable
	TLBI RVAE3OS, TLBI RVAE3OSNXS, TLB Range Invalidate by VA, EL3, Outer Shareable
	TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1
	TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable
	TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable
	TLBI RVALE2, TLBI RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2
	TLBI RVALE2IS, TLBI RVALE2ISNXS, TLB Range Invalidate by VA, Last level, EL2, Inner Shareable
	TLBI RVALE2OS, TLBI RVALE2OSNXS, TLB Range Invalidate by VA, Last level, EL2, Outer Shareable
	TLBI RVALE3, TLBI RVALE3NXS, TLB Range Invalidate by VA, Last level, EL3
	TLBI RVALE3IS, TLBI RVALE3ISNXS, TLB Range Invalidate by VA, Last level, EL3, Inner Shareable
	TLBI RVALE3OS, TLBI RVALE3OSNXS, TLB Range Invalidate by VA, Last level, EL3, Outer Shareable
	TRBSR_EL1, Trace Buffer Status/syndrome Register
	TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31
	VSTCR_EL2, Virtualization Secure Translation Control Register
	VSTTBR_EL2, Virtualization Secure Translation Table Base Register

	AArch32 System Registers
	AArch32 System Instructions
	CCSIDR, Current Cache Size ID Register
	CLIDR, Cache Level ID Register
	CNTHP_CTL, Counter-timer Hyp Physical Timer Control register
	CPACR, Architectural Feature Access Control Register
	CPPRCTX, Cache Prefetch Prediction Restriction by Context
	FPEXC, Floating-Point Exception Control register
	HCPTR, Hyp Architectural Feature Trap Register
	HCR, Hyp Configuration Register
	HCR2, Hyp Configuration Register 2
	HDCR, Hyp Debug Control Register
	HSR, Hyp Syndrome Register
	AET, bits [1:0] of bits [11:10]
	Bit [1] of bits [11:10]
	FnV, bit [0] of bits [11:10]

	HSTR, Hyp System Trap Register
	HTRFCR, Hyp Trace Filter Control Register
	ID_MMFR4, Memory Model Feature Register 4
	ID_MMFR5, Memory Model Feature Register 5
	SDER, Secure Debug Enable Register
	VMPIDR, Virtualization Multiprocessor ID Register
	VPIDR, Virtualization Processor ID Register
	VTTBR, Virtualization Translation Table Base Register

	System Register index by instruction and encoding
	System Register index by functional group
	External registers
	External register index by offset
	CTIDEVID, CTI Device ID register 0
	CTIINEN<n>, CTI Input Trigger to Output Channel Enable registers, n = 0 - 31
	CTIINTACK, CTI Output Trigger Acknowledge register
	CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable registers, n = 0 - 31
	EDECCR, External Debug Exception Catch Control Register
	EDHSR, External Debug Halt Status Register
	EDSCR, External Debug Status and Control Register
	ERR<n>PFGCTL, Error Record <n> Pseudo-fault Generation Control Register, n = 0 - 65534
	GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register
	GITS_CTLR, ITS Control Register
	MPAMF_IDR, MPAM Features Identification Register
	PMCR_EL0, Performance Monitors Control Register
	PMPCSR, Program Counter Sample Register
	TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

