
Arm® Architecture Registers
Future Architecture Technologies in the A architecture

profile
Beta
Copyright © 2018-2019 Arm Limited (or its affiliates). All rights reserved.
DDI 0601 (ID121019)

Arm® Architecture Registers
Future Architecture Technologies in the A architecture profile

Copyright © 2018-2019 Arm Limited (or its affiliates). All rights reserved.

Release Information

For information on the change history and known issues for this release, see the Release notes in the System Register XML for
the Future Architecture Technologies (201912)

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that
if there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. You must follow the Arm’s trademark usage guidelines
http://www.arm.com/company/policies/trademarks.

Copyright © 2018-2019 Arm Limited (or its affiliates). All rights reserved.
Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is for a Beta product, that is a product under development.

Web Address

http://www.arm.com
ii Copyright © 2018-2019 Arm Limited (or its affiliates). All rights reserved. DDI 0601
Non-Confidential - Beta ID121019

AArch64 System Registers
ACTLR_EL1: Auxiliary Control Register (EL1)

ACTLR_EL2: Auxiliary Control Register (EL2)

ACTLR_EL3: Auxiliary Control Register (EL3)

AFSR0_EL1: Auxiliary Fault Status Register 0 (EL1)

AFSR0_EL2: Auxiliary Fault Status Register 0 (EL2)

AFSR0_EL3: Auxiliary Fault Status Register 0 (EL3)

AFSR1_EL1: Auxiliary Fault Status Register 1 (EL1)

AFSR1_EL2: Auxiliary Fault Status Register 1 (EL2)

AFSR1_EL3: Auxiliary Fault Status Register 1 (EL3)

AIDR_EL1: Auxiliary ID Register

AMAIR_EL1: Auxiliary Memory Attribute Indirection Register (EL1)

AMAIR_EL2: Auxiliary Memory Attribute Indirection Register (EL2)

AMAIR_EL3: Auxiliary Memory Attribute Indirection Register (EL3)

AMCFGR_EL0: Activity Monitors Configuration Register

AMCG1IDR_EL0: Activity Monitors Counter Group 1 Identification Register

AMCGCR_EL0: Activity Monitors Counter Group Configuration Register

AMCNTENCLR0_EL0: Activity Monitors Count Enable Clear Register 0

AMCNTENCLR1_EL0: Activity Monitors Count Enable Clear Register 1

AMCNTENSET0_EL0: Activity Monitors Count Enable Set Register 0

AMCNTENSET1_EL0: Activity Monitors Count Enable Set Register 1

AMCR_EL0: Activity Monitors Control Register

AMEVCNTR0<n>_EL0: Activity Monitors Event Counter Registers 0

AMEVCNTR1<n>_EL0: Activity Monitors Event Counter Registers 1

AMEVCNTVOFF0<n>_EL2: Activity Monitors Event Counter Virtual Offset Registers 0

AMEVCNTVOFF1<n>_EL2: Activity Monitors Event Counter Virtual Offset Registers 1

AMEVTYPER0<n>_EL0: Activity Monitors Event Type Registers 0

AMEVTYPER1<n>_EL0: Activity Monitors Event Type Registers 1

AMUSERENR_EL0: Activity Monitors User Enable Register

APDAKeyHi_EL1: Pointer Authentication Key A for Data (bits[127:64])

APDAKeyLo_EL1: Pointer Authentication Key A for Data (bits[63:0])

APDBKeyHi_EL1: Pointer Authentication Key B for Data (bits[127:64])

APDBKeyLo_EL1: Pointer Authentication Key B for Data (bits[63:0])

APGAKeyHi_EL1: Pointer Authentication Key A for Code (bits[127:64])

APGAKeyLo_EL1: Pointer Authentication Key A for Code (bits[63:0])

AArch64 System Registers

Page 2

APIAKeyHi_EL1: Pointer Authentication Key A for Instruction (bits[127:64])

APIAKeyLo_EL1: Pointer Authentication Key A for Instruction (bits[63:0])

APIBKeyHi_EL1: Pointer Authentication Key B for Instruction (bits[127:64])

APIBKeyLo_EL1: Pointer Authentication Key B for Instruction (bits[63:0])

CCSIDR2_EL1: Current Cache Size ID Register 2

CCSIDR_EL1: Current Cache Size ID Register

CLIDR_EL1: Cache Level ID Register

CNTFRQ_EL0: Counter-timer Frequency register

CNTHCTL_EL2: Counter-timer Hypervisor Control register

CNTHPS_CTL_EL2: Counter-timer Secure Physical Timer Control register (EL2)

CNTHPS_CVAL_EL2: Counter-timer Secure Physical Timer CompareValue register (EL2)

CNTHPS_TVAL_EL2: Counter-timer Secure Physical Timer TimerValue register (EL2)

CNTHP_CTL_EL2: Counter-timer Hypervisor Physical Timer Control register

CNTHP_CVAL_EL2: Counter-timer Physical Timer CompareValue register (EL2)

CNTHP_TVAL_EL2: Counter-timer Physical Timer TimerValue register (EL2)

CNTHVS_CTL_EL2: Counter-timer Secure Virtual Timer Control register (EL2)

CNTHVS_CVAL_EL2: Counter-timer Secure Virtual Timer CompareValue register (EL2)

CNTHVS_TVAL_EL2: Counter-timer Secure Virtual Timer TimerValue register (EL2)

CNTHV_CTL_EL2: Counter-timer Virtual Timer Control register (EL2)

CNTHV_CVAL_EL2: Counter-timer Virtual Timer CompareValue register (EL2)

CNTHV_TVAL_EL2: Counter-timer Virtual Timer TimerValue Register (EL2)

CNTKCTL_EL1: Counter-timer Kernel Control register

CNTPCTSS_EL0: Counter-timer Self-Synchronized Physical Count register

CNTPCT_EL0: Counter-timer Physical Count register

CNTPOFF_EL2: Counter-timer Physical Offset register

CNTPS_CTL_EL1: Counter-timer Physical Secure Timer Control register

CNTPS_CVAL_EL1: Counter-timer Physical Secure Timer CompareValue register

CNTPS_TVAL_EL1: Counter-timer Physical Secure Timer TimerValue register

CNTP_CTL_EL0: Counter-timer Physical Timer Control register

CNTP_CVAL_EL0: Counter-timer Physical Timer CompareValue register

CNTP_TVAL_EL0: Counter-timer Physical Timer TimerValue register

CNTVCTSS_EL0: Counter-timer Self-Synchronized Virtual Count register

CNTVCT_EL0: Counter-timer Virtual Count register

CNTVOFF_EL2: Counter-timer Virtual Offset register

CNTV_CTL_EL0: Counter-timer Virtual Timer Control register

CNTV_CVAL_EL0: Counter-timer Virtual Timer CompareValue register

AArch64 System Registers

Page 3

CNTV_TVAL_EL0: Counter-timer Virtual Timer TimerValue register

CONTEXTIDR_EL1: Context ID Register (EL1)

CONTEXTIDR_EL2: Context ID Register (EL2)

CPACR_EL1: Architectural Feature Access Control Register

CPTR_EL2: Architectural Feature Trap Register (EL2)

CPTR_EL3: Architectural Feature Trap Register (EL3)

CSSELR_EL1: Cache Size Selection Register

CTR_EL0: Cache Type Register

CurrentEL: Current Exception Level

DACR32_EL2: Domain Access Control Register

DAIF: Interrupt Mask Bits

DBGAUTHSTATUS_EL1: Debug Authentication Status register

DBGBCR<n>_EL1: Debug Breakpoint Control Registers

DBGBVR<n>_EL1: Debug Breakpoint Value Registers

DBGCLAIMCLR_EL1: Debug CLAIM Tag Clear register

DBGCLAIMSET_EL1: Debug CLAIM Tag Set register

DBGDTRRX_EL0: Debug Data Transfer Register, Receive

DBGDTRTX_EL0: Debug Data Transfer Register, Transmit

DBGDTR_EL0: Debug Data Transfer Register, half-duplex

DBGPRCR_EL1: Debug Power Control Register

DBGVCR32_EL2: Debug Vector Catch Register

DBGWCR<n>_EL1: Debug Watchpoint Control Registers

DBGWVR<n>_EL1: Debug Watchpoint Value Registers

DCZID_EL0: Data Cache Zero ID register

DISR_EL1: Deferred Interrupt Status Register

DIT: Data Independent Timing

DLR_EL0: Debug Link Register

DSPSR_EL0: Debug Saved Program Status Register

ELR_EL1: Exception Link Register (EL1)

ELR_EL2: Exception Link Register (EL2)

ELR_EL3: Exception Link Register (EL3)

ERRIDR_EL1: Error Record ID Register

ERRSELR_EL1: Error Record Select Register

ERXADDR_EL1: Selected Error Record Address Register

ERXCTLR_EL1: Selected Error Record Control Register

ERXFR_EL1: Selected Error Record Feature Register

AArch64 System Registers

Page 4

ERXMISC0_EL1: Selected Error Record Miscellaneous Register 0

ERXMISC1_EL1: Selected Error Record Miscellaneous Register 1

ERXMISC2_EL1: Selected Error Record Miscellaneous Register 2

ERXMISC3_EL1: Selected Error Record Miscellaneous Register 3

ERXPFGCDN_EL1: Selected Pseudo-fault Generation Countdown register

ERXPFGCTL_EL1: Selected Pseudo-fault Generation Control register

ERXPFGF_EL1: Selected Pseudo-fault Generation Feature register

ERXSTATUS_EL1: Selected Error Record Primary Status Register

ESR_EL1: Exception Syndrome Register (EL1)

ESR_EL2: Exception Syndrome Register (EL2)

ESR_EL3: Exception Syndrome Register (EL3)

FAR_EL1: Fault Address Register (EL1)

FAR_EL2: Fault Address Register (EL2)

FAR_EL3: Fault Address Register (EL3)

FPCR: Floating-point Control Register

FPEXC32_EL2: Floating-Point Exception Control register

FPSR: Floating-point Status Register

GCR_EL1: Tag Control Register.

GMID_EL1: Multiple tag transfer ID register

HACR_EL2: Hypervisor Auxiliary Control Register

HAFGRTR_EL2: Hypervisor Activity Monitors Fine-Grained Read Trap Register

HCR_EL2: Hypervisor Configuration Register

HDFGRTR_EL2: Hypervisor Debug Fine-Grained Read Trap Register

HDFGWTR_EL2: Hypervisor Debug Fine-Grained Write Trap Register

HFGITR_EL2: Hypervisor Fine-Grained Instruction Trap Register

HFGRTR_EL2: Hypervisor Fine-Grained Read Trap Register

HFGWTR_EL2: Hypervisor Fine-Grained Write Trap Register

HPFAR_EL2: Hypervisor IPA Fault Address Register

HSTR_EL2: Hypervisor System Trap Register

ICC_AP0R<n>_EL1: Interrupt Controller Active Priorities Group 0 Registers

ICC_AP1R<n>_EL1: Interrupt Controller Active Priorities Group 1 Registers

ICC_ASGI1R_EL1: Interrupt Controller Alias Software Generated Interrupt Group 1 Register

ICC_BPR0_EL1: Interrupt Controller Binary Point Register 0

ICC_BPR1_EL1: Interrupt Controller Binary Point Register 1

ICC_CTLR_EL1: Interrupt Controller Control Register (EL1)

ICC_CTLR_EL3: Interrupt Controller Control Register (EL3)

AArch64 System Registers

Page 5

ICC_DIR_EL1: Interrupt Controller Deactivate Interrupt Register

ICC_EOIR0_EL1: Interrupt Controller End Of Interrupt Register 0

ICC_EOIR1_EL1: Interrupt Controller End Of Interrupt Register 1

ICC_HPPIR0_EL1: Interrupt Controller Highest Priority Pending Interrupt Register 0

ICC_HPPIR1_EL1: Interrupt Controller Highest Priority Pending Interrupt Register 1

ICC_IAR0_EL1: Interrupt Controller Interrupt Acknowledge Register 0

ICC_IAR1_EL1: Interrupt Controller Interrupt Acknowledge Register 1

ICC_IGRPEN0_EL1: Interrupt Controller Interrupt Group 0 Enable register

ICC_IGRPEN1_EL1: Interrupt Controller Interrupt Group 1 Enable register

ICC_IGRPEN1_EL3: Interrupt Controller Interrupt Group 1 Enable register (EL3)

ICC_PMR_EL1: Interrupt Controller Interrupt Priority Mask Register

ICC_RPR_EL1: Interrupt Controller Running Priority Register

ICC_SGI0R_EL1: Interrupt Controller Software Generated Interrupt Group 0 Register

ICC_SGI1R_EL1: Interrupt Controller Software Generated Interrupt Group 1 Register

ICC_SRE_EL1: Interrupt Controller System Register Enable register (EL1)

ICC_SRE_EL2: Interrupt Controller System Register Enable register (EL2)

ICC_SRE_EL3: Interrupt Controller System Register Enable register (EL3)

ICH_AP0R<n>_EL2: Interrupt Controller Hyp Active Priorities Group 0 Registers

ICH_AP1R<n>_EL2: Interrupt Controller Hyp Active Priorities Group 1 Registers

ICH_EISR_EL2: Interrupt Controller End of Interrupt Status Register

ICH_ELRSR_EL2: Interrupt Controller Empty List Register Status Register

ICH_HCR_EL2: Interrupt Controller Hyp Control Register

ICH_LR<n>_EL2: Interrupt Controller List Registers

ICH_MISR_EL2: Interrupt Controller Maintenance Interrupt State Register

ICH_VMCR_EL2: Interrupt Controller Virtual Machine Control Register

ICH_VTR_EL2: Interrupt Controller VGIC Type Register

ICV_AP0R<n>_EL1: Interrupt Controller Virtual Active Priorities Group 0 Registers

ICV_AP1R<n>_EL1: Interrupt Controller Virtual Active Priorities Group 1 Registers

ICV_BPR0_EL1: Interrupt Controller Virtual Binary Point Register 0

ICV_BPR1_EL1: Interrupt Controller Virtual Binary Point Register 1

ICV_CTLR_EL1: Interrupt Controller Virtual Control Register

ICV_DIR_EL1: Interrupt Controller Deactivate Virtual Interrupt Register

ICV_EOIR0_EL1: Interrupt Controller Virtual End Of Interrupt Register 0

ICV_EOIR1_EL1: Interrupt Controller Virtual End Of Interrupt Register 1

ICV_HPPIR0_EL1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

ICV_HPPIR1_EL1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

AArch64 System Registers

Page 6

ICV_IAR0_EL1: Interrupt Controller Virtual Interrupt Acknowledge Register 0

ICV_IAR1_EL1: Interrupt Controller Virtual Interrupt Acknowledge Register 1

ICV_IGRPEN0_EL1: Interrupt Controller Virtual Interrupt Group 0 Enable register

ICV_IGRPEN1_EL1: Interrupt Controller Virtual Interrupt Group 1 Enable register

ICV_PMR_EL1: Interrupt Controller Virtual Interrupt Priority Mask Register

ICV_RPR_EL1: Interrupt Controller Virtual Running Priority Register

ID_AA64AFR0_EL1: AArch64 Auxiliary Feature Register 0

ID_AA64AFR1_EL1: AArch64 Auxiliary Feature Register 1

ID_AA64DFR0_EL1: AArch64 Debug Feature Register 0

ID_AA64DFR1_EL1: AArch64 Debug Feature Register 1

ID_AA64ISAR0_EL1: AArch64 Instruction Set Attribute Register 0

ID_AA64ISAR1_EL1: AArch64 Instruction Set Attribute Register 1

ID_AA64MMFR0_EL1: AArch64 Memory Model Feature Register 0

ID_AA64MMFR1_EL1: AArch64 Memory Model Feature Register 1

ID_AA64MMFR2_EL1: AArch64 Memory Model Feature Register 2

ID_AA64PFR0_EL1: AArch64 Processor Feature Register 0

ID_AA64PFR1_EL1: AArch64 Processor Feature Register 1

ID_AA64ZFR0_EL1: SVE Feature ID register 0

ID_AFR0_EL1: AArch32 Auxiliary Feature Register 0

ID_DFR0_EL1: AArch32 Debug Feature Register 0

ID_DFR1_EL1: Debug Feature Register 1

ID_ISAR0_EL1: AArch32 Instruction Set Attribute Register 0

ID_ISAR1_EL1: AArch32 Instruction Set Attribute Register 1

ID_ISAR2_EL1: AArch32 Instruction Set Attribute Register 2

ID_ISAR3_EL1: AArch32 Instruction Set Attribute Register 3

ID_ISAR4_EL1: AArch32 Instruction Set Attribute Register 4

ID_ISAR5_EL1: AArch32 Instruction Set Attribute Register 5

ID_ISAR6_EL1: AArch32 Instruction Set Attribute Register 6

ID_MMFR0_EL1: AArch32 Memory Model Feature Register 0

ID_MMFR1_EL1: AArch32 Memory Model Feature Register 1

ID_MMFR2_EL1: AArch32 Memory Model Feature Register 2

ID_MMFR3_EL1: AArch32 Memory Model Feature Register 3

ID_MMFR4_EL1: AArch32 Memory Model Feature Register 4

ID_MMFR5_EL1: AArch32 Memory Model Feature Register 5

ID_PFR0_EL1: AArch32 Processor Feature Register 0

ID_PFR1_EL1: AArch32 Processor Feature Register 1

AArch64 System Registers

Page 7

ID_PFR2_EL1: AArch32 Processor Feature Register 2

IFSR32_EL2: Instruction Fault Status Register (EL2)

ISR_EL1: Interrupt Status Register

LORC_EL1: LORegion Control (EL1)

LOREA_EL1: LORegion End Address (EL1)

LORID_EL1: LORegionID (EL1)

LORN_EL1: LORegion Number (EL1)

LORSA_EL1: LORegion Start Address (EL1)

MAIR_EL1: Memory Attribute Indirection Register (EL1)

MAIR_EL2: Memory Attribute Indirection Register (EL2)

MAIR_EL3: Memory Attribute Indirection Register (EL3)

MDCCINT_EL1: Monitor DCC Interrupt Enable Register

MDCCSR_EL0: Monitor DCC Status Register

MDCR_EL2: Monitor Debug Configuration Register (EL2)

MDCR_EL3: Monitor Debug Configuration Register (EL3)

MDRAR_EL1: Monitor Debug ROM Address Register

MDSCR_EL1: Monitor Debug System Control Register

MIDR_EL1: Main ID Register

MPAM0_EL1: MPAM0 Register (EL1)

MPAM1_EL1: MPAM1 Register (EL1)

MPAM2_EL2: MPAM2 Register (EL2)

MPAM3_EL3: MPAM3 Register (EL3)

MPAMHCR_EL2: MPAM Hypervisor Control Register (EL2)

MPAMIDR_EL1: MPAM ID Register (EL1)

MPAMVPM0_EL2: MPAM Virtual PARTID Mapping Register 0

MPAMVPM1_EL2: MPAM Virtual PARTID Mapping Register 1

MPAMVPM2_EL2: MPAM Virtual PARTID Mapping Register 2

MPAMVPM3_EL2: MPAM Virtual PARTID Mapping Register 3

MPAMVPM4_EL2: MPAM Virtual PARTID Mapping Register 4

MPAMVPM5_EL2: MPAM Virtual PARTID Mapping Register 5

MPAMVPM6_EL2: MPAM Virtual PARTID Mapping Register 6

MPAMVPM7_EL2: MPAM Virtual PARTID Mapping Register 7

MPAMVPMV_EL2: MPAM Virtual Partition Mapping Valid Register

MPIDR_EL1: Multiprocessor Affinity Register

MVFR0_EL1: AArch32 Media and VFP Feature Register 0

MVFR1_EL1: AArch32 Media and VFP Feature Register 1

AArch64 System Registers

Page 8

MVFR2_EL1: AArch32 Media and VFP Feature Register 2

NZCV: Condition Flags

OSDLR_EL1: OS Double Lock Register

OSDTRRX_EL1: OS Lock Data Transfer Register, Receive

OSDTRTX_EL1: OS Lock Data Transfer Register, Transmit

OSECCR_EL1: OS Lock Exception Catch Control Register

OSLAR_EL1: OS Lock Access Register

OSLSR_EL1: OS Lock Status Register

PAN: Privileged Access Never

PAR_EL1: Physical Address Register

PMBIDR_EL1: Profiling Buffer ID Register

PMBLIMITR_EL1: Profiling Buffer Limit Address Register

PMBPTR_EL1: Profiling Buffer Write Pointer Register

PMBSR_EL1: Profiling Buffer Status/syndrome Register

PMCCFILTR_EL0: Performance Monitors Cycle Count Filter Register

PMCCNTR_EL0: Performance Monitors Cycle Count Register

PMCEID0_EL0: Performance Monitors Common Event Identification register 0

PMCEID1_EL0: Performance Monitors Common Event Identification register 1

PMCNTENCLR_EL0: Performance Monitors Count Enable Clear register

PMCNTENSET_EL0: Performance Monitors Count Enable Set register

PMCR_EL0: Performance Monitors Control Register

PMEVCNTR<n>_EL0: Performance Monitors Event Count Registers

PMEVTYPER<n>_EL0: Performance Monitors Event Type Registers

PMINTENCLR_EL1: Performance Monitors Interrupt Enable Clear register

PMINTENSET_EL1: Performance Monitors Interrupt Enable Set register

PMMIR_EL1: Performance Monitors Machine Identification Register

PMOVSCLR_EL0: Performance Monitors Overflow Flag Status Clear Register

PMOVSSET_EL0: Performance Monitors Overflow Flag Status Set register

PMSCR_EL1: Statistical Profiling Control Register (EL1)

PMSCR_EL2: Statistical Profiling Control Register (EL2)

PMSELR_EL0: Performance Monitors Event Counter Selection Register

PMSEVFR_EL1: Sampling Event Filter Register

PMSFCR_EL1: Sampling Filter Control Register

PMSICR_EL1: Sampling Interval Counter Register

PMSIDR_EL1: Sampling Profiling ID Register

PMSIRR_EL1: Sampling Interval Reload Register

AArch64 System Registers

Page 9

PMSLATFR_EL1: Sampling Latency Filter Register

PMSWINC_EL0: Performance Monitors Software Increment register

PMUSERENR_EL0: Performance Monitors User Enable Register

PMXEVCNTR_EL0: Performance Monitors Selected Event Count Register

PMXEVTYPER_EL0: Performance Monitors Selected Event Type Register

REVIDR_EL1: Revision ID Register

RGSR_EL1: Random Allocation Tag Seed Register.

RMR_EL1: Reset Management Register (EL1)

RMR_EL2: Reset Management Register (EL2)

RMR_EL3: Reset Management Register (EL3)

RNDR: Random Number

RNDRRS: Reseeded Random Number

RVBAR_EL1: Reset Vector Base Address Register (if EL2 and EL3 not implemented)

RVBAR_EL2: Reset Vector Base Address Register (if EL3 not implemented)

RVBAR_EL3: Reset Vector Base Address Register (if EL3 implemented)

S3_<op1>_<Cn>_<Cm>_<op2>: IMPLEMENTATION DEFINED registers

SCR_EL3: Secure Configuration Register

SCTLR_EL1: System Control Register (EL1)

SCTLR_EL2: System Control Register (EL2)

SCTLR_EL3: System Control Register (EL3)

SCXTNUM_EL0: EL0 Read/Write Software Context Number

SCXTNUM_EL1: EL1 Read/Write Software Context Number

SCXTNUM_EL2: EL2 Read/Write Software Context Number

SCXTNUM_EL3: EL3 Read/Write Software Context Number

SDER32_EL2: AArch32 Secure Debug Enable Register

SDER32_EL3: AArch32 Secure Debug Enable Register

SPSel: Stack Pointer Select

SPSR_abt: Saved Program Status Register (Abort mode)

SPSR_EL1: Saved Program Status Register (EL1)

SPSR_EL2: Saved Program Status Register (EL2)

SPSR_EL3: Saved Program Status Register (EL3)

SPSR_fiq: Saved Program Status Register (FIQ mode)

SPSR_irq: Saved Program Status Register (IRQ mode)

SPSR_und: Saved Program Status Register (Undefined mode)

SP_EL0: Stack Pointer (EL0)

SP_EL1: Stack Pointer (EL1)

AArch64 System Registers

Page 10

SP_EL2: Stack Pointer (EL2)

SP_EL3: Stack Pointer (EL3)

SSBS: Speculative Store Bypass Safe

TCO: Tag Check Override

TCR_EL1: Translation Control Register (EL1)

TCR_EL2: Translation Control Register (EL2)

TCR_EL3: Translation Control Register (EL3)

TFSRE0_EL1: Tag Fault Status Register (EL0).

TFSR_EL1: Tag Fault Status Register (EL1)

TFSR_EL2: Tag Fault Status Register (EL2)

TFSR_EL3: Tag Fault Status Register (EL3)

TPIDRRO_EL0: EL0 Read-Only Software Thread ID Register

TPIDR_EL0: EL0 Read/Write Software Thread ID Register

TPIDR_EL1: EL1 Software Thread ID Register

TPIDR_EL2: EL2 Software Thread ID Register

TPIDR_EL3: EL3 Software Thread ID Register

TRBBASER_EL1: Trace Buffer Base Address Register

TRBIDR_EL1: Trace Buffer ID Register

TRBLIMITR_EL1: Trace Buffer Limit Address Register

TRBMAR_EL1: Trace Buffer Memory Attribute Register

TRBPTR_EL1: Trace Buffer Write Pointer Register

TRBSR_EL1: Trace Buffer Status/syndrome Register

TRBTRG_EL1: Trace Buffer Trigger Counter Register

TRCACATR<n>: Address Comparator Access Type Register <n>

TRCACVR<n>: Address Comparator Value Register <n>

TRCAUTHSTATUS: Authentication Status Register

TRCAUXCTLR: Auxillary Control Register

TRCBBCTLR: Branch Broadcast Control Register

TRCCCCTLR: Cycle Count Control Register

TRCCIDCCTLR0: Context Identifier Comparator Control Register 0

TRCCIDCCTLR1: Context Identifier Comparator Control Register 1

TRCCIDCVR<n>: Context Identifier Comparator Value Registers <n>

TRCCLAIMCLR: Claim Tag Clear Register

TRCCLAIMSET: Claim Tag Set Register

TRCCNTCTLR<n>: Counter Control Register <n>

TRCCNTRLDVR<n>: Counter Reload Value Register <n>

AArch64 System Registers

Page 11

TRCCNTVR<n>: Counter Value Register <n>

TRCCONFIGR: Trace Configuration Register

TRCDEVARCH: Device Architecture Register

TRCDEVID: Device Configuration Register

TRCEVENTCTL0R: Event Control 0 Register

TRCEVENTCTL1R: Event Control 1 Register

TRCEXTINSELR<n>: External Input Select Register <n>

TRCIDR0: ID Register 0

TRCIDR1: ID Register 1

TRCIDR10: ID Register 10

TRCIDR11: ID Register 11

TRCIDR12: ID Register 12

TRCIDR13: ID Register 13

TRCIDR2: ID Register 2

TRCIDR3: ID Register 3

TRCIDR4: ID Register 4

TRCIDR5: ID Register 5

TRCIDR6: ID Register 6

TRCIDR7: ID Register 7

TRCIDR8: ID Register 8

TRCIDR9: ID Register 9

TRCIMSPEC0: IMP DEF Register 0

TRCIMSPEC<n>: IMP DEF Register <n>

TRCOSLSR: Trace OS Lock Status Register

TRCPRGCTLR: Programming Control Register

TRCQCTLR: Q Element Control Register

TRCRSCTLR<n>: Resource Selection Control Register <n>

TRCRSR: Resources Status Register

TRCSEQEVR<n>: Sequencer State Transition Control Register <n>

TRCSEQRSTEVR: Sequencer Reset Control Register

TRCSEQSTR: Sequencer State Register

TRCSSCCR<n>: Single-shot Comparator Control Register <n>

TRCSSCSR<n>: Single-shot Comparator Control Status Register <n>

TRCSSPCICR<n>: Single-shot Processing Element Comparator Input Control Register <n>

TRCSTALLCTLR: Stall Control Register

TRCSTATR: Trace Status Register

AArch64 System Registers

Page 12

TRCSYNCPR: Synchronization Period Register

TRCTRACEIDR: Trace ID Register

TRCTSCTLR: Timestamp Control Register

TRCVICTLR: ViewInst Main Control Register

TRCVIIECTLR: ViewInst Include/Exclude Control Register

TRCVIPCSSCTLR: ViewInst Start/Stop PE Comparator Control Register

TRCVISSCTLR: ViewInst Start/Stop Control Register

TRCVMIDCCTLR0: Virtual Context Identifier Comparator Control Register 0

TRCVMIDCCTLR1: Virtual Context Identifier Comparator Control Register 1

TRCVMIDCVR<n>: Virtual Context Identifier Comparator Value Register <n>

TRFCR_EL1: Trace Filter Control Register (EL1)

TRFCR_EL2: Trace Filter Control Register (EL2)

TTBR0_EL1: Translation Table Base Register 0 (EL1)

TTBR0_EL2: Translation Table Base Register 0 (EL2)

TTBR0_EL3: Translation Table Base Register 0 (EL3)

TTBR1_EL1: Translation Table Base Register 1 (EL1)

TTBR1_EL2: Translation Table Base Register 1 (EL2)

UAO: User Access Override

VBAR_EL1: Vector Base Address Register (EL1)

VBAR_EL2: Vector Base Address Register (EL2)

VBAR_EL3: Vector Base Address Register (EL3)

VDISR_EL2: Virtual Deferred Interrupt Status Register

VMPIDR_EL2: Virtualization Multiprocessor ID Register

VNCR_EL2: Virtual Nested Control Register

VPIDR_EL2: Virtualization Processor ID Register

VSESR_EL2: Virtual SError Exception Syndrome Register

VSTCR_EL2: Virtualization Secure Translation Control Register

VSTTBR_EL2: Virtualization Secure Translation Table Base Register

VTCR_EL2: Virtualization Translation Control Register

VTTBR_EL2: Virtualization Translation Table Base Register

ZCR_EL1: SVE Control Register for EL1

ZCR_EL2: SVE Control Register for EL2

ZCR_EL3: SVE Control Register for EL3

09/12/2019 19:23

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AArch64 System Registers

Page 13

AArch64 System Instructions
AT S12E0R: Address Translate Stages 1 and 2 EL0 Read

AT S12E0W: Address Translate Stages 1 and 2 EL0 Write

AT S12E1R: Address Translate Stages 1 and 2 EL1 Read

AT S12E1W: Address Translate Stages 1 and 2 EL1 Write

AT S1E0R: Address Translate Stage 1 EL0 Read

AT S1E0W: Address Translate Stage 1 EL0 Write

AT S1E1R: Address Translate Stage 1 EL1 Read

AT S1E1RP: Address Translate Stage 1 EL1 Read PAN

AT S1E1W: Address Translate Stage 1 EL1 Write

AT S1E1WP: Address Translate Stage 1 EL1 Write PAN

AT S1E2R: Address Translate Stage 1 EL2 Read

AT S1E2W: Address Translate Stage 1 EL2 Write

AT S1E3R: Address Translate Stage 1 EL3 Read

AT S1E3W: Address Translate Stage 1 EL3 Write

CFP RCTX: Control Flow Prediction Restriction by Context

CPP RCTX: Cache Prefetch Prediction Restriction by Context

DC CGDSW: Data, Allocation Tag or unified Cache line Clean of Data and Allocation Tags by Set/Way

DC CGDVAC: Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoC

DC CGDVADP: Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoDP

DC CGDVAP: Data, Allocation Tag or unified Cache line Clean of Data and Allocation Tags by VA to PoP

DC CGSW: Data, Allocation Tag or unified Cache line Clean of Allocation Tags by Set/Way

DC CGVAC: Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoC

DC CGVADP: Data, Allocation Tag or unified Cache line Clean of Data and Allocation Tags by VA to PoDP

DC CGVAP: Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoP

DC CIGDSW: Data, Allocation Tag or unified Cache line Clean and Invalidate of Data and Allocation Tags by Set/Way

DC CIGDVAC: Data, Allocation Tag or unified Cache line Clean and Invalidate of Data and Allocation Tags by VA to PoC

DC CIGSW: Data, Allocation Tag or unified Cache line Clean and Invalidate of Allocation Tags by Set/Way

DC CIGVAC: Data, Allocation Tag or unified Cache line Clean and Invalidate of Allocation Tags by VA to PoC

DC CISW: Data or unified Cache line Clean and Invalidate by Set/Way

DC CIVAC: Data or unified Cache line Clean and Invalidate by VA to PoC

DC CSW: Data or unified Cache line Clean by Set/Way

DC CVAC: Data or unified Cache line Clean by VA to PoC

DC CVADP: Data or unified Cache line Clean by VA to PoDP

DC CVAP: Data or unified Cache line Clean by VA to PoP

AArch64 System Instructions

Page 14

DC CVAU: Data or unified Cache line Clean by VA to PoU

DC GVA: Data Cache set Allocation Tag by VA

DC GZVA: Data Cache set Allocation Tags and Zero by VA

DC IGDSW: Data, Allocation Tag or unified Cache line Invalidate of Data and Allocation Tags by Set/Way

DC IGDVAC: Data, Allocation Tag or unified Cache line Invalidate of Allocation Tags by VA to PoC

DC IGSW: Data, Allocation Tag or unified Cache line Invalidate of Allocation Tags by Set/Way

DC IGVAC: Data, Allocation Tag or unified Cache line Invalidate of Allocation Tags by VA to PoC

DC ISW: Data or unified Cache line Invalidate by Set/Way

DC IVAC: Data or unified Cache line Invalidate by VA to PoC

DC ZVA: Data Cache Zero by VA

DVP RCTX: Data Value Prediction Restriction by Context

IC IALLU: Instruction Cache Invalidate All to PoU

IC IALLUIS: Instruction Cache Invalidate All to PoU, Inner Shareable

IC IVAU: Instruction Cache line Invalidate by VA to PoU

S1_<op1>_<Cn>_<Cm>_<op2>: IMPLEMENTATION DEFINED maintenance instructions

TLBI ALLE1: TLB Invalidate All, EL1

TLBI ALLE1IS: TLB Invalidate All, EL1, Inner Shareable

TLBI ALLE1OS: TLB Invalidate All, EL1, Outer Shareable

TLBI ALLE2: TLB Invalidate All, EL2

TLBI ALLE2IS: TLB Invalidate All, EL2, Inner Shareable

TLBI ALLE2OS: TLB Invalidate All, EL2, Outer Shareable

TLBI ALLE3: TLB Invalidate All, EL3

TLBI ALLE3IS: TLB Invalidate All, EL3, Inner Shareable

TLBI ALLE3OS: TLB Invalidate All, EL3, Outer Shareable

TLBI ASIDE1: TLB Invalidate by ASID, EL1

TLBI ASIDE1IS: TLB Invalidate by ASID, EL1, Inner Shareable

TLBI ASIDE1OS: TLB Invalidate by ASID, EL1, Outer Shareable

TLBI IPAS2E1: TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

TLBI IPAS2E1IS: TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable

TLBI IPAS2E1OS: TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable

TLBI IPAS2LE1: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

TLBI IPAS2LE1IS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable

TLBI IPAS2LE1OS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable

TLBI RIPAS2E1: TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1

TLBI RIPAS2E1IS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable

TLBI RIPAS2E1OS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable

AArch64 System Instructions

Page 15

TLBI RIPAS2LE1: TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

TLBI RIPAS2LE1IS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable

TLBI RIPAS2LE1OS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer
Shareable

TLBI RVAAE1: TLB Range Invalidate by VA, All ASID, EL1

TLBI RVAAE1IS: TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

TLBI RVAAE1OS: TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

TLBI RVAALE1: TLB Range Invalidate by VA, All ASID, Last level, EL1

TLBI RVAALE1IS: TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

TLBI RVAALE1OS: TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

TLBI RVAE1: TLB Range Invalidate by VA, EL1

TLBI RVAE1IS: TLB Range Invalidate by VA, EL1, Inner Shareable

TLBI RVAE1OS: TLB Range Invalidate by VA, EL1, Outer Shareable

TLBI RVAE2: TLB Range Invalidate by VA, EL2

TLBI RVAE2IS: TLB Range Invalidate by VA, EL2, Inner Shareable

TLBI RVAE2OS: TLB Range Invalidate by VA, EL2, Outer Shareable

TLBI RVAE3: TLB Range Invalidate by VA, EL3

TLBI RVAE3IS: TLB Range Invalidate by VA, EL3, Inner Shareable

TLBI RVAE3OS: TLB Range Invalidate by VA, EL3, Outer Shareable

TLBI RVALE1: TLB Range Invalidate by VA, Last level, EL1

TLBI RVALE1IS: TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

TLBI RVALE1OS: TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

TLBI RVALE2: TLB Range Invalidate by VA, Last level, EL2

TLBI RVALE2IS: TLB Range Invalidate by VA, Last level, EL2, Inner Shareable

TLBI RVALE2OS: TLB Range Invalidate by VA, Last level, EL2, Outer Shareable

TLBI RVALE3: TLB Range Invalidate by VA, Last level, EL3

TLBI RVALE3IS: TLB Range Invalidate by VA, Last level, EL3, Inner Shareable

TLBI RVALE3OS: TLB Range Invalidate by VA, Last level, EL3, Outer Shareable

TLBI VAAE1: TLB Invalidate by VA, All ASID, EL1

TLBI VAAE1IS: TLB Invalidate by VA, All ASID, EL1, Inner Shareable

TLBI VAAE1OS: TLB Invalidate by VA, All ASID, EL1, Outer Shareable

TLBI VAALE1: TLB Invalidate by VA, All ASID, Last level, EL1

TLBI VAALE1IS: TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

TLBI VAALE1OS: TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

TLBI VAE1: TLB Invalidate by VA, EL1

TLBI VAE1IS: TLB Invalidate by VA, EL1, Inner Shareable

TLBI VAE1OS: TLB Invalidate by VA, EL1, Outer Shareable

AArch64 System Instructions

Page 16

TLBI VAE2: TLB Invalidate by VA, EL2

TLBI VAE2IS: TLB Invalidate by VA, EL2, Inner Shareable

TLBI VAE2OS: TLB Invalidate by VA, EL2, Outer Shareable

TLBI VAE3: TLB Invalidate by VA, EL3

TLBI VAE3IS: TLB Invalidate by VA, EL3, Inner Shareable

TLBI VAE3OS: TLB Invalidate by VA, EL3, Outer Shareable

TLBI VALE1: TLB Invalidate by VA, Last level, EL1

TLBI VALE1IS: TLB Invalidate by VA, Last level, EL1, Inner Shareable

TLBI VALE1OS: TLB Invalidate by VA, Last level, EL1, Outer Shareable

TLBI VALE2: TLB Invalidate by VA, Last level, EL2

TLBI VALE2IS: TLB Invalidate by VA, Last level, EL2, Inner Shareable

TLBI VALE2OS: TLB Invalidate by VA, Last level, EL2, Outer Shareable

TLBI VALE3: TLB Invalidate by VA, Last level, EL3

TLBI VALE3IS: TLB Invalidate by VA, Last level, EL3, Inner Shareable

TLBI VALE3OS: TLB Invalidate by VA, Last level, EL3, Outer Shareable

TLBI VMALLE1: TLB Invalidate by VMID, All at stage 1, EL1

TLBI VMALLE1IS: TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable

TLBI VMALLE1OS: TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable

TLBI VMALLS12E1: TLB Invalidate by VMID, All at Stage 1 and 2, EL1

TLBI VMALLS12E1IS: TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable

TLBI VMALLS12E1OS: TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Outer Shareable

09/12/2019 19:23

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AArch64 System Instructions

Page 17

ACTLR_EL1, Auxiliary Control Register (EL1)
The ACTLR_EL1 characteristics are:

Purpose
Provides IMPLEMENTATION DEFINED configuration and control options for execution at EL1 and EL0.

Note

Arm recommends the contents of this register have no effect on the PE when
HCR_EL2.{E2H, TGE} is {1, 1}, and instead the configuration and control
fields are provided by the ACTLR_EL2 register. This avoids the need for
software to manage the contents of these register when switching between a
Guest OS and a Host OS.

Configuration
AArch64 System register ACTLR_EL1 bits [31:0] are architecturally mapped to AArch32 System register ACTLR[31:0]
.

AArch64 System register ACTLR_EL1 bits [63:32] are architecturally mapped to AArch32 System register
ACTLR2[31:0] .

Attributes
ACTLR_EL1 is a 64-bit register.

Field descriptions
The ACTLR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the ACTLR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ACTLR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b001

ACTLR_EL1, Auxiliary Control Register (EL1)

Page 18

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TACR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then

return NVMem[0x118];
else

return ACTLR_EL1;
elsif PSTATE.EL == EL2 then

return ACTLR_EL1;
elsif PSTATE.EL == EL3 then

return ACTLR_EL1;

MSR ACTLR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TACR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then

NVMem[0x118] = X[t];
else

ACTLR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

ACTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

ACTLR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ACTLR_EL1, Auxiliary Control Register (EL1)

Page 19

ACTLR_EL2, Auxiliary Control Register (EL2)
The ACTLR_EL2 characteristics are:

Purpose
Provides IMPLEMENTATION DEFINED configuration and control options for EL2.

Note

Arm recommends the contents of this register are updated to apply to EL0
when HCR_EL2.{E2H, TGE} is {1, 1}, gaining configuration and control fields
from the ACTLR_EL1. This avoids the need for software to manage the
contents of these register when switching between a Guest OS and a Host OS.

Configuration
AArch64 System register ACTLR_EL2 bits [31:0] are architecturally mapped to AArch32 System register
HACTLR[31:0] .

AArch64 System register ACTLR_EL2 bits [63:32] are architecturally mapped to AArch32 System register
HACTLR2[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ACTLR_EL2 is a 64-bit register.

Field descriptions
The ACTLR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the ACTLR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, ACTLR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0000 0b001

ACTLR_EL2, Auxiliary Control Register (EL2)

Page 20

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return ACTLR_EL2;
elsif PSTATE.EL == EL3 then

return ACTLR_EL2;

MSR ACTLR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ACTLR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

ACTLR_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ACTLR_EL2, Auxiliary Control Register (EL2)

Page 21

ACTLR_EL3, Auxiliary Control Register (EL3)
The ACTLR_EL3 characteristics are:

Purpose
Provides IMPLEMENTATION DEFINED configuration and control options for EL3.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to ACTLR_EL3 are UNDEFINED.

Attributes
ACTLR_EL3 is a 64-bit register.

Field descriptions
The ACTLR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the ACTLR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, ACTLR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return ACTLR_EL3;

MSR ACTLR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0000 0b001

ACTLR_EL3, Auxiliary Control Register (EL3)

Page 22

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
ACTLR_EL3 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ACTLR_EL3, Auxiliary Control Register (EL3)

Page 23

AFSR0_EL1, Auxiliary Fault Status Register 0 (EL1)
The AFSR0_EL1 characteristics are:

Purpose
Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL1.

Configuration
AArch64 System register AFSR0_EL1 bits [31:0] are architecturally mapped to AArch32 System register ADFSR[31:0]
.

Attributes
AFSR0_EL1 is a 64-bit register.

Field descriptions
The AFSR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the AFSR0_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic AFSR0_EL1 or
AFSR0_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, AFSR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0001 0b000

AFSR0_EL1, Auxiliary Fault Status Register 0 (EL1)

Page 24

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.AFSR0_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x128];

else
return AFSR0_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return AFSR0_EL2;
else

return AFSR0_EL1;
elsif PSTATE.EL == EL3 then

return AFSR0_EL1;

MSR AFSR0_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.AFSR0_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x128] = X[t];

else
AFSR0_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

AFSR0_EL2 = X[t];
else

AFSR0_EL1 = X[t];
elsif PSTATE.EL == EL3 then

AFSR0_EL1 = X[t];

MRS <Xt>, AFSR0_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0101 0b0001 0b000

AFSR0_EL1, Auxiliary Fault Status Register 0 (EL1)

Page 25

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x128];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return AFSR0_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return AFSR0_EL1;
else

UNDEFINED;

MSR AFSR0_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0101 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x128] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AFSR0_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

AFSR0_EL1 = X[t];
else

UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AFSR0_EL1, Auxiliary Fault Status Register 0 (EL1)

Page 26

AFSR0_EL2, Auxiliary Fault Status Register 0 (EL2)
The AFSR0_EL2 characteristics are:

Purpose
Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL2.

Configuration
AArch64 System register AFSR0_EL2 bits [31:0] are architecturally mapped to AArch32 System register
HADFSR[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
AFSR0_EL2 is a 64-bit register.

Field descriptions
The AFSR0_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the AFSR0_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic AFSR0_EL2 or
AFSR0_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, AFSR0_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0001 0b000

AFSR0_EL2, Auxiliary Fault Status Register 0 (EL2)

Page 27

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return AFSR0_EL2;
elsif PSTATE.EL == EL3 then

return AFSR0_EL2;

MSR AFSR0_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AFSR0_EL2 = X[t];
elsif PSTATE.EL == EL3 then

AFSR0_EL2 = X[t];

MRS <Xt>, AFSR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.AFSR0_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x128];

else
return AFSR0_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return AFSR0_EL2;
else

return AFSR0_EL1;
elsif PSTATE.EL == EL3 then

return AFSR0_EL1;

MSR AFSR0_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0001 0b000

AFSR0_EL2, Auxiliary Fault Status Register 0 (EL2)

Page 28

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.AFSR0_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x128] = X[t];

else
AFSR0_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

AFSR0_EL2 = X[t];
else

AFSR0_EL1 = X[t];
elsif PSTATE.EL == EL3 then

AFSR0_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AFSR0_EL2, Auxiliary Fault Status Register 0 (EL2)

Page 29

AFSR0_EL3, Auxiliary Fault Status Register 0 (EL3)
The AFSR0_EL3 characteristics are:

Purpose
Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL3.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to AFSR0_EL3 are UNDEFINED.

Attributes
AFSR0_EL3 is a 64-bit register.

Field descriptions
The AFSR0_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the AFSR0_EL3
Accesses to this register use the following encodings:

MRS <Xt>, AFSR0_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0101 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return AFSR0_EL3;

MSR AFSR0_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0101 0b0001 0b000

AFSR0_EL3, Auxiliary Fault Status Register 0 (EL3)

Page 30

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AFSR0_EL3 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AFSR0_EL3, Auxiliary Fault Status Register 0 (EL3)

Page 31

AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)
The AFSR1_EL1 characteristics are:

Purpose
Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL1.

Configuration
AArch64 System register AFSR1_EL1 bits [31:0] are architecturally mapped to AArch32 System register AIFSR[31:0] .

Attributes
AFSR1_EL1 is a 64-bit register.

Field descriptions
The AFSR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the AFSR1_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic AFSR1_EL1 or
AFSR1_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, AFSR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0001 0b001

AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)

Page 32

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.AFSR1_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x130];

else
return AFSR1_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return AFSR1_EL2;
else

return AFSR1_EL1;
elsif PSTATE.EL == EL3 then

return AFSR1_EL1;

MSR AFSR1_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.AFSR1_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x130] = X[t];

else
AFSR1_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

AFSR1_EL2 = X[t];
else

AFSR1_EL1 = X[t];
elsif PSTATE.EL == EL3 then

AFSR1_EL1 = X[t];

MRS <Xt>, AFSR1_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0101 0b0001 0b001

AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)

Page 33

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x130];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return AFSR1_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return AFSR1_EL1;
else

UNDEFINED;

MSR AFSR1_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0101 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x130] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AFSR1_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

AFSR1_EL1 = X[t];
else

UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)

Page 34

AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)
The AFSR1_EL2 characteristics are:

Purpose
Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL2.

Configuration
AArch64 System register AFSR1_EL2 bits [31:0] are architecturally mapped to AArch32 System register HAIFSR[31:0]
.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
AFSR1_EL2 is a 64-bit register.

Field descriptions
The AFSR1_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the AFSR1_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic AFSR1_EL2 or
AFSR1_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, AFSR1_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0001 0b001

AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)

Page 35

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return AFSR1_EL2;
elsif PSTATE.EL == EL3 then

return AFSR1_EL2;

MSR AFSR1_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AFSR1_EL2 = X[t];
elsif PSTATE.EL == EL3 then

AFSR1_EL2 = X[t];

MRS <Xt>, AFSR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.AFSR1_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x130];

else
return AFSR1_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return AFSR1_EL2;
else

return AFSR1_EL1;
elsif PSTATE.EL == EL3 then

return AFSR1_EL1;

MSR AFSR1_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0001 0b001

AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)

Page 36

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.AFSR1_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x130] = X[t];

else
AFSR1_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

AFSR1_EL2 = X[t];
else

AFSR1_EL1 = X[t];
elsif PSTATE.EL == EL3 then

AFSR1_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)

Page 37

AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3)
The AFSR1_EL3 characteristics are:

Purpose
Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL3.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to AFSR1_EL3 are UNDEFINED.

Attributes
AFSR1_EL3 is a 64-bit register.

Field descriptions
The AFSR1_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the AFSR1_EL3
Accesses to this register use the following encodings:

MRS <Xt>, AFSR1_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0101 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return AFSR1_EL3;

MSR AFSR1_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0101 0b0001 0b001

AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3)

Page 38

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AFSR1_EL3 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3)

Page 39

AIDR_EL1, Auxiliary ID Register
The AIDR_EL1 characteristics are:

Purpose
Provides IMPLEMENTATION DEFINED identification information.

The value of this register must be interpreted in conjunction with the value of MIDR_EL1.

Configuration
AArch64 System register AIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register AIDR[31:0] .

Attributes
AIDR_EL1 is a 64-bit register.

Field descriptions
The AIDR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the AIDR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, AIDR_EL1

op0 op1 CRn CRm op2
0b11 0b001 0b0000 0b0000 0b111

AIDR_EL1, Auxiliary ID Register

Page 40

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.AIDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return AIDR_EL1;

elsif PSTATE.EL == EL2 then
return AIDR_EL1;

elsif PSTATE.EL == EL3 then
return AIDR_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AIDR_EL1, Auxiliary ID Register

Page 41

AMAIR_EL1, Auxiliary Memory Attribute Indirection
Register (EL1)

The AMAIR_EL1 characteristics are:

Purpose
Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by MAIR_EL1.

Configuration
AArch64 System register AMAIR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
AMAIR0[31:0] .

AArch64 System register AMAIR_EL1 bits [63:32] are architecturally mapped to AArch32 System register
AMAIR1[31:0] .

Attributes
AMAIR_EL1 is a 64-bit register.

Field descriptions
The AMAIR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AMAIR_EL1 is permitted to be cached in a TLB.

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the AMAIR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic AMAIR_EL1 or
AMAIR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, AMAIR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0011 0b000

AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)

Page 42

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.AMAIR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x148];

else
return AMAIR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return AMAIR_EL2;
else

return AMAIR_EL1;
elsif PSTATE.EL == EL3 then

return AMAIR_EL1;

MSR AMAIR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.AMAIR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x148] = X[t];

else
AMAIR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

AMAIR_EL2 = X[t];
else

AMAIR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

AMAIR_EL1 = X[t];

MRS <Xt>, AMAIR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b1010 0b0011 0b000

AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)

Page 43

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x148];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return AMAIR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return AMAIR_EL1;
else

UNDEFINED;

MSR AMAIR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1010 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x148] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
AMAIR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

AMAIR_EL1 = X[t];
else

UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)

Page 44

AMAIR_EL2, Auxiliary Memory Attribute Indirection
Register (EL2)

The AMAIR_EL2 characteristics are:

Purpose
Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by MAIR_EL2.

Configuration
AArch64 System register AMAIR_EL2 bits [31:0] are architecturally mapped to AArch32 System register
HAMAIR0[31:0] .

AArch64 System register AMAIR_EL2 bits [63:32] are architecturally mapped to AArch32 System register
HAMAIR1[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
AMAIR_EL2 is a 64-bit register.

Field descriptions
The AMAIR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AMAIR_EL2 is permitted to be cached in a TLB.

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the AMAIR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic AMAIR_EL2 or
AMAIR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, AMAIR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0011 0b000

AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)

Page 45

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return AMAIR_EL2;
elsif PSTATE.EL == EL3 then

return AMAIR_EL2;

MSR AMAIR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AMAIR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

AMAIR_EL2 = X[t];

MRS <Xt>, AMAIR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.AMAIR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x148];

else
return AMAIR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return AMAIR_EL2;
else

return AMAIR_EL1;
elsif PSTATE.EL == EL3 then

return AMAIR_EL1;

MSR AMAIR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0011 0b000

AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)

Page 46

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.AMAIR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x148] = X[t];

else
AMAIR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

AMAIR_EL2 = X[t];
else

AMAIR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

AMAIR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)

Page 47

AMAIR_EL3, Auxiliary Memory Attribute Indirection
Register (EL3)

The AMAIR_EL3 characteristics are:

Purpose
Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by MAIR_EL3.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to AMAIR_EL3 are UNDEFINED.

Attributes
AMAIR_EL3 is a 64-bit register.

Field descriptions
The AMAIR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AMAIR_EL3 is permitted to be cached in a TLB.

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the AMAIR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, AMAIR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b1010 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return AMAIR_EL3;

AMAIR_EL3, Auxiliary Memory Attribute Indirection Register (EL3)

Page 48

MSR AMAIR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b1010 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AMAIR_EL3 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMAIR_EL3, Auxiliary Memory Attribute Indirection Register (EL3)

Page 49

AMCFGR_EL0, Activity Monitors Configuration Register
The AMCFGR_EL0 characteristics are:

Purpose
Global configuration register for the activity monitors.

Provides information on supported features, the number of counter groups implemented, the total number of activity
monitor event counters implemented, and the size of the counters. AMCFGR_EL0 is applicable to both the architected
and the auxiliary counter groups.

Configuration
AArch64 System register AMCFGR_EL0 bits [31:0] are architecturally mapped to AArch32 System register
AMCFGR[31:0] .

AArch64 System register AMCFGR_EL0 bits [31:0] are architecturally mapped to External register AMCFGR[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCFGR_EL0 are
UNDEFINED.

Attributes
AMCFGR_EL0 is a 64-bit register.

Field descriptions
The AMCFGR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

NCG RES0 HDBG RAZ SIZE N
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

NCG, bits [31:28]

Defines the number of counter groups.

The number of implemented counter groups is defined as [AMCFGR_EL0.NCG + 1].

If the number of implemented auxiliary activity monitor event counters is zero, this field has a value of 0b0000.
Otherwise, this field has a value of 0b0001.

Bits [27:25]

Reserved, RES0.

HDBG, bit [24]

Halt-on-debug supported.

From Armv8, this feature must be supported, and so this bit is 0b1.

AMCFGR_EL0, Activity Monitors Configuration Register

Page 50

HDBG Meaning
0b0 AMCR_EL0.HDBG is RES0.
0b1 AMCR_EL0.HDBG is read/write.

Bits [23:14]

Reserved, RAZ.

SIZE, bits [13:8]

Defines the size of activity monitor event counters.

The size of the activity monitor event counters implemented by the activity monitors Extension is defined as
[AMCFGR_EL0.SIZE + 1].

From Armv8, the counters are 64-bit, and so this field is 0b111111.

Note

Software also uses this field to determine the spacing of counters in the
memory-map. From Armv8, the counters are at doubleword-aligned addresses.

N, bits [7:0]

Defines the number of activity monitor event counters.

The total number of counters implemented in all groups by the Activity Monitors Extension is defined as
[AMCFGR_EL0.N + 1].

Accessing the AMCFGR_EL0
Accesses to this register use the following encodings:

MRS <Xt>, AMCFGR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0010 0b001

AMCFGR_EL0, Activity Monitors Configuration Register

Page 51

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return AMCFGR_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return AMCFGR_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return AMCFGR_EL0;

elsif PSTATE.EL == EL3 then
return AMCFGR_EL0;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCFGR_EL0, Activity Monitors Configuration Register

Page 52

AMCG1IDR_EL0, Activity Monitors Counter Group 1
Identification Register

The AMCG1IDR_EL0 characteristics are:

Purpose
Defines which auxiliary counters are implemented, and which of them have a corresponding virtual offset register,
AMEVCNTVOFF1<n>_EL2 implemented.

Configuration
This register is present only when ARMv8.6-AMU is implemented. Otherwise, direct accesses to AMCG1IDR_EL0 are
UNDEFINED.

Attributes
AMCG1IDR_EL0 is a 64-bit register.

Field descriptions
The AMCG1IDR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

AMEVCNTOFF1<n>_EL2, bit [n+16], for n = 0 to 15 AMEVCNTR1<n>_EL0, bit [n], for n = 0 to 15
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

AMEVCNTOFF1<n>_EL2, bit [n+16], for n = 0 to 15

Indicates which implemented auxiliary counters have a corresponding virtual offset register,
AMEVCNTVOFF1<n>_EL2 implemented.

AMEVCNTOFF1<n>_EL2 Meaning
0b0 When read, mean that

AMEVCNTR1<n>_EL0 does not have an
offset, or is not implemented.

0b1 When read, means the offset
AMEVCNTVOFF1<n>_EL2 is implemented
for AMEVCNTR1<n>_EL0.

AMEVCNTR1<n>_EL0, bit [n], for n = 0 to 15

Indicates which auxiliary counters AMEVCNTR1<n>_EL0 are implemented.

AMEVCNTR1<n>_EL0 Meaning
0b0 When read, means that

AMEVCNTR1<n>_EL0 is not implemented.
0b1 When read, means that

AMEVCNTR1<n>_EL0 is implemented.

AMCG1IDR_EL0, Activity Monitors Counter Group 1 Identification Register

Page 53

Accessing the AMCG1IDR_EL0
Accesses to this register use the following encodings:

MRS <Xt>, AMCG1IDR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0010 0b110

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return AMCG1IDR_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return AMCG1IDR_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return AMCG1IDR_EL0;

elsif PSTATE.EL == EL3 then
return AMCG1IDR_EL0;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCG1IDR_EL0, Activity Monitors Counter Group 1 Identification Register

Page 54

AMCGCR_EL0, Activity Monitors Counter Group
Configuration Register

The AMCGCR_EL0 characteristics are:

Purpose
Provides information on the number of activity monitor event counters implemented within each counter group.

Configuration
AArch64 System register AMCGCR_EL0 bits [31:0] are architecturally mapped to AArch32 System register
AMCGCR[31:0] .

AArch64 System register AMCGCR_EL0 bits [31:0] are architecturally mapped to External register AMCGCR[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCGCR_EL0 are
UNDEFINED.

Attributes
AMCGCR_EL0 is a 64-bit register.

Field descriptions
The AMCGCR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 CG1NC CG0NC
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

CG1NC, bits [15:8]

Counter Group 1 Number of Counters. The number of counters in the auxiliary counter group.

In AMUv1, the permitted range of values is 0x0 to 0x10.

CG0NC, bits [7:0]

Counter Group 0 Number of Counters. The number of counters in the architected counter group.

In AMUv1, the value of this field is 0x4.

Accessing the AMCGCR_EL0
Accesses to this register use the following encodings:

AMCGCR_EL0, Activity Monitors Counter Group Configuration Register

Page 55

MRS <Xt>, AMCGCR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0010 0b010

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return AMCGCR_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return AMCGCR_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return AMCGCR_EL0;

elsif PSTATE.EL == EL3 then
return AMCGCR_EL0;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCGCR_EL0, Activity Monitors Counter Group Configuration Register

Page 56

AMCNTENCLR0_EL0, Activity Monitors Count Enable
Clear Register 0

The AMCNTENCLR0_EL0 characteristics are:

Purpose
Disable control bits for the architected activity monitors event counters, AMEVCNTR0<n>_EL0.

Configuration
AArch64 System register AMCNTENCLR0_EL0 bits [31:0] are architecturally mapped to AArch32 System register
AMCNTENCLR0[31:0] .

AArch64 System register AMCNTENCLR0_EL0 bits [31:0] are architecturally mapped to External register
AMCNTENCLR0[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCNTENCLR0_EL0 are
UNDEFINED.

Attributes
AMCNTENCLR0_EL0 is a 64-bit register.

Field descriptions
The AMCNTENCLR0_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 P<n>, bit [n]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

P<n>, bit [n], for n = 0 to 15

Activity monitor event counter disable bit for AMEVCNTR0<n>_EL0.

Bits [31:16] are RES0. Bits [15:N] are RAZ/WI. N is the value in AMCGCR_EL0.CG0NC.

Possible values of each bit are:

P<n> Meaning
0b0 When read, means that AMEVCNTR0<n>_EL0 is disabled.

When written, has no effect.
0b1 When read, means that AMEVCNTR0<n>_EL0 is enabled. When

written, disables AMEVCNTR0<n>_EL0.

On a Cold reset, this field resets to 0.

Accessing the AMCNTENCLR0_EL0
Accesses to this register use the following encodings:

AMCNTENCLR0_EL0, Activity Monitors Count Enable Clear Register 0

Page 57

MRS <Xt>, AMCNTENCLR0_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0010 0b100

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return AMCNTENCLR0_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMCNTEN0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return AMCNTENCLR0_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return AMCNTENCLR0_EL0;

elsif PSTATE.EL == EL3 then
return AMCNTENCLR0_EL0;

MSR AMCNTENCLR0_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0010 0b100

if IsHighestEL(PSTATE.EL) then
AMCNTENCLR0_EL0 = X[t];

else
UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCNTENCLR0_EL0, Activity Monitors Count Enable Clear Register 0

Page 58

AMCNTENCLR1_EL0, Activity Monitors Count Enable
Clear Register 1

The AMCNTENCLR1_EL0 characteristics are:

Purpose
Disable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>_EL0.

Configuration
AArch64 System register AMCNTENCLR1_EL0 bits [31:0] are architecturally mapped to AArch32 System register
AMCNTENCLR1[31:0] .

AArch64 System register AMCNTENCLR1_EL0 bits [31:0] are architecturally mapped to External register
AMCNTENCLR1[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCNTENCLR1_EL0 are
UNDEFINED.

Attributes
AMCNTENCLR1_EL0 is a 64-bit register.

Field descriptions
The AMCNTENCLR1_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 P<n>, bit [n]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

P<n>, bit [n], for n = 0 to 15

Activity monitor event counter disable bit for AMEVCNTR1<n>_EL0.

Bits [31:16] are RES0. Bits [15:N] are RAZ/WI. N is the value in AMCGCR_EL0.CG1NC.

Possible values of each bit are:

P<n> Meaning
0b0 When read, means that AMEVCNTR1<n>_EL0 is disabled.

When written, has no effect.
0b1 When read, means that AMEVCNTR1<n>_EL0 is enabled. When

written, disables AMEVCNTR1<n>_EL0.

On a Cold reset, this field resets to 0.

Accessing the AMCNTENCLR1_EL0
If the number of auxiliary activity monitor event counters implemented is zero, reads and writes of
AMCNTENCLR1_EL0 are UNDEFINED.

AMCNTENCLR1_EL0, Activity Monitors Count Enable Clear Register 1

Page 59

Note

The number of auxiliary activity monitor event counters implemented is zero
exactly when AMCFGR_EL0.NCG == 0b0000.

Accesses to this register use the following encodings:

MRS <Xt>, AMCNTENCLR1_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0011 0b000

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return AMCNTENCLR1_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMCNTEN1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return AMCNTENCLR1_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return AMCNTENCLR1_EL0;

elsif PSTATE.EL == EL3 then
return AMCNTENCLR1_EL0;

MSR AMCNTENCLR1_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0011 0b000

if IsHighestEL(PSTATE.EL) then
AMCNTENCLR1_EL0 = X[t];

else
UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCNTENCLR1_EL0, Activity Monitors Count Enable Clear Register 1

Page 60

AMCNTENSET0_EL0, Activity Monitors Count Enable
Set Register 0

The AMCNTENSET0_EL0 characteristics are:

Purpose
Enable control bits for the architected activity monitors event counters, AMEVCNTR0<n>_EL0.

Configuration
AArch64 System register AMCNTENSET0_EL0 bits [31:0] are architecturally mapped to AArch32 System register
AMCNTENSET0[31:0] .

AArch64 System register AMCNTENSET0_EL0 bits [31:0] are architecturally mapped to External register
AMCNTENSET0[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCNTENSET0_EL0 are
UNDEFINED.

Attributes
AMCNTENSET0_EL0 is a 64-bit register.

Field descriptions
The AMCNTENSET0_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 P<n>, bit [n]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

P<n>, bit [n], for n = 0 to 15

Activity monitor event counter enable bit for AMEVCNTR0<n>_EL0.

Bits [31:16] are RES0. Bits [15:N] are RAZ/WI. N is the value in AMCGCR_EL0.CG0NC.

Possible values of each bit are:

P<n> Meaning
0b0 When read, means that AMEVCNTR0<n>_EL0 is disabled.

When written, has no effect.
0b1 When read, means that AMEVCNTR0<n>_EL0 is enabled. When

written, enables AMEVCNTR0<n>_EL0.

On a Cold reset, this field resets to 0.

Accessing the AMCNTENSET0_EL0
Accesses to this register use the following encodings:

AMCNTENSET0_EL0, Activity Monitors Count Enable Set Register 0

Page 61

MRS <Xt>, AMCNTENSET0_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0010 0b101

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return AMCNTENSET0_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMCNTEN0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return AMCNTENSET0_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return AMCNTENSET0_EL0;

elsif PSTATE.EL == EL3 then
return AMCNTENSET0_EL0;

MSR AMCNTENSET0_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0010 0b101

if IsHighestEL(PSTATE.EL) then
AMCNTENSET0_EL0 = X[t];

else
UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCNTENSET0_EL0, Activity Monitors Count Enable Set Register 0

Page 62

AMCNTENSET1_EL0, Activity Monitors Count Enable
Set Register 1

The AMCNTENSET1_EL0 characteristics are:

Purpose
Enable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>_EL0.

Configuration
AArch64 System register AMCNTENSET1_EL0 bits [31:0] are architecturally mapped to AArch32 System register
AMCNTENSET1[31:0] .

AArch64 System register AMCNTENSET1_EL0 bits [31:0] are architecturally mapped to External register
AMCNTENSET1[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCNTENSET1_EL0 are
UNDEFINED.

Attributes
AMCNTENSET1_EL0 is a 64-bit register.

Field descriptions
The AMCNTENSET1_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 P<n>, bit [n]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

P<n>, bit [n], for n = 0 to 15

Activity monitor event counter enable bit for AMEVCNTR1<n>_EL0.

Bits [31:16] are RES0. Bits [15:N] are RAZ/WI. N is the value in AMCGCR_EL0.CG1NC.

Possible values of each bit are:

P<n> Meaning
0b0 When read, means that AMEVCNTR1<n>_EL0 is disabled.

When written, has no effect.
0b1 When read, means that AMEVCNTR1<n>_EL0 is enabled. When

written, enables AMEVCNTR1<n>_EL0.

On a Cold reset, this field resets to 0.

Accessing the AMCNTENSET1_EL0
If the number of auxiliary activity monitor event counters implemented is zero, reads and writes of
AMCNTENSET1_EL0 are UNDEFINED.

AMCNTENSET1_EL0, Activity Monitors Count Enable Set Register 1

Page 63

Note

The number of auxiliary activity monitor counters implemented is zero when
AMCFGR_EL0.NCG == 0b0000.

Accesses to this register use the following encodings:

MRS <Xt>, AMCNTENSET1_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0011 0b001

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return AMCNTENSET1_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMCNTEN1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return AMCNTENSET1_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return AMCNTENSET1_EL0;

elsif PSTATE.EL == EL3 then
return AMCNTENSET1_EL0;

MSR AMCNTENSET1_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0011 0b001

if IsHighestEL(PSTATE.EL) then
AMCNTENSET1_EL0 = X[t];

else
UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCNTENSET1_EL0, Activity Monitors Count Enable Set Register 1

Page 64

AMCR_EL0, Activity Monitors Control Register
The AMCR_EL0 characteristics are:

Purpose
Global control register for the activity monitors implementation. AMCR_EL0 is applicable to both the architected and
the auxiliary counter groups.

Configuration
AArch64 System register AMCR_EL0 bits [31:0] are architecturally mapped to AArch32 System register AMCR[31:0] .

AArch64 System register AMCR_EL0 bits [31:0] are architecturally mapped to External register AMCR[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCR_EL0 are UNDEFINED.

Attributes
AMCR_EL0 is a 64-bit register.

Field descriptions
The AMCR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 CG1RZ RES0 HDBG RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:18]

Reserved, RES0.

CG1RZ, bit [17]

When ARMv8.6-AMU is implemented:

Counter Group 1 Read Zero.

CG1RZ Meaning
0b0 System register reads of AMEVCNTR1<n>_EL0 return the

event count at all implemented and enabled Exception levels.
0b1 If the current Exception level is the highest implemented

Exception level, system register reads of
AMEVCNTR1<n>_EL0 return the event count. Otherwise,
reads of AMEVCNTR1<n>_EL0 return a zero value.

Note

Reads from the memory-mapped view are unaffected by this field.

Otherwise:

Reserved, RES0.

AMCR_EL0, Activity Monitors Control Register

Page 65

Bits [16:11]

Reserved, RES0.

HDBG, bit [10]

This bit controls whether activity monitor counting is halted when the PE is halted in Debug state.

HDBG Meaning
0b0 Activity monitors do not halt counting when the PE is halted in

Debug state.
0b1 Activity monitors halt counting when the PE is halted in Debug

state.

Bits [9:0]

Reserved, RES0.

Accessing the AMCR_EL0
Accesses to this register use the following encodings:

MRS <Xt>, AMCR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0010 0b000

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return AMCR_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return AMCR_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return AMCR_EL0;

elsif PSTATE.EL == EL3 then
return AMCR_EL0;

MSR AMCR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0010 0b000

AMCR_EL0, Activity Monitors Control Register

Page 66

if IsHighestEL(PSTATE.EL) then
AMCR_EL0 = X[t];

else
UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCR_EL0, Activity Monitors Control Register

Page 67

AMEVCNTR0<n>_EL0, Activity Monitors Event Counter
Registers 0, n = 0 - 15

The AMEVCNTR0<n>_EL0 characteristics are:

Purpose
Provides access to the architected activity monitor event counters.

Configuration
AArch64 System register AMEVCNTR0<n>_EL0 bits [63:0] are architecturally mapped to AArch32 System register
AMEVCNTR0<n>[63:0] .

AArch64 System register AMEVCNTR0<n>_EL0 bits [63:0] are architecturally mapped to External register
AMEVCNTR0<n>[63:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMEVCNTR0<n>_EL0 are
UNDEFINED.

Attributes
AMEVCNTR0<n>_EL0 is a 64-bit register.

Field descriptions
The AMEVCNTR0<n>_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ACNT
ACNT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACNT, bits [63:0]

Architected activity monitor event counter n.

Value of architected activity monitor event counter n, where n is the number of this register and is a number from 0 to
15.

If ARMv8.6-AMU is implemented, HCR_EL2.AMVOFFEN is 1, SCR_EL3.AMVOFFEN is 1, HCR_EL2.{E2H, TGE} is not
{1,1}, and EL2 is implemented in the current Security state, access to these registers at EL0 or EL1 return
(PCount<63:0> - AMEVCNTVOFF0<n>_EL2<63:0>).

PCount is the physical count returned when AMEVCNTR0<n>_EL0 is read from EL2 or EL3.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

On a Cold reset, this field resets to 0.

Accessing the AMEVCNTR0<n>_EL0
If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of
AMEVCNTR0<n>_EL0 are UNDEFINED.

Note

AMEVCNTR0<n>_EL0, Activity Monitors Event Counter Registers 0, n = 0 - 15

Page 68

AMCGCR_EL0.CG0NC identifies the number of architected activity monitor
event counters.

Accesses to this register use the following encodings:

MRS <Xt>, AMEVCNTR0<n>_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b010:n[3] n[2:0]

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVCNTR0<n>_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return AMEVCNTR0_EL0[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMEVCNTR0<n>_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return AMEVCNTR0_EL0[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return AMEVCNTR0_EL0[UInt(CRm<0>:op2<2:0>)];

elsif PSTATE.EL == EL3 then
return AMEVCNTR0_EL0[UInt(CRm<0>:op2<2:0>)];

MSR AMEVCNTR0<n>_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b010:n[3] n[2:0]

if IsHighestEL(PSTATE.EL) then
AMEVCNTR0_EL0[UInt(CRm<0>:op2<2:0>)] = X[t];

else
UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMEVCNTR0<n>_EL0, Activity Monitors Event Counter Registers 0, n = 0 - 15

Page 69

AMEVCNTR1<n>_EL0, Activity Monitors Event Counter
Registers 1, n = 0 - 15

The AMEVCNTR1<n>_EL0 characteristics are:

Purpose
Provides access to the auxiliary activity monitor event counters.

Configuration
AArch64 System register AMEVCNTR1<n>_EL0 bits [63:0] are architecturally mapped to AArch32 System register
AMEVCNTR1<n>[63:0] .

AArch64 System register AMEVCNTR1<n>_EL0 bits [63:0] are architecturally mapped to External register
AMEVCNTR1<n>[63:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMEVCNTR1<n>_EL0 are
UNDEFINED.

Attributes
AMEVCNTR1<n>_EL0 is a 64-bit register.

Field descriptions
The AMEVCNTR1<n>_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ACNT
ACNT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACNT, bits [63:0]

Auxiliary activity monitor event counter n.

Value of auxiliary activity monitor event counter n, where n is the number of this register and is a number from 0 to
15.

If ARMv8.6-AMU is implemented, HCR_EL2.AMVOFFEN is 1, SCR_EL3.AMVOFFEN is 1, HCR_EL2.{E2H, TGE} is not
{1,1}, EL2 is implemented in the current Security state, and AMCR_EL0.CG1RZ is 0, reads to these registers at EL0
or EL1 return (PCount<63:0> - AMEVCNTVOFF1<n>_EL2<63:0>).

PCount is the physical count returned when AMEVCNTR1<n>_EL0 is read from EL2 or EL3.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

On a Cold reset, this field resets to 0.

Accessing the AMEVCNTR1<n>_EL0
If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of
AMEVCNTR1<n>_EL0 are UNDEFINED.

Note

AMEVCNTR1<n>_EL0, Activity Monitors Event Counter Registers 1, n = 0 - 15

Page 70

AMCGCR_EL0.CG1NC identifies the number of auxiliary activity monitor
event counters.

Accesses to this register use the following encodings:

MRS <Xt>, AMEVCNTR1<n>_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b110:n[3] n[2:0]

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVCNTR1<n>_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then

Zeros();
else

return AMEVCNTR1_EL0[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMEVCNTR1<n>_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif !IsHighestEL(PSTATE.EL) && !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then

Zeros();
else

return AMEVCNTR1_EL0[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif !IsHighestEL(PSTATE.EL) && !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then
Zeros();

else
return AMEVCNTR1_EL0[UInt(CRm<0>:op2<2:0>)];

elsif PSTATE.EL == EL3 then
return AMEVCNTR1_EL0[UInt(CRm<0>:op2<2:0>)];

MSR AMEVCNTR1<n>_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b110:n[3] n[2:0]

if IsHighestEL(PSTATE.EL) then
AMEVCNTR1_EL0[UInt(CRm<0>:op2<2:0>)] = X[t];

else
UNDEFINED;

AMEVCNTR1<n>_EL0, Activity Monitors Event Counter Registers 1, n = 0 - 15

Page 71

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMEVCNTR1<n>_EL0, Activity Monitors Event Counter Registers 1, n = 0 - 15

Page 72

AMEVCNTVOFF0<n>_EL2, Activity Monitors Event
Counter Virtual Offset Registers 0, n = 0 - 15

The AMEVCNTVOFF0<n>_EL2 characteristics are:

Purpose
Holds the 64-bit virtual offset for architected activity monitor events.

Configuration
This register is present only when ARMv8.6-AMU is implemented. Otherwise, direct accesses to
AMEVCNTVOFF0<n>_EL2 are UNDEFINED.

Attributes
AMEVCNTVOFF0<n>_EL2 is a 64-bit register.

Field descriptions
The AMEVCNTVOFF0<n>_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual offset
Virtual offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual offset.

This field resets to an architecturally UNKNOWN value.

Accessing the AMEVCNTVOFF0<n>_EL2
If <n> is not 0, 2 or 3, reads and writes of AMEVCNTVOFF0<n>_EL2 are UNDEFINED.

Accesses to this register use the following encodings:

MRS <Xt>, AMEVCNTVOFF0<n>_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1101 0b100:n[3] n[2:0]

AMEVCNTVOFF0<n>_EL2, Activity Monitors Event Counter Virtual Offset Registers 0, n = 0 - 15

Page 73

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0xA00+8*UInt(CRm<0>:op2<2:0>)];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.AMVOFFEN == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return AMEVCNTVOFF0_EL2[UInt(CRm<0>:op2<2:0>)];

elsif PSTATE.EL == EL3 then
return AMEVCNTVOFF0_EL2[UInt(CRm<0>:op2<2:0>)];

MSR AMEVCNTVOFF0<n>_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1101 0b100:n[3] n[2:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0xA00+8*UInt(CRm<0>:op2<2:0>)] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AMEVCNTVOFF0_EL2[UInt(CRm<0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL3 then

AMEVCNTVOFF0_EL2[UInt(CRm<0>:op2<2:0>)] = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMEVCNTVOFF0<n>_EL2, Activity Monitors Event Counter Virtual Offset Registers 0, n = 0 - 15

Page 74

AMEVCNTVOFF1<n>_EL2, Activity Monitors Event
Counter Virtual Offset Registers 1, n = 0 - 15

The AMEVCNTVOFF1<n>_EL2 characteristics are:

Purpose
Holds the 64-bit virtual offset for auxiliary activity monitor events.

Configuration
This register is present only when ARMv8.6-AMU is implemented. Otherwise, direct accesses to
AMEVCNTVOFF1<n>_EL2 are UNDEFINED.

Attributes
AMEVCNTVOFF1<n>_EL2 is a 64-bit register.

Field descriptions
The AMEVCNTVOFF1<n>_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual offset
Virtual offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual offset.

This field resets to an architecturally UNKNOWN value.

Accessing the AMEVCNTVOFF1<n>_EL2

Note

AMCG1IDR_EL0 identifies which auxiliary activity monitor event counters
have a corresponding virtual offset implemented.

Accesses to this register use the following encodings:

MRS <Xt>, AMEVCNTVOFF1<n>_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1101 0b101:n[3] n[2:0]

AMEVCNTVOFF1<n>_EL2, Activity Monitors Event Counter Virtual Offset Registers 1, n = 0 - 15

Page 75

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0xA80+8*UInt(CRm<0>:op2<2:0>)];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.AMVOFFEN == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return AMEVCNTVOFF1_EL2[UInt(CRm<0>:op2<2:0>)];

elsif PSTATE.EL == EL3 then
return AMEVCNTVOFF1_EL2[UInt(CRm<0>:op2<2:0>)];

MSR AMEVCNTVOFF1<n>_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1101 0b101:n[3] n[2:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0xA80+8*UInt(CRm<0>:op2<2:0>)] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AMEVCNTVOFF1_EL2[UInt(CRm<0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL3 then

AMEVCNTVOFF1_EL2[UInt(CRm<0>:op2<2:0>)] = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMEVCNTVOFF1<n>_EL2, Activity Monitors Event Counter Virtual Offset Registers 1, n = 0 - 15

Page 76

AMEVTYPER0<n>_EL0, Activity Monitors Event Type
Registers 0, n = 0 - 15

The AMEVTYPER0<n>_EL0 characteristics are:

Purpose
Provides information on the events that an architected activity monitor event counter AMEVCNTR0<n>_EL0 counts.

Configuration
AArch64 System register AMEVTYPER0<n>_EL0 bits [31:0] are architecturally mapped to AArch32 System register
AMEVTYPER0<n>[31:0] .

AArch64 System register AMEVTYPER0<n>_EL0 bits [31:0] are architecturally mapped to External register
AMEVTYPER0<n>[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMEVTYPER0<n>_EL0 are
UNDEFINED.

Attributes
AMEVTYPER0<n>_EL0 is a 64-bit register.

Field descriptions
The AMEVTYPER0<n>_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 evtCount
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the architected activity monitor event counter
AMEVCNTR0<n>_EL0. The value of this field is architecturally mandated for each architected counter.

The following table shows the mapping between required event numbers and the corresponding counters:

evtCount Meaning Applies when
0x0011 Processor frequency cycles When n == 0
0x4004 Constant frequency cycles When n == 1
0x0008 Instructions retired When n == 2
0x4005 Memory stall cycles When n == 3

Accessing the AMEVTYPER0<n>_EL0
If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of
AMEVTYPER0<n>_EL0 are UNDEFINED.

Note

AMEVTYPER0<n>_EL0, Activity Monitors Event Type Registers 0, n = 0 - 15

Page 77

AMCGCR_EL0.CG0NC identifies the number of architected activity monitor
event counters.

Accesses to this register use the following encodings:

MRS <Xt>, AMEVTYPER0<n>_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b011:n[3] n[2:0]

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return AMEVTYPER0_EL0[UInt(CRm<0>:op2<2:0>)];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return AMEVTYPER0_EL0[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return AMEVTYPER0_EL0[UInt(CRm<0>:op2<2:0>)];

elsif PSTATE.EL == EL3 then
return AMEVTYPER0_EL0[UInt(CRm<0>:op2<2:0>)];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMEVTYPER0<n>_EL0, Activity Monitors Event Type Registers 0, n = 0 - 15

Page 78

AMEVTYPER1<n>_EL0, Activity Monitors Event Type
Registers 1, n = 0 - 15

The AMEVTYPER1<n>_EL0 characteristics are:

Purpose
Provides information on the events that an auxiliary activity monitor event counter AMEVCNTR1<n>_EL0 counts.

Configuration
AArch64 System register AMEVTYPER1<n>_EL0 bits [31:0] are architecturally mapped to AArch32 System register
AMEVTYPER1<n>[31:0] .

AArch64 System register AMEVTYPER1<n>_EL0 bits [31:0] are architecturally mapped to External register
AMEVTYPER1<n>[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMEVTYPER1<n>_EL0 are
UNDEFINED.

Attributes
AMEVTYPER1<n>_EL0 is a 64-bit register.

Field descriptions
The AMEVTYPER1<n>_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 evtCount
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the auxiliary activity monitor event counter
AMEVCNTR1<n>_EL0.

It is IMPLEMENTATION DEFINED what values are supported by each counter.

If software writes a value to this field which is not supported by the corresponding counter AMEVCNTR1<n>_EL0,
then:

• It is UNPREDICTABLE which event will be counted.
• The value read back is UNKNOWN.

The event counted by AMEVCNTR1<n>_EL0 might be fixed at implementation. In this case, the field is read-only and
writes are UNDEFINED.

If the corresponding counter AMEVCNTR1<n>_EL0 is enabled, writes to this register have UNPREDICTABLE results.

AMEVTYPER1<n>_EL0, Activity Monitors Event Type Registers 1, n = 0 - 15

Page 79

Accessing the AMEVTYPER1<n>_EL0
If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of
AMEVTYPER1<n>_EL0 are UNDEFINED.

Note

AMCGCR_EL0.CG1NC identifies the number of auxiliary activity monitor
event counters.

Accesses to this register use the following encodings:

MRS <Xt>, AMEVTYPER1<n>_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b111:n[3] n[2:0]

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVTYPER1<n>_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return AMEVTYPER1_EL0[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMEVTYPER1<n>_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return AMEVTYPER1_EL0[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return AMEVTYPER1_EL0[UInt(CRm<0>:op2<2:0>)];

elsif PSTATE.EL == EL3 then
return AMEVTYPER1_EL0[UInt(CRm<0>:op2<2:0>)];

MSR AMEVTYPER1<n>_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b111:n[3] n[2:0]

if IsHighestEL(PSTATE.EL) then
AMEVTYPER1_EL0[UInt(CRm<0>:op2<2:0>)] = X[t];

else
UNDEFINED;

AMEVTYPER1<n>_EL0, Activity Monitors Event Type Registers 1, n = 0 - 15

Page 80

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMEVTYPER1<n>_EL0, Activity Monitors Event Type Registers 1, n = 0 - 15

Page 81

AMUSERENR_EL0, Activity Monitors User Enable
Register

The AMUSERENR_EL0 characteristics are:

Purpose
Global user enable register for the activity monitors. Enables or disables EL0 access to the activity monitors.
AMUSERENR_EL0 is applicable to both the architected and the auxiliary counter groups.

Configuration
AArch64 System register AMUSERENR_EL0 bits [31:0] are architecturally mapped to AArch32 System register
AMUSERENR[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMUSERENR_EL0 are
UNDEFINED.

Attributes
AMUSERENR_EL0 is a 64-bit register.

Field descriptions
The AMUSERENR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 EN
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:1]

Reserved, RES0.

EN, bit [0]

Traps EL0 accesses to the activity monitors registers to EL1, or to EL2 when it is implemented and enabled for the
current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to the following registers are trapped, reported using EC syndrome value 0x18:

◦ AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0, AMCNTENCLR1_EL0, AMCNTENSET0_EL0,
AMCNTENSET1_EL0, AMCR_EL0, AMEVCNTR0<n>_EL0, AMEVCNTR1<n>_EL0,
AMEVTYPER0<n>_EL0, and AMEVTYPER1<n>_EL0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped and reported using EC
syndrome value 0x03, MRRC and MCRR accesses are trapped and reported using EC syndrome value 0x04:

◦ AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0, AMCNTENSET1, AMCR,
AMEVCNTR0<n>, AMEVCNTR1<n>, AMEVTYPER0<n>, and AMEVTYPER1<n>.

EN Meaning
0b0 EL0 accesses to the activity monitors registers are trapped.
0b1 This control does not cause any instructions to be trapped.

Software can access all activity monitor registers at EL0.

Note

AMUSERENR_EL0, Activity Monitors User Enable Register

Page 82

• AMUSERENR_EL0 can always be read at EL0 and is not governed by
this bit.

Accessing the AMUSERENR_EL0
Accesses to this register use the following encodings:

MRS <Xt>, AMUSERENR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0010 0b011

if PSTATE.EL == EL0 then
if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return AMUSERENR_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return AMUSERENR_EL0;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return AMUSERENR_EL0;
elsif PSTATE.EL == EL3 then

return AMUSERENR_EL0;

MSR AMUSERENR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0010 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

AMUSERENR_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AMUSERENR_EL0 = X[t];

elsif PSTATE.EL == EL3 then
AMUSERENR_EL0 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMUSERENR_EL0, Activity Monitors User Enable Register

Page 83

APDAKeyHi_EL1, Pointer Authentication Key A for
Data (bits[127:64])

The APDAKeyHi_EL1 characteristics are:

Purpose
Holds bits[127:64] of key A used for authentication of data pointer values.

Note

The term APDAKey_EL1 is used to describe the concatenation of
APDAKeyHi_EL1: APDAKeyLo_EL1.

Configuration
This register is present only when ARMv8.3-PAuth is implemented. Otherwise, direct accesses to APDAKeyHi_EL1 are
UNDEFINED.

Attributes
APDAKeyHi_EL1 is a 64-bit register.

Field descriptions
The APDAKeyHi_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
64 bit value, bits[127:64] of the 128 bit pointer authentication key value
64 bit value, bits[127:64] of the 128 bit pointer authentication key value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

64 bit value, bits[127:64] of the 128 bit pointer authentication key value.

This field resets to an architecturally UNKNOWN value.

Accessing the APDAKeyHi_EL1
Accesses to this register use the following encodings:

MRS <Xt>, APDAKeyHi_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0010 0b001

APDAKeyHi_EL1, Pointer Authentication Key A for Data (bits[127:64])

Page 84

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.APDAKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return APDAKeyHi_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return APDAKeyHi_EL1;
elsif PSTATE.EL == EL3 then

return APDAKeyHi_EL1;

MSR APDAKeyHi_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.APDAKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
APDAKeyHi_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

APDAKeyHi_EL1 = X[t];
elsif PSTATE.EL == EL3 then

APDAKeyHi_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

APDAKeyHi_EL1, Pointer Authentication Key A for Data (bits[127:64])

Page 85

APDAKeyLo_EL1, Pointer Authentication Key A for
Data (bits[63:0])

The APDAKeyLo_EL1 characteristics are:

Purpose
Holds bits[63:0] of key A used for authentication of data pointer values.

Note

The term APDAKey_EL1 is used to describe the concatenation of
APDAKeyHi_EL1: APDAKeyLo_EL1.

Configuration
This register is present only when ARMv8.3-PAuth is implemented. Otherwise, direct accesses to APDAKeyLo_EL1 are
UNDEFINED.

Attributes
APDAKeyLo_EL1 is a 64-bit register.

Field descriptions
The APDAKeyLo_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
64 bit value, bits[63:0] of the 128 bit pointer authentication key value
64 bit value, bits[63:0] of the 128 bit pointer authentication key value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

64 bit value, bits[63:0] of the 128 bit pointer authentication key value.

This field resets to an architecturally UNKNOWN value.

Accessing the APDAKeyLo_EL1
Accesses to this register use the following encodings:

MRS <Xt>, APDAKeyLo_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0010 0b000

APDAKeyLo_EL1, Pointer Authentication Key A for Data (bits[63:0])

Page 86

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.APDAKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return APDAKeyLo_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return APDAKeyLo_EL1;
elsif PSTATE.EL == EL3 then

return APDAKeyLo_EL1;

MSR APDAKeyLo_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.APDAKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
APDAKeyLo_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

APDAKeyLo_EL1 = X[t];
elsif PSTATE.EL == EL3 then

APDAKeyLo_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

APDAKeyLo_EL1, Pointer Authentication Key A for Data (bits[63:0])

Page 87

APDBKeyHi_EL1, Pointer Authentication Key B for
Data (bits[127:64])

The APDBKeyHi_EL1 characteristics are:

Purpose
Holds bits[127:64] of key B used for authentication of data pointer values.

Note

The term APDBKey_EL1 is used to describe the concatenation of
APDBKeyHi_EL1: APDBKeyLo_EL1.

Configuration
This register is present only when ARMv8.3-PAuth is implemented. Otherwise, direct accesses to APDBKeyHi_EL1 are
UNDEFINED.

Attributes
APDBKeyHi_EL1 is a 64-bit register.

Field descriptions
The APDBKeyHi_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
64 bit value, bits[127:64] of the 128 bit pointer authentication key value
64 bit value, bits[127:64] of the 128 bit pointer authentication key value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

64 bit value, bits[127:64] of the 128 bit pointer authentication key value.

This field resets to an architecturally UNKNOWN value.

Accessing the APDBKeyHi_EL1
Accesses to this register use the following encodings:

MRS <Xt>, APDBKeyHi_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0010 0b011

APDBKeyHi_EL1, Pointer Authentication Key B for Data (bits[127:64])

Page 88

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.APDBKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return APDBKeyHi_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return APDBKeyHi_EL1;
elsif PSTATE.EL == EL3 then

return APDBKeyHi_EL1;

MSR APDBKeyHi_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0010 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.APDBKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
APDBKeyHi_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

APDBKeyHi_EL1 = X[t];
elsif PSTATE.EL == EL3 then

APDBKeyHi_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

APDBKeyHi_EL1, Pointer Authentication Key B for Data (bits[127:64])

Page 89

APDBKeyLo_EL1, Pointer Authentication Key B for
Data (bits[63:0])

The APDBKeyLo_EL1 characteristics are:

Purpose
Holds bits[63:0] of key B used for authentication of data pointer values.

Note

The term APDBKey_EL1 is used to describe the concatenation of
APDBKeyHi_EL1: APDBKeyLo_EL1.

Configuration
This register is present only when ARMv8.3-PAuth is implemented. Otherwise, direct accesses to APDBKeyLo_EL1 are
UNDEFINED.

Attributes
APDBKeyLo_EL1 is a 64-bit register.

Field descriptions
The APDBKeyLo_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
64 bit value, bits[63:0] of the 128 bit pointer authentication key value
64 bit value, bits[63:0] of the 128 bit pointer authentication key value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

64 bit value, bits[63:0] of the 128 bit pointer authentication key value.

This field resets to an architecturally UNKNOWN value.

Accessing the APDBKeyLo_EL1
Accesses to this register use the following encodings:

MRS <Xt>, APDBKeyLo_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0010 0b010

APDBKeyLo_EL1, Pointer Authentication Key B for Data (bits[63:0])

Page 90

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.APDBKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return APDBKeyLo_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return APDBKeyLo_EL1;
elsif PSTATE.EL == EL3 then

return APDBKeyLo_EL1;

MSR APDBKeyLo_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.APDBKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
APDBKeyLo_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

APDBKeyLo_EL1 = X[t];
elsif PSTATE.EL == EL3 then

APDBKeyLo_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

APDBKeyLo_EL1, Pointer Authentication Key B for Data (bits[63:0])

Page 91

APGAKeyHi_EL1, Pointer Authentication Key A for
Code (bits[127:64])

The APGAKeyHi_EL1 characteristics are:

Purpose
Holds bits[127:64] of key used for generic pointer authentication code.

Note

The term APGAKey_EL1 is used to describe the concatenation of
APGAKeyHi_EL1: APGAKeyLo_EL1.

Configuration
This register is present only when ARMv8.3-PAuth is implemented. Otherwise, direct accesses to APGAKeyHi_EL1 are
UNDEFINED.

Attributes
APGAKeyHi_EL1 is a 64-bit register.

Field descriptions
The APGAKeyHi_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
64 bit value, bits[127:64] of the 128 bit pointer authentication key value
64 bit value, bits[127:64] of the 128 bit pointer authentication key value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

64 bit value, bits[127:64] of the 128 bit pointer authentication key value.

This field resets to an architecturally UNKNOWN value.

Accessing the APGAKeyHi_EL1
Accesses to this register use the following encodings:

MRS <Xt>, APGAKeyHi_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0011 0b001

APGAKeyHi_EL1, Pointer Authentication Key A for Code (bits[127:64])

Page 92

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.APGAKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return APGAKeyHi_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return APGAKeyHi_EL1;
elsif PSTATE.EL == EL3 then

return APGAKeyHi_EL1;

MSR APGAKeyHi_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.APGAKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
APGAKeyHi_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

APGAKeyHi_EL1 = X[t];
elsif PSTATE.EL == EL3 then

APGAKeyHi_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

APGAKeyHi_EL1, Pointer Authentication Key A for Code (bits[127:64])

Page 93

APGAKeyLo_EL1, Pointer Authentication Key A for
Code (bits[63:0])

The APGAKeyLo_EL1 characteristics are:

Purpose
Holds bits[63:0] of key used for generic pointer authentication code.

Note

The term APGAKey_EL1 is used to describe the concatenation of
APGAKeyHi_EL1: APGAKeyLo_EL1.

Configuration
This register is present only when ARMv8.3-PAuth is implemented. Otherwise, direct accesses to APGAKeyLo_EL1 are
UNDEFINED.

Attributes
APGAKeyLo_EL1 is a 64-bit register.

Field descriptions
The APGAKeyLo_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
64 bit value, bits[63:0] of the 128 bit pointer authentication key value
64 bit value, bits[63:0] of the 128 bit pointer authentication key value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

64 bit value, bits[63:0] of the 128 bit pointer authentication key value.

This field resets to an architecturally UNKNOWN value.

Accessing the APGAKeyLo_EL1
Accesses to this register use the following encodings:

MRS <Xt>, APGAKeyLo_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0011 0b000

APGAKeyLo_EL1, Pointer Authentication Key A for Code (bits[63:0])

Page 94

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.APGAKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return APGAKeyLo_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return APGAKeyLo_EL1;
elsif PSTATE.EL == EL3 then

return APGAKeyLo_EL1;

MSR APGAKeyLo_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.APGAKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
APGAKeyLo_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

APGAKeyLo_EL1 = X[t];
elsif PSTATE.EL == EL3 then

APGAKeyLo_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

APGAKeyLo_EL1, Pointer Authentication Key A for Code (bits[63:0])

Page 95

APIAKeyHi_EL1, Pointer Authentication Key A for
Instruction (bits[127:64])

The APIAKeyHi_EL1 characteristics are:

Purpose
Holds bits[127:64] of key A used for authentication of instruction pointer values.

Note

The term APIAKey_EL1 is used to describe the concatenation of
APIAKeyHi_EL1: APIAKeyLo_EL1.

Configuration
This register is present only when ARMv8.3-PAuth is implemented. Otherwise, direct accesses to APIAKeyHi_EL1 are
UNDEFINED.

Attributes
APIAKeyHi_EL1 is a 64-bit register.

Field descriptions
The APIAKeyHi_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
64 bit value, bits[127:64] of the 128 bit pointer authentication key value
64 bit value, bits[127:64] of the 128 bit pointer authentication key value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

64 bit value, bits[127:64] of the 128 bit pointer authentication key value.

This field resets to an architecturally UNKNOWN value.

Accessing the APIAKeyHi_EL1
Accesses to this register use the following encodings:

MRS <Xt>, APIAKeyHi_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0001 0b001

APIAKeyHi_EL1, Pointer Authentication Key A for Instruction (bits[127:64])

Page 96

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.APIAKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return APIAKeyHi_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return APIAKeyHi_EL1;
elsif PSTATE.EL == EL3 then

return APIAKeyHi_EL1;

MSR APIAKeyHi_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.APIAKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
APIAKeyHi_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

APIAKeyHi_EL1 = X[t];
elsif PSTATE.EL == EL3 then

APIAKeyHi_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

APIAKeyHi_EL1, Pointer Authentication Key A for Instruction (bits[127:64])

Page 97

APIAKeyLo_EL1, Pointer Authentication Key A for
Instruction (bits[63:0])

The APIAKeyLo_EL1 characteristics are:

Purpose
Holds bits[63:0] of key A used for authentication of instruction pointer values.

Note

The term APIAKey_EL1 is used to describe the concatenation of
APIAKeyHi_EL1: APIAKeyLo_EL1.

Configuration
This register is present only when ARMv8.3-PAuth is implemented. Otherwise, direct accesses to APIAKeyLo_EL1 are
UNDEFINED.

Attributes
APIAKeyLo_EL1 is a 64-bit register.

Field descriptions
The APIAKeyLo_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
64 bit value, bits[63:0] of the 128 bit pointer authentication key value
64 bit value, bits[63:0] of the 128 bit pointer authentication key value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

64 bit value, bits[63:0] of the 128 bit pointer authentication key value.

This field resets to an architecturally UNKNOWN value.

Accessing the APIAKeyLo_EL1
Accesses to this register use the following encodings:

MRS <Xt>, APIAKeyLo_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0001 0b000

APIAKeyLo_EL1, Pointer Authentication Key A for Instruction (bits[63:0])

Page 98

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.APIAKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return APIAKeyLo_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return APIAKeyLo_EL1;
elsif PSTATE.EL == EL3 then

return APIAKeyLo_EL1;

MSR APIAKeyLo_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.APIAKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
APIAKeyLo_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

APIAKeyLo_EL1 = X[t];
elsif PSTATE.EL == EL3 then

APIAKeyLo_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

APIAKeyLo_EL1, Pointer Authentication Key A for Instruction (bits[63:0])

Page 99

APIBKeyHi_EL1, Pointer Authentication Key B for
Instruction (bits[127:64])

The APIBKeyHi_EL1 characteristics are:

Purpose
Holds bits[127:64] of key B used for authentication of instruction pointer values.

Note

The term APIBKey_EL1 is used to describe the concatenation of
APIBKeyHi_EL1: APIBKeyLo_EL1.

Configuration
This register is present only when ARMv8.3-PAuth is implemented. Otherwise, direct accesses to APIBKeyHi_EL1 are
UNDEFINED.

Attributes
APIBKeyHi_EL1 is a 64-bit register.

Field descriptions
The APIBKeyHi_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
64 bit value, bits[127:64] of the 128 bit pointer authentication key value
64 bit value, bits[127:64] of the 128 bit pointer authentication key value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

64 bit value, bits[127:64] of the 128 bit pointer authentication key value.

This field resets to an architecturally UNKNOWN value.

Accessing the APIBKeyHi_EL1
Accesses to this register use the following encodings:

MRS <Xt>, APIBKeyHi_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0001 0b011

APIBKeyHi_EL1, Pointer Authentication Key B for Instruction (bits[127:64])

Page 100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.APIBKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return APIBKeyHi_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return APIBKeyHi_EL1;
elsif PSTATE.EL == EL3 then

return APIBKeyHi_EL1;

MSR APIBKeyHi_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0001 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.APIBKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
APIBKeyHi_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

APIBKeyHi_EL1 = X[t];
elsif PSTATE.EL == EL3 then

APIBKeyHi_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

APIBKeyHi_EL1, Pointer Authentication Key B for Instruction (bits[127:64])

Page 101

APIBKeyLo_EL1, Pointer Authentication Key B for
Instruction (bits[63:0])

The APIBKeyLo_EL1 characteristics are:

Purpose
Holds bits[63:0] of key B used for authentication of instruction pointer values.

Note

The term APIBKey_EL1 is used to describe the concatenation of
APIBKeyHi_EL1: APIBKeyLo_EL1.

Configuration
This register is present only when ARMv8.3-PAuth is implemented. Otherwise, direct accesses to APIBKeyLo_EL1 are
UNDEFINED.

Attributes
APIBKeyLo_EL1 is a 64-bit register.

Field descriptions
The APIBKeyLo_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
64 bit value, bits[63:0] of the 128 bit pointer authentication key value
64 bit value, bits[63:0] of the 128 bit pointer authentication key value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

64 bit value, bits[63:0] of the 128 bit pointer authentication key value.

This field resets to an architecturally UNKNOWN value.

Accessing the APIBKeyLo_EL1
Accesses to this register use the following encodings:

MRS <Xt>, APIBKeyLo_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0001 0b010

APIBKeyLo_EL1, Pointer Authentication Key B for Instruction (bits[63:0])

Page 102

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.APIBKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return APIBKeyLo_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return APIBKeyLo_EL1;
elsif PSTATE.EL == EL3 then

return APIBKeyLo_EL1;

MSR APIBKeyLo_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.APIBKey == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
APIBKeyLo_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.APK == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

APIBKeyLo_EL1 = X[t];
elsif PSTATE.EL == EL3 then

APIBKeyLo_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

APIBKeyLo_EL1, Pointer Authentication Key B for Instruction (bits[63:0])

Page 103

AT S12E0R, Address Translate Stages 1 and 2 EL0
Read

The AT S12E0R characteristics are:

Purpose
Performs stage 1 and 2 address translations from EL0, with permissions as if reading from the given virtual address
from EL0, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

• Otherwise, the EL1&0 translation regime.

Configuration
There are no configuration notes.

Attributes
AT S12E0R is a 64-bit System instruction.

Field descriptions
The AT S12E0R input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then VA[63:32] is RES0.

Executing the AT S12E0R instruction
Accesses to this instruction use the following encodings:

AT S12E0R, <Xt>

op0 op1 CRn CRm op2
0b01 0b100 0b0111 0b1000 0b110

AT S12E0R, Address Translate Stages 1 and 2 EL0 Read

Page 104

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00' then
AT_S1E0R(X[t]);

else
AT_S12E0R(X[t]);

elsif PSTATE.EL == EL3 then
if !EL2Enabled() then

AT_S1E0R(X[t]);
elsif EL2Enabled() && (HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00') then

AT_S1E0R(X[t]);
else

AT_S12E0R(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S12E0R, Address Translate Stages 1 and 2 EL0 Read

Page 105

AT S12E0W, Address Translate Stages 1 and 2 EL0
Write

The AT S12E0W characteristics are:

Purpose
Performs stage 1 and 2 address translations from EL0, with permissions as if writing to the given virtual address from
EL0, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

• Otherwise, the EL1&0 translation regime.

Configuration
There are no configuration notes.

Attributes
AT S12E0W is a 64-bit System instruction.

Field descriptions
The AT S12E0W input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then VA[63:32] is RES0.

Executing the AT S12E0W instruction
Accesses to this instruction use the following encodings:

AT S12E0W, <Xt>

op0 op1 CRn CRm op2
0b01 0b100 0b0111 0b1000 0b111

AT S12E0W, Address Translate Stages 1 and 2 EL0 Write

Page 106

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00' then
AT_S1E0W(X[t]);

else
AT_S12E0W(X[t]);

elsif PSTATE.EL == EL3 then
if !EL2Enabled() then

AT_S1E0W(X[t]);
elsif EL2Enabled() && (HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00') then

AT_S1E0W(X[t]);
else

AT_S12E0W(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S12E0W, Address Translate Stages 1 and 2 EL0 Write

Page 107

AT S12E1R, Address Translate Stages 1 and 2 EL1
Read

The AT S12E1R characteristics are:

Purpose
Performs stage 1 and 2 address translation, with permissions as if reading from the given virtual address from EL1, or
from EL2 if the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from EL1.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

Configuration
There are no configuration notes.

Attributes
AT S12E1R is a 64-bit System instruction.

Field descriptions
The AT S12E1R input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then VA[63:32] is RES0.

Executing the AT S12E1R instruction
Accesses to this instruction use the following encodings:

AT S12E1R, <Xt>

op0 op1 CRn CRm op2
0b01 0b100 0b0111 0b1000 0b100

AT S12E1R, Address Translate Stages 1 and 2 EL1 Read

Page 108

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00' then
AT_S1E1R(X[t]);

else
AT_S12E1R(X[t]);

elsif PSTATE.EL == EL3 then
if !EL2Enabled() then

AT_S1E1R(X[t]);
elsif EL2Enabled() && (HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00') then

AT_S1E1R(X[t]);
else

AT_S12E1R(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S12E1R, Address Translate Stages 1 and 2 EL1 Read

Page 109

AT S12E1W, Address Translate Stages 1 and 2 EL1
Write

The AT S12E1W characteristics are:

Purpose
Performs stage 1 and 2 address translation, with permissions as if writing to the given virtual address from EL1, or
from EL2 if the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from EL1.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

Configuration
There are no configuration notes.

Attributes
AT S12E1W is a 64-bit System instruction.

Field descriptions
The AT S12E1W input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then VA[63:32] is RES0.

Executing the AT S12E1W instruction
Accesses to this instruction use the following encodings:

AT S12E1W, <Xt>

op0 op1 CRn CRm op2
0b01 0b100 0b0111 0b1000 0b101

AT S12E1W, Address Translate Stages 1 and 2 EL1 Write

Page 110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00' then
AT_S1E1W(X[t]);

else
AT_S12E1W(X[t]);

elsif PSTATE.EL == EL3 then
if !EL2Enabled() then

AT_S1E1W(X[t]);
elsif EL2Enabled() && (HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00') then

AT_S1E1W(X[t]);
else

AT_S12E1W(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S12E1W, Address Translate Stages 1 and 2 EL1 Write

Page 111

AT S1E0R, Address Translate Stage 1 EL0 Read
The AT S1E0R characteristics are:

Purpose
Performs stage 1 address translation from EL0, with permissions as if reading from the given virtual address from
EL0, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

• Otherwise, the EL1&0 translation regime.

Configuration
There are no configuration notes.

Attributes
AT S1E0R is a 64-bit System instruction.

Field descriptions
The AT S1E0R input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then VA[63:32] is RES0.

Executing the AT S1E0R instruction
Accesses to this instruction use the following encodings:

AT S1E0R, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1000 0b010

AT S1E0R, Address Translate Stage 1 EL0 Read

Page 112

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AT == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.ATS1E0R == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AT_S1E0R(X[t]);

elsif PSTATE.EL == EL2 then
AT_S1E0R(X[t]);

elsif PSTATE.EL == EL3 then
AT_S1E0R(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E0R, Address Translate Stage 1 EL0 Read

Page 113

AT S1E0W, Address Translate Stage 1 EL0 Write
The AT S1E0W characteristics are:

Purpose
Performs stage 1 address translation from EL0, with permissions as if writing to the given virtual address from EL0,
using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

• Otherwise, the EL1&0 translation regime.

Configuration
There are no configuration notes.

Attributes
AT S1E0W is a 64-bit System instruction.

Field descriptions
The AT S1E0W input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then VA[63:32] is RES0.

Executing the AT S1E0W instruction
Accesses to this instruction use the following encodings:

AT S1E0W, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1000 0b011

AT S1E0W, Address Translate Stage 1 EL0 Write

Page 114

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AT == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.ATS1E0W == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AT_S1E0W(X[t]);

elsif PSTATE.EL == EL2 then
AT_S1E0W(X[t]);

elsif PSTATE.EL == EL3 then
AT_S1E0W(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E0W, Address Translate Stage 1 EL0 Write

Page 115

AT S1E1R, Address Translate Stage 1 EL1 Read
The AT S1E1R characteristics are:

Purpose
Performs stage 1 address translation, with permissions as if reading from the given virtual address from EL1, or from
EL2 if the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from EL1.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

Configuration
There are no configuration notes.

Attributes
AT S1E1R is a 64-bit System instruction.

Field descriptions
The AT S1E1R input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then VA[63:32] is RES0.

Executing the AT S1E1R instruction
Accesses to this instruction use the following encodings:

AT S1E1R, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1000 0b000

AT S1E1R, Address Translate Stage 1 EL1 Read

Page 116

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AT == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.ATS1E1R == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AT_S1E1R(X[t]);

elsif PSTATE.EL == EL2 then
AT_S1E1R(X[t]);

elsif PSTATE.EL == EL3 then
AT_S1E1R(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E1R, Address Translate Stage 1 EL1 Read

Page 117

AT S1E1RP, Address Translate Stage 1 EL1 Read PAN
The AT S1E1RP characteristics are:

Purpose
Performs a stage 1 address translation, where the value of PSTATE.PAN determines if a read from a location will
generate a permission fault for a privileged access, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from EL1.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

Configuration
This instruction is present only when ARMv8.2-ATS1E1 is implemented. Otherwise, direct accesses to AT S1E1RP are
UNDEFINED.

Attributes
AT S1E1RP is a 64-bit System instruction.

Field descriptions
The AT S1E1RP input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then VA[63:32] is RES0.

Executing the AT S1E1RP instruction
Accesses to this instruction use the following encodings:

AT S1E1RP, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1001 0b000

AT S1E1RP, Address Translate Stage 1 EL1 Read PAN

Page 118

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AT == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.ATS1E1RP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AT_S1E1RP(X[t]);

elsif PSTATE.EL == EL2 then
AT_S1E1RP(X[t]);

elsif PSTATE.EL == EL3 then
AT_S1E1RP(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E1RP, Address Translate Stage 1 EL1 Read PAN

Page 119

AT S1E1W, Address Translate Stage 1 EL1 Write
The AT S1E1W characteristics are:

Purpose
Performs stage 1 address translation, with permissions as if writing to the given virtual address from EL1, or from EL2
if the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from EL1.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

Configuration
There are no configuration notes.

Attributes
AT S1E1W is a 64-bit System instruction.

Field descriptions
The AT S1E1W input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then VA[63:32] is RES0.

Executing the AT S1E1W instruction
Accesses to this instruction use the following encodings:

AT S1E1W, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1000 0b001

AT S1E1W, Address Translate Stage 1 EL1 Write

Page 120

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AT == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.ATS1E1W == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AT_S1E1W(X[t]);

elsif PSTATE.EL == EL2 then
AT_S1E1W(X[t]);

elsif PSTATE.EL == EL3 then
AT_S1E1W(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E1W, Address Translate Stage 1 EL1 Write

Page 121

AT S1E1WP, Address Translate Stage 1 EL1 Write PAN
The AT S1E1WP characteristics are:

Purpose
Performs a stage 1 address translation, where the value of PSTATE.PAN determines if a write to a location will
generate a permission fault for a privileged access, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from EL1.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

Configuration
This instruction is present only when ARMv8.2-ATS1E1 is implemented. Otherwise, direct accesses to AT S1E1WP are
UNDEFINED.

Attributes
AT S1E1WP is a 64-bit System instruction.

Field descriptions
The AT S1E1WP input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then VA[63:32] is RES0.

Executing the AT S1E1WP instruction
Accesses to this instruction use the following encodings:

AT S1E1WP, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1001 0b001

AT S1E1WP, Address Translate Stage 1 EL1 Write PAN

Page 122

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AT == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.ATS1E1WP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AT_S1E1WP(X[t]);

elsif PSTATE.EL == EL2 then
AT_S1E1WP(X[t]);

elsif PSTATE.EL == EL3 then
AT_S1E1WP(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E1WP, Address Translate Stage 1 EL1 Write PAN

Page 123

AT S1E2R, Address Translate Stage 1 EL2 Read
The AT S1E2R characteristics are:

Purpose
Performs stage 1 address translation as defined for EL2, with permissions as if reading from the given virtual address.

Configuration
There are no configuration notes.

Attributes
AT S1E2R is a 64-bit System instruction.

Field descriptions
The AT S1E2R input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then VA[63:32] is RES0.

Executing the AT S1E2R instruction
Accesses to this instruction use the following encodings:

AT S1E2R, <Xt>

op0 op1 CRn CRm op2
0b01 0b100 0b0111 0b1000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AT_S1E2R(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
AT_S1E2R(X[t]);

AT S1E2R, Address Translate Stage 1 EL2 Read

Page 124

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E2R, Address Translate Stage 1 EL2 Read

Page 125

AT S1E2W, Address Translate Stage 1 EL2 Write
The AT S1E2W characteristics are:

Purpose
Performs stage 1 address translation as defined for EL2, with permissions as if writing to the given virtual address.

Configuration
There are no configuration notes.

Attributes
AT S1E2W is a 64-bit System instruction.

Field descriptions
The AT S1E2W input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then VA[63:32] is RES0.

Executing the AT S1E2W instruction
Accesses to this instruction use the following encodings:

AT S1E2W, <Xt>

op0 op1 CRn CRm op2
0b01 0b100 0b0111 0b1000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AT_S1E2W(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
AT_S1E2W(X[t]);

AT S1E2W, Address Translate Stage 1 EL2 Write

Page 126

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E2W, Address Translate Stage 1 EL2 Write

Page 127

AT S1E3R, Address Translate Stage 1 EL3 Read
The AT S1E3R characteristics are:

Purpose
Performs stage 1 address translation as defined for EL3, with permissions as if reading from the given virtual address.

Configuration
There are no configuration notes.

Attributes
AT S1E3R is a 64-bit System instruction.

Field descriptions
The AT S1E3R input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then VA[63:32] is RES0.

Executing the AT S1E3R instruction
Accesses to this instruction use the following encodings:

AT S1E3R, <Xt>

op0 op1 CRn CRm op2
0b01 0b110 0b0111 0b1000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AT_S1E3R(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E3R, Address Translate Stage 1 EL3 Read

Page 128

AT S1E3W, Address Translate Stage 1 EL3 Write
The AT S1E3W characteristics are:

Purpose
Performs stage 1 address translation as defined for EL3, with permissions as if writing to the given virtual address.

Configuration
There are no configuration notes.

Attributes
AT S1E3W is a 64-bit System instruction.

Field descriptions
The AT S1E3W input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then VA[63:32] is RES0.

Executing the AT S1E3W instruction
Accesses to this instruction use the following encodings:

AT S1E3W, <Xt>

op0 op1 CRn CRm op2
0b01 0b110 0b0111 0b1000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AT_S1E3W(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E3W, Address Translate Stage 1 EL3 Write

Page 129

CCSIDR2_EL1, Current Cache Size ID Register 2
The CCSIDR2_EL1 characteristics are:

Purpose
When ARMv8.3-CCIDX is implemented, provides the information about the architecture of the currently selected
cache from bits[63:32] of CCSIDR_EL1.

When ARMv8.3-CCIDX is not implemented, this register is not implemented.

Configuration
AArch64 System register CCSIDR2_EL1 bits [31:0] are architecturally mapped to AArch32 System register
CCSIDR2[31:0] .

This register is present only when ARMv8.3-CCIDX is implemented. Otherwise, direct accesses to CCSIDR2_EL1 are
UNDEFINED.

In an AArch64 only implementation, it is IMPLEMENTATION DEFINED whether reading this register gives an UNKNOWN
value or is UNDEFINED.

The implementation includes one CCSIDR2_EL1 for each cache that it can access. CSSELR_EL1 selects which Cache
Size ID Register is accessible.

Attributes
CCSIDR2_EL1 is a 64-bit register.

Field descriptions
The CCSIDR2_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 NumSets
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

NumSets, bits [23:0]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have to
be a power of 2.

Accessing the CCSIDR2_EL1
If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then on a read of the CCSIDR2_EL1 the
behavior is CONSTRAINED UNPREDICTABLE, and can be one of the following:

• The CCSIDR2_EL1 read is treated as NOP.
• The CCSIDR2_EL1 read is UNDEFINED.
• The CCSIDR2_EL1 read returns an UNKNOWN value.

Accesses to this register use the following encodings:

CCSIDR2_EL1, Current Cache Size ID Register 2

Page 130

MRS <Xt>, CCSIDR2_EL1

op0 op1 CRn CRm op2
0b11 0b001 0b0000 0b0000 0b010

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return CCSIDR2_EL1;
elsif PSTATE.EL == EL2 then

return CCSIDR2_EL1;
elsif PSTATE.EL == EL3 then

return CCSIDR2_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCSIDR2_EL1, Current Cache Size ID Register 2

Page 131

CCSIDR_EL1, Current Cache Size ID Register
The CCSIDR_EL1 characteristics are:

Purpose
Provides information about the architecture of the currently selected cache.

Configuration
AArch64 System register CCSIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
CCSIDR[31:0] .

AArch64 System register CCSIDR_EL1 bits [63:32] are architecturally mapped to AArch32 System register
CCSIDR2[31:0] .

The implementation includes one CCSIDR_EL1 for each cache that it can access. CSSELR_EL1 selects which Cache
Size ID Register is accessible.

Attributes
CCSIDR_EL1 is a 64-bit register.

Field descriptions
The CCSIDR_EL1 bit assignments are:

When ARMv8.3-CCIDX is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 NumSets
RES0 Associativity LineSize

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note

The parameters NumSets, Associativity, and LineSize in these registers define
the architecturally visible parameters that are required for the cache
maintenance by Set/Way instructions. They are not guaranteed to represent
the actual microarchitectural features of a design. You cannot make any
inference about the actual sizes of caches based on these parameters.

Bits [63:56]

Reserved, RES0.

NumSets, bits [55:32]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have to
be a power of 2.

Bits [31:24]

Reserved, RES0.

CCSIDR_EL1, Current Cache Size ID Register

Page 132

Associativity, bits [23:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to be a
power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

• For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.
• For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

When ARMv8.5-MemTag is implemented and enabled, where a cache only holds Allocation tags, this field is RES0.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

UNKNOWN NumSets Associativity LineSize
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note

The parameters NumSets, Associativity, and LineSize in these registers define
the architecturally visible parameters that are required for the cache
maintenance by Set/Way instructions. They are not guaranteed to represent
the actual microarchitectural features of a design. You cannot make any
inference about the actual sizes of caches based on these parameters.

Bits [63:32]

Reserved, RES0.

Bits [31:28]

Reserved, UNKNOWN.

NumSets, bits [27:13]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have to
be a power of 2.

Associativity, bits [12:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to be a
power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

• For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.
• For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

Accessing the CCSIDR_EL1
If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then on a read of the CCSIDR_EL1 the
behavior is CONSTRAINED UNPREDICTABLE, and can be one of the following:

• The CCSIDR_EL1 read is treated as NOP.

CCSIDR_EL1, Current Cache Size ID Register

Page 133

• The CCSIDR_EL1 read is UNDEFINED.
• The CCSIDR_EL1 read returns an UNKNOWN value.

Accesses to this register use the following encodings:

MRS <Xt>, CCSIDR_EL1

op0 op1 CRn CRm op2
0b11 0b001 0b0000 0b0000 0b000

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.CCSIDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return CCSIDR_EL1;

elsif PSTATE.EL == EL2 then
return CCSIDR_EL1;

elsif PSTATE.EL == EL3 then
return CCSIDR_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCSIDR_EL1, Current Cache Size ID Register

Page 134

CFP RCTX, Control Flow Prediction Restriction by
Context

The CFP RCTX characteristics are:

Purpose
Control Flow Prediction Restriction by Context applies to all Control Flow Prediction Resources that predict execution
based on information gathered within the target execution context or contexts.

When this instruction is complete and synchronized, control flow prediction does not permit later speculative
execution within the target execution context to be observable through side channels.

This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same
PE as executed the original restriction instruction, and a subsequent context synchronization event is required to
ensure that the effect of the completion of the instructions is synchronized to the current execution.

Note

This instruction does not require the invalidation of prediction structures so
long as the behavior described for completion of this instruction is met by the
implementation.

On some implementations the instruction is likely to take a significant number
of cycles to execute. This instruction is expected to be used very rarely, such
as on the roll-over of an ASID or VMID, but should not be used on every
context switch.

Configuration
This instruction is present only when ARMv8.0-PredInv is implemented. Otherwise, direct accesses to CFP RCTX are
UNDEFINED.

Attributes
CFP RCTX is a 64-bit System instruction.

Field descriptions
The CFP RCTX input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 GVMID VMID

RES0 NS EL RES0 GASID ASID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:49]

Reserved, RES0.

GVMID, bit [48]

Execution of this instruction applies to all VMIDs or a specified VMID.

CFP RCTX, Control Flow Prediction Restriction by Context

Page 135

GVMID Meaning
0b0 Applies to specified VMID for an EL0 or EL1 context. For all

other contexts this field is RES0.
0b1 Applies to all VMIDs for an EL0 or EL1 context. For all other

contexts this field is RES0.

If the instruction is executed at EL0 or EL1, then this field has an Effective value of 0.

VMID, bits [47:32]

Only applies when bit[48] is 0 and either:

• an EL1 context.
• an EL0 context when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0).

Otherwise this field is RES0.

When the instruction is executed at EL1 then this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0) then this field is treated as
the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1) then this field is ignored.

Bits [31:27]

Reserved, RES0.

NS, bit [26]

Security State

NS Meaning
0b0 Secure state
0b1 Non-secure state

If the instruction is executed in Non-secure state, this field has an Effective value of 1.

EL, bits [25:24]

Exception Level

EL Meaning
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.

If the instruction is executed at an exception level lower than the specified level, this instruction is treated as a NOP.

Bits [23:17]

Reserved, RES0.

GASID, bit [16]

Execution of this instruction applies to all ASIDs or a specified ASID.

GASID Meaning
0b0 Applies to specified ASID for an EL0 context. For all other

contexts this field is RES0.
0b1 Applies to all ASID for an EL0 context. For all other contexts

this field is RES0.

CFP RCTX, Control Flow Prediction Restriction by Context

Page 136

If the instruction is executed at EL0, then this field has an Effective value of 0.

ASID, bits [15:0]

Only applies for an EL0 context and when bit[16] is 0.

Otherwise this field is RES0.

When the instruction is executed at EL0 then this field is treated as the current ASID.

Executing the CFP RCTX instruction
Accesses to this instruction use the following encodings:

CFP RCTX, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b0011 0b100

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HFGITR_EL2.CFPRCTX == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX ==
'0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

CFP_RCTX(X[t]);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.CFPRCTX == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

CFP_RCTX(X[t]);
elsif PSTATE.EL == EL2 then

CFP_RCTX(X[t]);
elsif PSTATE.EL == EL3 then

CFP_RCTX(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CFP RCTX, Control Flow Prediction Restriction by Context

Page 137

CLIDR_EL1, Cache Level ID Register
The CLIDR_EL1 characteristics are:

Purpose
Identifies the type of cache, or caches, that are implemented at each level and can be managed using the architected
cache maintenance instructions that operate by set/way, up to a maximum of seven levels. Also identifies the Level of
Coherence (LoC) and Level of Unification (LoU) for the cache hierarchy.

Configuration
AArch64 System register CLIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register CLIDR[31:0] .

Attributes
CLIDR_EL1 is a 64-bit register.

Field descriptions
The CLIDR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 Ttype<n>, bits [2(n-1)+34:2(n-1)+33], for n
= 1 to 7 ICB

ICB LoUU LoC LoUIS Ctype7 Ctype6 Ctype5 Ctype4 Ctype3 Ctype2 Ctype1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:47]

Reserved, RES0.

Ttype<n>, bits [2(n-1)+34:2(n-1)+33], for n = 1 to 7

Tag cache type. Indicate the type of cache that is implemented and can be managed using the architected cache
maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache
hierarchy.

Ttype<n> Meaning
0b00 No Tag Cache.
0b01 Separate Allocation Tag Cache.
0b10 Unified Allocation Tag and Data cache, Allocation Tags and

Data in unified lines.
0b11 Unified Allocation Tag and Data cache, Allocation Tags and

Data in separate lines.

ICB, bits [32:30]

Inner cache boundary. This field indicates the boundary for caching Inner Cacheable memory regions.

The possible values are:

CLIDR_EL1, Cache Level ID Register

Page 138

ICB Meaning
0b000 Not disclosed by this mechanism.
0b001 L1 cache is the highest Inner Cacheable level.
0b010 L2 cache is the highest Inner Cacheable level.
0b011 L3 cache is the highest Inner Cacheable level.
0b100 L4 cache is the highest Inner Cacheable level.
0b101 L5 cache is the highest Inner Cacheable level.
0b110 L6 cache is the highest Inner Cacheable level.
0b111 L7 cache is the highest Inner Cacheable level.

LoUU, bits [29:27]

Level of Unification Uniprocessor for the cache hierarchy.

LoC, bits [26:24]

Level of Coherence for the cache hierarchy.

LoUIS, bits [23:21]

Level of Unification Inner Shareable for the cache hierarchy.

Ctype<n>, bits [3(n-1)+2:3(n-1)], for n = 1 to 7

Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache
maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache
hierarchy. Possible values of each field are:

Ctype<n> Meaning
0b000 No cache.
0b001 Instruction cache only.
0b010 Data cache only.
0b011 Separate instruction and data caches.
0b100 Unified cache.

All other values are reserved.

If software reads the Cache Type fields from Ctype1 upwards, once it has seen a value of 000, no caches that can be
managed using the architected cache maintenance instructions that operate by set/way exist at further-out levels of
the hierarchy. So, for example, if Ctype3 is the first Cache Type field with a value of 000, the values of Ctype4 to
Ctype7 must be ignored.

Accessing the CLIDR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, CLIDR_EL1

op0 op1 CRn CRm op2
0b11 0b001 0b0000 0b0000 0b001

CLIDR_EL1, Cache Level ID Register

Page 139

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.CLIDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return CLIDR_EL1;

elsif PSTATE.EL == EL2 then
return CLIDR_EL1;

elsif PSTATE.EL == EL3 then
return CLIDR_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLIDR_EL1, Cache Level ID Register

Page 140

CNTFRQ_EL0, Counter-timer Frequency register
The CNTFRQ_EL0 characteristics are:

Purpose
This register is provided so that software can discover the frequency of the system counter. It must be programmed
with this value as part of system initialization. The value of the register is not interpreted by hardware.

Configuration
AArch64 System register CNTFRQ_EL0 bits [31:0] are architecturally mapped to AArch32 System register
CNTFRQ[31:0] .

Attributes
CNTFRQ_EL0 is a 64-bit register.

Field descriptions
The CNTFRQ_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

Clock frequency
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Clock frequency. Indicates the system counter clock frequency, in Hz.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTFRQ_EL0
Accesses to this register use the following encodings:

MRS <Xt>, CNTFRQ_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0000 0b000

CNTFRQ_EL0, Counter-timer Frequency register

Page 141

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

CNTKCTL_EL1.<EL0PCTEN,EL0VCTEN> == '00' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&

CNTHCTL_EL2.<EL0PCTEN,EL0VCTEN> == '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return CNTFRQ_EL0;

elsif PSTATE.EL == EL1 then
return CNTFRQ_EL0;

elsif PSTATE.EL == EL2 then
return CNTFRQ_EL0;

elsif PSTATE.EL == EL3 then
return CNTFRQ_EL0;

MSR CNTFRQ_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0000 0b000

if IsHighestEL(PSTATE.EL) then
CNTFRQ_EL0 = X[t];

else
UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTFRQ_EL0, Counter-timer Frequency register

Page 142

CNTHCTL_EL2, Counter-timer Hypervisor Control
register

The CNTHCTL_EL2 characteristics are:

Purpose
Controls the generation of an event stream from the physical counter, and access from EL1 to the physical counter and
the EL1 physical timer.

Configuration
AArch64 System register CNTHCTL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHCTL[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
CNTHCTL_EL2 is a 64-bit register.

Field descriptions
The CNTHCTL_EL2 bit assignments are:

When ARMv8.1-VHE is implemented and HCR_EL2.E2H == 1:

6362616059585756555453525150 49 48 47 46 45 44 43 42 41 40 39383736 35 34 33 32
RES0

RES0 EVNTISEL1NVVCTEL1NVPCTEL1TVCTEL1TVTECVEL1PTENEL1PCTENEL0PTENEL0VTEN EVNTI EVNTDIREVNTENEL0VCTENEL0PCTEN
3130292827262524232221201918 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:18]

Reserved, RES0.

EVNTIS, bit [17]

When ARMv8.6-ECV is implemented:

Controls the scale of the generation of the event stream.

EVNTIS Meaning
0b0 The CNTHCTL_EL2.EVNTI field applies to

CNTPCT_EL0[15:0].
0b1 The CNTHCTL_EL2.EVNTI field applies to

CNTPCT_EL0[23:8].

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 143

Otherwise:

Reserved, RES0.

EL1NVVCT, bit [16]

When ARMv8.6-ECV is implemented:

Traps EL1 accesses to the specified EL1 virtual timer registers using the EL02 descriptors to EL2, when EL2 is
enabled for the current Security state.

EL1NVVCT Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 If ((HCR_EL2.E2H==1 && HCR_EL2.TGE==1) ||

HCR_EL2.NV2==0 || HCR_EL2.NV1==1 ||
HCR_EL2.NV==0), this control does not cause any
instructions to be trapped.
If ((HCR_EL2.E2H==0 || HCR_EL2.TGE==0) &&
HCR_EL2.NV2==1 && HCR_EL2.NV1==0 &&
HCR_EL2.NV==1), then EL1 accesses to CNTV_CTL_EL02
and CNTV_CVAL_EL02 are trapped to EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a direct
read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1NVPCT, bit [15]

When ARMv8.6-ECV is implemented:

Traps EL1 accesses to the specified EL1 physical timer registers using the EL02 descriptors to EL2, when EL2 is
enabled for the current Security state.

EL1NVPCT Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 If ((HCR_EL2.E2H==1 && HCR_EL2.TGE==1) ||

HCR_EL2.NV2==0 || HCR_EL2.NV1==1 ||
HCR_EL2.NV==0), this control does not cause any
instructions to be trapped.
If (HCR_EL2.E2H==0 || HCR_EL2.TGE==0) &&
HCR_EL2.NV2==1 && HCR_EL2.NV1==0 &&
HCR_EL2.NV==1, then EL1 accesses to CNTP_CTL_EL02
and CNTP_CVAL_EL02, are trapped to EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a direct
read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1TVCT, bit [14]

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 144

When ARMv8.6-ECV is implemented:

Traps EL0 and EL1 accesses to the EL1 virtual counter registers to EL2, when EL2 is enabled for the current Security
state.

EL1TVCT Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 If HCR_EL2.{E2H, TGE} is {1, 1}, this control does not

cause any instructions to be trapped.
If HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, then:

• In AArch64 state, traps EL0 and EL1 accesses to
CNTVCT_EL0 to EL2, unless they are trapped by
CNTKCTL_EL1.EL0VCTEN.

• In AArch32 state, traps EL0 and EL1 accesses to
CNTVCT to EL2, unless they are trapped by
CNTKCTL_EL1.EL0VCTEN or CNTKCTL.PL0VCTEN.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a direct
read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1TVT, bit [13]

When ARMv8.6-ECV is implemented:

Traps EL0 and EL1 accesses to the EL1 virtual timer registers to EL2, when EL2 is enabled for the current Security
state.

EL1TVT Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 If HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause

any instructions to be trapped.
If HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, then:

• In AArch64 state, traps EL0 and EL1 accesses to
CNTV_CTL_EL0, CNTV_CVAL_EL0, and
CNTV_TVAL_EL0 to EL2, unless they are trapped by
CNTKCTL_EL1.EL0VTEN.

• In AArch32 state, traps EL0 and EL1 accesses to
CNTV_CTL, CNTV_CVAL, and CNTV_TVAL to EL2,
unless they are trapped by CNTKCTL_EL1.EL0VTEN or
CNTKCTL.PL0VTEN.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a direct
read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 145

ECV, bit [12]

When ARMv8.6-ECV is implemented:

Enables the Enhanced Counter Virtualization functionality registers.

ECV Meaning
0b0 Enhanced Counter Virtualization functionality is disabled.
0b1 When HCR_EL2.{E2H, TGE} == {1, 1} or SCR_EL3.{NS, EEL2}

== {0, 0}, then Enhanced Counter Virtualization functionality is
disabled.
When SCR_EL3.NS or SCR_EL3.EEL2 are 1, and HCR_EL2.E2H
or HCR_EL2.TGE are 0, then Enhanced Counter Virtualziation
functionality is enabled when EL2 is enabled for the current
Security state. This means that:

• An MRS to CNTPCT_EL0 from either EL0 or EL1 that is not
trapped will return the value (PCount<63:0> -
CNTPOFF_EL2<63:0>).

• The EL1 physical timer interrupt is triggered when
((PCount<63:0> - CNTPOFF_EL2<63:0>) - PCVal<63:0>) is
greater than or equal to 0. PCount<63:0> is the physical
count returned when CNTPCT_EL0 is read from EL2 or EL3.
PCVal<63:0> is the EL1 physical timer compare value for
this timer.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1PTEN, bit [11]

When HCR_EL2.TGE is 0, traps EL0 and EL1 accesses to the E1 physical timer registers to EL2 when EL2 is enabled
in the current Security state.

EL1PTEN Meaning
0b0 From AArch64 state: EL0 and EL1 accesses to the

CNTP_CTL_EL0, CNTP_CVAL_EL0, and CNTP_TVAL_EL0
are trapped to EL2 when EL2 is enabled in the current
Security state, unless they are trapped by
CNTKCTL_EL1.EL0PTEN.
From AArch32 state: EL0 and EL1 accesses to the
CNTP_CTL, CNTP_CVAL, and CNTP_TVAL are trapped to
EL2 when EL2 is enabled in the current Security state,
unless they are trapped by CNTKCTL_EL1.EL0PTEN or
CNTKCTL.PL0PTEN.

0b1 This control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

This field resets to an architecturally UNKNOWN value.

EL1PCTEN, bit [10]

When HCR_EL2.TGE is 0, traps EL0 and EL1 accesses to the EL1 physical counter register to EL2 when EL2 is
enabled in the current Security state, as follows:

• In AArch64 state, accesses to CNTPCT_EL0 are trapped to EL2, reported using EC syndrome value 0x18.
• In AArch32 state, MRRC or MCRR accesses to CNTPCT are trapped to EL2, reported using EC syndrome value

0x04.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 146

EL1PCTEN Meaning
0b0 From AArch64 state: EL0 and EL1 accesses to the

CNTPCT_EL0 are trapped to EL2 when EL2 is enabled in
the current Security state, unless they are trapped by
CNTKCTL_EL1.EL0PCTEN.
From AArch32 state: EL0 and EL1 accesses to the
CNTPCT are trapped to EL2 when EL2 is enabled in the
current Security state, unless they are trapped by
CNTKCTL_EL1.EL0PCTEN or CNTKCTL.PL0PCTEN.

0b1 This control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

This field resets to an architecturally UNKNOWN value.

EL0PTEN, bit [9]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the physical timer registers to EL2.

EL0PTEN Meaning
0b0 EL0 using AArch64: EL0 accesses to the CNTP_CTL_EL0,

CNTP_CVAL_EL0, and CNTP_TVAL_EL0 registers are
trapped to EL2.
EL0 using AArch32: EL0 accesses to the CNTP_CTL,
CNTP_CVAL and CNTP_TVAL registers are trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

This field resets to an architecturally UNKNOWN value.

EL0VTEN, bit [8]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the virtual timer registers to EL2.

EL0VTEN Meaning
0b0 EL0 using AArch64: EL0 accesses to the CNTV_CTL_EL0,

CNTV_CVAL_EL0, and CNTV_TVAL_EL0 registers are
trapped to EL2.
EL0 using AArch32: EL0 accesses to the CNTV_CTL,
CNTV_CVAL, and CNTV_TVAL registers are trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

This field resets to an architecturally UNKNOWN value.

EVNTI, bits [7:4]

Selects which bit (0 to 15) of the counter register CNTPCT_EL0 is the trigger for the event stream generated from that
counter, when that stream is enabled.

This field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTPCT_EL0 trigger bit, defined by EVNTI, generates an event when
the event stream is enabled:

EVNTDIR Meaning
0b0 A 0 to 1 transition of the trigger bit triggers an event.
0b1 A 1 to 0 transition of the trigger bit triggers an event.

This field resets to an architecturally UNKNOWN value.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 147

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTPCT_EL0:

EVNTEN Meaning
0b0 Disables the event stream.
0b1 Enables the event stream.

This field resets to an architecturally UNKNOWN value.

EL0VCTEN, bit [1]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the frequency register and virtual counter register to EL2.

EL0VCTEN Meaning
0b0 EL0 using AArch64: EL0 accesses to the CNTVCT_EL0 are

trapped to EL2.
EL0 using AArch64: EL0 accesses to the CNTFRQ_EL0
register are trapped to EL2, if CNTHCTL_EL2.EL0PCTEN
is also 0.
EL0 using AArch32: EL0 accesses to the CNTVCT are
trapped to EL2.
EL0 using AArch32: EL0 accesses to the CNTFRQ register
are trapped to EL2, if CNTHCTL.EL0PCTEN is also 0.

0b1 This control does not cause any instructions to be trapped.

This field resets to an architecturally UNKNOWN value.

EL0PCTEN, bit [0]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the frequency register and physical counter register to EL2.

EL0PCTEN Meaning
0b0 EL0 using AArch64: EL0 accesses to the CNTPCT_EL0 are

trapped to EL2.
EL0 using AArch64: EL0 accesses to the CNTFRQ_EL0
register are trapped to EL2, if CNTHCTL_EL2.EL0VCTEN
is also 0.
EL0 using AArch32: EL0 accesses to the CNTPCT are
trapped to EL2.
EL0 using AArch32: EL0 accesses to the CNTFRQ and
register are trapped to EL2, if CNTHCTL_EL2.EL0VCTEN
is also 0.

0b1 This control does not cause any instructions to be trapped.

This field resets to an architecturally UNKNOWN value.

Otherwise:

6362616059585756555453525150 49 48 47 46 45 44 4342414039383736 35 34 33 32
RES0

RES0 EVNTISEL1NVVCTEL1NVPCTEL1TVCTEL1TVTECV RES0 EVNTI EVNTDIREVNTENEL1PCENEL1PCTEN
3130292827262524232221201918 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

This format applies in all Armv8.0 implementations, and it also contains a description of the behavior when EL3 is
implemented and EL2 is not implemented.

Bits [63:18]

Reserved, RES0.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 148

EVNTIS, bit [17]

When ARMv8.6-ECV is implemented:

Controls the scale of the generation of the event stream.

EVNTIS Meaning
0b0 The CNTHCTL_EL2.EVNTI field applies to

CNTPCT_EL0[15:0].
0b1 The CNTHCTL_EL2.EVNTI field applies to

CNTPCT_EL0[23:8].

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1NVVCT, bit [16]

When ARMv8.6-ECV is implemented:

Traps EL1 accesses to the specified EL1 virtual timer registers using the EL02 descriptors to EL2, when EL2 is
enabled for the current Security state.

EL1NVVCT Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 If ((HCR_EL2.E2H==1 && HCR_EL2.TGE==1) ||

HCR_EL2.NV2==0 || HCR_EL2.NV1==1 ||
HCR_EL2.NV==0), this control does not cause any
instructions to be trapped.
If ((HCR_EL2.E2H==0 || HCR_EL2.TGE==0) &&
HCR_EL2.NV2==1 && HCR_EL2.NV1==0 &&
HCR_EL2.NV==1), then EL1 accesses to CNTV_CTL_EL02
and CNTV_CVAL_EL02 are trapped to EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a direct
read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1NVPCT, bit [15]

When ARMv8.6-ECV is implemented:

Traps EL1 accesses to the specified EL1 physical timer registers using the EL02 descriptors to EL2, when EL2 is
enabled for the current Security state.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 149

EL1NVPCT Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 If ((HCR_EL2.E2H==1 && HCR_EL2.TGE==1) ||

HCR_EL2.NV2==0 || HCR_EL2.NV1==1 ||
HCR_EL2.NV==0), this control does not cause any
instructions to be trapped.
If (HCR_EL2.E2H==0 || HCR_EL2.TGE==0) &&
HCR_EL2.NV2==1 && HCR_EL2.NV1==0 &&
HCR_EL2.NV==1, then EL1 accesses to CNTP_CTL_EL02
and CNTP_CVAL_EL02, are trapped to EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a direct
read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1TVCT, bit [14]

When ARMv8.6-ECV is implemented:

Traps EL0 and EL1 accesses to the EL1 virtual counter registers to EL2, when EL2 is enabled for the current Security
state.

EL1TVCT Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 If HCR_EL2.{E2H, TGE} is {1, 1}, this control does not

cause any instructions to be trapped.
If HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, then:
In AArch64 state, traps EL0 and EL1 accesses to
CNTVCT_EL0 to EL2, unless they are trapped by
CNTKCTL_EL1.EL0VCTEN. In AArch32 state, traps EL0 and
EL1 accesses to CNTVCT to EL2, unless they are trapped by
CNTKCTL_EL1.EL0VCTEN or CNTKCTL.PL0VCTEN.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a direct
read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1TVT, bit [13]

When ARMv8.6-ECV is implemented:

Traps EL0 and EL1 accesses to the EL1 virtual timer registers to EL2, when EL2 is enabled for the current Security
state.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 150

EL1TVT Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 If HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause

any instructions to be trapped.
If HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, then:

• In AArch64 state, traps EL0 and EL1 accesses to
CNTV_CTL_EL0, CNTV_CVAL_EL0, and
CNTV_TVAL_EL0 to EL2, unless they are trapped by
CNTKCTL_EL1.EL0VTEN.

• In AArch32 state, traps EL0 and EL1 accesses to
CNTV_CTL, CNTV_CVAL, and CNTV_TVAL to EL2,
unless they are trapped by CNTKCTL_EL1.EL0VTEN or
CNTKCTL.PL0VTEN.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a direct
read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ECV, bit [12]

When ARMv8.6-ECV is implemented:

Enables the Enhanced Counter Virtualization functionality registers.

ECV Meaning
0b0 Enhanced Counter Virtualization functionality is disabled.
0b1 When HCR_EL2.{E2H, TGE} == {1, 1} or SCR_EL3.{NS, EEL2}

== {0, 0}, then Enhanced Counter Virtualization functionality is
disabled.
When SCR_EL3.NS or SCR_EL3.EEL2 are 1, and HCR_EL2.E2H
or HCR_EL2.TGE are 0, then Enhanced Counter Virtualziation
functionality is enabled when EL2 is enabled for the current
Security state. This means that:

• An MRS to CNTPCT_EL0 from either EL0 or EL1 that is not
trapped will return the value (PCount<63:0> -
CNTPOFF_EL2<63:0>).

• The EL1 physical timer interrupt is triggered when
((PCount<63:0> - CNTPOFF_EL2<63:0>) - PCVal<63:0>) is
greater than or equal to 0. PCount is the physical count
returned when CNTPCT_EL0 is read from EL2 or EL3.
PCVal<63:0> is the EL1 physical timer compare value for
this timer.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [11:8]

Reserved, RES0.

EVNTI, bits [7:4]

Selects which bit (0 to 15) of the counter register CNTPCT_EL0 is the trigger for the event stream generated from that
counter, when that stream is enabled.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 151

This field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTPCT_EL0 trigger bit, defined by EVNTI, generates an event when
the event stream is enabled:

EVNTDIR Meaning
0b0 A 0 to 1 transition of the trigger bit triggers an event.
0b1 A 1 to 0 transition of the trigger bit triggers an event.

This field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTPCT_EL0:

EVNTEN Meaning
0b0 Disables the event stream.
0b1 Enables the event stream.

This field resets to 0.

EL1PCEN, bit [1]

Traps EL0 and EL1 accesses to the EL1 physical timer registers to EL2 when EL2 is enabled in the current Security
state, as follows:

• In AArch64 state, accesses to CNTP_CTL_EL0, CNTP_CVAL_EL0, CNTP_TVAL_EL0 are trapped to EL2,
reported using EC syndrome value 0x18.

• In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2 reported using EC
syndrome value 0x3 and MRRC and MCRR accesses are trapped to EL2, reported using EC syndrome value
0x04:

◦ CNTP_CTL, CNTP_CVAL, CNTP_TVAL.
EL1PCEN Meaning

0b0 From AArch64 state: EL0 and EL1 accesses to the
CNTP_CTL_EL0, CNTP_CVAL_EL0, and CNTP_TVAL_EL0
are trapped to EL2 when EL2 is enabled in the current
Security state, unless they are trapped by
CNTKCTL_EL1.EL0PTEN.
From AArch32 state: EL0 and EL1 accesses to the
CNTP_CTL, CNTP_CVAL, and CNTP_TVAL are trapped to
EL2 when EL2 is enabled in the current Security state,
unless they are trapped by CNTKCTL_EL1.EL0PTEN or
CNTKCTL.PL0PTEN.

0b1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the purpose of a direct
read.

This field resets to an architecturally UNKNOWN value.

EL1PCTEN, bit [0]

Traps EL0 and EL1 accesses to the EL1 physical counter register to EL2 when EL2 is enabled in the current Security
state, as follows:

• In AArch64 state, accesses to CNTPCT_EL0 are trapped to EL2, reported using EC syndrome value 0x18.
• In AArch32 state, MRRC or MCRR accesses to CNTPCT are trapped to EL2, reported using EC syndrome value

0x04.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 152

EL1PCTEN Meaning
0b0 From AArch64 state: EL0 and EL1 accesses to the

CNTPCT_EL0 are trapped to EL2 when EL2 is enabled in
the current Security state, unless they are trapped by
CNTKCTL_EL1.EL0PCTEN.
From AArch32 state: EL0 and EL1 accesses to the
CNTPCT are trapped to EL2 when EL2 is enabled in the
current Security state, unless they are trapped by
CNTKCTL_EL1.EL0PCTEN or CNTKCTL.PL0PCTEN.

0b1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the purpose of a direct
read.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHCTL_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHCTL_EL2 or
CNTKCTL_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, CNTHCTL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return CNTHCTL_EL2;
elsif PSTATE.EL == EL3 then

return CNTHCTL_EL2;

MSR CNTHCTL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

CNTHCTL_EL2 = X[t];
elsif PSTATE.EL == EL3 then

CNTHCTL_EL2 = X[t];

MRS <Xt>, CNTKCTL_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1110 0b0001 0b000

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 153

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
return CNTKCTL_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return CNTHCTL_EL2;
else

return CNTKCTL_EL1;
elsif PSTATE.EL == EL3 then

return CNTKCTL_EL1;

MSR CNTKCTL_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
CNTKCTL_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

CNTHCTL_EL2 = X[t];
else

CNTKCTL_EL1 = X[t];
elsif PSTATE.EL == EL3 then

CNTKCTL_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 154

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical
Timer Control register

The CNTHP_CTL_EL2 characteristics are:

Purpose
Control register for the EL2 physical timer.

Configuration
AArch64 System register CNTHP_CTL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHP_CTL[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHP_CTL_EL2 is a 64-bit register.

Field descriptions
The CNTHP_CTL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 ISTATUSIMASKENABLE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views
of the timers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter D6.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

Page 155

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

This field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHP_TVAL_EL2 continues
to count down.

Note

Disabling the output signal might be a power-saving option.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHP_CTL_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHP_CTL_EL2 or
CNTP_CTL_EL0 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, CNTHP_CTL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return CNTHP_CTL_EL2;
elsif PSTATE.EL == EL3 then

return CNTHP_CTL_EL2;

MSR CNTHP_CTL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0010 0b001

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

Page 156

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

CNTHP_CTL_EL2 = X[t];
elsif PSTATE.EL == EL3 then

CNTHP_CTL_EL2 = X[t];

MRS <Xt>, CNTP_CTL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN
== '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

return CNTHPS_CTL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHP_CTL_EL2;

else
return CNTP_CTL_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x180];
else

return CNTP_CTL_EL0;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHPS_CTL_EL2;

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
return CNTHP_CTL_EL2;

else
return CNTP_CTL_EL0;

elsif PSTATE.EL == EL3 then
return CNTP_CTL_EL0;

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

Page 157

MSR CNTP_CTL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN
== '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

CNTHPS_CTL_EL2 = X[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHP_CTL_EL2 = X[t];

else
CNTP_CTL_EL0 = X[t];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x180] = X[t];
else

CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHPS_CTL_EL2 = X[t];

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
CNTHP_CTL_EL2 = X[t];

else
CNTP_CTL_EL0 = X[t];

elsif PSTATE.EL == EL3 then
CNTP_CTL_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

Page 158

CNTHP_CVAL_EL2, Counter-timer Physical Timer
CompareValue register (EL2)

The CNTHP_CVAL_EL2 characteristics are:

Purpose
Holds the compare value for the EL2 physical timer.

Configuration
AArch64 System register CNTHP_CVAL_EL2 bits [63:0] are architecturally mapped to AArch32 System register
CNTHP_CVAL[63:0] .

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHP_CVAL_EL2 is a 64-bit register.

Field descriptions
The CNTHP_CVAL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHP_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CompareValue) is greater than
or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTHP_CTL_EL2.ISTATUS is set to 1.
• If CNTHP_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHP_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the
same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHP_CVAL_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHP_CVAL_EL2
or CNTP_CVAL_EL0 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

CNTHP_CVAL_EL2, Counter-timer Physical Timer CompareValue register (EL2)

Page 159

MRS <Xt>, CNTHP_CVAL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return CNTHP_CVAL_EL2;
elsif PSTATE.EL == EL3 then

return CNTHP_CVAL_EL2;

MSR CNTHP_CVAL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

CNTHP_CVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then

CNTHP_CVAL_EL2 = X[t];

MRS <Xt>, CNTP_CVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b010

CNTHP_CVAL_EL2, Counter-timer Physical Timer CompareValue register (EL2)

Page 160

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN
== '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

return CNTHPS_CVAL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHP_CVAL_EL2;

else
return CNTP_CVAL_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x178];
else

return CNTP_CVAL_EL0;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHPS_CVAL_EL2;

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
return CNTHP_CVAL_EL2;

else
return CNTP_CVAL_EL0;

elsif PSTATE.EL == EL3 then
return CNTP_CVAL_EL0;

MSR CNTP_CVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b010

CNTHP_CVAL_EL2, Counter-timer Physical Timer CompareValue register (EL2)

Page 161

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN
== '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

CNTHPS_CVAL_EL2 = X[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHP_CVAL_EL2 = X[t];

else
CNTP_CVAL_EL0 = X[t];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x178] = X[t];
else

CNTP_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHPS_CVAL_EL2 = X[t];

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
CNTHP_CVAL_EL2 = X[t];

else
CNTP_CVAL_EL0 = X[t];

elsif PSTATE.EL == EL3 then
CNTP_CVAL_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHP_CVAL_EL2, Counter-timer Physical Timer CompareValue register (EL2)

Page 162

CNTHP_TVAL_EL2, Counter-timer Physical Timer
TimerValue register (EL2)

The CNTHP_TVAL_EL2 characteristics are:

Purpose
Holds the timer value for the EL2 physical timer.

Configuration
AArch64 System register CNTHP_TVAL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHP_TVAL[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHP_TVAL_EL2 is a 64-bit register.

Field descriptions
The CNTHP_TVAL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

TimerValue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHP_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHP_CTL_EL2.ENABLE is 1, the value returned is (CNTHP_CVAL_EL2 - CNTPCT_EL0).

On a write of this register, CNTHP_CVAL_EL2 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated as a
signed 32-bit integer.

When CNTHP_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTHP_CVAL_EL2) is greater
than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is
met:

• CNTHP_CTL_EL2.ISTATUS is set to 1.
• If CNTHP_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHP_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the
TimerValue view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

CNTHP_TVAL_EL2, Counter-timer Physical Timer TimerValue register (EL2)

Page 163

Accessing the CNTHP_TVAL_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHP_TVAL_EL2 or
CNTP_TVAL_EL0 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, CNTHP_TVAL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return CNTHP_TVAL_EL2;
elsif PSTATE.EL == EL3 then

return CNTHP_TVAL_EL2;

MSR CNTHP_TVAL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

CNTHP_TVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then

CNTHP_TVAL_EL2 = X[t];

MRS <Xt>, CNTP_TVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b000

CNTHP_TVAL_EL2, Counter-timer Physical Timer TimerValue register (EL2)

Page 164

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN
== '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

return CNTHPS_TVAL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHP_TVAL_EL2;

else
return CNTP_TVAL_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return CNTP_TVAL_EL0;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHPS_TVAL_EL2;

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
return CNTHP_TVAL_EL2;

else
return CNTP_TVAL_EL0;

elsif PSTATE.EL == EL3 then
return CNTP_TVAL_EL0;

MSR CNTP_TVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b000

CNTHP_TVAL_EL2, Counter-timer Physical Timer TimerValue register (EL2)

Page 165

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN
== '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

CNTHPS_TVAL_EL2 = X[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHP_TVAL_EL2 = X[t];

else
CNTP_TVAL_EL0 = X[t];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
else

CNTP_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHPS_TVAL_EL2 = X[t];

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
CNTHP_TVAL_EL2 = X[t];

else
CNTP_TVAL_EL0 = X[t];

elsif PSTATE.EL == EL3 then
CNTP_TVAL_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHP_TVAL_EL2, Counter-timer Physical Timer TimerValue register (EL2)

Page 166

CNTHPS_CTL_EL2, Counter-timer Secure Physical
Timer Control register (EL2)

The CNTHPS_CTL_EL2 characteristics are:

Purpose
Control register for the Secure EL2 physical timer.

Configuration
AArch64 System register CNTHPS_CTL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHPS_CTL[31:0] .

This register is present only when ARMv8.4-SecEL2 is implemented. Otherwise, direct accesses to CNTHPS_CTL_EL2
are UNDEFINED.

Attributes
CNTHPS_CTL_EL2 is a 64-bit register.

Field descriptions
The CNTHPS_CTL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 ISTATUSIMASKENABLE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the CNTHPS_CTL_EL2.ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then
the timer interrupt is asserted.

When the value of the CNTHPS_CTL_EL2.ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views
of the timers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter D6.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)

Page 167

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

This field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHPS_TVAL_EL2
continues to count down.

Note

Disabling the output signal might be a power-saving option.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHPS_CTL_EL2
Accesses to this register use the following encodings:

MRS <Xt>, CNTHPS_CTL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0101 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
return CNTHPS_CTL_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

return CNTHPS_CTL_EL2;

MSR CNTHPS_CTL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0101 0b001

CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)

Page 168

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
CNTHPS_CTL_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

CNTHPS_CTL_EL2 = X[t];

MRS <Xt>, CNTP_CTL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b001

CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)

Page 169

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN
== '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

return CNTHPS_CTL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHP_CTL_EL2;

else
return CNTP_CTL_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x180];
else

return CNTP_CTL_EL0;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHPS_CTL_EL2;

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
return CNTHP_CTL_EL2;

else
return CNTP_CTL_EL0;

elsif PSTATE.EL == EL3 then
return CNTP_CTL_EL0;

MSR CNTP_CTL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b001

CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)

Page 170

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN
== '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

CNTHPS_CTL_EL2 = X[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHP_CTL_EL2 = X[t];

else
CNTP_CTL_EL0 = X[t];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x180] = X[t];
else

CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHPS_CTL_EL2 = X[t];

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
CNTHP_CTL_EL2 = X[t];

else
CNTP_CTL_EL0 = X[t];

elsif PSTATE.EL == EL3 then
CNTP_CTL_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)

Page 171

CNTHPS_CVAL_EL2, Counter-timer Secure Physical
Timer CompareValue register (EL2)

The CNTHPS_CVAL_EL2 characteristics are:

Purpose
Holds the compare value for the Secure EL2 physical timer.

Configuration
AArch64 System register CNTHPS_CVAL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHPS_CVAL[31:0] .

This register is present only when ARMv8.4-SecEL2 is implemented. Otherwise, direct accesses to
CNTHPS_CVAL_EL2 are UNDEFINED.

Attributes
CNTHPS_CVAL_EL2 is a 64-bit register.

Field descriptions
The CNTHPS_CVAL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CompareValue) is greater
than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is
met:

• CNTHPS_CTL_EL2.ISTATUS is set to 1.
• If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the
same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHPS_CVAL_EL2
Accesses to this register use the following encodings:

MRS <Xt>, CNTHPS_CVAL_EL2

op0 op1 CRn CRm op2

CNTHPS_CVAL_EL2, Counter-timer Secure Physical Timer CompareValue register (EL2)

Page 172

0b11 0b100 0b1110 0b0101 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
return CNTHPS_CVAL_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

return CNTHPS_CVAL_EL2;

MSR CNTHPS_CVAL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0101 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
CNTHPS_CVAL_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

CNTHPS_CVAL_EL2 = X[t];

MRS <Xt>, CNTP_CVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b010

CNTHPS_CVAL_EL2, Counter-timer Secure Physical Timer CompareValue register (EL2)

Page 173

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN
== '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

return CNTHPS_CVAL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHP_CVAL_EL2;

else
return CNTP_CVAL_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x178];
else

return CNTP_CVAL_EL0;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHPS_CVAL_EL2;

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
return CNTHP_CVAL_EL2;

else
return CNTP_CVAL_EL0;

elsif PSTATE.EL == EL3 then
return CNTP_CVAL_EL0;

MSR CNTP_CVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b010

CNTHPS_CVAL_EL2, Counter-timer Secure Physical Timer CompareValue register (EL2)

Page 174

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN
== '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

CNTHPS_CVAL_EL2 = X[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHP_CVAL_EL2 = X[t];

else
CNTP_CVAL_EL0 = X[t];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x178] = X[t];
else

CNTP_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHPS_CVAL_EL2 = X[t];

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
CNTHP_CVAL_EL2 = X[t];

else
CNTP_CVAL_EL0 = X[t];

elsif PSTATE.EL == EL3 then
CNTP_CVAL_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHPS_CVAL_EL2, Counter-timer Secure Physical Timer CompareValue register (EL2)

Page 175

CNTHPS_TVAL_EL2, Counter-timer Secure Physical
Timer TimerValue register (EL2)

The CNTHPS_TVAL_EL2 characteristics are:

Purpose
Holds the timer value for the Secure EL2 physical timer.

Configuration
AArch64 System register CNTHPS_TVAL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHPS_TVAL[31:0] .

This register is present only when ARMv8.4-SecEL2 is implemented. Otherwise, direct accesses to
CNTHPS_TVAL_EL2 are UNDEFINED.

Attributes
CNTHPS_TVAL_EL2 is a 64-bit register.

Field descriptions
The CNTHPS_TVAL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

TimerValue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHPS_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHPS_CTL_EL2.ENABLE is 1, the value returned is (CNTHPS_CVAL_EL2 - CNTPCT_EL0).

On a write of this register, CNTHPS_CVAL_EL2 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated as
a signed 32-bit integer.

When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTHPS_CVAL_EL2) is
greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer
condition is met:

• CNTHPS_CTL_EL2.ISTATUS is set to 1.
• If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the
TimerValue view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)

Page 176

Accessing the CNTHPS_TVAL_EL2
Accesses to this register use the following encodings:

MRS <Xt>, CNTHPS_TVAL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0101 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
return CNTHPS_TVAL_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

return CNTHPS_TVAL_EL2;

MSR CNTHPS_TVAL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0101 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
CNTHPS_TVAL_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

CNTHPS_TVAL_EL2 = X[t];

MRS <Xt>, CNTP_TVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b000

CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)

Page 177

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN
== '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

return CNTHPS_TVAL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHP_TVAL_EL2;

else
return CNTP_TVAL_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return CNTP_TVAL_EL0;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHPS_TVAL_EL2;

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
return CNTHP_TVAL_EL2;

else
return CNTP_TVAL_EL0;

elsif PSTATE.EL == EL3 then
return CNTP_TVAL_EL0;

MSR CNTP_TVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b000

CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)

Page 178

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN
== '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

CNTHPS_TVAL_EL2 = X[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHP_TVAL_EL2 = X[t];

else
CNTP_TVAL_EL0 = X[t];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
else

CNTP_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHPS_TVAL_EL2 = X[t];

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
CNTHP_TVAL_EL2 = X[t];

else
CNTP_TVAL_EL0 = X[t];

elsif PSTATE.EL == EL3 then
CNTP_TVAL_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)

Page 179

CNTHV_CTL_EL2, Counter-timer Virtual Timer Control
register (EL2)

The CNTHV_CTL_EL2 characteristics are:

Purpose
Control register for the EL2 virtual timer.

Configuration
AArch64 System register CNTHV_CTL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHV_CTL[31:0] .

This register is present only when ARMv8.1-VHE is implemented. Otherwise, direct accesses to CNTHV_CTL_EL2 are
UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHV_CTL_EL2 is a 64-bit register.

Field descriptions
The CNTHV_CTL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 ISTATUSIMASKENABLE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views
of the timers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter D6.

This bit is read-only.

CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)

Page 180

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

This field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHV_TVAL_EL2 continues
to count down.

Note

Disabling the output signal might be a power-saving option.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHV_CTL_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHV_CTL_EL2 or
CNTV_CTL_EL0 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, CNTHV_CTL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return CNTHV_CTL_EL2;
elsif PSTATE.EL == EL3 then

return CNTHV_CTL_EL2;

MSR CNTHV_CTL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0011 0b001

CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)

Page 181

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

CNTHV_CTL_EL2 = X[t];
elsif PSTATE.EL == EL3 then

CNTHV_CTL_EL2 = X[t];

MRS <Xt>, CNTV_CTL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b001

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHVS_CTL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHV_CTL_EL2;
else

return CNTV_CTL_EL0;
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x170];
else

return CNTV_CTL_EL0;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHVS_CTL_EL2;

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
return CNTHV_CTL_EL2;

else
return CNTV_CTL_EL0;

elsif PSTATE.EL == EL3 then
return CNTV_CTL_EL0;

MSR CNTV_CTL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b001

CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)

Page 182

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHVS_CTL_EL2 = X[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHV_CTL_EL2 = X[t];
else

CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x170] = X[t];
else

CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHVS_CTL_EL2 = X[t];

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
CNTHV_CTL_EL2 = X[t];

else
CNTV_CTL_EL0 = X[t];

elsif PSTATE.EL == EL3 then
CNTV_CTL_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)

Page 183

CNTHV_CVAL_EL2, Counter-timer Virtual Timer
CompareValue register (EL2)

The CNTHV_CVAL_EL2 characteristics are:

Purpose
Holds the compare value for the EL2 virtual timer.

Configuration
AArch64 System register CNTHV_CVAL_EL2 bits [63:0] are architecturally mapped to AArch32 System register
CNTHV_CVAL[63:0] .

This register is present only when ARMv8.1-VHE is implemented. Otherwise, direct accesses to CNTHV_CVAL_EL2 are
UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHV_CVAL_EL2 is a 64-bit register.

Field descriptions
The CNTHV_CVAL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 virtual timer CompareValue.

When CNTHV_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 - CompareValue) is greater than
or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTHV_CTL_EL2.ISTATUS is set to 1.
• If CNTHV_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHV_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the
same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHV_CVAL_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHV_CVAL_EL2
or CNTV_CVAL_EL0 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)

Page 184

MRS <Xt>, CNTHV_CVAL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return CNTHV_CVAL_EL2;
elsif PSTATE.EL == EL3 then

return CNTHV_CVAL_EL2;

MSR CNTHV_CVAL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

CNTHV_CVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then

CNTHV_CVAL_EL2 = X[t];

MRS <Xt>, CNTV_CVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b010

CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)

Page 185

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHVS_CVAL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHV_CVAL_EL2;
else

return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x168];
else

return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHVS_CVAL_EL2;

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
return CNTHV_CVAL_EL2;

else
return CNTV_CVAL_EL0;

elsif PSTATE.EL == EL3 then
return CNTV_CVAL_EL0;

MSR CNTV_CVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b010

CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)

Page 186

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHVS_CVAL_EL2 = X[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHV_CVAL_EL2 = X[t];
else

CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x168] = X[t];
else

CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHVS_CVAL_EL2 = X[t];

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
CNTHV_CVAL_EL2 = X[t];

else
CNTV_CVAL_EL0 = X[t];

elsif PSTATE.EL == EL3 then
CNTV_CVAL_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)

Page 187

CNTHV_TVAL_EL2, Counter-timer Virtual Timer
TimerValue Register (EL2)

The CNTHV_TVAL_EL2 characteristics are:

Purpose
Holds the timer value for the EL2 virtual timer.

Configuration
AArch64 System register CNTHV_TVAL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHV_TVAL[31:0] .

This register is present only when ARMv8.1-VHE is implemented. Otherwise, direct accesses to CNTHV_TVAL_EL2 are
UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHV_TVAL_EL2 is a 64-bit register.

Field descriptions
The CNTHV_TVAL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

TimerValue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHV_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHV_CTL_EL2.ENABLE is 1, the value returned is (CNTHV_CVAL_EL2 - CNTVCT_EL0).

On a write of this register, CNTHV_CVAL_EL2 is set to (CNTVCT_EL0 + TimerValue), where TimerValue is treated as a
signed 32-bit integer.

When CNTHV_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 - CNTHV_CVAL_EL2) is greater
than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is
met:

• CNTHV_CTL_EL2.ISTATUS is set to 1.
• If CNTHV_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHV_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count, so the
TimerValue view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue Register (EL2)

Page 188

Accessing the CNTHV_TVAL_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHV_TVAL_EL2
or CNTV_TVAL_EL0 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, CNTHV_TVAL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return CNTHV_TVAL_EL2;
elsif PSTATE.EL == EL3 then

return CNTHV_TVAL_EL2;

MSR CNTHV_TVAL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

CNTHV_TVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then

CNTHV_TVAL_EL2 = X[t];

MRS <Xt>, CNTV_TVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b000

CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue Register (EL2)

Page 189

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHVS_TVAL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHV_TVAL_EL2;
else

return CNTV_TVAL_EL0;
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return CNTV_TVAL_EL0;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHVS_TVAL_EL2;

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
return CNTHV_TVAL_EL2;

else
return CNTV_TVAL_EL0;

elsif PSTATE.EL == EL3 then
return CNTV_TVAL_EL0;

MSR CNTV_TVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b000

CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue Register (EL2)

Page 190

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHVS_TVAL_EL2 = X[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHV_TVAL_EL2 = X[t];
else

CNTV_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

CNTV_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHVS_TVAL_EL2 = X[t];

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
CNTHV_TVAL_EL2 = X[t];

else
CNTV_TVAL_EL0 = X[t];

elsif PSTATE.EL == EL3 then
CNTV_TVAL_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue Register (EL2)

Page 191

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer
Control register (EL2)

The CNTHVS_CTL_EL2 characteristics are:

Purpose
Control register for the Secure EL2 virtual timer.

Configuration
AArch64 System register CNTHVS_CTL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHVS_CTL[31:0] .

This register is present only when ARMv8.4-SecEL2 is implemented. Otherwise, direct accesses to CNTHVS_CTL_EL2
are UNDEFINED.

Attributes
CNTHVS_CTL_EL2 is a 64-bit register.

Field descriptions
The CNTHVS_CTL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 ISTATUSIMASKENABLE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the CNTHVS_CTL_EL2.ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then
the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views
of the timers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter D6.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)

Page 192

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the CNTHVS_CTL_EL2.ISTATUS bit.

This field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHVS_TVAL_EL2
continues to count down.

Note

Disabling the output signal might be a power-saving option.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHVS_CTL_EL2
Accesses to this register use the following encodings:

MRS <Xt>, CNTHVS_CTL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
return CNTHVS_CTL_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

return CNTHVS_CTL_EL2;

MSR CNTHVS_CTL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0100 0b001

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)

Page 193

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
CNTHVS_CTL_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

CNTHVS_CTL_EL2 = X[t];

MRS <Xt>, CNTV_CTL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b001

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHVS_CTL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHV_CTL_EL2;
else

return CNTV_CTL_EL0;
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x170];
else

return CNTV_CTL_EL0;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHVS_CTL_EL2;

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
return CNTHV_CTL_EL2;

else
return CNTV_CTL_EL0;

elsif PSTATE.EL == EL3 then
return CNTV_CTL_EL0;

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)

Page 194

MSR CNTV_CTL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b001

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHVS_CTL_EL2 = X[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHV_CTL_EL2 = X[t];
else

CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x170] = X[t];
else

CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHVS_CTL_EL2 = X[t];

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
CNTHV_CTL_EL2 = X[t];

else
CNTV_CTL_EL0 = X[t];

elsif PSTATE.EL == EL3 then
CNTV_CTL_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)

Page 195

CNTHVS_CVAL_EL2, Counter-timer Secure Virtual
Timer CompareValue register (EL2)

The CNTHVS_CVAL_EL2 characteristics are:

Purpose
Holds the compare value for the Secure EL2 virtual timer.

Configuration
AArch64 System register CNTHVS_CVAL_EL2 bits [63:0] are architecturally mapped to AArch32 System register
CNTHVS_CVAL[63:0] .

This register is present only when ARMv8.4-SecEL2 is implemented. Otherwise, direct accesses to
CNTHVS_CVAL_EL2 are UNDEFINED.

Attributes
CNTHVS_CVAL_EL2 is a 64-bit register.

Field descriptions
The CNTHVS_CVAL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the Secure EL2 virtual timer CompareValue.

When CNTHVS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 - CompareValue) is greater
than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is
met:

• CNTHVS_CTL_EL2.ISTATUS is set to 1.
• If CNTHVS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the
same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHVS_CVAL_EL2
Accesses to this register use the following encodings:

MRS <Xt>, CNTHVS_CVAL_EL2

op0 op1 CRn CRm op2

CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register (EL2)

Page 196

0b11 0b100 0b1110 0b0100 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
return CNTHVS_CVAL_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

return CNTHVS_CVAL_EL2;

MSR CNTHVS_CVAL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0100 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
CNTHVS_CVAL_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

CNTHVS_CVAL_EL2 = X[t];

MRS <Xt>, CNTV_CVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b010

CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register (EL2)

Page 197

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHVS_CVAL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHV_CVAL_EL2;
else

return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x168];
else

return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHVS_CVAL_EL2;

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
return CNTHV_CVAL_EL2;

else
return CNTV_CVAL_EL0;

elsif PSTATE.EL == EL3 then
return CNTV_CVAL_EL0;

MSR CNTV_CVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b010

CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register (EL2)

Page 198

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHVS_CVAL_EL2 = X[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHV_CVAL_EL2 = X[t];
else

CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x168] = X[t];
else

CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHVS_CVAL_EL2 = X[t];

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
CNTHV_CVAL_EL2 = X[t];

else
CNTV_CVAL_EL0 = X[t];

elsif PSTATE.EL == EL3 then
CNTV_CVAL_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register (EL2)

Page 199

CNTHVS_TVAL_EL2, Counter-timer Secure Virtual
Timer TimerValue register (EL2)

The CNTHVS_TVAL_EL2 characteristics are:

Purpose
Holds the timer value for the Secure EL2 virtual timer.

Configuration
AArch64 System register CNTHVS_TVAL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHVS_TVAL[31:0] .

This register is present only when ARMv8.4-SecEL2 is implemented. Otherwise, direct accesses to
CNTHVS_TVAL_EL2 are UNDEFINED.

Attributes
CNTHVS_TVAL_EL2 is a 64-bit register.

Field descriptions
The CNTHVS_TVAL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

TimerValue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHVS_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHVS_CTL_EL2.ENABLE is 1, the value returned is (CNTHVS_CVAL_EL2 - CNTVCT_EL0).

On a write of this register, CNTHVS_CVAL_EL2 is set to (CNTVCT_EL0 + TimerValue), where TimerValue is treated as
a signed 32-bit integer.

When CNTHVS_CTL_EL2.ENABLE is 1, the timer condition is met when ((CNTVCT_EL0 - CNTHVS_CVAL_EL2) is
greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer
condition is met:

• CNTHVS_CTL_EL2.ISTATUS is set to 1.
• If CNTHVS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count, so the
TimerValue view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)

Page 200

Accessing the CNTHVS_TVAL_EL2
Accesses to this register use the following encodings:

MRS <Xt>, CNTHVS_TVAL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
return CNTHVS_TVAL_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

return CNTHVS_TVAL_EL2;

MSR CNTHVS_TVAL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
CNTHVS_TVAL_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

CNTHVS_TVAL_EL2 = X[t];

MRS <Xt>, CNTV_TVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b000

CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)

Page 201

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHVS_TVAL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHV_TVAL_EL2;
else

return CNTV_TVAL_EL0;
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return CNTV_TVAL_EL0;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHVS_TVAL_EL2;

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
return CNTHV_TVAL_EL2;

else
return CNTV_TVAL_EL0;

elsif PSTATE.EL == EL3 then
return CNTV_TVAL_EL0;

MSR CNTV_TVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b000

CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)

Page 202

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHVS_TVAL_EL2 = X[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHV_TVAL_EL2 = X[t];
else

CNTV_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

CNTV_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHVS_TVAL_EL2 = X[t];

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
CNTHV_TVAL_EL2 = X[t];

else
CNTV_TVAL_EL0 = X[t];

elsif PSTATE.EL == EL3 then
CNTV_TVAL_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)

Page 203

CNTKCTL_EL1, Counter-timer Kernel Control register
The CNTKCTL_EL1 characteristics are:

Purpose
When ARMv8.1-VHE is not implemented, or when HCR_EL2.{E2H, TGE} is not {1, 1}, this register controls the
generation of an event stream from the virtual counter, and access from EL0 to the physical counter, virtual counter,
EL1 physical timers, and the virtual timer.

When ARMv8.1-VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this register does not cause any event
stream from the virtual counter to be generated, and does not control access to the counters and timers. The access to
counters and timers at EL0 is controlled by CNTHCTL_EL2.

Configuration
AArch64 System register CNTKCTL_EL1 bits [31:0] are architecturally mapped to AArch32 System register
CNTKCTL[31:0] .

Attributes
CNTKCTL_EL1 is a 64-bit register.

Field descriptions
The CNTKCTL_EL1 bit assignments are:

6362616059585756555453525150 49 48474645444342 41 40 39383736 35 34 33 32
RES0

RES0 EVNTIS RES0 EL0PTENEL0VTEN EVNTI EVNTDIREVNTENEL0VCTENEL0PCTEN
3130292827262524232221201918 17 16151413121110 9 8 7 6 5 4 3 2 1 0

Bits [63:18]

Reserved, RES0.

EVNTIS, bit [17]

When ARMv8.6-ECV is implemented:

Controls the scale of the generation of the event stream.

EVNTIS Meaning
0b0 The CNTKCTL_EL1.EVNTI field applies to

CNTVCT_EL0[15:0].
0b1 The CNTKCTL_EL1.EVNTI field applies to

CNTVCT_EL0[23:8].

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CNTKCTL_EL1, Counter-timer Kernel Control register

Page 204

Bits [16:10]

Reserved, RES0.

EL0PTEN, bit [9]

Traps EL0 accesses to the physical timer registers to EL1, or to EL2 when it is implemented and enabled for the
current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, the following registers are trapped, reported using EC syndrome value 0x18:

◦ CNTP_CTL_EL0, CNTP_CVAL_EL0, and CNTP_TVAL_EL0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped, reported using EC
syndrome value 0x03, MRRC and MCRR accesses are trapped, reported using EC syndrome value 0x04:

◦ CNTP_CTL, CNTP_CVAL, CNTP_TVAL.
EL0PTEN Meaning

0b0 EL0 accesses to the physical timer registers are trapped to
EL1.

0b1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions
to be trapped.

This field resets to an architecturally UNKNOWN value.

EL0VTEN, bit [8]

Traps EL0 accesses to the virtual timer registers to EL1, or to EL2 when it is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to the following registers are trapped, reported using EC syndrome value 0x18:

◦ CNTV_CTL_EL0, CNTV_CVAL_EL0, and CNTV_TVAL_EL0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped and reported using EC
syndrome value 0x03, MRRC and MCRR accesses are trapped using EC syndrome value 0x04:

◦ CNTV_CTL, CNTV_CVAL, and CNTV_TVAL.
EL0VTEN Meaning

0b0 EL0 accesses to the virtual timer registers are trapped.
0b1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions
to be trapped.

This field resets to an architecturally UNKNOWN value.

EVNTI, bits [7:4]

Selects which bit (0 to 15) of the counter register CNTVCT_EL0 is the trigger for the event stream generated from that
counter, when that stream is enabled.

This field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTVCT_EL0 trigger bit, defined by EVNTI, generates an event when
the event stream is enabled:

EVNTDIR Meaning
0b0 A 0 to 1 transition of the trigger bit triggers an event.
0b1 A 1 to 0 transition of the trigger bit triggers an event.

CNTKCTL_EL1, Counter-timer Kernel Control register

Page 205

This field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]

When ARMv8.1-VHE is not implemented, or when HCR_EL2.{E2H, TGE} is not {1, 1}, enables the generation of an
event stream from the counter register CNTVCT_EL0:

EVNTEN Meaning
0b0 Disables the event stream.
0b1 Enables the event stream.

When ARMv8.1-VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not enable the event
stream.

This field resets to 0.

EL0VCTEN, bit [1]

Traps EL0 accesses to the frequency register and virtual counter register to EL1, or to EL2 when it is implemented
and enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to the following registers are trapped and reported using EC syndrome value 0x18:
◦ CNTVCT_EL0 and if CNTKCTL_EL1.EL0PCTEN is 0, CNTFRQ_EL0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped and reported using EC
syndrome value 0x03, MRRC and MCRR accesses are trapped and reported using EC syndrome value 0x04:

◦ CNTVCT and if CNTKCTL_EL1.EL0PCTEN is 0, CNTFRQ.
EL0VCTEN Meaning

0b0 EL0 accesses to the frequency register and virtual counter
registers are trapped.

0b1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions
to be trapped.

This field resets to an architecturally UNKNOWN value.

EL0PCTEN, bit [0]

Traps EL0 accesses to the frequency register and physical counter register to EL1, or to EL2 when it is implemented
and enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, the following registers are trapped, reported using EC syndrome value 0x18:

◦ CNTPCT_EL0 and if CNTKCTL_EL1.EL0VCTEN is 0, CNTFRQ_EL0.

• In AArch32 state, MCR or MRC accesses the following registers are trapped, reported using EC syndrome
value 0x03, MCRR or MRRC accesses are trapped and reported using EC syndrome value 0x04:

◦ CNTPCT and if CNTKCTL_EL1.EL0VCTEN is 0, CNTFRQ.
EL0PCTEN Meaning

0b0 EL0 accesses to the frequency register and physical
counter register are trapped.

0b1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions
to be trapped.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTKCTL_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTKCTL_EL1 or
CNTKCTL_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

CNTKCTL_EL1, Counter-timer Kernel Control register

Page 206

AArch64-cntpct.html

MRS <Xt>, CNTKCTL_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
return CNTKCTL_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return CNTHCTL_EL2;
else

return CNTKCTL_EL1;
elsif PSTATE.EL == EL3 then

return CNTKCTL_EL1;

MSR CNTKCTL_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
CNTKCTL_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

CNTHCTL_EL2 = X[t];
else

CNTKCTL_EL1 = X[t];
elsif PSTATE.EL == EL3 then

CNTKCTL_EL1 = X[t];

MRS <Xt>, CNTKCTL_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return CNTKCTL_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return CNTKCTL_EL1;
else

UNDEFINED;

MSR CNTKCTL_EL12, <Xt>

op0 op1 CRn CRm op2

CNTKCTL_EL1, Counter-timer Kernel Control register

Page 207

0b11 0b101 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
CNTKCTL_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

CNTKCTL_EL1 = X[t];
else

UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTKCTL_EL1, Counter-timer Kernel Control register

Page 208

CNTP_CTL_EL0, Counter-timer Physical Timer Control
register

The CNTP_CTL_EL0 characteristics are:

Purpose
Control register for the EL1 physical timer.

Configuration
AArch64 System register CNTP_CTL_EL0 bits [31:0] are architecturally mapped to AArch32 System register
CNTP_CTL[31:0] .

Attributes
CNTP_CTL_EL0 is a 64-bit register.

Field descriptions
The CNTP_CTL_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 ISTATUSIMASKENABLE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views
of the timers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter D6.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

CNTP_CTL_EL0, Counter-timer Physical Timer Control register

Page 209

For more information, see the description of the ISTATUS bit.

This field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTP_TVAL_EL0 continues to
count down.

Note

Disabling the output signal might be a power-saving option.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTP_CTL_EL0
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTP_CTL_EL0 or
CNTP_CTL_EL02 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, CNTP_CTL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b001

CNTP_CTL_EL0, Counter-timer Physical Timer Control register

Page 210

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN
== '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

return CNTHPS_CTL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHP_CTL_EL2;

else
return CNTP_CTL_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x180];
else

return CNTP_CTL_EL0;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHPS_CTL_EL2;

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
return CNTHP_CTL_EL2;

else
return CNTP_CTL_EL0;

elsif PSTATE.EL == EL3 then
return CNTP_CTL_EL0;

MSR CNTP_CTL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b001

CNTP_CTL_EL0, Counter-timer Physical Timer Control register

Page 211

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN
== '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

CNTHPS_CTL_EL2 = X[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHP_CTL_EL2 = X[t];

else
CNTP_CTL_EL0 = X[t];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x180] = X[t];
else

CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHPS_CTL_EL2 = X[t];

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
CNTHP_CTL_EL2 = X[t];

else
CNTP_CTL_EL0 = X[t];

elsif PSTATE.EL == EL3 then
CNTP_CTL_EL0 = X[t];

MRS <Xt>, CNTP_CTL_EL02

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0010 0b001

CNTP_CTL_EL0, Counter-timer Physical Timer Control register

Page 212

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVPCT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return NVMem[0x180];

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return CNTP_CTL_EL0;
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
return CNTP_CTL_EL0;

else
UNDEFINED;

MSR CNTP_CTL_EL02, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVPCT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
NVMem[0x180] = X[t];

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

CNTP_CTL_EL0 = X[t];
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
CNTP_CTL_EL0 = X[t];

else
UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP_CTL_EL0, Counter-timer Physical Timer Control register

Page 213

CNTP_CVAL_EL0, Counter-timer Physical Timer
CompareValue register

The CNTP_CVAL_EL0 characteristics are:

Purpose
Holds the compare value for the EL1 physical timer.

Configuration
AArch64 System register CNTP_CVAL_EL0 bits [63:0] are architecturally mapped to AArch32 System register
CNTP_CVAL[63:0] .

Attributes
CNTP_CVAL_EL0 is a 64-bit register.

Field descriptions
The CNTP_CVAL_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL1 physical timer CompareValue.

When CNTP_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CompareValue) is greater than
or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTP_CTL_EL0.ISTATUS is set to 1.
• If CNTP_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTP_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the
same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTP_CVAL_EL0
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTP_CVAL_EL0 or
CNTP_CVAL_EL02 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, CNTP_CVAL_EL0

op0 op1 CRn CRm op2

CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue register

Page 214

0b11 0b011 0b1110 0b0010 0b010

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN
== '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

return CNTHPS_CVAL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHP_CVAL_EL2;

else
return CNTP_CVAL_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x178];
else

return CNTP_CVAL_EL0;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHPS_CVAL_EL2;

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
return CNTHP_CVAL_EL2;

else
return CNTP_CVAL_EL0;

elsif PSTATE.EL == EL3 then
return CNTP_CVAL_EL0;

MSR CNTP_CVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b010

CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue register

Page 215

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN
== '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

CNTHPS_CVAL_EL2 = X[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHP_CVAL_EL2 = X[t];

else
CNTP_CVAL_EL0 = X[t];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x178] = X[t];
else

CNTP_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHPS_CVAL_EL2 = X[t];

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
CNTHP_CVAL_EL2 = X[t];

else
CNTP_CVAL_EL0 = X[t];

elsif PSTATE.EL == EL3 then
CNTP_CVAL_EL0 = X[t];

MRS <Xt>, CNTP_CVAL_EL02

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0010 0b010

CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue register

Page 216

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVPCT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return NVMem[0x178];

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return CNTP_CVAL_EL0;
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
return CNTP_CVAL_EL0;

else
UNDEFINED;

MSR CNTP_CVAL_EL02, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVPCT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
NVMem[0x178] = X[t];

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

CNTP_CVAL_EL0 = X[t];
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
CNTP_CVAL_EL0 = X[t];

else
UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue register

Page 217

CNTP_TVAL_EL0, Counter-timer Physical Timer
TimerValue register

The CNTP_TVAL_EL0 characteristics are:

Purpose
Holds the timer value for the EL1 physical timer.

Configuration
AArch64 System register CNTP_TVAL_EL0 bits [31:0] are architecturally mapped to AArch32 System register
CNTP_TVAL[31:0] .

Attributes
CNTP_TVAL_EL0 is a 64-bit register.

Field descriptions
The CNTP_TVAL_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

TimerValue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:

• If CNTP_CTL_EL0.ENABLE is 0, the value returned is UNKNOWN.
• If CNTP_CTL_EL0.ENABLE is 1, the value returned is (CNTP_CVAL_EL0 - CNTPCT_EL0).

On a write of this register, CNTP_CVAL_EL0 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated as a
signed 32-bit integer.

When CNTP_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTP_CVAL_EL0) is greater
than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is
met:

• CNTP_CTL_EL0.ISTATUS is set to 1.
• If CNTP_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTP_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the
TimerValue view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register

Page 218

Accessing the CNTP_TVAL_EL0
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTP_TVAL_EL0 or
CNTP_TVAL_EL02 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, CNTP_TVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN
== '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

return CNTHPS_TVAL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHP_TVAL_EL2;

else
return CNTP_TVAL_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return CNTP_TVAL_EL0;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHPS_TVAL_EL2;

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
return CNTHP_TVAL_EL2;

else
return CNTP_TVAL_EL0;

elsif PSTATE.EL == EL3 then
return CNTP_TVAL_EL0;

MSR CNTP_TVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b000

CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register

Page 219

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN
== '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

CNTHPS_TVAL_EL2 = X[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHP_TVAL_EL2 = X[t];

else
CNTP_TVAL_EL0 = X[t];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
else

CNTP_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHPS_TVAL_EL2 = X[t];

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
CNTHP_TVAL_EL2 = X[t];

else
CNTP_TVAL_EL0 = X[t];

elsif PSTATE.EL == EL3 then
CNTP_TVAL_EL0 = X[t];

MRS <Xt>, CNTP_TVAL_EL02

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return CNTP_TVAL_EL0;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return CNTP_TVAL_EL0;
else

UNDEFINED;

CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register

Page 220

MSR CNTP_TVAL_EL02, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
CNTP_TVAL_EL0 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

CNTP_TVAL_EL0 = X[t];
else

UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register

Page 221

CNTPCT_EL0, Counter-timer Physical Count register
The CNTPCT_EL0 characteristics are:

Purpose
Holds the 64-bit physical count value.

Configuration
AArch64 System register CNTPCT_EL0 bits [63:0] are architecturally mapped to AArch32 System register
CNTPCT[63:0] .

All reads to the CNTPCT_EL0 occur in program order relative to reads to CNTPCTSS_EL0 or CNTPCT_EL0.

Attributes
CNTPCT_EL0 is a 64-bit register.

Field descriptions
The CNTPCT_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Physical count value
Physical count value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Physical count value.

Reads of CNTPCT_EL0 from EL0 or EL1 return (PCount<63:0> - CNTPOFF_EL2<63:0>) if the access is not trapped,
and all of the following are true:

• CNTHCTL_EL2.ECV is 1.

• HCR_EL2.{E2H, TGE} is not {1, 1}.

Where PCount<63:0> is the physical count returned when CNTPCT_EL0 is read from EL2 or EL3.

Accessing the CNTPCT_EL0
Accesses to this register use the following encodings:

MRS <Xt>, CNTPCT_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0000 0b001

CNTPCT_EL0, Counter-timer Physical Count register

Page 222

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

CNTKCTL_EL1.EL0PCTEN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' &&
CNTHCTL_EL2.EL1PCTEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&

CNTHCTL_EL2.EL0PCTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return CNTPCT_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1PCTEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return CNTPCT_EL0;
elsif PSTATE.EL == EL2 then

return CNTPCT_EL0;
elsif PSTATE.EL == EL3 then

return CNTPCT_EL0;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTPCT_EL0, Counter-timer Physical Count register

Page 223

CNTPCTSS_EL0, Counter-timer Self-Synchronized
Physical Count register

The CNTPCTSS_EL0 characteristics are:

Purpose
Holds the self-synchronized view of the 64-bit physical count value.

Configuration
AArch64 System register CNTPCTSS_EL0 bits [63:0] are architecturally mapped to AArch32 System register
CNTPCTSS[63:0] .

This register is present only when ARMv8.6-ECV is implemented. Otherwise, direct accesses to CNTPCTSS_EL0 are
UNDEFINED.

All reads to the CNTPCTSS_EL0 occur in program order relative to reads to CNTPCT_EL0 or CNTPCTSS_EL0.

This register is a self-synchronised view of the CNTPCT_EL0 counter, and cannot be read speculatively.

Attributes
CNTPCTSS_EL0 is a 64-bit register.

Field descriptions
The CNTPCTSS_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Self-synchronized physical count value
Self-synchronized physical count value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Self-synchronized physical count value.

Accessing the CNTPCTSS_EL0
Accesses to this register use the following encodings:

MRS <Xt>, CNTPCTSS_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0000 0b101

CNTPCTSS_EL0, Counter-timer Self-Synchronized Physical Count register

Page 224

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

CNTKCTL_EL1.EL0PCTEN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' &&
CNTHCTL_EL2.EL1PCTEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&

CNTHCTL_EL2.EL0PCTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return CNTPCTSS_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1PCTEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return CNTPCTSS_EL0;
elsif PSTATE.EL == EL2 then

return CNTPCTSS_EL0;
elsif PSTATE.EL == EL3 then

return CNTPCTSS_EL0;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTPCTSS_EL0, Counter-timer Self-Synchronized Physical Count register

Page 225

CNTPOFF_EL2, Counter-timer Physical Offset register
The CNTPOFF_EL2 characteristics are:

Purpose
Holds the 64-bit physical offset. This is the offset for the AArch64 physical timers and counters when Enhanced
Counter Virtualization is enabled.

Configuration
This register is present only when ARMv8.6-ECV is implemented. Otherwise, direct accesses to CNTPOFF_EL2 are
UNDEFINED.

The offsetting of the timers and counters based on EL2 using AArch64 apply at:

• EL1 when EL1 is using AArch64 or AArch32.
• EL0 when EL0 is using AArch64 or AArch32.

When EL2 is implemented and enabled in the current Security state, the physical counter uses a fixed physical offset
of zero if either of the following are true:

• CNTHCTL_EL2.ECV is 0.
• SCR_EL3.ECVEn is 0.
• HCR_EL2.{E2H, TGE} is {1, 1}.

Attributes
CNTPOFF_EL2 is a 64-bit register.

Field descriptions
The CNTPOFF_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Physical offset
Physical offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Physical offset.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTPOFF_EL2
Accesses to this register use the following encodings:

MRS <Xt>, CNTPOFF_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0000 0b110

CNTPOFF_EL2, Counter-timer Physical Offset register

Page 226

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x1A8];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ECVEn == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return CNTPOFF_EL2;

elsif PSTATE.EL == EL3 then
return CNTPOFF_EL2;

MSR CNTPOFF_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0000 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x1A8] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ECVEn == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
CNTPOFF_EL2 = X[t];

elsif PSTATE.EL == EL3 then
CNTPOFF_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTPOFF_EL2, Counter-timer Physical Offset register

Page 227

CNTPS_CTL_EL1, Counter-timer Physical Secure Timer
Control register

The CNTPS_CTL_EL1 characteristics are:

Purpose
Control register for the secure physical timer, usually accessible at EL3 but configurably accessible at EL1 in Secure
state.

Configuration
There are no configuration notes.

Attributes
CNTPS_CTL_EL1 is a 64-bit register.

Field descriptions
The CNTPS_CTL_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 ISTATUSIMASKENABLE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views
of the timers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter D6.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control register

Page 228

For more information, see the description of the ISTATUS bit.

This field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTPS_TVAL_EL1 continues
to count down.

Note

Disabling the output signal might be a power-saving option.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTPS_CTL_EL1
Accesses to this register use the following encodings:

MRS <Xt>, CNTPS_CTL_EL1

op0 op1 CRn CRm op2
0b11 0b111 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '0' then

if SCR_EL3.EEL2 == '1' then
UNDEFINED;

elsif SCR_EL3.ST == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return CNTPS_CTL_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return CNTPS_CTL_EL1;

MSR CNTPS_CTL_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b111 0b1110 0b0010 0b001

CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control register

Page 229

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '0' then

if SCR_EL3.EEL2 == '1' then
UNDEFINED;

elsif SCR_EL3.ST == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
CNTPS_CTL_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
CNTPS_CTL_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control register

Page 230

CNTPS_CVAL_EL1, Counter-timer Physical Secure
Timer CompareValue register

The CNTPS_CVAL_EL1 characteristics are:

Purpose
Holds the compare value for the secure physical timer, usually accessible at EL3 but configurably accessible at EL1 in
Secure state.

Configuration
There are no configuration notes.

Attributes
CNTPS_CVAL_EL1 is a 64-bit register.

Field descriptions
The CNTPS_CVAL_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the secure physical timer CompareValue.

When CNTPS_CTL_EL1.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CompareValue) is greater than
or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTPS_CTL_EL1.ISTATUS is set to 1.
• If CNTPS_CTL_EL1.IMASK is 0, an interrupt is generated.

When CNTPS_CTL_EL1.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the
same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTPS_CVAL_EL1
Accesses to this register use the following encodings:

MRS <Xt>, CNTPS_CVAL_EL1

op0 op1 CRn CRm op2
0b11 0b111 0b1110 0b0010 0b010

CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer CompareValue register

Page 231

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '0' then

if SCR_EL3.EEL2 == '1' then
UNDEFINED;

elsif SCR_EL3.ST == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return CNTPS_CVAL_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return CNTPS_CVAL_EL1;

MSR CNTPS_CVAL_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b111 0b1110 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '0' then

if SCR_EL3.EEL2 == '1' then
UNDEFINED;

elsif SCR_EL3.ST == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
CNTPS_CVAL_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
CNTPS_CVAL_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer CompareValue register

Page 232

CNTPS_TVAL_EL1, Counter-timer Physical Secure
Timer TimerValue register

The CNTPS_TVAL_EL1 characteristics are:

Purpose
Holds the timer value for the secure physical timer, usually accessible at EL3 but configurably accessible at EL1 in
Secure state.

Configuration
There are no configuration notes.

Attributes
CNTPS_TVAL_EL1 is a 64-bit register.

Field descriptions
The CNTPS_TVAL_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

TimerValue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the secure physical timer.

On a read of this register:

• If CNTPS_CTL_EL1.ENABLE is 0, the value returned is UNKNOWN.
• If CNTPS_CTL_EL1.ENABLE is 1, the value returned is (CNTPS_CVAL_EL1 - CNTPCT_EL0).

On a write of this register, CNTPS_CVAL_EL1 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated as a
signed 32-bit integer.

When CNTPS_CTL_EL1.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTPS_CVAL_EL1) is greater
than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is
met:

• CNTPS_CTL_EL1.ISTATUS is set to 1.
• If CNTPS_CTL_EL1.IMASK is 0, an interrupt is generated.

When CNTPS_CTL_EL1.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the
TimerValue view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue register

Page 233

Accessing the CNTPS_TVAL_EL1
Accesses to this register use the following encodings:

MRS <Xt>, CNTPS_TVAL_EL1

op0 op1 CRn CRm op2
0b11 0b111 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '0' then

if SCR_EL3.EEL2 == '1' then
UNDEFINED;

elsif SCR_EL3.ST == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return CNTPS_TVAL_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return CNTPS_TVAL_EL1;

MSR CNTPS_TVAL_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b111 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '0' then

if SCR_EL3.EEL2 == '1' then
UNDEFINED;

elsif SCR_EL3.ST == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
CNTPS_TVAL_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
CNTPS_TVAL_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue register

Page 234

CNTV_CTL_EL0, Counter-timer Virtual Timer Control
register

The CNTV_CTL_EL0 characteristics are:

Purpose
Control register for the virtual timer.

Configuration
AArch64 System register CNTV_CTL_EL0 bits [31:0] are architecturally mapped to AArch32 System register
CNTV_CTL[31:0] .

Attributes
CNTV_CTL_EL0 is a 64-bit register.

Field descriptions
The CNTV_CTL_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 ISTATUSIMASKENABLE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views
of the timers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter D6.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

CNTV_CTL_EL0, Counter-timer Virtual Timer Control register

Page 235

For more information, see the description of the ISTATUS bit.

This field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTV_TVAL_EL0 continues to
count down.

Note

Disabling the output signal might be a power-saving option.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTV_CTL_EL0
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTV_CTL_EL0 or
CNTV_CTL_EL02 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, CNTV_CTL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b001

CNTV_CTL_EL0, Counter-timer Virtual Timer Control register

Page 236

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHVS_CTL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHV_CTL_EL2;
else

return CNTV_CTL_EL0;
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x170];
else

return CNTV_CTL_EL0;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHVS_CTL_EL2;

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
return CNTHV_CTL_EL2;

else
return CNTV_CTL_EL0;

elsif PSTATE.EL == EL3 then
return CNTV_CTL_EL0;

MSR CNTV_CTL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b001

CNTV_CTL_EL0, Counter-timer Virtual Timer Control register

Page 237

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHVS_CTL_EL2 = X[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHV_CTL_EL2 = X[t];
else

CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x170] = X[t];
else

CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHVS_CTL_EL2 = X[t];

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
CNTHV_CTL_EL2 = X[t];

else
CNTV_CTL_EL0 = X[t];

elsif PSTATE.EL == EL3 then
CNTV_CTL_EL0 = X[t];

MRS <Xt>, CNTV_CTL_EL02

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVVCT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return NVMem[0x170];

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return CNTV_CTL_EL0;
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
return CNTV_CTL_EL0;

else
UNDEFINED;

CNTV_CTL_EL0, Counter-timer Virtual Timer Control register

Page 238

MSR CNTV_CTL_EL02, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVVCT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
NVMem[0x170] = X[t];

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

CNTV_CTL_EL0 = X[t];
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
CNTV_CTL_EL0 = X[t];

else
UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTV_CTL_EL0, Counter-timer Virtual Timer Control register

Page 239

CNTV_CVAL_EL0, Counter-timer Virtual Timer
CompareValue register

The CNTV_CVAL_EL0 characteristics are:

Purpose
Holds the compare value for the virtual timer.

Configuration
AArch64 System register CNTV_CVAL_EL0 bits [63:0] are architecturally mapped to AArch32 System register
CNTV_CVAL[63:0] .

Attributes
CNTV_CVAL_EL0 is a 64-bit register.

Field descriptions
The CNTV_CVAL_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL1 virtual timer CompareValue.

When CNTV_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 - CompareValue) is greater than
or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTV_CTL_EL0.ISTATUS is set to 1.
• If CNTV_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTV_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the
same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTV_CVAL_EL0
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTV_CVAL_EL0 or
CNTV_CVAL_EL02 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, CNTV_CVAL_EL0

op0 op1 CRn CRm op2

CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue register

Page 240

0b11 0b011 0b1110 0b0011 0b010

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHVS_CVAL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHV_CVAL_EL2;
else

return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x168];
else

return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHVS_CVAL_EL2;

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
return CNTHV_CVAL_EL2;

else
return CNTV_CVAL_EL0;

elsif PSTATE.EL == EL3 then
return CNTV_CVAL_EL0;

MSR CNTV_CVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b010

CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue register

Page 241

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHVS_CVAL_EL2 = X[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHV_CVAL_EL2 = X[t];
else

CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x168] = X[t];
else

CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHVS_CVAL_EL2 = X[t];

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
CNTHV_CVAL_EL2 = X[t];

else
CNTV_CVAL_EL0 = X[t];

elsif PSTATE.EL == EL3 then
CNTV_CVAL_EL0 = X[t];

MRS <Xt>, CNTV_CVAL_EL02

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVVCT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return NVMem[0x168];

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return CNTV_CVAL_EL0;
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
return CNTV_CVAL_EL0;

else
UNDEFINED;

CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue register

Page 242

MSR CNTV_CVAL_EL02, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVVCT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
NVMem[0x168] = X[t];

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

CNTV_CVAL_EL0 = X[t];
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
CNTV_CVAL_EL0 = X[t];

else
UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue register

Page 243

CNTV_TVAL_EL0, Counter-timer Virtual Timer
TimerValue register

The CNTV_TVAL_EL0 characteristics are:

Purpose
Holds the timer value for the EL1 virtual timer.

Configuration
AArch64 System register CNTV_TVAL_EL0 bits [31:0] are architecturally mapped to AArch32 System register
CNTV_TVAL[31:0] .

Attributes
CNTV_TVAL_EL0 is a 64-bit register.

Field descriptions
The CNTV_TVAL_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

TimerValue
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL1 virtual timer.

On a read of this register:

• If CNTV_CTL_EL0.ENABLE is 0, the value returned is UNKNOWN.
• If CNTV_CTL_EL0.ENABLE is 1, the value returned is (CNTV_CVAL_EL0 - CNTVCT_EL0).

On a write of this register, CNTV_CVAL_EL0 is set to (CNTVCT_EL0 + TimerValue), where TimerValue is treated as a
signed 32-bit integer.

When CNTV_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 - CNTV_CVAL_EL0) is greater
than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is
met:

• CNTV_CTL_EL0.ISTATUS is set to 1.
• If CNTV_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTV_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count, so the
TimerValue view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register

Page 244

Accessing the CNTV_TVAL_EL0
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTV_TVAL_EL0 or
CNTV_TVAL_EL02 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, CNTV_TVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b000

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHVS_TVAL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHV_TVAL_EL2;
else

return CNTV_TVAL_EL0;
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return CNTV_TVAL_EL0;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHVS_TVAL_EL2;

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
return CNTHV_TVAL_EL2;

else
return CNTV_TVAL_EL0;

elsif PSTATE.EL == EL3 then
return CNTV_TVAL_EL0;

MSR CNTV_TVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b000

CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register

Page 245

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN

== '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHVS_TVAL_EL2 = X[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHV_TVAL_EL2 = X[t];
else

CNTV_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

CNTV_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHVS_TVAL_EL2 = X[t];

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
CNTHV_TVAL_EL2 = X[t];

else
CNTV_TVAL_EL0 = X[t];

elsif PSTATE.EL == EL3 then
CNTV_TVAL_EL0 = X[t];

MRS <Xt>, CNTV_TVAL_EL02

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return CNTV_TVAL_EL0;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return CNTV_TVAL_EL0;
else

UNDEFINED;

MSR CNTV_TVAL_EL02, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0011 0b000

CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register

Page 246

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
CNTV_TVAL_EL0 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

CNTV_TVAL_EL0 = X[t];
else

UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register

Page 247

CNTVCT_EL0, Counter-timer Virtual Count register
The CNTVCT_EL0 characteristics are:

Purpose
Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value minus the virtual
offset visible in CNTVOFF_EL2.

Configuration
AArch64 System register CNTVCT_EL0 bits [63:0] are architecturally mapped to AArch32 System register
CNTVCT[63:0] .

The value of this register is the same as the value of CNTPCT_EL0 in the following conditions:

• When EL2 is not implemented.
• When EL2 is implemented, HCR_EL2.E2H is 1, and this register is read from EL2.
• When EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H, TGE} is {1, 1}, and this

register is read from EL0 or EL2.

All reads to the CNTVCT_EL0 occur in program order relative to reads to CNTVCTSS_EL0 or CNTVCT_EL0.

Attributes
CNTVCT_EL0 is a 64-bit register.

Field descriptions
The CNTVCT_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual count value
Virtual count value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual count value.

Accessing the CNTVCT_EL0
Accesses to this register use the following encodings:

MRS <Xt>, CNTVCT_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0000 0b010

CNTVCT_EL0, Counter-timer Virtual Count register

Page 248

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

CNTKCTL_EL1.EL0VCTEN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&

CNTHCTL_EL2.EL0VCTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&
CNTHCTL_EL2.EL1TVCT == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return CNTVCT_EL0;
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTHCTL_EL2.EL1TVCT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return CNTVCT_EL0;
elsif PSTATE.EL == EL2 then

return CNTVCT_EL0;
elsif PSTATE.EL == EL3 then

return CNTVCT_EL0;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTVCT_EL0, Counter-timer Virtual Count register

Page 249

CNTVCTSS_EL0, Counter-timer Self-Synchronized
Virtual Count register

The CNTVCTSS_EL0 characteristics are:

Purpose
Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value visible in
CNTPCT_EL0 minus the virtual offset visible in CNTVOFF_EL2.

Configuration
AArch64 System register CNTVCTSS_EL0 bits [63:0] are architecturally mapped to AArch32 System register
CNTVCTSS[63:0] .

This register is present only when ARMv8.6-ECV is implemented. Otherwise, direct accesses to CNTVCTSS_EL0 are
UNDEFINED.

All reads to the CNTVCTSS_EL0 occur in program order relative to reads to CNTVCT_EL0 or CNTVCTSS_EL0.

This register is a self-synchronised view of the CNTVCT_EL0 counter, and cannot be read speculatively.

Attributes
CNTVCTSS_EL0 is a 64-bit register.

Field descriptions
The CNTVCTSS_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Self-synchronized virtual count value
Self-synchronized virtual count value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Self-synchronized virtual count value.

Accessing the CNTVCTSS_EL0
Accesses to this register use the following encodings:

MRS <Xt>, CNTVCTSS_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0000 0b110

CNTVCTSS_EL0, Counter-timer Self-Synchronized Virtual Count register

Page 250

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

CNTKCTL_EL1.EL0VCTEN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&

CNTHCTL_EL2.EL0VCTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&
CNTHCTL_EL2.EL1TVCT == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return CNTVCTSS_EL0;
elsif PSTATE.EL == EL1 then

if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTHCTL_EL2.EL1TVCT
== '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return CNTVCTSS_EL0;
elsif PSTATE.EL == EL2 then

return CNTVCTSS_EL0;
elsif PSTATE.EL == EL3 then

return CNTVCTSS_EL0;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTVCTSS_EL0, Counter-timer Self-Synchronized Virtual Count register

Page 251

CNTVOFF_EL2, Counter-timer Virtual Offset register
The CNTVOFF_EL2 characteristics are:

Purpose
Holds the 64-bit virtual offset. This is the offset between the physical count value visible in CNTPCT_EL0 and the
virtual count value visible in CNTVCT_EL0.

Configuration
AArch64 System register CNTVOFF_EL2 bits [63:0] are architecturally mapped to AArch32 System register
CNTVOFF[63:0] .

If EL2 is not implemented, this register is RES0 from EL3 and the virtual counter uses a fixed virtual offset of zero.

Note

When EL2 is implemented and enabled in the current Security state, and is
using AArch64, the virtual counter uses a fixed virtual offset of zero in the
following situations:

• HCR_EL2.E2H is 1, and CNTVCT_EL0 is read from EL2.
• HCR_EL2.{E2H, TGE} is {1, 1}, and either:

◦ CNTVCT_EL0 is read from EL0 or EL2.
◦ CNTVCT is read from EL0.

Attributes
CNTVOFF_EL2 is a 64-bit register.

Field descriptions
The CNTVOFF_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual offset
Virtual offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual offset.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the
same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTVOFF_EL2
Accesses to this register use the following encodings:

CNTVOFF_EL2, Counter-timer Virtual Offset register

Page 252

MRS <Xt>, CNTVOFF_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0000 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x060];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return CNTVOFF_EL2;
elsif PSTATE.EL == EL3 then

return CNTVOFF_EL2;

MSR CNTVOFF_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0000 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x060] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

CNTVOFF_EL2 = X[t];
elsif PSTATE.EL == EL3 then

CNTVOFF_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTVOFF_EL2, Counter-timer Virtual Offset register

Page 253

CONTEXTIDR_EL1, Context ID Register (EL1)
The CONTEXTIDR_EL1 characteristics are:

Purpose
Identifies the current Process Identifier.

The value of the whole of this register is called the Context ID and is used by:

• The debug logic, for Linked and Unlinked Context ID matching.
• The trace logic, to identify the current process.

The significance of this register is for debug and trace use only.

This register is used when ARMv8.1-VHE is not implemented, or whenARMv8.1-VHE is implemented and
HCR_EL2.E2H is set to 0.

Note

When ARMv8.1-VHE is implemented and HCR_EL2.E2H is set to 1,
CONTEXTIDR_EL2 is used.

Configuration
AArch64 System register CONTEXTIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
CONTEXTIDR[31:0] .

Attributes
CONTEXTIDR_EL1 is a 64-bit register.

Field descriptions
The CONTEXTIDR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

PROCID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

PROCID, bits [31:0]

Process Identifier. This field must be programmed with a unique value that identifies the current process.

Note

In AArch32 state, when TTBCR.EAE is set to 0, CONTEXTIDR.ASID holds the
ASID.

In AArch64 state, CONTEXTIDR_EL1 is independent of the ASID, and for the
EL1&0 translation regime either TTBR0_EL1 or TTBR1_EL1 holds the ASID.

CONTEXTIDR_EL1, Context ID Register (EL1)

Page 254

This field resets to an architecturally UNKNOWN value.

Accessing the CONTEXTIDR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CONTEXTIDR_EL1
or CONTEXTIDR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, CONTEXTIDR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1101 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.CONTEXTIDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x108];

else
return CONTEXTIDR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return CONTEXTIDR_EL2;
else

return CONTEXTIDR_EL1;
elsif PSTATE.EL == EL3 then

return CONTEXTIDR_EL1;

MSR CONTEXTIDR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1101 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.CONTEXTIDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x108] = X[t];

else
CONTEXTIDR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

CONTEXTIDR_EL2 = X[t];
else

CONTEXTIDR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

CONTEXTIDR_EL1 = X[t];

CONTEXTIDR_EL1, Context ID Register (EL1)

Page 255

MRS <Xt>, CONTEXTIDR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b1101 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x108];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return CONTEXTIDR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return CONTEXTIDR_EL1;
else

UNDEFINED;

MSR CONTEXTIDR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1101 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x108] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
CONTEXTIDR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

CONTEXTIDR_EL1 = X[t];
else

UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CONTEXTIDR_EL1, Context ID Register (EL1)

Page 256

CONTEXTIDR_EL2, Context ID Register (EL2)
The CONTEXTIDR_EL2 characteristics are:

Purpose
When HCR_EL2.E2H is set to 1, identifies the current Process Identifier.

The value of the whole of this register is called the Context ID and is used by:

• The debug logic, for Linked and Unlinked Context ID matching.
• The trace logic, to identify the current process.

The significance of this register is for debug and trace use only.

Note

When HCR_EL2.E2H is 0, CONTEXTIDR_EL2 replaces CONTEXTIDR_EL1
where CONTEXTIDR_EL1 would usually be used.

Configuration
This register is present only when ARMv8.1-VHE is implemented or ARMv8.2-Debug is implemented. Otherwise, direct
accesses to CONTEXTIDR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
CONTEXTIDR_EL2 is a 64-bit register.

Field descriptions
The CONTEXTIDR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

PROCID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

PROCID, bits [31:0]

Process Identifier. This field must be programmed with a unique value that identifies the current process.

Note

In AArch32 state, when TTBCR.EAE is set to 0, CONTEXTIDR.ASID holds the
ASID.

In AArch64 state, CONTEXTIDR_EL2 is independent of the ASID, and for the
EL2&0 translation regime either TTBR0_EL2 or TTBR1_EL2 holds the ASID.

CONTEXTIDR_EL2, Context ID Register (EL2)

Page 257

This field resets to an architecturally UNKNOWN value.

Accessing the CONTEXTIDR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CONTEXTIDR_EL2
or CONTEXTIDR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, CONTEXTIDR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1101 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return CONTEXTIDR_EL2;
elsif PSTATE.EL == EL3 then

return CONTEXTIDR_EL2;

MSR CONTEXTIDR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1101 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

CONTEXTIDR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

CONTEXTIDR_EL2 = X[t];

MRS <Xt>, CONTEXTIDR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1101 0b0000 0b001

CONTEXTIDR_EL2, Context ID Register (EL2)

Page 258

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.CONTEXTIDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x108];

else
return CONTEXTIDR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return CONTEXTIDR_EL2;
else

return CONTEXTIDR_EL1;
elsif PSTATE.EL == EL3 then

return CONTEXTIDR_EL1;

MSR CONTEXTIDR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1101 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.CONTEXTIDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x108] = X[t];

else
CONTEXTIDR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

CONTEXTIDR_EL2 = X[t];
else

CONTEXTIDR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

CONTEXTIDR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CONTEXTIDR_EL2, Context ID Register (EL2)

Page 259

CPACR_EL1, Architectural Feature Access Control
Register

The CPACR_EL1 characteristics are:

Purpose
Controls access to trace, SVE, Advanced SIMD and floating-point functionality.

Configuration
AArch64 System register CPACR_EL1 bits [31:0] are architecturally mapped to AArch32 System register CPACR[31:0]
.

When HCR_EL2.{E2H, TGE} == {1, 1}, the fields in this register have no effect on execution at EL0 and EL1. In this
case, the controls provided by CPTR_EL2 are used.

Attributes
CPACR_EL1 is a 64-bit register.

Field descriptions
The CPACR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 TTA RES0 FPEN RES0 ZEN RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:29]

Reserved, RES0.

TTA, bit [28]

Traps EL0 and EL1 System register accesses to all implemented trace registers to EL1, or to EL2 when it is
implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from both Execution states as follows:

• In AArch64 state, accesses to trace registers are trapped, reported using EC syndrome value 0x18.

• In AArch32 state, MRC and MCR accesses to trace registers are trapped, reported using EC syndrome value
0x05.

• In AArch32 state, MRRC and MCRR accesses to trace registers are trapped, reported using EC syndrome
value 0x0C.

TTA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 This control causes EL0 and EL1 System register accesses to all

implemented trace registers to be trapped.

Note
• The ETMv4 architecture does not permit EL0 to access the trace

registers. If the Armv8-A architecture is implemented with an ETMv4
implementation, EL0 accesses to the trace registers are UNDEFINED, and
any resulting exception is higher priority than an exception that would
be generated because the value of CPACR_EL1.TTA is 1.

CPACR_EL1, Architectural Feature Access Control Register

Page 260

• The Armv8-A architecture does not provide traps on trace register
accesses through the optional memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any
side-effects that are normally associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not implemented, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bits [27:22]

Reserved, RES0.

FPEN, bits [21:20]

Traps EL0 and EL1 accesses to the SVE, Advanced SIMD, and floating-point registers to EL1, reported using EC
syndrome value 0x07, or to EL2 reported using EC syndrome value 0x00, when EL2 is implemented and enabled for
the current Security state and HCR_EL2.TGE is 1, from both Execution states as follows:

• In AArch64 state, accesses to FPCR, FPSR, any of the SIMD and floating-point registers V0-V31, including
their views as D0-D31 registers or S0-31 registers. See 'The SIMD and floating-point registers, V0-V31' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

• FPCSR, and any of the SIMD and floating-point registers Q0-15, including their views as D0-D31 registers or
S0-31 registers. See 'Advanced SIMD and floating-point System registers' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

FPEN Meaning
0b00 This control causes any instructions at EL0 or EL1 that use the

registers associated with SVE, Advanced SIMD and floating-
point execution to be trapped, unless they are trapped by
CPACR_EL1.ZEN.

0b01 This control causes any instructions at EL0 that use the
registers associated with SVE, Advanced SIMD and floating-
point execution to be trapped, unless they are trapped by
CPACR_EL1.ZEN, but does not cause any instruction at EL1 to
be trapped.

0b10 This control causes any instructions at EL0 or EL1 that use the
registers associated with SVE, Advanced SIMD and floating-
point execution to be trapped, unless they are trapped by
CPACR_EL1.ZEN.

0b11 This control does not cause any instructions to be trapped.

Writes to MVFR0, MVFR1 and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE and whether these
accesses can be trapped by this control depends on implemented CONSTRAINED UNPREDICTABLE behavior.

Note
• Attempts to write to the FPSID count as use of the registers for accesses

from EL1 or higher.
• Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are

UNDEFINED, and any resulting exception is higher priority than an
exception that would be generated because the value of
CPACR_EL1.FPEN is not 0b11.

This field resets to an architecturally UNKNOWN value.

Bits [19:18]

Reserved, RES0.

ZEN, bits [17:16]

When SVE is implemented:

Traps SVE instructions and instructions that access SVE System registers at EL0 and EL1 to EL1, or to EL2 when it is
implemented and enabled for the current Security state and HCR_EL2.TGE is 1.

CPACR_EL1, Architectural Feature Access Control Register

Page 261

AArch32-fpcsr.html

ZEN Meaning
0b00 This control causes these instructions executed at EL0 or EL1 to

be trapped.
0b01 This control causes these instructions executed at EL0 to be

trapped, but does not cause any instruction at EL1 to be trapped.
0b10 This control causes these instructions executed at EL0 or EL1 to

be trapped.
0b11 This control does not cause any instruction to be trapped.

If SVEis not implemented, this field is RES0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [15:0]

Reserved, RES0.

Accessing the CPACR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CPACR_EL1 or
CPACR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, CPACR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.CPACR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x100];

else
return CPACR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

return CPTR_EL2;
else

return CPACR_EL1;
elsif PSTATE.EL == EL3 then

return CPACR_EL1;

MSR CPACR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b010

CPACR_EL1, Architectural Feature Access Control Register

Page 262

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.CPACR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x100] = X[t];

else
CPACR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

CPTR_EL2 = X[t];
else

CPACR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

CPACR_EL1 = X[t];

MRS <Xt>, CPACR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x100];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return CPACR_EL1;
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
return CPACR_EL1;

else
UNDEFINED;

MSR CPACR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0000 0b010

CPACR_EL1, Architectural Feature Access Control Register

Page 263

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x100] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

CPACR_EL1 = X[t];
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
CPACR_EL1 = X[t];

else
UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPACR_EL1, Architectural Feature Access Control Register

Page 264

CPP RCTX, Cache Prefetch Prediction Restriction by
Context

The CPP RCTX characteristics are:

Purpose
Cache Prefetch Prediction Restriction by Context applies to all Cache Allocation Resources that predict cache
allocations based on information gathered within the target execution context or contexts.

When this instruction is complete and synchronized, cache prefetch prediction does not permit later speculative
execution within the target execution context to be observable through side channels.

This instruction applies to all:

• Instruction caches.
• Data caches.
• TLB prefetching hardware used by the executing PE that applies to the supplied context or contexts.

This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same
PE as executed the original restriction instruction, and a subsequent context synchronization event is required to
ensure that the effect of the completion of the instructions is synchronized to the current execution.

Note

This instruction does not require the invalidation of Cache Allocation
Resources so long as the behavior described for completion of this instruction
is met by the implementation.

On some implementations the instruction is likely to take a significant number
of cycles to execute. This instruction is expected to be used very rarely, such
as on the roll-over of an ASID or VMID, but should not be used on every
context switch.

Configuration
This instruction is present only when ARMv8.0-PredInv is implemented. Otherwise, direct accesses to CPP RCTX are
UNDEFINED.

Attributes
CPP RCTX is a 64-bit System instruction.

Field descriptions
The CPP RCTX input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 GVMID VMID

RES0 NS EL RES0 GASID ASID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:49]

Reserved, RES0.

CPP RCTX, Cache Prefetch Prediction Restriction by Context

Page 265

GVMID, bit [48]

Execution of this instruction applies to all VMIDs or a specified VMID.

GVMID Meaning
0b0 Applies to specified VMID for an EL0 or EL1 context. For all

other contexts this field is RES0.
0b1 Applies to all VMIDs for an EL0 or EL1 context. For all other

contexts this field is RES0.

If the instruction is executed at EL0 or EL1, then this field has an Effective value of 0.

VMID, bits [47:32]

Only applies when bit[48] is 0 and one of:

• an EL1 context.
• an EL0 context when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0).

Otherwise this field is RES0.

When the instruction is executed at EL1 then this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0) then this field is treated as
the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1) then this field is ignored.

Bits [31:27]

Reserved, RES0.

NS, bit [26]

Security State.

NS Meaning
0b0 Secure state.
0b1 Non-secure state.

If the instruction is executed in Non-secure state, this field has an Effective value of 1.

EL, bits [25:24]

Exception Level.

EL Meaning
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.

If the instruction is executed at an exception level lower than the specified level, this instruction is treated as a NOP.

Bits [23:17]

Reserved, RES0.

GASID, bit [16]

Execution of this instruction applies to all ASIDs or a specified ASID.

CPP RCTX, Cache Prefetch Prediction Restriction by Context

Page 266

GASID Meaning
0b0 Applies to specified ASID for an EL0 context. For all other

contexts this field is RES0.
0b1 Applies to all ASID for an EL0 context. For all other contexts

this field is RES0.

If the instruction is executed at EL0, then this field has an Effective value of 0.

ASID, bits [15:0]

Only applies for an EL0 context and when bit[16] is 0.

Otherwise this field is RES0.

When the instruction is executed at EL0 then this field is treated as the current ASID.

Executing the CPP RCTX instruction
Accesses to this instruction use the following encodings:

CPP RCTX, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b0011 0b111

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HFGITR_EL2.CPPRCTX == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX ==
'0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

CPP_RCTX(X[t]);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.CPPRCTX == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

CPP_RCTX(X[t]);
elsif PSTATE.EL == EL2 then

CPP_RCTX(X[t]);
elsif PSTATE.EL == EL3 then

CPP_RCTX(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPP RCTX, Cache Prefetch Prediction Restriction by Context

Page 267

CPTR_EL2, Architectural Feature Trap Register (EL2)
The CPTR_EL2 characteristics are:

Purpose
Controls:

• Trapping to EL2 of access to CPACR, CPACR_EL1, trace functionality, and to SVE, Advanced SIMD and
floating-point functionality.

• EL2 access to trace functionality, and to SVE, Advanced SIMD and floating-point functionality.

Configuration
AArch64 System register CPTR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HCPTR[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
CPTR_EL2 is a 64-bit register.

Field descriptions
The CPTR_EL2 bit assignments are:

When ARMv8.1-VHE is implemented and HCR_EL2.E2H == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

TCPACTAMRES0TTA RES0 FPEN RES0 ZEN RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

When HCR_EL2.TGE is 0, traps EL1 accesses to CPACR_EL1 reported using EC syndrome value 0x18, and accesses to
CPACR reported using EC syndrome value 0x03, to EL2 when EL2 is enabled in the current Security state.

TCPAC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to CPACR_EL1 and CPACR are trapped to EL2

when EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

Note

CPACR_EL1 and CPACR are not accessible at EL0.

This field resets to an architecturally UNKNOWN value.

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 268

TAM, bit [30]

When AMUv1 is implemented:

Trap Activity Monitor access. Traps EL1 and EL0 accesses to all Activity Monitor registers to EL2, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value
0x18:

◦ AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0, AMCNTENCLR1_EL0,
AMCNTENSET0_EL0, AMCNTENSET1_EL0, AMCR_EL0, AMEVCNTR0<n>_EL0,
AMEVCNTR1<n>_EL0, AMEVTYPER0<n>_EL0, and AMEVTYPER1<n>_EL0.

• In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2 and reported using
EC syndrome value 0x03:

◦ AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0,
AMCNTENSET1, AMCR, AMEVTYPER0<n>, and AMEVTYPER1<n>.

• In AArch32 state, MRRC or MCRR accesses to AMEVCNTR0<n> and AMEVCNTR1<n>, are trapped to EL2,
reported using EC syndrome value 0x04.

TAM Meaning
0b0 Accesses from EL1 and EL0 to Activity Monitor registers are not

trapped.
0b1 Accesses from EL1 and EL0 to Activity Monitor registers are

trapped to EL2, when EL2 is enabled in the current Security
state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [29]

Reserved, RES0.

TTA, bit [28]

Traps System register accesses to all implemented trace registers to EL2 when EL2 is enabled in the current Security
state, from both Execution states, as follows:

• In AArch64 state, accesses to trace registers with op0=2, op1=1 are trapped to EL2, reported using EC
syndrome value 0x18.

• In AArch32 state, MRC or MCR accesses to trace registers with cpnum=14, opc1=1, are trapped to EL2,
reported using EC syndrome value 0x05.

• In AArch32 state, MRRC or MCRR accesses to trace registers with cpnum=14, opc1=1, are trapped to EL2,
reported using EC syndrome value 0x0C.

TTA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt at EL0, EL1 or EL2, to execute a System register

access to an implemented trace register is trapped to EL2 when
EL2 is enabled in the current Security state, unless HCR_EL2.TGE
is 0 and it is trapped by CPACR.NSTRCDIS or CPACR_EL1.TTA.
When HCR_EL2.TGE is 1, any attempt at EL0 or EL2 to execute a
System register access to an implemented trace register is
trapped to EL2 when EL2 is enabled in the current Security state.

Note
• The ETMv4 architecture does not permit EL0 to access the trace

registers. If the Armv8-A architecture is implemented with an ETMv4
implementation, EL0 accesses to the trace registers are UNDEFINED, and

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 269

any resulting exception is higher priority than an exception that would
be generated because the value of CPTR_EL2.TTA is 1.

• EL2 does not provide traps on trace register accesses through the
optional memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any
side-effects that are normally associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bits [27:22]

Reserved, RES0.

FPEN, bits [21:20]

Traps EL0, EL2 and, when HCR_EL2.TGE is 0, EL1 accesses to the SVE, Advanced SIMD and floating-point registers
to EL2 when EL2 is enabled in the current Security state, from both Execution states.

FPEN Meaning
0b00 This control causes any instructions at EL0, EL1, or EL2 that

use the registers associated with SVE, Advanced SIMD and
floating-point execution to be trapped, subject to the exception
prioritization rules, unless they are trapped by CPTR_EL2.ZEN.

0b01 When HCR_EL2.TGE is 0, this control does not cause any
instructions to be trapped.
When HCR_EL2.TGE is 1, this control causes instructions at EL0
that use the registers associated with SVE, Advanced SIMD and
floating-point execution to be trapped, unless they are trapped
by CPTR_EL2.ZEN, but does not cause any instruction at EL2 to
be trapped.

0b10 This control causes any instructions at EL0, EL1, or EL2 that
use the registers associated with SVE, Advanced SIMD and
floating-point execution to be trapped, subject to the exception
prioritization rules, unless they are trapped by CPTR_EL2.ZEN.

0b11 This control does not cause any instructions to be trapped.

Writes to MVFR0, MVFR1, and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE and whether these
accesses can be trapped by this control depends on implemented CONSTRAINED UNPREDICTABLE behavior.

Note
• Attempts to write to the FPSID count as use of the registers for accesses

from EL1 or higher.
• Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are

UNDEFINED, and any resulting exception is higher priority than an
exception that would be generated because the value of
CPTR_EL2.FPEN is not 0b11.

This field resets to an architecturally UNKNOWN value.

Bits [19:18]

Reserved, RES0.

ZEN, bits [17:16]

When SVE is implemented:

Traps execution at EL2, EL1, and EL0 of SVE instructions or instructions that access SVE System registers to EL2
when EL2 is enabled in the current Security state.

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 270

ZEN Meaning
0b00 This control causes execution at EL2, EL1, and EL0 of these

instructions to be trapped, subject to the exception prioritization
rules.

0b01 When HCR_EL2.TGE is 0, this control does not cause any
instruction to be trapped.
When HCR_EL2.TGE is 1, this control causes these instructions
executed at EL0 to be trapped, but does not cause any instruction
at EL2 to be trapped.

0b10 This control causes execution at EL2, EL1, and EL0 of these
instructions to be trapped, subject to the exception prioritization
rules.

0b11 This control does not cause any instruction to be trapped.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [15:0]

Reserved, RES0.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

TCPACTAM RES0 TTA RES0 RES1 RES0TFPRES1TZ RES1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This format applies in all Armv8.0 implementations.

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

Traps EL1 accesses to CPACR_EL1, reported using EC syndrome value 0x18 and accesses to CPACR, reported using
EC syndrome value 0x03, to EL2 when EL2 is enabled in the current Security state.

TCPAC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to CPACR_EL1 and CPACR are trapped to EL2

when EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

Note

CPACR_EL1 and CPACR are not accessible at EL0.

This field resets to an architecturally UNKNOWN value.

TAM, bit [30]

When AMUv1 is implemented:

Trap Activity Monitor access. Traps EL1 and EL0 accesses to all Activity Monitor registers to EL2, as follows:

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 271

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value
0x18:

◦ AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0, AMCNTENCLR1_EL0,
AMCNTENSET0_EL0, AMCNTENSET1_EL0, AMCR_EL0, AMEVCNTR0<n>_EL0,
AMEVCNTR1<n>_EL0, AMEVTYPER0<n>_EL0, and AMEVTYPER1<n>_EL0.

• In AArch32 state, MCR or MRC accesses to the following registers are trapped to EL2 and reported using
EC syndrome value 0x03:

◦ AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0,
AMCNTENSET1, AMCR, AMEVTYPER0<n>, and AMEVTYPER1<n>.

• In AArch32 state, MCRR or MRRC accesses to AMEVCNTR0<n> and AMEVCNTR1<n>, are trapped to EL2,
reported using EC syndrome value 0x04.

TAM Meaning
0b0 Accesses from EL1 and EL0 to Activity Monitor registers are not

trapped.
0b1 Accesses from EL1 and EL0 to Activity Monitor registers are

trapped to EL2, when EL2 is enabled in the current Security
state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:21]

Reserved, RES0.

TTA, bit [20]

Traps System register accesses to all implemented trace registers to EL2 when EL2 is enabled in the current Security
state, from both Execution states as follows:

• In AArch64 state, accesses to trace registers with op0=2, op1=1 are trapped to EL2, reported using EC
syndrome value 0x18.

• In AArch32 state, MRC or MCR accesses to trace registers with cpnum=14, opc1=1 are trapped to EL2,
reported using EC syndrome value 0x05.

• In AArch32 state, MRRC or MCRR accesses to trace registers with cpnum=14, opc1=1 are trapped to EL2,
reported using EC syndrome value 0x0C.

TTA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt at EL0, EL1, or EL2, to execute a System register

access to an implemented trace register is trapped to EL2 when
EL2 is enabled in the current Security state, unless it is trapped
by CPACR.TRCDIS or CPACR_EL1.TTA.

Note
• The ETMv4 architecture does not permit EL0 to access the trace

registers. If the Armv8-A architecture is implemented with an ETMv4
implementation, EL0 accesses to the trace registers are UNDEFINED, and
any resulting exception is higher priority than an exception that would
be generated because the value of CPTR_EL2.TTA is 1.

• EL2 does not provide traps on trace register accesses through the
optional memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any
side-effects that are normally associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 272

This field resets to an architecturally UNKNOWN value.

Bits [19:14]

Reserved, RES0.

Bits [13:12]

Reserved, RES1.

Bit [11]

Reserved, RES0.

TFP, bit [10]

Traps accesses to SVE, Advanced SIMD and floating-point functionality to EL2 when EL2 is enabled in the current
Security state, from both Execution states, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value
0x07:

◦ FPCR, FPSR, FPEXC32_EL2, any of the SIMD and floating-point registers V0-V31, including their
views as D0-D31 registers or S0-31 registers. See 'The SIMD and floating-point registers, V0-V31' in
the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

• In AArch32 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value
0x07:

◦ MVFR0, MVFR1, MVFR2, FPCSR, FPEXC, and any of the SIMD and floating-point registers Q0-15,
including their views as D0-D31 registers or S0-31 registers. See 'Advanced SIMD and floating-point
System registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture
profile. For the purposes of this trap, the architecture defines a VMSR access to FPSID from EL1 or
higher as an access to a SIMD and floating point register. Otherwise, permitted VMSR accesses to
FPSID are ignored.

TFP Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt at EL0, EL1 or EL2, to execute an instruction that

uses the registers associated with SVE, Advanced SIMD and
floating-point execution is trapped to EL2 when EL2 is enabled in
the current Security state, subject to the exception prioritization
rules, unless it is trapped by CPTR_EL2.TZ.

Note

FPEXC32_EL2 is not accessible from EL0 using AArch64.

FPSID, MRFR0, MVFR1, and FPEXC are not accessible from EL0 using
AArch32.

This field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES1.

TZ, bit [8]

When SVE is implemented:

Traps execution at EL2, EL1, or EL0 of SVE instructions and instructions that access SVE System registers to EL2
when EL2 is enabled in the current Security state.

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 273

AArch32-fpcsr.html
AArch32-mrfr0.html

TZ Meaning
0b0 This control does not cause any instruction to be trapped.
0b1 This control causes these instructions to be trapped, subject to the

exception prioritization rules.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bits [7:0]

Reserved, RES1.

Accessing the CPTR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, CPTR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return CPTR_EL2;

elsif PSTATE.EL == EL3 then
return CPTR_EL2;

MSR CPTR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
CPTR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
CPTR_EL2 = X[t];

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 274

MRS <Xt>, CPACR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.CPACR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x100];

else
return CPACR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

return CPTR_EL2;
else

return CPACR_EL1;
elsif PSTATE.EL == EL3 then

return CPACR_EL1;

MSR CPACR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.CPACR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x100] = X[t];

else
CPACR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

CPTR_EL2 = X[t];
else

CPACR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

CPACR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 275

CPTR_EL3, Architectural Feature Trap Register (EL3)
The CPTR_EL3 characteristics are:

Purpose
Controls trapping to EL3 of access to CPACR_EL1, CPTR_EL2, trace functionality and registers associated with SVE,
Advanced SIMD and floating-point execution. Also controls EL3 access to trace functionality and registers associated
with SVE, Advanced SIMD and floating-point execution.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to CPTR_EL3 are UNDEFINED.

Attributes
CPTR_EL3 is a 64-bit register.

Field descriptions
The CPTR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

TCPACTAM RES0 TTA RES0 TFPRES0EZ RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

Traps all of the following to EL3, from both Security states and both Execution states.

• EL2 accesses to CPTR_EL2, reported using EC syndrome value 0x18, or HCPTR, reported using EC syndrome
value 0x03.

• EL2 and EL1 accesses to CPACR_EL1 reported using EC syndrome value 0x18, or CPACR reported using EC
syndrome value 0x03.

When CPTR_EL3.TCPAC is:

TCPAC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL2 accesses to the CPTR_EL2 or HCPTR, and EL2 and EL1

accesses to the CPACR_EL1 or CPACR, are trapped to EL3,
unless they are trapped by CPTR_EL2.TCPAC.

This field resets to an architecturally UNKNOWN value.

TAM, bit [30]

When AMUv1 is implemented:

Trap Activity Monitor access. Traps EL2, EL1 and EL0 accesses to all Activity Monitor registers to EL3.

Accesses to the Activity Monitors registers are trapped as follows:

• In AArch64 state, the following registers are trapped to EL3 and reported with EC syndrome value 0x18:

CPTR_EL3, Architectural Feature Trap Register (EL3)

Page 276

◦ AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0, AMCNTENCLR1_EL0,
AMCNTENSET0_EL0, AMCNTENSET1_EL0, AMCR_EL0, AMEVCNTR0<n>_EL0,
AMEVCNTR1<n>_EL0, AMEVTYPER0<n>_EL0, and AMEVTYPER1<n>_EL0.

• In AArch32 state, accesses with MRC or MCR to the following registers reported with EC syndrome value
0x03:

◦ AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0,
AMCNTENSET1, AMCR, AMEVTYPER0<n>, and AMEVTYPER1<n>.

• In AArch32 state, accesses with MRRC or MCRR to the following registers, reported with EC syndrome
value 0x04:

◦ AMEVCNTR0<n>, AMEVCNTR1<n>.
TAM Meaning
0b0 Accesses from EL2, EL1, and EL0 to Activity Monitor registers

are not trapped.
0b1 Accesses from EL2, EL1, and EL0 to Activity Monitor registers

are trapped to EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:21]

Reserved, RES0.

TTA, bit [20]

Traps System register accesses. Accesses to the trace registers, from all Exception levels, both Security states, and
both Execution states are trapped to EL3 as follows:

• In AArch64 state, Trace registers with op0=2, op1=1, are trapped to EL3 and reported using EC syndrome
value 0x18.

• In AArch32 state, accesses using MCR or MRC to the Trace registers with cpnum=14 and opc1=1 are
reported using EC syndrome value 0x05.

• In AArch32 state, accesses using MCRR or MRRC to the Trace registers with cpnum=14 and opc1=1 are
reported using EC syndrome value 0x0C.

TTA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any System register access to the trace registers is trapped to

EL3, subject to the exception prioritization rules, unless it is
trapped by CPACR.TRCDIS, CPACR_EL1.TTA or CPTR_EL2.TTA.

If System register access to trace functionality is not supported, this bit is RES0.

Note

The ETMv4 architecture does not permit EL0 to access the trace registers. If
the Armv8-A architecture is implemented with an ETMv4 implementation, EL0
accesses to the trace registers are UNDEFINED, and any resulting exception is
higher priority than this trap exception.

EL3 does not provide traps on trace register accesses through the Memory-
mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, no
side-effects occur before the exception is taken, see 'Register access instructions' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

CPTR_EL3, Architectural Feature Trap Register (EL3)

Page 277

This field resets to an architecturally UNKNOWN value.

Bits [19:11]

Reserved, RES0.

TFP, bit [10]

Traps all accesses to SVE, Advanced SIMD and floating-point functionality, from all Exception levels, both Security
states, and both Execution states, to EL3. Defined values are:

This includes the following registers, all reported using EC syndrome value 0x07:

• FPCR, FPSR, FPEXC32_EL2, any of the SIMD and floating-point registers V0-V31, including their views as
D0-D31 registers or S0-31 registers. See 'The SIMD and floating-point registers, V0-V31' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

• MVFR0, MVFR1, MVFR2, FPCSR, FPEXC, and any of the SIMD and floating-point registers Q0-15, including
their views as D0-D31 registers or S0-31 registers. See 'Advanced SIMD and floating-point System registers' in
the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Permitted VMSR accesses to FPSID are ignored, but for the purposes of this trap the architecture define a VMSR
access to the FPSID from EL1 or higher as an access to a SIMD and floating-point register.

TFP Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt at any Exception level to execute an instruction that

uses the registers associated with SVE, Advanced SIMD and
floating-point is trapped to EL3, subject to the exception
prioritization rules, unless it is trapped by CPTR_EL3.EZ.

Note

FPEXC32_EL2 is not accessible from EL0 using AArch64.

FPSID, MRFR0, MVFR1, and FPEXC are not accessible from EL0 using
AArch32.

This field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES0.

EZ, bit [8]

When SVE is implemented:

Traps all accesses to SVE functionality and registers from all Exception levels, and both Security states, to EL3.

EZ Meaning
0b0 This control causes these instructions executed at any Exception

level to be trapped, subject to the exception prioritization rules.
0b1 This control does not cause any instruction to be trapped.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [7:0]

Reserved, RES0.

CPTR_EL3, Architectural Feature Trap Register (EL3)

Page 278

AArch32-fpcsr.html
AArch32-mrfr0.html

Accessing the CPTR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, CPTR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return CPTR_EL3;

MSR CPTR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
CPTR_EL3 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPTR_EL3, Architectural Feature Trap Register (EL3)

Page 279

CSSELR_EL1, Cache Size Selection Register
The CSSELR_EL1 characteristics are:

Purpose
Selects the current Cache Size ID Register, CCSIDR_EL1, by specifying the required cache level and the cache type
(either instruction or data cache).

Configuration
AArch64 System register CSSELR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
CSSELR[31:0] .

Attributes
CSSELR_EL1 is a 64-bit register.

Field descriptions
The CSSELR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 TnD Level InD
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:5]

Reserved, RES0.

TnD, bit [4]

Allocation Tag not Data bit.

TnD Meaning
0b0 Data, Instruction or Unified cache.
0b1 Separate Allocation Tag cache.

When CSSELR_EL1.InD == 1, this bit is RES0.

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then the value for this field on a read of
CSSELR_EL1 is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Level, bits [3:1]

Cache level of required cache.

Level Meaning
0b000 Level 1 cache.
0b001 Level 2 cache.
0b010 Level 3 cache.
0b011 Level 4 cache.
0b100 Level 5 cache.
0b101 Level 6 cache.
0b110 Level 7 cache.

CSSELR_EL1, Cache Size Selection Register

Page 280

All other values are reserved.

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then the value for this field on a read of
CSSELR_EL1 is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

InD, bit [0]

Instruction not Data bit.

InD Meaning
0b0 Data or unified cache.
0b1 Instruction cache.

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then a read of CSSELR_EL1 is
CONSTRAINED UNPREDICTABLE, and returns UNKNOWN values for CSSELR_EL1.{Level, InD}.

This field resets to an architecturally UNKNOWN value.

Accessing the CSSELR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, CSSELR_EL1

op0 op1 CRn CRm op2
0b11 0b010 0b0000 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.CSSELR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return CSSELR_EL1;

elsif PSTATE.EL == EL2 then
return CSSELR_EL1;

elsif PSTATE.EL == EL3 then
return CSSELR_EL1;

MSR CSSELR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b010 0b0000 0b0000 0b000

CSSELR_EL1, Cache Size Selection Register

Page 281

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.CSSELR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
CSSELR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
CSSELR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
CSSELR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSSELR_EL1, Cache Size Selection Register

Page 282

CTR_EL0, Cache Type Register
The CTR_EL0 characteristics are:

Purpose
Provides information about the architecture of the caches.

Configuration
AArch64 System register CTR_EL0 bits [31:0] are architecturally mapped to AArch32 System register CTR[31:0] .

Attributes
CTR_EL0 is a 64-bit register.

Field descriptions
The CTR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TminLine

RES1RES0DICIDC CWG ERG DminLine L1Ip RES0 IminLine
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:38]

Reserved, RES0.

TminLine, bits [37:32]

Tag minimum Line. Log2 of the number of words covered by Allocation Tags in the smallest cache line of all caches
which can contain Allocation tags that are controlled by the PE.

Note
• For an implementation with cache lines containing 64 bytes of data and

4 Allocation Tags, this will be log2(64/4) = 4.
• For an implementation with Allocations Tags in separate cache lines of

128 Allocation Tags per line, this will be log2(128*16/4) = 9.

Bit [31]

Reserved, RES1.

Bit [30]

Reserved, RES0.

DIC, bit [29]

Instruction cache invalidation requirements for data to instruction coherence.

CTR_EL0, Cache Type Register

Page 283

DIC Meaning
0b0 Instruction cache invalidation to the Point of Unification is

required for data to instruction coherence.
0b1 Instruction cache invalidation to the Point of Unification is not

required for data to instruction coherence.

IDC, bit [28]

Data cache clean requirements for instruction to data coherence. The meaning of this bit is:

IDC Meaning
0b0 Data cache clean to the Point of Unification is required for

instruction to data coherence, unless CLIDR_EL1.LoC == 0b000
or (CLIDR_EL1.LoUIS == 0b000 && CLIDR_EL1.LoUU ==
0b000).

0b1 Data cache clean to the Point of Unification is not required for
instruction to data coherence.

CWG, bits [27:24]

Cache writeback granule. Log2 of the number of words of the maximum size of memory that can be overwritten as a
result of the eviction of a cache entry that has had a memory location in it modified.

A value of 0b0000 indicates that this register does not provide Cache writeback granule information and either:

• The architectural maximum of 512 words (2KB) must be assumed.
• The Cache writeback granule can be determined from maximum cache line size encoded in the Cache Size ID

Registers.

Values greater than 0b1001 are reserved.

Arm recommends that an implementation that does not support cache write-back implements this field as 0b0001. This
applies, for example, to an implementation that supports only write-through caches.

ERG, bits [23:20]

Exclusives reservation granule, and, if TME is implemented, transactional reservation granule. Log2 of the number of
words of the maximum size of the reservation granule for the Load-Exclusive and Store-Exclusive instructions, and, if
TME is implemented, for detecting transactional conflicts.

A value of 0b0000 indicates that this register does not provide granule information and the architectural maximum of
512 words (2KB) must be assumed.

Value 0b0001 and values greater than 0b1001 are reserved.

DminLine, bits [19:16]

Log2 of the number of words in the smallest cache line of all the data caches and unified caches that are controlled by
the PE.

L1Ip, bits [15:14]

Level 1 instruction cache policy. Indicates the indexing and tagging policy for the L1 instruction cache. Possible values
of this field are:

L1Ip Meaning
0b00 VMID aware Physical Index, Physical tag (VPIPT)
0b01 ASID-tagged Virtual Index, Virtual Tag (AIVIVT)
0b10 Virtual Index, Physical Tag (VIPT)
0b11 Physical Index, Physical Tag (PIPT)

The value 0b01 is reserved in Armv8.

The value 0b00 is permitted only in an implementation that includes ARMv8.2-PIPTV, otherwise the value is reserved.

CTR_EL0, Cache Type Register

Page 284

Bits [13:4]

Reserved, RES0.

IminLine, bits [3:0]

Log2 of the number of words in the smallest cache line of all the instruction caches that are controlled by the PE.

Accessing the CTR_EL0
Accesses to this register use the following encodings:

MRS <Xt>, CTR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b0000 0b0000 0b001

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCT ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TID2 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CTR_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCT ==

'0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return CTR_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.CTR_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return CTR_EL0;

elsif PSTATE.EL == EL2 then
return CTR_EL0;

elsif PSTATE.EL == EL3 then
return CTR_EL0;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTR_EL0, Cache Type Register

Page 285

CurrentEL, Current Exception Level
The CurrentEL characteristics are:

Purpose
Holds the current Exception level.

Configuration
There are no configuration notes.

Attributes
CurrentEL is a 64-bit register.

Field descriptions
The CurrentEL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 EL RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:4]

Reserved, RES0.

EL, bits [3:2]

Current Exception level. Possible values of this field are:

EL Meaning
0b00 EL0
0b01 EL1
0b10 EL2
0b11 EL3

When the HCR_EL2.NV bit is 1, EL1 read accesses to the CurrentEL register return the value of 0b10 in this field.

This field resets to the highest implemented Exception Level.

Bits [1:0]

Reserved, RES0.

Accessing the CurrentEL
Accesses to this register use the following encodings:

MRS <Xt>, CurrentEL

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0010 0b010

CurrentEL, Current Exception Level

Page 286

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

return Zeros(60):'10':Zeros(2);
else

return Zeros(60):PSTATE.EL:Zeros(2);
elsif PSTATE.EL == EL2 then

return Zeros(60):PSTATE.EL:Zeros(2);
elsif PSTATE.EL == EL3 then

return Zeros(60):PSTATE.EL:Zeros(2);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CurrentEL, Current Exception Level

Page 287

DACR32_EL2, Domain Access Control Register
The DACR32_EL2 characteristics are:

Purpose
Allows access to the AArch32 DACR register from AArch64 state only. Its value has no effect on execution in AArch64
state.

Configuration
AArch64 System register DACR32_EL2 bits [31:0] are architecturally mapped to AArch32 System register DACR[31:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DACR32_EL2 are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this register is not RES0.

Attributes
DACR32_EL2 is a 64-bit register.

Field descriptions
The DACR32_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

D<n>, bits [2n+1:2n], for n = 0 to 15

Domain n access permission, where n = 0 to 15. Permitted values are:

D<n> Meaning
0b00 No access. Any access to the domain generates a Domain fault.
0b01 Client. Accesses are checked against the permission bits in the

translation tables.
0b11 Manager. Accesses are not checked against the permission bits

in the translation tables.

The value 0b10 is reserved.

This field resets to an architecturally UNKNOWN value.

Accessing the DACR32_EL2
Accesses to this register use the following encodings:

DACR32_EL2, Domain Access Control Register

Page 288

MRS <Xt>, DACR32_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0011 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return DACR32_EL2;
elsif PSTATE.EL == EL3 then

return DACR32_EL2;

MSR DACR32_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0011 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

DACR32_EL2 = X[t];
elsif PSTATE.EL == EL3 then

DACR32_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DACR32_EL2, Domain Access Control Register

Page 289

DAIF, Interrupt Mask Bits
The DAIF characteristics are:

Purpose
Allows access to the interrupt mask bits.

Configuration
There are no configuration notes.

Attributes
DAIF is a 64-bit register.

Field descriptions
The DAIF bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 D A I F RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:10]

Reserved, RES0.

D, bit [9]

Process state D mask. The possible values of this bit are:

D Meaning
0b0 Watchpoint, Breakpoint, and Software Step exceptions targeted at

the current Exception level are not masked.
0b1 Watchpoint, Breakpoint, and Software Step exceptions targeted at

the current Exception level are masked.

When the target Exception level of the debug exception is higher than the current Exception level, the exception is not
masked by this bit.

This field resets to 1.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0b0 Exception not masked.
0b1 Exception masked.

This field resets to 1.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

DAIF, Interrupt Mask Bits

Page 290

I Meaning
0b0 Exception not masked.
0b1 Exception masked.

This field resets to 1.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0b0 Exception not masked.
0b1 Exception masked.

This field resets to 1.

Bits [5:0]

Reserved, RES0.

Accessing the DAIF
Accesses to this register use the following encodings:

MRS <Xt>, DAIF

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b001

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && ((EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') || SCTLR_EL1.UMA ==

'0') then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
else

return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);
elsif PSTATE.EL == EL1 then

return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);
elsif PSTATE.EL == EL2 then

return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);
elsif PSTATE.EL == EL3 then

return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);

MSR DAIF, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b001

DAIF, Interrupt Mask Bits

Page 291

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && ((EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') || SCTLR_EL1.UMA ==

'0') then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
else

PSTATE.<D,A,I,F> = X[t]<9:6>;
elsif PSTATE.EL == EL1 then

PSTATE.<D,A,I,F> = X[t]<9:6>;
elsif PSTATE.EL == EL2 then

PSTATE.<D,A,I,F> = X[t]<9:6>;
elsif PSTATE.EL == EL3 then

PSTATE.<D,A,I,F> = X[t]<9:6>;

MSR DAIFSet, #<imm>

op0 op1 CRn op2
0b00 0b011 0b0100 0b110

MSR DAIFClr, #<imm>

op0 op1 CRn op2
0b00 0b011 0b0100 0b111

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DAIF, Interrupt Mask Bits

Page 292

DBGAUTHSTATUS_EL1, Debug Authentication Status
register

The DBGAUTHSTATUS_EL1 characteristics are:

Purpose
Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for debug.

Configuration
AArch64 System register DBGAUTHSTATUS_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGAUTHSTATUS[31:0] .

AArch64 System register DBGAUTHSTATUS_EL1 bits [31:0] are architecturally mapped to External register
DBGAUTHSTATUS_EL1[31:0] .

Attributes
DBGAUTHSTATUS_EL1 is a 64-bit register.

Field descriptions
The DBGAUTHSTATUS_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 SNID SID NSNID NSID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:8]

Reserved, RES0.

SNID, bits [7:6]

When ARMv8.4-Debug is implemented:

Secure non-invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.SID.

Otherwise:

Secure non-invasive debug.

SNID Meaning
0b00 Not implemented. EL3 is not implemented and the Effective

value of SCR_EL3.NS is 1.
0b10 Implemented and disabled.

ExternalSecureNoninvasiveDebugEnabled() == FALSE.
0b11 Implemented and enabled.

ExternalSecureNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.

DBGAUTHSTATUS_EL1, Debug Authentication Status register

Page 293

SID, bits [5:4]

Secure invasive debug.

SID Meaning
0b00 Not implemented. EL3 is not implemented and the Effective value

of SCR_EL3.NS is 1.
0b10 Implemented and disabled.

ExternalSecureInvasiveDebugEnabled() == FALSE.
0b11 Implemented and enabled.

ExternalSecureInvasiveDebugEnabled() == TRUE.

All other values are reserved.

NSNID, bits [3:2]

When ARMv8.4-Debug is implemented:

Non-secure non-invasive debug.

NSNID Meaning
0b00 Not implemented. EL3 is not implemented and the Effective

value of SCR_EL3.NS is 0
0b11 Implemented and enabled. EL3 is implemented or the Effective

value of SCR_EL3.NS is 1.

All other values are reserved.

Otherwise:

Non-secure non-invasive debug.

NSNID Meaning
0b00 Not implemented. EL3 is not implemented and the Effective

value of SCR_EL3.NS is 0.
0b10 Implemented and disabled.

ExternalNoninvasiveDebugEnabled() == FALSE.
0b11 Implemented and enabled.

ExternalNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.

NSID, bits [1:0]

Non-secure invasive debug.

NSID Meaning
0b00 Not implemented. EL3 is not implemented and the Effective

value of SCR_EL3.NS is 0.
0b10 Implemented and disabled. ExternalInvasiveDebugEnabled() ==

FALSE.
0b11 Implemented and enabled. ExternalInvasiveDebugEnabled() ==

TRUE.

All other values are reserved.

Accessing the DBGAUTHSTATUS_EL1
Accesses to this register use the following encodings:

MRS <Xt>, DBGAUTHSTATUS_EL1

op0 op1 CRn CRm op2

DBGAUTHSTATUS_EL1, Debug Authentication Status register

Page 294

0b10 0b000 0b0111 0b1110 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.DBGAUTHSTATUS_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return DBGAUTHSTATUS_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return DBGAUTHSTATUS_EL1;
elsif PSTATE.EL == EL3 then

return DBGAUTHSTATUS_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGAUTHSTATUS_EL1, Debug Authentication Status register

Page 295

DBGBCR<n>_EL1, Debug Breakpoint Control
Registers, n = 0 - 15

The DBGBCR<n>_EL1 characteristics are:

Purpose
Holds control information for a breakpoint. Forms breakpoint n together with value register DBGBVR<n>_EL1.

Configuration
AArch64 System register DBGBCR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGBCR<n>[31:0] .

AArch64 System register DBGBCR<n>_EL1 bits [31:0] are architecturally mapped to External register
DBGBCR<n>_EL1[31:0] .

If breakpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes
DBGBCR<n>_EL1 is a 64-bit register.

Field descriptions
The DBGBCR<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 BT LBN SSC HMC RES0 BAS RES0 PMC E
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 296

BT Meaning
0b0000 Unlinked instruction address match. DBGBVR<n>_EL1 is the

address of an instruction.
0b0001 As 0b0000, but linked to a Context matching breakpoint.
0b0010 Unlinked Context ID match. When ARMv8.1-VHE is

implemented, EL2 is using AArch64, and the Effective value of
HCR_EL2.E2H is 1, if either the PE is executing at EL0 with
HCR_EL2.TGE set to 1 or the PE is executing at EL2, then
DBGBVR<n>_EL1.ContextID must match the
CONTEXTIDR_EL2 value. Otherwise,
DBGBVR<n>_EL1.ContextID must match the
CONTEXTIDR_EL1 value

0b0011 As 0b0010, with linking enabled.
0b0110 Unlinked CONTEXTIDR_EL1 match.

DBGBVR<n>_EL1.ContextID is a Context ID compared against
CONTEXTIDR_EL1.

0b0111 As 0b0110, with linking enabled.
0b1000 Unlinked VMID match. DBGBVR<n>_EL1.VMID is a VMID

compared against VTTBR_EL2.VMID.
0b1001 As 0b1000, with linking enabled.
0b1010 Unlinked VMID and Context ID match.

DBGBVR<n>_EL1.ContextID is a Context ID compared against
CONTEXTIDR_EL1, and DBGBVR<n>_EL1.VMID is a VMID
compared against VTTBR_EL2.VMID.

0b1011 As 0b1010, with linking enabled.
0b1100 Unlinked CONTEXTIDR_EL2 match.

DBGBVR<n>_EL1.ContextID2 is a Context ID compared
against CONTEXTIDR_EL2.

0b1101 As 0b1100, with linking enabled.
0b1110 Unlinked Full Context ID match. DBGBVR<n>_EL1.ContextID

is compared against CONTEXTIDR_EL1, and
DBGBVR<n>_EL1.ContextID2 is compared against
CONTEXTIDR_EL2.

0b1111 As 0b1110, with linking enabled.

All other values are reserved. Constraints on breakpoint programming mean other values are reserved under some
conditions.

For more information on the operation of the SSC, HMC, and PMC fields, and on the effect of programming this field to
a reserved value, see 'Execution conditions for which a breakpoint generates Breakpoint exceptions' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section D2 (AArch64 Self-hosted Debug) and
'Reserved DBGBCR<n>_EL1.BT values' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section D2 (AArch64 Self-hosted Debug).

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the Context-matching
breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN value.

This field is ignored when the value of DBGBCR<n>_EL1.E is 0.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 297

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for breakpoint n is
generated. This field must be interpreted along with the HMC and PMC fields, and there are constraints on the
permitted values of the {HMC, SSC, PMC} fields.

For more information on the operation of the SSC, HMC, and PMC fields, and the effect of programming the fields to a
reserved set of values, see 'Execution conditions for which a breakpoint generates Breakpoint exceptions' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section D2 (AArch64 Self-hosted Debug) and
'Reserved DBGBCR<n>_EL1.{SSC, HMC, PMC} values' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section D2 (AArch64 Self-hosted Debug).

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug event for breakpoint n
is generated. This field must be interpreted along with the SSC and PMC fields, and there are constraints on the
permitted values of the {HMC, SSC, PMC} fields. For more information see the SSC, bits [15:14] description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a
breakpoint generates Breakpoint exceptions' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section D2 (AArch64 Self-hosted Debug).

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

When AArch32 is supported at any Exception level:

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless of the instruction
set and Execution state.

The permitted values depend on the breakpoint type.

For Address match breakpoints, the permitted values are:

BAS Match instruction at Constraint for debuggers
0b0011 DBGBVR<n>_EL1 Use for T32 instructions
0b1100 DBGBVR<n>_EL1 + 2 Use for T32 instructions
0b1111 DBGBVR<n>_EL1 Use for A64 and A32 instructions

All other values are reserved. For more information, see 'Reserved DBGBCR<n>_EL1.BAS values' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section D2 (AArch64 Self-hosted Debug).

For more information on using the BAS field in address match breakpoints, see 'Using the BAS field in Address Match
breakpoints' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G2
(AArch32 Self-hosted Debug).

For Context matching breakpoints, this field is RES1 and ignored.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 298

Otherwise:

Reserved, RES1.

Bits [4:3]

Reserved, RES0.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event for breakpoint n is
generated. This field must be interpreted along with the SSC and HMC fields, and there are constraints on the
permitted values of the {HMC, SSC, PMC} fields. For more information see the DBGBCR<n>_EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a
breakpoint generates Breakpoint exceptions' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section D2 (AArch64 Self-hosted Debug).

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

E, bit [0]

Enable breakpoint DBGBVR<n>_EL1. Possible values are:

E Meaning
0b0 Breakpoint disabled.
0b1 Breakpoint enabled.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Accessing the DBGBCR<n>_EL1
Accesses to this register use the following encodings:

MRS <Xt>, DBGBCR<n>_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0000 n[3:0] 0b101

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 299

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.DBGBCRn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1'
then

Halt(DebugHalt_SoftwareAccess);
else

return DBGBCR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1'
then

Halt(DebugHalt_SoftwareAccess);
else

return DBGBCR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL3 then

if !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
return DBGBCR_EL1[UInt(CRm<3:0>)];

MSR DBGBCR<n>_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0000 n[3:0] 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.DBGBCRn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1'
then

Halt(DebugHalt_SoftwareAccess);
else

DBGBCR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1'
then

Halt(DebugHalt_SoftwareAccess);
else

DBGBCR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL3 then

if !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
DBGBCR_EL1[UInt(CRm<3:0>)] = X[t];

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 300

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 301

DBGBVR<n>_EL1, Debug Breakpoint Value Registers,
n = 0 - 15

The DBGBVR<n>_EL1 characteristics are:

Purpose
Holds a virtual address, or a VMID and/or a context ID, for use in breakpoint matching. Forms breakpoint n together
with control register DBGBCR<n>_EL1.

Configuration
AArch64 System register DBGBVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGBVR<n>[31:0] .

AArch64 System register DBGBVR<n>_EL1 bits [63:32] are architecturally mapped to AArch32 System register
DBGBXVR<n>[31:0] .

AArch64 System register DBGBVR<n>_EL1 bits [63:0] are architecturally mapped to External register
DBGBVR<n>_EL1[63:0] .

If breakpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes
How this register is interpreted depends on the value of DBGBCR<n>_EL1.BT.

• When DBGBCR<n>_EL1.BT is 0b000x, this register holds a virtual address.
• When DBGBCR<n>_EL1.BT is 0b001x, 0b011x, or 0b110x, this register holds a Context ID.
• When DBGBCR<n>_EL1.BT is 0b100x, this register holds a VMID.
• When DBGBCR<n>_EL1.BT is 0b101x, this register holds a VMID and a Context ID.
• When DBGBCR<n>_EL1.BT is 0b111x, this register holds two Context ID values.

For other values of DBGBCR<n>_EL1.BT, this register is RES0.

Field descriptions
The DBGBVR<n>_EL1 bit assignments are:

When DBGBCR<n>_EL1.BT == 0b000x:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RESS[14:4] VA[52:49] VA[48:2]

VA[48:2] RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESS[14:4], bits [63:53]

Reserved, Sign extended. Software must treat this field as RES0 if the most significant bit of VA is 0 or RES0, and as
RES1 if the most significant bit of VA is 1.

It is IMPLEMENTATION DEFINED whether:

• Reads return the value of the most significant bit of the VA for every bit in this field.
• Reads return the last value written.

The PE ignores this field.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 302

VA[52:49], bits [52:49]

When ARMv8.2-LVA is implemented:

Extension to VA[48:2]. See VA[48:2] for more details.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Otherwise:

Extension to RESS[14:4]. See RESS[14:4] for more details.

VA[48:2], bits [48:2]

Bits[48:2] of the address value for comparison.

When ARMv8.2-LVA is implemented, VA[52:49] forms the upper part of the address value. Otherwise, VA[52:49] are
RESS.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Bits [1:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT == 0b001x:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

ContextID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison.

The value is compared against CONTEXTIDR_EL2 when ARMv8.1-VHE is implemented, HCR_EL2.E2H is 1, and either:

• The PE is executing at EL2.
• HCR_EL2.TGE is 1, the PE is executing at EL0, and EL2 is enabled in the current Security state.

Otherwise, the value is compared against CONTEXTIDR_EL1.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 303

When DBGBCR<n>_EL1.BT == 0b011x:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

ContextID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

When DBGBCR<n>_EL1.BT == 0b100x and EL2 is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 VMID[15:8] VMID[7:0]

RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]

When ARMv8.1-VMID16 is implemented and VTCR_EL2.VS == 1:

Extension to VMID[7:0]. See DBGBVR<n>_EL1.VMID[7:0] for more details.

If EL2 is using AArch32, this field is RES0.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.
• VTCR_EL2.VS is 0.
• ARMv8.1-VMID16 is not implemented.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 304

• On a Warm reset, the value of this field is unchanged.

Bits [31:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT == 0b101x and EL2 is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 VMID[15:8] VMID[7:0]

ContextID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]

When ARMv8.1-VMID16 is implemented and VTCR_EL2.VS == 1:

Extension to VMID[7:0]. See DBGBVR<n>_EL1.VMID[7:0] for more details.

If EL2 is using AArch32, or if the implementation has an 8-bit VMID, this field is RES0.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.
• VTCR_EL2.VS is 0.
• ARMv8.1-VMID16 is not implemented.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 305

When DBGBCR<n>_EL1.BT == 0b110x, EL2 is implemented and (ARMv8.1-VHE is
implemented or ARMv8.2-Debug is implemented):

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ContextID2

RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Bits [31:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT == 0b111x, EL2 is implemented and (ARMv8.1-VHE is
implemented or ARMv8.2-Debug is implemented):

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ContextID2
ContextID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Accessing the DBGBVR<n>_EL1
Accesses to this register use the following encodings:

MRS <Xt>, DBGBVR<n>_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0000 n[3:0] 0b100

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 306

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.DBGBVRn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1'
then

Halt(DebugHalt_SoftwareAccess);
else

return DBGBVR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1'
then

Halt(DebugHalt_SoftwareAccess);
else

return DBGBVR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL3 then

if !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
return DBGBVR_EL1[UInt(CRm<3:0>)];

MSR DBGBVR<n>_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0000 n[3:0] 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.DBGBVRn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1'
then

Halt(DebugHalt_SoftwareAccess);
else

DBGBVR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1'
then

Halt(DebugHalt_SoftwareAccess);
else

DBGBVR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL3 then

if !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
DBGBVR_EL1[UInt(CRm<3:0>)] = X[t];

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 307

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 308

DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register
The DBGCLAIMCLR_EL1 characteristics are:

Purpose
Used by software to read the values of the CLAIM tag bits, and to clear CLAIM tag bits to 0.

The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and
target software.

Used in conjunction with the DBGCLAIMSET_EL1 register.

Configuration
AArch64 System register DBGCLAIMCLR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGCLAIMCLR[31:0] .

AArch64 System register DBGCLAIMCLR_EL1 bits [31:0] are architecturally mapped to External register
DBGCLAIMCLR_EL1[31:0] .

An implementation must include eight CLAIM tag bits.

Attributes
DBGCLAIMCLR_EL1 is a 64-bit register.

Field descriptions
The DBGCLAIMCLR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RAZ/SBZ CLAIM
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Bits [31:8]

Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes.
Implementations must ignore writes.

CLAIM, bits [7:0]

Read or clear CLAIM tag bits. Reading this field returns the current value of the CLAIM tag bits.

Writing a 1 to one of these bits clears the corresponding CLAIM tag bit to 0. This is an indirect write to the CLAIM tag
bits. A single write operation can clear multiple CLAIM tag bits to 0.

Writing 0 to one of these bits has no effect.

DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register

Page 309

The following resets apply:

• On a Cold reset, this field resets to 0.

• On a Warm reset, the value of this field is unchanged.

Accessing the DBGCLAIMCLR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, DBGCLAIMCLR_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0111 0b1001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.DBGCLAIM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return DBGCLAIMCLR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return DBGCLAIMCLR_EL1;
elsif PSTATE.EL == EL3 then

return DBGCLAIMCLR_EL1;

MSR DBGCLAIMCLR_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0111 0b1001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.DBGCLAIM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
DBGCLAIMCLR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

DBGCLAIMCLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

DBGCLAIMCLR_EL1 = X[t];

DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register

Page 310

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register

Page 311

DBGCLAIMSET_EL1, Debug CLAIM Tag Set register
The DBGCLAIMSET_EL1 characteristics are:

Purpose
Used by software to set the CLAIM tag bits to 1.

The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and
target software.

Used in conjunction with the DBGCLAIMCLR_EL1 register.

Configuration
AArch64 System register DBGCLAIMSET_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGCLAIMSET[31:0] .

AArch64 System register DBGCLAIMSET_EL1 bits [31:0] are architecturally mapped to External register
DBGCLAIMSET_EL1[31:0] .

An implementation must include eight CLAIM tag bits.

Attributes
DBGCLAIMSET_EL1 is a 64-bit register.

Field descriptions
The DBGCLAIMSET_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RAZ/SBZ CLAIM
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Bits [31:8]

Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes.
Implementations must ignore writes.

CLAIM, bits [7:0]

Set CLAIM tag bits.

This field is RAO.

Writing a 1 to one of these bits sets the corresponding CLAIM tag bit to 1. This is an indirect write to the CLAIM tag
bits. A single write operation can set multiple CLAIM tag bits to 1.

DBGCLAIMSET_EL1, Debug CLAIM Tag Set register

Page 312

Writing 0 to one of these bits has no effect.

Accessing the DBGCLAIMSET_EL1
Accesses to this register use the following encodings:

MRS <Xt>, DBGCLAIMSET_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0111 0b1000 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.DBGCLAIM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return DBGCLAIMSET_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return DBGCLAIMSET_EL1;
elsif PSTATE.EL == EL3 then

return DBGCLAIMSET_EL1;

MSR DBGCLAIMSET_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0111 0b1000 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.DBGCLAIM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
DBGCLAIMSET_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

DBGCLAIMSET_EL1 = X[t];
elsif PSTATE.EL == EL3 then

DBGCLAIMSET_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGCLAIMSET_EL1, Debug CLAIM Tag Set register

Page 313

DBGDTR_EL0, Debug Data Transfer Register, half-
duplex

The DBGDTR_EL0 characteristics are:

Purpose
Transfers 64 bits of data between the PE and an external debugger. Can transfer both ways using only a single
register.

Configuration
AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch32 System register
DBGDTRRXint[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to External register
DBGDTRRX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch64 System register
DBGDTRRX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to AArch32 System register
DBGDTRTXint[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to External register
DBGDTRTX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to AArch64 System register
DBGDTRTX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch32 System register
DBGDTRTXint[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to External register
DBGDTRTX_EL0[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch64 System register
DBGDTRTX_EL0[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to AArch32 System register
DBGDTRRXint[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to External register
DBGDTRRX_EL0[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to AArch64 System register
DBGDTRRX_EL0[31:0] when read.

Attributes
DBGDTR_EL0 is a 64-bit register.

Field descriptions
The DBGDTR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
HighWord
LowWord

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DBGDTR_EL0, Debug Data Transfer Register, half-duplex

Page 314

HighWord, bits [63:32]

Writes to this register set DTRRX to the value in this field and do not change RXfull.

Reads of this register:

• If RXfull is set to 1, return the last value written to DTRTX.

• If RXfull is set to 0, return an UNKNOWN value.

After the read, RXfull is cleared to 0.

LowWord, bits [31:0]

Writes to this register set DTRTX to the value in this field and set TXfull to 1.

Reads of this register:

• If RXfull is set to 1, return the last value written to DTRRX.

• If RXfull is set to 0, return an UNKNOWN value.

After the read, RXfull is cleared to 0.

Accessing the DBGDTR_EL0
Accesses to this register use the following encodings:

MRS <Xt>, DBGDTR_EL0

op0 op1 CRn CRm op2
0b10 0b011 0b0000 0b0100 0b000

DBGDTR_EL0, Debug Data Transfer Register, half-duplex

Page 315

if Halted() then
return DBGDTR_EL0;

elsif PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> !=
'00') then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return DBGDTR_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return DBGDTR_EL0;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return DBGDTR_EL0;
elsif PSTATE.EL == EL3 then

return DBGDTR_EL0;

MSR DBGDTR_EL0, <Xt>

op0 op1 CRn CRm op2
0b10 0b011 0b0000 0b0100 0b000

DBGDTR_EL0, Debug Data Transfer Register, half-duplex

Page 316

if Halted() then
DBGDTR_EL0 = X[t];

elsif PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> !=
'00') then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

DBGDTR_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
DBGDTR_EL0 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

DBGDTR_EL0 = X[t];
elsif PSTATE.EL == EL3 then

DBGDTR_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDTR_EL0, Debug Data Transfer Register, half-duplex

Page 317

DBGDTRRX_EL0, Debug Data Transfer Register,
Receive

The DBGDTRRX_EL0 characteristics are:

Purpose
Transfers data from an external debugger to the PE. For example, it is used by a debugger transferring commands and
data to a debug target. See DBGDTR_EL0 for additional architectural mappings. It is a component of the Debug
Communications Channel.

Configuration
AArch64 System register DBGDTRRX_EL0 bits [31:0] are architecturally mapped to AArch32 System register
DBGDTRRXint[31:0] .

AArch64 System register DBGDTRRX_EL0 bits [31:0] are architecturally mapped to External register
DBGDTRRX_EL0[31:0] .

Attributes
DBGDTRRX_EL0 is a 64-bit register.

Field descriptions
The DBGDTRRX_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

Update DTRRX
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Update DTRRX.

Reads of this register:

• If RXfull is set to 1, return the last value written to DTRRX.

• If RXfull is set to 0, return an UNKNOWN value.

After the read, RXfull is cleared to 0.

For the full behavior of the Debug Communications Channel, see The Debug Communication Channel and Instruction
Transfer Register.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

DBGDTRRX_EL0, Debug Data Transfer Register, Receive

Page 318

Accessing the DBGDTRRX_EL0
Accesses to this register use the following encodings:

MRS <Xt>, DBGDTRRX_EL0

op0 op1 CRn CRm op2
0b10 0b011 0b0000 0b0101 0b000

if Halted() then
return DBGDTRRX_EL0;

elsif PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> !=
'00') then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return DBGDTRRX_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return DBGDTRRX_EL0;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return DBGDTRRX_EL0;
elsif PSTATE.EL == EL3 then

return DBGDTRRX_EL0;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDTRRX_EL0, Debug Data Transfer Register, Receive

Page 319

DBGDTRTX_EL0, Debug Data Transfer Register,
Transmit

The DBGDTRTX_EL0 characteristics are:

Purpose
Transfers data from the PE to an external debugger. For example, it is used by a debug target to transfer data to the
debugger. See DBGDTR_EL0 for additional architectural mappings. It is a component of the Debug Communication
Channel.

Configuration
AArch64 System register DBGDTRTX_EL0 bits [31:0] are architecturally mapped to AArch32 System register
DBGDTRTXint[31:0] .

AArch64 System register DBGDTRTX_EL0 bits [31:0] are architecturally mapped to External register
DBGDTRTX_EL0[31:0] .

Attributes
DBGDTRTX_EL0 is a 64-bit register.

Field descriptions
The DBGDTRTX_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

Return DTRTX
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Return DTRTX.

Writes to this register:

• If TXfull is set to 1, set DTRRX and DTRTX to UNKNOWN.

• If TXfull is set to 0, update the value in DTRTX.

After the write, TXfull is set to 1.

For the full behavior of the Debug Communications Channel, see The Debug Communication Channel and Instruction
Transfer Register.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

DBGDTRTX_EL0, Debug Data Transfer Register, Transmit

Page 320

Accessing the DBGDTRTX_EL0
Accesses to this register use the following encodings:

MSR DBGDTRTX_EL0, <Xt>

op0 op1 CRn CRm op2
0b10 0b011 0b0000 0b0101 0b000

if Halted() then
DBGDTRTX_EL0 = X[t];

elsif PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> !=
'00') then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

DBGDTRTX_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
DBGDTRTX_EL0 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

DBGDTRTX_EL0 = X[t];
elsif PSTATE.EL == EL3 then

DBGDTRTX_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDTRTX_EL0, Debug Data Transfer Register, Transmit

Page 321

DBGPRCR_EL1, Debug Power Control Register
The DBGPRCR_EL1 characteristics are:

Purpose
Controls behavior of the PE on powerdown request.

Configuration
AArch64 System register DBGPRCR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGPRCR[31:0] .

Bit [0] of this register is mapped to EDPRCR.CORENPDRQ, bit [0] of the external view of this register.

The other bits in these registers are not mapped to each other.

Attributes
DBGPRCR_EL1 is a 64-bit register.

Field descriptions
The DBGPRCR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 CORENPDRQ
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:1]

Reserved, RES0.

CORENPDRQ, bit [0]

When ARMv8.3-DoPD is implemented:

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request causes power up is
dependent on the IMPLEMENTATION DEFINED nature of the system. The power controller must not allow the Core power
domain to switch off while this bit is 1.

CORENPDRQ Meaning
0b0 If the system responds to a powerdown request, it

powers down Core power domain.
0b1 If the system responds to a powerdown request, it does

not powerdown the Core power domain, but instead
emulates a powerdown of that domain.

In an implementation that includes the recommended external debug interface, this bit drives the DBGNOPWRDWN
signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to its Cold reset value on exit from an IMPLEMENTATION DEFINED
software-visible retention state. For more information about retention states see Core power domain power states.

Note

DBGPRCR_EL1, Debug Power Control Register

Page 322

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED
authentication interface. This means that a debugger can request emulation of
powerdown regardless of whether invasive debug is permitted.

The following resets apply:

• On a Cold reset, this field is set to 1 if the powerup request is implemented and the powerup request has
been asserted, and is set to 0 otherwise.

• On a Warm reset, the value of this field is unchanged.

Otherwise:

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request causes power up is
dependent on the IMPLEMENTATION DEFINED nature of the system. The power controller must not allow the Core power
domain to switch off while this bit is 1.

CORENPDRQ Meaning
0b0 If the system responds to a powerdown request, it

powers down Core power domain.
0b1 If the system responds to a powerdown request, it does

not powerdown the Core power domain, but instead
emulates a powerdown of that domain.

In an implementation that includes the recommended external debug interface, this bit drives the DBGNOPWRDWN
signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to the value of EDPRCR.COREPURQ on exit from an
IMPLEMENTATION DEFINED software-visible retention state. For more information about retention states see Core power
domain power states.

Note

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED
authentication interface. This means that a debugger can request emulation of
powerdown regardless of whether invasive debug is permitted.

The following resets apply:

• On a Cold reset, this field resets to the value in EDPRCR.COREPURQ.

• On a Warm reset, the value of this field is unchanged.

Accessing the DBGPRCR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, DBGPRCR_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0001 0b0100 0b100

DBGPRCR_EL1, Debug Power Control Register

Page 323

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.DBGPRCR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return DBGPRCR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return DBGPRCR_EL1;
elsif PSTATE.EL == EL3 then

return DBGPRCR_EL1;

MSR DBGPRCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0001 0b0100 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.DBGPRCR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
DBGPRCR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

DBGPRCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

DBGPRCR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGPRCR_EL1, Debug Power Control Register

Page 324

DBGVCR32_EL2, Debug Vector Catch Register
The DBGVCR32_EL2 characteristics are:

Purpose
Allows access to the AArch32 register DBGVCR from AArch64 state only. Its value has no effect on execution in
AArch64 state.

Configuration
AArch64 System register DBGVCR32_EL2 bits [31:0] are architecturally mapped to AArch32 System register
DBGVCR[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGVCR32_EL2 are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this register is not RES0.

Attributes
DBGVCR32_EL2 is a 64-bit register.

Field descriptions
The DBGVCR32_EL2 bit assignments are:

When EL3 is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

NSFNSIRES0NSDNSPNSSNSU RES0 SF SI RES0SDSPSSSURES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

NSF, bit [31]

FIQ vector catch enable in Non-secure state.

The exception vector offset is 0x1C.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSI, bit [30]

IRQ vector catch enable in Non-secure state.

The exception vector offset is 0x18.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [29]

Reserved, RES0.

DBGVCR32_EL2, Debug Vector Catch Register

Page 325

NSD, bit [28]

Data Abort vector catch enable in Non-secure state.

The exception vector offset is 0x10.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSP, bit [27]

Prefetch Abort vector catch enable in Non-secure state.

The exception vector offset is 0x0C.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSS, bit [26]

Supervisor Call (SVC) vector catch enable in Non-secure state.

The exception vector offset is 0x08.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSU, bit [25]

Undefined Instruction vector catch enable in Non-secure state.

The exception vector offset is 0x04.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [24:8]

Reserved, RES0.

SF, bit [7]

FIQ vector catch enable in Secure state.

The exception vector offset is 0x1C.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SI, bit [6]

IRQ vector catch enable in Secure state.

The exception vector offset is 0x18.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

SD, bit [4]

Data Abort vector catch enable in Secure state.

The exception vector offset is 0x10.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DBGVCR32_EL2, Debug Vector Catch Register

Page 326

SP, bit [3]

Prefetch Abort vector catch enable in Secure state.

The exception vector offset is 0x0C.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SS, bit [2]

Supervisor Call (SVC) vector catch enable in Secure state.

The exception vector offset is 0x08.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SU, bit [1]

Undefined Instruction vector catch enable in Secure state.

The exception vector offset is 0x04.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.

When EL3 is not implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 F I RES0 D P S U RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:8]

Reserved, RES0.

F, bit [7]

FIQ vector catch enable.

The exception vector offset is 0x1C.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [6]

IRQ vector catch enable.

The exception vector offset is 0x18.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

DBGVCR32_EL2, Debug Vector Catch Register

Page 327

D, bit [4]

Data Abort vector catch enable.

The exception vector offset is 0x10.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P, bit [3]

Prefetch Abort vector catch enable.

The exception vector offset 0x0C.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

S, bit [2]

Supervisor Call (SVC) vector catch enable.

The exception vector offset is 0x08.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [1]

Undefined Instruction vector catch enable.

The exception vector offset is 0x04.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.

Accessing the DBGVCR32_EL2
Accesses to this register use the following encodings:

MRS <Xt>, DBGVCR32_EL2

op0 op1 CRn CRm op2
0b10 0b100 0b0000 0b0111 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return DBGVCR32_EL2;

elsif PSTATE.EL == EL3 then
return DBGVCR32_EL2;

DBGVCR32_EL2, Debug Vector Catch Register

Page 328

MSR DBGVCR32_EL2, <Xt>

op0 op1 CRn CRm op2
0b10 0b100 0b0000 0b0111 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
DBGVCR32_EL2 = X[t];

elsif PSTATE.EL == EL3 then
DBGVCR32_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGVCR32_EL2, Debug Vector Catch Register

Page 329

DBGWCR<n>_EL1, Debug Watchpoint Control
Registers, n = 0 - 15

The DBGWCR<n>_EL1 characteristics are:

Purpose
Holds control information for a watchpoint. Forms watchpoint n together with value register DBGWVR<n>_EL1.

Configuration
AArch64 System register DBGWCR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGWCR<n>[31:0] .

AArch64 System register DBGWCR<n>_EL1 bits [31:0] are architecturally mapped to External register
DBGWCR<n>_EL1[31:0] .

If watchpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes
DBGWCR<n>_EL1 is a 64-bit register.

Field descriptions
The DBGWCR<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 MASK RES0 WT LBN SSC HMC BAS LSC PAC E
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:29]

Reserved, RES0.

MASK, bits [28:24]

Address mask. Only objects up to 2GB can be watched using a single mask.

MASK Meaning
0b00000 No mask.
0b00001 Reserved.
0b00010 Reserved.

If programmed with a reserved value, a watchpoint must behave as if either:

• MASK has been programmed with a defined value, which might be 0 (no mask), other than for a direct read of
DBGWCRn_EL1.

• The watchpoint is disabled.

Software must not rely on this property because the behavior of reserved values might change in a future revision of
the architecture.

Other values mask the corresponding number of address bits, from 0b00011 masking 3 address bits (0x00000007 mask
for address) to 0b11111 masking 31 address bits (0x7FFFFFFF mask for address).

The following resets apply:

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 330

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Bits [23:21]

Reserved, RES0.

WT, bit [20]

Watchpoint type. Possible values are:

WT Meaning
0b0 Unlinked data address match.
0b1 Linked data address match.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

LBN, bits [19:16]

Linked breakpoint number. For Linked data address watchpoints, this specifies the index of the Context-matching
breakpoint linked to.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Watchpoint debug event for watchpoint n is
generated. This field must be interpreted along with the HMC and PAC fields.

For more information, see 'Execution conditions for which a breakpoint generates Breakpoint exceptions' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section D2 (AArch64 Self-hosted Debug), and
'Reserved DBGBCR<n>_EL1.{SSC, HMC, PMC} values' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section D2 (AArch64 Self-hosted Debug).

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug event for watchpoint n
is generated. This field must be interpreted along with the SSC and PAC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a
watchpoint generates Watchpoint exceptions' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section D2 (AArch64 Self-hosted Debug).

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 331

BAS, bits [12:5]

Byte address select. Each bit of this field selects whether a byte from within the word or double-word addressed by
DBGWVR<n>_EL1 is being watched.

BAS Description
xxxxxxx1 Match byte at DBGWVR<n>_EL1
xxxxxx1x Match byte at DBGWVR<n>_EL1 + 1
xxxxx1xx Match byte at DBGWVR<n>_EL1 + 2
xxxx1xxx Match byte at DBGWVR<n>_EL1 + 3

In cases where DBGWVR<n>_EL1 addresses a double-word:

BAS Description, if DBGWVR<n>_EL1[2] == 0
xxx1xxxx Match byte at DBGWVR<n>_EL1 + 4
xx1xxxxx Match byte at DBGWVR<n>_EL1 + 5
x1xxxxxx Match byte at DBGWVR<n>_EL1 + 6
1xxxxxxx Match byte at DBGWVR<n>_EL1 + 7

If DBGWVR<n>_EL1[2] == 1, only BAS[3:0] are used and BAS[7:4] are ignored. Arm deprecates setting
DBGWVR<n>_EL1[2] == 1.

The valid values for BAS are non-zero binary numbers all of whose set bits are contiguous. All other values are
reserved and must not be used by software. See 'Reserved DBGWCR<n>_EL1.BAS values' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile, section D2 (AArch64 Self-hosted Debug).

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

LSC, bits [4:3]

Load/store control. This field enables watchpoint matching on the type of access being made. Possible values of this
field are:

LSC Meaning
0b01 Match instructions that load from a watchpointed address.
0b10 Match instructions that store to a watchpointed address.
0b11 Match instructions that load from or store to a watchpointed

address.

All other values are reserved, but must behave as if the watchpoint is disabled. Software must not rely on this property
as the behavior of reserved values might change in a future revision of the architecture.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

PAC, bits [2:1]

Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug event for watchpoint
n is generated. This field must be interpreted along with the SSC and HMC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a
watchpoint generates Watchpoint exceptions' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section D2 (AArch64 Self-hosted Debug).

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 332

E, bit [0]

Enable watchpoint n. Possible values are:

E Meaning
0b0 Watchpoint disabled.
0b1 Watchpoint enabled.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Accessing the DBGWCR<n>_EL1
Accesses to this register use the following encodings:

MRS <Xt>, DBGWCR<n>_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0000 n[3:0] 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.DBGWCRn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1'
then

Halt(DebugHalt_SoftwareAccess);
else

return DBGWCR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1'
then

Halt(DebugHalt_SoftwareAccess);
else

return DBGWCR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL3 then

if !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
return DBGWCR_EL1[UInt(CRm<3:0>)];

MSR DBGWCR<n>_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0000 n[3:0] 0b111

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 333

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.DBGWCRn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1'
then

Halt(DebugHalt_SoftwareAccess);
else

DBGWCR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1'
then

Halt(DebugHalt_SoftwareAccess);
else

DBGWCR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL3 then

if !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
DBGWCR_EL1[UInt(CRm<3:0>)] = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 334

DBGWVR<n>_EL1, Debug Watchpoint Value Registers,
n = 0 - 15

The DBGWVR<n>_EL1 characteristics are:

Purpose
Holds a data address value for use in watchpoint matching. Forms watchpoint n together with control register
DBGWCR<n>_EL1.

Configuration
AArch64 System register DBGWVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGWVR<n>[31:0] .

AArch64 System register DBGWVR<n>_EL1 bits [63:0] are architecturally mapped to External register
DBGWVR<n>_EL1[63:0] .

If watchpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes
DBGWVR<n>_EL1 is a 64-bit register.

Field descriptions
The DBGWVR<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RESS[14:4] VA[52:49] VA[48:2]

VA[48:2] RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESS[14:4], bits [63:53]

Reserved, Sign extended. Hardware and software must treat this field as RES0 if the most significant bit of VA is 0 or
RES0, and as RES1 if the most significant bit of VA is 1.

Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:

• The bits are hardwired to a copy of the most significant bit of VA, meaning writes to these bits are ignored,
and reads to the bits always return the hardwired value.

• The value in those bits can be written, and reads will return the last value written. The value held in those bits
is ignored by hardware.

VA[52:49], bits [52:49]

When ARMv8.2-LVA is implemented:

Extension to VA[48:2]. See VA[48:2] for more details.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

Page 335

Otherwise:

Extension to RESS[14:4]. See RESS[14:4] for more details.

VA[48:2], bits [48:2]

Bits[48:2] of the address value for comparison.

When ARMv8.2-LVA is implemented, VA[52:49] forms the upper part of the address value. Otherwise, VA[52:49] are
RESS.

Arm deprecates setting DBGWVR<n>_EL1[2] == 1.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Bits [1:0]

Reserved, RES0.

Accessing the DBGWVR<n>_EL1
Accesses to this register use the following encodings:

MRS <Xt>, DBGWVR<n>_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0000 n[3:0] 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.DBGWVRn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1'
then

Halt(DebugHalt_SoftwareAccess);
else

return DBGWVR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1'
then

Halt(DebugHalt_SoftwareAccess);
else

return DBGWVR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL3 then

if !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
return DBGWVR_EL1[UInt(CRm<3:0>)];

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

Page 336

MSR DBGWVR<n>_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0000 n[3:0] 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.DBGWVRn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1'
then

Halt(DebugHalt_SoftwareAccess);
else

DBGWVR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1'
then

Halt(DebugHalt_SoftwareAccess);
else

DBGWVR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL3 then

if !ELUsingAArch32(EL1) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
DBGWVR_EL1[UInt(CRm<3:0>)] = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

Page 337

DC CGDSW, Data, Allocation Tag or unified Cache line
Clean of Data and Allocation Tags by Set/Way

The DC CGDSW characteristics are:

Purpose
Clean data and Allocation Tags in data cache by set/way.

Configuration
This instruction is present only when ARMv8.5-MemTag is implemented and ID_AA64PFR1_EL1.MTE != 0b0001.
Otherwise, direct accesses to DC CGDSW are UNDEFINED.

Attributes
DC CGDSW is a 64-bit System instruction.

Field descriptions
The DC CGDSW input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

SetWay Level RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the
values for the cache level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2
cache.

Bit [0]

Reserved, RES0.

DC CGDSW, Data, Allocation Tag or unified Cache line Clean of Data and Allocation Tags by Set/Way

Page 338

Executing the DC CGDSW instruction
If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.
• The instruction performs cache maintenance on one of:

◦ No cache lines.
◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings:

DC CGDSW, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1010 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCCSW == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CGDSW(X[t]);

elsif PSTATE.EL == EL2 then
DC_CGDSW(X[t]);

elsif PSTATE.EL == EL3 then
DC_CGDSW(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CGDSW, Data, Allocation Tag or unified Cache line Clean of Data and Allocation Tags by Set/Way

Page 339

DC CGDVAC, Data, Allocation Tag or unified Cache line
Clean of Allocation Tags by VA to PoC

The DC CGDVAC characteristics are:

Purpose
Clean data and Allocation Tags in data cache by address to Point of Coherency.

Configuration
This instruction is present only when ARMv8.5-MemTag is implemented. Otherwise, direct accesses to DC CGDVAC
are UNDEFINED.

Attributes
DC CGDVAC is a 64-bit System instruction.

Field descriptions
The DC CGDVAC input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CGDVAC instruction
If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission Fault, subject to the constraints described in 'Permission fault' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

DC CGDVAC, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1010 0b101

DC CGDVAC, Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoC

Page 340

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI ==

'0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CGDVAC(X[t]);

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCCVAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CGDVAC(X[t]);

elsif PSTATE.EL == EL2 then
DC_CGDVAC(X[t]);

elsif PSTATE.EL == EL3 then
DC_CGDVAC(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CGDVAC, Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoC

Page 341

DC CGDVADP, Data, Allocation Tag or unified Cache
line Clean of Allocation Tags by VA to PoDP

The DC CGDVADP characteristics are:

Purpose
Clean Allocation Tags and data in data cache by address to Point of Deep Persistence.

If the memory system does not identify a Point of Deep Persistence, then this instruction behaves as a DC CGDVAP.

Configuration
This instruction is present only when ARMv8.2-DCCVADP is implemented and ARMv8.5-MemTag is implemented.
Otherwise, direct accesses to DC CGDVADP are UNDEFINED.

Attributes
DC CGDVADP is a 64-bit System instruction.

Field descriptions
The DC CGDVADP input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CGDVADP instruction
If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission Fault, see 'Permission fault' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

DC CGDVADP, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1101 0b101

DC CGDVADP, Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoDP

Page 342

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVADP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI ==

'0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CGDVADP(X[t]);

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCCVADP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CGDVADP(X[t]);

elsif PSTATE.EL == EL2 then
DC_CGDVADP(X[t]);

elsif PSTATE.EL == EL3 then
DC_CGDVADP(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CGDVADP, Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoDP

Page 343

DC CGDVAP, Data, Allocation Tag or unified Cache line
Clean of Data and Allocation Tags by VA to PoP

The DC CGDVAP characteristics are:

Purpose
Clean data and Allocation Tags in data cache by address to Point of Persistence.

If the memory system does not identify a Point of Persistence, then this instruction behaves as a DC CGDVAC.

Configuration
This instruction is present only when ARMv8.5-MemTag is implemented. Otherwise, direct accesses to DC CGDVAP
are UNDEFINED.

Attributes
DC CGDVAP is a 64-bit System instruction.

Field descriptions
The DC CGDVAP input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CGDVAP instruction
If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission Fault, see 'Permission fault' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

DC CGDVAP, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1100 0b101

DC CGDVAP, Data, Allocation Tag or unified Cache line Clean of Data and Allocation Tags by VA to PoP

Page 344

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI ==

'0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CGDVAP(X[t]);

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCCVAP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CGDVAP(X[t]);

elsif PSTATE.EL == EL2 then
DC_CGDVAP(X[t]);

elsif PSTATE.EL == EL3 then
DC_CGDVAP(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CGDVAP, Data, Allocation Tag or unified Cache line Clean of Data and Allocation Tags by VA to PoP

Page 345

DC CGSW, Data, Allocation Tag or unified Cache line
Clean of Allocation Tags by Set/Way

The DC CGSW characteristics are:

Purpose
Clean Allocation Tags in data cache by set/way.

Configuration
This instruction is present only when ARMv8.5-MemTag is implemented and ID_AA64PFR1_EL1.MTE != 0b0001.
Otherwise, direct accesses to DC CGSW are UNDEFINED.

Attributes
DC CGSW is a 64-bit System instruction.

Field descriptions
The DC CGSW input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

SetWay Level RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the
values for the cache level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2
cache.

Bit [0]

Reserved, RES0.

DC CGSW, Data, Allocation Tag or unified Cache line Clean of Allocation Tags by Set/Way

Page 346

Executing the DC CGSW instruction
If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.
• The instruction performs cache maintenance on one of:

◦ No cache lines.
◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings:

DC CGSW, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1010 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCCSW == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CGSW(X[t]);

elsif PSTATE.EL == EL2 then
DC_CGSW(X[t]);

elsif PSTATE.EL == EL3 then
DC_CGSW(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CGSW, Data, Allocation Tag or unified Cache line Clean of Allocation Tags by Set/Way

Page 347

DC CGVAC, Data, Allocation Tag or unified Cache line
Clean of Allocation Tags by VA to PoC

The DC CGVAC characteristics are:

Purpose
Clean Allocation Tags in data cache by address to Point of Coherency.

Configuration
This instruction is present only when ARMv8.5-MemTag is implemented. Otherwise, direct accesses to DC CGVAC are
UNDEFINED.

Attributes
DC CGVAC is a 64-bit System instruction.

Field descriptions
The DC CGVAC input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CGVAC instruction
If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission Fault, subject to the constraints described in 'Permission fault' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

DC CGVAC, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1010 0b011

DC CGVAC, Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoC

Page 348

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI ==

'0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CGVAC(X[t]);

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCCVAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CGVAC(X[t]);

elsif PSTATE.EL == EL2 then
DC_CGVAC(X[t]);

elsif PSTATE.EL == EL3 then
DC_CGVAC(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CGVAC, Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoC

Page 349

DC CGVADP, Data, Allocation Tag or unified Cache line
Clean of Data and Allocation Tags by VA to PoDP

The DC CGVADP characteristics are:

Purpose
Clean data and Allocation Tags in data cache by address to Point of Deep Persistence.

If the memory system does not identify a Point of Deep Persistence, then this instruction behaves as a DC CGDVAP.

Configuration
This instruction is present only when ARMv8.2-DCCVADP is implemented and ARMv8.5-MemTag is implemented.
Otherwise, direct accesses to DC CGVADP are UNDEFINED.

Attributes
DC CGVADP is a 64-bit System instruction.

Field descriptions
The DC CGVADP input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CGVADP instruction
If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission Fault, see 'Permission fault' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

DC CGVADP, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1101 0b011

DC CGVADP, Data, Allocation Tag or unified Cache line Clean of Data and Allocation Tags by VA to PoDP

Page 350

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVADP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI ==

'0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CGVADP(X[t]);

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCCVADP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CGVADP(X[t]);

elsif PSTATE.EL == EL2 then
DC_CGVADP(X[t]);

elsif PSTATE.EL == EL3 then
DC_CGVADP(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CGVADP, Data, Allocation Tag or unified Cache line Clean of Data and Allocation Tags by VA to PoDP

Page 351

DC CGVAP, Data, Allocation Tag or unified Cache line
Clean of Allocation Tags by VA to PoP

The DC CGVAP characteristics are:

Purpose
Clean Allocation Tags in data cache by address to Point of Persistence.

If the memory system does not identify a Point of Persistence, then this instruction behaves as a DC CGVAC.

Configuration
This instruction is present only when ARMv8.5-MemTag is implemented. Otherwise, direct accesses to DC CGVAP are
UNDEFINED.

Attributes
DC CGVAP is a 64-bit System instruction.

Field descriptions
The DC CGVAP input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CGVAP instruction
If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission Fault, see 'Permission fault' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

DC CGVAP, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1100 0b011

DC CGVAP, Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoP

Page 352

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI ==

'0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CGVAP(X[t]);

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCCVAP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CGVAP(X[t]);

elsif PSTATE.EL == EL2 then
DC_CGVAP(X[t]);

elsif PSTATE.EL == EL3 then
DC_CGVAP(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CGVAP, Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoP

Page 353

DC CIGDSW, Data, Allocation Tag or unified Cache line
Clean and Invalidate of Data and Allocation Tags by

Set/Way
The DC CIGDSW characteristics are:

Purpose
Clean and Invalidate data and Allocation Tags in data cache by set/way.

Configuration
This instruction is present only when ARMv8.5-MemTag is implemented and ID_AA64PFR1_EL1.MTE != 0b0001.
Otherwise, direct accesses to DC CIGDSW are UNDEFINED.

Attributes
DC CIGDSW is a 64-bit System instruction.

Field descriptions
The DC CIGDSW input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

SetWay Level RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the
values for the cache level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2
cache.

Bit [0]

Reserved, RES0.

DC CIGDSW, Data, Allocation Tag or unified Cache line Clean and Invalidate of Data and Allocation Tags by Set/Way

Page 354

Executing the DC CIGDSW instruction
If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.
• The instruction performs cache maintenance on one of:

◦ No cache lines.
◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings:

DC CIGDSW, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1110 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCCISW == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CIGDSW(X[t]);

elsif PSTATE.EL == EL2 then
DC_CIGDSW(X[t]);

elsif PSTATE.EL == EL3 then
DC_CIGDSW(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CIGDSW, Data, Allocation Tag or unified Cache line Clean and Invalidate of Data and Allocation Tags by Set/Way

Page 355

DC CIGDVAC, Data, Allocation Tag or unified Cache
line Clean and Invalidate of Data and Allocation Tags

by VA to PoC
The DC CIGDVAC characteristics are:

Purpose
Clean and Invalidate data and Allocation Tags in data cache by address to Point of Coherency.

Configuration
This instruction is present only when ARMv8.5-MemTag is implemented. Otherwise, direct accesses to DC CIGDVAC
are UNDEFINED.

Attributes
DC CIGDVAC is a 64-bit System instruction.

Field descriptions
The DC CIGDVAC input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CIGDVAC instruction
Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission Fault, subject to the constraints described in 'Permission fault' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

DC CIGDVAC, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1110 0b101

DC CIGDVAC, Data, Allocation Tag or unified Cache line Clean and Invalidate of Data and Allocation Tags by VA to PoC

Page 356

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI ==

'0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CIGDVAC(X[t]);

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCCIVAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CIGDVAC(X[t]);

elsif PSTATE.EL == EL2 then
DC_CIGDVAC(X[t]);

elsif PSTATE.EL == EL3 then
DC_CIGDVAC(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CIGDVAC, Data, Allocation Tag or unified Cache line Clean and Invalidate of Data and Allocation Tags by VA to PoC

Page 357

DC CIGSW, Data, Allocation Tag or unified Cache line
Clean and Invalidate of Allocation Tags by Set/Way

The DC CIGSW characteristics are:

Purpose
Clean and Invalidate Allocation Tags in data cache by set/way.

Configuration
This instruction is present only when ARMv8.5-MemTag is implemented and ID_AA64PFR1_EL1.MTE != 0b0001.
Otherwise, direct accesses to DC CIGSW are UNDEFINED.

Attributes
DC CIGSW is a 64-bit System instruction.

Field descriptions
The DC CIGSW input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

SetWay Level RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the
values for the cache level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2
cache.

Bit [0]

Reserved, RES0.

DC CIGSW, Data, Allocation Tag or unified Cache line Clean and Invalidate of Allocation Tags by Set/Way

Page 358

Executing the DC CIGSW instruction
If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.
• The instruction performs cache maintenance on one of:

◦ No cache lines.
◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings:

DC CIGSW, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1110 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCCISW == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CIGSW(X[t]);

elsif PSTATE.EL == EL2 then
DC_CIGSW(X[t]);

elsif PSTATE.EL == EL3 then
DC_CIGSW(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CIGSW, Data, Allocation Tag or unified Cache line Clean and Invalidate of Allocation Tags by Set/Way

Page 359

DC CIGVAC, Data, Allocation Tag or unified Cache line
Clean and Invalidate of Allocation Tags by VA to PoC

The DC CIGVAC characteristics are:

Purpose
Clean and Invalidate Allocation Tags in data cache by address to Point of Coherency.

Configuration
This instruction is present only when ARMv8.5-MemTag is implemented. Otherwise, direct accesses to DC CIGVAC are
UNDEFINED.

Attributes
DC CIGVAC is a 64-bit System instruction.

Field descriptions
The DC CIGVAC input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CIGVAC instruction
Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission Fault, subject to the constraints described in 'Permission fault' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

DC CIGVAC, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1110 0b011

DC CIGVAC, Data, Allocation Tag or unified Cache line Clean and Invalidate of Allocation Tags by VA to PoC

Page 360

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI ==

'0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CIGVAC(X[t]);

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCCIVAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CIGVAC(X[t]);

elsif PSTATE.EL == EL2 then
DC_CIGVAC(X[t]);

elsif PSTATE.EL == EL3 then
DC_CIGVAC(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CIGVAC, Data, Allocation Tag or unified Cache line Clean and Invalidate of Allocation Tags by VA to PoC

Page 361

DC CISW, Data or unified Cache line Clean and
Invalidate by Set/Way

The DC CISW characteristics are:

Purpose
Clean and Invalidate data cache by set/way.

When ARMv8.5-MemTag is implemented, this instruction might clean and invalidate Allocation Tags from caches.

Configuration
AArch64 System instruction DC CISW performs the same function as AArch32 System instruction DCCISW.

Attributes
DC CISW is a 64-bit System instruction.

Field descriptions
The DC CISW input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

SetWay Level RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the
values for the cache level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2
cache.

Bit [0]

Reserved, RES0.

DC CISW, Data or unified Cache line Clean and Invalidate by Set/Way

Page 362

Executing the DC CISW instruction
If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.
• The instruction performs cache maintenance on one of:

◦ No cache lines.
◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings:

DC CISW, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1110 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCCISW == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CISW(X[t]);

elsif PSTATE.EL == EL2 then
DC_CISW(X[t]);

elsif PSTATE.EL == EL3 then
DC_CISW(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CISW, Data or unified Cache line Clean and Invalidate by Set/Way

Page 363

DC CIVAC, Data or unified Cache line Clean and
Invalidate by VA to PoC

The DC CIVAC characteristics are:

Purpose
Clean and Invalidate data cache by address to Point of Coherency.

When ARMv8.5-MemTag is implemented, this instruction might clean and invalidate Allocation Tags from caches.

Configuration
AArch64 System instruction DC CIVAC performs the same function as AArch32 System instruction DCCIMVAC.

Attributes
DC CIVAC is a 64-bit System instruction.

Field descriptions
The DC CIVAC input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CIVAC instruction
Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission Fault, subject to the constraints described in 'Permission fault' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

DC CIVAC, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1110 0b001

DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC

Page 364

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI ==

'0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CIVAC(X[t]);

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCCIVAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CIVAC(X[t]);

elsif PSTATE.EL == EL2 then
DC_CIVAC(X[t]);

elsif PSTATE.EL == EL3 then
DC_CIVAC(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC

Page 365

DC CSW, Data or unified Cache line Clean by Set/Way
The DC CSW characteristics are:

Purpose
Clean data cache by set/way.

When ARMv8.5-MemTag is implemented, this instruction might clean Allocation Tags from caches.

Configuration
AArch64 System instruction DC CSW performs the same function as AArch32 System instruction DCCSW.

Attributes
DC CSW is a 64-bit System instruction.

Field descriptions
The DC CSW input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

SetWay Level RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the
values for the cache level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2
cache.

Bit [0]

Reserved, RES0.

DC CSW, Data or unified Cache line Clean by Set/Way

Page 366

Executing the DC CSW instruction
If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.
• The instruction performs cache maintenance on one of:

◦ No cache lines.
◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings:

DC CSW, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCCSW == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CSW(X[t]);

elsif PSTATE.EL == EL2 then
DC_CSW(X[t]);

elsif PSTATE.EL == EL3 then
DC_CSW(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CSW, Data or unified Cache line Clean by Set/Way

Page 367

DC CVAC, Data or unified Cache line Clean by VA to
PoC

The DC CVAC characteristics are:

Purpose
Clean data cache by address to Point of Coherency.

When ARMv8.5-MemTag is implemented, this instruction might clean Allocation Tags from caches.

Configuration
AArch64 System instruction DC CVAC performs the same function as AArch32 System instruction DCCMVAC.

Attributes
DC CVAC is a 64-bit System instruction.

Field descriptions
The DC CVAC input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CVAC instruction
If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission Fault, subject to the constraints described in 'Permission fault' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

DC CVAC, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1010 0b001

DC CVAC, Data or unified Cache line Clean by VA to PoC

Page 368

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI ==

'0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CVAC(X[t]);

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCCVAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CVAC(X[t]);

elsif PSTATE.EL == EL2 then
DC_CVAC(X[t]);

elsif PSTATE.EL == EL3 then
DC_CVAC(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CVAC, Data or unified Cache line Clean by VA to PoC

Page 369

DC CVADP, Data or unified Cache line Clean by VA to
PoDP

The DC CVADP characteristics are:

Purpose
Clean data cache by address to Point of Deep Persistence.

If the memory system does not identify a Point of Deep Persistence, then this instruction behaves as a DC CVAP.

When ARMv8.5-MemTag is implemented, this instruction might clean Allocation Tags from caches.

Configuration
This instruction is present only when ARMv8.2-DCCVADP is implemented. Otherwise, direct accesses to DC CVADP
are UNDEFINED.

Attributes
DC CVADP is a 64-bit System instruction.

Field descriptions
The DC CVADP input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CVADP instruction
If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission Fault, see 'Permission fault' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

DC CVADP, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1101 0b001

DC CVADP, Data or unified Cache line Clean by VA to PoDP

Page 370

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVADP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI ==

'0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CVADP(X[t]);

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCCVADP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CVADP(X[t]);

elsif PSTATE.EL == EL2 then
DC_CVADP(X[t]);

elsif PSTATE.EL == EL3 then
DC_CVADP(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CVADP, Data or unified Cache line Clean by VA to PoDP

Page 371

DC CVAP, Data or unified Cache line Clean by VA to
PoP

The DC CVAP characteristics are:

Purpose
Clean data cache by address to Point of Persistence.

If the memory system does not identify a Point of Persistence, then this instruction behaves as a DC CVAC.

When ARMv8.5-MemTag is implemented, this instruction might clean Allocation Tags from caches.

Configuration
This instruction is present only when ARMv8.2-DCPoP is implemented. Otherwise, direct accesses to DC CVAP are
UNDEFINED.

Attributes
DC CVAP is a 64-bit System instruction.

Field descriptions
The DC CVAP input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CVAP instruction
If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission Fault, see 'Permission fault' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

DC CVAP, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1100 0b001

DC CVAP, Data or unified Cache line Clean by VA to PoP

Page 372

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI ==

'0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CVAP(X[t]);

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCCVAP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CVAP(X[t]);

elsif PSTATE.EL == EL2 then
DC_CVAP(X[t]);

elsif PSTATE.EL == EL3 then
DC_CVAP(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CVAP, Data or unified Cache line Clean by VA to PoP

Page 373

DC CVAU, Data or unified Cache line Clean by VA to
PoU

The DC CVAU characteristics are:

Purpose
Clean data cache by address to Point of Unification.

Configuration
AArch64 System instruction DC CVAU performs the same function as AArch32 System instruction DCCMVAU.

Attributes
DC CVAU is a 64-bit System instruction.

Field descriptions
The DC CVAU input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CVAU instruction
If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission Fault, subject to the constraints described in 'Permission fault' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

DC CVAU, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1011 0b001

DC CVAU, Data or unified Cache line Clean by VA to PoU

Page 374

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPU == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TOCU == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAU == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI ==
'0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

DC_CVAU(X[t]);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TOCU == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCVAU == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

DC_CVAU(X[t]);
elsif PSTATE.EL == EL2 then

DC_CVAU(X[t]);
elsif PSTATE.EL == EL3 then

DC_CVAU(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CVAU, Data or unified Cache line Clean by VA to PoU

Page 375

DC GVA, Data Cache set Allocation Tag by VA
The DC GVA characteristics are:

Purpose
Write a value to the Allocation Tags of a naturally aligned block of N bytes, where the size of N is identified in
DCZID_EL0. The Allocation Tag used is determined by the input address.

Configuration
This instruction is present only when ARMv8.5-MemTag is implemented. Otherwise, direct accesses to DC GVA are
UNDEFINED.

Attributes
DC GVA is a 64-bit System instruction.

Field descriptions
The DC GVA input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. There is no alignment restriction on the address within the block of N bytes that is used.

Executing the DC GVA instruction
When this instruction is executed, it can generate memory faults or watchpoints which are prioritized in the same way
as other memory-related faults or watchpoints. If a synchronous data abort fault or a watchpoint is generated, the CM
bit in the ESR_ELx.ISS field is not set.

If the memory region being zeroed is any type of Device memory, this instruction can give an alignment fault which is
prioritized in the same way as other alignment faults that are determined by the memory type.

This instruction applies to Normal memory regardless of cacheability attributes.

This instruction behaves as a set of Stores to each byte within the block being accessed, and so it:

• Generates a Permission Fault if the translation system does not permit writes to the locations.
• Requires the same considerations for ordering and the management of coherency as any other store

instructions.

Accesses to this instruction use the following encodings:

DC GVA, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b0100 0b011

DC GVA, Data Cache set Allocation Tag by VA

Page 376

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.DZE ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TDZ == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCZVA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.DZE ==

'0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_GVA(X[t]);

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TDZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCZVA == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_GVA(X[t]);

elsif PSTATE.EL == EL2 then
DC_GVA(X[t]);

elsif PSTATE.EL == EL3 then
DC_GVA(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC GVA, Data Cache set Allocation Tag by VA

Page 377

DC GZVA, Data Cache set Allocation Tags and Zero by
VA

The DC GZVA characteristics are:

Purpose
Zero data and write a value to the Allocation Tags of a naturally aligned block of N bytes, where the size of N is
identified in DCZID_EL0. The Allocation Tag used is determined by the input address.

Configuration
This instruction is present only when ARMv8.5-MemTag is implemented. Otherwise, direct accesses to DC GZVA are
UNDEFINED.

Attributes
DC GZVA is a 64-bit System instruction.

Field descriptions
The DC GZVA input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. There is no alignment restriction on the address within the block of N bytes that is used.

Executing the DC GZVA instruction
When this instruction is executed, it can generate memory faults or watchpoints which are prioritized in the same way
as other memory-related faults or watchpoints. If a synchronous data abort fault or a watchpoint is generated, the CM
bit in the ESR_ELx.ISS field is not set.

If the memory region being zeroed is any type of Device memory, this instruction can give an alignment fault which is
prioritized in the same way as other alignment faults that are determined by the memory type.

This instruction applies to Normal memory regardless of cacheability attributes.

This instruction behaves as a set of Stores to each byte within the block being accessed, and so it:

• Generates a Permission Fault if the translation system does not permit writes to the locations.
• Requires the same considerations for ordering and the management of coherency as any other store

instructions.

Accesses to this instruction use the following encodings:

DC GZVA, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b0100 0b100

DC GZVA, Data Cache set Allocation Tags and Zero by VA

Page 378

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.DZE ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TDZ == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCZVA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.DZE ==

'0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_GZVA(X[t]);

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TDZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCZVA == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_GZVA(X[t]);

elsif PSTATE.EL == EL2 then
DC_GZVA(X[t]);

elsif PSTATE.EL == EL3 then
DC_GZVA(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC GZVA, Data Cache set Allocation Tags and Zero by VA

Page 379

DC IGDSW, Data, Allocation Tag or unified Cache line
Invalidate of Data and Allocation Tags by Set/Way

The DC IGDSW characteristics are:

Purpose
Invalidate data and Allocation Tags in data cache by set/way.

Configuration
This instruction is present only when ARMv8.5-MemTag is implemented and ID_AA64PFR1_EL1.MTE != 0b0001.
Otherwise, direct accesses to DC IGDSW are UNDEFINED.

Attributes
DC IGDSW is a 64-bit System instruction.

Field descriptions
The DC IGDSW input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

SetWay Level RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the
values for the cache level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2
cache.

Bit [0]

Reserved, RES0.

DC IGDSW, Data, Allocation Tag or unified Cache line Invalidate of Data and Allocation Tags by Set/Way

Page 380

Executing the DC IGDSW instruction
If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.
• The instruction performs cache maintenance on one of:

◦ No cache lines.
◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings:

DC IGDSW, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b0110 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCISW == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.SWIO == '1' then
DC_CIGDSW(X[t]);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<DC,VM> != '00' then
DC_CIGDSW(X[t]);

else
DC_IGDSW(X[t]);

elsif PSTATE.EL == EL2 then
DC_IGDSW(X[t]);

elsif PSTATE.EL == EL3 then
DC_IGDSW(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC IGDSW, Data, Allocation Tag or unified Cache line Invalidate of Data and Allocation Tags by Set/Way

Page 381

DC IGDVAC, Data, Allocation Tag or unified Cache line
Invalidate of Allocation Tags by VA to PoC

The DC IGDVAC characteristics are:

Purpose
Invalidate data and Allocation Tags in data cache by address to Point of Coherency.

Configuration
This instruction is present only when ARMv8.5-MemTag is implemented and ID_AA64PFR1_EL1.MTE != 0b0001.
Otherwise, direct accesses to DC IGDVAC are UNDEFINED.

Attributes
DC IGDVAC is a 64-bit System instruction.

Field descriptions
The DC IGDVAC input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC IGDVAC instruction
When the instruction is executed, it can generate a watchpoint, which is prioritized in the same way as other
watchpoints. If a watchpoint is generated, the CM bit in the ESR_ELx.ISS field is set to 1.

This instruction requires write access permission to the VA, otherwise it generates a Permission Fault, subject to the
constraints described in 'Permission fault' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

DC IGDVAC, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b0110 0b101

DC IGDVAC, Data, Allocation Tag or unified Cache line Invalidate of Allocation Tags by VA to PoC

Page 382

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCIVAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<DC,VM> != '00' then
DC_CIGDVAC(X[t]);

else
DC_IGDVAC(X[t]);

elsif PSTATE.EL == EL2 then
DC_IGDVAC(X[t]);

elsif PSTATE.EL == EL3 then
DC_IGDVAC(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC IGDVAC, Data, Allocation Tag or unified Cache line Invalidate of Allocation Tags by VA to PoC

Page 383

DC IGSW, Data, Allocation Tag or unified Cache line
Invalidate of Allocation Tags by Set/Way

The DC IGSW characteristics are:

Purpose
Invalidate Allocation Tags in data cache by set/way.

Configuration
This instruction is present only when ARMv8.5-MemTag is implemented and ID_AA64PFR1_EL1.MTE != 0b0001.
Otherwise, direct accesses to DC IGSW are UNDEFINED.

Attributes
DC IGSW is a 64-bit System instruction.

Field descriptions
The DC IGSW input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

SetWay Level RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the
values for the cache level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2
cache.

Bit [0]

Reserved, RES0.

DC IGSW, Data, Allocation Tag or unified Cache line Invalidate of Allocation Tags by Set/Way

Page 384

Executing the DC IGSW instruction
If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.
• The instruction performs cache maintenance on one of:

◦ No cache lines.
◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings:

DC IGSW, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b0110 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCISW == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.SWIO == '1' then
DC_CIGSW(X[t]);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<DC,VM> != '00' then
DC_CIGSW(X[t]);

else
DC_IGSW(X[t]);

elsif PSTATE.EL == EL2 then
DC_IGSW(X[t]);

elsif PSTATE.EL == EL3 then
DC_IGSW(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC IGSW, Data, Allocation Tag or unified Cache line Invalidate of Allocation Tags by Set/Way

Page 385

DC IGVAC, Data, Allocation Tag or unified Cache line
Invalidate of Allocation Tags by VA to PoC

The DC IGVAC characteristics are:

Purpose
Invalidate Allocation Tags in data cache by address to Point of Coherency.

Configuration
This instruction is present only when ARMv8.5-MemTag is implemented and ID_AA64PFR1_EL1.MTE != 0b0001.
Otherwise, direct accesses to DC IGVAC are UNDEFINED.

Attributes
DC IGVAC is a 64-bit System instruction.

Field descriptions
The DC IGVAC input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC IGVAC instruction
When the instruction is executed, it can generate a watchpoint, which is prioritized in the same way as other
watchpoints. If a watchpoint is generated, the CM bit in the ESR_ELx.ISS field is set to 1.

This instruction requires write access permission to the VA, otherwise it generates a Permission Fault, subject to the
constraints described in 'Permission fault' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

DC IGVAC, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b0110 0b011

DC IGVAC, Data, Allocation Tag or unified Cache line Invalidate of Allocation Tags by VA to PoC

Page 386

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCIVAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<DC,VM> != '00' then
DC_CIGVAC(X[t]);

else
DC_IGVAC(X[t]);

elsif PSTATE.EL == EL2 then
DC_IGVAC(X[t]);

elsif PSTATE.EL == EL3 then
DC_IGVAC(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC IGVAC, Data, Allocation Tag or unified Cache line Invalidate of Allocation Tags by VA to PoC

Page 387

DC ISW, Data or unified Cache line Invalidate by Set/
Way

The DC ISW characteristics are:

Purpose
Invalidate data cache by set/way.

When ARMv8.5-MemTag is implemented, this instruction might invalidate Allocation Tags from caches. When it
invalidates Allocation Tags from caches, it also cleans them.

Configuration
AArch64 System instruction DC ISW performs the same function as AArch32 System instruction DCISW.

Attributes
DC ISW is a 64-bit System instruction.

Field descriptions
The DC ISW input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

SetWay Level RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the
values for the cache level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2
cache.

Bit [0]

Reserved, RES0.

DC ISW, Data or unified Cache line Invalidate by Set/Way

Page 388

Executing the DC ISW instruction
If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.
• The instruction performs cache maintenance on one of:

◦ No cache lines.
◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings:

DC ISW, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b0110 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCISW == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.SWIO == '1' then
DC_CISW(X[t]);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<DC,VM> != '00' then
DC_CISW(X[t]);

else
DC_ISW(X[t]);

elsif PSTATE.EL == EL2 then
DC_ISW(X[t]);

elsif PSTATE.EL == EL3 then
DC_ISW(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC ISW, Data or unified Cache line Invalidate by Set/Way

Page 389

DC IVAC, Data or unified Cache line Invalidate by VA
to PoC

The DC IVAC characteristics are:

Purpose
Invalidate data cache by address to Point of Coherency.

When ARMv8.5-MemTag is implemented, this instruction might invalidate Allocation Tags from caches. When it
invalidates Allocation Tags from caches, it also cleans them.

Configuration
AArch64 System instruction DC IVAC performs the same function as AArch32 System instruction DCIMVAC.

Attributes
DC IVAC is a 64-bit System instruction.

Field descriptions
The DC IVAC input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC IVAC instruction
When the instruction is executed, it can generate a watchpoint, which is prioritized in the same way as other
watchpoints. If a watchpoint is generated, the CM bit in the ESR_ELx.ISS field is set to 1.

This instruction requires write access permission to the VA, otherwise it generates a Permission Fault, subject to the
constraints described in 'Permission fault' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

DC IVAC, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b0110 0b001

DC IVAC, Data or unified Cache line Invalidate by VA to PoC

Page 390

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCIVAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<DC,VM> != '00' then
DC_CIVAC(X[t]);

else
DC_IVAC(X[t]);

elsif PSTATE.EL == EL2 then
DC_IVAC(X[t]);

elsif PSTATE.EL == EL3 then
DC_IVAC(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC IVAC, Data or unified Cache line Invalidate by VA to PoC

Page 391

DC ZVA, Data Cache Zero by VA
The DC ZVA characteristics are:

Purpose
Zero data cache by address. Zeroes a naturally aligned block of N bytes, where the size of N is identified in
DCZID_EL0.

Configuration
There are no configuration notes.

Attributes
DC ZVA is a 64-bit System instruction.

Field descriptions
The DC ZVA input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. There is no alignment restriction on the address within the block of N bytes that is used.

Executing the DC ZVA instruction
When this instruction is executed, it can generate memory faults or watchpoints which are prioritized in the same way
as other memory-related faults or watchpoints. If a synchronous data abort fault or a watchpoint is generated, the CM
bit in the ESR_ELx.ISS field is set to 0.

If the memory region being zeroed is any type of Device memory, this instruction can give an Alignment fault which is
prioritized in the same way as other Alignment faults that are determined by the memory type.

This instruction applies to Normal memory regardless of cacheability attributes.

This instruction behaves as a set of Stores to each byte within the block being accessed, and so it:

• Generates a Permission Fault if the translation system does not permit writes to the locations.
• Requires the same considerations for ordering and the management of coherency as any other store

instructions.

Accesses to this instruction use the following encodings:

DC ZVA, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b0100 0b001

DC ZVA, Data Cache Zero by VA

Page 392

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.DZE ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TDZ == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCZVA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.DZE ==

'0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_ZVA(X[t]);

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TDZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.DCZVA == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_ZVA(X[t]);

elsif PSTATE.EL == EL2 then
DC_ZVA(X[t]);

elsif PSTATE.EL == EL3 then
DC_ZVA(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC ZVA, Data Cache Zero by VA

Page 393

DCZID_EL0, Data Cache Zero ID register
The DCZID_EL0 characteristics are:

Purpose
Indicates the block size that is written with byte values of 0 by the DC ZVA (Data Cache Zero by Address) System
instruction.

If ARMv8.5-MemTag is implemented, this register also indicates the granularity at which the DC GVA and DC GZVA
instructions write.

Configuration
There are no configuration notes.

Attributes
DCZID_EL0 is a 64-bit register.

Field descriptions
The DCZID_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 DZP BS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:5]

Reserved, RES0.

DZP, bit [4]

Data Zero Prohibited. This field indicates whether use of DC ZVA instructions is permitted or prohibited.

If ARMv8.5-MemTag is implemented, this field also indicates whether use of the DC GVA and DC GZVA instructions
are permitted or prohibited.

DZP Meaning
0b0 Instructions are permitted.
0b1 Instructions are prohibited.

The value read from this field is governed by the access state and the values of the HCR_EL2.TDZ and
SCTLR_EL1.DZE bits.

BS, bits [3:0]

Log2 of the block size in words. The maximum size supported is 2KB (value == 9).

Accessing the DCZID_EL0
Accesses to this register use the following encodings:

DCZID_EL0, Data Cache Zero ID register

Page 394

MRS <Xt>, DCZID_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b0000 0b0000 0b111

if PSTATE.EL == EL0 then
if EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HFGRTR_EL2.DCZID_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return DCZID_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.DCZID_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return DCZID_EL0;

elsif PSTATE.EL == EL2 then
return DCZID_EL0;

elsif PSTATE.EL == EL3 then
return DCZID_EL0;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCZID_EL0, Data Cache Zero ID register

Page 395

DISR_EL1, Deferred Interrupt Status Register
The DISR_EL1 characteristics are:

Purpose
Records that an SError interrupt has been consumed by an ESB instruction.

Configuration
AArch64 System register DISR_EL1 bits [31:0] are architecturally mapped to AArch32 System register DISR[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to DISR_EL1 are UNDEFINED.

Attributes
DISR_EL1 is a 64-bit register.

Field descriptions
The DISR_EL1 bit assignments are:

When DISR_EL1.IDS == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

A RES0 IDS RES0 AET EA RES0 DFSC
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does not include any
sources of SError interrupt that can be synchronized by an Error Synchronization Barrier, then this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bits [30:25]

Reserved, RES0.

IDS, bit [24]

Indicates the deferred SError interrupt type.

IDS Meaning
0b0 Deferred error uses architecturally-defined format.

This field resets to an architecturally UNKNOWN value.

DISR_EL1, Deferred Interrupt Status Register

Page 396

Bits [23:13]

Reserved, RES0.

AET, bits [12:10]

Asynchronous Error Type. See the description of ESR_ELx.AET for an SError interrupt.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort Type. See the description of ESR_ELx.EA for an SError interrupt.

This field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

Fault Status Code. See the description of ESR_ELx.DFSC for an SError interrupt.

This field resets to an architecturally UNKNOWN value.

When DISR_EL1.IDS == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

A RES0 IDS ISS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does not include any
sources of SError interrupt that can be synchronized by an Error Synchronization Barrier, then this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bits [30:25]

Reserved, RES0.

IDS, bit [24]

Indicates the deferred SError interrupt type.

IDS Meaning
0b1 Deferred error uses IMPLEMENTATION DEFINED format.

This field resets to an architecturally UNKNOWN value.

ISS, bits [23:0]

IMPLEMENTATION DEFINED.

DISR_EL1, Deferred Interrupt Status Register

Page 397

IMPLEMENTATION DEFINED syndrome. See the description of ESR_ELx[23:0] for an SError interrupt.

This field resets to an architecturally UNKNOWN value.

Accessing the DISR_EL1
An indirect write to DISR_EL1 made by an ESB instruction does not require an explicit synchronization operation for
the value that is written to be observed by a direct read of DISR_EL1 occurring in program order after the ESB
instruction.

DISR_EL1 is RAZ/WI if EL3 is implemented, the PE is in Non-debug state, SCR_EL3.EA == 1, and any of the following
apply:

• At EL2.
• At EL1 and ((SCR_EL3.NS == 0 && SCR_EL3.EEL2 == 0) || HCR_EL2.AMO == 0).

Accesses to this register use the following encodings:

MRS <Xt>, DISR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AMO == '1' then

return VDISR_EL2;
else

return DISR_EL1;
elsif PSTATE.EL == EL2 then

return DISR_EL1;
elsif PSTATE.EL == EL3 then

return DISR_EL1;

MSR DISR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AMO == '1' then

VDISR_EL2 = X[t];
else

DISR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

DISR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

DISR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DISR_EL1, Deferred Interrupt Status Register

Page 398

DIT, Data Independent Timing
The DIT characteristics are:

Purpose
Allows access to the Data Independent Timing bit.

Configuration
This register is present only when ARMv8.4-DIT is implemented. Otherwise, direct accesses to DIT are UNDEFINED.

Attributes
DIT is a 64-bit register.

Field descriptions
The DIT bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 DIT RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:25]

Reserved, RES0.

DIT, bit [24]

Data Independent Timing.

DIT Meaning
0b0 The architecture makes no statement about the timing properties

of any instructions.
0b1 The architecture requires that:

• The timing of every load and store instruction is insensitive
to the value of the data being loaded or stored.

• For certain data processing instructions, the instruction
takes a time which is independent of:

◦ The values of the data supplied in any of its
registers.

◦ The values of the NZCV flags.
• For certain data processing instructions, the response of

the instruction to asynchronous exceptions does not vary
based on:

◦ The values of the data supplied in any of its
registers.

◦ The values of the NZCV flags.

The data processing instructions affected by this bit are:

• All cryptographic instructions. These instructions are:

◦ AESD, AESE, AESIMC, AESMC, SHA1C, SHA1H, SHA1M, SHA1P, SHA1SU0, SHA1SU1, SHA256H, SHA256H2,
SHA256SU0, SHA256SU1, SHA512H, SHA512H2, SHA512SU0, SHA512SU1, EOR3, RAX1, XAR, BCAX, SM3SS1,
SM3TT1A, SM3TT1B, SM3TT2A, SM3TT2B, SM3PARTW1, SM3PARTW2, SM4E, and SM4EKEY.

DIT, Data Independent Timing

Page 399

• A subset of those instructions which use the general-purpose register file. These instructions are:

◦ ADC, ADCS, ADD, ADDS, AND, ANDS, ASR, ASRV, BFC, BFI, BFM, BFXIL, BIC, BICS, CCMN, CCMP, CFINV, CINC,
CINV, CLS, CLZ, CMN, CMP, CNEG, CSEL, CSET, CSETM, CSINC, CSINV, CSNEG, EON, EOR, EXTR, LSL, LSLV,
LSR, LSRV, MADD, MNEG, MOV, MOVK, MOVN, MOVZ, MSUB, MUL, MVN, NEG, NEGS, NGC, NGCS, NOP, ORN, ORR,
RBIT, RET, REV, REV16, REV32, REV64, RMIF, ROR, RORV, SBC, SBCS, SBFIZ, SBFM, SBFX, SETF8, SETF16,
SMADDL, SMNEGL, SMSUBL, SMULH, SMULL, SUB, SUBS, SXTB, SXTH, SXTW, TST, UBFIZ, UBFM, UBFX, UMADDL,
UMNEGL, UMSUBL, UMULH, UMULL, UXTB, and UXTH.

• A subset of those instuctions which use the SIMD&FP register file. These instructions are:

◦ ABS, ADD, ADDHN, ADDHN2, ADDP, ADDV, AND, BIC, BIF, BIT, BSL, CLS, CLZ, CMEQ, CMGE, CMGT, CMHI, CMHS,
CMLE, CMLT, CMTST, CNT, CRC32B, CRC32H, CRC32W, CRC32X, CRC32CB, CRC32CH, CRC32CW, CRC32CX, DUP,
EOR, EXT, FCSEL, INS, MLA, MLS, MOV, MOVI, MUL, MVN, MVNI, NEG, NOT, ORN, ORR, PMUL, PMULL, PMULL2,
RADDHN, RADDHN2, RBIT, REV16, REV32, RSHRN, RSHRN2, RSUBHN, RSUBHN2, SABA, SABD, SABAL, SABAL2,
SABDL, SABDL2, SADALP, SADDL, SADDL2, SADDLP, SADDLV, SADDW, SADDW2, SHADD, SHL, SHLL, SHLL2,
SHRN, SHRN2, SHSUB, SLI, SMAX, SMAXP, SMAXV, SMIN, SMINP, SMINV, SMLAL, SMLAL2, SMLSL, SMLSL2,
SMOV, SMULL, SMULL2, SRI, SSHL, SSHLL, SSHLL2, SSHR, SSRA, SSUBL, SSUBL2, SSUBW, SSUBW2, SUB,
SUBHN, SUBHN2, SXTL, SXTL2, TBL, TBX, TRN1, TRN2, UABA, UABAL, UABAL2, UABD, UABDL, UABDL2, UADALP,
UADDL, UADDL2, UADDLP, UADDLV, UADDW, UADDW2, UHADD, UHSUB, UMAX, UMAXP, UMAXV, UMIN, UMINP,
UMINV, UMLAL, UMLAL2, UMLSL, UMOV, UMLSL2, UMULL, UMULL2, USHL, USHLL, USHLL2, USHR, USRA, USUBL,
USUBL2, USUBW, USUBW2, UXTL, UXTL2, UZP1, UZP2, XTN, XTN2, ZIP1, and ZIP2.

Note

The architecture makes no statement about the timing properties when the
PSTATE.DIT bit is not set. However, it is likely that many of these instructions
have timing that is invariant of the data in many situations.

In particular, Arm strongly recommends that the Armv8.3 pointer
authentication instructions do not have their timing dependent on the key
value used in the pointer authentication in all cases, regardless of the
PSTATE.DIT bit.

This field resets to 0.

Bits [23:0]

Reserved, RES0.

Accessing the DIT
Accesses to this register use the following encodings:

MRS <Xt>, DIT

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b101

if PSTATE.EL == EL0 then
return Zeros(39):PSTATE.DIT:Zeros(24);

elsif PSTATE.EL == EL1 then
return Zeros(39):PSTATE.DIT:Zeros(24);

elsif PSTATE.EL == EL2 then
return Zeros(39):PSTATE.DIT:Zeros(24);

elsif PSTATE.EL == EL3 then
return Zeros(39):PSTATE.DIT:Zeros(24);

MSR DIT, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b101

DIT, Data Independent Timing

Page 400

if PSTATE.EL == EL0 then
PSTATE.DIT = X[t]<24>;

elsif PSTATE.EL == EL1 then
PSTATE.DIT = X[t]<24>;

elsif PSTATE.EL == EL2 then
PSTATE.DIT = X[t]<24>;

elsif PSTATE.EL == EL3 then
PSTATE.DIT = X[t]<24>;

MSR DIT, #<imm>

op0 op1 CRn op2
0b00 0b011 0b0100 0b010

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DIT, Data Independent Timing

Page 401

DLR_EL0, Debug Link Register
The DLR_EL0 characteristics are:

Purpose
In Debug state, holds the address to restart from.

Configuration
AArch64 System register DLR_EL0 bits [31:0] are architecturally mapped to AArch32 System register DLR[31:0] .

Attributes
DLR_EL0 is a 64-bit register.

Field descriptions
The DLR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Restart address
Restart address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Restart address.

Accessing the DLR_EL0
Accesses to this register use the following encodings:

MRS <Xt>, DLR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0101 0b001

if !Halted() then
UNDEFINED;

else
return DLR_EL0;

MSR DLR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0101 0b001

if !Halted() then
UNDEFINED;

else
DLR_EL0 = X[t];

DLR_EL0, Debug Link Register

Page 402

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DLR_EL0, Debug Link Register

Page 403

DSPSR_EL0, Debug Saved Program Status Register
The DSPSR_EL0 characteristics are:

Purpose
Holds the saved process state for Debug state. On entering Debug state, PSTATE information is written to this
register. On exiting Debug state, values are copied from this register to PSTATE.

Configuration
AArch64 System register DSPSR_EL0 bits [31:0] are architecturally mapped to AArch32 System register DSPSR[31:0]
.

Attributes
DSPSR_EL0 is a 64-bit register.

Field descriptions
The DSPSR_EL0 bit assignments are:

When AArch32 is supported at any Exception level and exiting Debug state to
AArch32 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0]DITSSBSPAN SS IL GE IT[7:2] E A I F T M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Copied to PSTATE.N on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Copied to PSTATE.Z on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Copied to PSTATE.C on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Copied to PSTATE.V on exiting Debug state.

DSPSR_EL0, Debug Saved Program Status Register

Page 404

This field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Copied to PSTATE.Q on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Copied to PSTATE.IT[1:0] on exiting Debug state.

On exiting Debug state DSPSR_EL0.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Copied to PSTATE.DIT on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Copied to PSTATE.SSBS on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Copied to PSTATE.PAN on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Copied to PSTATE.SS on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

DSPSR_EL0, Debug Saved Program Status Register

Page 405

IL, bit [20]

Illegal Execution state. Copied to PSTATE.IL on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Copied to PSTATE.GE on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Copied to PSTATE.IT[7:2] on exiting Debug state.

DSPSR_EL0.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Copied to PSTATE.E on exiting Debug state.

If the implementation does not support big-endian operation, DSPSR_EL0.E is RES0. If the implementation does not
support little-endian operation, DSPSR_EL0.E is RES1. On exiting Debug state, if the implementation does not support
big-endian operation at the Exception level being returned to, DSPSR_EL0.E is RES0, and if the implementation does
not support little-endian operation at the Exception level being returned to, DSPSR_EL0.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Copied to PSTATE.A on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Copied to PSTATE.I on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Copied to PSTATE.F on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Copied to PSTATE.T on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Copied to PSTATE.nRW on exiting Debug state.

M[4] Meaning
0b1 AArch32 execution state.

DSPSR_EL0, Debug Saved Program Status Register

Page 406

This field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Copied to PSTATE.M[3:0] on exiting Debug state.

M[3:0] Meaning
0b0000 User.
0b0001 FIQ.
0b0010 IRQ.
0b0011 Supervisor.
0b0110 Monitor.
0b0111 Abort.
0b1010 Hyp.
0b1011 Undefined.
0b1111 System.

Other values are reserved. If DSPSR_EL0.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, exiting Debug state is an illegal return event, as described in 'Illegal return events from AArch64 state' in the
Arm®Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

When AArch64 is supported at any Exception level and entering Debug state
from AArch64 state and exiting Debug state to AArch64 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V RES0 TCODITUAOPANSS IL RES0 SSBSBTYPE D A I F RES0M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on entering Debug state, and copied to PSTATE.N on exiting
Debug state.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on entering Debug state, and copied to PSTATE.Z on exiting Debug
state.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on entering Debug state, and copied to PSTATE.C on exiting Debug
state.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on entering Debug state, and copied to PSTATE.V on exiting
Debug state.

This field resets to an architecturally UNKNOWN value.

DSPSR_EL0, Debug Saved Program Status Register

Page 407

Bits [27:26]

Reserved, RES0.

TCO, bit [25]

When ARMv8.5-MemTag is implemented:

Tag Check Override. Set to the value of PSTATE.TCO on entering Debug state, and copied to PSTATE.TCO on exiting
Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on entering Debug state, and copied to PSTATE.DIT on
exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UAO, bit [23]

When ARMv8.2-UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on entering Debug state, and copied to PSTATE.UAO on exiting
Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on entering Debug state, and copied to PSTATE.PAN on
exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on entering Debug state, and conditionally copied to PSTATE.SS on
exiting Debug state.

DSPSR_EL0, Debug Saved Program Status Register

Page 408

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on entering Debug state, and copied to PSTATE.IL on exiting
Debug state.

This field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

SSBS, bit [12]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on entering Debug state, and copied to PSTATE.SSBS on
exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BTYPE, bits [11:10]

When ARMv8.5-BTI is implemented:

Branch Type Indicator. Set to the value of PSTATE.BTYPE on entering Debug state, and copied to PSTATE.BTYPE on
exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on entering Debug state, and copied to PSTATE.D on exiting
Debug state.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on entering Debug state, and copied to PSTATE.A on exiting
Debug state.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on entering Debug state, and copied to PSTATE.I on exiting Debug
state.

This field resets to an architecturally UNKNOWN value.

DSPSR_EL0, Debug Saved Program Status Register

Page 409

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on entering Debug state, and copied to PSTATE.F on exiting Debug
state.

This field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

When AArch32 is supported at any Exception level:

Execution state. Set to 0b0, the value of PSTATE.nRW, on entering Debug state from AArch64 state, and copied to
PSTATE.nRW on exiting Debug state.

M[4] Meaning
0b0 AArch64 execution state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

M[3:0] Meaning
0b0000 EL0t.
0b0100 EL1t.
0b0101 EL1h.
0b1000 EL2t.
0b1001 EL2h.
0b1100 EL3t.
0b1101 EL3h.

Other values are reserved. If DSPSR_EL0.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, exiting Debug state is an illegal return event, as described in 'Illegal return events from AArch64 state' in the
Arm®Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on entering Debug state and copied to PSTATE.EL on exiting Debug
state.

• M[1] is unused and is 0 for all non-reserved values.
• M[0] is set to the value of PSTATE.SP on entering Debug state and copied to PSTATE.SP on exiting Debug

state

This field resets to an architecturally UNKNOWN value.

Accessing the DSPSR_EL0
Accesses to this register use the following encodings:

MRS <Xt>, DSPSR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0101 0b000

DSPSR_EL0, Debug Saved Program Status Register

Page 410

if !Halted() then
UNDEFINED;

else
return DSPSR_EL0;

MSR DSPSR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0101 0b000

if !Halted() then
UNDEFINED;

else
DSPSR_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DSPSR_EL0, Debug Saved Program Status Register

Page 411

DVP RCTX, Data Value Prediction Restriction by
Context

The DVP RCTX characteristics are:

Purpose
Data Value Prediction Restriction by Context applies to all Data Value Prediction Resources that predict execution
based on information gathered within the target execution context or contexts.

When this instruction is complete and synchronized, data value prediction does not permit later speculative execution
within the target execution context to be observable through side channels.

This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same
PE as executed the original restriction instruction, and a subsequent context synchronization event is required to
ensure that the effect of the completion of the instructions is synchronized to the current execution.

Note

This instruction does not require the invalidation of prediction structures so
long as the behavior described for completion of this instruction is met by the
implementation.

On some implementations the instruction is likely to take a significant number
of cycles to execute. This instruction is expected to be used very rarely, such
as on the roll-over of an ASID or VMID, but should not be used on every
context switch.

Configuration
This instruction is present only when ARMv8.0-PredInv is implemented. Otherwise, direct accesses to DVP RCTX are
UNDEFINED.

Attributes
DVP RCTX is a 64-bit System instruction.

Field descriptions
The DVP RCTX input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 GVMID VMID

RES0 NS EL RES0 GASID ASID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:49]

Reserved, RES0.

GVMID, bit [48]

Execution of this instruction applies to all VMIDs or a specified VMID.

DVP RCTX, Data Value Prediction Restriction by Context

Page 412

GVMID Meaning
0b0 Applies to specified VMID for an EL0 or EL1 context. For all

other contexts this field is RES0.
0b1 Applies to all VMIDs for an EL0 or EL1 context. For all other

contexts this field is RES0.

If the instruction is executed at EL0 or EL1, then this field has an Effective value of 0.

VMID, bits [47:32]

Only applies when bit[48] is 0 and one of:

• an EL1 context.
• an EL0 context when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0).

Otherwise this field is RES0.

When the instruction is executed at EL1 then this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0) then this field is treated as
the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1) then this field is ignored.

Bits [31:27]

Reserved, RES0.

NS, bit [26]

Security State.

NS Meaning
0b0 Secure state.
0b1 Non-secure state.

If the instruction is executed in Non-secure state, this field has an Effective value of 1.

EL, bits [25:24]

Exception Level

EL Meaning
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.

If the instruction is executed at an exception level lower than the specified level, this instruction is treated as a NOP.

Bits [23:17]

Reserved, RES0.

GASID, bit [16]

Execution of this instruction applies to all ASIDs or a specified ASID.

GASID Meaning
0b0 Applies to specified ASID for an EL0 context. For all other

contexts this field is RES0.
0b1 Applies to all ASID for an EL0 context. For all other contexts

this field is RES0.

DVP RCTX, Data Value Prediction Restriction by Context

Page 413

If the instruction is executed at EL0, then this field has an Effective value of 0.

ASID, bits [15:0]

Only applies for an EL0 context and when bit[16] is 0.

Otherwise this field is RES0.

When the instruction is executed at EL0 then this field is treated as the current ASID.

Executing the DVP RCTX instruction
Accesses to this instruction use the following encodings:

DVP RCTX, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b0011 0b101

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HFGITR_EL2.DVPRCTX == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX ==
'0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

DVP_RCTX(X[t]);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DVPRCTX == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

DVP_RCTX(X[t]);
elsif PSTATE.EL == EL2 then

DVP_RCTX(X[t]);
elsif PSTATE.EL == EL3 then

DVP_RCTX(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DVP RCTX, Data Value Prediction Restriction by Context

Page 414

ELR_EL1, Exception Link Register (EL1)
The ELR_EL1 characteristics are:

Purpose
When taking an exception to EL1, holds the address to return to.

Configuration
There are no configuration notes.

Attributes
ELR_EL1 is a 64-bit register.

Field descriptions
The ELR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Return address
Return address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Return address.

An exception return from EL1 using AArch64 makes ELR_EL1 become UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Accessing the ELR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ELR_EL1 or
ELR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, ELR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b001

ELR_EL1, Exception Link Register (EL1)

Page 415

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x230];
else

return ELR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return ELR_EL2;

else
return ELR_EL1;

elsif PSTATE.EL == EL3 then
return ELR_EL1;

MSR ELR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x230] = X[t];
else

ELR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
ELR_EL2 = X[t];

else
ELR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
ELR_EL1 = X[t];

MRS <Xt>, ELR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x230];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return ELR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return ELR_EL1;
else

UNDEFINED;

ELR_EL1, Exception Link Register (EL1)

Page 416

MSR ELR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x230] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
ELR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

ELR_EL1 = X[t];
else

UNDEFINED;

MRS <Xt>, ELR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return ELR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return ELR_EL2;
elsif PSTATE.EL == EL3 then

return ELR_EL2;

MSR ELR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

ELR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ELR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

ELR_EL2 = X[t];

ELR_EL1, Exception Link Register (EL1)

Page 417

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ELR_EL1, Exception Link Register (EL1)

Page 418

ELR_EL2, Exception Link Register (EL2)
The ELR_EL2 characteristics are:

Purpose
When taking an exception to EL2, holds the address to return to.

Configuration
AArch64 System register ELR_EL2 bits [31:0] are architecturally mapped to AArch32 System register ELR_hyp[31:0] .

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ELR_EL2 is a 64-bit register.

Field descriptions
The ELR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Return address
Return address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Return address.

An exception return from EL2 using AArch64 makes ELR_EL2 become UNKNOWN.

When EL2 is in AArch32 Execution state and an exception is taken from EL0, EL1, or EL2 to EL3 and AArch64
execution, the upper 32-bits of ELR_EL2 are either set to 0 or hold the same value that they did before AArch32
execution. Which option is adopted is determined by an implementation, and might vary dynamically within an
implementation. Correspondingly software must regard the value as being an UNKNOWN choice between the two
values.

This field resets to an architecturally UNKNOWN value.

Accessing the ELR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ELR_EL2 or
ELR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, ELR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b001

ELR_EL2, Exception Link Register (EL2)

Page 419

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return ELR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return ELR_EL2;
elsif PSTATE.EL == EL3 then

return ELR_EL2;

MSR ELR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

ELR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ELR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

ELR_EL2 = X[t];

MRS <Xt>, ELR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x230];
else

return ELR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return ELR_EL2;

else
return ELR_EL1;

elsif PSTATE.EL == EL3 then
return ELR_EL1;

MSR ELR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b001

ELR_EL2, Exception Link Register (EL2)

Page 420

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x230] = X[t];
else

ELR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
ELR_EL2 = X[t];

else
ELR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
ELR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ELR_EL2, Exception Link Register (EL2)

Page 421

ELR_EL3, Exception Link Register (EL3)
The ELR_EL3 characteristics are:

Purpose
When taking an exception to EL3, holds the address to return to.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to ELR_EL3 are UNDEFINED.

Attributes
ELR_EL3 is a 64-bit register.

Field descriptions
The ELR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Return address
Return address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Return address.

An exception return from EL3 using AArch64 makes ELR_EL3 become UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Accessing the ELR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, ELR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return ELR_EL3;

MSR ELR_EL3, <Xt>

op0 op1 CRn CRm op2

ELR_EL3, Exception Link Register (EL3)

Page 422

0b11 0b110 0b0100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
ELR_EL3 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ELR_EL3, Exception Link Register (EL3)

Page 423

ERRIDR_EL1, Error Record ID Register
The ERRIDR_EL1 characteristics are:

Purpose
Defines the highest numbered index of the error records that can be accessed through the Error Record System
registers.

Configuration
AArch64 System register ERRIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ERRIDR[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERRIDR_EL1 are UNDEFINED.

Attributes
ERRIDR_EL1 is a 64-bit register.

Field descriptions
The ERRIDR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 NUM
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

NUM, bits [15:0]

Highest numbered index of the records that can be accessed through the Error Record System registers plus one.
Zero indicates no records can be accessed through the Error Record System registers.

Each implemented record is owned by a node. A node might own multiple records.

Accessing the ERRIDR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ERRIDR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0011 0b000

ERRIDR_EL1, Error Record ID Register

Page 424

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ERRIDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ERRIDR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ERRIDR_EL1;
elsif PSTATE.EL == EL3 then

return ERRIDR_EL1;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRIDR_EL1, Error Record ID Register

Page 425

ERRSELR_EL1, Error Record Select Register
The ERRSELR_EL1 characteristics are:

Purpose
Selects an error record to be accessed through the Error Record System registers.

Configuration
AArch64 System register ERRSELR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ERRSELR[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERRSELR_EL1 are UNDEFINED.

If ERRIDR_EL1 indicates that zero error records are implemented, then it is IMPLEMENTATION DEFINED whether
ERRSELR_EL1 is UNDEFINED or RES0.

Attributes
ERRSELR_EL1 is a 64-bit register.

Field descriptions
The ERRSELR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 SEL
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

SEL, bits [15:0]

Selects the error record accessed through the ERX registers.

For example, if ERRSELR_EL1.SEL is set to 0x0004, then direct reads and writes of ERXSTATUS_EL1 access
ERR4STATUS.

If ERRSELR_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM, then all of the following apply:

• The value read back from ERRSELR_EL1.SEL is UNKNOWN.
• One of the following occurs:

◦ An UNKNOWN error record is selected.
◦ The ERX*_EL1 registers are RAZ/WI.
◦ ERX*_EL1 register reads and writes are NOPs.
◦ ERX*_EL1 register reads and writes are UNDEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the ERRSELR_EL1
Accesses to this register use the following encodings:

ERRSELR_EL1, Error Record Select Register

Page 426

MRS <Xt>, ERRSELR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ERRSELR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ERRSELR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ERRSELR_EL1;
elsif PSTATE.EL == EL3 then

return ERRSELR_EL1;

MSR ERRSELR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.ERRSELR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ERRSELR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ERRSELR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

ERRSELR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRSELR_EL1, Error Record Select Register

Page 427

ERXADDR_EL1, Selected Error Record Address
Register

The ERXADDR_EL1 characteristics are:

Purpose
Accesses ERR<n>ADDR for the error record <n> selected by ERRSELR_EL1.SEL.

Configuration
AArch64 System register ERXADDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ERXADDR[31:0] .

AArch64 System register ERXADDR_EL1 bits [63:32] are architecturally mapped to AArch32 System register
ERXADDR2[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERXADDR_EL1 are UNDEFINED.

Attributes
ERXADDR_EL1 is a 64-bit register.

Field descriptions
The ERXADDR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ERR<n>ADDR
ERR<n>ADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

ERXADDR_EL1 accesses ERR<n>ADDR, where <n> is the value in ERRSELR_EL1.SEL.

Accessing the ERXADDR_EL1
If ERRIDR_EL1.NUM == 0x0000 or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM,
then one of the following occurs:

• An UNKNOWN error record is selected.
• ERXADDR_EL1 is RAZ/WI.
• Direct reads and writes of ERXADDR_EL1 are NOPs.
• Direct reads and writes of ERXADDR_EL1 are UNDEFINED.

ERR<n>ADDR describes additional constraints that also apply when ERR<n>ADDR is accessed through
ERXADDR_EL1.

Accesses to this register use the following encodings:

MRS <Xt>, ERXADDR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0100 0b011

ERXADDR_EL1, Selected Error Record Address Register

Page 428

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ERXADDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ERXADDR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ERXADDR_EL1;
elsif PSTATE.EL == EL3 then

return ERXADDR_EL1;

MSR ERXADDR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0100 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.ERXADDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ERXADDR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ERXADDR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

ERXADDR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXADDR_EL1, Selected Error Record Address Register

Page 429

ERXCTLR_EL1, Selected Error Record Control Register
The ERXCTLR_EL1 characteristics are:

Purpose
Accesses ERR<n>CTLR for the error record <n> selected by ERRSELR_EL1.SEL.

Configuration
AArch64 System register ERXCTLR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ERXCTLR[31:0] .

AArch64 System register ERXCTLR_EL1 bits [63:32] are architecturally mapped to AArch32 System register
ERXCTLR2[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERXCTLR_EL1 are UNDEFINED.

Attributes
ERXCTLR_EL1 is a 64-bit register.

Field descriptions
The ERXCTLR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ERR<n>CTLR
ERR<n>CTLR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

ERXCTLR_EL1 accesses ERR<n>CTLR, where <n> is the value in ERRSELR_EL1.SEL.

Accessing the ERXCTLR_EL1
If ERRIDR_EL1.NUM == 0x0000 or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM,
then one of the following occurs:

• An UNKNOWN error record is selected.
• ERXCTLR_EL1 is RAZ/WI.
• Direct reads and writes of ERXCTLR_EL1 are NOPs.
• Direct reads and writes of ERXCTLR_EL1 are UNDEFINED.

If ERRSELR_EL1.SEL is not the index of the first error record owned by a node, then ERR<n>CTLR is not present,
meaning reads and writes of ERXCTLR_EL1 are RES0.

Accesses to this register use the following encodings:

MRS <Xt>, ERXCTLR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0100 0b001

ERXCTLR_EL1, Selected Error Record Control Register

Page 430

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ERXCTLR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ERXCTLR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ERXCTLR_EL1;
elsif PSTATE.EL == EL3 then

return ERXCTLR_EL1;

MSR ERXCTLR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.ERXCTLR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ERXCTLR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ERXCTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

ERXCTLR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXCTLR_EL1, Selected Error Record Control Register

Page 431

ERXFR_EL1, Selected Error Record Feature Register
The ERXFR_EL1 characteristics are:

Purpose
Accesses ERR<n>FR for the error record <n> selected by ERRSELR_EL1.SEL.

Configuration
AArch64 System register ERXFR_EL1 bits [31:0] are architecturally mapped to AArch32 System register ERXFR[31:0]
.

AArch64 System register ERXFR_EL1 bits [63:32] are architecturally mapped to AArch32 System register
ERXFR2[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERXFR_EL1 are UNDEFINED.

Attributes
ERXFR_EL1 is a 64-bit register.

Field descriptions
The ERXFR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ERR<n>FR
ERR<n>FR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

ERXFR_EL1 accesses ERR<n>FR, where <n> is the value in ERRSELR_EL1.SEL.

Accessing the ERXFR_EL1
If ERRIDR_EL1.NUM == 0x0000 or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM,
then one of the following occurs:

• An UNKNOWN error record is selected.
• ERXFR_EL1 is RAZ.
• Direct reads of ERXFR_EL1 are NOPs.
• Direct reads of ERXFR_EL1 are UNDEFINED.

Accesses to this register use the following encodings:

MRS <Xt>, ERXFR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0100 0b000

ERXFR_EL1, Selected Error Record Feature Register

Page 432

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ERXFR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ERXFR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ERXFR_EL1;
elsif PSTATE.EL == EL3 then

return ERXFR_EL1;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXFR_EL1, Selected Error Record Feature Register

Page 433

ERXMISC0_EL1, Selected Error Record Miscellaneous
Register 0

The ERXMISC0_EL1 characteristics are:

Purpose
Accesses ERR<n>MISC0 for the error record <n> selected by ERRSELR_EL1.SEL.

Configuration
AArch64 System register ERXMISC0_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ERXMISC0[31:0] .

AArch64 System register ERXMISC0_EL1 bits [63:32] are architecturally mapped to AArch32 System register
ERXMISC1[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERXMISC0_EL1 are UNDEFINED.

Attributes
ERXMISC0_EL1 is a 64-bit register.

Field descriptions
The ERXMISC0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ERR<n>MISC0
ERR<n>MISC0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

ERXMISC0_EL1 accesses ERR<n>MISC0, where <n> is the value in ERRSELR_EL1.SEL.

Accessing the ERXMISC0_EL1
If ERRIDR_EL1.NUM == 0x0000 or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM,
then one of the following occurs:

• An UNKNOWN error record is selected.
• ERXMISC0_EL1 is RAZ/WI.
• Direct reads and writes of ERXMISC0_EL1 are NOPs.
• Direct reads and writes of ERXMISC0_EL1 are UNDEFINED.

ERR<n>MISC0 describes additional constraints that also apply when ERR<n>MISC0 is accessed through
ERXMISC0_EL1.

Accesses to this register use the following encodings:

MRS <Xt>, ERXMISC0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0101 0b000

ERXMISC0_EL1, Selected Error Record Miscellaneous Register 0

Page 434

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ERXMISCn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ERXMISC0_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ERXMISC0_EL1;
elsif PSTATE.EL == EL3 then

return ERXMISC0_EL1;

MSR ERXMISC0_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0101 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.ERXMISCn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ERXMISC0_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ERXMISC0_EL1 = X[t];
elsif PSTATE.EL == EL3 then

ERXMISC0_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXMISC0_EL1, Selected Error Record Miscellaneous Register 0

Page 435

ERXMISC1_EL1, Selected Error Record Miscellaneous
Register 1

The ERXMISC1_EL1 characteristics are:

Purpose
Accesses ERR<n>MISC1 for the error record <n> selected by ERRSELR_EL1.SEL.

Configuration
AArch64 System register ERXMISC1_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ERXMISC2[31:0] .

AArch64 System register ERXMISC1_EL1 bits [63:32] are architecturally mapped to AArch32 System register
ERXMISC3[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERXMISC1_EL1 are UNDEFINED.

Attributes
ERXMISC1_EL1 is a 64-bit register.

Field descriptions
The ERXMISC1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ERR<n>MISC1
ERR<n>MISC1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

ERXMISC1_EL1 accesses ERR<n>MISC1, where <n> is the value in ERRSELR_EL1.SEL.

Accessing the ERXMISC1_EL1
If ERRIDR_EL1.NUM == 0x0000 or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM,
then one of the following occurs:

• An UNKNOWN error record is selected.
• ERXMISC1_EL1 is RAZ/WI.
• Direct reads and writes of ERXMISC1_EL1 are NOPs.
• Direct reads and writes of ERXMISC1_EL1 are UNDEFINED.

ERR<n>MISC1 describes additional constraints that also apply when ERR<n>MISC1 is accessed through
ERXMISC1_EL1.

Accesses to this register use the following encodings:

MRS <Xt>, ERXMISC1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0101 0b001

ERXMISC1_EL1, Selected Error Record Miscellaneous Register 1

Page 436

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ERXMISCn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ERXMISC1_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ERXMISC1_EL1;
elsif PSTATE.EL == EL3 then

return ERXMISC1_EL1;

MSR ERXMISC1_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0101 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.ERXMISCn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ERXMISC1_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ERXMISC1_EL1 = X[t];
elsif PSTATE.EL == EL3 then

ERXMISC1_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXMISC1_EL1, Selected Error Record Miscellaneous Register 1

Page 437

ERXMISC2_EL1, Selected Error Record Miscellaneous
Register 2

The ERXMISC2_EL1 characteristics are:

Purpose
Accesses ERR<n>MISC2 for the error record <n> selected by ERRSELR_EL1.SEL.

Configuration
AArch64 System register ERXMISC2_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ERXMISC4[31:0] .

AArch64 System register ERXMISC2_EL1 bits [63:32] are architecturally mapped to AArch32 System register
ERXMISC5[31:0] .

This register is present only when ARMv8.4-RAS is implemented. Otherwise, direct accesses to ERXMISC2_EL1 are
UNDEFINED.

Attributes
ERXMISC2_EL1 is a 64-bit register.

Field descriptions
The ERXMISC2_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ERR<n>MISC2
ERR<n>MISC2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

ERXMISC2_EL1 accesses ERR<n>MISC2, where <n> is the value in ERRSELR_EL1.SEL.

Accessing the ERXMISC2_EL1
If ERRIDR_EL1.NUM == 0x0000 or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM,
then one of the following occurs:

• An UNKNOWN error record is selected.
• ERXMISC2_EL1 is RAZ/WI.
• Direct reads and writes of ERXMISC2_EL1 are NOPs.
• Direct reads and writes of ERXMISC2_EL1 are UNDEFINED.

ERR<n>MISC2 describes additional constraints that also apply when ERR<n>MISC2 is accessed through
ERXMISC2_EL1.

Accesses to this register use the following encodings:

MRS <Xt>, ERXMISC2_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0101 0b010

ERXMISC2_EL1, Selected Error Record Miscellaneous Register 2

Page 438

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ERXMISCn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ERXMISC2_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ERXMISC2_EL1;
elsif PSTATE.EL == EL3 then

return ERXMISC2_EL1;

MSR ERXMISC2_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0101 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.ERXMISCn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ERXMISC2_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ERXMISC2_EL1 = X[t];
elsif PSTATE.EL == EL3 then

ERXMISC2_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXMISC2_EL1, Selected Error Record Miscellaneous Register 2

Page 439

ERXMISC3_EL1, Selected Error Record Miscellaneous
Register 3

The ERXMISC3_EL1 characteristics are:

Purpose
Accesses ERR<n>MISC3 for the error record <n> selected by ERRSELR_EL1.SEL.

Configuration
AArch64 System register ERXMISC3_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ERXMISC6[31:0] .

AArch64 System register ERXMISC3_EL1 bits [63:32] are architecturally mapped to AArch32 System register
ERXMISC7[31:0] .

This register is present only when ARMv8.4-RAS is implemented. Otherwise, direct accesses to ERXMISC3_EL1 are
UNDEFINED.

Attributes
ERXMISC3_EL1 is a 64-bit register.

Field descriptions
The ERXMISC3_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ERR<n>MISC3
ERR<n>MISC3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

ERXMISC3_EL1 accesses ERR<n>MISC3, where <n> is the value in ERRSELR_EL1.SEL.

Accessing the ERXMISC3_EL1
If ERRIDR_EL1.NUM == 0x0000 or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM,
then one of the following occurs:

• An UNKNOWN error record is selected.
• ERXMISC3_EL1 is RAZ/WI.
• Direct reads and writes of ERXMISC3_EL1 are NOPs.
• Direct reads and writes of ERXMISC3_EL1 are UNDEFINED.

ERR<n>MISC3 describes additional constraints that also apply when ERR<n>MISC3 is accessed through
ERXMISC3_EL1.

Accesses to this register use the following encodings:

MRS <Xt>, ERXMISC3_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0101 0b011

ERXMISC3_EL1, Selected Error Record Miscellaneous Register 3

Page 440

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ERXMISCn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ERXMISC3_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ERXMISC3_EL1;
elsif PSTATE.EL == EL3 then

return ERXMISC3_EL1;

MSR ERXMISC3_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0101 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.ERXMISCn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ERXMISC3_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ERXMISC3_EL1 = X[t];
elsif PSTATE.EL == EL3 then

ERXMISC3_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXMISC3_EL1, Selected Error Record Miscellaneous Register 3

Page 441

ERXPFGCDN_EL1, Selected Pseudo-fault Generation
Countdown register

The ERXPFGCDN_EL1 characteristics are:

Purpose
Accesses ERR<n>PFGCDN for the error record <n> selected by ERRSELR_EL1.SEL.

Configuration
This register is present only when ARMv8.4-RAS is implemented. Otherwise, direct accesses to ERXPFGCDN_EL1 are
UNDEFINED.

Attributes
ERXPFGCDN_EL1 is a 64-bit register.

Field descriptions
The ERXPFGCDN_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ERR<n>PFGCDN
ERR<n>PFGCDN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

ERXPFGCDN_EL1 accesses ERR<n>PFGCDN, where <n> is the value in ERRSELR_EL1.SEL.

Accessing the ERXPFGCDN_EL1
If ERRIDR_EL1.NUM == 0x0000 or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM,
then one of the following occurs:

• An UNKNOWN error record is selected.
• ERXPFGCDN_EL1 is RAZ/WI.
• Direct reads and writes of ERXPFGCDN_EL1 are NOPs.
• Direct reads and writes of ERXPFGCDN_EL1 are UNDEFINED.

If ERRSELR_EL1.SEL selects an error record owned by a node that does not implement the RAS Common Fault
Injection Model Extension, then one of the following occurs:

• ERXPFGCDN_EL1 is RAZ/WI.
• Direct reads and writes of ERXPFGCDN_EL1 are NOPs.
• Direct reads and writes of ERXPFGCDN_EL1 are UNDEFINED.

Note

A node does not implement the RAS Common Fault Injection Model Extension
when ERR<q>FR.INJ == 0b00. <q> is the index of the first error record
owned by the same node as error record <n>, where <n> is the value in
ERRSELR_EL1.SEL. If the node owns a single record, then q = n.

If ERRSELR_EL1.SEL is not the index of the first error record owned by a node, then ERR<n>PFGCDN is not present,
meaning reads and writes of ERXPFGCDN_EL1 are RES0.

ERXPFGCDN_EL1, Selected Pseudo-fault Generation Countdown register

Page 442

ERR<n>PFGCDN describes additional constraints that also apply when ERR<n>PFGCDN is accessed through
ERXPFGCDN_EL1.

Accesses to this register use the following encodings:

MRS <Xt>, ERXPFGCDN_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0100 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FIEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ERXPFGCDN_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIEN == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ERXPFGCDN_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIEN == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ERXPFGCDN_EL1;
elsif PSTATE.EL == EL3 then

return ERXPFGCDN_EL1;

MSR ERXPFGCDN_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0100 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FIEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.ERXPFGCDN_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIEN == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ERXPFGCDN_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIEN == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ERXPFGCDN_EL1 = X[t];
elsif PSTATE.EL == EL3 then

ERXPFGCDN_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXPFGCDN_EL1, Selected Pseudo-fault Generation Countdown register

Page 443

ERXPFGCTL_EL1, Selected Pseudo-fault Generation
Control register

The ERXPFGCTL_EL1 characteristics are:

Purpose
Accesses ERR<n>PFGCTL for the error record <n> selected by ERRSELR_EL1.SEL.

Configuration
This register is present only when ARMv8.4-RAS is implemented. Otherwise, direct accesses to ERXPFGCTL_EL1 are
UNDEFINED.

Attributes
ERXPFGCTL_EL1 is a 64-bit register.

Field descriptions
The ERXPFGCTL_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ERR<n>PFGCTL
ERR<n>PFGCTL

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

ERXPFGCTL_EL1 accesses ERR<n>PFGCTL, where <n> is the value in ERRSELR_EL1.SEL.

Accessing the ERXPFGCTL_EL1
If ERRIDR_EL1.NUM == 0x0000 or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM,
then one of the following occurs:

• An UNKNOWN error record is selected.
• ERXPFGCTL_EL1 is RAZ/WI.
• Direct reads and writes of ERXPFGCTL_EL1 are NOPs.
• Direct reads and writes of ERXPFGCTL_EL1 are UNDEFINED.

If ERRSELR_EL1.SEL selects an error record owned by a node that does not implement the RAS Common Fault
Injection Model Extension, then one of the following occurs:

• ERXPFGCTL_EL1 is RAZ/WI.
• Direct reads and writes of ERXPFGCTL_EL1 are NOPs.
• Direct reads and writes of ERXPFGCTL_EL1 are UNDEFINED.

Note

A node does not implement the RAS Common Fault Injection Model Extension
when ERR<q>FR.INJ == 0b00. <q> is the index of the first error record
owned by the same node as error record <n>, where <n> is the value in
ERRSELR_EL1.SEL. If the node owns a single record, then q = n.

If ERRSELR_EL1.SEL is not the index of the first error record owned by a node, then ERR<n>PFGCTL is not present,
meaning reads and writes of ERXPFGCTL_EL1 are RES0.

ERXPFGCTL_EL1, Selected Pseudo-fault Generation Control register

Page 444

ERR<n>PFGCTL describes additional constraints that also apply when ERR<n>PFGCTL is accessed through
ERXPFGCTL_EL1.

Accesses to this register use the following encodings:

MRS <Xt>, ERXPFGCTL_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0100 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FIEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ERXPFGCTL_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIEN == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ERXPFGCTL_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIEN == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ERXPFGCTL_EL1;
elsif PSTATE.EL == EL3 then

return ERXPFGCTL_EL1;

MSR ERXPFGCTL_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0100 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FIEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.ERXPFGCTL_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIEN == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ERXPFGCTL_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIEN == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ERXPFGCTL_EL1 = X[t];
elsif PSTATE.EL == EL3 then

ERXPFGCTL_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXPFGCTL_EL1, Selected Pseudo-fault Generation Control register

Page 445

ERXPFGF_EL1, Selected Pseudo-fault Generation
Feature register

The ERXPFGF_EL1 characteristics are:

Purpose
Accesses ERR<n>PFGF for the error record <n> selected by ERRSELR_EL1.SEL.

Configuration
This register is present only when ARMv8.4-RAS is implemented. Otherwise, direct accesses to ERXPFGF_EL1 are
UNDEFINED.

Attributes
ERXPFGF_EL1 is a 64-bit register.

Field descriptions
The ERXPFGF_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ERR<n>PFGF
ERR<n>PFGF

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

ERXPFGF_EL1 accesses ERR<n>PFGF, where <n> is the value in ERRSELR_EL1.SEL.

Accessing the ERXPFGF_EL1
If ERRIDR_EL1.NUM == 0x0000 or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM,
then one of the following occurs:

• An UNKNOWN error record is selected.
• ERXPFGF_EL1 is RAZ.
• Direct reads of ERXPFGF_EL1 are NOPs.
• Direct reads of ERXPFGF_EL1 are UNDEFINED.

If ERRSELR_EL1.SEL selects an error record owned by a node that does not implement the RAS Common Fault
Injection Model Extension, then one of the following occurs:

• ERXPFGF_EL1 is RAZ.
• Direct reads of ERXPFGF_EL1 are NOPs.
• Direct reads of ERXPFGF_EL1 are UNDEFINED.

Note

A node does not implement the RAS Common Fault Injection Model Extension
when ERR<q>FR.INJ == 0b00. <q> is the index of the first error record
owned by the same node as error record <n>, where <n> is the value in
ERRSELR_EL1.SEL. If the node owns a single record, then q = n.

If ERRSELR_EL1.SEL is not the index of the first error record owned by a node, then ERR<n>PFGF is not present,
meaning reads of ERXPFGF_EL1 are RES0.

ERXPFGF_EL1, Selected Pseudo-fault Generation Feature register

Page 446

ERR<n>PFGF describes additional constraints that also apply when ERR<n>PFGF is accessed through
ERXPFGF_EL1.

Accesses to this register use the following encodings:

MRS <Xt>, ERXPFGF_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0100 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FIEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ERXPFGF_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIEN == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ERXPFGF_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIEN == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ERXPFGF_EL1;
elsif PSTATE.EL == EL3 then

return ERXPFGF_EL1;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXPFGF_EL1, Selected Pseudo-fault Generation Feature register

Page 447

ERXSTATUS_EL1, Selected Error Record Primary
Status Register

The ERXSTATUS_EL1 characteristics are:

Purpose
Accesses ERR<n>STATUS for the error record <n> selected by ERRSELR_EL1.SEL.

Configuration
AArch64 System register ERXSTATUS_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ERXSTATUS[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERXSTATUS_EL1 are UNDEFINED.

Attributes
ERXSTATUS_EL1 is a 64-bit register.

Field descriptions
The ERXSTATUS_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ERR<n>STATUS
ERR<n>STATUS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

ERXSTATUS_EL1 accesses ERR<n>STATUS, where <n> is the value in ERRSELR_EL1.SEL.

Accessing the ERXSTATUS_EL1
If ERRIDR_EL1.NUM == 0x0000 or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM,
then one of the following occurs:

• An UNKNOWN error record is selected.
• ERXSTATUS_EL1 is RAZ/WI.
• Direct reads and writes of ERXSTATUS_EL1 are NOPs.
• Direct reads and writes of ERXSTATUS_EL1 are UNDEFINED.

ERR<n>STATUS describes additional constraints that also apply when ERR<n>STATUS is accessed through
ERXSTATUS_EL1.

Accesses to this register use the following encodings:

MRS <Xt>, ERXSTATUS_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0100 0b010

ERXSTATUS_EL1, Selected Error Record Primary Status Register

Page 448

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ERXSTATUS_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ERXSTATUS_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ERXSTATUS_EL1;
elsif PSTATE.EL == EL3 then

return ERXSTATUS_EL1;

MSR ERXSTATUS_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0100 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.ERXSTATUS_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ERXSTATUS_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ERXSTATUS_EL1 = X[t];
elsif PSTATE.EL == EL3 then

ERXSTATUS_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXSTATUS_EL1, Selected Error Record Primary Status Register

Page 449

ESR_EL1, Exception Syndrome Register (EL1)
The ESR_EL1 characteristics are:

Purpose
Holds syndrome information for an exception taken to EL1.

Configuration
AArch64 System register ESR_EL1 bits [31:0] are architecturally mapped to AArch32 System register DFSR[31:0] .

Attributes
ESR_EL1 is a 64-bit register.

Field descriptions
The ESR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

EC IL ISS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ESR_EL1 is made UNKNOWN as a result of an exception return from EL1.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL1, the value of ESR_EL1
is UNKNOWN. The value written to ESR_EL1 must be consistent with a value that could be created as a result of an
exception from the same Exception level that generated the exception as a result of a situation that is not
UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:32]

Reserved, RES0.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.
• The encoding of the associated ISS.

Possible values of the EC field are:

ESR_EL1, Exception Syndrome Register (EL1)

Page 450

EC Meaning ISS Applies when
0b000000 Unknown reason. ISS encoding for

exceptions with an
unknown reason

0b000001 Trapped WFI or
WFE instruction
execution.
Conditional WFE
and WFI instructions
that fail their
condition code
check do not cause
an exception.

ISS encoding for
an exception from
a WFI or WFE
instruction

0b000011 Trapped MCR or
MRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for
an exception from
an MCR or MRC
access

When AArch32
is supported at
any Exception
level

0b000100 Trapped MCRR or
MRRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for
an exception from
an MCRR or
MRRC access

When AArch32
is supported at
any Exception
level

0b000101 Trapped MCR or
MRC access with
(coproc==0b1110).

ISS encoding for
an exception from
an MCR or MRC
access

When AArch32
is supported at
any Exception
level

0b000110 Trapped LDC or STC
access.
The only architected
uses of these
instruction are:
• An STC to write

data to memory
from
DBGDTRRXint.

• An LDC to read
data from
memory to
DBGDTRTXint.

ISS encoding for
an exception from
an LDC or STC
instruction

When AArch32
is supported at
any Exception
level

0b000111 Access to SVE,
Advanced SIMD, or
floating-point
functionality
trapped by
CPACR_EL1.FPEN,
CPTR_EL2.FPEN,
CPTR_EL2.TFP, or
CPTR_EL3.TFP
control.
Excludes exceptions
resulting from
CPACR_EL1 when
the value of
HCR_EL2.TGE is 1,
or because SVE or
Advanced SIMD and
floating-point are
not implemented.
These are reported
with EC value
0b000000 as
described in 'EC
encodings when
routing exceptions
to EL2' in the Arm®
Architecture
Reference Manual,
Armv8, for Armv8-A

ISS encoding for
an exception from
an access to SVE,
Advanced SIMD or
floating-point
functionality,
resulting from
CPACR_EL1.FPEN,
CPTR_EL2.FPEN
or CPTR_ELx.TFP

ESR_EL1, Exception Syndrome Register (EL1)

Page 451

architecture profile,
section D1.10.4.

0b001100 Trapped MRRC
access with
(coproc==0b1110).

ISS encoding for
an exception from
an MCRR or
MRRC access

When AArch32
is supported at
any Exception
level

0b001101 Branch Target
Exception.

ISS encoding for
an exception from
Branch Target
Identification
instruction

When
ARMv8.5-BTI
is
implemented

0b001110 Illegal Execution
state.

ISS encoding for
an exception from
an Illegal
Execution state, or
a PC or SP
alignment fault

0b010001 SVC instruction
execution in
AArch32 state.
This is reported in
ESR_EL2 only when
the exception is
generated because
the value of
HCR_EL2.TGE is 1.

ISS encoding for
an exception from
HVC or SVC
instruction
execution

When AArch32
is supported at
any Exception
level

0b010101 SVC instruction
execution in
AArch64 state.

ISS encoding for
an exception from
HVC or SVC
instruction
execution

When AArch64
is supported at
any Exception
level

0b011000 Trapped MSR, MRS
or System
instruction
execution in
AArch64 state, that
is not reported using
EC 0b000000,
0b000001 or
0b000111.
This includes all
instructions that
cause exceptions
that are part of the
encoding space
defined in 'System
instruction class
encoding overview'
in the Arm®
Architecture
Reference Manual,
Armv8, for Armv8-A
architecture profile,
section C5.2.2,
except for those
exceptions reported
using EC values
0b000000, 0b000001,
or 0b000111.

ISS encoding for
an exception from
MSR, MRS, or
System instruction
execution in
AArch64 state

When AArch64
is supported at
any Exception
level

0b011001 Access to SVE
functionality
trapped as a result
of CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ, that
is not reported using
EC 0b000000.

ISS encoding for
an exception from
an access to SVE
functionality,
resulting from
CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ

When SVE is
implemented

0b011011 Exception from an
access to a TSTART

ISS encoding for
an exception from

When TME is
implemented

ESR_EL1, Exception Syndrome Register (EL1)

Page 452

instruction at EL0
when
SCTLR_EL1.TME0
== 0, EL0 when
SCTLR_EL2.TME0
== 0, at EL1 when
SCTLR_EL1.TME
== 0, at EL2 when
SCTLR_EL2.TME
== 0 or at EL3
when
SCTLR_EL3.TME
== 0.

a TSTART
instruction

0b011100 Exception from a
Pointer
Authentication
instruction
authentication
failure

ISS encoding for
an exception from
a Pointer
Authentication
instruction
authentication
failure

When
ARMv8.3-FPAC
is
implemented

0b100000 Instruction Abort
from a lower
Exception level.
Used for MMU
faults generated by
instruction accesses
and synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug
related exceptions.

ISS encoding for
an exception from
an Instruction
Abort

0b100001 Instruction Abort
taken without a
change in Exception
level.
Used for MMU
faults generated by
instruction accesses
and synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug
related exceptions.

ISS encoding for
an exception from
an Instruction
Abort

0b100010 PC alignment fault
exception.

ISS encoding for
an exception from
an Illegal
Execution state, or
a PC or SP
alignment fault

0b100100 Data Abort from a
lower Exception
level.
Used for MMU
faults generated by
data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not

ISS encoding for
an exception from
a Data Abort

ESR_EL1, Exception Syndrome Register (EL1)

Page 453

used for debug
related exceptions.

0b100101 Data Abort taken
without a change in
Exception level.
Used for MMU
faults generated by
data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug
related exceptions.

ISS encoding for
an exception from
a Data Abort

0b100110 SP alignment fault
exception.

ISS encoding for
an exception from
an Illegal
Execution state, or
a PC or SP
alignment fault

0b101000 Trapped floating-
point exception
taken from AArch32
state.
This EC value is
valid if the
implementation
supports trapping of
floating-point
exceptions,
otherwise it is
reserved. Whether a
floating-point
implementation
supports trapping of
floating-point
exceptions is
IMPLEMENTATION
DEFINED.

ISS encoding for
an exception from
a trapped floating-
point exception

When AArch32
is supported at
any Exception
level

0b101100 Trapped floating-
point exception
taken from AArch64
state.
This EC value is
valid if the
implementation
supports trapping of
floating-point
exceptions,
otherwise it is
reserved. Whether a
floating-point
implementation
supports trapping of
floating-point
exceptions is
IMPLEMENTATION
DEFINED.

ISS encoding for
an exception from
a trapped floating-
point exception

When AArch64
is supported at
any Exception
level

0b101111 SError interrupt. ISS encoding for
an SError
interrupt

0b110000 Breakpoint
exception from a

ISS encoding for
an exception from
a Breakpoint or

ESR_EL1, Exception Syndrome Register (EL1)

Page 454

lower Exception
level.

Vector Catch
debug exception

0b110001 Breakpoint
exception taken
without a change in
Exception level.

ISS encoding for
an exception from
a Breakpoint or
Vector Catch
debug exception

0b110010 Software Step
exception from a
lower Exception
level.

ISS encoding for
an exception from
a Software Step
exception

0b110011 Software Step
exception taken
without a change in
Exception level.

ISS encoding for
an exception from
a Software Step
exception

0b110100 Watchpoint
exception from a
lower Exception
level.

ISS encoding for
an exception from
a Watchpoint
exception

0b110101 Watchpoint
exception taken
without a change in
Exception level.

ISS encoding for
an exception from
a Watchpoint
exception

0b111000 BKPT instruction
execution in
AArch32 state.

ISS encoding for
an exception from
execution of a
Breakpoint
instruction

When AArch32
is supported at
any Exception
level

0b111100 BRK instruction
execution in
AArch64 state.
This is reported in
ESR_EL3 only if a
BRK instruction is
executed.

ISS encoding for
an exception from
execution of a
Breakpoint
instruction

When AArch64
is supported at
any Exception
level

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous
exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be used
for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as described in
'Reserved values in System and memory-mapped registers and translation table entries' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile, section K1.1.11.

This field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

ESR_EL1, Exception Syndrome Register (EL1)

Page 455

IL Meaning
0b0 16-bit instruction trapped.
0b1 32-bit instruction trapped. This value is also used when the

exception is one of the following:
• An SError interrupt.
• An Instruction Abort exception.
• A PC alignment fault exception.
• An SP alignment fault exception.
• A Data Abort exception for which the value of the ISV bit is

0.
• An Illegal Execution state exception.
• Any debug exception except for Breakpoint instruction

exceptions. For Breakpoint instruction exceptions, this bit
has its standard meaning:

◦ 0b0: 16-bit T32 BKPT instruction.
◦ 0b1: 32-bit A32 BKPT instruction or A64 BRK

instruction.
• An exception reported using EC value 0b000000.

This field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception
class. However, in practice, some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value
returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, 'Mapping of the general-purpose registers between the Execution states'.

If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value 0b11111.
• If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that must

be either:
◦ The AArch64 view of the register number of a register that might have been used at the Exception

level from which the exception was taken.
◦ The value 0b11111.

When the EC field is 0b000000, indicating an exception with an unknown reason, the ISS field is not valid, RES0.

ISS encoding for exceptions with an unknown reason

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions
that are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not
accessible at the current Exception level and Security state, including:

◦ A read access using a System register pattern that is not allocated for reads or that does not
permit reads at the current Exception level and Security state.

◦ A write access using a System register pattern that is not allocated for writes or that does
not permit writes at the current Exception level and Security state.

◦ Instruction encodings that are unallocated.
◦ Instruction encodings for instructions or System registers that are not implemented in the

implementation.
• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug

state.

ESR_EL1, Exception Syndrome Register (EL1)

Page 456

• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-
debug state.

• In AArch32 state, attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an

attempted access to Advanced SIMD or floating-point functionality under conditions where that access
would be permitted if that functionality was present. This includes the attempted execution of an
Advanced SIMD or floating-point instruction, and attempted accesses to Advanced SIMD and floating-
point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control
bits.

• Attempted execution of:
◦ An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
◦ An SMC instruction when disabled by SCR_EL3.SMD.
◦ An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.
• Attempted execution, in Debug state, of:

◦ A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not
implemented in the current Security state.

◦ A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the
current Security state.

◦ A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.
• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using

R13_mon. See 'Traps to EL3 of monitor functionality from Secure EL1 using AArch32'.
• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an

instruction that is configured to trap to EL3.
• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)

instruction to SPSR_mon, SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of
HCR_EL2.TGE was 0 would have been reported with an ESR_ELx.EC value of 0b000111.

• In Non-transactional state, attempted execution of a TCOMMIT instruction.

ISS encoding for an exception from a WFI or WFE instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0 TI

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

ESR_EL1, Exception Syndrome Register (EL1)

Page 457

◦ If the instruction is conditional, COND is set to the condition code field value from the
instruction.

◦ If the instruction is unconditional, COND is set to 0b1110.
• A conditional A32 instruction that is known to pass its condition code check can be presented either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Bits [19:1]

Reserved, RES0.

TI, bit [0]

Trapped instruction. Possible values of this bit are:

TI Meaning
0b0 WFI trapped.
0b1 WFE trapped.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• SCTLR_EL1.{nTWE, nTWI}.
• HCR_EL2.{TWE, TWI}.
• SCR_EL3.{TWE, TWI}.

ISS encoding for an exception from an MCR or MRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc2 Opc1 CRn Rt CRm Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

ESR_EL1, Exception Syndrome Register (EL1)

Page 458

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

This field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

This field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

This field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between the
Execution states'.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

This field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 459

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0b0 Write to System register space. MCR instruction.
0b1 Read from System register space. MRC or VMRS

instruction.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000011:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or
EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access
(coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCR or MRC access (coproc
== 0b1111) trapped to EL2.

• CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• See 'Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32' for information on
other traps using EC value 0b000011.

• If ARMv8.6-FGT is implemented, MCR or MRC access to some registers at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000101:

• CPACR_EL1.TTA for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and
EL1 using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• If ARMv8.6-FGT is implemented, MDCR_EL2.TDCC and MDCR_EL3.TDCC, for accesses to the DCC
registers at EL0 and EL1, trapped to EL2.

• HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32,
MRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using
AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC
access (coproc == 0b1110) trapped to EL2.

ESR_EL1, Exception Syndrome Register (EL1)

Page 460

• MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, MCR or MRC access
(coproc == 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, MCR or MRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc
== 0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b001000:

• HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS
access trapped to EL2.

• HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS
access trapped to EL2.

ISS encoding for an exception from an MCRR or MRRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc1 RES0 Rt2 Rt CRm Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 461

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer. The
reported value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between
the Execution states'.

This field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between the
Execution states'.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0b0 Write to System register space. MCRR instruction.
0b1 Read from System register space. MRRC instruction.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1
or EL2.

• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped
to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCRR or MRRC access
(coproc == 0b1111) trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers from EL0 and
EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc ==
0b1111) trapped to EL2.

ESR_EL1, Exception Syndrome Register (EL1)

Page 462

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• If ARMv8.6-FGT is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and
HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following sections describe configuration settings for generating exceptions that are reported using EC
value 0b001100:

• CPACR_EL1.TTA for accesses to trace registers using MCR or MRC instructions, MCRR or MRRC
access (coproc == 0b1110) trapped to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers DBGDSAR
and DBGDRAR at EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to
EL1 or EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using
AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

• MDCR_EL3.TDOSA, for traps to powerdown debug registers using AArch32, MCRR or MRRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCRR or MRRC access
(coproc == 0b1110) trapped to EL3.

ISS encoding for an exception from an LDC or STC instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND imm8 RES0 Rn Offset AM Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

ESR_EL1, Exception Syndrome Register (EL1)

Page 463

◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT
field to determine the condition, if any, of the T32 instruction.

◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between the
Execution states'.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction. When
AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Offset Meaning
0b0 Subtract offset.
0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

This field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

AM Meaning
0b000 Immediate unindexed.
0b001 Immediate post-indexed.
0b010 Immediate offset.
0b011 Immediate pre-indexed.
0b100 For a trapped STC instruction or a trapped T32 LDC

instruction this encoding is reserved.
0b110 For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is that
behavior is CONSTRAINED UNPREDICTABLE, as described in 'Reserved values in System and memory-mapped
registers and translation table entries'.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

This field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 464

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0b0 Write to memory. STC instruction.
0b1 Read from memory. LDC instruction.

This field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value
0b000110:

• MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint trapped to EL1 or EL2.

• MDCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL2.

• MDCR_EL3.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL3.

• If ARMv8.6-FGT is implemented, MDCR_EL2.TDCC and MDCR_EL3.TDCC, for accesses to the DCC
registers at EL0 and EL1, trapped to EL2.

ISS encoding for an exception from an access to SVE, Advanced SIMD or
floating-point functionality, resulting from CPACR_EL1.FPEN,
CPTR_EL2.FPEN or CPTR_ELx.TFP

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.
• Accesses to the Advanced SIMD and floating-point System registers.

For an implementation that does not include either SVE or support for floating-point and Advanced SIMD, the
exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

ESR_EL1, Exception Syndrome Register (EL1)

Page 465

◦ If the instruction is conditional, COND is set to the condition code field value from the
instruction.

◦ If the instruction is unconditional, COND is set to 0b1110.
• A conditional A32 instruction that is known to pass its condition code check can be presented either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

The following sections describe the configuration settings for the traps that are reported using EC value
0b000111:

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.
• CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL2.
• CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

ISS encoding for an exception from an access to SVE functionality,
resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or
CPTR_EL3.EZ

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

When SVE is implemented:

Reserved, RES0.

Otherwise:

Reserved, RES0.

The accesses covered by this trap include:

• Execution of SVE instructions.
• Accesses to the SVE system registers, ZCR_ELx and ID_AA64ZFR0_EL1.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 466

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about these exceptions see 'The Illegal Execution state exception' and 'PC
alignment checking'.

'Stack pointer alignment checking' describes the configuration settings for generating SP alignment fault
exceptions.

ISS encoding for an exception from HVC or SVC instruction execution

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the issued
instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:
◦ For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.
◦ For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.

• If the instruction is conditional, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an
exception only if it passes its condition code check. Therefore, the syndrome information for these exceptions
does not require conditionality information.

For T32 and A32 instructions, see 'SVC' and 'HVC'.

For A64 instructions, see 'SVC' and 'HVC'.

If ARMv8.6-FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC
execution.

ISS encoding for an exception from SMC instruction execution in AArch32
state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND CCKNOWNPASS RES0

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS
encoding is RES0.

For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is as
shown in the diagram.

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

ESR_EL1, Exception Syndrome Register (EL1)

Page 467

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

CCKNOWNPASS Meaning
0b0 The instruction was unconditional, or was

conditional and passed its condition code
check.

0b1 The instruction was conditional, and might
have failed its condition code check.

Note

In an implementation in which an SMC instruction that fails it code
check is not trapped, this field can always return the value 0.

This field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

See 'System calls' describes the case where these exceptions are trapped to EL3.

ESR_EL1, Exception Syndrome Register (EL1)

Page 468

ISS encoding for an exception from SMC instruction execution in AArch64
state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

This field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from EL1 modes.
• When an SMC instruction is not trapped, so completes normally and generates an exception that is

taken to EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

'System calls' describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from MSR, MRS, or System instruction
execution in AArch64 state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Op0 Op2 Op1 CRn Rt CRm Direction

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 469

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0b0 Write access, including MSR instructions.
0b1 Read access, including MRS instructions.

This field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see 'System' subsection of 'Branches, exception generating and
System instructions' for the encoding values returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC
value 0b011000:

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1
or EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• If ARMv8.6-FGT is implemented, MDCR_EL2.TDCC and MDCR_EL3.TDCC, for accesses to the DCC
registers at EL0 and EL1, trapped to EL2.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer
registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to the Performance Monitor registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter register, TRFCR_EL1, using AArch64 state, MSR or
MRS access trapped to EL2.

ESR_EL1, Exception Syndrome Register (EL1)

Page 470

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS
access trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64
state, MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state,
MSR or MRS access trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.APK, for accesses to Pointer authentication key registers. using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS
access, trapped to EL2.

• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access,
trapped to EL2.

• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access,
trapped to EL2.

• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state,
MSR or MRS access trapped to EL3.

• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access
trapped to EL3.

• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL3.

• MDCR_EL3.TTRF, for accesses to the filter trace control registers, TRFCR_EL1 and TRFCR_EL2, using
AArch64 state, MSR or MRS access trapped to EL3.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,
trapped to EL3.

• If ARMv8.2-EVT is implemented the following registers control traps for EL1 and EL0 Cache controls
that use this EC value:

◦ HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}.
◦ HCR2.{TTLBIS, TICAB, TOCU, TID4}.

• If ARMv8.6-FGT is implemented:
◦ SCR_EL3.FGTEn, for accesses to the fine-grained trap registers, MSR or MRS access at EL2

trapped to EL3.
◦ HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, MSR

or MRS access at EL0 and EL1 trapped to EL2.
◦ HFGITR_EL2 for execution of system instructions, MSR or MRS access trapped to EL2
◦ HDFGRTR_EL2 for reads and HDFGWTR_EL2 for writes of registers, using AArch64 state,

MSR or MRS access at EL0 and EL1 state trapped to EL2.
◦ HAFGRTR_EL2 for reads of Activity Monitor counters, using AArch64 state, MRS access at

EL0 and EL1 trapped to EL2.

ISS encoding for an IMPLEMENTATION DEFINED exception to EL3

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [24:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from an Instruction Abort

ESR_EL1, Exception Syndrome Register (EL1)

Page 471

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SET FnV EA RES0S1PTWRES0 IFSC

Bits [24:13]

Reserved, RES0.

SET, bits [12:11]

Synchronous Error Type. When the RAS Extension is implemented and IFSC is 0b010000, describes the state
of the PE after taking the Instruction Abort exception. The possible values of this field are:

SET Meaning
0b00 Recoverable error (UER).
0b10 Uncontainable error (UC).
0b11 Restartable error (UEO) or Corrected error (CE).

All other values are reserved.

Note

Software can use this information to determine what recovery might be
possible. Taking a synchronous External Abort exception might result in
an unrecoverable PE state.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the IFSC field is not 0b010000.

This field resets to an architecturally UNKNOWN value.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation
table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is only valid if the IFSC code is 0b010000. It is RES0 for all other aborts.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation
table walk:

ESR_EL1, Exception Syndrome Register (EL1)

Page 472

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a stage

1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

ESR_EL1, Exception Syndrome Register (EL1)

Page 473

IFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation table
base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not

on translation table walk or
hardware update of translation
table.

0b010100 Synchronous External abort, on
translation table walk or hardware
update of translation table, level 0.

0b010101 Synchronous External abort, on
translation table walk or hardware
update of translation table, level 1.

0b010110 Synchronous External abort, on
translation table walk or hardware
update of translation table, level 2.

0b010111 Synchronous External abort, on
translation table walk or hardware
update of translation table, level 3.

0b011000 Synchronous parity or ECC error
on memory access, not on
translation table walk.

When RAS is
not
implemented

0b011100 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 0.

When RAS is
not
implemented

0b011101 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 1.

When RAS is
not
implemented

0b011110 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 2.

When RAS is
not
implemented

0b011111 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 3.

When RAS is
not
implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic hardware

update fault.
When
ARMv8.1-TTHM
is implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU
faults'.

Note

Because Access flag faults and Permission faults can only result from a
Block or Page translation table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1
translation walk.

ESR_EL1, Exception Syndrome Register (EL1)

Page 474

This field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a Data Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV SAS SSE SRT SF AR VNCR SET FnV EA CM S1PTWWnR DFSC

ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

ISV Meaning
0b0 No valid instruction syndrome. ISS[23:14] are RES0.
0b1 ISS[23:14] hold a valid instruction syndrome.

This bit is 0 for all faults reported in ESR_EL2 except the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register specified with
0b11111, including those with Acquire/Release semantics, but excluding Load Exclusive or Store
Exclusive and excluding those with writeback.

• AArch32 instructions where the instruction:
◦ Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT, LDRB,

LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT instruction.
◦ Is not performing register writeback.
◦ Is not using R15 as a source or destination register.

For these cases, ISV is UNKNOWN if the exception was generated in Debug state in memory access mode, and
otherwise indicates whether ISS[23:14] hold a valid syndrome.

ISV is 0 for all faults reported in ESR_EL1 or ESR_EL3.

When the RAS Extension is implemented, ISV is 0 for any synchronous External abort.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid instruction
syndrome, and therefore ISV is 0 for these aborts.

When the RAS Extension is not implemented, the value of ISV on a synchronous External abort on a stage 2
translation table walk is IMPLEMENTATION DEFINED.

When ARMv8.5-MemTag is implemented, for a synchronous Tag Check Fault abort taken to ELx,
ESR_ELx.FNV is 0 and FAR_ELx is valid.

This field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting operation.

SAS Meaning
0b00 Byte
0b01 Halfword
0b10 Word
0b11 Doubleword

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

SSE, bit [21]

Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates whether the
data item must be sign extended. For these cases, the possible values of this bit are:

ESR_EL1, Exception Syndrome Register (EL1)

Page 475

SSE Meaning
0b0 Sign-extension not required.
0b1 Data item must be sign-extended.

For all other operations this bit is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

SRT, bits [20:16]

Syndrome Register Transfer. When ISV is 1, the register number of the Rt operand of the faulting instruction.

If the exception was taken from an Exception level that is using AArch32 then this is the AArch64 view of the
register. See 'Mapping of the general-purpose registers between the Execution states'.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

SF, bit [15]

Width of the register accessed by the instruction is Sixty-Four. When ISV is 1, the possible values of this bit
are:

SF Meaning
0b0 Instruction loads/stores a 32-bit wide register.
0b1 Instruction loads/stores a 64-bit wide register.

Note

This field specifies the register width identified by the instruction, not
the Execution state.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

AR, bit [14]

Acquire/Release. When ISV is 1, the possible values of this bit are:

AR Meaning
0b0 Instruction did not have acquire/release semantics.
0b1 Instruction did have acquire/release semantics.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

VNCR, bit [13]

When ARMv8.4-NV is implemented:

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

ESR_EL1, Exception Syndrome Register (EL1)

Page 476

VNCR Meaning
0b0 The fault was not generated by the use of VNCR_EL2, by

an MRS or MSR instruction executed at EL1.
0b1 The fault was generated by the use of VNCR_EL2, by an

MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SET, bits [12:11]

Synchronous Error Type. When the RAS Extension is implemented and DFSC is 0b010000, describes the state
of the PE after taking the Data Abort exception. The possible values of this field are:

SET Meaning
0b00 Recoverable error (UER).
0b10 Uncontainable error (UC).
0b11 Restartable error (UEO) or Corrected error (CE).

All other values are reserved.

Note

Software can use this information to determine what recovery might be
possible. Taking a synchronous External Abort exception might result in
an unrecoverable PE state.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 0b010000.

This field resets to an architecturally UNKNOWN value.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation
table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 477

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address translation
instruction:

CM Meaning
0b0 The Data Abort was not generated by the execution of one of

the System instructions identified in the description of value
1.

0b1 The Data Abort was generated by either the execution of a
cache maintenance instruction or by a synchronous fault on
the execution of an address translation instruction. The DC
ZVA instruction is not classified as a cache maintenance
instruction, and therefore its execution cannot cause this
field to be set to 1.

This field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation
table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a stage

1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

This field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a memory
location, or by an instruction reading from a memory location. The possible values of this bit are:

WnR Meaning
0b0 Abort caused by an instruction reading from a memory

location.
0b1 Abort caused by an instruction writing to a memory

location.

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set to 0 if
a read of the address specified by the instruction would have generated the fault which is being reported,
otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this requirement such
that for all stage 2 aborts on stage 1 translation table walks for atomic instructions, the WnR bit is always 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported Exclusive or

atomic access.

This field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

ESR_EL1, Exception Syndrome Register (EL1)

Page 478

DFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation table
base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not

on translation table walk or
hardware update of translation
table.

0b010001 Synchronous Tag Check Fault. When
ARMv8.5-MemTag
is implemented

0b010100 Synchronous External abort, on
translation table walk or
hardware update of translation
table, level 0.

0b010101 Synchronous External abort, on
translation table walk or
hardware update of translation
table, level 1.

0b010110 Synchronous External abort, on
translation table walk or
hardware update of translation
table, level 2.

0b010111 Synchronous External abort, on
translation table walk or
hardware update of translation
table, level 3.

0b011000 Synchronous parity or ECC error
on memory access, not on
translation table walk.

When RAS is not
implemented

0b011100 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update
of translation table, level 0.

When RAS is not
implemented

0b011101 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update
of translation table, level 1.

When RAS is not
implemented

0b011110 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update
of translation table, level 2.

When RAS is not
implemented

0b011111 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update
of translation table, level 3.

When RAS is not
implemented

0b100001 Alignment fault.
0b110000 TLB conflict abort.
0b110001 Unsupported atomic hardware

update fault.
When
ARMv8.1-TTHM is
implemented

0b110100 IMPLEMENTATION DEFINED fault
(Lockdown).

0b110101 IMPLEMENTATION DEFINED fault
(Unsupported Exclusive or
Atomic access).

ESR_EL1, Exception Syndrome Register (EL1)

Page 479

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU
faults'.

Note

Because Access flag faults and Permission faults can only result from a
Block or Page translation table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1
translation walk.

This field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a trapped floating-point exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0TFV RES0 VECITR IDF RES0 IXF UFFOFFDZF IOF

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid information
about trapped floating-point exceptions. The possible values of this bit are:

TFV Meaning
0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid

information about trapped floating-point exceptions and are
UNKNOWN.

0b1 One or more floating-point exceptions occurred during an
operation performed while executing the reported
instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits
indicate trapped floating-point exceptions that occurred.
For more information see 'Floating-point exception traps'.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped floating
point exception from a vector instruction.

Note

This is not a requirement. Implementations can set this field to 1 on a
trapped floating-point exception from a vector instruction and return
valid information in the {IDF, IXF, UFF, OFF, DZF, IOF} fields.

This field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 480

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

IDF Meaning
0b0 Input denormal floating-point exception has not occurred.
0b1 Input denormal floating-point exception occurred during

execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible
values of this bit are:

IXF Meaning
0b0 Inexact floating-point exception has not occurred.
0b1 Inexact floating-point exception occurred during execution

of the reported instruction.

This field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

UFF Meaning
0b0 Underflow floating-point exception has not occurred.
0b1 Underflow floating-point exception occurred during

execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

OFF Meaning
0b0 Overflow floating-point exception has not occurred.
0b1 Overflow floating-point exception occurred during execution

of the reported instruction.

This field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

DZF Meaning
0b0 Divide by Zero floating-point exception has not occurred.
0b1 Divide by Zero floating-point exception occurred during

execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 481

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

IOF Meaning
0b0 Invalid Operation floating-point exception has not occurred.
0b1 Invalid Operation floating-point exception occurred during

execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

ISS encoding for an SError interrupt

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDS RES0 IESB AET EA RES0 DFSC

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome. Possible values of this bit are:

IDS Meaning
0b0 Bits[23:0] of the ISS field holds the fields described in this

encoding.

Note
If the RAS Extension is not
implemented, this means that
bits[23:0] of the ISS field are RES0.

0b1 Bits[23:0] of the ISS field holds IMPLEMENTATION DEFINED
syndrome information that can be used to provide additional
information about the SError interrupt.

Note

This field was previously called ISV.

This field resets to an architecturally UNKNOWN value.

Bits [23:14]

Reserved, RES0.

IESB, bit [13]

When ARMv8.2-IESB is implemented:

Implicit error synchronization event.

IESB Meaning
0b0 The SError interrupt was either not synchronized by the

implicit error synchronization event or not taken
immediately.

0b1 The SError interrupt was synchronized by the implicit
error synchronization event and taken immediately.

This field is RES0 if the value returned in the DFSC field is not 0b010001.

ESR_EL1, Exception Syndrome Register (EL1)

Page 482

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AET, bits [12:10]

When RAS is implemented:

Asynchronous Error Type.

When the RAS Extension is implemented and DFSC is 0b010001, describes the state of the PE after taking the
SError interrupt exception. The possible values of this field are:

AET Meaning
0b000 Uncontainable error (UC).
0b001 Unrecoverable error (UEU).
0b010 Restartable error (UEO).
0b011 Recoverable error (UER).
0b110 Corrected error (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall state of the PE is reported. For
example, if both a Recoverable and Unrecoverable error occurred, the state is Unrecoverable.

Note

Software can use this information to determine what recovery might be
possible. The recovery software must also examine any implemented
fault records to determine the location and extent of the error.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 0b010001.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EA, bit [9]

When RAS is implemented:

External abort type. When the RAS Extension is implemented, this bit can provide an IMPLEMENTATION DEFINED
classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 0b010001.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 483

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

When RAS is implemented:

Data Fault Status Code.

DFSC Meaning
0b000000 Uncategorized.
0b010001 Asynchronous SError interrupt.

All other values are reserved.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ISS encoding for an exception from a Breakpoint or Vector Catch debug
exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IFSC

Bits [24:6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions:

• For exceptions from AArch64, see 'Breakpoint exceptions'.
• For exceptions from AArch32, see 'Breakpoint exceptions' and 'Vector Catch exceptions'.

ISS encoding for an exception from a Software Step exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV RES0 EX IFSC

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

ISV Meaning
0b0 EX bit is RES0.
0b1 EX bit is valid.

See the EX bit description for more information.

ESR_EL1, Exception Syndrome Register (EL1)

Page 484

This field resets to an architecturally UNKNOWN value.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction was
stepped.

EX Meaning
0b0 An instruction other than a Load-Exclusive instruction was

stepped.
0b1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

This field resets to an architecturally UNKNOWN value.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Software Step exceptions'.

ISS encoding for an exception from a Watchpoint exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 VNCR RES0 CM RES0WnR DFSC

Bits [24:14]

Reserved, RES0.

VNCR, bit [13]

When ARMv8.4-NV is implemented:

Indicates that the watchpoint came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The watchpoint was not generated by the use of

VNCR_EL2 by EL1 code.
0b1 The watchpoint was generated by the use of VNCR_EL2

by EL1 code.

This field is 0 in ESR_EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 485

Bits [12:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance or address
translation instruction:

CM Meaning
0b0 The Watchpoint exception was not generated by the

execution of one of the System instructions identified in the
description of value 1.

0b1 The Watchpoint exception was generated by either the
execution of a cache maintenance instruction or by a
synchronous Watchpoint exception on the execution of an
address translation instruction. The DC ZVA instruction is
not classified as a cache maintenance instruction, and
therefore its execution cannot cause this field to be set to 1.

This field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location. The possible values of this bit are:

WnR Meaning
0b0 Watchpoint exception caused by an instruction reading

from a memory location.
0b1 Watchpoint exception caused by an instruction writing to a

memory location.

For Watchpoint exceptions on cache maintenance and address translation instructions, this bit always returns
a value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location would have
generated the Watchpoint exception, otherwise it is set to 1.

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates the
Watchpoint exception.

This field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

DFSC Meaning
0b100010 Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Watchpoint exceptions'.

ISS encoding for an exception from execution of a Breakpoint instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Comment

ESR_EL1, Exception Syndrome Register (EL1)

Page 486

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Breakpoint instruction exceptions'.

ISS encoding for an exception from ERET, ERETAA or ERETAB instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ERETERETA

This EC value applies when ARMv8.6-FGT is implemented, or when HCR_EL2.NV is 1.

Bits [24:2]

Reserved, RES0.

ERET, bit [1]

Indicates whether an ERET or ERETA* instruction was trapped to EL2. Possible values are:

ERET Meaning
0b0 ERET instruction trapped to EL2.
0b1 ERETAA or ERETAB instruction trapped to EL2.

If this bit is 0, the ERETA field is RES0.

This field resets to an architecturally UNKNOWN value.

ERETA, bit [0]

Indicates whether an ERETAA or ERETAB instruction was trapped to EL2. Possible values are:

ERETA Meaning
0b0 ERETAA instruction trapped to EL2.
0b1 ERETAB instruction trapped to EL2.

When the ERET field is 0, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see HCR_EL2.NV.

If ARMv8.6-FGT is implemented, HFGITR_EL2.ERET controls fine-grained trap exceptions from ERET,
ERETAA and ERETAB execution.

ISS encoding for an exception from a TSTART instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Rd RES0

Bits [24:10]

Reserved, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 487

Rd, bits [9:5]

The Rd value from the issued instruction, the general purpose register used for the destination.

Bits [4:0]

Reserved, RES0.

ISS encoding for an exception from Branch Target Identification instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BTYPE

Bits [24:2]

Reserved, RES0.

BTYPE, bits [1:0]

This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception.

For more information about generating these exceptions, see 'The AArch64 application level programmers
model'.

ISS encoding for an exception from a Pointer Authentication instruction
when HCR_EL2.API == 0 || SCR_EL3.API == 0

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

For more information about generating these exceptions, see:

• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped
to EL2.

• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to
EL3.

ISS encoding for an exception from a Pointer Authentication instruction
authentication failure

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Exception
as a result

of an
Instruction

key or a
Data key

Exception
as a

result of
an A key

or a B
key

Bits [24:2]

Reserved, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 488

Bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

Meaning
0b0 Instruction Key.
0b1 Data Key.

This field resets to an architecturally UNKNOWN value.

Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

Meaning
0b0 A key.
0b1 B key.

This field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTIASP, AUTIAZ, AUTIA1716.
• AUTIBSP, AUTIBZ, AUTIB1716.
• AUTIA, AUTDA, AUTIB, AUTDB.
• AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the
authorization failure, rather than changing the address in a way that will generate a translation fault when
the address is accessed:

• RETAA, RETAB.
• BRAA, BRAB, BLRAA, BLRAB.
• BRAAZ, BRABZ, BLRAAZ, BLRABZ.
• ERETAA, ERETAB.
• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

Accessing the ESR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ESR_EL1 or
ESR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, ESR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0010 0b000

ESR_EL1, Exception Syndrome Register (EL1)

Page 489

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ESR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x138];

else
return ESR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return ESR_EL2;
else

return ESR_EL1;
elsif PSTATE.EL == EL3 then

return ESR_EL1;

MSR ESR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.ESR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x138] = X[t];

else
ESR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

ESR_EL2 = X[t];
else

ESR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

ESR_EL1 = X[t];

MRS <Xt>, ESR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0101 0b0010 0b000

ESR_EL1, Exception Syndrome Register (EL1)

Page 490

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x138];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return ESR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return ESR_EL1;
else

UNDEFINED;

MSR ESR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x138] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
ESR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

ESR_EL1 = X[t];
else

UNDEFINED;

MRS <Xt>, ESR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return ESR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return ESR_EL2;
elsif PSTATE.EL == EL3 then

return ESR_EL2;

ESR_EL1, Exception Syndrome Register (EL1)

Page 491

MSR ESR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

ESR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ESR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

ESR_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ESR_EL1, Exception Syndrome Register (EL1)

Page 492

ESR_EL2, Exception Syndrome Register (EL2)
The ESR_EL2 characteristics are:

Purpose
Holds syndrome information for an exception taken to EL2.

Configuration
AArch64 System register ESR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HSR[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ESR_EL2 is a 64-bit register.

Field descriptions
The ESR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

EC IL ISS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ESR_EL2 is made UNKNOWN as a result of an exception return from EL2.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL2, the value of ESR_EL2
is UNKNOWN. The value written to ESR_EL2 must be consistent with a value that could be created as a result of an
exception from the same Exception level that generated the exception as a result of a situation that is not
UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:32]

Reserved, RES0.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.
• The encoding of the associated ISS.

Possible values of the EC field are:

ESR_EL2, Exception Syndrome Register (EL2)

Page 493

EC Meaning ISS Applies when
0b000000 Unknown reason. ISS encoding for

exceptions with an
unknown reason

0b000001 Trapped WFI or
WFE instruction
execution.
Conditional WFE
and WFI instructions
that fail their
condition code
check do not cause
an exception.

ISS encoding for
an exception from
a WFI or WFE
instruction

0b000011 Trapped MCR or
MRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for
an exception from
an MCR or MRC
access

When AArch32
is supported at
any Exception
level

0b000100 Trapped MCRR or
MRRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for
an exception from
an MCRR or
MRRC access

When AArch32
is supported at
any Exception
level

0b000101 Trapped MCR or
MRC access with
(coproc==0b1110).

ISS encoding for
an exception from
an MCR or MRC
access

When AArch32
is supported at
any Exception
level

0b000110 Trapped LDC or STC
access.
The only architected
uses of these
instruction are:
• An STC to write

data to memory
from
DBGDTRRXint.

• An LDC to read
data from
memory to
DBGDTRTXint.

ISS encoding for
an exception from
an LDC or STC
instruction

When AArch32
is supported at
any Exception
level

0b000111 Access to SVE,
Advanced SIMD, or
floating-point
functionality
trapped by
CPACR_EL1.FPEN,
CPTR_EL2.FPEN,
CPTR_EL2.TFP, or
CPTR_EL3.TFP
control.
Excludes exceptions
resulting from
CPACR_EL1 when
the value of
HCR_EL2.TGE is 1,
or because SVE or
Advanced SIMD and
floating-point are
not implemented.
These are reported
with EC value
0b000000 as
described in 'EC
encodings when
routing exceptions
to EL2' in the Arm®
Architecture
Reference Manual,
Armv8, for Armv8-A

ISS encoding for
an exception from
an access to SVE,
Advanced SIMD or
floating-point
functionality,
resulting from
CPACR_EL1.FPEN,
CPTR_EL2.FPEN
or CPTR_ELx.TFP

ESR_EL2, Exception Syndrome Register (EL2)

Page 494

architecture profile,
section D1.10.4.

0b001000 Trapped VMRS
access, from ID
group trap, that is
not reported using
EC 0b000111.

ISS encoding for
an exception from
an MCR or MRC
access

When AArch32
is supported at
any Exception
level

0b001001 Trapped use of a
Pointer
authentication
instruction because
HCR_EL2.API == 0
|| SCR_EL3.API ==
0.

ISS encoding for
an exception from
a Pointer
Authentication
instruction when
HCR_EL2.API ==
0 || SCR_EL3.API
== 0

When
ARMv8.3-PAuth
is implemented

0b001100 Trapped MRRC
access with
(coproc==0b1110).

ISS encoding for
an exception from
an MCRR or
MRRC access

When AArch32
is supported at
any Exception
level

0b001101 Branch Target
Exception.

ISS encoding for
an exception from
Branch Target
Identification
instruction

When
ARMv8.5-BTI is
implemented

0b001110 Illegal Execution
state.

ISS encoding for
an exception from
an Illegal
Execution state, or
a PC or SP
alignment fault

0b010001 SVC instruction
execution in
AArch32 state.
This is reported in
ESR_EL2 only when
the exception is
generated because
the value of
HCR_EL2.TGE is 1.

ISS encoding for
an exception from
HVC or SVC
instruction
execution

When AArch32
is supported at
any Exception
level

0b010010 HVC instruction
execution in
AArch32 state, when
HVC is not disabled.

ISS encoding for
an exception from
HVC or SVC
instruction
execution

When AArch32
is supported at
any Exception
level

0b010011 SMC instruction
execution in
AArch32 state, when
SMC is not disabled.
This is reported in
ESR_EL2 only when
the exception is
generated because
the value of
HCR_EL2.TSC is 1.

ISS encoding for
an exception from
SMC instruction
execution in
AArch32 state

When AArch32
is supported at
any Exception
level

0b010101 SVC instruction
execution in
AArch64 state.

ISS encoding for
an exception from
HVC or SVC
instruction
execution

When AArch64
is supported at
any Exception
level

0b010110 HVC instruction
execution in
AArch64 state, when
HVC is not disabled.

ISS encoding for
an exception from
HVC or SVC
instruction
execution

When AArch64
is supported at
any Exception
level

0b010111 SMC instruction
execution in
AArch64 state, when
SMC is not disabled.
This is reported in
ESR_EL2 only when

ISS encoding for
an exception from
SMC instruction
execution in
AArch64 state

When AArch64
is supported at
any Exception
level

ESR_EL2, Exception Syndrome Register (EL2)

Page 495

the exception is
generated because
the value of
HCR_EL2.TSC is 1.

0b011000 Trapped MSR, MRS
or System
instruction
execution in
AArch64 state, that
is not reported using
EC 0b000000,
0b000001 or
0b000111.
This includes all
instructions that
cause exceptions
that are part of the
encoding space
defined in 'System
instruction class
encoding overview'
in the Arm®
Architecture
Reference Manual,
Armv8, for Armv8-A
architecture profile,
section C5.2.2,
except for those
exceptions reported
using EC values
0b000000, 0b000001,
or 0b000111.

ISS encoding for
an exception from
MSR, MRS, or
System instruction
execution in
AArch64 state

When AArch64
is supported at
any Exception
level

0b011001 Access to SVE
functionality
trapped as a result
of CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ, that
is not reported using
EC 0b000000.

ISS encoding for
an exception from
an access to SVE
functionality,
resulting from
CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ

When SVE is
implemented

0b011010 Trapped ERET,
ERETAA, or ERETAB
instruction
execution.

ISS encoding for
an exception from
ERET, ERETAA or
ERETAB
instruction

When
ARMv8.3-PAuth
is implemented
and
ARMv8.3-NV is
implemented

0b011011 Exception from an
access to a TSTART
instruction at EL0
when
SCTLR_EL1.TME0
== 0, EL0 when
SCTLR_EL2.TME0
== 0, at EL1 when
SCTLR_EL1.TME
== 0, at EL2 when
SCTLR_EL2.TME
== 0 or at EL3
when
SCTLR_EL3.TME
== 0.

ISS encoding for
an exception from
a TSTART
instruction

When TME is
implemented

0b011100 Exception from a
Pointer
Authentication
instruction
authentication
failure

ISS encoding for
an exception from
a Pointer
Authentication
instruction
authentication
failure

When
ARMv8.3-FPAC
is implemented

ESR_EL2, Exception Syndrome Register (EL2)

Page 496

0b100000 Instruction Abort
from a lower
Exception level.
Used for MMU
faults generated by
instruction accesses
and synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug
related exceptions.

ISS encoding for
an exception from
an Instruction
Abort

0b100001 Instruction Abort
taken without a
change in Exception
level.
Used for MMU
faults generated by
instruction accesses
and synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug
related exceptions.

ISS encoding for
an exception from
an Instruction
Abort

0b100010 PC alignment fault
exception.

ISS encoding for
an exception from
an Illegal
Execution state, or
a PC or SP
alignment fault

0b100100 Data Abort from a
lower Exception
level, excluding Data
Aborts taken to EL2
as a result of
accesses generated
associated with
VNCR_EL2 as part
of nested
virtualization
support.
These Data Aborts
might be generated
from Exception
levels in any
Execution state.
Used for MMU
faults generated by
data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug
related exceptions.

ISS encoding for
an exception from
a Data Abort

0b100101 Data Abort without a
change in Exception
level, or Data Aborts
taken to EL2 as a
result of accesses
generated

ISS encoding for
an exception from
a Data Abort

ESR_EL2, Exception Syndrome Register (EL2)

Page 497

associated with
VNCR_EL2 as part
of nested
virtualization
support.
Used for MMU
faults generated by
data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug
related exceptions.

0b100110 SP alignment fault
exception.

ISS encoding for
an exception from
an Illegal
Execution state, or
a PC or SP
alignment fault

0b101000 Trapped floating-
point exception
taken from AArch32
state.
This EC value is
valid if the
implementation
supports trapping of
floating-point
exceptions,
otherwise it is
reserved. Whether a
floating-point
implementation
supports trapping of
floating-point
exceptions is
IMPLEMENTATION
DEFINED.

ISS encoding for
an exception from
a trapped floating-
point exception

When AArch32
is supported at
any Exception
level

0b101100 Trapped floating-
point exception
taken from AArch64
state.
This EC value is
valid if the
implementation
supports trapping of
floating-point
exceptions,
otherwise it is
reserved. Whether a
floating-point
implementation
supports trapping of
floating-point
exceptions is
IMPLEMENTATION
DEFINED.

ISS encoding for
an exception from
a trapped floating-
point exception

When AArch64
is supported at
any Exception
level

0b101111 SError interrupt. ISS encoding for
an SError
interrupt

0b110000 Breakpoint
exception from a

ISS encoding for
an exception from
a Breakpoint or

ESR_EL2, Exception Syndrome Register (EL2)

Page 498

lower Exception
level.

Vector Catch
debug exception

0b110001 Breakpoint
exception taken
without a change in
Exception level.

ISS encoding for
an exception from
a Breakpoint or
Vector Catch
debug exception

0b110010 Software Step
exception from a
lower Exception
level.

ISS encoding for
an exception from
a Software Step
exception

0b110011 Software Step
exception taken
without a change in
Exception level.

ISS encoding for
an exception from
a Software Step
exception

0b110100 Watchpoint from a
lower Exception
level, excluding
Watchpoint
Exceptions taken to
EL2 as a result of
accesses generated
associated with
VNCR_EL2 as part
of nested
virtualization
support.
These Watchpoint
Exceptions might be
generated from
Exception levels
using any Execution
state.

ISS encoding for
an exception from
a Watchpoint
exception

0b110101 Watchpoint
exceptions without a
change in Exception
level, or Watchpoint
exceptions taken to
EL2 as a result of
accesses generated
associated with
VNCR_EL2 as part
of nested
virtualization
support.

ISS encoding for
an exception from
a Watchpoint
exception

0b111000 BKPT instruction
execution in
AArch32 state.

ISS encoding for
an exception from
execution of a
Breakpoint
instruction

When AArch32
is supported at
any Exception
level

0b111010 Vector Catch
exception from
AArch32 state.
The only case where
a Vector Catch
exception is taken to
an Exception level
that is using
AArch64 is when the
exception is routed
to EL2 and EL2 is
using AArch64.

ISS encoding for
an exception from
a Breakpoint or
Vector Catch
debug exception

When AArch32
is supported at
any Exception
level

0b111100 BRK instruction
execution in
AArch64 state.
This is reported in
ESR_EL3 only if a
BRK instruction is
executed.

ISS encoding for
an exception from
execution of a
Breakpoint
instruction

When AArch64
is supported at
any Exception
level

ESR_EL2, Exception Syndrome Register (EL2)

Page 499

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous
exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be used
for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as described in
'Reserved values in System and memory-mapped registers and translation table entries' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile, section K1.1.11.

This field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

IL Meaning
0b0 16-bit instruction trapped.
0b1 32-bit instruction trapped. This value is also used when the

exception is one of the following:
• An SError interrupt.
• An Instruction Abort exception.
• A PC alignment fault exception.
• An SP alignment fault exception.
• A Data Abort exception for which the value of the ISV bit is

0.
• An Illegal Execution state exception.
• Any debug exception except for Breakpoint instruction

exceptions. For Breakpoint instruction exceptions, this bit
has its standard meaning:

◦ 0b0: 16-bit T32 BKPT instruction.
◦ 0b1: 32-bit A32 BKPT instruction or A64 BRK

instruction.
• An exception reported using EC value 0b000000.

This field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception
class. However, in practice, some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value
returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, 'Mapping of the general-purpose registers between the Execution states'.

If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value 0b11111.
• If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that must

be either:
◦ The AArch64 view of the register number of a register that might have been used at the Exception

level from which the exception was taken.
◦ The value 0b11111.

When the EC field is 0b000000, indicating an exception with an unknown reason, the ISS field is not valid, RES0.

ISS encoding for exceptions with an unknown reason

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

ESR_EL2, Exception Syndrome Register (EL2)

Page 500

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions
that are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not
accessible at the current Exception level and Security state, including:

◦ A read access using a System register pattern that is not allocated for reads or that does not
permit reads at the current Exception level and Security state.

◦ A write access using a System register pattern that is not allocated for writes or that does
not permit writes at the current Exception level and Security state.

◦ Instruction encodings that are unallocated.
◦ Instruction encodings for instructions or System registers that are not implemented in the

implementation.
• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug

state.
• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-

debug state.
• In AArch32 state, attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an

attempted access to Advanced SIMD or floating-point functionality under conditions where that access
would be permitted if that functionality was present. This includes the attempted execution of an
Advanced SIMD or floating-point instruction, and attempted accesses to Advanced SIMD and floating-
point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control
bits.

• Attempted execution of:
◦ An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
◦ An SMC instruction when disabled by SCR_EL3.SMD.
◦ An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.
• Attempted execution, in Debug state, of:

◦ A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not
implemented in the current Security state.

◦ A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the
current Security state.

◦ A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.
• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using

R13_mon. See 'Traps to EL3 of monitor functionality from Secure EL1 using AArch32'.
• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an

instruction that is configured to trap to EL3.
• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)

instruction to SPSR_mon, SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of
HCR_EL2.TGE was 0 would have been reported with an ESR_ELx.EC value of 0b000111.

• In Non-transactional state, attempted execution of a TCOMMIT instruction.

ISS encoding for an exception from a WFI or WFE instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0 TI

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

ESR_EL2, Exception Syndrome Register (EL2)

Page 501

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Bits [19:1]

Reserved, RES0.

TI, bit [0]

Trapped instruction. Possible values of this bit are:

TI Meaning
0b0 WFI trapped.
0b1 WFE trapped.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• SCTLR_EL1.{nTWE, nTWI}.
• HCR_EL2.{TWE, TWI}.
• SCR_EL3.{TWE, TWI}.

ISS encoding for an exception from an MCR or MRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc2 Opc1 CRn Rt CRm Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

ESR_EL2, Exception Syndrome Register (EL2)

Page 502

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

This field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

This field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

This field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 503

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between the
Execution states'.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0b0 Write to System register space. MCR instruction.
0b1 Read from System register space. MRC or VMRS

instruction.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000011:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or
EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access
(coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCR or MRC access (coproc
== 0b1111) trapped to EL2.

• CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• See 'Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32' for information on
other traps using EC value 0b000011.

• If ARMv8.6-FGT is implemented, MCR or MRC access to some registers at EL0, trapped to EL2.

ESR_EL2, Exception Syndrome Register (EL2)

Page 504

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000101:

• CPACR_EL1.TTA for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and
EL1 using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• If ARMv8.6-FGT is implemented, MDCR_EL2.TDCC and MDCR_EL3.TDCC, for accesses to the DCC
registers at EL0 and EL1, trapped to EL2.

• HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32,
MRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using
AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC
access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, MCR or MRC access
(coproc == 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, MCR or MRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc
== 0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b001000:

• HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS
access trapped to EL2.

• HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS
access trapped to EL2.

ISS encoding for an exception from an MCRR or MRRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc1 RES0 Rt2 Rt CRm Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

ESR_EL2, Exception Syndrome Register (EL2)

Page 505

◦ If the instruction is conditional, COND is set to the condition code field value from the
instruction.

◦ If the instruction is unconditional, COND is set to 0b1110.
• A conditional A32 instruction that is known to pass its condition code check can be presented either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer. The
reported value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between
the Execution states'.

This field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between the
Execution states'.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0b0 Write to System register space. MCRR instruction.
0b1 Read from System register space. MRRC instruction.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000100:

ESR_EL2, Exception Syndrome Register (EL2)

Page 506

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1
or EL2.

• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped
to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCRR or MRRC access
(coproc == 0b1111) trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers from EL0 and
EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc ==
0b1111) trapped to EL2.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• If ARMv8.6-FGT is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and
HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following sections describe configuration settings for generating exceptions that are reported using EC
value 0b001100:

• CPACR_EL1.TTA for accesses to trace registers using MCR or MRC instructions, MCRR or MRRC
access (coproc == 0b1110) trapped to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers DBGDSAR
and DBGDRAR at EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to
EL1 or EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using
AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

• MDCR_EL3.TDOSA, for traps to powerdown debug registers using AArch32, MCRR or MRRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCRR or MRRC access
(coproc == 0b1110) trapped to EL3.

ISS encoding for an exception from an LDC or STC instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND imm8 RES0 Rn Offset AM Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 507

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between the
Execution states'.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction. When
AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Offset Meaning
0b0 Subtract offset.
0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

This field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

ESR_EL2, Exception Syndrome Register (EL2)

Page 508

AM Meaning
0b000 Immediate unindexed.
0b001 Immediate post-indexed.
0b010 Immediate offset.
0b011 Immediate pre-indexed.
0b100 For a trapped STC instruction or a trapped T32 LDC

instruction this encoding is reserved.
0b110 For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is that
behavior is CONSTRAINED UNPREDICTABLE, as described in 'Reserved values in System and memory-mapped
registers and translation table entries'.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0b0 Write to memory. STC instruction.
0b1 Read from memory. LDC instruction.

This field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value
0b000110:

• MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint trapped to EL1 or EL2.

• MDCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL2.

• MDCR_EL3.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL3.

• If ARMv8.6-FGT is implemented, MDCR_EL2.TDCC and MDCR_EL3.TDCC, for accesses to the DCC
registers at EL0 and EL1, trapped to EL2.

ISS encoding for an exception from an access to SVE, Advanced SIMD or
floating-point functionality, resulting from CPACR_EL1.FPEN,
CPTR_EL2.FPEN or CPTR_ELx.TFP

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.
• Accesses to the Advanced SIMD and floating-point System registers.

For an implementation that does not include either SVE or support for floating-point and Advanced SIMD, the
exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

ESR_EL2, Exception Syndrome Register (EL2)

Page 509

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

The following sections describe the configuration settings for the traps that are reported using EC value
0b000111:

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.
• CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL2.
• CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

ISS encoding for an exception from an access to SVE functionality,
resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or
CPTR_EL3.EZ

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

When SVE is implemented:

Reserved, RES0.

Otherwise:

Reserved, RES0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 510

The accesses covered by this trap include:

• Execution of SVE instructions.
• Accesses to the SVE system registers, ZCR_ELx and ID_AA64ZFR0_EL1.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about these exceptions see 'The Illegal Execution state exception' and 'PC
alignment checking'.

'Stack pointer alignment checking' describes the configuration settings for generating SP alignment fault
exceptions.

ISS encoding for an exception from HVC or SVC instruction execution

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the issued
instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:
◦ For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.
◦ For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.

• If the instruction is conditional, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an
exception only if it passes its condition code check. Therefore, the syndrome information for these exceptions
does not require conditionality information.

For T32 and A32 instructions, see 'SVC' and 'HVC'.

For A64 instructions, see 'SVC' and 'HVC'.

If ARMv8.6-FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC
execution.

ISS encoding for an exception from SMC instruction execution in AArch32
state

ESR_EL2, Exception Syndrome Register (EL2)

Page 511

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND CCKNOWNPASS RES0

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS
encoding is RES0.

For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is as
shown in the diagram.

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

ESR_EL2, Exception Syndrome Register (EL2)

Page 512

CCKNOWNPASS Meaning
0b0 The instruction was unconditional, or was

conditional and passed its condition code
check.

0b1 The instruction was conditional, and might
have failed its condition code check.

Note

In an implementation in which an SMC instruction that fails it code
check is not trapped, this field can always return the value 0.

This field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

See 'System calls' describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from SMC instruction execution in AArch64
state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

This field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from EL1 modes.
• When an SMC instruction is not trapped, so completes normally and generates an exception that is

taken to EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

'System calls' describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from MSR, MRS, or System instruction
execution in AArch64 state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Op0 Op2 Op1 CRn Rt CRm Direction

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

ESR_EL2, Exception Syndrome Register (EL2)

Page 513

This field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0b0 Write access, including MSR instructions.
0b1 Read access, including MRS instructions.

This field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see 'System' subsection of 'Branches, exception generating and
System instructions' for the encoding values returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC
value 0b011000:

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1
or EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• If ARMv8.6-FGT is implemented, MDCR_EL2.TDCC and MDCR_EL3.TDCC, for accesses to the DCC
registers at EL0 and EL1, trapped to EL2.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer
registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

ESR_EL2, Exception Syndrome Register (EL2)

Page 514

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to the Performance Monitor registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter register, TRFCR_EL1, using AArch64 state, MSR or
MRS access trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS
access trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64
state, MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state,
MSR or MRS access trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.APK, for accesses to Pointer authentication key registers. using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS
access, trapped to EL2.

• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access,
trapped to EL2.

• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access,
trapped to EL2.

• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state,
MSR or MRS access trapped to EL3.

• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access
trapped to EL3.

• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL3.

• MDCR_EL3.TTRF, for accesses to the filter trace control registers, TRFCR_EL1 and TRFCR_EL2, using
AArch64 state, MSR or MRS access trapped to EL3.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,
trapped to EL3.

• If ARMv8.2-EVT is implemented the following registers control traps for EL1 and EL0 Cache controls
that use this EC value:

◦ HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}.
◦ HCR2.{TTLBIS, TICAB, TOCU, TID4}.

• If ARMv8.6-FGT is implemented:

ESR_EL2, Exception Syndrome Register (EL2)

Page 515

◦ SCR_EL3.FGTEn, for accesses to the fine-grained trap registers, MSR or MRS access at EL2
trapped to EL3.

◦ HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, MSR
or MRS access at EL0 and EL1 trapped to EL2.

◦ HFGITR_EL2 for execution of system instructions, MSR or MRS access trapped to EL2
◦ HDFGRTR_EL2 for reads and HDFGWTR_EL2 for writes of registers, using AArch64 state,

MSR or MRS access at EL0 and EL1 state trapped to EL2.
◦ HAFGRTR_EL2 for reads of Activity Monitor counters, using AArch64 state, MRS access at

EL0 and EL1 trapped to EL2.

ISS encoding for an IMPLEMENTATION DEFINED exception to EL3

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [24:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from an Instruction Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SET FnV EA RES0S1PTWRES0 IFSC

Bits [24:13]

Reserved, RES0.

SET, bits [12:11]

Synchronous Error Type. When the RAS Extension is implemented and IFSC is 0b010000, describes the state
of the PE after taking the Instruction Abort exception. The possible values of this field are:

SET Meaning
0b00 Recoverable error (UER).
0b10 Uncontainable error (UC).
0b11 Restartable error (UEO) or Corrected error (CE).

All other values are reserved.

Note

Software can use this information to determine what recovery might be
possible. Taking a synchronous External Abort exception might result in
an unrecoverable PE state.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the IFSC field is not 0b010000.

This field resets to an architecturally UNKNOWN value.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation
table walk.

ESR_EL2, Exception Syndrome Register (EL2)

Page 516

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is only valid if the IFSC code is 0b010000. It is RES0 for all other aborts.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation
table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a stage

1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

ESR_EL2, Exception Syndrome Register (EL2)

Page 517

IFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation table
base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not

on translation table walk or
hardware update of translation
table.

0b010100 Synchronous External abort, on
translation table walk or hardware
update of translation table, level 0.

0b010101 Synchronous External abort, on
translation table walk or hardware
update of translation table, level 1.

0b010110 Synchronous External abort, on
translation table walk or hardware
update of translation table, level 2.

0b010111 Synchronous External abort, on
translation table walk or hardware
update of translation table, level 3.

0b011000 Synchronous parity or ECC error
on memory access, not on
translation table walk.

When RAS is
not
implemented

0b011100 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 0.

When RAS is
not
implemented

0b011101 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 1.

When RAS is
not
implemented

0b011110 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 2.

When RAS is
not
implemented

0b011111 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 3.

When RAS is
not
implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic hardware

update fault.
When
ARMv8.1-TTHM
is implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU
faults'.

Note

Because Access flag faults and Permission faults can only result from a
Block or Page translation table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1
translation walk.

ESR_EL2, Exception Syndrome Register (EL2)

Page 518

This field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a Data Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV SAS SSE SRT SF AR VNCR SET FnV EA CM S1PTWWnR DFSC

ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

ISV Meaning
0b0 No valid instruction syndrome. ISS[23:14] are RES0.
0b1 ISS[23:14] hold a valid instruction syndrome.

This bit is 0 for all faults reported in ESR_EL2 except the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register specified with
0b11111, including those with Acquire/Release semantics, but excluding Load Exclusive or Store
Exclusive and excluding those with writeback.

• AArch32 instructions where the instruction:
◦ Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT, LDRB,

LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT instruction.
◦ Is not performing register writeback.
◦ Is not using R15 as a source or destination register.

For these cases, ISV is UNKNOWN if the exception was generated in Debug state in memory access mode, and
otherwise indicates whether ISS[23:14] hold a valid syndrome.

ISV is 0 for all faults reported in ESR_EL1 or ESR_EL3.

When the RAS Extension is implemented, ISV is 0 for any synchronous External abort.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid instruction
syndrome, and therefore ISV is 0 for these aborts.

When the RAS Extension is not implemented, the value of ISV on a synchronous External abort on a stage 2
translation table walk is IMPLEMENTATION DEFINED.

When ARMv8.5-MemTag is implemented, for a synchronous Tag Check Fault abort taken to ELx,
ESR_ELx.FNV is 0 and FAR_ELx is valid.

This field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting operation.

SAS Meaning
0b00 Byte
0b01 Halfword
0b10 Word
0b11 Doubleword

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

SSE, bit [21]

Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates whether the
data item must be sign extended. For these cases, the possible values of this bit are:

ESR_EL2, Exception Syndrome Register (EL2)

Page 519

SSE Meaning
0b0 Sign-extension not required.
0b1 Data item must be sign-extended.

For all other operations this bit is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

SRT, bits [20:16]

Syndrome Register Transfer. When ISV is 1, the register number of the Rt operand of the faulting instruction.

If the exception was taken from an Exception level that is using AArch32 then this is the AArch64 view of the
register. See 'Mapping of the general-purpose registers between the Execution states'.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

SF, bit [15]

Width of the register accessed by the instruction is Sixty-Four. When ISV is 1, the possible values of this bit
are:

SF Meaning
0b0 Instruction loads/stores a 32-bit wide register.
0b1 Instruction loads/stores a 64-bit wide register.

Note

This field specifies the register width identified by the instruction, not
the Execution state.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

AR, bit [14]

Acquire/Release. When ISV is 1, the possible values of this bit are:

AR Meaning
0b0 Instruction did not have acquire/release semantics.
0b1 Instruction did have acquire/release semantics.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

VNCR, bit [13]

When ARMv8.4-NV is implemented:

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

ESR_EL2, Exception Syndrome Register (EL2)

Page 520

VNCR Meaning
0b0 The fault was not generated by the use of VNCR_EL2, by

an MRS or MSR instruction executed at EL1.
0b1 The fault was generated by the use of VNCR_EL2, by an

MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SET, bits [12:11]

Synchronous Error Type. When the RAS Extension is implemented and DFSC is 0b010000, describes the state
of the PE after taking the Data Abort exception. The possible values of this field are:

SET Meaning
0b00 Recoverable error (UER).
0b10 Uncontainable error (UC).
0b11 Restartable error (UEO) or Corrected error (CE).

All other values are reserved.

Note

Software can use this information to determine what recovery might be
possible. Taking a synchronous External Abort exception might result in
an unrecoverable PE state.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 0b010000.

This field resets to an architecturally UNKNOWN value.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation
table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 521

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address translation
instruction:

CM Meaning
0b0 The Data Abort was not generated by the execution of one of

the System instructions identified in the description of value
1.

0b1 The Data Abort was generated by either the execution of a
cache maintenance instruction or by a synchronous fault on
the execution of an address translation instruction. The DC
ZVA instruction is not classified as a cache maintenance
instruction, and therefore its execution cannot cause this
field to be set to 1.

This field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation
table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a stage

1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

This field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a memory
location, or by an instruction reading from a memory location. The possible values of this bit are:

WnR Meaning
0b0 Abort caused by an instruction reading from a memory

location.
0b1 Abort caused by an instruction writing to a memory

location.

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set to 0 if
a read of the address specified by the instruction would have generated the fault which is being reported,
otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this requirement such
that for all stage 2 aborts on stage 1 translation table walks for atomic instructions, the WnR bit is always 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported Exclusive or

atomic access.

This field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

ESR_EL2, Exception Syndrome Register (EL2)

Page 522

DFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation table
base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not

on translation table walk or
hardware update of translation
table.

0b010001 Synchronous Tag Check Fault. When
ARMv8.5-MemTag
is implemented

0b010100 Synchronous External abort, on
translation table walk or
hardware update of translation
table, level 0.

0b010101 Synchronous External abort, on
translation table walk or
hardware update of translation
table, level 1.

0b010110 Synchronous External abort, on
translation table walk or
hardware update of translation
table, level 2.

0b010111 Synchronous External abort, on
translation table walk or
hardware update of translation
table, level 3.

0b011000 Synchronous parity or ECC error
on memory access, not on
translation table walk.

When RAS is not
implemented

0b011100 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update
of translation table, level 0.

When RAS is not
implemented

0b011101 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update
of translation table, level 1.

When RAS is not
implemented

0b011110 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update
of translation table, level 2.

When RAS is not
implemented

0b011111 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update
of translation table, level 3.

When RAS is not
implemented

0b100001 Alignment fault.
0b110000 TLB conflict abort.
0b110001 Unsupported atomic hardware

update fault.
When
ARMv8.1-TTHM is
implemented

0b110100 IMPLEMENTATION DEFINED fault
(Lockdown).

0b110101 IMPLEMENTATION DEFINED fault
(Unsupported Exclusive or
Atomic access).

ESR_EL2, Exception Syndrome Register (EL2)

Page 523

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU
faults'.

Note

Because Access flag faults and Permission faults can only result from a
Block or Page translation table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1
translation walk.

This field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a trapped floating-point exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0TFV RES0 VECITR IDF RES0 IXF UFFOFFDZF IOF

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid information
about trapped floating-point exceptions. The possible values of this bit are:

TFV Meaning
0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid

information about trapped floating-point exceptions and are
UNKNOWN.

0b1 One or more floating-point exceptions occurred during an
operation performed while executing the reported
instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits
indicate trapped floating-point exceptions that occurred.
For more information see 'Floating-point exception traps'.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped floating
point exception from a vector instruction.

Note

This is not a requirement. Implementations can set this field to 1 on a
trapped floating-point exception from a vector instruction and return
valid information in the {IDF, IXF, UFF, OFF, DZF, IOF} fields.

This field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 524

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

IDF Meaning
0b0 Input denormal floating-point exception has not occurred.
0b1 Input denormal floating-point exception occurred during

execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible
values of this bit are:

IXF Meaning
0b0 Inexact floating-point exception has not occurred.
0b1 Inexact floating-point exception occurred during execution

of the reported instruction.

This field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

UFF Meaning
0b0 Underflow floating-point exception has not occurred.
0b1 Underflow floating-point exception occurred during

execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

OFF Meaning
0b0 Overflow floating-point exception has not occurred.
0b1 Overflow floating-point exception occurred during execution

of the reported instruction.

This field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

DZF Meaning
0b0 Divide by Zero floating-point exception has not occurred.
0b1 Divide by Zero floating-point exception occurred during

execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 525

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

IOF Meaning
0b0 Invalid Operation floating-point exception has not occurred.
0b1 Invalid Operation floating-point exception occurred during

execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

ISS encoding for an SError interrupt

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDS RES0 IESB AET EA RES0 DFSC

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome. Possible values of this bit are:

IDS Meaning
0b0 Bits[23:0] of the ISS field holds the fields described in this

encoding.

Note
If the RAS Extension is not
implemented, this means that
bits[23:0] of the ISS field are RES0.

0b1 Bits[23:0] of the ISS field holds IMPLEMENTATION DEFINED
syndrome information that can be used to provide additional
information about the SError interrupt.

Note

This field was previously called ISV.

This field resets to an architecturally UNKNOWN value.

Bits [23:14]

Reserved, RES0.

IESB, bit [13]

When ARMv8.2-IESB is implemented:

Implicit error synchronization event.

IESB Meaning
0b0 The SError interrupt was either not synchronized by the

implicit error synchronization event or not taken
immediately.

0b1 The SError interrupt was synchronized by the implicit
error synchronization event and taken immediately.

This field is RES0 if the value returned in the DFSC field is not 0b010001.

ESR_EL2, Exception Syndrome Register (EL2)

Page 526

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AET, bits [12:10]

When RAS is implemented:

Asynchronous Error Type.

When the RAS Extension is implemented and DFSC is 0b010001, describes the state of the PE after taking the
SError interrupt exception. The possible values of this field are:

AET Meaning
0b000 Uncontainable error (UC).
0b001 Unrecoverable error (UEU).
0b010 Restartable error (UEO).
0b011 Recoverable error (UER).
0b110 Corrected error (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall state of the PE is reported. For
example, if both a Recoverable and Unrecoverable error occurred, the state is Unrecoverable.

Note

Software can use this information to determine what recovery might be
possible. The recovery software must also examine any implemented
fault records to determine the location and extent of the error.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 0b010001.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EA, bit [9]

When RAS is implemented:

External abort type. When the RAS Extension is implemented, this bit can provide an IMPLEMENTATION DEFINED
classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 0b010001.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 527

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

When RAS is implemented:

Data Fault Status Code.

DFSC Meaning
0b000000 Uncategorized.
0b010001 Asynchronous SError interrupt.

All other values are reserved.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ISS encoding for an exception from a Breakpoint or Vector Catch debug
exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IFSC

Bits [24:6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions:

• For exceptions from AArch64, see 'Breakpoint exceptions'.
• For exceptions from AArch32, see 'Breakpoint exceptions' and 'Vector Catch exceptions'.

ISS encoding for an exception from a Software Step exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV RES0 EX IFSC

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

ISV Meaning
0b0 EX bit is RES0.
0b1 EX bit is valid.

See the EX bit description for more information.

ESR_EL2, Exception Syndrome Register (EL2)

Page 528

This field resets to an architecturally UNKNOWN value.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction was
stepped.

EX Meaning
0b0 An instruction other than a Load-Exclusive instruction was

stepped.
0b1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

This field resets to an architecturally UNKNOWN value.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Software Step exceptions'.

ISS encoding for an exception from a Watchpoint exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 VNCR RES0 CM RES0WnR DFSC

Bits [24:14]

Reserved, RES0.

VNCR, bit [13]

When ARMv8.4-NV is implemented:

Indicates that the watchpoint came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The watchpoint was not generated by the use of

VNCR_EL2 by EL1 code.
0b1 The watchpoint was generated by the use of VNCR_EL2

by EL1 code.

This field is 0 in ESR_EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 529

Bits [12:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance or address
translation instruction:

CM Meaning
0b0 The Watchpoint exception was not generated by the

execution of one of the System instructions identified in the
description of value 1.

0b1 The Watchpoint exception was generated by either the
execution of a cache maintenance instruction or by a
synchronous Watchpoint exception on the execution of an
address translation instruction. The DC ZVA instruction is
not classified as a cache maintenance instruction, and
therefore its execution cannot cause this field to be set to 1.

This field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location. The possible values of this bit are:

WnR Meaning
0b0 Watchpoint exception caused by an instruction reading

from a memory location.
0b1 Watchpoint exception caused by an instruction writing to a

memory location.

For Watchpoint exceptions on cache maintenance and address translation instructions, this bit always returns
a value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location would have
generated the Watchpoint exception, otherwise it is set to 1.

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates the
Watchpoint exception.

This field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

DFSC Meaning
0b100010 Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Watchpoint exceptions'.

ISS encoding for an exception from execution of a Breakpoint instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Comment

ESR_EL2, Exception Syndrome Register (EL2)

Page 530

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Breakpoint instruction exceptions'.

ISS encoding for an exception from ERET, ERETAA or ERETAB instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ERETERETA

This EC value applies when ARMv8.6-FGT is implemented, or when HCR_EL2.NV is 1.

Bits [24:2]

Reserved, RES0.

ERET, bit [1]

Indicates whether an ERET or ERETA* instruction was trapped to EL2. Possible values are:

ERET Meaning
0b0 ERET instruction trapped to EL2.
0b1 ERETAA or ERETAB instruction trapped to EL2.

If this bit is 0, the ERETA field is RES0.

This field resets to an architecturally UNKNOWN value.

ERETA, bit [0]

Indicates whether an ERETAA or ERETAB instruction was trapped to EL2. Possible values are:

ERETA Meaning
0b0 ERETAA instruction trapped to EL2.
0b1 ERETAB instruction trapped to EL2.

When the ERET field is 0, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see HCR_EL2.NV.

If ARMv8.6-FGT is implemented, HFGITR_EL2.ERET controls fine-grained trap exceptions from ERET,
ERETAA and ERETAB execution.

ISS encoding for an exception from a TSTART instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Rd RES0

Bits [24:10]

Reserved, RES0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 531

Rd, bits [9:5]

The Rd value from the issued instruction, the general purpose register used for the destination.

Bits [4:0]

Reserved, RES0.

ISS encoding for an exception from Branch Target Identification instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BTYPE

Bits [24:2]

Reserved, RES0.

BTYPE, bits [1:0]

This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception.

For more information about generating these exceptions, see 'The AArch64 application level programmers
model'.

ISS encoding for an exception from a Pointer Authentication instruction
when HCR_EL2.API == 0 || SCR_EL3.API == 0

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

For more information about generating these exceptions, see:

• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped
to EL2.

• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to
EL3.

ISS encoding for an exception from a Pointer Authentication instruction
authentication failure

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Exception
as a result

of an
Instruction

key or a
Data key

Exception
as a

result of
an A key

or a B
key

Bits [24:2]

Reserved, RES0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 532

Bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

Meaning
0b0 Instruction Key.
0b1 Data Key.

This field resets to an architecturally UNKNOWN value.

Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

Meaning
0b0 A key.
0b1 B key.

This field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTIASP, AUTIAZ, AUTIA1716.
• AUTIBSP, AUTIBZ, AUTIB1716.
• AUTIA, AUTDA, AUTIB, AUTDB.
• AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the
authorization failure, rather than changing the address in a way that will generate a translation fault when
the address is accessed:

• RETAA, RETAB.
• BRAA, BRAB, BLRAA, BLRAB.
• BRAAZ, BRABZ, BLRAAZ, BLRABZ.
• ERETAA, ERETAB.
• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

Accessing the ESR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ESR_EL2 or
ESR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, ESR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return ESR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return ESR_EL2;
elsif PSTATE.EL == EL3 then

return ESR_EL2;

ESR_EL2, Exception Syndrome Register (EL2)

Page 533

MSR ESR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

ESR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ESR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

ESR_EL2 = X[t];

MRS <Xt>, ESR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ESR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x138];

else
return ESR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return ESR_EL2;
else

return ESR_EL1;
elsif PSTATE.EL == EL3 then

return ESR_EL1;

MSR ESR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0010 0b000

ESR_EL2, Exception Syndrome Register (EL2)

Page 534

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.ESR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x138] = X[t];

else
ESR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

ESR_EL2 = X[t];
else

ESR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

ESR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ESR_EL2, Exception Syndrome Register (EL2)

Page 535

ESR_EL3, Exception Syndrome Register (EL3)
The ESR_EL3 characteristics are:

Purpose
Holds syndrome information for an exception taken to EL3.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to ESR_EL3 are UNDEFINED.

Attributes
ESR_EL3 is a 64-bit register.

Field descriptions
The ESR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

EC IL ISS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ESR_EL3 is made UNKNOWN as a result of an exception return from EL3.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL3, the value of ESR_EL3
is UNKNOWN. The value written to ESR_EL3 must be consistent with a value that could be created as a result of an
exception from the same Exception level that generated the exception as a result of a situation that is not
UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:32]

Reserved, RES0.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.
• The encoding of the associated ISS.

Possible values of the EC field are:

ESR_EL3, Exception Syndrome Register (EL3)

Page 536

EC Meaning ISS Applies when
0b000000 Unknown reason. ISS encoding for

exceptions with an
unknown reason

0b000001 Trapped WFI or
WFE instruction
execution.
Conditional WFE
and WFI instructions
that fail their
condition code
check do not cause
an exception.

ISS encoding for an
exception from a
WFI or WFE
instruction

0b000011 Trapped MCR or
MRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for an
exception from an
MCR or MRC
access

When AArch32
is supported at
any Exception
level

0b000100 Trapped MCRR or
MRRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for an
exception from an
MCRR or MRRC
access

When AArch32
is supported at
any Exception
level

0b000101 Trapped MCR or
MRC access with
(coproc==0b1110).

ISS encoding for an
exception from an
MCR or MRC
access

When AArch32
is supported at
any Exception
level

0b000110 Trapped LDC or STC
access.
The only architected
uses of these
instruction are:
• An STC to write

data to memory
from
DBGDTRRXint.

• An LDC to read
data from
memory to
DBGDTRTXint.

ISS encoding for an
exception from an
LDC or STC
instruction

When AArch32
is supported at
any Exception
level

0b000111 Access to SVE,
Advanced SIMD, or
floating-point
functionality
trapped by
CPACR_EL1.FPEN,
CPTR_EL2.FPEN,
CPTR_EL2.TFP, or
CPTR_EL3.TFP
control.
Excludes exceptions
resulting from
CPACR_EL1 when
the value of
HCR_EL2.TGE is 1,
or because SVE or
Advanced SIMD and
floating-point are
not implemented.
These are reported
with EC value
0b000000 as
described in 'EC
encodings when
routing exceptions
to EL2' in the Arm®
Architecture
Reference Manual,
Armv8, for Armv8-A

ISS encoding for an
exception from an
access to SVE,
Advanced SIMD or
floating-point
functionality,
resulting from
CPACR_EL1.FPEN,
CPTR_EL2.FPEN or
CPTR_ELx.TFP

ESR_EL3, Exception Syndrome Register (EL3)

Page 537

architecture profile,
section D1.10.4.

0b001001 Trapped use of a
Pointer
authentication
instruction because
HCR_EL2.API == 0
|| SCR_EL3.API ==
0.

ISS encoding for an
exception from a
Pointer
Authentication
instruction when
HCR_EL2.API == 0
|| SCR_EL3.API ==
0

When
ARMv8.3-PAuth
is implemented

0b001100 Trapped MRRC
access with
(coproc==0b1110).

ISS encoding for an
exception from an
MCRR or MRRC
access

When AArch32
is supported at
any Exception
level

0b001101 Branch Target
Exception.

ISS encoding for an
exception from
Branch Target
Identification
instruction

When
ARMv8.5-BTI is
implemented

0b001110 Illegal Execution
state.

ISS encoding for an
exception from an
Illegal Execution
state, or a PC or SP
alignment fault

0b010011 SMC instruction
execution in
AArch32 state, when
SMC is not disabled.
This is reported in
ESR_EL2 only when
the exception is
generated because
the value of
HCR_EL2.TSC is 1.

ISS encoding for an
exception from
SMC instruction
execution in
AArch32 state

When AArch32
is supported at
any Exception
level

0b010101 SVC instruction
execution in
AArch64 state.

ISS encoding for an
exception from
HVC or SVC
instruction
execution

When AArch64
is supported at
any Exception
level

0b010110 HVC instruction
execution in
AArch64 state, when
HVC is not disabled.

ISS encoding for an
exception from
HVC or SVC
instruction
execution

When AArch64
is supported at
any Exception
level

0b010111 SMC instruction
execution in
AArch64 state, when
SMC is not disabled.
This is reported in
ESR_EL2 only when
the exception is
generated because
the value of
HCR_EL2.TSC is 1.

ISS encoding for an
exception from
SMC instruction
execution in
AArch64 state

When AArch64
is supported at
any Exception
level

0b011000 Trapped MSR, MRS
or System
instruction
execution in
AArch64 state, that
is not reported using
EC 0b000000,
0b000001 or
0b000111.
This includes all
instructions that
cause exceptions
that are part of the
encoding space
defined in 'System
instruction class

ISS encoding for an
exception from
MSR, MRS, or
System instruction
execution in
AArch64 state

When AArch64
is supported at
any Exception
level

ESR_EL3, Exception Syndrome Register (EL3)

Page 538

encoding overview'
in the Arm®
Architecture
Reference Manual,
Armv8, for Armv8-A
architecture profile,
section C5.2.2,
except for those
exceptions reported
using EC values
0b000000, 0b000001,
or 0b000111.

0b011001 Access to SVE
functionality
trapped as a result
of CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ, that
is not reported using
EC 0b000000.

ISS encoding for an
exception from an
access to SVE
functionality,
resulting from
CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ

When SVE is
implemented

0b011011 Exception from an
access to a TSTART
instruction at EL0
when
SCTLR_EL1.TME0
== 0, EL0 when
SCTLR_EL2.TME0
== 0, at EL1 when
SCTLR_EL1.TME
== 0, at EL2 when
SCTLR_EL2.TME
== 0 or at EL3
when
SCTLR_EL3.TME
== 0.

ISS encoding for an
exception from a
TSTART instruction

When TME is
implemented

0b011100 Exception from a
Pointer
Authentication
instruction
authentication
failure

ISS encoding for an
exception from a
Pointer
Authentication
instruction
authentication
failure

When
ARMv8.3-FPAC
is implemented

0b011111 IMPLEMENTATION
DEFINED exception to
EL3.

ISS encoding for an
IMPLEMENTATION
DEFINED
exception to EL3

0b100000 Instruction Abort
from a lower
Exception level.
Used for MMU
faults generated by
instruction accesses
and synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug
related exceptions.

ISS encoding for an
exception from an
Instruction Abort

0b100001 Instruction Abort
taken without a
change in Exception
level.
Used for MMU
faults generated by
instruction accesses
and synchronous
External aborts,
including

ISS encoding for an
exception from an
Instruction Abort

ESR_EL3, Exception Syndrome Register (EL3)

Page 539

synchronous parity
or ECC errors. Not
used for debug
related exceptions.

0b100010 PC alignment fault
exception.

ISS encoding for an
exception from an
Illegal Execution
state, or a PC or SP
alignment fault

0b100100 Data Abort from a
lower Exception
level.
Used for MMU
faults generated by
data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug
related exceptions.

ISS encoding for an
exception from a
Data Abort

0b100101 Data Abort taken
without a change in
Exception level.
Used for MMU
faults generated by
data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug
related exceptions.

ISS encoding for an
exception from a
Data Abort

0b100110 SP alignment fault
exception.

ISS encoding for an
exception from an
Illegal Execution
state, or a PC or SP
alignment fault

0b101100 Trapped floating-
point exception
taken from AArch64
state.
This EC value is
valid if the
implementation
supports trapping of
floating-point
exceptions,
otherwise it is
reserved. Whether a
floating-point
implementation
supports trapping of
floating-point
exceptions is
IMPLEMENTATION
DEFINED.

ISS encoding for an
exception from a
trapped floating-
point exception

When AArch64
is supported at
any Exception
level

ESR_EL3, Exception Syndrome Register (EL3)

Page 540

0b101111 SError interrupt. ISS encoding for an
SError interrupt

0b111100 BRK instruction
execution in
AArch64 state.
This is reported in
ESR_EL3 only if a
BRK instruction is
executed.

ISS encoding for an
exception from
execution of a
Breakpoint
instruction

When AArch64
is supported at
any Exception
level

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous
exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be used
for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as described in
'Reserved values in System and memory-mapped registers and translation table entries' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile, section K1.1.11.

This field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

IL Meaning
0b0 16-bit instruction trapped.
0b1 32-bit instruction trapped. This value is also used when the

exception is one of the following:
• An SError interrupt.
• An Instruction Abort exception.
• A PC alignment fault exception.
• An SP alignment fault exception.
• A Data Abort exception for which the value of the ISV bit is

0.
• An Illegal Execution state exception.
• Any debug exception except for Breakpoint instruction

exceptions. For Breakpoint instruction exceptions, this bit
has its standard meaning:

◦ 0b0: 16-bit T32 BKPT instruction.
◦ 0b1: 32-bit A32 BKPT instruction or A64 BRK

instruction.
• An exception reported using EC value 0b000000.

This field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception
class. However, in practice, some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value
returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, 'Mapping of the general-purpose registers between the Execution states'.

If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value 0b11111.
• If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that must

be either:
◦ The AArch64 view of the register number of a register that might have been used at the Exception

level from which the exception was taken.
◦ The value 0b11111.

When the EC field is 0b000000, indicating an exception with an unknown reason, the ISS field is not valid, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 541

ISS encoding for exceptions with an unknown reason

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions
that are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not
accessible at the current Exception level and Security state, including:

◦ A read access using a System register pattern that is not allocated for reads or that does not
permit reads at the current Exception level and Security state.

◦ A write access using a System register pattern that is not allocated for writes or that does
not permit writes at the current Exception level and Security state.

◦ Instruction encodings that are unallocated.
◦ Instruction encodings for instructions or System registers that are not implemented in the

implementation.
• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug

state.
• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-

debug state.
• In AArch32 state, attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an

attempted access to Advanced SIMD or floating-point functionality under conditions where that access
would be permitted if that functionality was present. This includes the attempted execution of an
Advanced SIMD or floating-point instruction, and attempted accesses to Advanced SIMD and floating-
point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control
bits.

• Attempted execution of:
◦ An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
◦ An SMC instruction when disabled by SCR_EL3.SMD.
◦ An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.
• Attempted execution, in Debug state, of:

◦ A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not
implemented in the current Security state.

◦ A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the
current Security state.

◦ A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.
• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using

R13_mon. See 'Traps to EL3 of monitor functionality from Secure EL1 using AArch32'.
• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an

instruction that is configured to trap to EL3.
• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)

instruction to SPSR_mon, SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of
HCR_EL2.TGE was 0 would have been reported with an ESR_ELx.EC value of 0b000111.

• In Non-transactional state, attempted execution of a TCOMMIT instruction.

ISS encoding for an exception from a WFI or WFE instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0 TI

CV, bit [24]

Condition code valid. Possible values of this bit are:

ESR_EL3, Exception Syndrome Register (EL3)

Page 542

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Bits [19:1]

Reserved, RES0.

TI, bit [0]

Trapped instruction. Possible values of this bit are:

TI Meaning
0b0 WFI trapped.
0b1 WFE trapped.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• SCTLR_EL1.{nTWE, nTWI}.
• HCR_EL2.{TWE, TWI}.
• SCR_EL3.{TWE, TWI}.

ISS encoding for an exception from an MCR or MRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc2 Opc1 CRn Rt CRm Direction

ESR_EL3, Exception Syndrome Register (EL3)

Page 543

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

This field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

This field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

ESR_EL3, Exception Syndrome Register (EL3)

Page 544

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

This field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between the
Execution states'.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0b0 Write to System register space. MCR instruction.
0b1 Read from System register space. MRC or VMRS

instruction.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000011:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or
EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access
(coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCR or MRC access (coproc
== 0b1111) trapped to EL2.

• CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

ESR_EL3, Exception Syndrome Register (EL3)

Page 545

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• See 'Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32' for information on
other traps using EC value 0b000011.

• If ARMv8.6-FGT is implemented, MCR or MRC access to some registers at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000101:

• CPACR_EL1.TTA for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and
EL1 using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• If ARMv8.6-FGT is implemented, MDCR_EL2.TDCC and MDCR_EL3.TDCC, for accesses to the DCC
registers at EL0 and EL1, trapped to EL2.

• HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32,
MRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using
AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC
access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, MCR or MRC access
(coproc == 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, MCR or MRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc
== 0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b001000:

• HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS
access trapped to EL2.

• HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS
access trapped to EL2.

ISS encoding for an exception from an MCRR or MRRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc1 RES0 Rt2 Rt CRm Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

ESR_EL3, Exception Syndrome Register (EL3)

Page 546

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer. The
reported value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between
the Execution states'.

This field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between the
Execution states'.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0b0 Write to System register space. MCRR instruction.
0b1 Read from System register space. MRRC instruction.

This field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 547

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1
or EL2.

• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped
to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCRR or MRRC access
(coproc == 0b1111) trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers from EL0 and
EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc ==
0b1111) trapped to EL2.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• If ARMv8.6-FGT is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and
HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following sections describe configuration settings for generating exceptions that are reported using EC
value 0b001100:

• CPACR_EL1.TTA for accesses to trace registers using MCR or MRC instructions, MCRR or MRRC
access (coproc == 0b1110) trapped to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers DBGDSAR
and DBGDRAR at EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to
EL1 or EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using
AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

• MDCR_EL3.TDOSA, for traps to powerdown debug registers using AArch32, MCRR or MRRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCRR or MRRC access
(coproc == 0b1110) trapped to EL3.

ISS encoding for an exception from an LDC or STC instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND imm8 RES0 Rn Offset AM Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

ESR_EL3, Exception Syndrome Register (EL3)

Page 548

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between the
Execution states'.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction. When
AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Offset Meaning
0b0 Subtract offset.
0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

This field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 549

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

AM Meaning
0b000 Immediate unindexed.
0b001 Immediate post-indexed.
0b010 Immediate offset.
0b011 Immediate pre-indexed.
0b100 For a trapped STC instruction or a trapped T32 LDC

instruction this encoding is reserved.
0b110 For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is that
behavior is CONSTRAINED UNPREDICTABLE, as described in 'Reserved values in System and memory-mapped
registers and translation table entries'.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0b0 Write to memory. STC instruction.
0b1 Read from memory. LDC instruction.

This field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value
0b000110:

• MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint trapped to EL1 or EL2.

• MDCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL2.

• MDCR_EL3.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL3.

• If ARMv8.6-FGT is implemented, MDCR_EL2.TDCC and MDCR_EL3.TDCC, for accesses to the DCC
registers at EL0 and EL1, trapped to EL2.

ISS encoding for an exception from an access to SVE, Advanced SIMD or
floating-point functionality, resulting from CPACR_EL1.FPEN,
CPTR_EL2.FPEN or CPTR_ELx.TFP

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.
• Accesses to the Advanced SIMD and floating-point System registers.

For an implementation that does not include either SVE or support for floating-point and Advanced SIMD, the
exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid. Possible values of this bit are:

ESR_EL3, Exception Syndrome Register (EL3)

Page 550

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

The following sections describe the configuration settings for the traps that are reported using EC value
0b000111:

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.
• CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL2.
• CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

ISS encoding for an exception from an access to SVE functionality,
resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or
CPTR_EL3.EZ

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

When SVE is implemented:

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 551

Otherwise:

Reserved, RES0.

The accesses covered by this trap include:

• Execution of SVE instructions.
• Accesses to the SVE system registers, ZCR_ELx and ID_AA64ZFR0_EL1.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about these exceptions see 'The Illegal Execution state exception' and 'PC
alignment checking'.

'Stack pointer alignment checking' describes the configuration settings for generating SP alignment fault
exceptions.

ISS encoding for an exception from HVC or SVC instruction execution

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the issued
instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:
◦ For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.
◦ For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.

• If the instruction is conditional, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an
exception only if it passes its condition code check. Therefore, the syndrome information for these exceptions
does not require conditionality information.

For T32 and A32 instructions, see 'SVC' and 'HVC'.

For A64 instructions, see 'SVC' and 'HVC'.

If ARMv8.6-FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC
execution.

ESR_EL3, Exception Syndrome Register (EL3)

Page 552

ISS encoding for an exception from SMC instruction execution in AArch32
state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND CCKNOWNPASS RES0

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS
encoding is RES0.

For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is as
shown in the diagram.

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

ESR_EL3, Exception Syndrome Register (EL3)

Page 553

CCKNOWNPASS Meaning
0b0 The instruction was unconditional, or was

conditional and passed its condition code
check.

0b1 The instruction was conditional, and might
have failed its condition code check.

Note

In an implementation in which an SMC instruction that fails it code
check is not trapped, this field can always return the value 0.

This field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

See 'System calls' describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from SMC instruction execution in AArch64
state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

This field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from EL1 modes.
• When an SMC instruction is not trapped, so completes normally and generates an exception that is

taken to EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

'System calls' describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from MSR, MRS, or System instruction
execution in AArch64 state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Op0 Op2 Op1 CRn Rt CRm Direction

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

ESR_EL3, Exception Syndrome Register (EL3)

Page 554

This field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0b0 Write access, including MSR instructions.
0b1 Read access, including MRS instructions.

This field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see 'System' subsection of 'Branches, exception generating and
System instructions' for the encoding values returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC
value 0b011000:

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1
or EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• If ARMv8.6-FGT is implemented, MDCR_EL2.TDCC and MDCR_EL3.TDCC, for accesses to the DCC
registers at EL0 and EL1, trapped to EL2.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer
registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

ESR_EL3, Exception Syndrome Register (EL3)

Page 555

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to the Performance Monitor registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter register, TRFCR_EL1, using AArch64 state, MSR or
MRS access trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS
access trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64
state, MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state,
MSR or MRS access trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.APK, for accesses to Pointer authentication key registers. using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS
access, trapped to EL2.

• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access,
trapped to EL2.

• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access,
trapped to EL2.

• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state,
MSR or MRS access trapped to EL3.

• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access
trapped to EL3.

• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL3.

• MDCR_EL3.TTRF, for accesses to the filter trace control registers, TRFCR_EL1 and TRFCR_EL2, using
AArch64 state, MSR or MRS access trapped to EL3.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,
trapped to EL3.

• If ARMv8.2-EVT is implemented the following registers control traps for EL1 and EL0 Cache controls
that use this EC value:

◦ HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}.
◦ HCR2.{TTLBIS, TICAB, TOCU, TID4}.

• If ARMv8.6-FGT is implemented:

ESR_EL3, Exception Syndrome Register (EL3)

Page 556

◦ SCR_EL3.FGTEn, for accesses to the fine-grained trap registers, MSR or MRS access at EL2
trapped to EL3.

◦ HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, MSR
or MRS access at EL0 and EL1 trapped to EL2.

◦ HFGITR_EL2 for execution of system instructions, MSR or MRS access trapped to EL2
◦ HDFGRTR_EL2 for reads and HDFGWTR_EL2 for writes of registers, using AArch64 state,

MSR or MRS access at EL0 and EL1 state trapped to EL2.
◦ HAFGRTR_EL2 for reads of Activity Monitor counters, using AArch64 state, MRS access at

EL0 and EL1 trapped to EL2.

ISS encoding for an IMPLEMENTATION DEFINED exception to EL3

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [24:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from an Instruction Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SET FnV EA RES0S1PTWRES0 IFSC

Bits [24:13]

Reserved, RES0.

SET, bits [12:11]

Synchronous Error Type. When the RAS Extension is implemented and IFSC is 0b010000, describes the state
of the PE after taking the Instruction Abort exception. The possible values of this field are:

SET Meaning
0b00 Recoverable error (UER).
0b10 Uncontainable error (UC).
0b11 Restartable error (UEO) or Corrected error (CE).

All other values are reserved.

Note

Software can use this information to determine what recovery might be
possible. Taking a synchronous External Abort exception might result in
an unrecoverable PE state.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the IFSC field is not 0b010000.

This field resets to an architecturally UNKNOWN value.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation
table walk.

ESR_EL3, Exception Syndrome Register (EL3)

Page 557

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is only valid if the IFSC code is 0b010000. It is RES0 for all other aborts.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation
table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a stage

1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

ESR_EL3, Exception Syndrome Register (EL3)

Page 558

IFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation table
base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not

on translation table walk or
hardware update of translation
table.

0b010100 Synchronous External abort, on
translation table walk or hardware
update of translation table, level 0.

0b010101 Synchronous External abort, on
translation table walk or hardware
update of translation table, level 1.

0b010110 Synchronous External abort, on
translation table walk or hardware
update of translation table, level 2.

0b010111 Synchronous External abort, on
translation table walk or hardware
update of translation table, level 3.

0b011000 Synchronous parity or ECC error
on memory access, not on
translation table walk.

When RAS is
not
implemented

0b011100 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 0.

When RAS is
not
implemented

0b011101 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 1.

When RAS is
not
implemented

0b011110 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 2.

When RAS is
not
implemented

0b011111 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 3.

When RAS is
not
implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic hardware

update fault.
When
ARMv8.1-TTHM
is implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU
faults'.

Note

Because Access flag faults and Permission faults can only result from a
Block or Page translation table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1
translation walk.

ESR_EL3, Exception Syndrome Register (EL3)

Page 559

This field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a Data Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV SAS SSE SRT SF AR VNCR SET FnV EA CM S1PTWWnR DFSC

ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

ISV Meaning
0b0 No valid instruction syndrome. ISS[23:14] are RES0.
0b1 ISS[23:14] hold a valid instruction syndrome.

This bit is 0 for all faults reported in ESR_EL2 except the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register specified with
0b11111, including those with Acquire/Release semantics, but excluding Load Exclusive or Store
Exclusive and excluding those with writeback.

• AArch32 instructions where the instruction:
◦ Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT, LDRB,

LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT instruction.
◦ Is not performing register writeback.
◦ Is not using R15 as a source or destination register.

For these cases, ISV is UNKNOWN if the exception was generated in Debug state in memory access mode, and
otherwise indicates whether ISS[23:14] hold a valid syndrome.

ISV is 0 for all faults reported in ESR_EL1 or ESR_EL3.

When the RAS Extension is implemented, ISV is 0 for any synchronous External abort.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid instruction
syndrome, and therefore ISV is 0 for these aborts.

When the RAS Extension is not implemented, the value of ISV on a synchronous External abort on a stage 2
translation table walk is IMPLEMENTATION DEFINED.

When ARMv8.5-MemTag is implemented, for a synchronous Tag Check Fault abort taken to ELx,
ESR_ELx.FNV is 0 and FAR_ELx is valid.

This field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting operation.

SAS Meaning
0b00 Byte
0b01 Halfword
0b10 Word
0b11 Doubleword

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

SSE, bit [21]

Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates whether the
data item must be sign extended. For these cases, the possible values of this bit are:

ESR_EL3, Exception Syndrome Register (EL3)

Page 560

SSE Meaning
0b0 Sign-extension not required.
0b1 Data item must be sign-extended.

For all other operations this bit is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

SRT, bits [20:16]

Syndrome Register Transfer. When ISV is 1, the register number of the Rt operand of the faulting instruction.

If the exception was taken from an Exception level that is using AArch32 then this is the AArch64 view of the
register. See 'Mapping of the general-purpose registers between the Execution states'.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

SF, bit [15]

Width of the register accessed by the instruction is Sixty-Four. When ISV is 1, the possible values of this bit
are:

SF Meaning
0b0 Instruction loads/stores a 32-bit wide register.
0b1 Instruction loads/stores a 64-bit wide register.

Note

This field specifies the register width identified by the instruction, not
the Execution state.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

AR, bit [14]

Acquire/Release. When ISV is 1, the possible values of this bit are:

AR Meaning
0b0 Instruction did not have acquire/release semantics.
0b1 Instruction did have acquire/release semantics.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

VNCR, bit [13]

When ARMv8.4-NV is implemented:

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

ESR_EL3, Exception Syndrome Register (EL3)

Page 561

VNCR Meaning
0b0 The fault was not generated by the use of VNCR_EL2, by

an MRS or MSR instruction executed at EL1.
0b1 The fault was generated by the use of VNCR_EL2, by an

MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SET, bits [12:11]

Synchronous Error Type. When the RAS Extension is implemented and DFSC is 0b010000, describes the state
of the PE after taking the Data Abort exception. The possible values of this field are:

SET Meaning
0b00 Recoverable error (UER).
0b10 Uncontainable error (UC).
0b11 Restartable error (UEO) or Corrected error (CE).

All other values are reserved.

Note

Software can use this information to determine what recovery might be
possible. Taking a synchronous External Abort exception might result in
an unrecoverable PE state.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 0b010000.

This field resets to an architecturally UNKNOWN value.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation
table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 562

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address translation
instruction:

CM Meaning
0b0 The Data Abort was not generated by the execution of one of

the System instructions identified in the description of value
1.

0b1 The Data Abort was generated by either the execution of a
cache maintenance instruction or by a synchronous fault on
the execution of an address translation instruction. The DC
ZVA instruction is not classified as a cache maintenance
instruction, and therefore its execution cannot cause this
field to be set to 1.

This field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation
table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a stage

1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

This field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a memory
location, or by an instruction reading from a memory location. The possible values of this bit are:

WnR Meaning
0b0 Abort caused by an instruction reading from a memory

location.
0b1 Abort caused by an instruction writing to a memory

location.

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set to 0 if
a read of the address specified by the instruction would have generated the fault which is being reported,
otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this requirement such
that for all stage 2 aborts on stage 1 translation table walks for atomic instructions, the WnR bit is always 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported Exclusive or

atomic access.

This field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

ESR_EL3, Exception Syndrome Register (EL3)

Page 563

DFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation table
base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not

on translation table walk or
hardware update of translation
table.

0b010001 Synchronous Tag Check Fault. When
ARMv8.5-MemTag
is implemented

0b010100 Synchronous External abort, on
translation table walk or
hardware update of translation
table, level 0.

0b010101 Synchronous External abort, on
translation table walk or
hardware update of translation
table, level 1.

0b010110 Synchronous External abort, on
translation table walk or
hardware update of translation
table, level 2.

0b010111 Synchronous External abort, on
translation table walk or
hardware update of translation
table, level 3.

0b011000 Synchronous parity or ECC error
on memory access, not on
translation table walk.

When RAS is not
implemented

0b011100 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update
of translation table, level 0.

When RAS is not
implemented

0b011101 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update
of translation table, level 1.

When RAS is not
implemented

0b011110 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update
of translation table, level 2.

When RAS is not
implemented

0b011111 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update
of translation table, level 3.

When RAS is not
implemented

0b100001 Alignment fault.
0b110000 TLB conflict abort.
0b110001 Unsupported atomic hardware

update fault.
When
ARMv8.1-TTHM is
implemented

0b110100 IMPLEMENTATION DEFINED fault
(Lockdown).

0b110101 IMPLEMENTATION DEFINED fault
(Unsupported Exclusive or
Atomic access).

ESR_EL3, Exception Syndrome Register (EL3)

Page 564

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU
faults'.

Note

Because Access flag faults and Permission faults can only result from a
Block or Page translation table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1
translation walk.

This field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a trapped floating-point exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0TFV RES0 VECITR IDF RES0 IXF UFFOFFDZF IOF

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid information
about trapped floating-point exceptions. The possible values of this bit are:

TFV Meaning
0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid

information about trapped floating-point exceptions and are
UNKNOWN.

0b1 One or more floating-point exceptions occurred during an
operation performed while executing the reported
instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits
indicate trapped floating-point exceptions that occurred.
For more information see 'Floating-point exception traps'.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped floating
point exception from a vector instruction.

Note

This is not a requirement. Implementations can set this field to 1 on a
trapped floating-point exception from a vector instruction and return
valid information in the {IDF, IXF, UFF, OFF, DZF, IOF} fields.

This field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 565

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

IDF Meaning
0b0 Input denormal floating-point exception has not occurred.
0b1 Input denormal floating-point exception occurred during

execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible
values of this bit are:

IXF Meaning
0b0 Inexact floating-point exception has not occurred.
0b1 Inexact floating-point exception occurred during execution

of the reported instruction.

This field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

UFF Meaning
0b0 Underflow floating-point exception has not occurred.
0b1 Underflow floating-point exception occurred during

execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

OFF Meaning
0b0 Overflow floating-point exception has not occurred.
0b1 Overflow floating-point exception occurred during execution

of the reported instruction.

This field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

DZF Meaning
0b0 Divide by Zero floating-point exception has not occurred.
0b1 Divide by Zero floating-point exception occurred during

execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 566

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

IOF Meaning
0b0 Invalid Operation floating-point exception has not occurred.
0b1 Invalid Operation floating-point exception occurred during

execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

ISS encoding for an SError interrupt

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDS RES0 IESB AET EA RES0 DFSC

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome. Possible values of this bit are:

IDS Meaning
0b0 Bits[23:0] of the ISS field holds the fields described in this

encoding.

Note
If the RAS Extension is not
implemented, this means that
bits[23:0] of the ISS field are RES0.

0b1 Bits[23:0] of the ISS field holds IMPLEMENTATION DEFINED
syndrome information that can be used to provide additional
information about the SError interrupt.

Note

This field was previously called ISV.

This field resets to an architecturally UNKNOWN value.

Bits [23:14]

Reserved, RES0.

IESB, bit [13]

When ARMv8.2-IESB is implemented:

Implicit error synchronization event.

IESB Meaning
0b0 The SError interrupt was either not synchronized by the

implicit error synchronization event or not taken
immediately.

0b1 The SError interrupt was synchronized by the implicit
error synchronization event and taken immediately.

This field is RES0 if the value returned in the DFSC field is not 0b010001.

ESR_EL3, Exception Syndrome Register (EL3)

Page 567

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AET, bits [12:10]

When RAS is implemented:

Asynchronous Error Type.

When the RAS Extension is implemented and DFSC is 0b010001, describes the state of the PE after taking the
SError interrupt exception. The possible values of this field are:

AET Meaning
0b000 Uncontainable error (UC).
0b001 Unrecoverable error (UEU).
0b010 Restartable error (UEO).
0b011 Recoverable error (UER).
0b110 Corrected error (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall state of the PE is reported. For
example, if both a Recoverable and Unrecoverable error occurred, the state is Unrecoverable.

Note

Software can use this information to determine what recovery might be
possible. The recovery software must also examine any implemented
fault records to determine the location and extent of the error.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 0b010001.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EA, bit [9]

When RAS is implemented:

External abort type. When the RAS Extension is implemented, this bit can provide an IMPLEMENTATION DEFINED
classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 0b010001.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 568

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

When RAS is implemented:

Data Fault Status Code.

DFSC Meaning
0b000000 Uncategorized.
0b010001 Asynchronous SError interrupt.

All other values are reserved.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ISS encoding for an exception from a Breakpoint or Vector Catch debug
exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IFSC

Bits [24:6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions:

• For exceptions from AArch64, see 'Breakpoint exceptions'.
• For exceptions from AArch32, see 'Breakpoint exceptions' and 'Vector Catch exceptions'.

ISS encoding for an exception from a Software Step exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV RES0 EX IFSC

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

ISV Meaning
0b0 EX bit is RES0.
0b1 EX bit is valid.

See the EX bit description for more information.

ESR_EL3, Exception Syndrome Register (EL3)

Page 569

This field resets to an architecturally UNKNOWN value.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction was
stepped.

EX Meaning
0b0 An instruction other than a Load-Exclusive instruction was

stepped.
0b1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

This field resets to an architecturally UNKNOWN value.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Software Step exceptions'.

ISS encoding for an exception from a Watchpoint exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 VNCR RES0 CM RES0WnR DFSC

Bits [24:14]

Reserved, RES0.

VNCR, bit [13]

When ARMv8.4-NV is implemented:

Indicates that the watchpoint came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The watchpoint was not generated by the use of

VNCR_EL2 by EL1 code.
0b1 The watchpoint was generated by the use of VNCR_EL2

by EL1 code.

This field is 0 in ESR_EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 570

Bits [12:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance or address
translation instruction:

CM Meaning
0b0 The Watchpoint exception was not generated by the

execution of one of the System instructions identified in the
description of value 1.

0b1 The Watchpoint exception was generated by either the
execution of a cache maintenance instruction or by a
synchronous Watchpoint exception on the execution of an
address translation instruction. The DC ZVA instruction is
not classified as a cache maintenance instruction, and
therefore its execution cannot cause this field to be set to 1.

This field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location. The possible values of this bit are:

WnR Meaning
0b0 Watchpoint exception caused by an instruction reading

from a memory location.
0b1 Watchpoint exception caused by an instruction writing to a

memory location.

For Watchpoint exceptions on cache maintenance and address translation instructions, this bit always returns
a value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location would have
generated the Watchpoint exception, otherwise it is set to 1.

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates the
Watchpoint exception.

This field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

DFSC Meaning
0b100010 Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Watchpoint exceptions'.

ISS encoding for an exception from execution of a Breakpoint instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Comment

ESR_EL3, Exception Syndrome Register (EL3)

Page 571

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Breakpoint instruction exceptions'.

ISS encoding for an exception from ERET, ERETAA or ERETAB instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ERETERETA

This EC value applies when ARMv8.6-FGT is implemented, or when HCR_EL2.NV is 1.

Bits [24:2]

Reserved, RES0.

ERET, bit [1]

Indicates whether an ERET or ERETA* instruction was trapped to EL2. Possible values are:

ERET Meaning
0b0 ERET instruction trapped to EL2.
0b1 ERETAA or ERETAB instruction trapped to EL2.

If this bit is 0, the ERETA field is RES0.

This field resets to an architecturally UNKNOWN value.

ERETA, bit [0]

Indicates whether an ERETAA or ERETAB instruction was trapped to EL2. Possible values are:

ERETA Meaning
0b0 ERETAA instruction trapped to EL2.
0b1 ERETAB instruction trapped to EL2.

When the ERET field is 0, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see HCR_EL2.NV.

If ARMv8.6-FGT is implemented, HFGITR_EL2.ERET controls fine-grained trap exceptions from ERET,
ERETAA and ERETAB execution.

ISS encoding for an exception from a TSTART instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Rd RES0

Bits [24:10]

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 572

Rd, bits [9:5]

The Rd value from the issued instruction, the general purpose register used for the destination.

Bits [4:0]

Reserved, RES0.

ISS encoding for an exception from Branch Target Identification instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BTYPE

Bits [24:2]

Reserved, RES0.

BTYPE, bits [1:0]

This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception.

For more information about generating these exceptions, see 'The AArch64 application level programmers
model'.

ISS encoding for an exception from a Pointer Authentication instruction
when HCR_EL2.API == 0 || SCR_EL3.API == 0

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

For more information about generating these exceptions, see:

• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped
to EL2.

• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to
EL3.

ISS encoding for an exception from a Pointer Authentication instruction
authentication failure

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Exception
as a result

of an
Instruction

key or a
Data key

Exception
as a

result of
an A key

or a B
key

Bits [24:2]

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 573

Bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

Meaning
0b0 Instruction Key.
0b1 Data Key.

This field resets to an architecturally UNKNOWN value.

Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

Meaning
0b0 A key.
0b1 B key.

This field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTIASP, AUTIAZ, AUTIA1716.
• AUTIBSP, AUTIBZ, AUTIB1716.
• AUTIA, AUTDA, AUTIB, AUTDB.
• AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the
authorization failure, rather than changing the address in a way that will generate a translation fault when
the address is accessed:

• RETAA, RETAB.
• BRAA, BRAB, BLRAA, BLRAB.
• BRAAZ, BRABZ, BLRAAZ, BLRABZ.
• ERETAA, ERETAB.
• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

Accessing the ESR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, ESR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return ESR_EL3;

MSR ESR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0101 0b0010 0b000

ESR_EL3, Exception Syndrome Register (EL3)

Page 574

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
ESR_EL3 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ESR_EL3, Exception Syndrome Register (EL3)

Page 575

FAR_EL1, Fault Address Register (EL1)
The FAR_EL1 characteristics are:

Purpose
Holds the faulting Virtual Address for all synchronous Instruction or Data Abort, PC alignment fault and Watchpoint
exceptions that are taken to EL1.

Configuration
AArch64 System register FAR_EL1 bits [31:0] are architecturally mapped to AArch32 System register DFAR[31:0] (NS)
.

AArch64 System register FAR_EL1 bits [63:32] are architecturally mapped to AArch32 System register IFAR[31:0]
(NS) .

Attributes
FAR_EL1 is a 64-bit register.

Field descriptions
The FAR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Faulting Virtual Address for synchronous exceptions taken to EL1
Faulting Virtual Address for synchronous exceptions taken to EL1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL1. Exceptions that set the FAR_EL1 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC 0x34 or
0x35). ESR_EL1.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight bits of
FAR_EL1 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL1.FnV is 0, and the FAR_EL1 is UNKNOWN if ESR_EL1.FnV is 1.

For all other exceptions taken to EL1, the FAR_EL1 is UNKNOWN.

If a memory fault that sets FAR_EL1 is generated from a data cache maintenance or other DC instruction, this field
holds the address specified in the register argument of the instruction.

If the exception that updates FAR_EL1 is taken from an Exception level that is using AArch32, the top 32 bits are all
zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially incremented from address
0xFFFFFFFF. Such a load or store is CONSTRAINED UNPREDICTABLE. See 'Out of range VA' in Appendix K1 Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data access
that caused the exception, then this field includes the tag. For more information about address tagging, see 'Address
tagging in AArch64 state' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

FAR_EL1, Fault Address Register (EL1)

Page 576

Execution at EL0 makes FAR_EL1 become UNKNOWN.

Note

The address held in this field is an address accessed by the instruction fetch
or data access that caused the exception that gave rise to the instruction or
data abort. It is the lower address that gave rise to the fault. Where different
faults from different addresses arise from the same instruction, such as for an
instruction that loads or stores a mis-aligned address that crosses a page
boundary, the architecture does not prioritize between those different faults.

FAR_EL1 is made UNKNOWN on an exception return from EL1.

This field resets to an architecturally UNKNOWN value.

Accessing the FAR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic FAR_EL1 or
FAR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, FAR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.FAR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x220];

else
return FAR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return FAR_EL2;
else

return FAR_EL1;
elsif PSTATE.EL == EL3 then

return FAR_EL1;

MSR FAR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0110 0b0000 0b000

FAR_EL1, Fault Address Register (EL1)

Page 577

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.FAR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x220] = X[t];

else
FAR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

FAR_EL2 = X[t];
else

FAR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

FAR_EL1 = X[t];

MRS <Xt>, FAR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x220];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return FAR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return FAR_EL1;
else

UNDEFINED;

MSR FAR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0110 0b0000 0b000

FAR_EL1, Fault Address Register (EL1)

Page 578

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x220] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
FAR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

FAR_EL1 = X[t];
else

UNDEFINED;

MRS <Xt>, FAR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return FAR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return FAR_EL2;
elsif PSTATE.EL == EL3 then

return FAR_EL2;

MSR FAR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

FAR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

FAR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

FAR_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FAR_EL1, Fault Address Register (EL1)

Page 579

FAR_EL2, Fault Address Register (EL2)
The FAR_EL2 characteristics are:

Purpose
Holds the faulting Virtual Address for all synchronous Instruction or Data Abort, PC alignment fault and Watchpoint
exceptions that are taken to EL2.

Configuration
AArch64 System register FAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HDFAR[31:0] .

AArch64 System register FAR_EL2 bits [63:32] are architecturally mapped to AArch32 System register HIFAR[31:0] .

AArch64 System register FAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register DFAR[31:0] (S)
when EL2 is implemented.

AArch64 System register FAR_EL2 bits [63:32] are architecturally mapped to AArch32 System register IFAR[31:0] (S)
when EL2 is implemented.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
FAR_EL2 is a 64-bit register.

Field descriptions
The FAR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Faulting Virtual Address for synchronous exceptions taken to EL2
Faulting Virtual Address for synchronous exceptions taken to EL2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL2. Exceptions that set the FAR_EL2 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC 0x34 or
0x35). ESR_EL2.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight bits of
FAR_EL2 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL2.FnV is 0, and the FAR_EL2 is UNKNOWN if ESR_EL2.FnV is 1.

For all other exceptions taken to EL2, the FAR_EL2 is UNKNOWN.

If a memory fault that sets FAR_EL2 is generated from a data cache maintenance or other DC instruction, this field
holds the address specified in the register argument of the instruction.

If the exception that updates FAR_EL2 is taken from an Exception level that is using AArch32, the top 32 bits are all
zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

FAR_EL2, Fault Address Register (EL2)

Page 580

• The faulting address was generated by a load or store instruction that sequentially incremented from address
0xFFFFFFFF. Such a load or store instruction is CONSTRAINED UNPREDICTABLE. See 'Out of range VA' in Appendix
K1 Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data access
that caused the exception, then this field includes the tag. For more information about address tagging, see 'Address
tagging in AArch64 state' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL1 or EL0 makes FAR_EL2 become UNKNOWN.

Note

The address held in this field is an address accessed by the instruction fetch
or data access that caused the exception that gave rise to the instruction or
data abort. It is the lower address that gave rise to the fault. Where different
faults from different addresses arise from the same instruction, such as for an
instruction that loads or stores a mis-aligned address that crosses a page
boundary, the architecture does not prioritize between those different faults.

FAR_EL2 is made UNKNOWN on an exception return from EL2.

This field resets to an architecturally UNKNOWN value.

Accessing the FAR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic FAR_EL2 or FAR_EL1
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, FAR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return FAR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return FAR_EL2;
elsif PSTATE.EL == EL3 then

return FAR_EL2;

MSR FAR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b000

FAR_EL2, Fault Address Register (EL2)

Page 581

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

FAR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

FAR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

FAR_EL2 = X[t];

MRS <Xt>, FAR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.FAR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x220];

else
return FAR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return FAR_EL2;
else

return FAR_EL1;
elsif PSTATE.EL == EL3 then

return FAR_EL1;

MSR FAR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.FAR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x220] = X[t];

else
FAR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

FAR_EL2 = X[t];
else

FAR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

FAR_EL1 = X[t];

FAR_EL2, Fault Address Register (EL2)

Page 582

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FAR_EL2, Fault Address Register (EL2)

Page 583

FAR_EL3, Fault Address Register (EL3)
The FAR_EL3 characteristics are:

Purpose
Holds the faulting Virtual Address for all synchronous Instruction or Data Abort and PC alignment fault exceptions
that are taken to EL3.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to FAR_EL3 are UNDEFINED.

Attributes
FAR_EL3 is a 64-bit register.

Field descriptions
The FAR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Faulting Virtual Address for synchronous exceptions taken to EL3
Faulting Virtual Address for synchronous exceptions taken to EL3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL3. Exceptions that set the FAR_EL3 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), and PC alignment faults (EC 0x22). ESR_EL3.EC holds the
EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight bits of
FAR_EL3 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL3.FnV is 0, and the FAR_EL3 is UNKNOWN if ESR_EL3.FnV is 1.

For all other exceptions taken to EL3, the FAR_EL3 is UNKNOWN.

If a memory fault that sets FAR_EL3 is generated from a data cache maintenance or other DC instruction, this field
holds the address specified in the register argument of the instruction.

If the exception that updates FAR_EL3 is taken from an Exception Level using AArch32, the top 32 bits are all zero,
unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially incremented from address
0xFFFFFFFF. Such a load or store instruction is CONSTRAINED UNPREDICTABLE. See 'Out of range VA' in Appendix
K1 Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data access
that caused the exception, then this field includes the tag. For more information about address tagging, see 'Address
tagging in AArch64 state' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL2, EL1 or EL0 makes FAR_EL3 become UNKNOWN.

FAR_EL3, Fault Address Register (EL3)

Page 584

Note

The address held in this register is an address accessed by the instruction
fetch or data access that caused the exception that actually gave rise to the
instruction or data abort. It is the lowest address that gave rise to the fault.
Where different faults from different addresses arise from the same
instruction, such as for an instruction that loads or stores a mis-aligned
address that crosses a page boundary, the architecture does not prioritize
between those different faults.

FAR_EL3 is made UNKNOWN on an exception return from EL3.

This field resets to an architecturally UNKNOWN value.

Accessing the FAR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, FAR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return FAR_EL3;

MSR FAR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
FAR_EL3 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FAR_EL3, Fault Address Register (EL3)

Page 585

FPCR, Floating-point Control Register
The FPCR characteristics are:

Purpose
Controls floating-point behavior.

Configuration
The named fields in this register map to the equivalent fields in the AArch32 FPSCR.

It is IMPLEMENTATION DEFINED whether the Len and Stride fields can be programmed to non-zero values, which will
cause some AArch32 floating-point instruction encodings to be UNDEFINED, or whether these fields are RAZ.

Attributes
FPCR is a 64-bit register.

Field descriptions
The FPCR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 AHPDNFZRModeStrideFZ16 Len IDE RES0 IXEUFEOFEDZEIOE RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:27]

Reserved, RES0.

AHP, bit [26]

Alternative half-precision control bit:

AHP Meaning
0b0 IEEE half-precision format selected.
0b1 Alternative half-precision format selected.

This bit is only used for conversions between half-precision floating-point and other floating-point formats.

The data-processing instructions added as part of the ARMv8.2-FP16 extension always use the IEEE half-precision
format, and ignore the value of this bit.

This field resets to an architecturally UNKNOWN value.

DN, bit [25]

Default NaN mode control bit:

DN Meaning
0b0 NaN operands propagate through to the output of a floating-point

operation.
0b1 Any operation involving one or more NaNs returns the Default

NaN.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

FPCR, Floating-point Control Register

Page 586

This field resets to an architecturally UNKNOWN value.

FZ, bit [24]

Flush-to-zero mode control bit:

FZ Meaning
0b0 Flush-to-zero mode disabled. Behavior of the floating-point system

is fully compliant with the IEEE 754 standard.
0b1 Flush-to-zero mode enabled.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

This bit has no effect on half-precision calculations.

This field resets to an architecturally UNKNOWN value.

RMode, bits [23:22]

Rounding Mode control field. The encoding of this field is:

RMode Meaning
0b00 Round to Nearest (RN) mode.
0b01 Round towards Plus Infinity (RP) mode.
0b10 Round towards Minus Infinity (RM) mode.
0b11 Round towards Zero (RZ) mode.

The specified rounding mode is used by both scalar and Advanced SIMD floating-point instructions.

This field resets to an architecturally UNKNOWN value.

Stride, bits [21:20]

This field has no function in AArch64 state, and non-zero values are ignored during execution in AArch64 state.

This field is included only for context saving and restoration of the AArch32 FPSCR.Stride field.

This field resets to an architecturally UNKNOWN value.

FZ16, bit [19]

When ARMv8.2-FP16 is implemented:

Flush-to-zero mode control bit on half-precision data-processing instructions:

FZ16 Meaning
0b0 Flush-to-zero mode disabled. Behavior of the floating-point

system is fully compliant with the IEEE 754 standard.
0b1 Flush-to-zero mode enabled.

The value of this bit applies to both scalar and Advanced SIMD floating-point half-precision calculations. A half-
precision floating-point number that is flushed to zero as a result of the value of the FZ16 bit does not generate an
Input Denormal exception.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Len, bits [18:16]

This field has no function in AArch64 state, and non-zero values are ignored during execution in AArch64 state.

FPCR, Floating-point Control Register

Page 587

This field is included only for context saving and restoration of the AArch32 FPSCR.Len field.

This field resets to an architecturally UNKNOWN value.

IDE, bit [15]

Input Denormal floating-point exception trap enable. Possible values are:

IDE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs then the FPSR.IDC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the FPSR.IDC bit. The
trap handling software can decide whether to set the FPSR.IDC
bit to 1.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

Bits [14:13]

Reserved, RES0.

IXE, bit [12]

Inexact floating-point exception trap enable. Possible values are:

IXE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs then the FPSR.IXC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the FPSR.IXC bit. The
trap handling software can decide whether to set the FPSR.IXC bit
to 1.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

UFE, bit [11]

Underflow floating-point exception trap enable. Possible values are:

UFE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs then the FPSR.UFC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the FPSR.UFC bit. The
trap handling software can decide whether to set the FPSR.UFC
bit to 1.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

OFE, bit [10]

Overflow floating-point exception trap enable. Possible values are:

FPCR, Floating-point Control Register

Page 588

OFE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs then the FPSR.OFC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the FPSR.OFC bit. The
trap handling software can decide whether to set the FPSR.OFC
bit to 1.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

DZE, bit [9]

Divide by Zero floating-point exception trap enable. Possible values are:

DZE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs then the FPSR.DZC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the FPSR.DZC bit. The
trap handling software can decide whether to set the FPSR.DZC
bit to 1.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

IOE, bit [8]

Invalid Operation floating-point exception trap enable. Possible values are:

IOE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs then the FPSR.IOC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the FPSR.IOC bit. The
trap handling software can decide whether to set the FPSR.IOC
bit to 1.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

Bits [7:0]

Reserved, RES0.

Accessing the FPCR
Accesses to this register use the following encodings:

MRS <Xt>, FPCR

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0100 0b000

FPCR, Floating-point Control Register

Page 589

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN !=

'11' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x00);
else

AArch64.SystemAccessTrap(EL1, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN !=

'11' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
AArch64.SystemAccessTrap(EL3, 0x07);

else
return FPCR;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL1, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

return FPCR;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
AArch64.SystemAccessTrap(EL3, 0x07);

else
return FPCR;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

return FPCR;

MSR FPCR, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0100 0b000

FPCR, Floating-point Control Register

Page 590

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN !=

'11' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x00);
else

AArch64.SystemAccessTrap(EL1, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN !=

'11' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
AArch64.SystemAccessTrap(EL3, 0x07);

else
FPCR = X[t];

elsif PSTATE.EL == EL1 then
if CPACR_EL1.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL1, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

FPCR = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
AArch64.SystemAccessTrap(EL3, 0x07);

else
FPCR = X[t];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

FPCR = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FPCR, Floating-point Control Register

Page 591

FPEXC32_EL2, Floating-Point Exception Control
register

The FPEXC32_EL2 characteristics are:

Purpose
Allows access to the AArch32 register FPEXC from AArch64 state only. Its value has no effect on execution in AArch64
state.

Configuration
AArch64 System register FPEXC32_EL2 bits [31:0] are architecturally mapped to AArch32 System register
FPEXC[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
FPEXC32_EL2 are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this register is not RES0.

Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

Attributes
FPEXC32_EL2 is a 64-bit register.

Field descriptions
The FPEXC32_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

EX ENDEXFP2VVVTFV RES0 VECITR IDF RES0 IXFUFFOFFDZFIOF
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

EX, bit [31]

Exception bit. From Armv8, this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

EN, bit [30]

Enables access to the Advanced SIMD and floating-point functionality from all Exception levels, except that setting
this field to 0 does not disable the following:

• VMSR accesses to the FPEXC or FPSID.
• VMRS accesses from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2.

FPEXC32_EL2, Floating-Point Exception Control register

Page 592

EN Meaning
0b0 Accesses to the FPSCR, and any of the SIMD and floating-point

registers Q0-Q15, including their views as D0-D31 registers or
S0-S31 registers, are UNDEFINED at all Exception levels.

0b1 This control permits access to the Advanced SIMD and floating-
point functionality at all Exception levels.

Execution of floating-point and Advanced SIMD instructions in AArch32 state can be disabled or trapped by the
following controls:

• CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.
• FPEXC.EN.
• If executing in Non-secure state:

◦ HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.
◦ NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.

• For Advanced SIMD instructions only:
◦ CPACR.ASEDIS.
◦ If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

See the descriptions of the controls for more information.

Note

When executing at EL0 using AArch32:

• If EL1 is using AArch64 then behavior is as if the value of FPEXC.EN is
1.

• If EL2 is using AArch64 and enabled in the current Security state, and
the value of HCR_EL2.{RW, TGE} is {1, 1} then behavior is as if the
value of FPEXC.EN is 1.

• If EL2 is using AArch64 and enabled in the current Security state, and
the value of HCR_EL2.{RW, TGE} is {0, 1} then it is IMPLEMENTATION
DEFINED whether the behavior is:

◦ As if the value of FPEXC.EN is 1.
◦ Determined by the value of FPEXC32_EL2.EN, as described in

this field description. However, Arm deprecates using the value
of FPEXC32_EL2.EN to determine behavior.

This field resets to an architecturally UNKNOWN value.

DEX, bit [29]

Defined synchronous exception on floating-point execution.

This field identifies whether a synchronous exception generated by the attempted execution of an instruction was
generated by an unallocated encoding. The instruction must be in the encoding space that is identified by the
pseudocode function ExecutingCP10or11Instr() returning TRUE. This field also indicates whether the
FPEXC32_EL2.TFV field is valid.

The meaning of this bit is:

DEX Meaning
0b0 The exception was generated by the attempted execution of an

unallocated instruction in the encoding space that is identified by
the pseudocode function ExecutingCP10or11Instr(). If
FPEXC32_EL2.TFV is RW then it is invalid and UNKNOWN. If
FPEXC32_EL2.{IDF, IXF, UFF, OFF, DZF, IOF} are RW then they
are invalid and UNKNOWN.

0b1 The exception was generated during the execution of an
unallocated encoding. FPEXC32_EL2.TFV is valid and indicates
the cause of the exception.

On an exception that sets this bit to 1 the exception-handling routine must clear this bit to 0.

On an implementation that both does not support trapping of floating-point exceptions and implements the AArch32
FPSCR.{Stride, Len} fields as RAZ, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

FPEXC32_EL2, Floating-Point Exception Control register

Page 593

FP2V, bit [28]

FPINST2 instruction valid bit. From Armv8, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

VV, bit [27]

VECITR valid bit. From Armv8, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

TFV, bit [26]

Trapped Fault Valid bit. Valid only when the value of FPEXC.DEX is 1. When valid, it indicates the cause of the
exception and therefore whether the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} bits are valid.

TFV Meaning
0b0 The exception was caused by the execution of a floating-point

VABS, VADD, VDIV, VFMA, VFMS, VFNMA, VFNMS, VMLA,
VMLS, VMOV, VMUL, VNEG, VNMLA, VNMLS, VNMUL, VSQRT,
or VSUB instruction when one or both of FPSCR.{Stride, Len}
was non-zero. If the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} bits
are RW then they are invalid and UNKNOWN.

0b1 FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} indicate the presence of
trapped floating-point exceptions that had occurred at the time of
the exception. Bits are set for all trapped exceptions that had
occurred at the time of the exception.

This bit returns a status value and ignores writes.

When the value of FPEXC.DEX is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On an implementation that supports the trapping of floating-point exceptions and implements FPSCR.{Stride, Len} as
RAZ, this bit is RAO/WI.

This field resets to an architecturally UNKNOWN value.

Bits [25:11]

Reserved, RES0.

VECITR, bits [10:8]

Vector iteration count. From Armv8, this field is RES1.

This field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether
an Input Denormal exception occurred while FPSCR.IDE was 1:

IDF Meaning
0b0 Input Denormal exception has not occurred.
0b1 Input Denormal exception has occurred.

Input Denormal exceptions can occur only when FPSCR.FZ is 1.

Note

FPEXC32_EL2, Floating-Point Exception Control register

Page 594

A half-precision floating-point value that is flushed to zero because the value
of FPSCR.FZ16 is 1 does not generate an Input Denormal exception.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC32_EL2.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an
Inexact exception occurred while FPSCR.IXE was 1:

IXF Meaning
0b0 Inexact exception has not occurred.
0b1 Inexact exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an
Underflow exception occurred while FPSCR.UFE was 1:

UFF Meaning
0b0 Underflow exception has not occurred.
0b1 Underflow exception has occurred.

Underflow trapped exceptions can occur:

• On half-precision data-processing instructions only when FPSCR.FZ16 is 0.
• Otherwise only when FPSCR.FZ is 0.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC32_EL2.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an
Overflow exception occurred while FPSCR.OFE was 1:

OFF Meaning
0b0 Overflow exception has not occurred.
0b1 Overflow exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

FPEXC32_EL2, Floating-Point Exception Control register

Page 595

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether a
Divide by Zero exception occurred while FPSCR.DZE was 1:

DZF Meaning
0b0 Divide by Zero exception has not occurred.
0b1 Divide by Zero exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether
an Invalid Operation exception occurred while FPSCR.IOE was 1:

IOF Meaning
0b0 Invalid Operation exception has not occurred.
0b1 Invalid Operation exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

Accessing the FPEXC32_EL2
Accesses to this register use the following encodings:

MRS <Xt>, FPEXC32_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0011 0b000

FPEXC32_EL2, Floating-Point Exception Control register

Page 596

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
AArch64.SystemAccessTrap(EL3, 0x07);

else
return FPEXC32_EL2;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

return FPEXC32_EL2;

MSR FPEXC32_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
AArch64.SystemAccessTrap(EL3, 0x07);

else
FPEXC32_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

FPEXC32_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FPEXC32_EL2, Floating-Point Exception Control register

Page 597

FPSR, Floating-point Status Register
The FPSR characteristics are:

Purpose
Provides floating-point system status information.

Configuration
The named fields in this register map to the equivalent fields in the AArch32 FPSCR.

Attributes
FPSR is a 64-bit register.

Field descriptions
The FPSR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V QC RES0 IDC RES0 IXCUFCOFCDZCIOC
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative condition flag for AArch32 floating-point comparison operations. AArch64 floating-point comparisons set the
PSTATE.N flag instead.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero condition flag for AArch32 floating-point comparison operations. AArch64 floating-point comparisons set the
PSTATE.Z flag instead.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry condition flag for AArch32 floating-point comparison operations. AArch64 floating-point comparisons set the
PSTATE.C flag instead.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow condition flag for AArch32 floating-point comparison operations. AArch64 floating-point comparisons set the
PSTATE.V flag instead.

This field resets to an architecturally UNKNOWN value.

FPSR, Floating-point Status Register

Page 598

QC, bit [27]

Cumulative saturation bit, Advanced SIMD only. This bit is set to 1 to indicate that an Advanced SIMD integer
operation has saturated since 0 was last written to this bit.

This field resets to an architecturally UNKNOWN value.

Bits [26:8]

Reserved, RES0.

IDC, bit [7]

Input Denormal cumulative floating-point exception bit. This bit is set to 1 to indicate that the Input Denormal floating-
point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.IDE bit.
This bit is only set to 1 to indicate a floating-point exception if FPCR.IDE is 0, or if trapping software sets it.

This field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXC, bit [4]

Inexact cumulative floating-point exception bit. This bit is set to 1 to indicate that the Inexact exception floating-point
has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.IXE bit.
This bit is only set to 1 to indicate a floating-point exception if FPCR.IXE is 0, or if trapping software sets it.

The criteria for the Inexact floating-point exception to occur are different in Flush-to-zero mode. For details, see
'Flush-to-zero'.

This field resets to an architecturally UNKNOWN value.

UFC, bit [3]

Underflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Underflow floating-point
exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.UFE bit.
This bit is only set to 1 to indicate a floating-point exception if FPCR.UFE is 0, or if trapping software sets it.

The criteria for the Underflow floating-point exception to occur are different in Flush-to-zero mode. For details, see
'Flush-to-zero'.

This field resets to an architecturally UNKNOWN value.

OFC, bit [2]

Overflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Overflow floating-point
exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.OFE bit.
This bit is only set to 1 to indicate a floating-point exception if FPCR.OFE is 0, or if trapping software sets it.

This field resets to an architecturally UNKNOWN value.

FPSR, Floating-point Status Register

Page 599

DZC, bit [1]

Divide by Zero cumulative floating-point exception bit. This bit is set to 1 to indicate that the Divide by Zero floating-
point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.DZE bit.
This bit is only set to 1 to indicate a floating-point exception if FPCR.DZE is 0, or if trapping software sets it.

This field resets to an architecturally UNKNOWN value.

IOC, bit [0]

Invalid Operation cumulative floating-point exception bit. This bit is set to 1 to indicate that the Invalid Operation
floating-point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.IOE bit.
This bit is only set to 1 to indicate a floating-point exception if FPCR.IOE is 0, or if trapping software sets it.

This field resets to an architecturally UNKNOWN value.

Accessing the FPSR
Accesses to this register use the following encodings:

MRS <Xt>, FPSR

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0100 0b001

FPSR, Floating-point Status Register

Page 600

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN !=

'11' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x00);
else

AArch64.SystemAccessTrap(EL1, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN !=

'11' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
AArch64.SystemAccessTrap(EL3, 0x07);

else
return FPSR;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL1, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

return FPSR;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
AArch64.SystemAccessTrap(EL3, 0x07);

else
return FPSR;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

return FPSR;

MSR FPSR, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0100 0b001

FPSR, Floating-point Status Register

Page 601

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN !=

'11' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x00);
else

AArch64.SystemAccessTrap(EL1, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN !=

'11' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
AArch64.SystemAccessTrap(EL3, 0x07);

else
FPSR = X[t];

elsif PSTATE.EL == EL1 then
if CPACR_EL1.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL1, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

FPSR = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
AArch64.SystemAccessTrap(EL3, 0x07);

else
FPSR = X[t];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

FPSR = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FPSR, Floating-point Status Register

Page 602

GCR_EL1, Tag Control Register.
The GCR_EL1 characteristics are:

Purpose
Tag Control Register.

Configuration
This register is present only when ARMv8.5-MemTag is implemented and ID_AA64PFR1_EL1.MTE != 0b0001.
Otherwise, direct accesses to GCR_EL1 are UNDEFINED.

Attributes
GCR_EL1 is a 64-bit register.

Field descriptions
The GCR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 RRND Exclude
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:17]

Reserved, RES0.

RRND, bit [16]

Controls generation of tag values by the IRG instruction.

RRND Meaning
0b0 IRG generates a tag value as defined by RandomTag().
0b1 IRG generates an implementation-specific tag value with a

distribution of tag values no worse than generated with
GCR_EL1.RRND == 0.

This field resets to an architecturally UNKNOWN value.

Exclude, bits [15:0]

Allocation Tag values excluded from selection by ChooseNonExcludedTag().

This field resets to an architecturally UNKNOWN value.

Accessing the GCR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, GCR_EL1

op0 op1 CRn CRm op2

GCR_EL1, Tag Control Register.

Page 603

0b11 0b000 0b0001 0b0000 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.ATA == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return GCR_EL1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return GCR_EL1;

elsif PSTATE.EL == EL3 then
return GCR_EL1;

MSR GCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.ATA == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

GCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
GCR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
GCR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GCR_EL1, Tag Control Register.

Page 604

GMID_EL1, Multiple tag transfer ID register
The GMID_EL1 characteristics are:

Purpose
Indicates the block size that is accessed by the LDGM and STGM System instructions.

Configuration
This register is present only when ARMv8.5-MemTag is implemented and ID_AA64PFR1_EL1.MTE != 0b0001.
Otherwise, direct accesses to GMID_EL1 are UNDEFINED.

Attributes
GMID_EL1 is a 64-bit register.

Field descriptions
The GMID_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 BS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:4]

Reserved, RES0.

BS, bits [3:0]

Log2 of the block size in words. The minimum supported size is 16B (value == 2) and the maximum is 256B (value ==
6).

Accessing the GMID_EL1
Accesses to this register use the following encodings:

MRS <Xt>, GMID_EL1

CRn op0 op1 op2 CRm
0b0000 0b11 0b001 0b100 0b0000

GMID_EL1, Multiple tag transfer ID register

Page 605

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID5 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return GMID_EL1;
elsif PSTATE.EL == EL2 then

return GMID_EL1;
elsif PSTATE.EL == EL3 then

return GMID_EL1;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GMID_EL1, Multiple tag transfer ID register

Page 606

HACR_EL2, Hypervisor Auxiliary Control Register
The HACR_EL2 characteristics are:

Purpose
Controls trapping to EL2 of IMPLEMENTATION DEFINED aspects of EL1 or EL0 operation.

Note

Arm recommends that the values in this register do not cause unnecessary
traps to EL2 when HCR_EL2.{E2H, TGE} == {1, 1}.

Configuration
AArch64 System register HACR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HACR[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
HACR_EL2 is a 64-bit register.

Field descriptions
The HACR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the HACR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, HACR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b111

HACR_EL2, Hypervisor Auxiliary Control Register

Page 607

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HACR_EL2;
elsif PSTATE.EL == EL3 then

return HACR_EL2;

MSR HACR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HACR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

HACR_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HACR_EL2, Hypervisor Auxiliary Control Register

Page 608

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-
Grained Read Trap Register

The HAFGRTR_EL2 characteristics are:

Purpose
Provides controls for traps of MRS reads of Activity Monitors System registers.

Configuration
This register is present only when AMUv1 is implemented and ARMv8.6-FGT is implemented. Otherwise, direct
accesses to HAFGRTR_EL2 are UNDEFINED.

Attributes
HAFGRTR_EL2 is a 64-bit register.

Field descriptions
The HAFGRTR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 AMEVTYPER115_EL0AMEVCNTR115_EL0AMEVTYPER114_EL0AMEVCNTR114_EL0AMEVTYPER113_EL0AMEVCNTR113_EL0AMEVTYPER112_EL0AMEVCNTR112_EL0AMEVTYPER111_EL0AMEVCNTR111_EL0AMEVTYPER110_EL0AMEVCNTR110_EL0AMEVTYPER19_EL0AMEVCNTR19_EL0AMEVTYPER18_EL0AMEVCNTR18_EL0AMEVTYPER17_EL0AMEVCNTR17_EL0

AMEVTYPER16_EL0AMEVCNTR16_EL0AMEVTYPER15_EL0AMEVCNTR15_EL0AMEVTYPER14_EL0AMEVCNTR14_EL0AMEVTYPER13_EL0AMEVCNTR13_EL0AMEVTYPER12_EL0AMEVCNTR12_EL0AMEVTYPER11_EL0AMEVCNTR11_EL0AMEVTYPER10_EL0AMEVCNTR10_EL0 AMCNTEN1 RES0 AMEVCNTR03 AMEVCNTR02 AMEVCNTR01 AMEVCNTR00 AMCNTEN0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:50]

Reserved, RES0.

AMEVTYPER115_EL0, bit [49]

Trap MRS reads of AMEVTYPER115_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER115 at EL0
using AArch32 when EL1 is using AArch64 to EL2.

AMEVTYPER115_EL0 Meaning
0b0 MRS reads of AMEVTYPER115_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVTYPER115 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE}
!= {1,1}, EL1 is using AArch64, and either
EL3 is not implemented or SCR_EL3.FGTEn
== 1, then, unless the read generates a higher
priority exception:

• MRS reads of AMEVTYPER115_EL0 at EL1
and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value
0x18.

• MRC reads of AMEVTYPER115 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 609

AMEVCNTR115_EL0, bit [48]

Trap MRS reads of AMEVCNTR115_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR115 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVCNTR115_EL0 Meaning
0b0 MRS reads of AMEVCNTR115_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVCNTR115 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE} !=
{1,1}, EL1 is using AArch64, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1,
then, unless the read generates a higher
priority exception:

• MRS reads of AMEVCNTR115_EL0 at EL1
and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR115 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER114_EL0, bit [47]

Trap MRS reads of AMEVTYPER114_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER114 at EL0
using AArch32 when EL1 is using AArch64 to EL2.

AMEVTYPER114_EL0 Meaning
0b0 MRS reads of AMEVTYPER114_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVTYPER114 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE}
!= {1,1}, EL1 is using AArch64, and either
EL3 is not implemented or SCR_EL3.FGTEn
== 1, then, unless the read generates a higher
priority exception:

• MRS reads of AMEVTYPER114_EL0 at EL1
and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value
0x18.

• MRC reads of AMEVTYPER114 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR114_EL0, bit [46]

Trap MRS reads of AMEVCNTR114_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR114 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 610

AMEVCNTR114_EL0 Meaning
0b0 MRS reads of AMEVCNTR114_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVCNTR114 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE} !=
{1,1}, EL1 is using AArch64, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1,
then, unless the read generates a higher
priority exception:

• MRS reads of AMEVCNTR114_EL0 at EL1
and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR114 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER113_EL0, bit [45]

Trap MRS reads of AMEVTYPER113_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER113 at EL0
using AArch32 when EL1 is using AArch64 to EL2.

AMEVTYPER113_EL0 Meaning
0b0 MRS reads of AMEVTYPER113_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVTYPER113 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE}
!= {1,1}, EL1 is using AArch64, and either
EL3 is not implemented or SCR_EL3.FGTEn
== 1, then, unless the read generates a higher
priority exception:

• MRS reads of AMEVTYPER113_EL0 at EL1
and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value
0x18.

• MRC reads of AMEVTYPER113 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR113_EL0, bit [44]

Trap MRS reads of AMEVCNTR113_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR113 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVCNTR113_EL0 Meaning
0b0 MRS reads of AMEVCNTR113_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVCNTR113 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE} !=
{1,1}, EL1 is using AArch64, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1,
then, unless the read generates a higher
priority exception:

• MRS reads of AMEVCNTR113_EL0 at EL1
and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR113 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 611

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER112_EL0, bit [43]

Trap MRS reads of AMEVTYPER112_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER112 at EL0
using AArch32 when EL1 is using AArch64 to EL2.

AMEVTYPER112_EL0 Meaning
0b0 MRS reads of AMEVTYPER112_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVTYPER112 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE}
!= {1,1}, EL1 is using AArch64, and either
EL3 is not implemented or SCR_EL3.FGTEn
== 1, then, unless the read generates a higher
priority exception:

• MRS reads of AMEVTYPER112_EL0 at EL1
and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value
0x18.

• MRC reads of AMEVTYPER112 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR112_EL0, bit [42]

Trap MRS reads of AMEVCNTR112_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR112 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVCNTR112_EL0 Meaning
0b0 MRS reads of AMEVCNTR112_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVCNTR112 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE} !=
{1,1}, EL1 is using AArch64, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1,
then, unless the read generates a higher
priority exception:

• MRS reads of AMEVCNTR112_EL0 at EL1
and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR112 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER111_EL0, bit [41]

Trap MRS reads of AMEVTYPER111_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER111 at EL0
using AArch32 when EL1 is using AArch64 to EL2.

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 612

AMEVTYPER111_EL0 Meaning
0b0 MRS reads of AMEVTYPER111_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVTYPER111 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE}
!= {1,1}, EL1 is using AArch64, and either
EL3 is not implemented or SCR_EL3.FGTEn
== 1, then, unless the read generates a higher
priority exception:

• MRS reads of AMEVTYPER111_EL0 at EL1
and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value
0x18.

• MRC reads of AMEVTYPER111 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR111_EL0, bit [40]

Trap MRS reads of AMEVCNTR111_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR111 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVCNTR111_EL0 Meaning
0b0 MRS reads of AMEVCNTR111_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVCNTR111 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE} !=
{1,1}, EL1 is using AArch64, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1,
then, unless the read generates a higher
priority exception:

• MRS reads of AMEVCNTR111_EL0 at EL1
and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR111 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER110_EL0, bit [39]

Trap MRS reads of AMEVTYPER110_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER110 at EL0
using AArch32 when EL1 is using AArch64 to EL2.

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 613

AMEVTYPER110_EL0 Meaning
0b0 MRS reads of AMEVTYPER110_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVTYPER110 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE}
!= {1,1}, EL1 is using AArch64, and either
EL3 is not implemented or SCR_EL3.FGTEn
== 1, then, unless the read generates a higher
priority exception:

• MRS reads of AMEVTYPER110_EL0 at EL1
and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value
0x18.

• MRC reads of AMEVTYPER110 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR110_EL0, bit [38]

Trap MRS reads of AMEVCNTR110_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR110 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVCNTR110_EL0 Meaning
0b0 MRS reads of AMEVCNTR110_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVCNTR110 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE} !=
{1,1}, EL1 is using AArch64, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1,
then, unless the read generates a higher
priority exception:

• MRS reads of AMEVCNTR110_EL0 at EL1
and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR110 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER19_EL0, bit [37]

Trap MRS reads of AMEVTYPER19_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER19 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVTYPER19_EL0 Meaning
0b0 MRS reads of AMEVTYPER19_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVTYPER19 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE} !=
{1,1}, EL1 is using AArch64, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1,
then, unless the read generates a higher priority
exception:

• MRS reads of AMEVTYPER19_EL0 at EL1
and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of AMEVTYPER19 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 614

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR19_EL0, bit [36]

Trap MRS reads of AMEVCNTR19_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR19 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVCNTR19_EL0 Meaning
0b0 MRS reads of AMEVCNTR19_EL0 at EL1 and EL0

using AArch64 and MRC reads of AMEVCNTR19 at
EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then,
unless the read generates a higher priority
exception:

• MRS reads of AMEVCNTR19_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR19 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER18_EL0, bit [35]

Trap MRS reads of AMEVTYPER18_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER18 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVTYPER18_EL0 Meaning
0b0 MRS reads of AMEVTYPER18_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVTYPER18 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE} !=
{1,1}, EL1 is using AArch64, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1,
then, unless the read generates a higher priority
exception:

• MRS reads of AMEVTYPER18_EL0 at EL1
and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of AMEVTYPER18 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR18_EL0, bit [34]

Trap MRS reads of AMEVCNTR18_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR18 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 615

AMEVCNTR18_EL0 Meaning
0b0 MRS reads of AMEVCNTR18_EL0 at EL1 and EL0

using AArch64 and MRC reads of AMEVCNTR18 at
EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then,
unless the read generates a higher priority
exception:

• MRS reads of AMEVCNTR18_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR18 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER17_EL0, bit [33]

Trap MRS reads of AMEVTYPER17_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER17 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVTYPER17_EL0 Meaning
0b0 MRS reads of AMEVTYPER17_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVTYPER17 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE} !=
{1,1}, EL1 is using AArch64, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1,
then, unless the read generates a higher priority
exception:

• MRS reads of AMEVTYPER17_EL0 at EL1
and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of AMEVTYPER17 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR17_EL0, bit [32]

Trap MRS reads of AMEVCNTR17_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR17 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVCNTR17_EL0 Meaning
0b0 MRS reads of AMEVCNTR17_EL0 at EL1 and EL0

using AArch64 and MRC reads of AMEVCNTR17 at
EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then,
unless the read generates a higher priority
exception:

• MRS reads of AMEVCNTR17_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR17 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 616

AMEVTYPER16_EL0, bit [31]

Trap MRS reads of AMEVTYPER16_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER16 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVTYPER16_EL0 Meaning
0b0 MRS reads of AMEVTYPER16_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVTYPER16 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE} !=
{1,1}, EL1 is using AArch64, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1,
then, unless the read generates a higher priority
exception:

• MRS reads of AMEVTYPER16_EL0 at EL1
and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of AMEVTYPER16 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR16_EL0, bit [30]

Trap MRS reads of AMEVCNTR16_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR16 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVCNTR16_EL0 Meaning
0b0 MRS reads of AMEVCNTR16_EL0 at EL1 and EL0

using AArch64 and MRC reads of AMEVCNTR16 at
EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then,
unless the read generates a higher priority
exception:

• MRS reads of AMEVCNTR16_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR16 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER15_EL0, bit [29]

Trap MRS reads of AMEVTYPER15_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER15 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 617

AMEVTYPER15_EL0 Meaning
0b0 MRS reads of AMEVTYPER15_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVTYPER15 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE} !=
{1,1}, EL1 is using AArch64, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1,
then, unless the read generates a higher priority
exception:

• MRS reads of AMEVTYPER15_EL0 at EL1
and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of AMEVTYPER15 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR15_EL0, bit [28]

Trap MRS reads of AMEVCNTR15_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR15 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVCNTR15_EL0 Meaning
0b0 MRS reads of AMEVCNTR15_EL0 at EL1 and EL0

using AArch64 and MRC reads of AMEVCNTR15 at
EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then,
unless the read generates a higher priority
exception:

• MRS reads of AMEVCNTR15_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR15 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER14_EL0, bit [27]

Trap MRS reads of AMEVTYPER14_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER14 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVTYPER14_EL0 Meaning
0b0 MRS reads of AMEVTYPER14_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVTYPER14 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE} !=
{1,1}, EL1 is using AArch64, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1,
then, unless the read generates a higher priority
exception:

• MRS reads of AMEVTYPER14_EL0 at EL1
and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of AMEVTYPER14 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 618

AMEVCNTR14_EL0, bit [26]

Trap MRS reads of AMEVCNTR14_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR14 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVCNTR14_EL0 Meaning
0b0 MRS reads of AMEVCNTR14_EL0 at EL1 and EL0

using AArch64 and MRC reads of AMEVCNTR14 at
EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then,
unless the read generates a higher priority
exception:

• MRS reads of AMEVCNTR14_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR14 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER13_EL0, bit [25]

Trap MRS reads of AMEVTYPER13_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER13 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVTYPER13_EL0 Meaning
0b0 MRS reads of AMEVTYPER13_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVTYPER13 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE} !=
{1,1}, EL1 is using AArch64, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1,
then, unless the read generates a higher priority
exception:

• MRS reads of AMEVTYPER13_EL0 at EL1
and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of AMEVTYPER13 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR13_EL0, bit [24]

Trap MRS reads of AMEVCNTR13_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR13 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 619

AMEVCNTR13_EL0 Meaning
0b0 MRS reads of AMEVCNTR13_EL0 at EL1 and EL0

using AArch64 and MRC reads of AMEVCNTR13 at
EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then,
unless the read generates a higher priority
exception:

• MRS reads of AMEVCNTR13_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR13 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER12_EL0, bit [23]

Trap MRS reads of AMEVTYPER12_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER12 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVTYPER12_EL0 Meaning
0b0 MRS reads of AMEVTYPER12_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVTYPER12 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE} !=
{1,1}, EL1 is using AArch64, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1,
then, unless the read generates a higher priority
exception:

• MRS reads of AMEVTYPER12_EL0 at EL1
and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of AMEVTYPER12 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR12_EL0, bit [22]

Trap MRS reads of AMEVCNTR12_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR12 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVCNTR12_EL0 Meaning
0b0 MRS reads of AMEVCNTR12_EL0 at EL1 and EL0

using AArch64 and MRC reads of AMEVCNTR12 at
EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then,
unless the read generates a higher priority
exception:

• MRS reads of AMEVCNTR12_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR12 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 620

AMEVTYPER11_EL0, bit [21]

Trap MRS reads of AMEVTYPER11_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER11 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVTYPER11_EL0 Meaning
0b0 MRS reads of AMEVTYPER11_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVTYPER11 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE} !=
{1,1}, EL1 is using AArch64, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1,
then, unless the read generates a higher priority
exception:

• MRS reads of AMEVTYPER11_EL0 at EL1
and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of AMEVTYPER11 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR11_EL0, bit [20]

Trap MRS reads of AMEVCNTR11_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR11 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVCNTR11_EL0 Meaning
0b0 MRS reads of AMEVCNTR11_EL0 at EL1 and EL0

using AArch64 and MRC reads of AMEVCNTR11 at
EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then,
unless the read generates a higher priority
exception:

• MRS reads of AMEVCNTR11_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR11 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER10_EL0, bit [19]

Trap MRS reads of AMEVTYPER10_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER10 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 621

AMEVTYPER10_EL0 Meaning
0b0 MRS reads of AMEVTYPER10_EL0 at EL1 and

EL0 using AArch64 and MRC reads of
AMEVTYPER10 at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE} !=
{1,1}, EL1 is using AArch64, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1,
then, unless the read generates a higher priority
exception:

• MRS reads of AMEVTYPER10_EL0 at EL1
and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of AMEVTYPER10 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR10_EL0, bit [18]

Trap MRS reads of AMEVCNTR10_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR10 at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

AMEVCNTR10_EL0 Meaning
0b0 MRS reads of AMEVCNTR10_EL0 at EL1 and EL0

using AArch64 and MRC reads of AMEVCNTR10 at
EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then,
unless the read generates a higher priority
exception:

• MRS reads of AMEVCNTR10_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR10 at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMCNTEN1, bit [17]

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of AMCNTENCLR1_EL0 and AMCNTENSET1_EL0.

• At EL0 using Arch32 when EL1 is using AArch64: MRC reads of AMCNTENCLR1 and AMCNTENSET1.

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 622

AMCNTEN1 Meaning
0b0 The operations listed above are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is
using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a
higher priority exception:

• MRS reads at EL1 and EL0 using AArch64 of
AMCNTENCLR1_EL0 and AMCNTENSET1_EL0 are
trapped to EL2 and reported with EC syndrome
value 0x18.

• MRC reads at EL0 using AArch32 of AMCNTENCLR1
and AMCNTENSET1 are trapped to EL2 and
reported with EC syndrome value 0x03, unless the
read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Bits [16:5]

Reserved, RES0.

AMEVCNTR0<x>_EL0, bit [x+1], for x = 0 to 3

Trap MRS reads of AMEVCNTR0<x>_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR0<x> at EL0
using AArch32 when EL1 is using AArch64 to EL2.

AMEVCNTR0<x>_EL0 Meaning
0b0 MRS reads of AMEVCNTR0<x>_EL0 at EL1

and EL0 using AArch64 and MRC reads of
AMEVCNTR0<x> at EL0 using AArch32 are
not affected by this bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,TGE}
!= {1,1}, EL1 is using AArch64, and either
EL3 is not implemented or SCR_EL3.FGTEn
== 1, then, unless the read generates a
higher priority exception:

• MRS reads of AMEVCNTR0<x>_EL0 at
EL1 and EL0 using AArch64 are trapped
to EL2 and reported with EC syndrome
value 0x18.

• MRC reads of AMEVCNTR0<x> at EL0
using AArch32 are trapped to EL2 and
reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMCNTEN0, bit [0]

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of AMCNTENCLR0_EL0 and AMCNTENSET0_EL0.

• At EL0 using Arch32 when EL1 is using AArch64: MRC reads of AMCNTENCLR0 and AMCNTENSET0.

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 623

AMCNTEN0 Meaning
0b0 The operations listed above are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is
using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a
higher priority exception:

• MRS reads at EL1 and EL0 using AArch64 of
AMCNTENCLR0_EL0 and AMCNTENSET0_EL0 are
trapped to EL2 and reported with EC syndrome
value 0x18.

• MRC reads at EL0 using AArch32 of AMCNTENCLR0
and AMCNTENSET0 are trapped to EL2 and
reported with EC syndrome value 0x03, unless the
read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Accessing the HAFGRTR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, HAFGRTR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0011 0b0001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x1E8];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FGTEn == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return HAFGRTR_EL2;

elsif PSTATE.EL == EL3 then
return HAFGRTR_EL2;

MSR HAFGRTR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0011 0b0001 0b110

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 624

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x1E8] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FGTEn == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
HAFGRTR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
HAFGRTR_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 625

HCR_EL2, Hypervisor Configuration Register
The HCR_EL2 characteristics are:

Purpose
Provides configuration controls for virtualization, including defining whether various operations are trapped to EL2.

Configuration
AArch64 System register HCR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HCR[31:0] .

AArch64 System register HCR_EL2 bits [63:32] are architecturally mapped to AArch32 System register HCR2[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

The bits in this register behave as if they are 0 for all purposes other than direct reads of the register if EL2 is not
enabled in the current Security state.

Attributes
HCR_EL2 is a 64-bit register.

Field descriptions
The HCR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
TWEDEL TWEDEnTID5 DCT ATATTLBOSTTLBISEnSCXTTOCUAMVOFFENTICABTID4RES0FIENFWBNV2 AT NV1NVAPIAPKTMEMIOCNCE TEA TERRTLOR E2H ID CD

RWTRVMHCDTDZ TGE TVMTTLBTPU TPCP TSW TACR TIDCP TSC TID3 TID2 TID1 TID0TWE TWI DC BSU FB VSE VI VF AMO IMO FMO PTWSWIOVM
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TWEDEL, bits [63:60]

When ARMv8.6-TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when HCR_EL2.TWEDEn is 1, encodes the minimum delay in taking a trap
of WFE caused by HCR_EL2.TWE as 2^(TWEDEL + 8) cycles.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [59]

When ARMv8.6-TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE instruction caused by HCR_EL2.TWE.

TWEDEn Meaning
0b0 The delay for taking a WFE trap is IMPLEMENTATION DEFINED.
0b1 The delay for taking a WFE trap is at least the number of

cycles defined in HCR_EL2.TWEDEL.

This field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 626

Otherwise:

Reserved, RES0.

TID5, bit [58]

When ARMv8.5-MemTag is implemented:

Trap ID group 5. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:

AArch64:

• GMID_EL1.
TID5 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 and EL0 accesses to ID group 5 registers are

trapped to EL2.

When the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field has an Effective value of 0 for all purposes other than a
direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DCT, bit [57]

When ARMv8.5-MemTag is implemented:

Default Cacheability Tagging. When HCR_EL2.DC is in effect, controls whether stage 1 translations are treated as
Tagged or Untagged.

DCT Meaning
0b0 Stage 1 translations are treated as Untagged.
0b1 Stage 1 translations are treated as Tagged.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ATA, bit [56]

When ARMv8.5-MemTag is implemented:

Allocation Tag Access. When SCR_EL3.ATA=1 and HCR_EL2.{E2H,TGE} != {1,1}, controls EL1 and EL0 access to
Allocation Tags.

When access is prevented:

• Instructions which Load or Store data are Unchecked.

• Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.

• Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the
Logical Address Tag as 0.

• Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent
Clean and Invalidate operation on Allocation Tags.

HCR_EL2, Hypervisor Configuration Register

Page 627

• MRS and MSR instructions at EL1 using GCR_EL1, RGSR_EL1, TFSR_EL1, TFSR_EL2, or TFSRE0_EL1 that
are not UNDEFINED are trapped to EL2.

ATA Meaning
0b0 Access is prevented.
0b1 Access is not prevented.

This field is permitted to be cached in a TLB.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TTLBOS, bit [55]

When ARMv8.2-EVT is implemented:

Trap TLB maintenance instructions that operate on the Outer Shareable domain. Traps execution of those TLB
maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state. This applies to the
following instructions:

TLBI VMALLE1OS, TLBI VAE1OS, TLBI ASIDE1OS,TLBI VAAE1OS, TLBI VALE1OS, TLBI VAALE1OS,TLBI RVAE1OS,
TLBI RVAAE1OS,TLBI RVALE1OS, and TLBI RVAALE1OS.

TTLBOS Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions are trapped to EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TTLBIS, bit [54]

When ARMv8.2-EVT is implemented:

Trap TLB maintenance instructions that operate on the Inner Shareable domain. Traps execution of those TLB
maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state. This applies to the
following instructions:

• When EL1 is using AArch64, TLBI VMALLE1IS, TLBI VAE1IS, TLBI ASIDE1IS,TLBI VAAE1IS, TLBI VALE1IS,
TLBI VAALE1IS,TLBI RVAE1IS, TLBI RVAAE1IS,TLBI RVALE1IS, and TLBI RVAALE1IS.

• When EL1 is using AArch32, TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, and
TLBIMVAALIS.

TTLBIS Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions are trapped to EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HCR_EL2, Hypervisor Configuration Register

Page 628

EnSCXT, bit [53]

When ARMv8.0-CSV2 is implemented:

Enable Access to the SCXTNUM_EL1 and SCXTNUM_EL0 registers. The defined values are:

EnSCXT Meaning
0b0 When (HCR_EL2.TGE==0 or HCR_EL2.E2H==0) and EL2 is

enabled in the current Security state, EL1 and EL0 access to
SCXTNUM_EL0 and EL1 access to SCXTNUM_EL1 is
disabled by this mechanism, causing an exception to EL2, and
the values of these registers to be treated as 0.
When ((HCR_EL2.TGE==1 and HCR_EL2.E2H==1) and EL2
is enabled in the current Security state, EL0 access to
SCXTNUM_EL0 is disabled by this mechanism, causing an
exception to EL2, and the value of this register to be treated
as 0.

0b1 This control does not cause accesses to SCXTNUM_EL0 or
SCXTNUM_EL1 to be trapped.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TOCU, bit [52]

When ARMv8.2-EVT is implemented:

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of those cache
maintenance instructions to EL2, when EL2 is enabled in the current Security state. This applies to the following
instructions:

• When SCTLR_EL1.UCI is 1, HCR_EL2.{TGE, E2H} is not {1, 1}, and EL0 is using AArch64, IC IVAU, DC
CVAU.

• When EL1 is using AArch64, IC IVAU, IC IALLU, DC CVAU.
• When EL1 is using AArch32, ICIMVAU, ICIALLU, DCCMVAU.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher
priority than this trap to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using AArch64.
• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always UNDEFINED at

EL0 using AArch32.
TOCU Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions are trapped to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any
data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control
is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution
of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value of this control
is 1.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 629

Otherwise:

Reserved, RES0.

AMVOFFEN, bit [51]

When ARMv8.6-AMU is implemented:

Activity Monitors Virtual Offsets Enable.

AMVOFFEN Meaning
0b0 Virtualization of the Activity Monitors is disabled.

Indirect reads of the virtual offset registers are zero.
0b1 Virtualization of the Activity Monitors is enabled.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TICAB, bit [50]

When ARMv8.2-EVT is implemented:

Trap ICIALLUIS/IC IALLUIS cache maintenance instructions. Traps execution of those cache maintenance instructions
at EL1 to EL2, when EL2 is enabled in the current Security state. This applies to the following instructions:

• When EL1 is using AArch64, IC IALLUIS.
• When EL1 is using AArch32, ICIALLUIS.

TICAB Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 execution of the specified instructions is trapped to EL2.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution
of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value of this control
is 1.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TID4, bit [49]

When ARMv8.2-EVT is implemented:

Trap ID group 4. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:

AArch64:

• EL1 reads of CCSIDR_EL1, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1.
• EL1 writes to CSSELR_EL1.

AArch32:

• EL1 reads of CCSIDR, CCSIDR2, CLIDR, and CSSELR.
• EL1 writes to CSSELR.

HCR_EL2, Hypervisor Configuration Register

Page 630

TID4 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 and EL0 accesses to ID group 4 registers are

trapped to EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [48]

Reserved, RES0.

FIEN, bit [47]

When ARMv8.4-RAS is implemented:

Fault Injection Enable. Unless this bit is set to 1, accesses to the ERXPFGCDN_EL1, ERXPFGCTL_EL1, and
ERXPFGF_EL1 registers from EL1 generate a Trap exception to EL2, when EL2 is enabled in the current Security
state, reported using EC syndrome value 0x18.

FIEN Meaning
0b0 Accesses to the specified registers from EL1 are trapped to EL2,

when EL2 is enabled in the current Security state.
0b1 This control does not cause any instructions to be trapped.

If EL2 is disabled in the current Security state, the Effective value of HCR_EL2.FIEN is 0b1.

If ERRIDR_EL1.NUM is zero, meaning no error records are implemented, or no error record accessible using System
registers is owned by a node that implements the RAS Common Fault Injection Model Extension, then this bit might be
RES0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FWB, bit [46]

When ARMv8.4-S2FWB is implemented:

Defines the combined cacheability attributes in a 2 stage translation regime.

HCR_EL2, Hypervisor Configuration Register

Page 631

FWB Meaning
0b0 When this bit is 0, then:

• The combination of stage 1 and stage 2 translations on
memory type and cacheability attributes are as described
in the Armv8.0 architecture. For more information see
D4.5.4 Combining the stage 1 and stage 2 attributes

• The encoding of the stage 2 memory type and cacheability
attributes in bits[5:2] of the stage 2 page or block
descriptors are as described in the Armv8.0 architecture.

0b1 When this bit is 1, then:
• Bit[5] of stage 2 page or block descriptor is RES0.
• When bit[4] of stage 2 page or block descriptor is 1 and

when:
◦ Bits[3:2] of stage 2 page or block descriptor are

0b11, the resultant memory type and inner or outer
cacheability attribute is the same as the stage 1
memory type and inner or outer cacheability
attribute.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b10, the resultant memory type and attribute is
Normal Write-Back.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b0x, the resultant memory type will be Normal
Non-cacheable except where the stage 1 memory
type was Device->attr< the resultant memory type
will be Device->attr<

• When bit[4] of stage 2 page or block descriptor is 0 the
memory type is Device, and when:

◦ Bits[3:2] of stage 2 page or block descriptor are
0b00, the stage 2 memory type is Device-nGnRnE.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b01, the stage 2 memory type is Device-nGnRE.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b10, the stage 2 memory type is Device-nGRE.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b11, the stage 2 memory type is Device-GRE.

• If the stage 1 translation specifies a cacheable memory
type, then the stage 1 cache allocation hint is applied to
the final cache allocation hint where the final memory
type is cacheable.

• If the stage 1 translation does not specify a cacheable
memory type, then if the final memory type is cacheable,
it is treated as read allocate, write allocate.

The stage 1 and stage 2 memory types are combined in the
manner described in D4.5.4 Combining the stage 1 and stage 2
attributes

In Secure state, this bit applies to both the Secure stage 2 translation and the Non-secure stage 2 translation.

This bit is permitted to be cached in a TLB.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NV2, bit [45]

When ARMv8.4-NV is implemented:

Nested Virtualization. Changes the behaviors of HCR_EL2.{NV, NV1} to provide a mechanism for hardware to
transform reads and writes from System registers into reads and writes from memory.

HCR_EL2, Hypervisor Configuration Register

Page 632

NV2 Meaning
0b0 This bit has no effect on the behavior of HCR_EL2.{NV, NV1}.

The behavior of HCR_EL2.{NV, NV1} is as defined for
ARMv8.3-NV.

0b1 Redefines behavior of HCR_EL2{NV, NV1} to enable:
• Transformation of read/writes to registers into read/writes

to memory.
• Redirection of EL2 registers to EL1 registers.

Any exception taken from EL1 and taken to EL1 causes
SPSR_EL1.M[3:2] to be set to 0b10 and not 0b01.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AT, bit [44]

When ARMv8.3-NV is implemented:

Address Translation. EL1 execution of the following address translation instructions is trapped to EL2, when EL2 is
enabled in the current Security state, reported using EC syndrome value 0x18:

• AT S1E0R, AT S1E0W, AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP.
AT Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 execution of the specified instructions is trapped to EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NV1, bit [43]

When ARMv8.4-NV is implemented:

Nested Virtualization.

NV1 Meaning
0b0 If HCR_EL2.{NV, NV2} are both 1, accesses executed from EL1 to

implemented EL12, EL02, or EL2 registers are transformed to
loads and stores.
If HCR_EL2.NV2 is 0 or HCR_EL2.{NV, NV2} == {0, 1}, this
control does not cause any instructions to be trapped.

0b1 If HCR_EL2.NV2 is 1, accesses executed from EL1 to
implemented EL2 registers are transformed to loads and stores.
If HCR_EL2.NV2 is 0, EL1 accesses to VBAR_EL1, ELR_EL1, and
SPSR_EL1, are trapped to EL2, when EL2 is enabled in the
current Security state, reported using EC syndrome value 0x18.

If HCR_EL2.NV2 is 1, the value of HCR_EL2.NV1 defines which EL1 register accesses are transformed to loads and
stores. These transformed accesses have priority over the trapping of registers.

The trapping of EL1 registers caused by other control bits has priority over the transformation of these accesses.

If a register is specified that is not implemented by an implementation, then access to that register are UNDEFINED.

For the list of registers affected, see Enhanced support for nested virtualization.

If HCR_EL2.{NV, NV1, NV2} are {1, 0, 0},any exception taken from EL1, and taken to EL1, causes the
SPSR_EL1.M[3:2] to be set to 0b10, and not 0b01.

HCR_EL2, Hypervisor Configuration Register

Page 633

If HCR_EL2.{NV, NV1, NV2} are {1, 1, 0}, then:

• The EL1 translation table Block and Page descriptors:
◦ Bit[54] holds the PXN instead of the UXN.
◦ Bit[53] is RES0.
◦ Bit[6] is treated as 0 regardless of the actual value.

• If Hierarchical Permissions are enabled, the EL1 translation table Table descriptors are as follows:
◦ Bit[61] is treated as 0 regardless of the actual value.
◦ Bit[60] holds the PXNTable instead of the UXNTable.
◦ Bit[59] is RES0.

• When executing at EL1, the PSTATE.PAN bit is treated as zero for all purposes except reading the value of the
bit.

• When executing at EL1, the LDTR* instructions are treated as the equivalent LDR* instructions, and the
STTR* instructions are treated as the equivalent STR* instructions.

If HCR_EL2.{NV, NV1, NV2} are {0, 1, 0}, then the behavior is a CONSTRAINED UNPREDICTABLE choice of:

• Behaving as if HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1 for all purposes other than reading than reading back
the value of the HCR_EL2.NV bit.

• Behaving as if HCR_EL2.NV is 0 and HCR_EL2.NV1 is 0 for all purposes other than reading than reading back
the value of the HCR_EL2.NV1 bit.

• Behaving with regard to the HCR_EL2.NV and HCR_EL2.NV1 bits behavior as defined in the rest of this
description.

This bit is permitted to be cached in a TLB.

This field resets to an architecturally UNKNOWN value.

When ARMv8.3-NV is implemented:

Nested Virtualization. EL1 accesses to certain registers are trapped to EL2, when EL2 is enabled in the current
Security state.

NV1 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to VBAR_EL1, ELR_EL1, SPSR_EL1 are trapped to

EL2, when EL2 is enabled in the current Security state, reported
using EC syndrome value 0x18.

If HCR_EL2.NV is 1 and HCR_EL2.NV1 is 0 then the following effects also apply:

• Any exception taken from EL1, and taken to EL1, causes the SPSR_EL1.M[3:2] to be set to 0b10, and not 0b01.

If the bits HCR_EL2.NV and HCR_EL2.NV1 are both set to 1 then following effects also apply:

• The EL1 translation table Block and Page descriptors:
◦ Bit[54] holds the PXN instead of the UXN.
◦ Bit[53] is RES0.
◦ Bit[6] is treated as 0 regardless of the actual value.

• If Hierarchical Permissions are enabled, the EL1 translation table Table descriptors are as follows:
◦ Bit[61] is treated as 0 regardless of the actual value.
◦ Bit[60] holds the PXNTable instead of the UXNTable.
◦ Bit[59] is RES0.

• When executing at EL1, the PSTATE.PAN bit is treated as zero for all purposes except reading the value of the
bit.

• When executing at EL1, the LDTR* instructions are treated as the equivalent LDR* instructions, and the
STTR* instructions are treated as the equivalent STR* instructions.

If HCR_EL2.NV is 0 and HCR_EL2.NV1 is 1 then the behavior is a CONSTRAINED UNPREDICTABLE choice of:

• Behaving as if HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1 for all purposes other than reading than reading back
the value of the HCR_EL2.NV bit.

• Behaving as if HCR_EL2.NV is 0 and HCR_EL2.NV1 is 0 for all purposes other than reading than reading back
the value of the HCR_EL2.NV1 bit.

• Behaving with regard to the HCR_EL2.NV and HCR_EL2.NV1 bits behavior as defined in the rest of this
description.

This bit is permitted to be cached in a TLB.

HCR_EL2, Hypervisor Configuration Register

Page 634

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NV, bit [42]

When ARMv8.4-NV is implemented:

Nested Virtualization.

When HCR_EL2.NV2 is 1, redefines register accesses so that:

• Instructions accessing the Special purpose registers SPSR_EL2 and ELR_EL2 instead access SPSR_EL1 and
ELR_EL1 respectively.

• Instructions accessing the System registers ESR_EL2 and FAR_EL2 instead access ESR_EL1 and FAR_EL1.

When HCR_EL2.NV2 is 0, or if ARMv8.4-NV is not implemented, traps functionality that is permitted at EL2 and would
be UNDEFINED at EL1 if this field was 0, when EL2 is enabled in the current Security state. This applies to the following
operations:

• EL1 accesses to Special-purpose registers that are not UNDEFINED at EL2.
• EL1 accesses to System registers that are not UNDEFINED at EL2.
• Execution of EL1 or EL2 translation regime address translation and TLB maintenance instructions for EL2 and

above.
NV Meaning
0b0 When this bit is set to 0, HCR_EL2.NV2 == 0 for all purposes

other than reading this register. This control does not cause any
instructions to be trapped.
When HCR_EL2.NV2 is 1, no ARMv8.4-NV functionality is
implemented.

0b1 When HCR_EL2.NV2 is 0, or if ARMv8.4-NV is not implemented,
EL1 accesses to the specified registers or the execution of the
specified instructions are trapped to EL2, when EL2 is enabled in
the current Security state. EL1 read accesses to the CurrentEL
register return a value of 0x2.
When HCR_EL2.NV2 is 1, this control redefines EL1 register
accesses so that instructions accessing SPSR_EL2, ELR_EL2,
ESR_EL2, and FAR_EL2 instead access SPSR_EL1, ELR_EL1,
ESR_EL1, and FAR_EL1 respectively.

When HCR_EL2.NV2 is 0, or if ARMv8.4-NV is not implemented, then:

• The System or Special-purpose registers for which accesses are trapped and reported using EC syndrome
value 0x18 are as follows:

◦ Registers accessed using MRS or MSR with a name ending in _EL2, except SP_EL2.
◦ Registers accessed using MRS or MSR with a name ending in _EL12.
◦ Registers accessed using MRS or MSR with a name ending in _EL02.
◦ Special-purpose registers SPSR_irq, SPSR_abt, SPSR_und and SPSR_fiq, accessed using MRS or

MSR.
◦ Special-purpose register SP_EL1 accessed using the dedicated MRS or MSR instruction.

• The instructions for which the execution is trapped and reported using EC syndrome value 0x18 are as follows:
◦ EL2 translation regime Address Translation instructions and TLB maintenance instructions.
◦ EL1 translation regime Address Translation instructions and TLB maintenance instructions that are

only accessible from EL2 and EL3.
• The instructions for which the execution is trapped as follows:

◦ SMC in an implementation that does not include EL3 and when HCR_EL2.TSC is 1. HCR_EL2.TSC bit
is not RES0 in this case. This is reported using EC syndrome value 0x17.

◦ The ERET, ERETAA, and ERETAB instructions, reported using EC syndrome value 0x1A.

Note

The priority of this trap is higher than the priority of the HCR_EL2.API trap. If
both of these bits are set so that EL1 execution of an ERETAA or ERETAB
instruction is trapped to EL2, then the syndrome reported is 0x1A.

HCR_EL2, Hypervisor Configuration Register

Page 635

This field resets to an architecturally UNKNOWN value.

When ARMv8.3-NV is implemented:

Nested Virtualization. Traps functionality that is permitted at EL2 and would be UNDEFINED at EL1 if this field was 0,
when EL2 is enabled in the current Security state. This applies to the following operations:

• EL1 accesses to Special-purpose registers that are not UNDEFINED at EL2.
• EL1 accesses to System registers that are not UNDEFINED at EL2.
• Execution of EL1 or EL2 translation regime address translation and TLB maintenance instructions for EL2 and

above.

The possible values are:

NV Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to the specified registers or the execution of the

specified instructions are trapped to EL2, when EL2 is enabled in
the current Security state. EL1 read accesses to the CurrentEL
register return a value of 0x2.

The System or Special-purpose registers for which accesses are trapped and reported using EC syndrome value 0x18
are as follows:

• Registers accessed using MRS or MSR with a name ending in _EL2, except SP_EL2.
• Registers accessed using MRS or MSR with a name ending in _EL12.
• Registers accessed using MRS or MSR with a name ending in _EL02.
• Special-purpose registers SPSR_irq, SPSR_abt, SPSR_und and SPSR_fiq, accessed using MRS or MSR.
• Special-purpose register SP_EL1 accessed using the dedicated MRS or MSR instruction.

The instructions for which the execution is trapped and reported using EC syndrome value 0x18 are as follows:

• EL2 translation regime Address Translation instructions and TLB maintenance instructions.
• EL1 translation regime Address Translation instructions and TLB maintenance instructions that are only

accessible from EL2 and EL3.

The execution of the ERET, ERETAA, and ERETAB instructions are trapped and reported using EC syndrome value
0x1A

Note

The priority of this trap is higher than the priority of the HCR_EL2.API trap. If
both of these bits are set so that EL1 execution of an ERETAA or ERETAB
instruction is trapped to EL2, then the syndrome reported is 0x1A.

The execution of the SMC instructions in an implementation that does not include EL3 and when HCR_EL2.TSC is 1
are trapped and reported using EC syndrome value 0x17. HCR_EL2.TSC bit is not RES0 in this case.

This bit is permitted to be cached in a TLB.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

API, bit [41]

When ARMv8.3-PAuth is implemented:

Controls the use of instructions related to Pointer Authentication:

• In EL0, when HCR_EL2.TGE==0 or HCR_EL2.E2H==0, and the associated SCTLR_EL1.En<N><M>==1.
• In EL1, the associated SCTLR_EL1.En<N><M>==1.

HCR_EL2, Hypervisor Configuration Register

Page 636

Traps are reported using EC syndrome value 0x09. The Pointer Authentication instructions trapped are:

• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP,
AUTIBZ, AUTIZA, AUTIZB.

• PACGA, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB, PACIB1716,
PACIBSP, PACIBZ, PACIZA, PACIZB.

• RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ, BLRABZ.
• ERETAA, ERETAB, LDRAA and LDRAB.

API Meaning
0b0 The instructions related to Pointer Authentication are trapped to

EL2, when EL2 is enabled in the current Security state and the
instructions are enabled for the EL1&0 translation regime, from:

• EL0 when HCR_EL2.TGE==0 or HCR_EL2.E2H==0.
• EL1.

If HCR_EL2.NV is 1, the HCR_EL2.NV trap takes precedence over
the HCR_EL2.API trap for the ERETAA and ERETAB instructions.

0b1 This control does not cause any instructions to be trapped.

If ARMv8.3-PAuth is implemented but EL2 is not implemented or disabled in the current Security state, the system
behaves as if this bit is 1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APK, bit [40]

When ARMv8.3-PAuth is implemented:

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following registers from EL1 to
EL2, when EL2 is enabled in the current Security state, reported using EC syndrome value 0x18:

• APIAKeyLo_EL1, APIAKeyHi_EL1, APIBKeyLo_EL1, APIBKeyHi_EL1, APDAKeyLo_EL1, APDAKeyHi_EL1,
APDBKeyLo_EL1, APDBKeyHi_EL1, APGAKeyLo_EL1, and APGAKeyHi_EL1.

APK Meaning
0b0 Access to the registers holding "key" values for pointer

authentication from EL1 are trapped to EL2, when EL2 is enabled
in the current Security state.

0b1 This control does not cause any instructions to be trapped.

Note

If ARMv8.3-PAuth is implemented but EL2 is not implemented or is disabled in
the current Security state, the system behaves as if this bit is 1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TME, bit [39]

When TME is implemented:

Enables access to the TSTART, TCOMMIT, TTEST and TCANCEL instructions at EL0 and EL1.

TME Meaning
0b0 EL0 and EL1 accesses to TSTART, TCOMMIT, TTEST and

TCANCEL instructions are UNDEFINED.
0b1 This control does not cause any instruction to be UNDEFINED.

HCR_EL2, Hypervisor Configuration Register

Page 637

If EL2 is not implemented or is disabled in the current Security state, the Effective value of this bit is 0b1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MIOCNCE, bit [38]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the EL1&0 translation regimes.

MIOCNCE Meaning
0b0 For the EL1&0 translation regimes, for permitted accesses

to a memory location that use a common definition of the
Shareability and Cacheability of the location, there must be
no loss of coherency if the Inner Cacheability attribute for
those accesses differs from the Outer Cacheability
attribute.

0b1 For the EL1&0 translation regimes, for permitted accesses
to a memory location that use a common definition of the
Shareability and Cacheability of the location, there might
be a loss of coherency if the Inner Cacheability attribute
for those accesses differs from the Outer Cacheability
attribute.

For more information see 'Mismatched memory attributes' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section B2 (The AArch64 Application Level Memory Model).

This field can be implemented as RAZ/WI.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this
field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

TEA, bit [37]

Route synchronous External abort exceptions to EL2. If the RAS Extension is implemented, the possible values of this
bit are:

TEA Meaning
0b0 This control does not cause exceptions to be routed from EL0 and

EL1 to EL2.
0b1 Route synchronous External abort exceptions from EL0 and EL1

to EL2, when EL2 is enabled in the current Security state, if not
routed to EL3.

When the RAS Extension is not implemented, this field is RES0.

This field resets to an architecturally UNKNOWN value.

TERR, bit [36]

When RAS is implemented:

Trap Error record accesses. Trap accesses to the RAS error registers from EL1 to EL2 as follows:

• If EL1 is using AArch64 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x18:

◦ ERRIDR_EL1, ERRSELR_EL1, ERXADDR_EL1, ERXCTLR_EL1, ERXFR_EL1, ERXMISC0_EL1,
ERXMISC1_EL1, and ERXSTATUS_EL1.

◦ When ARMv8.4-RAS is implemented, ERXMISC2_EL1, and ERXMISC3_EL1.
• If EL1 is using AArch32 state, MCR or MRC accesses are trapped to EL2, reported using EC syndrome value

0x03, MCRR or MRRC accesses are trapped to EL2, reported using EC syndrome value 0x04:

HCR_EL2, Hypervisor Configuration Register

Page 638

◦ ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR, ERXFR2, ERXMISC0,
ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS.

◦ When ARMv8.4-RAS is implemented, ERXMISC4, ERXMISC5, ERXMISC6, and ERXMISC7.
TERR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Accesses to the specified registers from EL1 generate a Trap

exception to EL2, when EL2 is enabled in the current Security
state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLOR, bit [35]

When ARMv8.1-LOR is implemented:

Trap LOR registers. Traps accesses to the LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1, and LORID_EL1
registers from EL1 to EL2, when EL2 is enabled in the current Security state.

TLOR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to the LOR registers are trapped to EL2, when

EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E2H, bit [34]

When ARMv8.1-VHE is implemented:

EL2 Host. Enables a configuration where a Host Operating System is running in EL2, and the Host Operating System's
applications are running in EL0.

E2H Meaning
0b0 The facilities to support a Host Operating System at EL2 are

disabled.
0b1 The facilities to support a Host Operating System at EL2 are

enabled.

For information on the behavior of this bit see Behavior of HCR_EL2.E2H.

This bit is permitted to be cached in a TLB.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HCR_EL2, Hypervisor Configuration Register

Page 639

ID, bit [33]

Stage 2 Instruction access cacheability disable. For the EL1&0 translation regime, when EL2 is enabled in the current
Security state and HCR_EL2.VM==1, this control forces all stage 2 translations for instruction accesses to Normal
memory to be Non-cacheable.

ID Meaning
0b0 This control has no effect on stage 2 of the EL1&0 translation

regime.
0b1 Forces all stage 2 translations for instruction accesses to Normal

memory to be Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this
field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

CD, bit [32]

Stage 2 Data access cacheability disable. For the EL1&0 translation regime, when EL2 is enabled in the current
Security state and HCR_EL2.VM==1, this control forces all stage 2 translations for data accesses and translation table
walks to Normal memory to be Non-cacheable.

CD Meaning
0b0 This control has no effect on stage 2 of the EL1&0 translation

regime for data accesses and translation table walks.
0b1 Forces all stage 2 translations for data accesses and translation

table walks to Normal memory to be Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this
field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

RW, bit [31]

When AArch32 is supported at any Exception level:

Execution state control for lower Exception levels:

RW Meaning
0b0 Lower levels are all AArch32.
0b1 The Execution state for EL1 is AArch64. The Execution state for

EL0 is determined by the current value of PSTATE.nRW when
executing at EL0.

If AArch32 state is not supported by the implementation at EL1, then this bit is RAO/WI.

In an implementation that includes EL3, when EL2 is not enabled in Secure state, the PE behaves as if this bit has the
same value as the SCR_EL3.RW bit for all purposes other than a direct read or write access of HCR_EL2.

The RW bit is permitted to be cached in a TLB.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 1 for all
purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAO/WI.

HCR_EL2, Hypervisor Configuration Register

Page 640

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps EL1 reads of the virtual memory control registers to EL2, when EL2 is
enabled in the current Security state, as follows:

• If EL1 is using AArch64 state, the following registers are trapped to EL2 and reported using EC syndrome
value 0x18.

◦ SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1, AFSR0_EL1, AFSR1_EL1,
MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

• If EL1 is using AArch32 state, accesses using MRC to the following registers are trapped to EL2 and
reported using EC syndrome value 0x03, accesses using MRRC are trapped to EL2 and reported using EC
syndrome value 0x04:

◦ SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR,
NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

TRVM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 read accesses to the specified Virtual Memory controls are

trapped to EL2, when EL2 is enabled in the current Security
state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

Note

EL2 provides a second stage of address translation, that a hypervisor can use
to remap the address map defined by a Guest OS. In addition, a hypervisor can
trap attempts by a Guest OS to write to the registers that control the memory
system. A hypervisor might use this trap as part of its virtualization of memory
management.

This field resets to an architecturally UNKNOWN value.

HCD, bit [29]

When EL3 is not implemented:

HVC instruction disable. Disables EL1 execution of HVC instructions, from both Execution states, when EL2 is enabled
in the current Security state, reported using EC syndrome value 0x00.

HCD Meaning
0b0 HVC instruction execution is enabled at EL2 and EL1.
0b1 HVC instructions are UNDEFINED at EL2 and EL1. Any resulting

exception is taken to the Exception level at which the HVC
instruction is executed.

Note

HVC instructions are always UNDEFINED at EL0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TDZ, bit [28]

Trap DC ZVA instructions. Traps EL0 and EL1 execution of DC ZVA instructions to EL2, when EL2 is enabled in the
current Security state, from AArch64 state only, reported using EC syndrome value 0x18.

If ARMv8.5-MemTag is implemented, this trap also applies to DC GVA and DC GZVA.

HCR_EL2, Hypervisor Configuration Register

Page 641

TDZ Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 In AArch64 state, any attempt to execute an instruction this trap

applies to at EL1, or at EL0 when the instruction is not UNDEFINED
at EL0, is trapped to EL2 when EL2 is enabled in the current
Security state.
Reading the DCZID_EL0 returns a value that indicates that the
instructions this trap applies to are not supported.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

TGE, bit [27]

Trap General Exceptions, from EL0.

TGE Meaning
0b0 This control has no effect on execution at EL0.
0b1 When EL2 is not enabled in the current Security state, this

control has no effect on execution at EL0.
When EL2 is enabled in the current Security state, in all cases:

• All exceptions that would be routed to EL1 are routed to
EL2.

• If EL1 is using AArch64, the SCTLR_EL1.M field is treated
as being 0 for all purposes other than returning the result of
a direct read of SCTLR_EL1.

• If EL1 is using AArch32, the SCTLR.M field is treated as
being 0 for all purposes other than returning the result of a
direct read of SCTLR.

• All virtual interrupts are disabled.
• Any IMPLEMENTATION DEFINED mechanisms for signaling

virtual interrupts are disabled.
• An exception return to EL1 is treated as an illegal exception

return.
• The MDCR_EL2.{TDRA, TDOSA, TDA, TDE} fields are

treated as being 1 for all purposes other than returning the
result of a direct read of MDCR_EL2.

In addition, when EL2 is enabled in the current Security state, if:
• HCR_EL2.E2H is 0, the Effective values of the

HCR_EL2.{FMO, IMO, AMO} fields are 1.
• HCR_EL2.E2H is 1, the Effective values of the

HCR_EL2.{FMO, IMO, AMO} fields are 0.
For further information on the behavior of this bit when E2H is 1,
see Behavior of HCR_EL2.E2H.

HCR_EL2.TGE must not be cached in a TLB.

This field resets to an architecturally UNKNOWN value.

TVM, bit [26]

Trap Virtual Memory controls. Traps EL1 writes to the virtual memory control registers to EL2, when EL2 is enabled
in the current Security state, as follows:

• If EL1 is using AArch64 state, the following registers are trapped to EL2 and reported using EC syndrome
value 0x18:

◦ SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1, AFSR0_EL1, AFSR1_EL1,
MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

• If EL1 is using AArch32 state, accesses using MCR to the following registers are trapped to EL2 and
reported using EC syndrome value 0x03, accesses using MCRR are trapped to EL2 and reported using EC
syndrome value 0x04:

◦ SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR,
NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

HCR_EL2, Hypervisor Configuration Register

Page 642

TVM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 write accesses to the specified EL1 virtual memory control

registers are trapped to EL2, when EL2 is enabled in the current
Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

TTLB, bit [25]

When ARMv8.4-TLBI is implemented:

Trap TLB maintenance instructions. Traps EL1 execution of TLB maintenance instructions to EL2, when EL2 is
enabled in the current Security state, as follows:

• When EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported using EC
syndrome value 0x18:

◦ TLBI VMALLE1, TLBI VAE1, TLBI ASIDE1, TLBI VAAE1, TLBI VALE1, TLBI VAALE1.
◦ TLBI VMALLE1IS, TLBI VAE1IS, TLBI ASIDE1IS, TLBI VAAE1IS, TLBI VALE1IS, TLBI VAALE1IS.
◦ TLBI VMALLE1OS, TLBI VAE1OS, TLBI ASIDE1OS, TLBI VAAE1OS, TLBI VALE1OS, TLBI

VAALE1OS.
◦ TLBI RVAE1, TLBI RVAAE1, TLBI RVALE1, TLBI RVAALE1.
◦ TLBI RVAE1IS, TLBI RVAAE1IS, TLBI RVALE1IS, TLBI RVAALE1IS.
◦ TLBI RVAE1OS, TLBI RVAAE1OS, TLBI RVALE1OS, TLBI RVAALE1OS.

• When EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported using EC
syndrome value 0x03:

◦ TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS.
◦ TLBIALL, TLBIMVA, TLBIASID, TLBIMVAA, TLBIMVAL, TLBIMVAAL
◦ ITLBIALL, ITLBIMVA, ITLBIASID.
◦ DTLBIALL, DTLBIMVA, DTLBIASID.

TTLB Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 execution of the specified TLB maintenance instructions are

trapped to EL2, when EL2 is enabled in the current Security
state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

Note

The TLB maintenance instructions are UNDEFINED at EL0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Trap TLB maintenance instructions. Traps EL1 execution of TLB maintenance instructions to EL2, when EL2 is
enabled in the current Security state. This applies to the following instructions:

• When EL1 is using AArch64, TLBI VMALLE1IS, TLBI VAE1IS, TLBI ASIDE1IS, TLBI VAAE1IS, TLBI VALE1IS,
TLBI VAALE1IS, TLBI VMALLE1, TLBI VAE1, TLBI ASIDE1, TLBI VAAE1, TLBI VALE1, TLBI VAALE1.

• When EL1 is using AArch32, TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS,
ITLBIALL, ITLBIMVA, ITLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, TLBIALL, TLBIMVA, TLBIASID,
TLBIMVAA, TLBIMVAL, TLBIMVAAL

TTLB Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 execution of the specified TLB maintenance instructions are

trapped to EL2, when EL2 is enabled in the current Security
state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 643

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of those cache
maintenance instructions to EL2, when EL2 is enabled in the current Security state as follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, the following instructions are trapped
to EL2 and reported with EC syndrome value 0x18:

◦ IC IVAU, DC CVAU. If the value of SCTLR_EL1.UCI is 0 these instructions are UNDEFINED at EL0 and
any resulting exception is higher priority than this trap to EL2.

• If EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported with EC syndrome
value 0x18:

◦ IC IVAU, IC IALLU, IC IALLUIS, DC CVAU.
• If EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported with EC syndrome

value 0x18:
◦ ICIMVAU, ICIALLU, ICIALLUIS, DCCMVAU.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher
priority than this trap to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using AArch64.
• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always UNDEFINED at

EL0 using AArch32.
TPU Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2, when

EL2 is enabled in the current Security state.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any
data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control
is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution
of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value of this control
is 1.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

TPCP, bit [23]

When ARMv8.2-DCPoP is implemented:

Trap data or unified cache maintenance instructions that operate to the Point of Coherency or Persistence. Traps
execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state as
follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, the following instructions are trapped
to EL2 and reported using EC syndrome value 0x18:

◦ DC CIVAC, DC CVAC, DC CVAP. If the value of SCTLR_EL1.UCI is 0 these instructions are UNDEFINED
at EL0 and any resulting exception is higher priority than this trap to EL2.

• If EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported using EC syndrome
value 0x18:

◦ DC IVAC, DC CIVAC, DC CVAC, DC CVAP.
• If EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported using EC syndrome

value 0x03:
◦ DCIMVAC, DCCIMVAC, DCCMVAC.

If ARMv8.2-DCCVADP is implemented, this trap also applies to DC CVADP.

If ARMv8.5-MemTag is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC IGVAC, DC IGDVAC, DC
CGVAC, DC CGDVAC, DC CGVAP and DC CGDVAP.

If ARMv8.2-DCCVADP and ARMv8.5-MemTag are implemented, this trap also applies to DC CGVADP and DC
CGDVADP.

HCR_EL2, Hypervisor Configuration Register

Page 644

Note
• An exception generated because an instruction is UNDEFINED at EL0 is

higher priority than this trap to EL2. In addition:
◦ AArch64 instructions which invalidate by VA to the Point of

Coherency are always UNDEFINED at EL0 using AArch64.
◦ DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED at

EL0 using AArch32.
• In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2 it is

named TPCP.
TPCP Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2, when

EL2 is enabled in the current Security state.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any
data or unified cache clean, invalidate, or clean and invalidate instruction that operates by VA to the point of
coherency can be trapped when the value of this control is 1.

If HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of
this bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps execution of those
cache maintenance instructions to EL2, when EL2 is enabled in the current Security state as follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, accesses to the following registers are
trapped and reported using EC syndrome value 0x18:

◦ DC CIVAC, DC CVAC. However, if the value of SCTLR_EL1.UCI is 0 these instructions are UNDEFINED
at EL0 and any resulting exception is higher priority than this trap to EL2.

• If EL1 is using AArch64 state, accesses to DC IVAC, DC CIVAC, DC CVAC are trapped and reported using EC
syndrome value 0x18.

• When EL1 is using AArch32, accesses to DCIMVAC, DCCIMVAC, and DCCMVAC are trapped and reported
using EC syndrome value 0x03.

Note
• An exception generated because an instruction is UNDEFINED at EL0 is

higher priority than this trap to EL2. In addition:
◦ AArch64 instructions which invalidate by VA to the Point of

Coherency are always UNDEFINED at EL0 using AArch64.
◦ DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED at

EL0 using AArch32.
• In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2 it is

named TPCP.
TPC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2, when

EL2 is enabled in the current Security state.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any
data or unified cache clean, invalidate, or clean and invalidate instruction that operates by VA to the point of
coherency can be trapped when the value of this control is 1.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps execution of those cache
maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state as follows:

HCR_EL2, Hypervisor Configuration Register

Page 645

• If EL1 is using AArch64 state, accesses to DC ISW, DC CSW, DC CISW are trapped to EL2, reported using EC
syndrome value 0x18.

• If EL1 is using AArch32 state, accesses to DCISW, DCCSW, DCCISW are trapped to EL2, reported using EC
syndrome value 0x03.

If ARMv8.5-MemTag is implemented, this trap also applies to DC IGSW, DC IGDSW, DC CGSW, DC CGDW, DC CIGSW,
and DC CIGDSW.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher
priority than this trap to EL2, and these instructions are always UNDEFINED at
EL0.

TSW Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2, when

EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

TACR, bit [21]

Trap Auxiliary Control Registers. Traps EL1 accesses to the Auxiliary Control Registers to EL2, when EL2 is enabled in
the current Security state, as follows:

• If EL1 is using AArch64 state, accesses to ACTLR_EL1 to EL2, are trapped to EL2 and reported using EC
syndrome value 0x18.

• If EL1 is using AArch32 state, accesses to ACTLR and, if implemented, ACTLR2 are trapped to EL2 and
reported using EC syndrome value 0x03.

TACR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to the specified registers are trapped to EL2, when

EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

Note

ACTLR_EL1 is not accessible at EL0

ACTLR, and ACTLR2 are not accessible at EL0.

The Auxiliary Control Registers are IMPLEMENTATION DEFINED registers that
might implement global control bits for the PE.

This field resets to an architecturally UNKNOWN value.

TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps EL1 accesses to the encodings reserved for IMPLEMENTATION DEFINED
functionality to EL2, when EL2 is enabled in the current Security state as follows:

• In AArch64 state, access to any of the encodings in the following reserved encoding spaces are trapped and
reported using EC syndrome 0x18:

◦ IMPLEMENTATION DEFINED System instructions, which are accessed using SYS and SYSL, with CRn ==
{11, 15}.

◦ IMPLEMENTATION DEFINED System registers, which are accessed using MRS and MSR with the
S3_<op1>_<Cn>_<Cm>_<op2> register name.

• In AArch32 state, MCR and MRC access to instructions with the following encodings are trapped and reported
using EC syndrome 0x03:

◦ All coproc==p15, CRn==c9, opc1 == {0-7}, CRm == {c0-c2, c5-c8}, opc2 == {0-7}.
◦ All coproc==p15, CRn==c10, opc1 =={0-7}, CRm == {c0, c1, c4, c8}, opc2 == {0-7}.
◦ All coproc==p15, CRn==c11, opc1=={0-7}, CRm == {c0-c8, c15}, opc2 == {0-7}.

HCR_EL2, Hypervisor Configuration Register

Page 646

When the value of HCR_EL2.TIDCP is 1, it is IMPLEMENTATION DEFINED whether any of this functionality accessed from
EL0 is trapped to EL2. If it is not, then it is UNDEFINED, and any attempt to access it from EL0 generates an exception
that is taken to EL1.

TIDCP Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to or execution of the specified encodings

reserved for IMPLEMENTATION DEFINED functionality are trapped
to EL2, when EL2 is enabled in the current Security state.

An implementation can also include IMPLEMENTATION DEFINED registers that provide additional controls, to give finer-
grained control of the trapping of IMPLEMENTATION DEFINED features.

Note

Arm expects the trapping of EL0 accesses to these functions to EL2 to be
unusual, and used only when the hypervisor is virtualizing EL0 operation. Arm
strongly recommends that unless the hypervisor must virtualize EL0
operation, an EL0 access to any of these functions is UNDEFINED, as it would be
if the implementation did not include EL2. The PE then takes any resulting
exception to EL1.

The trapping of accesses to these registers from EL1 is higher priority than an
exception resulting from the register access being UNDEFINED.

This field resets to an architecturally UNKNOWN value.

TSC, bit [19]

Trap SMC instructions. Traps EL1 execution of SMC instructions to EL2, when EL2 is enabled in the current Security
state.

If execution is in AArch64 state the trap is reported using EC syndrome value 0x17.

If execution is in AArch32 state, the trap is reported using EC syndrome value 0x13.

Note

HCR_EL2.TSC traps execution of the SMC instruction. It is not a routing
control for the SMC exception. Trap exceptions and SMC exceptions have
different preferred return addresses.

TSC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 If EL3 is implemented, then any attempt to execute an SMC

instruction at EL1 is trapped to EL2, when EL2 is enabled in the
current Security state, regardless of the value of SCR_EL3.SMD.
If EL3 is not implemented, ARMv8.3-NV is implemented, and
HCR_EL2.NV is 1, then any attempt to execute an SMC
instruction at EL1 using AArch64 is trapped to EL2, when EL2 is
enabled in the current Security state.
If EL3 is not implemented, and either ARMv8.3-NV is not
implemented or HCR_EL2.NV is 0, then it is IMPLEMENTATION
DEFINED whether:

• Any attempt to execute an SMC instruction at EL1 is trapped
to EL2, when EL2 is enabled in the current Security state.

• Any attempt to execute an SMC instruction is UNDEFINED.

In AArch32 state, the Armv8-A architecture permits, but does not require, this trap to apply to conditional SMC
instructions that fail their condition code check, in the same way as with traps on other conditional instructions.

SMC instructions are UNDEFINED at EL0.

If EL3 is not implemented and HCR_EL2.NV is 0, it is IMPLEMENTATION DEFINED whether this bit is:

• RES0.
• Implemented with the functionality as described in HCR_EL2.TSC.

HCR_EL2, Hypervisor Configuration Register

Page 647

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

TID3, bit [18]

Trap ID group 3. Traps EL1 reads of group 3 ID registers to EL2, when EL2 is enabled in the current Security state, as
follows:

• In AArch64 state, reads of the following registers are trapped to EL2, reported using EC syndrome value
0x18:

◦ ID_PFR0_EL1, ID_PFR1_EL1, ID_DFR0_EL1, ID_AFR0_EL1, ID_MMFR0_EL1, ID_MMFR1_EL1,
ID_MMFR2_EL1, ID_MMFR3_EL1, ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1,
ID_ISAR4_EL1, ID_ISAR5_EL1, ID_ISAR6_EL1, MVFR0_EL1, MVFR1_EL1, MVFR2_EL1.

◦ ID_AA64PFR0_EL1, ID_AA64PFR1_EL1, ID_AA64DFR0_EL1, ID_AA64DFR1_EL1,
ID_AA64ISAR0_EL1, ID_AA64ISAR1_EL1, ID_AA64MMFR0_EL1, ID_AA64MMFR1_EL1,
ID_AA64MMFR2_EL1, ID_AA64AFR0_EL1, ID_AA64AFR1_EL1, ID_AA64ZFR0_EL1 (where SVE is
implemented), and ID_MMFR4_EL1

• In AArch64 state, ID_MMFR4_EL1 and ID_MMFR5_EL1 are trapped to EL2, unless implemented as RAZ,
when it is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4_EL1 or ID_MMFR5_EL1 are trapped to
EL2, reported using EC syndrome value 0x18.

• In AArch64 state, ID_AA64MMFR2_EL1 and ID_ISAR6_EL1 are trapped to EL2, unless implemented as RAZ,
when it is IMPLEMENTATION DEFINED whether accesses to ID_AA64MMFR2_EL1 or ID_ISAR6_EL1 are trapped
to EL2, reported using EC syndrome value 0x18.

• In AArch64 state, ID_DFR1_EL1 is trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION
DEFINED whether accesses to ID_DFR1_EL1 are trapped to EL2, reported using EC syndrome value 0x18.

• In AArch64 state, ID_AA64ZFR0_EL1 is trapped to EL2, unless implemented as RAZ then it is
IMPLEMENTATION DEFINED whether accesses to ID_AA64ZFR0_EL1 are trapped to EL2, reported using EC
syndrome value 0x18.

• In AArch64 state, if ARMv8.6-FGT is implemented, this field traps all MRS accesses to encodings in the
following range that are not already mentioned in this field description, reported using EC syndrome value
0x18:

◦ Op0 == 3, op1 == 0, CRn == c0, CRm == {c1-c7}, op2 == {0-7}.

• Otherwise, in AArch64 state, it is IMPLEMENTATION DEFINED whether this field traps MRS accesses to
encodings in the following range that are not already mentioned in this field description, reported using EC
syndrome value 0x18:

◦ Op0 == 3, op1 == 0, CRn == c0, CRm == {c2-c7}, op2 == {0-7}.

• In AArch32 state, MRC access to the following registers are trapped to EL2, reported using EC syndrome
value 0x03:

◦ ID_PFR0, ID_PFR1, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1, ID_MMFR2, ID_MMFR3, ID_ISAR0,
ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, ID_ISAR5, MVFR0, MVFR1, MVFR2, and ID_MMFR4.

• In AArch32 state, VMRS access to MVFR0, MVFR1, and MVFR2, reported using EC syndrome value 0x08.

• In AArch32 state, ID_MMFR4 and ID_MMFR5 are trapped to EL2, unless implemented as RAZ, when it is
IMPLEMENTATION DEFINED whether accesses to ID_MMFR4 or ID_MMFR5 are trapped to EL2, reported using
EC syndrome value 0x03.

• In AArch32 state, ID_ISAR6 is trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION
DEFINED whether accesses to ID_ISAR6 are trapped to EL2, reported using EC syndrome value 0x03.

• In AArch32 state, ID_DFR1 is trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION
DEFINED whether accesses to ID_DFR1 are trapped to EL2, reported using EC syndrome value 0x03.

• In AArch32 state, if ARMv8.6-FGT is implemented, this field traps all MRC accesses to encodings in the
following range that are not already mentioned in this field description, reported using EC syndrome value
0x03:

HCR_EL2, Hypervisor Configuration Register

Page 648

◦ coproc==p15, opc1 == 0, CRn == c0, CRm == {c1-c7}, opc2 == {0-7}.

• Otherwise, in AArch32 state, it is IMPLEMENTATION DEFINED whether this bit traps MRC accesses to encodings
that are not already mentioned, with coproc==p15, opc1 == 0, CRn == c0, CRm == {c2-c7}, opc2 ==
{0-7}.

TID3 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 read accesses to ID group 3 registers are

trapped to EL2, when EL2 is enabled in the current Security
state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state, as
follows:

• If EL1 is using AArch64, reads of CTR_EL0, CCSIDR_EL1, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1 are
trapped to EL2, reported using EC syndrome value 0x18.

• If EL0 is using AArch64 and the value of SCTLR_EL1.UCT is not 0, reads of CTR_EL0 are trapped to EL2,
reported using EC syndrome value 0x18. If the value of SCTLR_EL1.UCT is 0 then EL0 reads of CTR_EL0 are
UNDEFINED and any resulting exception takes precedence over this trap.

• If EL1 is using AArch64, writes to CSSELR_EL1 are trapped to EL2, reported using EC syndrome value 0x18.
• If EL1 is using AArch32, reads of CTR, CCSIDR, CCSIDR2, CLIDR, and CSSELR are trapped to EL2, reported

using EC syndrome value 0x03.
• If EL1 is using AArch32, writes to CSSELR are trapped to EL2, reported using EC syndrome value 0x03.

TID2 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 and EL0 accesses to ID group 2 registers are

trapped to EL2, when EL2 is enabled in the current Security
state.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

TID1, bit [16]

Trap ID group 1. Traps EL1 reads of the following registers to EL2, when EL2 is enabled in the current Security state
as follows:

• In AArch64 state, accesses of REVIDR_EL1, AIDR_EL1, reported using EC syndrome value 0x18.

• In AArch32 state, accesses of TCMTR, TLBTR, REVIDR, AIDR, reported using EC syndrome value 0x03.

TID1 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 read accesses to ID group 1 registers are

trapped to EL2, when EL2 is enabled in the current Security
state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

TID0, bit [15]

When AArch32 is supported at any Exception level:

Trap ID group 0. Traps the following register accesses to EL2:

• EL1 reads of the JIDR, reported using EC syndrome value 0x05.

HCR_EL2, Hypervisor Configuration Register

Page 649

• If the JIDR is RAZ from EL0, EL0 reads of the JIDR, reported using EC syndrome value 0x05.
• EL1 accesses using VMRS of the FPSID, reported using EC syndrome value 0x08.

Note
• It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED at

EL0. If it is UNDEFINED at EL0 then any resulting exception takes
precedence over this trap.

• The FPSID is not accessible at EL0 using AArch32.
• Writes to the FPSID are ignored, and not trapped by this control.

TID0 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 read accesses to ID group 0 registers are

trapped to EL2, when EL2 is enabled in the current Security
state.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWE, bit [14]

Traps EL0 and EL1 execution of WFE instructions to EL2, when EL2 is enabled in the current Security state, from
both Execution states, reported using EC syndrome value 0x01.

TWE Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFE instruction at EL0 or EL1 is

trapped to EL2, when EL2 is enabled in the current Security
state, if the instruction would otherwise have caused the PE to
enter a low-power state and it is not trapped by SCTLR.nTWE or
SCTLR_EL1.nTWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its
condition code check.

Note

Since a WFE can complete at any time, even without a Wakeup event, the
traps on WFE are not guaranteed to be taken, even if the WFE is executed
when there is no Wakeup event. The only guarantee is that if the instruction
does not complete in finite time in the absence of a Wakeup event, the trap
will be taken.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

For more information about when WFE instructions can cause the PE to enter a low-power state, see 'Wait for Event
mechanism and Send event' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

TWI, bit [13]

Traps EL0 and EL1 execution of WFI instructions to EL2, when EL2 is enabled in the current Security state, from both
Execution states, reported using EC syndrome value 0x01.

HCR_EL2, Hypervisor Configuration Register

Page 650

TWI Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFI instruction at EL0 or EL1 is

trapped to EL2, when EL2 is enabled in the current Security
state, if the instruction would otherwise have caused the PE to
enter a low-power state and it is not trapped by SCTLR.nTWI or
SCTLR_EL1.nTWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its
condition code check.

Note

Since a WFI can complete at any time, even without a Wakeup event, the traps
on WFI are not guaranteed to be taken, even if the WFI is executed when
there is no Wakeup event. The only guarantee is that if the instruction does
not complete in finite time in the absence of a Wakeup event, the trap will be
taken.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

For more information about when WFI instructions can cause the PE to enter a low-power state, see 'Wait for
Interrupt' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

DC, bit [12]

Default Cacheability.

DC Meaning
0b0 This control has no effect on the EL1&0 translation regime.
0b1 In both Security states:

• When EL1 is using AArch64, the PE behaves as if the value of
the SCTLR_EL1.M field is 0 for all purposes other than
returning the value of a direct read of SCTLR_EL1.

• When EL1 is using AArch32, the PE behaves as if the value of
the SCTLR.M field is 0 for all purposes other than returning
the value of a direct read of SCTLR.

• The PE behaves as if the value of the HCR_EL2.VM field is 1
for all purposes other than returning the value of a direct
read of HCR_EL2.

• The memory type produced by stage 1 of the EL1&0
translation regime is Normal Non-Shareable, Inner Write-
Back Read-Allocate Write-Allocate, Outer Write-Back Read-
Allocate Write-Allocate.

This field has no effect on the EL2, EL2&0, and EL3 translation regimes.

This field is permitted to be cached in a TLB.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this field.

This field resets to an architecturally UNKNOWN value.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied to any barrier
instruction executed from EL1 or EL0:

BSU Meaning
0b00 No effect.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Full system.

HCR_EL2, Hypervisor Configuration Register

Page 651

This value is combined with the specified level of the barrier held in its instruction, using the same principles as
combining the shareability attributes from two stages of address translation.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0b00 for
all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable domain when executed
from EL1:

AArch32: BPIALL, TLBIALL, TLBIMVA, TLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, ITLBIALL, ITLBIMVA,
ITLBIASID, TLBIMVAA, ICIALLU, TLBIMVAL, TLBIMVAAL.

AArch64: TLBI VMALLE1, TLBI VAE1, TLBI ASIDE1, TLBI VAAE1, TLBI VALE1, TLBI VAALE1, IC IALLU, TLBI RVAE1,
TLBI RVAAE1, TLBI RVALE1, TLBI RVAALE1.

FB Meaning
0b0 This field has no effect on the operation of the specified

instructions.
0b1 When one of the specified instruction is executed at EL1, the

instruction is broadcast within the Inner Shareable shareability
domain.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

VSE, bit [8]

Virtual SError interrupt.

VSE Meaning
0b0 This mechanism is not making a virtual SError interrupt pending.
0b1 A virtual SError interrupt is pending because of this mechanism.

The virtual SError interrupt is only enabled when the value of HCR_EL2.{TGE, AMO} is {0, 1}.

This field resets to an architecturally UNKNOWN value.

VI, bit [7]

Virtual IRQ Interrupt.

VI Meaning
0b0 This mechanism is not making a virtual IRQ pending.
0b1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR_EL2.{TGE, IMO} is {0, 1}.

This field resets to an architecturally UNKNOWN value.

VF, bit [6]

Virtual FIQ Interrupt.

VF Meaning
0b0 This mechanism is not making a virtual FIQ pending.
0b1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR_EL2.{TGE, FMO} is {0, 1}.

This field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 652

AMO, bit [5]

Physical SError interrupt routing.

AMO Meaning
0b0 When executing at Exception levels below EL2, and EL2 is

enabled in the current Security state:
• Physical SError interrupts are not taken to EL2.
• When the value of HCR_EL2.TGE is 0, if the PE is executing

at EL2 using AArch64, physical SError interrupts are not
taken unless they are routed to EL3 by the SCR_EL3.EA bit.

• Virtual SError interrupts are disabled.
0b1 When executing at any Exception level, and EL2 is enabled in the

current Security state:
• Physical SError interrupts are taken to EL2, unless they are

routed to EL3.
• When the value of HCR_EL2.TGE is 0, then virtual SError

interrupts are enabled.

If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the AMO bit physical asynchronous External aborts and SError interrupts target
EL2 unless they are routed to EL3.

• When ARMv8.1-VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other
than a direct read of the value of this bit.

• When ARMv8.1-VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than
a direct read of the value of this bit.

For more information, see 'Asynchronous exception routing' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section D1 (The AArch64 System Level Programmers' Model).

This field resets to an architecturally UNKNOWN value.

IMO, bit [4]

Physical IRQ Routing.

IMO Meaning
0b0 When executing at Exception levels below EL2, and EL2 is

enabled in the current Security state:
• Physical IRQ interrupts are not taken to EL2.
• When the value of HCR_EL2.TGE is 0, if the PE is executing

at EL2 using AArch64, physical IRQ interrupts are not taken
unless they are routed to EL3 by the SCR_EL3.IRQ bit.

• Virtual IRQ interrupts are disabled.
0b1 When executing at any Exception level, and EL2 is enabled in the

current Security state:
• Physical IRQ interrupts are taken to EL2, unless they are

routed to EL3.
• When the value of HCR_EL2.TGE is 0, then Virtual IRQ

interrupts are enabled.

If EL2 is enabled in the current Security state, and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the IMO bit, physical IRQ Interrupts target EL2 unless they are routed to EL3.
• When ARMv8.1-VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other

than a direct read of the value of this bit.
• When ARMv8.1-VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than

a direct read of the value of this bit.

For more information, see 'Asynchronous exception routing' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section D1.

This field resets to an architecturally UNKNOWN value.

FMO, bit [3]

Physical FIQ Routing.

HCR_EL2, Hypervisor Configuration Register

Page 653

FMO Meaning
0b0 When executing at Exception levels below EL2, and EL2 is

enabled in the current Security state:
• Physical FIQ interrupts are not taken to EL2.
• When the value of HCR_EL2.TGE is 0, if the PE is executing

at EL2 using AArch64, physical FIQ interrupts are not taken
unless they are routed to EL3 by the SCR_EL3.FIQ bit.

• Virtual FIQ interrupts are disabled.
0b1 When executing at any Exception level, and EL2 is enabled in the

current Security state:
• Physical FIQ interrupts are taken to EL2, unless they are

routed to EL3.
• When HCR_EL2.TGE is 0, then Virtual FIQ interrupts are

enabled.

If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the FMO bit, physical FIQ Interrupts target EL2 unless they are routed to EL3.
• When ARMv8.1-VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other

than a direct read of the value of this bit.
• When ARMv8.1-VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than

a direct read of the value of this bit.

For more information, see 'Asynchronous exception routing' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section D1.

This field resets to an architecturally UNKNOWN value.

PTW, bit [2]

Protected Table Walk. In the EL1&0 translation regime, a translation table access made as part of a stage 1 translation
table walk is subject to a stage 2 translation. The combining of the memory type attributes from the two stages of
translation means the access might be made to a type of Device memory. If this occurs, then the value of this bit
determines the behavior:

PTW Meaning
0b0 The translation table walk occurs as if it is to Normal Non-

cacheable memory. This means it can be made speculatively.
0b1 The memory access generates a stage 2 Permission fault.

This field is permitted to be cached in a TLB.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

SWIO, bit [1]

Set/Way Invalidation Override. Causes EL1 execution of the data cache invalidate by set/way instructions to perform a
data cache clean and invalidate by set/way:

SWIO Meaning
0b0 This control has no effect on the operation of data cache

invalidate by set/way instructions.
0b1 Data cache invalidate by set/way instructions perform a data

cache clean and invalidate by set/way.

When the value of this bit is 1:

AArch32: DCISW performs the same invalidation as a DCCISW instruction.

AArch64: DC ISW performs the same invalidation as a DC CISW instruction.

This bit can be implemented as RES1.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 654

VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the EL1&0 translation regime, when EL2 is enabled in
the current Security state.

VM Meaning
0b0 EL1&0 stage 2 address translation disabled.
0b1 EL1&0 stage 2 address translation enabled.

When the value of this bit is 1, data cache invalidate instructions executed at EL1 perform a data cache clean and
invalidate. For the invalidate by set/way instruction this behavior applies regardless of the value of the
HCR_EL2.SWIO bit.

This bit is permitted to be cached in a TLB.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

Accessing the HCR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, HCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x078];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HCR_EL2;
elsif PSTATE.EL == EL3 then

return HCR_EL2;

MSR HCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x078] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

HCR_EL2 = X[t];

HCR_EL2, Hypervisor Configuration Register

Page 655

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HCR_EL2, Hypervisor Configuration Register

Page 656

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read
Trap Register

The HDFGRTR_EL2 characteristics are:

Purpose
Provides controls for traps of MRS and MRC reads of debug, trace, PMU, and Statistical Profiling System registers.

Configuration
This register is present only when ARMv8.6-FGT is implemented. Otherwise, direct accesses to HDFGRTR_EL2 are
UNDEFINED.

Attributes
HDFGRTR_EL2 is a 64-bit register.

Field descriptions
The HDFGRTR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 PMCEIDn_EL0PMUSERENR_EL0TRBTRG_EL1 TRBSR_EL1 TRBPTR_EL1TRBMAR_EL1TRBLIMITR_EL1 TRBIDR_EL1 TRBBASER_EL1 RES0 TRCVICTLR TRCSTATR TRCSSCSRn TRCSEQSTR TRCPRGCTLR TRCOSLSR RES0 TRCIMSPECnTRCID RES0 TRCCNTVRn TRCCLAIM TRCAUXCTLR TRCAUTHSTATUS TRC PMSLATFR_EL1

PMSIRR_EL1PMSIDR_EL1PMSICR_EL1PMSFCR_EL1PMSEVFR_EL1 PMSCR_EL1 PMBSR_EL1 PMBPTR_EL1PMBLIMITR_EL1 PMMIR_EL1 RES0 PMSELR_EL0 PMOVS PMINTEN PMCNTEN PMCCNTR_EL0PMCCFILTR_EL0PMEVTYPERn_EL0PMEVCNTRn_EL0OSDLR_EL1OSECCR_EL1 OSLSR_EL1 RES0 DBGPRCR_EL1DBGAUTHSTATUS_EL1 DBGCLAIM MDSCR_EL1DBGWVRn_EL1 DBGWCRn_EL1 DBGBVRn_EL1 DBGBCRn_EL1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:59]

Reserved, RES0.

PMCEIDn_EL0, bit [58]

When PMUv3 is implemented:

Trap MRS reads of PMCEID<n>_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMCEID<n> at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

PMCEIDn_EL0 Meaning
0b0 MRS reads of PMCEID<n>_EL0 at EL1 and EL0 using

AArch64 and MRC reads of PMCEID<n> at EL0 using
AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is
using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read
generates a higher priority exception:

• MRS reads of PMCEID<n>_EL0 at EL1 and EL0
using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18.

• MRC reads of PMCEID<n> at EL0 using AArch32
are trapped to EL2 and reported with EC
syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 657

Otherwise:

Reserved, RES0.

PMUSERENR_EL0, bit [57]

When PMUv3 is implemented:

Trap MRS reads of PMUSERENR_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMUSERENR at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

PMUSERENR_EL0 Meaning
0b0 MRS reads of PMUSERENR_EL0 at EL1 and EL0

using AArch64 and MRC reads of PMUSERENR at
EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then,
unless the read generates a higher priority
exception:

• MRS reads of PMUSERENR_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads of PMUSERENR at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRBTRG_EL1, bit [56]

When TRBE is implemented:

Trap MRS reads of TRBTRG_EL1 at EL1 using AArch64 to EL2.

TRBTRG_EL1 Meaning
0b0 MRS reads of TRBTRG_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of TRBTRG_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRBSR_EL1, bit [55]

When TRBE is implemented:

Trap MRS reads of TRBSR_EL1 at EL1 using AArch64 to EL2.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 658

TRBSR_EL1 Meaning
0b0 MRS reads of TRBSR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of TRBSR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRBPTR_EL1, bit [54]

When TRBE is implemented:

Trap MRS reads of TRBPTR_EL1 at EL1 using AArch64 to EL2.

TRBPTR_EL1 Meaning
0b0 MRS reads of TRBPTR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of TRBPTR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRBMAR_EL1, bit [53]

When TRBE is implemented:

Trap MRS reads of TRBMAR_EL1 at EL1 using AArch64 to EL2.

TRBMAR_EL1 Meaning
0b0 MRS reads of TRBMAR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of TRBMAR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRBLIMITR_EL1, bit [52]

When TRBE is implemented:

Trap MRS reads of TRBLIMITR_EL1 at EL1 using AArch64 to EL2.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 659

TRBLIMITR_EL1 Meaning
0b0 MRS reads of TRBLIMITR_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of
TRBLIMITR_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority
exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRBIDR_EL1, bit [51]

When TRBE is implemented:

Trap MRS reads of TRBIDR_EL1 at EL1 using AArch64 to EL2.

TRBIDR_EL1 Meaning
0b0 MRS reads of TRBIDR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of TRBIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRBBASER_EL1, bit [50]

When TRBE is implemented:

Trap MRS reads of TRBBASER_EL1 at EL1 using AArch64 to EL2.

TRBBASER_EL1 Meaning
0b0 MRS reads of TRBBASER_EL1 are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of TRBBASER_EL1
at EL1 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [49]

Reserved, RES0.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 660

TRCVICTLR, bit [48]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCVICTLR at EL1 using AArch64 to EL2.

TRCVICTLR Meaning
0b0 MRS reads of TRCVICTLR are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of TRCVICTLR at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCSTATR, bit [47]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCSTATR at EL1 using AArch64 to EL2.

TRCSTATR Meaning
0b0 MRS reads of TRCSTATR are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of TRCSTATR at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCSSCSRn, bit [46]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCSSCSR<n> at EL1 using AArch64 to EL2.

TRCSSCSRn Meaning
0b0 MRS reads of TRCSSCSR<n> are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of TRCSSCSR<n> at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a
higher priority exception.

If Single-shot Comparator n is not implementented, a read of TRCSSCSR<n> is UNDEFINED.

This bit is RES0 if TRCSSCSR<n> are not implemented.

In a system where the PE resets into EL2, this field resets to 0.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 661

Otherwise:

Reserved, RES0.

TRCSEQSTR, bit [45]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCSEQSTR at EL1 using AArch64 to EL2.

TRCSEQSTR Meaning
0b0 MRS reads of TRCSEQSTR are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of TRCSEQSTR at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

This bit is RES0 if TRCSEQSTR is not implemented.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCPRGCTLR, bit [44]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCPRGCTLR at EL1 using AArch64 to EL2.

TRCPRGCTLR Meaning
0b0 MRS reads of TRCPRGCTLR are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of TRCPRGCTLR at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCOSLSR, bit [43]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCOSLSR at EL1 using AArch64 to EL2.

TRCOSLSR Meaning
0b0 MRS reads of TRCOSLSR are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of TRCOSLSR at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 662

Otherwise:

Reserved, RES0.

Bit [42]

Reserved, RES0.

TRCIMSPECn, bit [41]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCIMSPEC<n> at EL1 using AArch64 to EL2.

TRCIMSPECn Meaning
0b0 MRS reads of TRCIMSPEC<n> are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of TRCIMSPEC<n>
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

TRCIMSPEC<1-7> are optional. If TRCIMSPEC<n> is not implemented, a read of TRCIMSPEC<n> is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCID, bit [40]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• TRCDEVARCH.
• TRCDEVID.
• TRCIDR<n>.

TRCID Meaning
0b0 MRS reads of the System registers listed above are not affected

by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MRS reads at EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [39:38]

Reserved, RES0.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 663

TRCCNTVRn, bit [37]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCCNTVR<n> at EL1 using AArch64 to EL2.

TRCCNTVRn Meaning
0b0 MRS reads of TRCCNTVR<n> are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of TRCCNTVR<n> at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

If Counter n is not implemented, a read of TRCCNTVR<n> is UNDEFINED.

This bit is RES0 if TRCCNTVR<n> are not implemented.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCCLAIM, bit [36]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• TRCCLAIMCLR.
• TRCCLAIMSET.

TRCCLAIM Meaning
0b0 MRS reads of the System registers listed above are not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads at EL1 using AArch64 of
any of the System registers listed above are trapped to
EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCAUXCTLR, bit [35]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCAUXCTLR at EL1 using AArch64 to EL2.

TRCAUXCTLR Meaning
0b0 MRS reads of TRCAUXCTLR are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of TRCAUXCTLR at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 664

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCAUTHSTATUS, bit [34]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCAUTHSTATUS at EL1 using AArch64 to EL2.

TRCAUTHSTATUS Meaning
0b0 MRS reads of TRCAUTHSTATUS are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, MRS reads of
TRCAUTHSTATUS at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRC, bit [33]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• TRCACATR<n>.
• TRCACVR<n>.
• TRCBBCTLR.
• TRCCCCTLR.
• TRCCIDCCTLR<n>.
• TRCCIDCVR<n>.
• TRCCNTCTLR<n>.
• TRCCNTRLDVR<n>.
• TRCCONFIGR.
• TRCEVENTCTL0R.
• TRCEVENTCTL1R.
• TRCEXTINSELR<n>, if ETE is implemented
• TRCEXTINSELR, if ETMv4 is implemented.
• TRCQCTLR.
• TRCRSCTLR<n>.
• TRCRSR, if ETE is implemented.
• TRCSEQEVR<n>.
• TRCSEQRSTEVR.
• TRCSSCCR<n>.
• TRCSSPCICR<n>.
• TRCSTALLCTLR.
• TRCSYNCPR.
• TRCTRACEIDR.
• TRCTSCTLR.
• TRCVIIECTLR.
• TRCVIPCSSCTLR.
• TRCVISSCTLR.
• TRCVMIDCCTLR<n>.
• TRCVMIDCVR<n>.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 665

TRC Meaning
0b0 MRS reads of the System registers listed above are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current Security state

and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS
reads at EL1 using AArch64 of any of the System registers listed
above are trapped to EL2 and reported with EC syndrome value
0x18, unless the read generates a higher priority exception.

A read of an unimplemented register is UNDEFINED.

TRCEXTINSELR<n> and TRCRSR are only implemented if ETE is implemented.

TRCEXTINSELR is only implemented if ETE is not implemented and ETMv4 is implemented.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSLATFR_EL1, bit [32]

When SPE is implemented:

Trap MRS reads of PMSLATFR_EL1 at EL1 using AArch64 to EL2.

PMSLATFR_EL1 Meaning
0b0 MRS reads of PMSLATFR_EL1 are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of PMSLATFR_EL1
at EL1 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSIRR_EL1, bit [31]

When SPE is implemented:

Trap MRS reads of PMSIRR_EL1 at EL1 using AArch64 to EL2.

PMSIRR_EL1 Meaning
0b0 MRS reads of PMSIRR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of PMSIRR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 666

PMSIDR_EL1, bit [30]

When SPE is implemented:

Trap MRS reads of PMSIDR_EL1 at EL1 using AArch64 to EL2.

PMSIDR_EL1 Meaning
0b0 MRS reads of PMSIDR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of PMSIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSICR_EL1, bit [29]

When SPE is implemented:

Trap MRS reads of PMSICR_EL1 at EL1 using AArch64 to EL2.

PMSICR_EL1 Meaning
0b0 MRS reads of PMSICR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of PMSICR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSFCR_EL1, bit [28]

When SPE is implemented:

Trap MRS reads of PMSFCR_EL1 at EL1 using AArch64 to EL2.

PMSFCR_EL1 Meaning
0b0 MRS reads of PMSFCR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of PMSFCR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 667

PMSEVFR_EL1, bit [27]

When SPE is implemented:

Trap MRS reads of PMSEVFR_EL1 at EL1 using AArch64 to EL2.

PMSEVFR_EL1 Meaning
0b0 MRS reads of PMSEVFR_EL1 are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of PMSEVFR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSCR_EL1, bit [26]

When SPE is implemented:

Trap MRS reads of PMSCR_EL1 at EL1 using AArch64 to EL2.

PMSCR_EL1 Meaning
0b0 MRS reads of PMSCR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of PMSCR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMBSR_EL1, bit [25]

When SPE is implemented:

Trap MRS reads of PMBSR_EL1 at EL1 using AArch64 to EL2.

PMBSR_EL1 Meaning
0b0 MRS reads of PMBSR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of PMBSR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 668

PMBPTR_EL1, bit [24]

When SPE is implemented:

Trap MRS reads of PMBPTR_EL1 at EL1 using AArch64 to EL2.

PMBPTR_EL1 Meaning
0b0 MRS reads of PMBPTR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of PMBPTR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMBLIMITR_EL1, bit [23]

When SPE is implemented:

Trap MRS reads of PMBLIMITR_EL1 at EL1 using AArch64 to EL2.

PMBLIMITR_EL1 Meaning
0b0 MRS reads of PMBLIMITR_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of
PMBLIMITR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMMIR_EL1, bit [22]

When PMUv3 is implemented:

Trap MRS reads of PMMIR_EL1 at EL1 using AArch64 to EL2.

PMMIR_EL1 Meaning
0b0 MRS reads of PMMIR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of PMMIR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 669

Bits [21:20]

Reserved, RES0.

PMSELR_EL0, bit [19]

When PMUv3 is implemented:

Trap MRS reads of PMSELR_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMSELR at EL0 using AArch32 when
EL1 is using AArch64 to EL2.

PMSELR_EL0 Meaning
0b0 MRS reads of PMSELR_EL0 at EL1 and EL0 using

AArch64 and MRC reads of PMSELR at EL0 using
AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is
using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates
a higher priority exception:

• MRS reads of PMSELR_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18.

• MRC reads of PMSELR at EL0 using AArch32 are
trapped to EL2 and reported with EC syndrome
value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMOVS, bit [18]

When PMUv3 is implemented:

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of PMOVSCLR_EL0 and PMOVSSET_EL0.

• At EL0 using Arch32 when EL1 is using AArch64: MRC reads of PMOVSR and PMOVSSET.

PMOVS Meaning
0b0 The operations listed above are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64,
and either EL3 is not implemented or SCR_EL3.FGTEn == 1,
then, unless the read generates a higher priority exception:

• MRS reads at EL1 and EL0 using AArch64 of
PMOVSCLR_EL0 and PMOVSSET_EL0 are trapped to
EL2 and reported with EC syndrome value 0x18.

• MRC reads at EL0 using AArch32 of PMOVSR and
PMOVSSET are trapped to EL2 and reported with EC
syndrome value 0x03, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 670

PMINTEN, bit [17]

When PMUv3 is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• PMINTENCLR_EL1.
• PMINTENSET_EL1.

PMINTEN Meaning
0b0 MRS reads of the System registers listed above are not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads at EL1 using AArch64 of
any of the System registers listed above are trapped to EL2
and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMCNTEN, bit [16]

When PMUv3 is implemented:

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of PMCNTENCLR_EL0 and PMCNTENSET_EL0.

• At EL0 using Arch32 when EL1 is using AArch64: MRC reads of PMCNTENCLR and PMCNTENSET.

PMCNTEN Meaning
0b0 The operations listed above are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a
higher priority exception:

• MRS reads at EL1 and EL0 using AArch64 of
PMCNTENCLR_EL0 and PMCNTENSET_EL0 are
trapped to EL2 and reported with EC syndrome value
0x18.

• MRC reads at EL0 using AArch32 of PMCNTENCLR
and PMCNTENSET are trapped to EL2 and reported
with EC syndrome value 0x03, unless the read
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMCCNTR_EL0, bit [15]

When PMUv3 is implemented:

Trap MRS reads of PMCCNTR_EL0 at EL1 and EL0 using AArch64 and MRC and MRRC reads of PMCCNTR at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 671

PMCCNTR_EL0 Meaning
0b0 MRS reads of PMCCNTR_EL0 at EL1 and EL0 using

AArch64 and MRC and MRRC reads of PMCCNTR at EL0
using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is
using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read
generates a higher priority exception:

• MRS reads of PMCCNTR_EL0 at EL1 and EL0
using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18.

• MRC and MRRC reads of PMCCNTR at EL0 using
AArch32 are trapped to EL2 and reported with
EC syndrome value 0x03 (for MRC) or 0x04 (for
MRRC).

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMCCFILTR_EL0, bit [14]

When PMUv3 is implemented:

Trap MRS reads of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMCCFILTR at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

PMCCFILTR_EL0 Meaning
0b0 MRS reads of PMCCFILTR_EL0 at EL1 and EL0 using

AArch64 and MRC reads of PMCCFILTR at EL0 using
AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1
is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless
the read generates a higher priority exception:

• MRS reads of PMCCFILTR_EL0 at EL1 and EL0
using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads of PMCCFILTR at EL0 using
AArch32 are trapped to EL2 and reported with
EC syndrome value 0x03.

PMCCFILTR_EL0 can also be accessed in AArch64 state using PMXEVTYPER_EL0 when PMSELR_EL0.SEL == 31,
and PMCCFILTR can also be accessed in AArch32 state using PMXEVTYPER when PMSELR.SEL == 31.

Setting this bit to 1 has no effect on accesses to PMXEVTYPER_EL0 and PMXEVTYPER, regardless of the value of
PMSELR_EL0.SEL or PMSELR.SEL.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMEVTYPERn_EL0, bit [13]

When PMUv3 is implemented:

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 672

• At EL1 and EL0 using AArch64: MRS reads of PMEVTYPER<n>_EL0 and PMXEVTYPER_EL0.

• At EL0 using Arch32 when EL1 is using AArch64: MRC reads of PMEVTYPER<n> and PMXEVTYPER.

PMEVTYPERn_EL0 Meaning
0b0 The operations listed above are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state, HCR_EL2.{E2H,TGE} != {1,1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then,
unless the read generates a higher priority
exception:

• MRS reads at EL1 and EL0 using AArch64 of
PMEVTYPER<n>_EL0 and
PMXEVTYPER_EL0 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads at EL0 using AArch32 of
PMEVTYPER<n> and PMXEVTYPER are
trapped to EL2 and reported with EC
syndrome value 0x03, unless the read
generates a higher priority exception.

When ARMv8.6-FGT is implemented, then, regardless of the value of this bit, for each value n:

• If event counter n is not implemented, the following accesses are UNDEFINED:

◦ In AArch64 state, a read of PMEVTYPER<n>_EL0, or, if n is not 31, a read of PMXEVTYPER_EL0
when PMSELR_EL0.SEL == n.

◦ In AArch32 state, a read of PMEVTYPER<n>, or, if n is not 31, a read of PMXEVTYPER when
PMSELR.SEL == n.

• If event counter n is implemented and EL2 is implemented and enabled in the current Security state, the
following generate a Trap exception to EL2 from EL0 or EL1:

◦ In AArch64 state, a read of PMEVTYPER<n>_EL0, or a read of PMXEVTYPER_EL0 when
PMSELR_EL0.SEL == n, reported with EC syndrome value 0x18.

◦ In AArch32 state, a read of PMEVTYPER<n>, or a read of PMXEVTYPER when PMSELR.SEL == n,
reported with EC syndrome value 0x03.

See also HDFGRTR_EL2.PMCCFILTR_EL0.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMEVCNTRn_EL0, bit [12]

When PMUv3 is implemented:

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of PMEVCNTR<n>_EL0 and PMXEVCNTR_EL0.

• At EL0 using Arch32 when EL1 is using AArch64: MRC reads of PMEVCNTR<n> and PMXEVCNTR.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 673

PMEVCNTRn_EL0 Meaning
0b0 The operations listed above are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state, HCR_EL2.{E2H,TGE} != {1,1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then,
unless the read generates a higher priority
exception:

• MRS reads at EL1 and EL0 using AArch64 of
PMEVCNTR<n>_EL0 and PMXEVCNTR_EL0
are trapped to EL2 and reported with EC
syndrome value 0x18.

• MRC reads at EL0 using AArch32 of
PMEVCNTR<n> and PMXEVCNTR are
trapped to EL2 and reported with EC
syndrome value 0x03, unless the read
generates a higher priority exception.

When ARMv8.6-FGT is implemented, then, regardless of the value of this bit, for each value n:

• If event counter n is not implemented, the following accesses are UNDEFINED:

◦ In AArch64 state, a read of PMEVCNTR<n>_EL0, or a read of PMXEVCNTR_EL0 when
PMSELR_EL0.SEL == n.

◦ In AArch32 state, a read of PMEVCNTR<n> , or a read of PMXEVCNTR when PMSELR.SEL == n.

• If event counter n is implemented, and EL2 is implemented and enabled in the current Security state, the
following generate a Trap exception to EL2 from EL0 or EL1:

◦ In AArch64 state, a read of PMEVCNTR<n>_EL0, or a read of PMXEVCNTR_EL0 when
PMSELR_EL0.SEL == n, reported with EC syndrome value 0x18.

◦ In AArch32 state, a read of PMEVCNTR<n>, or a read of PMXEVCNTR when PMSELR.SEL == n,
reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

OSDLR_EL1, bit [11]

When ARMv8.0-DoubleLock is implemented:

Trap MRS reads of OSDLR_EL1 at EL1 using AArch64 to EL2.

OSDLR_EL1 Meaning
0b0 MRS reads of OSDLR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of OSDLR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 674

OSECCR_EL1, bit [10]

Trap MRS reads of OSECCR_EL1 at EL1 using AArch64 to EL2.

OSECCR_EL1 Meaning
0b0 MRS reads of OSECCR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of OSECCR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

OSLSR_EL1, bit [9]

Trap MRS reads of OSLSR_EL1 at EL1 using AArch64 to EL2.

OSLSR_EL1 Meaning
0b0 MRS reads of OSLSR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of OSLSR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Bit [8]

Reserved, RES0.

DBGPRCR_EL1, bit [7]

Trap MRS reads of DBGPRCR_EL1 at EL1 using AArch64 to EL2.

DBGPRCR_EL1 Meaning
0b0 MRS reads of DBGPRCR_EL1 are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of DBGPRCR_EL1
at EL1 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DBGAUTHSTATUS_EL1, bit [6]

Trap MRS reads of DBGAUTHSTATUS_EL1 at EL1 using AArch64 to EL2.

DBGAUTHSTATUS_EL1 Meaning
0b0 MRS reads of DBGAUTHSTATUS_EL1 are not

affected by this bit.
0b1 If EL2 is implemented and enabled in the

current Security state and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, MRS
reads of DBGAUTHSTATUS_EL1 at EL1
using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18,
unless the read generates a higher priority
exception.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 675

In a system where the PE resets into EL2, this field resets to 0.

DBGCLAIM, bit [5]

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• DBGCLAIMCLR_EL1.
• DBGCLAIMSET_EL1.

DBGCLAIM Meaning
0b0 MRS reads of the System registers listed above are not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads at EL1 using AArch64
of any of the System registers listed above are trapped to
EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

MDSCR_EL1, bit [4]

Trap MRS reads of MDSCR_EL1 at EL1 using AArch64 to EL2.

MDSCR_EL1 Meaning
0b0 MRS reads of MDSCR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of MDSCR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DBGWVRn_EL1, bit [3]

Trap MRS reads of DBGWVR<n>_EL1 at EL1 using AArch64 to EL2.

DBGWVRn_EL1 Meaning
0b0 MRS reads of DBGWVR<n>_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of
DBGWVR<n>_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

If watchpoint n is not implemented, a read of DBGWVR<n>_EL1 is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

DBGWCRn_EL1, bit [2]

Trap MRS reads of DBGWCR<n>_EL1 at EL1 using AArch64 to EL2.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 676

DBGWCRn_EL1 Meaning
0b0 MRS reads of DBGWCR<n>_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of
DBGWCR<n>_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome value
0x18, unless the read generates a higher priority
exception.

If watchpoint n is not implemented, a read of DBGWCR<n>_EL1 is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

DBGBVRn_EL1, bit [1]

Trap MRS reads of DBGBVR<n>_EL1 at EL1 using AArch64 to EL2.

DBGBVRn_EL1 Meaning
0b0 MRS reads of DBGBVR<n>_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of
DBGBVR<n>_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

If breakpoint n is not implemented, a read of DBGBVR<n>_EL1 is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

DBGBCRn_EL1, bit [0]

Trap MRS reads of DBGBCR<n>_EL1 at EL1 using AArch64 to EL2.

DBGBCRn_EL1 Meaning
0b0 MRS reads of DBGBCR<n>_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of
DBGBCR<n>_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

If breakpoint n is not implemented, a read of DBGBCR<n>_EL1 is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

Accessing the HDFGRTR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, HDFGRTR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0011 0b0001 0b100

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 677

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x1D0];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FGTEn == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return HDFGRTR_EL2;

elsif PSTATE.EL == EL3 then
return HDFGRTR_EL2;

MSR HDFGRTR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0011 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x1D0] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FGTEn == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
HDFGRTR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
HDFGRTR_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 678

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write
Trap Register

The HDFGWTR_EL2 characteristics are:

Purpose
Provides controls for traps of MSR and MCR writes of debug, trace, PMU, and Statistical Profiling System registers.

Configuration
This register is present only when ARMv8.6-FGT is implemented. Otherwise, direct accesses to HDFGWTR_EL2 are
UNDEFINED.

Attributes
HDFGWTR_EL2 is a 64-bit register.

Field descriptions
The HDFGWTR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 PMUSERENR_EL0TRBTRG_EL1 TRBSR_EL1 TRBPTR_EL1TRBMAR_EL1TRBLIMITR_EL1 RES0 TRBBASER_EL1TRFCR_EL1TRCVICTLR RES0 TRCSSCSRn TRCSEQSTR TRCPRGCTLR RES0 TRCOSLAR TRCIMSPECn RES0 TRCCNTVRn TRCCLAIM TRCAUXCTLR RES0 TRC PMSLATFR_EL1

PMSIRR_EL1RES0PMSICR_EL1PMSFCR_EL1PMSEVFR_EL1PMSCR_EL1 PMBSR_EL1 PMBPTR_EL1PMBLIMITR_EL1 RES0 PMCR_EL0 PMSWINC_EL0 PMSELR_EL0 PMOVS PMINTEN PMCNTEN PMCCNTR_EL0PMCCFILTR_EL0PMEVTYPERn_EL0PMEVCNTRn_EL0OSDLR_EL1OSECCR_EL1 RES0 OSLAR_EL1DBGPRCR_EL1RES0 DBGCLAIM MDSCR_EL1DBGWVRn_EL1DBGWCRn_EL1DBGBVRn_EL1 DBGBCRn_EL1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:58]

Reserved, RES0.

PMUSERENR_EL0, bit [57]

When PMUv3 is implemented:

Trap MSR writes of PMUSERENR_EL0 at EL1 using AArch64 to EL2.

PMUSERENR_EL0 Meaning
0b0 MSR writes of PMUSERENR_EL0 are not affected

by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, MSR writes of
PMUSERENR_EL0 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 679

TRBTRG_EL1, bit [56]

When TRBE is implemented:

Trap MSR writes of TRBTRG_EL1 at EL1 using AArch64 to EL2.

TRBTRG_EL1 Meaning
0b0 MSR writes of TRBTRG_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of TRBTRG_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRBSR_EL1, bit [55]

When TRBE is implemented:

Trap MSR writes of TRBSR_EL1 at EL1 using AArch64 to EL2.

TRBSR_EL1 Meaning
0b0 MSR writes of TRBSR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of TRBSR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRBPTR_EL1, bit [54]

When TRBE is implemented:

Trap MSR writes of TRBPTR_EL1 at EL1 using AArch64 to EL2.

TRBPTR_EL1 Meaning
0b0 MSR writes of TRBPTR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of TRBPTR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 680

TRBMAR_EL1, bit [53]

When TRBE is implemented:

Trap MSR writes of TRBMAR_EL1 at EL1 using AArch64 to EL2.

TRBMAR_EL1 Meaning
0b0 MSR writes of TRBMAR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of TRBMAR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRBLIMITR_EL1, bit [52]

When TRBE is implemented:

Trap MSR writes of TRBLIMITR_EL1 at EL1 using AArch64 to EL2.

TRBLIMITR_EL1 Meaning
0b0 MSR writes of TRBLIMITR_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of
TRBLIMITR_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority
exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [51]

Reserved, RES0.

TRBBASER_EL1, bit [50]

When TRBE is implemented:

Trap MSR writes of TRBBASER_EL1 at EL1 using AArch64 to EL2.

TRBBASER_EL1 Meaning
0b0 MSR writes of TRBBASER_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of
TRBBASER_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority
exception.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 681

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRFCR_EL1, bit [49]

When ARMv8.4-Trace is implemented:

Trap MSR writes of TRFCR_EL1 at EL1 using AArch64 to EL2.

TRFCR_EL1 Meaning
0b0 MSR writes of TRFCR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of TRFCR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCVICTLR, bit [48]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MSR writes of TRCVICTLR at EL1 using AArch64 to EL2.

TRCVICTLR Meaning
0b0 MSR writes of TRCVICTLR are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of TRCVICTLR at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [47]

Reserved, RES0.

TRCSSCSRn, bit [46]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MSR writes of TRCSSCSR<n> at EL1 using AArch64 to EL2.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 682

TRCSSCSRn Meaning
0b0 MSR writes of TRCSSCSR<n> are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of TRCSSCSR<n> at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

If Single-shot Comparator n is not implementented, a write of TRCSSCSR<n> is UNDEFINED.

This bit is RES0 if TRCSSCSR<n> are not implemented.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCSEQSTR, bit [45]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MSR writes of TRCSEQSTR at EL1 using AArch64 to EL2.

TRCSEQSTR Meaning
0b0 MSR writes of TRCSEQSTR are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of TRCSEQSTR at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

This bit is RES0 if TRCSEQSTR is not implemented.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCPRGCTLR, bit [44]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MSR writes of TRCPRGCTLR at EL1 using AArch64 to EL2.

TRCPRGCTLR Meaning
0b0 MSR writes of TRCPRGCTLR are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of TRCPRGCTLR at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 683

Bit [43]

Reserved, RES0.

TRCOSLAR, bit [42]

When the Trace Extension is implemented, System register access to the PE Trace Unit registers is implemented and ETMv4 is
implemented:

Trap MSR writes of TRCOSLAR at EL1 using AArch64 to EL2.

TRCOSLAR Meaning
0b0 MSR writes of TRCOSLAR are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of TRCOSLAR at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCIMSPECn, bit [41]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MSR writes of TRCIMSPEC<n> at EL1 using AArch64 to EL2.

TRCIMSPECn Meaning
0b0 MSR writes of TRCIMSPEC<n> are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of TRCIMSPEC<n>
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

TRCIMSPEC<1-7> are optional. If TRCIMSPEC<n> is not implemented, a write of TRCIMSPEC<n> is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [40:38]

Reserved, RES0.

TRCCNTVRn, bit [37]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MSR writes of TRCCNTVR<n> at EL1 using AArch64 to EL2.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 684

TRCCNTVRn Meaning
0b0 MSR writes of TRCCNTVR<n> are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of TRCCNTVR<n> at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

If Counter n is not implemented, a write of TRCCNTVR<n> is UNDEFINED.

This bit is RES0 if TRCCNTVR<n> are not implemented.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCCLAIM, bit [36]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• TRCCLAIMCLR.
• TRCCLAIMSET.

TRCCLAIM Meaning
0b0 MSR writes of the System registers listed above are not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes at EL1 using AArch64
of any of the System registers listed above are trapped to
EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCAUXCTLR, bit [35]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MSR writes of TRCAUXCTLR at EL1 using AArch64 to EL2.

TRCAUXCTLR Meaning
0b0 MSR writes of TRCAUXCTLR are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of TRCAUXCTLR at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 685

Otherwise:

Reserved, RES0.

Bit [34]

Reserved, RES0.

TRC, bit [33]

When the Trace Extension is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• TRCACATR<n>.
• TRCACVR<n>.
• TRCBBCTLR.
• TRCCCCTLR.
• TRCCIDCCTLR<n>.
• TRCCIDCVR<n>.
• TRCCNTCTLR<n>.
• TRCCNTRLDVR<n>.
• TRCCONFIGR.
• TRCEVENTCTL0R.
• TRCEVENTCTL1R.
• TRCEXTINSELR<n>, if ETE is implemented.
• TRCEXTINSELR, if ETMv4 is implemented.
• TRCRSCTLR<n>.
• TRCRSR, if ETE is implemented.
• TRCSEQEVR<n>.
• TRCSEQRSTEVR.
• TRCSSCCR<n>.
• TRCSSPCICR<n>.
• TRCSTALLCTLR.
• TRCSYNCPR.
• TRCTRACEIDR.
• TRCTSCTLR.
• TRCVIIECTLR.
• TRCVIPCSSCTLR.
• TRCVISSCTLR.
• TRCVMIDCCTLR<n>.
• TRCVMIDCVR<n>.

TRC Meaning
0b0 MSR writes of the System registers listed above are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current Security state

and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR
writes at EL1 using AArch64 of any of the System registers listed
above are trapped to EL2 and reported with EC syndrome value
0x18, unless the write generates a higher priority exception.

A write of an unimplemented register is UNDEFINED.

TRCEXTINSELR<n> and TRCRSR are only implemented if ETE is implemented.

TRCEXTINSELR is only implemented if ETE is not implemented and ETMv4 is implemented.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSLATFR_EL1, bit [32]

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 686

When SPE is implemented:

Trap MSR writes of PMSLATFR_EL1 at EL1 using AArch64 to EL2.

PMSLATFR_EL1 Meaning
0b0 MSR writes of PMSLATFR_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of
PMSLATFR_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority
exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSIRR_EL1, bit [31]

When SPE is implemented:

Trap MSR writes of PMSIRR_EL1 at EL1 using AArch64 to EL2.

PMSIRR_EL1 Meaning
0b0 MSR writes of PMSIRR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of PMSIRR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [30]

Reserved, RES0.

PMSICR_EL1, bit [29]

When SPE is implemented:

Trap MSR writes of PMSICR_EL1 at EL1 using AArch64 to EL2.

PMSICR_EL1 Meaning
0b0 MSR writes of PMSICR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of PMSICR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 687

Otherwise:

Reserved, RES0.

PMSFCR_EL1, bit [28]

When SPE is implemented:

Trap MSR writes of PMSFCR_EL1 at EL1 using AArch64 to EL2.

PMSFCR_EL1 Meaning
0b0 MSR writes of PMSFCR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of PMSFCR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSEVFR_EL1, bit [27]

When SPE is implemented:

Trap MSR writes of PMSEVFR_EL1 at EL1 using AArch64 to EL2.

PMSEVFR_EL1 Meaning
0b0 MSR writes of PMSEVFR_EL1 are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of PMSEVFR_EL1
at EL1 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSCR_EL1, bit [26]

When SPE is implemented:

Trap MSR writes of PMSCR_EL1 at EL1 using AArch64 to EL2.

PMSCR_EL1 Meaning
0b0 MSR writes of PMSCR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of PMSCR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 688

Otherwise:

Reserved, RES0.

PMBSR_EL1, bit [25]

When SPE is implemented:

Trap MSR writes of PMBSR_EL1 at EL1 using AArch64 to EL2.

PMBSR_EL1 Meaning
0b0 MSR writes of PMBSR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of PMBSR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMBPTR_EL1, bit [24]

When SPE is implemented:

Trap MSR writes of PMBPTR_EL1 at EL1 using AArch64 to EL2.

PMBPTR_EL1 Meaning
0b0 MSR writes of PMBPTR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of PMBPTR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMBLIMITR_EL1, bit [23]

When SPE is implemented:

Trap MSR writes of PMBLIMITR_EL1 at EL1 using AArch64 to EL2.

PMBLIMITR_EL1 Meaning
0b0 MSR writes of PMBLIMITR_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of
PMBLIMITR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 689

Otherwise:

Reserved, RES0.

Bit [22]

Reserved, RES0.

PMCR_EL0, bit [21]

When PMUv3 is implemented:

Trap MSR writes of PMCR_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMCR at EL0 using AArch32 when
EL1 is using AArch64 to EL2.

PMCR_EL0 Meaning
0b0 MSR writes of PMCR_EL0 at EL1 and EL0 using AArch64

and MCR writes of PMCR at EL0 using AArch32 are not
affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the write generates a
higher priority exception:

• MSR writes of PMCR_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18.

• MCR writes of PMCR at EL0 using AArch32 are
trapped to EL2 and reported with EC syndrome value
0x03.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSWINC_EL0, bit [20]

When PMUv3 is implemented:

Trap MSR writes of PMSWINC_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMSWINC at EL0 using AArch32
when EL1 is using AArch64 to EL2.

PMSWINC_EL0 Meaning
0b0 MSR writes of PMSWINC_EL0 at EL1 and EL0 using

AArch64 and MCR writes of PMSWINC at EL0 using
AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is
using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the write
generates a higher priority exception:

• MSR writes of PMSWINC_EL0 at EL1 and EL0
using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18.

• MCR writes of PMSWINC at EL0 using AArch32
are trapped to EL2 and reported with EC
syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 690

Otherwise:

Reserved, RES0.

PMSELR_EL0, bit [19]

When PMUv3 is implemented:

Trap MSR writes of PMSELR_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMSELR at EL0 using AArch32
when EL1 is using AArch64 to EL2.

PMSELR_EL0 Meaning
0b0 MSR writes of PMSELR_EL0 at EL1 and EL0 using

AArch64 and MCR writes of PMSELR at EL0 using
AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is
using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the write generates
a higher priority exception:

• MSR writes of PMSELR_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18.

• MCR writes of PMSELR at EL0 using AArch32 are
trapped to EL2 and reported with EC syndrome
value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMOVS, bit [18]

When PMUv3 is implemented:

Trap MSR writes and MCR writes of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MSR writes of PMOVSCLR_EL0 and PMOVSSET_EL0.

• At EL0 using Arch32 when EL1 is using AArch64: MCR writes of PMOVSR and PMOVSSET.

PMOVS Meaning
0b0 The operations listed above are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64,
and either EL3 is not implemented or SCR_EL3.FGTEn == 1,
then, unless the write generates a higher priority exception:

• MSR writes at EL1 and EL0 using AArch64 of
PMOVSCLR_EL0 and PMOVSSET_EL0 are trapped to
EL2 and reported with EC syndrome value 0x18.

• MCR writes at EL0 using AArch32 of PMOVSR and
PMOVSSET are trapped to EL2 and reported with EC
syndrome value 0x03, unless the write generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 691

PMINTEN, bit [17]

When PMUv3 is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• PMINTENCLR_EL1.
• PMINTENSET_EL1.

PMINTEN Meaning
0b0 MSR writes of the System registers listed above are not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes at EL1 using AArch64 of
any of the System registers listed above are trapped to EL2
and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMCNTEN, bit [16]

When PMUv3 is implemented:

Trap MSR writes and MCR writes of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MSR writes of PMCNTENCLR_EL0 and PMCNTENSET_EL0.

• At EL0 using Arch32 when EL1 is using AArch64: MCR writes of PMCNTENCLR and PMCNTENSET.

PMCNTEN Meaning
0b0 The operations listed above are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the write generates a
higher priority exception:

• MSR writes at EL1 and EL0 using AArch64 of
PMCNTENCLR_EL0 and PMCNTENSET_EL0 are
trapped to EL2 and reported with EC syndrome value
0x18.

• MCR writes at EL0 using AArch32 of PMCNTENCLR
and PMCNTENSET are trapped to EL2 and reported
with EC syndrome value 0x03, unless the write
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMCCNTR_EL0, bit [15]

When PMUv3 is implemented:

Trap MSR writes of PMCCNTR_EL0 at EL1 and EL0 using AArch64 and MCR and MCRR writes of PMCCNTR at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 692

PMCCNTR_EL0 Meaning
0b0 MSR writes of PMCCNTR_EL0 at EL1 and EL0 using

AArch64 and MCR and MCRR writes of PMCCNTR at
EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is
using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the write
generates a higher priority exception:

• MSR writes of PMCCNTR_EL0 at EL1 and EL0
using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18.

• MCR and MCRR writes of PMCCNTR at EL0 using
AArch32 are trapped to EL2 and reported with
EC syndrome value 0x03 (for MCR) or 0x04 (for
MCRR).

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMCCFILTR_EL0, bit [14]

When PMUv3 is implemented:

Trap MSR writes of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMCCFILTR at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

PMCCFILTR_EL0 Meaning
0b0 MSR writes of PMCCFILTR_EL0 at EL1 and EL0

using AArch64 and MCR writes of PMCCFILTR at
EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1
is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless
the write generates a higher priority exception:

• MSR writes of PMCCFILTR_EL0 at EL1 and EL0
using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MCR writes of PMCCFILTR at EL0 using
AArch32 are trapped to EL2 and reported with
EC syndrome value 0x03.

PMCCFILTR_EL0 can also be accessed in AArch64 state using PMXEVTYPER_EL0 when PMSELR_EL0.SEL == 31,
and PMCCFILTR can also be accessed in AArch32 state using PMXEVTYPER when PMSELR.SEL == 31.

Setting this bit to 1 has no effect on accesses to PMXEVTYPER_EL0 and PMXEVTYPER, regardless of the value of
PMSELR_EL0.SEL or PMSELR.SEL.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMEVTYPERn_EL0, bit [13]

When PMUv3 is implemented:

Trap MSR writes and MCR writes of multiple System registers.

Enables a trap to EL2 the following operations:

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 693

• At EL1 and EL0 using AArch64: MSR writes of PMEVTYPER<n>_EL0 and PMXEVTYPER_EL0.

• At EL0 using Arch32 when EL1 is using AArch64: MCR writes of PMEVTYPER<n> and PMXEVTYPER.

PMEVTYPERn_EL0 Meaning
0b0 The operations listed above are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state, HCR_EL2.{E2H,TGE} != {1,1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then,
unless the write generates a higher priority
exception:

• MSR writes at EL1 and EL0 using AArch64 of
PMEVTYPER<n>_EL0 and
PMXEVTYPER_EL0 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MCR writes at EL0 using AArch32 of
PMEVTYPER<n> and PMXEVTYPER are
trapped to EL2 and reported with EC
syndrome value 0x03, unless the write
generates a higher priority exception.

When ARMv8.6-FGT is implemented, then, regardless of the value of this bit, for each value n:

• If event counter n is not implemented, the following accesses are UNDEFINED:

◦ In AArch64 state, a write of PMEVTYPER<n>_EL0, or, if n is not 31, a write of PMXEVTYPER_EL0
when PMSELR_EL0.SEL == n.

◦ In AArch32 state, a write of PMEVTYPER<n>, or, if n is not 31, a write of PMXEVTYPER when
PMSELR.SEL == n.

• If event counter n is implemented and EL2 is implemented and enabled in the current Security state, the
following generate a Trap exception to EL2 from EL0 or EL1:

◦ In AArch64 state, a write of PMEVTYPER<n>_EL0, or a write of PMXEVTYPER_EL0 when
PMSELR_EL0.SEL == n, reported with EC syndrome value 0x18.

◦ In AArch32 state, a write of PMEVTYPER<n>, or a write of PMXEVTYPER when PMSELR.SEL ==
n, reported with EC syndrome value 0x03.

See also HDFGWTR_EL2.PMCCFILTR_EL0.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMEVCNTRn_EL0, bit [12]

When PMUv3 is implemented:

Trap MSR writes and MCR writes of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MSR writes of PMEVCNTR<n>_EL0 and PMXEVCNTR_EL0.

• At EL0 using Arch32 when EL1 is using AArch64: MCR writes of PMEVCNTR<n> and PMXEVCNTR.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 694

PMEVCNTRn_EL0 Meaning
0b0 The operations listed above are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state, HCR_EL2.{E2H,TGE} != {1,1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then,
unless the write generates a higher priority
exception:

• MSR writes at EL1 and EL0 using AArch64 of
PMEVCNTR<n>_EL0 and PMXEVCNTR_EL0
are trapped to EL2 and reported with EC
syndrome value 0x18.

• MCR writes at EL0 using AArch32 of
PMEVCNTR<n> and PMXEVCNTR are
trapped to EL2 and reported with EC
syndrome value 0x03, unless the write
generates a higher priority exception.

When ARMv8.6-FGT is implemented, then, regardless of the value of this bit, for each value n:

• If event counter n is not implemented, the following accesses are UNDEFINED:

◦ In AArch64 state, a write of PMEVCNTR<n>_EL0, or a write of PMXEVCNTR_EL0 when
PMSELR_EL0.SEL == n.

◦ In AArch32 state, a write of PMEVCNTR<n> , or a write of PMXEVCNTR when PMSELR.SEL ==
n.

• If event counter n is implemented, and EL2 is implemented and enabled in the current Security state, the
following generate a Trap exception to EL2 from EL0 or EL1:

◦ In AArch64 state, a write of PMEVCNTR<n>_EL0, or a write of PMXEVCNTR_EL0 when
PMSELR_EL0.SEL == n, reported with EC syndrome value 0x18.

◦ In AArch32 state, a write of PMEVCNTR<n>, or a write of PMXEVCNTR when PMSELR.SEL == n,
reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

OSDLR_EL1, bit [11]

When ARMv8.0-DoubleLock is implemented:

Trap MSR writes of OSDLR_EL1 at EL1 using AArch64 to EL2.

OSDLR_EL1 Meaning
0b0 MSR writes of OSDLR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of OSDLR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 695

OSECCR_EL1, bit [10]

Trap MSR writes of OSECCR_EL1 at EL1 using AArch64 to EL2.

OSECCR_EL1 Meaning
0b0 MSR writes of OSECCR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of OSECCR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Bit [9]

Reserved, RES0.

OSLAR_EL1, bit [8]

Trap MSR writes of OSLAR_EL1 at EL1 using AArch64 to EL2.

OSLAR_EL1 Meaning
0b0 MSR writes of OSLAR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of OSLAR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DBGPRCR_EL1, bit [7]

Trap MSR writes of DBGPRCR_EL1 at EL1 using AArch64 to EL2.

DBGPRCR_EL1 Meaning
0b0 MSR writes of DBGPRCR_EL1 are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of DBGPRCR_EL1
at EL1 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Bit [6]

Reserved, RES0.

DBGCLAIM, bit [5]

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• DBGCLAIMCLR_EL1.
• DBGCLAIMSET_EL1.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 696

DBGCLAIM Meaning
0b0 MSR writes of the System registers listed above are not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes at EL1 using AArch64
of any of the System registers listed above are trapped to
EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

MDSCR_EL1, bit [4]

Trap MSR writes of MDSCR_EL1 at EL1 using AArch64 to EL2.

MDSCR_EL1 Meaning
0b0 MSR writes of MDSCR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of MDSCR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DBGWVRn_EL1, bit [3]

Trap MSR writes of DBGWVR<n>_EL1 at EL1 using AArch64 to EL2.

DBGWVRn_EL1 Meaning
0b0 MSR writes of DBGWVR<n>_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of
DBGWVR<n>_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority
exception.

If watchpoint n is not implemented, a write of DBGWVR<n>_EL1 is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

DBGWCRn_EL1, bit [2]

Trap MSR writes of DBGWCR<n>_EL1 at EL1 using AArch64 to EL2.

DBGWCRn_EL1 Meaning
0b0 MSR writes of DBGWCR<n>_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of
DBGWCR<n>_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome value
0x18, unless the write generates a higher priority
exception.

If watchpoint n is not implemented, a write of DBGWCR<n>_EL1 is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 697

DBGBVRn_EL1, bit [1]

Trap MSR writes of DBGBVR<n>_EL1 at EL1 using AArch64 to EL2.

DBGBVRn_EL1 Meaning
0b0 MSR writes of DBGBVR<n>_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of
DBGBVR<n>_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

If breakpoint n is not implemented, a write of DBGBVR<n>_EL1 is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

DBGBCRn_EL1, bit [0]

Trap MSR writes of DBGBCR<n>_EL1 at EL1 using AArch64 to EL2.

DBGBCRn_EL1 Meaning
0b0 MSR writes of DBGBCR<n>_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of
DBGBCR<n>_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority
exception.

If breakpoint n is not implemented, a write of DBGBCR<n>_EL1 is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

Accessing the HDFGWTR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, HDFGWTR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0011 0b0001 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x1D8];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FGTEn == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return HDFGWTR_EL2;

elsif PSTATE.EL == EL3 then
return HDFGWTR_EL2;

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 698

MSR HDFGWTR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0011 0b0001 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x1D8] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FGTEn == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
HDFGWTR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
HDFGWTR_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 699

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap
Register

The HFGITR_EL2 characteristics are:

Purpose
Provides controls for traps of execution of System instructions.

Configuration
This register is present only when ARMv8.6-FGT is implemented. Otherwise, direct accesses to HFGITR_EL2 are
UNDEFINED.

Attributes
HFGITR_EL2 is a 64-bit register.

Field descriptions
The HFGITR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 DCCVAC SVC_EL1 SVC_EL0 ERET CPPRCTX DVPRCTX CFPRCTX TLBIVAALE1TLBIVALE1TLBIVAAE1TLBIASIDE1TLBIVAE1TLBIVMALLE1TLBIRVAALE1TLBIRVALE1TLBIRVAAE1TLBIRVAE1TLBIRVAALE1ISTLBIRVALE1ISTLBIRVAAE1ISTLBIRVAE1ISTLBIVAALE1ISTLBIVALE1IS

TLBIVAAE1ISTLBIASIDE1ISTLBIVAE1ISTLBIVMALLE1ISTLBIRVAALE1OSTLBIRVALE1OSTLBIRVAAE1OSTLBIRVAE1OSTLBIVAALE1OSTLBIVALE1OSTLBIVAAE1OSTLBIASIDE1OSTLBIVAE1OSTLBIVMALLE1OSATS1E1WPATS1E1RP ATS1E0W ATS1E0R ATS1E1W ATS1E1R DCZVA DCCIVAC DCCVADP DCCVAP DCCVAU DCCISW DCCSW DCISW DCIVAC ICIVAU ICIALLU ICIALLUIS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:55]

Reserved, RES0.

DCCVAC, bit [54]

Trap execution of multiple System instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of
the following AArch64 System instructions to EL2:

• DC CGDVAC, if ARMv8.5-MemTag is implemented.
• DC CGVAC, if ARMv8.5-MemTag is implemented.
• DC CVAC.

DCCVAC Meaning
0b0 Execution of the System instructions listed above is not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H,TGE} != {1,1}, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, execution at EL1 and
EL0 using AArch64 of any of the System instructions listed
above is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority
exception.

In a system where the PE resets into EL2, this field resets to 0.

SVC_EL1, bit [53]

Trap execution of SVC at EL1 using AArch64 to EL2.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 700

SVC_EL1 Meaning
0b0 Execution of SVC is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, execution of SVC at EL1 using AArch64 is trapped to
EL2 and reported with EC syndrome value 0x15, unless the
instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

SVC_EL0, bit [52]

Trap execution of SVC at EL0 using AArch64 and execution of SVC at EL0 using AArch32 when EL1 is using AArch64 to
EL2.

SVC_EL0 Meaning
0b0 Execution of SVC at EL0 using AArch64 and execution of SVC

at EL0 using AArch32 is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64,
and either EL3 is not implemented or SCR_EL3.FGTEn == 1,
then, unless the instruction generates a higher priority
exception:

• Execution of SVC at EL0 using AArch64 is trapped to
EL2 and reported with EC syndrome value 0x15.

• Execution of SVC at EL0 using AArch32 is trapped to
EL2 and reported with EC syndrome value 0x11.

In a system where the PE resets into EL2, this field resets to 0.

ERET, bit [51]

Trap execution of multiple System instructions. Enables a trap on execution at EL1 using AArch64 of any of the
following AArch64 System instructions to EL2:

• ERET.
• ERETAA, if ARMv8.3-PAuth is implemented.
• ERETAB, if ARMv8.3-PAuth is implemented.

ERET Meaning
0b0 Execution of the System instructions listed above is not affected

by this bit.
0b1 If EL2 is implemented and enabled in the current Security state

and either EL3 is not implemented or SCR_EL3.FGTEn == 1,
execution at EL1 using AArch64 of any of the System
instructions listed above is trapped to EL2 and reported with EC
syndrome value 0x1A, unless the instruction generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

CPPRCTX, bit [50]

When ARMv8.0-PredInv is implemented:

Trap execution of CPP RCTX at EL1 and EL0 using AArch64 and execution of CPPRCTX at EL0 using AArch32 when
EL1 is using AArch64 to EL2.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 701

CPPRCTX Meaning
0b0 Execution of CPP RCTX at EL1 and EL0 using AArch64 and

execution of CPPRCTX at EL0 using AArch32 is not affected
by this bit.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the instruction
generates a higher priority exception:

• Execution of CPP RCTX at EL1 and EL0 using AArch64
is trapped to EL2 and reported with EC syndrome
value 0x18.

• Execution of CPPRCTX at EL0 using AArch32 is
trapped to EL2 and reported with EC syndrome value
0x03.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

DVPRCTX, bit [49]

When ARMv8.0-PredInv is implemented:

Trap execution of DVP RCTX at EL1 and EL0 using AArch64 and execution of DVPRCTX at EL0 using AArch32 when
EL1 is using AArch64 to EL2.

DVPRCTX Meaning
0b0 Execution of DVP RCTX at EL1 and EL0 using AArch64 and

execution of DVPRCTX at EL0 using AArch32 is not affected
by this bit.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the instruction
generates a higher priority exception:

• Execution of DVP RCTX at EL1 and EL0 using AArch64
is trapped to EL2 and reported with EC syndrome
value 0x18.

• Execution of DVPRCTX at EL0 using AArch32 is
trapped to EL2 and reported with EC syndrome value
0x03.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

CFPRCTX, bit [48]

When ARMv8.0-PredInv is implemented:

Trap execution of CFP RCTX at EL1 and EL0 using AArch64 and execution of CFPRCTX at EL0 using AArch32 when
EL1 is using AArch64 to EL2.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 702

CFPRCTX Meaning
0b0 Execution of CFP RCTX at EL1 and EL0 using AArch64 and

execution of CFPRCTX at EL0 using AArch32 is not affected
by this bit.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the instruction
generates a higher priority exception:

• Execution of CFP RCTX at EL1 and EL0 using AArch64
is trapped to EL2 and reported with EC syndrome
value 0x18.

• Execution of CFPRCTX at EL0 using AArch32 is
trapped to EL2 and reported with EC syndrome value
0x03.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVAALE1, bit [47]

Trap execution of TLBI VAALE1 at EL1 using AArch64 to EL2.

TLBIVAALE1 Meaning
0b0 Execution of TLBI VAALE1 is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI VAALE1 at
EL1 using AArch64 is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TLBIVALE1, bit [46]

Trap execution of TLBI VALE1 at EL1 using AArch64 to EL2.

TLBIVALE1 Meaning
0b0 Execution of TLBI VALE1 is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI VALE1 at EL1
using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TLBIVAAE1, bit [45]

Trap execution of TLBI VAAE1 at EL1 using AArch64 to EL2.

TLBIVAAE1 Meaning
0b0 Execution of TLBI VAAE1 is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI VAAE1 at EL1
using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 703

In a system where the PE resets into EL2, this field resets to 0.

TLBIASIDE1, bit [44]

Trap execution of TLBI ASIDE1 at EL1 using AArch64 to EL2.

TLBIASIDE1 Meaning
0b0 Execution of TLBI ASIDE1 is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI ASIDE1 at EL1
using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TLBIVAE1, bit [43]

Trap execution of TLBI VAE1 at EL1 using AArch64 to EL2.

TLBIVAE1 Meaning
0b0 Execution of TLBI VAE1 is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI VAE1 at EL1
using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TLBIVMALLE1, bit [42]

Trap execution of TLBI VMALLE1 at EL1 using AArch64 to EL2.

TLBIVMALLE1 Meaning
0b0 Execution of TLBI VMALLE1 is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI VMALLE1
at EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TLBIRVAALE1, bit [41]

When ARMv8.4-TLBI is implemented:

Trap execution of TLBI RVAALE1 at EL1 using AArch64 to EL2.

TLBIRVAALE1 Meaning
0b0 Execution of TLBI RVAALE1 is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI RVAALE1 at
EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 704

Otherwise:

Reserved, RES0.

TLBIRVALE1, bit [40]

When ARMv8.4-TLBI is implemented:

Trap execution of TLBI RVALE1 at EL1 using AArch64 to EL2.

TLBIRVALE1 Meaning
0b0 Execution of TLBI RVALE1 is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI RVALE1 at
EL1 using AArch64 is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAAE1, bit [39]

When ARMv8.4-TLBI is implemented:

Trap execution of TLBI RVAAE1 at EL1 using AArch64 to EL2.

TLBIRVAAE1 Meaning
0b0 Execution of TLBI RVAAE1 is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI RVAAE1 at
EL1 using AArch64 is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAE1, bit [38]

When ARMv8.4-TLBI is implemented:

Trap execution of TLBI RVAE1 at EL1 using AArch64 to EL2.

TLBIRVAE1 Meaning
0b0 Execution of TLBI RVAE1 is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI RVAE1 at EL1
using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 705

Otherwise:

Reserved, RES0.

TLBIRVAALE1IS, bit [37]

When ARMv8.4-TLBI is implemented:

Trap execution of TLBI RVAALE1IS at EL1 using AArch64 to EL2.

TLBIRVAALE1IS Meaning
0b0 Execution of TLBI RVAALE1IS is not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI
RVAALE1IS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority
exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVALE1IS, bit [36]

When ARMv8.4-TLBI is implemented:

Trap execution of TLBI RVALE1IS at EL1 using AArch64 to EL2.

TLBIRVALE1IS Meaning
0b0 Execution of TLBI RVALE1IS is not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI RVALE1IS
at EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAAE1IS, bit [35]

When ARMv8.4-TLBI is implemented:

Trap execution of TLBI RVAAE1IS at EL1 using AArch64 to EL2.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 706

TLBIRVAAE1IS Meaning
0b0 Execution of TLBI RVAAE1IS is not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI RVAAE1IS
at EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAE1IS, bit [34]

When ARMv8.4-TLBI is implemented:

Trap execution of TLBI RVAE1IS at EL1 using AArch64 to EL2.

TLBIRVAE1IS Meaning
0b0 Execution of TLBI RVAE1IS is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI RVAE1IS at
EL1 using AArch64 is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVAALE1IS, bit [33]

Trap execution of TLBI VAALE1IS at EL1 using AArch64 to EL2.

TLBIVAALE1IS Meaning
0b0 Execution of TLBI VAALE1IS is not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI VAALE1IS
at EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TLBIVALE1IS, bit [32]

Trap execution of TLBI VALE1IS at EL1 using AArch64 to EL2.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 707

TLBIVALE1IS Meaning
0b0 Execution of TLBI VALE1IS is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI VALE1IS at
EL1 using AArch64 is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TLBIVAAE1IS, bit [31]

Trap execution of TLBI VAAE1IS at EL1 using AArch64 to EL2.

TLBIVAAE1IS Meaning
0b0 Execution of TLBI VAAE1IS is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI VAAE1IS at
EL1 using AArch64 is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TLBIASIDE1IS, bit [30]

Trap execution of TLBI ASIDE1IS at EL1 using AArch64 to EL2.

TLBIASIDE1IS Meaning
0b0 Execution of TLBI ASIDE1IS is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI ASIDE1IS at
EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TLBIVAE1IS, bit [29]

Trap execution of TLBI VAE1IS at EL1 using AArch64 to EL2.

TLBIVAE1IS Meaning
0b0 Execution of TLBI VAE1IS is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI VAE1IS at EL1
using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TLBIVMALLE1IS, bit [28]

Trap execution of TLBI VMALLE1IS at EL1 using AArch64 to EL2.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 708

TLBIVMALLE1IS Meaning
0b0 Execution of TLBI VMALLE1IS is not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI
VMALLE1IS at EL1 using AArch64 is trapped to
EL2 and reported with EC syndrome value 0x18,
unless the instruction generates a higher priority
exception.

In a system where the PE resets into EL2, this field resets to 0.

TLBIRVAALE1OS, bit [27]

When ARMv8.4-TLBI is implemented:

Trap execution of TLBI RVAALE1OS at EL1 using AArch64 to EL2.

TLBIRVAALE1OS Meaning
0b0 Execution of TLBI RVAALE1OS is not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI
RVAALE1OS at EL1 using AArch64 is trapped to
EL2 and reported with EC syndrome value 0x18,
unless the instruction generates a higher priority
exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVALE1OS, bit [26]

When ARMv8.4-TLBI is implemented:

Trap execution of TLBI RVALE1OS at EL1 using AArch64 to EL2.

TLBIRVALE1OS Meaning
0b0 Execution of TLBI RVALE1OS is not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI RVALE1OS
at EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAAE1OS, bit [25]

When ARMv8.4-TLBI is implemented:

Trap execution of TLBI RVAAE1OS at EL1 using AArch64 to EL2.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 709

TLBIRVAAE1OS Meaning
0b0 Execution of TLBI RVAAE1OS is not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI RVAAE1OS
at EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAE1OS, bit [24]

When ARMv8.4-TLBI is implemented:

Trap execution of TLBI RVAE1OS at EL1 using AArch64 to EL2.

TLBIRVAE1OS Meaning
0b0 Execution of TLBI RVAE1OS is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI RVAE1OS at
EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVAALE1OS, bit [23]

When ARMv8.4-TLBI is implemented:

Trap execution of TLBI VAALE1OS at EL1 using AArch64 to EL2.

TLBIVAALE1OS Meaning
0b0 Execution of TLBI VAALE1OS is not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI VAALE1OS
at EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 710

TLBIVALE1OS, bit [22]

When ARMv8.4-TLBI is implemented:

Trap execution of TLBI VALE1OS at EL1 using AArch64 to EL2.

TLBIVALE1OS Meaning
0b0 Execution of TLBI VALE1OS is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI VALE1OS at
EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVAAE1OS, bit [21]

When ARMv8.4-TLBI is implemented:

Trap execution of TLBI VAAE1OS at EL1 using AArch64 to EL2.

TLBIVAAE1OS Meaning
0b0 Execution of TLBI VAAE1OS is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI VAAE1OS at
EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIASIDE1OS, bit [20]

When ARMv8.4-TLBI is implemented:

Trap execution of TLBI ASIDE1OS at EL1 using AArch64 to EL2.

TLBIASIDE1OS Meaning
0b0 Execution of TLBI ASIDE1OS is not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI ASIDE1OS
at EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 711

TLBIVAE1OS, bit [19]

When ARMv8.4-TLBI is implemented:

Trap execution of TLBI VAE1OS at EL1 using AArch64 to EL2.

TLBIVAE1OS Meaning
0b0 Execution of TLBI VAE1OS is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of TLBI VAE1OS at
EL1 using AArch64 is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVMALLE1OS, bit [18]

When ARMv8.4-TLBI is implemented:

Trap execution of TLBI VMALLE1OS at EL1 using AArch64 to EL2.

TLBIVMALLE1OS Meaning
0b0 Execution of TLBI VMALLE1OS is not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, execution of TLBI
VMALLE1OS at EL1 using AArch64 is trapped to
EL2 and reported with EC syndrome value 0x18,
unless the instruction generates a higher priority
exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ATS1E1WP, bit [17]

When ARMv8.2-ATS1E1 is implemented:

Trap execution of AT S1E1WP at EL1 using AArch64 to EL2.

ATS1E1WP Meaning
0b0 Execution of AT S1E1WP is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of AT S1E1WP at EL1
using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 712

ATS1E1RP, bit [16]

When ARMv8.2-ATS1E1 is implemented:

Trap execution of AT S1E1RP at EL1 using AArch64 to EL2.

ATS1E1RP Meaning
0b0 Execution of AT S1E1RP is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of AT S1E1RP at EL1
using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ATS1E0W, bit [15]

Trap execution of AT S1E0W at EL1 using AArch64 to EL2.

ATS1E0W Meaning
0b0 Execution of AT S1E0W is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of AT S1E0W at EL1
using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

ATS1E0R, bit [14]

Trap execution of AT S1E0R at EL1 using AArch64 to EL2.

ATS1E0R Meaning
0b0 Execution of AT S1E0R is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, execution of AT S1E0R at EL1 using AArch64 is
trapped to EL2 and reported with EC syndrome value 0x18,
unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

ATS1E1W, bit [13]

Trap execution of AT S1E1W at EL1 using AArch64 to EL2.

ATS1E1W Meaning
0b0 Execution of AT S1E1W is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of AT S1E1W at EL1
using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 713

ATS1E1R, bit [12]

Trap execution of AT S1E1R at EL1 using AArch64 to EL2.

ATS1E1R Meaning
0b0 Execution of AT S1E1R is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, execution of AT S1E1R at EL1 using AArch64 is
trapped to EL2 and reported with EC syndrome value 0x18,
unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DCZVA, bit [11]

Trap execution of multiple System instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of
the following AArch64 System instructions to EL2:

• DC GVA, if ARMv8.5-MemTag is implemented.
• DC GZVA, if ARMv8.5-MemTag is implemented.
• DC ZVA.

DCZVA Meaning
0b0 Execution of the System instructions listed above is not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H,TGE} != {1,1}, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, execution at EL1 and
EL0 using AArch64 of any of the System instructions listed
above is trapped to EL2 and reported with EC syndrome value
0x18, unless the instruction generates a higher priority
exception.

In a system where the PE resets into EL2, this field resets to 0.

DCCIVAC, bit [10]

Trap execution of multiple System instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of
the following AArch64 System instructions to EL2:

• DC CIGDVAC, if ARMv8.5-MemTag is implemented.
• DC CIGVAC, if ARMv8.5-MemTag is implemented.
• DC CIVAC.

DCCIVAC Meaning
0b0 Execution of the System instructions listed above is not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H,TGE} != {1,1}, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, execution at EL1
and EL0 using AArch64 of any of the System instructions
listed above is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DCCVADP, bit [9]

When ARMv8.2-DCCVADP is implemented:

Trap execution of multiple System instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of
the following AArch64 System instructions to EL2:

• DC CGDVADP, if ARMv8.5-MemTag is implemented.
• DC CGVADP, if ARMv8.5-MemTag is implemented.
• DC CVADP.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 714

DCCVADP Meaning
0b0 Execution of the System instructions listed above is not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H,TGE} != {1,1}, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, execution at EL1
and EL0 using AArch64 of any of the System instructions
listed above is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

DCCVAP, bit [8]

Trap execution of multiple System instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of
the following AArch64 System instructions to EL2:

• DC CGDVAP, if ARMv8.5-MemTag is implemented.
• DC CGVAP, if ARMv8.5-MemTag is implemented.
• DC CVAP.

DCCVAP Meaning
0b0 Execution of the System instructions listed above is not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H,TGE} != {1,1}, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, execution at EL1 and
EL0 using AArch64 of any of the System instructions listed
above is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority
exception.

In a system where the PE resets into EL2, this field resets to 0.

DCCVAU, bit [7]

Trap execution of DC CVAU at EL1 and EL0 using AArch64 to EL2.

DCCVAU Meaning
0b0 Execution of DC CVAU is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H,TGE} != {1,1}, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, execution of DC
CVAU at EL1 and EL0 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DCCISW, bit [6]

Trap execution of multiple System instructions. Enables a trap on execution at EL1 using AArch64 of any of the
following AArch64 System instructions to EL2:

• DC CIGDSW, if ARMv8.5-MemTag is implemented.
• DC CIGSW, if ARMv8.5-MemTag is implemented.
• DC CISW.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 715

DCCISW Meaning
0b0 Execution of the System instructions listed above is not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, execution at EL1 using AArch64 of any of the System
instructions listed above is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DCCSW, bit [5]

Trap execution of multiple System instructions. Enables a trap on execution at EL1 using AArch64 of any of the
following AArch64 System instructions to EL2:

• DC CGDSW, if ARMv8.5-MemTag is implemented.
• DC CGSW, if ARMv8.5-MemTag is implemented.
• DC CSW.

DCCSW Meaning
0b0 Execution of the System instructions listed above is not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, execution at EL1 using AArch64 of any of the System
instructions listed above is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DCISW, bit [4]

Trap execution of multiple System instructions. Enables a trap on execution at EL1 using AArch64 of any of the
following AArch64 System instructions to EL2:

• DC IGDSW, if ARMv8.5-MemTag is implemented.
• DC IGSW, if ARMv8.5-MemTag is implemented.
• DC ISW.

DCISW Meaning
0b0 Execution of the System instructions listed above is not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, execution at EL1 using AArch64 of any of the System
instructions listed above is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DCIVAC, bit [3]

Trap execution of multiple System instructions. Enables a trap on execution at EL1 using AArch64 of any of the
following AArch64 System instructions to EL2:

• DC IGDVAC, if ARMv8.5-MemTag is implemented.
• DC IGVAC, if ARMv8.5-MemTag is implemented.
• DC IVAC.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 716

DCIVAC Meaning
0b0 Execution of the System instructions listed above is not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, execution at EL1 using AArch64 of any of the System
instructions listed above is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

ICIVAU, bit [2]

Trap execution of IC IVAU at EL1 and EL0 using AArch64 to EL2.

ICIVAU Meaning
0b0 Execution of IC IVAU is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H,TGE} != {1,1}, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, execution of IC IVAU
at EL1 and EL0 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

ICIALLU, bit [1]

Trap execution of IC IALLU at EL1 using AArch64 to EL2.

ICIALLU Meaning
0b0 Execution of IC IALLU is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, execution of IC IALLU at EL1 using AArch64 is trapped
to EL2 and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

ICIALLUIS, bit [0]

Trap execution of IC IALLUIS at EL1 using AArch64 to EL2.

ICIALLUIS Meaning
0b0 Execution of IC IALLUIS is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, execution of IC IALLUIS at EL1
using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Accessing the HFGITR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, HFGITR_EL2

op0 op1 CRn CRm op2

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 717

0b11 0b100 0b0001 0b0001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x1C8];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FGTEn == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return HFGITR_EL2;

elsif PSTATE.EL == EL3 then
return HFGITR_EL2;

MSR HFGITR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x1C8] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FGTEn == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
HFGITR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
HFGITR_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 718

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap
Register

The HFGRTR_EL2 characteristics are:

Purpose
Provides controls for traps of MRS and MRC reads of System registers.

Configuration
This register is present only when ARMv8.6-FGT is implemented. Otherwise, direct accesses to HFGRTR_EL2 are
UNDEFINED.

Attributes
HFGRTR_EL2 is a 64-bit register.

Field descriptions
The HFGRTR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 ERXADDR_EL1ERXPFGCDN_EL1ERXPFGCTL_EL1ERXPFGF_EL1ERXMISCn_EL1ERXSTATUS_EL1 ERXCTLR_EL1 ERXFR_EL1ERRSELR_EL1ERRIDR_EL1ICC_IGRPENn_EL1VBAR_EL1TTBR1_EL1TTBR0_EL1 TPIDR_EL0 TPIDRRO_EL0 TPIDR_EL1 TCR_EL1

SCXTNUM_EL0SCXTNUM_EL1SCTLR_EL1REVIDR_EL1PAR_EL1MPIDR_EL1MIDR_EL1MAIR_EL1LORSA_EL1LORN_EL1LORID_EL1LOREA_EL1LORC_EL1ISR_EL1 FAR_EL1 ESR_EL1 DCZID_EL0 CTR_EL0 CSSELR_EL1 CPACR_EL1 CONTEXTIDR_EL1 CLIDR_EL1 CCSIDR_EL1 APIBKey APIAKey APGAKey APDBKey APDAKey AMAIR_EL1 AIDR_EL1 AFSR1_EL1AFSR0_EL1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:50]

Reserved, RES0.

ERXADDR_EL1, bit [49]

When RAS is implemented:

Trap MRS reads of ERXADDR_EL1 at EL1 using AArch64 to EL2.

ERXADDR_EL1 Meaning
0b0 MRS reads of ERXADDR_EL1 are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of ERXADDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 719

ERXPFGCDN_EL1, bit [48]

When ARMv8.4-RAS is implemented:

Trap MRS reads of ERXPFGCDN_EL1 at EL1 using AArch64 to EL2.

ERXPFGCDN_EL1 Meaning
0b0 MRS reads of ERXPFGCDN_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, MRS reads of
ERXPFGCDN_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXPFGCTL_EL1, bit [47]

When ARMv8.4-RAS is implemented:

Trap MRS reads of ERXPFGCTL_EL1 at EL1 using AArch64 to EL2.

ERXPFGCTL_EL1 Meaning
0b0 MRS reads of ERXPFGCTL_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of
ERXPFGCTL_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXPFGF_EL1, bit [46]

When RAS is implemented:

Trap MRS reads of ERXPFGF_EL1 at EL1 using AArch64 to EL2.

ERXPFGF_EL1 Meaning
0b0 MRS reads of ERXPFGF_EL1 are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of ERXPFGF_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 720

Otherwise:

Reserved, RES0.

ERXMISCn_EL1, bit [45]

When RAS is implemented:

Trap MRS reads of ERXMISC<n>_EL1 at EL1 using AArch64 to EL2.

ERXMISCn_EL1 Meaning
0b0 MRS reads of ERXMISC<n>_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of
ERXMISC<n>_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome value
0x18, unless the read generates a higher priority
exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXSTATUS_EL1, bit [44]

When RAS is implemented:

Trap MRS reads of ERXSTATUS_EL1 at EL1 using AArch64 to EL2.

ERXSTATUS_EL1 Meaning
0b0 MRS reads of ERXSTATUS_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of
ERXSTATUS_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority
exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXCTLR_EL1, bit [43]

When RAS is implemented:

Trap MRS reads of ERXCTLR_EL1 at EL1 using AArch64 to EL2.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 721

ERXCTLR_EL1 Meaning
0b0 MRS reads of ERXCTLR_EL1 are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of ERXCTLR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXFR_EL1, bit [42]

When RAS is implemented:

Trap MRS reads of ERXFR_EL1 at EL1 using AArch64 to EL2.

ERXFR_EL1 Meaning
0b0 MRS reads of ERXFR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of ERXFR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERRSELR_EL1, bit [41]

When RAS is implemented:

Trap MRS reads of ERRSELR_EL1 at EL1 using AArch64 to EL2.

ERRSELR_EL1 Meaning
0b0 MRS reads of ERRSELR_EL1 are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of ERRSELR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 722

ERRIDR_EL1, bit [40]

When RAS is implemented:

Trap MRS reads of ERRIDR_EL1 at EL1 using AArch64 to EL2.

ERRIDR_EL1 Meaning
0b0 MRS reads of ERRIDR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of ERRIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ICC_IGRPENn_EL1, bit [39]

When GICv3 is implemented:

Trap MRS reads of ICC_IGRPEN<n>_EL1 at EL1 using AArch64 to EL2.

ICC_IGRPENn_EL1 Meaning
0b0 MRS reads of ICC_IGRPEN<n>_EL1 are not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, MRS reads of
ICC_IGRPEN<n>_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

VBAR_EL1, bit [38]

Trap MRS reads of VBAR_EL1 at EL1 using AArch64 to EL2.

VBAR_EL1 Meaning
0b0 MRS reads of VBAR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of VBAR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TTBR1_EL1, bit [37]

Trap MRS reads of TTBR1_EL1 at EL1 using AArch64 to EL2.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 723

TTBR1_EL1 Meaning
0b0 MRS reads of TTBR1_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of TTBR1_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TTBR0_EL1, bit [36]

Trap MRS reads of TTBR0_EL1 at EL1 using AArch64 to EL2.

TTBR0_EL1 Meaning
0b0 MRS reads of TTBR0_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of TTBR0_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TPIDR_EL0, bit [35]

Trap MRS reads of TPIDR_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURW at EL0 using AArch32 when
EL1 is using AArch64 to EL2.

TPIDR_EL0 Meaning
0b0 MRS reads of TPIDR_EL0 at EL1 and EL0 using AArch64

and MRC reads of TPIDRURW at EL0 using AArch32 are
not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a
higher priority exception:

• MRS reads of TPIDR_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18.

• MRC reads of TPIDRURW at EL0 using AArch32 are
trapped to EL2 and reported with EC syndrome value
0x03.

In a system where the PE resets into EL2, this field resets to 0.

TPIDRRO_EL0, bit [34]

Trap MRS reads of TPIDRRO_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURO at EL0 using AArch32
when EL1 is using AArch64 to EL2.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 724

TPIDRRO_EL0 Meaning
0b0 MRS reads of TPIDRRO_EL0 at EL1 and EL0 using

AArch64 and MRC reads of TPIDRURO at EL0 using
AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is
using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read
generates a higher priority exception:

• MRS reads of TPIDRRO_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18.

• MRC reads of TPIDRURO at EL0 using AArch32 are
trapped to EL2 and reported with EC syndrome
value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

TPIDR_EL1, bit [33]

Trap MRS reads of TPIDR_EL1 at EL1 using AArch64 to EL2.

TPIDR_EL1 Meaning
0b0 MRS reads of TPIDR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of TPIDR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TCR_EL1, bit [32]

Trap MRS reads of TCR_EL1 at EL1 using AArch64 to EL2.

TCR_EL1 Meaning
0b0 MRS reads of TCR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MRS reads of TCR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

SCXTNUM_EL0, bit [31]

When ARMv8.0-CSV2 is implemented:

Trap MRS reads of SCXTNUM_EL0 at EL1 and EL0 using AArch64 to EL2.

SCXTNUM_EL0 Meaning
0b0 MRS reads of SCXTNUM_EL0 are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state, HCR_EL2.{E2H,TGE} != {1,1}, and
either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MRS reads of SCXTNUM_EL0 at EL1 and EL0
using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 725

Otherwise:

Reserved, RES0.

SCXTNUM_EL1, bit [30]

When ARMv8.0-CSV2 is implemented:

Trap MRS reads of SCXTNUM_EL1 at EL1 using AArch64 to EL2.

SCXTNUM_EL1 Meaning
0b0 MRS reads of SCXTNUM_EL1 are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of SCXTNUM_EL1
at EL1 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

SCTLR_EL1, bit [29]

Trap MRS reads of SCTLR_EL1 at EL1 using AArch64 to EL2.

SCTLR_EL1 Meaning
0b0 MRS reads of SCTLR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of SCTLR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

REVIDR_EL1, bit [28]

Trap MRS reads of REVIDR_EL1 at EL1 using AArch64 to EL2.

REVIDR_EL1 Meaning
0b0 MRS reads of REVIDR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of REVIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

PAR_EL1, bit [27]

Trap MRS reads of PAR_EL1 at EL1 using AArch64 to EL2.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 726

PAR_EL1 Meaning
0b0 MRS reads of PAR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MRS reads of PAR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

MPIDR_EL1, bit [26]

Trap MRS reads of MPIDR_EL1 at EL1 using AArch64 to EL2.

MPIDR_EL1 Meaning
0b0 MRS reads of MPIDR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of MPIDR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

MIDR_EL1, bit [25]

Trap MRS reads of MIDR_EL1 at EL1 using AArch64 to EL2.

MIDR_EL1 Meaning
0b0 MRS reads of MIDR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of MIDR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

MAIR_EL1, bit [24]

Trap MRS reads of MAIR_EL1 at EL1 using AArch64 to EL2.

MAIR_EL1 Meaning
0b0 MRS reads of MAIR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of MAIR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

LORSA_EL1, bit [23]

When ARMv8.1-LOR is implemented:

Trap MRS reads of LORSA_EL1 at EL1 using AArch64 to EL2.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 727

LORSA_EL1 Meaning
0b0 MRS reads of LORSA_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of LORSA_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

LORN_EL1, bit [22]

When ARMv8.1-LOR is implemented:

Trap MRS reads of LORN_EL1 at EL1 using AArch64 to EL2.

LORN_EL1 Meaning
0b0 MRS reads of LORN_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of LORN_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

LORID_EL1, bit [21]

When ARMv8.1-LOR is implemented:

Trap MRS reads of LORID_EL1 at EL1 using AArch64 to EL2.

LORID_EL1 Meaning
0b0 MRS reads of LORID_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of LORID_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

LOREA_EL1, bit [20]

When ARMv8.1-LOR is implemented:

Trap MRS reads of LOREA_EL1 at EL1 using AArch64 to EL2.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 728

LOREA_EL1 Meaning
0b0 MRS reads of LOREA_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of LOREA_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

LORC_EL1, bit [19]

When ARMv8.1-LOR is implemented:

Trap MRS reads of LORC_EL1 at EL1 using AArch64 to EL2.

LORC_EL1 Meaning
0b0 MRS reads of LORC_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of LORC_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ISR_EL1, bit [18]

Trap MRS reads of ISR_EL1 at EL1 using AArch64 to EL2.

ISR_EL1 Meaning
0b0 MRS reads of ISR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MRS reads of ISR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

FAR_EL1, bit [17]

Trap MRS reads of FAR_EL1 at EL1 using AArch64 to EL2.

FAR_EL1 Meaning
0b0 MRS reads of FAR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MRS reads of FAR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 729

ESR_EL1, bit [16]

Trap MRS reads of ESR_EL1 at EL1 using AArch64 to EL2.

ESR_EL1 Meaning
0b0 MRS reads of ESR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MRS reads of ESR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DCZID_EL0, bit [15]

Trap MRS reads of DCZID_EL0 at EL1 and EL0 using AArch64 to EL2.

DCZID_EL0 Meaning
0b0 MRS reads of DCZID_EL0 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H,TGE} != {1,1}, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1, MRS reads of
DCZID_EL0 at EL1 and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

CTR_EL0, bit [14]

Trap MRS reads of CTR_EL0 at EL1 and EL0 using AArch64 and MRC reads of CTR at EL0 using AArch32 when EL1 is
using AArch64 to EL2.

CTR_EL0 Meaning
0b0 MRS reads of CTR_EL0 at EL1 and EL0 using AArch64 and

MRC reads of CTR at EL0 using AArch32 are not affected by
this bit.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64,
and either EL3 is not implemented or SCR_EL3.FGTEn ==
1, then, unless the read generates a higher priority
exception:

• MRS reads of CTR_EL0 at EL1 and EL0 using AArch64
are trapped to EL2 and reported with EC syndrome
value 0x18.

• MRC reads of CTR at EL0 using AArch32 are trapped to
EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

CSSELR_EL1, bit [13]

Trap MRS reads of CSSELR_EL1 at EL1 using AArch64 to EL2.

CSSELR_EL1 Meaning
0b0 MRS reads of CSSELR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of CSSELR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 730

CPACR_EL1, bit [12]

Trap MRS reads of CPACR_EL1 at EL1 using AArch64 to EL2.

CPACR_EL1 Meaning
0b0 MRS reads of CPACR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of CPACR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

CONTEXTIDR_EL1, bit [11]

Trap MRS reads of CONTEXTIDR_EL1 at EL1 using AArch64 to EL2.

CONTEXTIDR_EL1 Meaning
0b0 MRS reads of CONTEXTIDR_EL1 are not affected

by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, MRS reads of
CONTEXTIDR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

CLIDR_EL1, bit [10]

Trap MRS reads of CLIDR_EL1 at EL1 using AArch64 to EL2.

CLIDR_EL1 Meaning
0b0 MRS reads of CLIDR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of CLIDR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

CCSIDR_EL1, bit [9]

Trap MRS reads of CCSIDR_EL1 at EL1 using AArch64 to EL2.

CCSIDR_EL1 Meaning
0b0 MRS reads of CCSIDR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of CCSIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 731

APIBKey, bit [8]

When ARMv8.3-PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• APIBKeyHi_EL1.
• APIBKeyLo_EL1.

APIBKey Meaning
0b0 MRS reads of the System registers listed above are not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MRS reads at EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APIAKey, bit [7]

When ARMv8.3-PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• APIAKeyHi_EL1.
• APIAKeyLo_EL1.

APIAKey Meaning
0b0 MRS reads of the System registers listed above are not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MRS reads at EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APGAKey, bit [6]

When ARMv8.3-PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• APGAKeyHi_EL1.
• APGAKeyLo_EL1.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 732

APGAKey Meaning
0b0 MRS reads of the System registers listed above are not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MRS reads at EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APDBKey, bit [5]

When ARMv8.3-PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• APDBKeyHi_EL1.
• APDBKeyLo_EL1.

APDBKey Meaning
0b0 MRS reads of the System registers listed above are not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MRS reads at EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APDAKey, bit [4]

When ARMv8.3-PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• APDAKeyHi_EL1.
• APDAKeyLo_EL1.

APDAKey Meaning
0b0 MRS reads of the System registers listed above are not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MRS reads at EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 733

Otherwise:

Reserved, RES0.

AMAIR_EL1, bit [3]

Trap MRS reads of AMAIR_EL1 at EL1 using AArch64 to EL2.

AMAIR_EL1 Meaning
0b0 MRS reads of AMAIR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of AMAIR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

AIDR_EL1, bit [2]

Trap MRS reads of AIDR_EL1 at EL1 using AArch64 to EL2.

AIDR_EL1 Meaning
0b0 MRS reads of AIDR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of AIDR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

AFSR1_EL1, bit [1]

Trap MRS reads of AFSR1_EL1 at EL1 using AArch64 to EL2.

AFSR1_EL1 Meaning
0b0 MRS reads of AFSR1_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of AFSR1_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

AFSR0_EL1, bit [0]

Trap MRS reads of AFSR0_EL1 at EL1 using AArch64 to EL2.

AFSR0_EL1 Meaning
0b0 MRS reads of AFSR0_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MRS reads of AFSR0_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 734

Accessing the HFGRTR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, HFGRTR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x1B8];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FGTEn == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return HFGRTR_EL2;

elsif PSTATE.EL == EL3 then
return HFGRTR_EL2;

MSR HFGRTR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x1B8] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FGTEn == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
HFGRTR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
HFGRTR_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 735

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap
Register

The HFGWTR_EL2 characteristics are:

Purpose
Provides controls for traps of MSR and MCR writes of System registers.

Configuration
This register is present only when ARMv8.6-FGT is implemented. Otherwise, direct accesses to HFGWTR_EL2 are
UNDEFINED.

Attributes
HFGWTR_EL2 is a 64-bit register.

Field descriptions
The HFGWTR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 ERXADDR_EL1ERXPFGCDN_EL1ERXPFGCTL_EL1RES0ERXMISCn_EL1ERXSTATUS_EL1 ERXCTLR_EL1 RES0ERRSELR_EL1 RES0 ICC_IGRPENn_EL1VBAR_EL1TTBR1_EL1TTBR0_EL1 TPIDR_EL0 TPIDRRO_EL0 TPIDR_EL1 TCR_EL1

SCXTNUM_EL0SCXTNUM_EL1SCTLR_EL1RES0PAR_EL1RES0MAIR_EL1LORSA_EL1LORN_EL1RES0LOREA_EL1LORC_EL1RES0 FAR_EL1 ESR_EL1 RES0 CSSELR_EL1 CPACR_EL1 CONTEXTIDR_EL1 RES0 APIBKey APIAKey APGAKey APDBKey APDAKey AMAIR_EL1 RES0 AFSR1_EL1AFSR0_EL1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:50]

Reserved, RES0.

ERXADDR_EL1, bit [49]

When RAS is implemented:

Trap MSR writes of ERXADDR_EL1 at EL1 using AArch64 to EL2.

ERXADDR_EL1 Meaning
0b0 MSR writes of ERXADDR_EL1 are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of ERXADDR_EL1
at EL1 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 736

ERXPFGCDN_EL1, bit [48]

When ARMv8.4-RAS is implemented:

Trap MSR writes of ERXPFGCDN_EL1 at EL1 using AArch64 to EL2.

ERXPFGCDN_EL1 Meaning
0b0 MSR writes of ERXPFGCDN_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, MSR writes of
ERXPFGCDN_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXPFGCTL_EL1, bit [47]

When ARMv8.4-RAS is implemented:

Trap MSR writes of ERXPFGCTL_EL1 at EL1 using AArch64 to EL2.

ERXPFGCTL_EL1 Meaning
0b0 MSR writes of ERXPFGCTL_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of
ERXPFGCTL_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [46]

Reserved, RES0.

ERXMISCn_EL1, bit [45]

When RAS is implemented:

Trap MSR writes of ERXMISC<n>_EL1 at EL1 using AArch64 to EL2.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 737

ERXMISCn_EL1 Meaning
0b0 MSR writes of ERXMISC<n>_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of
ERXMISC<n>_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome value
0x18, unless the write generates a higher priority
exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXSTATUS_EL1, bit [44]

When RAS is implemented:

Trap MSR writes of ERXSTATUS_EL1 at EL1 using AArch64 to EL2.

ERXSTATUS_EL1 Meaning
0b0 MSR writes of ERXSTATUS_EL1 are not affected by

this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of
ERXSTATUS_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority
exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXCTLR_EL1, bit [43]

When RAS is implemented:

Trap MSR writes of ERXCTLR_EL1 at EL1 using AArch64 to EL2.

ERXCTLR_EL1 Meaning
0b0 MSR writes of ERXCTLR_EL1 are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of ERXCTLR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 738

Bit [42]

Reserved, RES0.

ERRSELR_EL1, bit [41]

When RAS is implemented:

Trap MSR writes of ERRSELR_EL1 at EL1 using AArch64 to EL2.

ERRSELR_EL1 Meaning
0b0 MSR writes of ERRSELR_EL1 are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of ERRSELR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [40]

Reserved, RES0.

ICC_IGRPENn_EL1, bit [39]

When GICv3 is implemented:

Trap MSR writes of ICC_IGRPEN<n>_EL1 at EL1 using AArch64 to EL2.

ICC_IGRPENn_EL1 Meaning
0b0 MSR writes of ICC_IGRPEN<n>_EL1 are not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, MSR writes of
ICC_IGRPEN<n>_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

VBAR_EL1, bit [38]

Trap MSR writes of VBAR_EL1 at EL1 using AArch64 to EL2.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 739

VBAR_EL1 Meaning
0b0 MSR writes of VBAR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of VBAR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TTBR1_EL1, bit [37]

Trap MSR writes of TTBR1_EL1 at EL1 using AArch64 to EL2.

TTBR1_EL1 Meaning
0b0 MSR writes of TTBR1_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of TTBR1_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TTBR0_EL1, bit [36]

Trap MSR writes of TTBR0_EL1 at EL1 using AArch64 to EL2.

TTBR0_EL1 Meaning
0b0 MSR writes of TTBR0_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of TTBR0_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TPIDR_EL0, bit [35]

Trap MSR writes of TPIDR_EL0 at EL1 and EL0 using AArch64 and MCR writes of TPIDRURW at EL0 using AArch32
when EL1 is using AArch64 to EL2.

TPIDR_EL0 Meaning
0b0 MSR writes of TPIDR_EL0 at EL1 and EL0 using AArch64

and MCR writes of TPIDRURW at EL0 using AArch32 are
not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the write generates a
higher priority exception:

• MSR writes of TPIDR_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18.

• MCR writes of TPIDRURW at EL0 using AArch32 are
trapped to EL2 and reported with EC syndrome value
0x03.

In a system where the PE resets into EL2, this field resets to 0.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 740

TPIDRRO_EL0, bit [34]

Trap MSR writes of TPIDRRO_EL0 at EL1 using AArch64 to EL2.

TPIDRRO_EL0 Meaning
0b0 MSR writes of TPIDRRO_EL0 are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of TPIDRRO_EL0 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TPIDR_EL1, bit [33]

Trap MSR writes of TPIDR_EL1 at EL1 using AArch64 to EL2.

TPIDR_EL1 Meaning
0b0 MSR writes of TPIDR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of TPIDR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TCR_EL1, bit [32]

Trap MSR writes of TCR_EL1 at EL1 using AArch64 to EL2.

TCR_EL1 Meaning
0b0 MSR writes of TCR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MSR writes of TCR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

SCXTNUM_EL0, bit [31]

When ARMv8.0-CSV2 is implemented:

Trap MSR writes of SCXTNUM_EL0 at EL1 and EL0 using AArch64 to EL2.

SCXTNUM_EL0 Meaning
0b0 MSR writes of SCXTNUM_EL0 are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state, HCR_EL2.{E2H,TGE} != {1,1}, and
either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MSR writes of SCXTNUM_EL0 at EL1 and EL0
using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates
a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 741

Otherwise:

Reserved, RES0.

SCXTNUM_EL1, bit [30]

When ARMv8.0-CSV2 is implemented:

Trap MSR writes of SCXTNUM_EL1 at EL1 using AArch64 to EL2.

SCXTNUM_EL1 Meaning
0b0 MSR writes of SCXTNUM_EL1 are not affected by this

bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of SCXTNUM_EL1
at EL1 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

SCTLR_EL1, bit [29]

Trap MSR writes of SCTLR_EL1 at EL1 using AArch64 to EL2.

SCTLR_EL1 Meaning
0b0 MSR writes of SCTLR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of SCTLR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Bit [28]

Reserved, RES0.

PAR_EL1, bit [27]

Trap MSR writes of PAR_EL1 at EL1 using AArch64 to EL2.

PAR_EL1 Meaning
0b0 MSR writes of PAR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MSR writes of PAR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Bits [26:25]

Reserved, RES0.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 742

MAIR_EL1, bit [24]

Trap MSR writes of MAIR_EL1 at EL1 using AArch64 to EL2.

MAIR_EL1 Meaning
0b0 MSR writes of MAIR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of MAIR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

LORSA_EL1, bit [23]

When ARMv8.1-LOR is implemented:

Trap MSR writes of LORSA_EL1 at EL1 using AArch64 to EL2.

LORSA_EL1 Meaning
0b0 MSR writes of LORSA_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of LORSA_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

LORN_EL1, bit [22]

When ARMv8.1-LOR is implemented:

Trap MSR writes of LORN_EL1 at EL1 using AArch64 to EL2.

LORN_EL1 Meaning
0b0 MSR writes of LORN_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of LORN_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [21]

Reserved, RES0.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 743

LOREA_EL1, bit [20]

When ARMv8.1-LOR is implemented:

Trap MSR writes of LOREA_EL1 at EL1 using AArch64 to EL2.

LOREA_EL1 Meaning
0b0 MSR writes of LOREA_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of LOREA_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

LORC_EL1, bit [19]

When ARMv8.1-LOR is implemented:

Trap MSR writes of LORC_EL1 at EL1 using AArch64 to EL2.

LORC_EL1 Meaning
0b0 MSR writes of LORC_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of LORC_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [18]

Reserved, RES0.

FAR_EL1, bit [17]

Trap MSR writes of FAR_EL1 at EL1 using AArch64 to EL2.

FAR_EL1 Meaning
0b0 MSR writes of FAR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MSR writes of FAR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

ESR_EL1, bit [16]

Trap MSR writes of ESR_EL1 at EL1 using AArch64 to EL2.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 744

ESR_EL1 Meaning
0b0 MSR writes of ESR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MSR writes of ESR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Bits [15:14]

Reserved, RES0.

CSSELR_EL1, bit [13]

Trap MSR writes of CSSELR_EL1 at EL1 using AArch64 to EL2.

CSSELR_EL1 Meaning
0b0 MSR writes of CSSELR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of CSSELR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

CPACR_EL1, bit [12]

Trap MSR writes of CPACR_EL1 at EL1 using AArch64 to EL2.

CPACR_EL1 Meaning
0b0 MSR writes of CPACR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of CPACR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

CONTEXTIDR_EL1, bit [11]

Trap MSR writes of CONTEXTIDR_EL1 at EL1 using AArch64 to EL2.

CONTEXTIDR_EL1 Meaning
0b0 MSR writes of CONTEXTIDR_EL1 are not affected

by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, MSR writes of
CONTEXTIDR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Bits [10:9]

Reserved, RES0.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 745

APIBKey, bit [8]

When ARMv8.3-PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APIBKeyHi_EL1.
• APIBKeyLo_EL1.

APIBKey Meaning
0b0 MSR writes of the System registers listed above are not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MSR writes at EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APIAKey, bit [7]

When ARMv8.3-PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APIAKeyHi_EL1.
• APIAKeyLo_EL1.

APIAKey Meaning
0b0 MSR writes of the System registers listed above are not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MSR writes at EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APGAKey, bit [6]

When ARMv8.3-PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APGAKeyHi_EL1.
• APGAKeyLo_EL1.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 746

APGAKey Meaning
0b0 MSR writes of the System registers listed above are not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MSR writes at EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APDBKey, bit [5]

When ARMv8.3-PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APDBKeyHi_EL1.
• APDBKeyLo_EL1.

APDBKey Meaning
0b0 MSR writes of the System registers listed above are not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MSR writes at EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APDAKey, bit [4]

When ARMv8.3-PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APDAKeyHi_EL1.
• APDAKeyLo_EL1.

APDAKey Meaning
0b0 MSR writes of the System registers listed above are not

affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or SCR_EL3.FGTEn
== 1, MSR writes at EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 747

Otherwise:

Reserved, RES0.

AMAIR_EL1, bit [3]

Trap MSR writes of AMAIR_EL1 at EL1 using AArch64 to EL2.

AMAIR_EL1 Meaning
0b0 MSR writes of AMAIR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current

Security state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of AMAIR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Bit [2]

Reserved, RES0.

AFSR1_EL1, bit [1]

Trap MSR writes of AFSR1_EL1 at EL1 using AArch64 to EL2.

AFSR1_EL1 Meaning
0b0 MSR writes of AFSR1_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of AFSR1_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

AFSR0_EL1, bit [0]

Trap MSR writes of AFSR0_EL1 at EL1 using AArch64 to EL2.

AFSR0_EL1 Meaning
0b0 MSR writes of AFSR0_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security

state and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, MSR writes of AFSR0_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Accessing the HFGWTR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, HFGWTR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b101

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 748

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x1C0];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FGTEn == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return HFGWTR_EL2;

elsif PSTATE.EL == EL3 then
return HFGWTR_EL2;

MSR HFGWTR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x1C0] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FGTEn == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
HFGWTR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
HFGWTR_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 749

HPFAR_EL2, Hypervisor IPA Fault Address Register
The HPFAR_EL2 characteristics are:

Purpose
Holds the faulting IPA for some aborts on a stage 2 translation taken to EL2.

Configuration
AArch64 System register HPFAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HPFAR[31:0]
.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
HPFAR_EL2 is a 64-bit register.

Field descriptions
The HPFAR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 FIPA[51:48] FIPA[47:12]

FIPA[47:12] RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution at EL1 or EL0 makes HPFAR_EL2 become UNKNOWN.

NS, bit [63]

When ARMv8.4-SecEL2 is implemented:

Faulting IPA address space.

NS Meaning
0b0 Faulting IPA is from the Secure IPA space.
0b1 Faulting IPA is from the Non-secure IPA space.

For data or instruction aborts taken to Non-secure EL2, this field is RES0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [62:44]

Reserved, RES0.

HPFAR_EL2, Hypervisor IPA Fault Address Register

Page 750

FIPA[51:48], bits [43:40]

When ARMv8.2-LPA is implemented:

Extension to FIPA[47:12]. See FIPA[47:12] for more details.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FIPA[47:12], bits [39:4]

Bits [47:12] of the faulting intermediate physical address.

For implementations with fewer than 48 physical address bits, the corresponding upper bits in this field are RES0.

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use for the stage 1
translation, the FIPA[51:48] bits form the upper part of the address value. For implementations or stage 1 translation
granules with fewer than 52 physical address bits the FIPA[51:48] bits are RES0.

The HPFAR_EL2 is written for:

• Translation or Access faults in the second stage of translation.
• An abort in the second stage of translation performed during the translation table walk of a first stage

translation, caused by a Translation fault, an Access flag fault, or a Permission fault.
• A stage 2 Address size fault.

Note

The address held in this register is an address accessed by the instruction
fetch or data access that caused the exception that gave rise to the instruction
or data abort. It is the lowest address that gave rise to the fault. Where
different faults from different addresses arise from the same instruction, such
as for an instruction that loads or stores a mis-aligned address that crosses a
page boundary, the architecture does not prioritize between those different
faults.

For all other exceptions taken to EL2, this register is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Bits [3:0]

Reserved, RES0.

Accessing the HPFAR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, HPFAR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b100

HPFAR_EL2, Hypervisor IPA Fault Address Register

Page 751

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HPFAR_EL2;
elsif PSTATE.EL == EL3 then

return HPFAR_EL2;

MSR HPFAR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HPFAR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

HPFAR_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HPFAR_EL2, Hypervisor IPA Fault Address Register

Page 752

HSTR_EL2, Hypervisor System Trap Register
The HSTR_EL2 characteristics are:

Purpose
Controls trapping to EL2 of EL1 or lower AArch32 accesses to the System register in the coproc == 0b1111 encoding
space, by the CRn value used to access the register using MCR or MRC instruction. When the register is accessible
using an MCRR or MRRC instruction, this is the CRm value used to access the register.

Configuration
AArch64 System register HSTR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HSTR[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
HSTR_EL2 are RES0.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
HSTR_EL2 is a 64-bit register.

Field descriptions
The HSTR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 T15T14T13T12T11T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

T<n>, bit [n], for n = 0 to 15

Fields T14 and T4 are RES0.

The remaining fields control whether EL0 and EL1 accesses, using MCR, MRC, MCRR, and MRRC instructions, to the
System registers in the coproc == 0b1111 encoding space are trapped to EL2 as follows:

• MCR or MRC accesses to these registers that are trapped to EL2 are reported using EC syndrome value 0x03,
unless the access is UNDEFINED.

• MCRR or MRRC accesses to these registers that are trapped to EL2 are reported using EC syndrome value
0x04, unless the access is UNDEFINED.

HSTR_EL2, Hypervisor System Trap Register

Page 753

T<n> Meaning
0b0 This control has no effect on EL0 or EL1 accesses to System

registers.
0b1 Any EL1 MCR or MRC access with coproc == 0b1111 and CRn

== <n> is trapped to EL2. An EL0 MCR or MRC access with
these values is trapped to EL2 only if the access is not
UNDEFINED when the value of this field is 0.
Any EL1 MCRR or MRRC access with coproc == 0b1111 and
CRm == <n> is trapped to EL2. An EL0 MCRR or MRRC access
with these values is trapped to EL2 only if the access is not
UNDEFINED when the value of this field is 0.
It is IMPLEMENTATION DEFINED whether a Non-secure EL0 access
using AArch32 to these registers is trapped to EL2, or is
UNDEFINED and generates an exception that is taken to Non-
secure EL1. If the access is UNDEFINED, and generates an
exception that is taken to Non-secure EL1 using AArch64, this is
reported with EC syndrome value 0x00.

Note
Arm expects that trapping to EL2 of
Non-secure EL0 accesses to these
registers is unusual and used only when
the hypervisor must virtualize EL0
operation. Arm recommends that,
whenever possible, Non-secure EL0
accesses to these registers behave as
they would if the implementation did not
include EL2. This means that, if the
architecture does not support the Non-
secure EL0 access, then the register
access instruction is treated as
UNDEFINED and generates an exception
that is taken to Non-secure EL1.

For example, when HSTR_EL2.T7 is 1, for instructions executed at EL1:

• An MCR or MRC instruction with coproc set to 0b1111 and <CRn> set to c7 is trapped to EL2.
• An MCRR or MRRC instruction with coproc set to 0b1111 and <CRm> set to c7 is trapped to EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

Accessing the HSTR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, HSTR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b011

HSTR_EL2, Hypervisor System Trap Register

Page 754

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x080];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HSTR_EL2;
elsif PSTATE.EL == EL3 then

return HSTR_EL2;

MSR HSTR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x080] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HSTR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

HSTR_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HSTR_EL2, Hypervisor System Trap Register

Page 755

IC IALLU, Instruction Cache Invalidate All to PoU
The IC IALLU characteristics are:

Purpose
Invalidate all instruction caches to Point of Unification.

Configuration
AArch64 System instruction IC IALLU performs the same function as AArch32 System instruction ICIALLU.

Attributes
IC IALLU is a 64-bit System instruction.

Field descriptions
IC IALLU ignores the value in the register specified by the instruction encoding. Software does not have to write a
value to the register before issuing this instruction.

Executing the IC IALLU instruction
Accesses to this instruction use the following encodings:

IC IALLU{, <Xt>}

op0 op1 CRn CRm op2 Rt
0b01 0b000 0b0111 0b0101 0b000 0b11111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TOCU == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.ICIALLU == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
IC_IALLUIS();

else
IC_IALLU();

elsif PSTATE.EL == EL2 then
IC_IALLU();

elsif PSTATE.EL == EL3 then
IC_IALLU();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IC IALLU, Instruction Cache Invalidate All to PoU

Page 756

IC IALLUIS, Instruction Cache Invalidate All to PoU,
Inner Shareable

The IC IALLUIS characteristics are:

Purpose
Invalidate all instruction caches in Inner Shareable domain to Point of Unification.

Configuration
AArch64 System instruction IC IALLUIS performs the same function as AArch32 System instruction ICIALLUIS.

Attributes
IC IALLUIS is a 64-bit System instruction.

Field descriptions
IC IALLUIS ignores the value in the register specified by the instruction encoding. Software does not have to write a
value to the register before issuing this instruction.

Executing the IC IALLUIS instruction
Accesses to this instruction use the following encodings:

IC IALLUIS{, <Xt>}

op0 op1 CRn CRm op2 Rt
0b01 0b000 0b0111 0b0001 0b000 0b11111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TICAB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.ICIALLUIS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
IC_IALLUIS();

elsif PSTATE.EL == EL2 then
IC_IALLUIS();

elsif PSTATE.EL == EL3 then
IC_IALLUIS();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IC IALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable

Page 757

IC IVAU, Instruction Cache line Invalidate by VA to PoU
The IC IVAU characteristics are:

Purpose
Invalidate instruction cache by address to Point of Unification.

Configuration
AArch64 System instruction IC IVAU performs the same function as AArch32 System instruction ICIMVAU.

Attributes
IC IVAU is a 64-bit System instruction.

Field descriptions
The IC IVAU input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the IC IVAU instruction
Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The instruction cache maintenance instruction (IC)' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it is IMPLEMENTATION DEFINED whether it generates a Permission Fault, see 'Permission fault' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

IC IVAU{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b0101 0b001

IC IVAU, Instruction Cache line Invalidate by VA to PoU

Page 758

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPU == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TOCU == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HFGITR_EL2.ICIVAU == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI ==
'0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

IC_IVAU(X[t]);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TOCU == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.ICIVAU == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

IC_IVAU(X[t]);
elsif PSTATE.EL == EL2 then

IC_IVAU(X[t]);
elsif PSTATE.EL == EL3 then

IC_IVAU(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IC IVAU, Instruction Cache line Invalidate by VA to PoU

Page 759

ICC_AP0R<n>_EL1, Interrupt Controller Active
Priorities Group 0 Registers, n = 0 - 3

The ICC_AP0R<n>_EL1 characteristics are:

Purpose
Provides information about Group 0 active priorities.

Configuration
AArch64 System register ICC_AP0R<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ICC_AP0R<n>[31:0] .

Attributes
ICC_AP0R<n>_EL1 is a 64-bit register.

Field descriptions
The ICC_AP0R<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

IMPLEMENTATION DEFINED
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing the ICC_AP0R<n>_EL1
Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 0 active priorities) might result in UNPREDICTABLE behavior of the interrupt prioritization system, causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICC_AP0R1_EL1 is only implemented in implementations that support 6 or more bits of priority. ICC_AP0R2_EL1 and
ICC_AP0R3_EL1 are only implemented in implementations that support 7 or more bits of priority. Unimplemented
registers are UNDEFINED.

Note

The number of bits of preemption is indicated by ICH_VTR_EL2.PREbits.

ICC_AP0R<n>_EL1, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3

Page 760

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

• ICC_AP0R<n>_EL1.
• Secure ICC_AP1R<n>_EL1.
• Non-secure ICC_AP1R<n>_EL1.

Accesses to this register use the following encodings:

MRS <Xt>, ICC_AP0R<n>_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1000 0b1:n[1:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_AP0R_EL1[UInt(op2<1:0>)];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_AP0R_EL1[UInt(op2<1:0>)];
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_AP0R_EL1[UInt(op2<1:0>)];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_AP0R_EL1[UInt(op2<1:0>)];

MSR ICC_AP0R<n>_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1000 0b1:n[1:0]

ICC_AP0R<n>_EL1, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3

Page 761

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_AP0R_EL1[UInt(op2<1:0>)] = X[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_AP0R_EL1[UInt(op2<1:0>)] = X[t];
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_AP0R_EL1[UInt(op2<1:0>)] = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_AP0R_EL1[UInt(op2<1:0>)] = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_AP0R<n>_EL1, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3

Page 762

ICC_AP1R<n>_EL1, Interrupt Controller Active
Priorities Group 1 Registers, n = 0 - 3

The ICC_AP1R<n>_EL1 characteristics are:

Purpose
Provides information about Group 1 active priorities.

Configuration
AArch64 System register ICC_AP1R<n>_EL1 bits [31:0] (S) are architecturally mapped to AArch32 System register
ICC_AP1R<n>[31:0] (S) .

AArch64 System register ICC_AP1R<n>_EL1 bits [31:0] (NS) are architecturally mapped to AArch32 System register
ICC_AP1R<n>[31:0] (NS) .

Attributes
ICC_AP1R<n>_EL1 is a 64-bit register.

Field descriptions
The ICC_AP1R<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

IMPLEMENTATION DEFINED
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing the ICC_AP1R<n>_EL1
Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 1 active priorities) might result in UNPREDICTABLE behavior of the interrupt prioritization system, causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICC_AP1R1_EL1 is only implemented in implementations that support 6 or more bits of priority. ICC_AP1R2_EL1 and
ICC_AP1R3_EL1 are only implemented in implementations that support 7 or more bits of priority. Unimplemented
registers are UNDEFINED.

Note

ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 763

The number of bits of preemption is indicated by ICH_VTR_EL2.PREbits.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

• ICC_AP0R<n>_EL1.
• Secure ICC_AP1R<n>_EL1.
• Non-secure ICC_AP1R<n>_EL1.

Accesses to this register use the following encodings:

MRS <Xt>, ICC_AP1R<n>_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1001 0b0:n[1:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_AP1R_EL1[UInt(op2<1:0>)];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_AP1R_EL1_S[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1_NS[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1[UInt(op2<1:0>)];

elsif PSTATE.EL == EL2 then
if ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_AP1R_EL1_S[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1_NS[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1[UInt(op2<1:0>)];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
return ICC_AP1R_EL1_S[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1_NS[UInt(op2<1:0>)];

MSR ICC_AP1R<n>_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1001 0b0:n[1:0]

ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 764

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_AP1R_EL1[UInt(op2<1:0>)] = X[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_AP1R_EL1_S[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1_NS[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1[UInt(op2<1:0>)] = X[t];

elsif PSTATE.EL == EL2 then
if ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_AP1R_EL1_S[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1_NS[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1[UInt(op2<1:0>)] = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
ICC_AP1R_EL1_S[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1_NS[UInt(op2<1:0>)] = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 765

ICC_ASGI1R_EL1, Interrupt Controller Alias Software
Generated Interrupt Group 1 Register

The ICC_ASGI1R_EL1 characteristics are:

Purpose
Generates Group 1 SGIs for the Security state that is not the current Security state.

Configuration
AArch64 System register ICC_ASGI1R_EL1 performs the same function as AArch32 System register ICC_ASGI1R.

Under certain conditions a write to ICC_ASGI1R_EL1 can generate Group 0 interrupts, see Forwarding an SGI to a
target PE.

Attributes
ICC_ASGI1R_EL1 is a 64-bit register.

Field descriptions
The ICC_ASGI1R_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 Aff3 RS RES0 IRM Aff2

RES0 INTID Aff1 TargetList
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the luster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

RS, bits [47:44]

RangeSelector

Controls which group of 16 values is represented by the TargetList field.

TargetList[n] represents aff0 value ((RS * 16) + n).

When ICC_CTLR_EL1.RSS==0, RS is RES0.

When ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0, writing this register with RS != 0 is a CONSTRAINED
UNPREDICTABLE choice of :

• The write is ignored.
• The RS field is treated as 0.

ICC_ASGI1R_EL1, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 766

Bits [43:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible values are:

IRM Meaning
0b0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target

list>.
0b1 Interrupts routed to all PEs in the system, excluding "self".

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the PE within a cluster
with an Affinity 0 value equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the Distributor. It is
IMPLEMENTATION DEFINED whether, in such cases, a Distributor can signal a system error.

Note

This restricts a system to sending targeted SGIs to PEs with an affinity 0
number that is less than 16. If SRE is set only for Secure EL3, software
executing at EL3 might use the System register interface to generate SGIs.
Therefore, the Distributor must always be able to receive and acknowledge
Generate SGI packets received from CPU interface regardless of the ARE
settings for a Security state. However, the Distributor might discard such
packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_ASGI1R_EL1
This register allows software executing in a Secure state to generate Non-secure Group 1 SGIs. It will also allow
software executing in a Non-secure state to generate Secure Group 1 SGIs, if permitted by the settings of
GICR_NSACR in the Redistributor corresponding to the target PE.

ICC_ASGI1R_EL1, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 767

When GICD_CTLR.DS==0, Non-secure writes do not generate an interrupt for a target PE if not permitted by the
GICR_NSACR register associated with the target PE. For more information see Use of control registers for SGI
forwarding.

Note

Accesses at EL3 are treated as Secure regardless of the value of SCR_EL3.NS.

Accesses to this register use the following encodings:

MSR ICC_ASGI1R_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1011 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_ASGI1R_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_ASGI1R_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_ASGI1R_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_ASGI1R_EL1, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 768

ICC_BPR0_EL1, Interrupt Controller Binary Point
Register 0

The ICC_BPR0_EL1 characteristics are:

Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field.
The group priority field determines Group 0 interrupt preemption.

Configuration
AArch64 System register ICC_BPR0_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ICC_BPR0[31:0] .

Virtual accesses to this register update ICH_VMCR_EL2.VBPR0.

Attributes
ICC_BPR0_EL1 is a 64-bit register.

Field descriptions
The ICC_BPR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 BinaryPoint
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

The value of this field controls how the 8-bit interrupt priority field is split into a group priority field, that determines
interrupt preemption, and a subpriority field. This is done as follows:

Binary point
value

Group priority
field

Subpriority
field

Field with binary
point

0 [7:1] [0] ggggggg.s
1 [7:2] [1:0] gggggg.ss
2 [7:3] [2:0] ggggg.sss
3 [7:4] [3:0] gggg.ssss
4 [7:5] [4:0] ggg.sssss
5 [7:6] [5:0] gg.ssssss
6 [7] [6:0] g.sssssss
7 No preemption [7:0] .ssssssss

This field resets to an architecturally UNKNOWN value.

Accessing the ICC_BPR0_EL1
The minimum binary point value is derived from the number of implemented priority bits. The number of priority bits
is IMPLEMENTATION DEFINED, and reported by ICC_CTLR_EL1.PRIbits and ICC_CTLR_EL3.PRIbits.

ICC_BPR0_EL1, Interrupt Controller Binary Point Register 0

Page 769

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum
value. On a reset, the binary point field is UNKNOWN.

Accesses to this register use the following encodings:

MRS <Xt>, ICC_BPR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1000 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_BPR0_EL1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_BPR0_EL1;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_BPR0_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_BPR0_EL1;

MSR ICC_BPR0_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1000 0b011

ICC_BPR0_EL1, Interrupt Controller Binary Point Register 0

Page 770

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_BPR0_EL1 = X[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_BPR0_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_BPR0_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_BPR0_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_BPR0_EL1, Interrupt Controller Binary Point Register 0

Page 771

ICC_BPR1_EL1, Interrupt Controller Binary Point
Register 1

The ICC_BPR1_EL1 characteristics are:

Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field.
The group priority field determines Group 1 interrupt preemption.

Configuration
AArch64 System register ICC_BPR1_EL1 bits [31:0] (S) are architecturally mapped to AArch32 System register
ICC_BPR1[31:0] (S) .

AArch64 System register ICC_BPR1_EL1 bits [31:0] (NS) are architecturally mapped to AArch32 System register
ICC_BPR1[31:0] (NS) .

Virtual accesses to this register update ICH_VMCR_EL2.VBPR1.

Attributes
ICC_BPR1_EL1 is a 64-bit register.

Field descriptions
The ICC_BPR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 BinaryPoint
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for Group 0 and Group 1 interrupts, the value of this field
controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption,
and a subpriority field. For more information about priorities, see Priority grouping.

The minimum value of the Non-secure copy of this register is the minimum value of ICC_BPR0_EL1 + 1. The minimum
value of the Secure copy of this register is the minimum value of ICC_BPR0_EL1.

If EL3 is implemented and ICC_CTLR_EL3.CBPR_EL1S is 1:

• When SCR_EL3.EEL2 is 1 and HCR_EL2.IMO is 1, Secure accesses to this register at EL1 access the state of
ICV_BPR1_EL1.

• Otherwise, Secure accesses to this register at EL1 access the state of ICC_BPR0_EL1.

If EL3 is implemented and ICC_CTLR_EL3.CBPR_EL1NS is 1, Non-secure accesses to this register at EL1 or EL2
behave as follows, depending on the values of HCR_EL2.IMO and SCR_EL3.IRQ:

ICC_BPR1_EL1, Interrupt Controller Binary Point Register 1

Page 772

HCR_EL2.IMO SCR_EL3.IRQ Behavior
0b0 0b0 Non-secure EL1 and EL2 reads return

ICC_BPR0_EL1 + 1 saturated to
0b111. Non-secure EL1 and EL2
writes are ignored.

0b0 0b1 Non-secure EL1 and EL2 accesses
trap to EL3.

0b1 0b0 Non-secure EL1 accesses affect
virtual interrupts. Non-secure EL2
reads return ICC_BPR0_EL1 + 1
saturated to 0b111. Non-secure EL2
writes are ignored.

0b1 0b1 Non-secure EL1 accesses affect
virtual interrupts. Non-secure EL2
accesses trap to EL3.

If EL3 is not implemented and ICC_CTLR_EL1.CBPR is 1, Non-secure accesses to this register at EL1 or EL2 behave
as follows, depending on the values of HCR_EL2.IMO:

HCR_EL2.IMO Behavior
0b0 Non-secure EL1 and EL2 reads return ICC_BPR0_EL1 +

1 saturated to 0b111. Non-secure EL1 and EL2 writes
are ignored.

0b1 Non-secure EL1 accesses affect virtual interrupts. Non-
secure EL2 reads return ICC_BPR0_EL1 + 1 saturated to
0b111. Non-secure EL2 writes are ignored.

This field resets to an architecturally UNKNOWN value.

Accessing the ICC_BPR1_EL1
On a reset, the binary point field is UNKNOWN.

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum
value.

Accesses to this register use the following encodings:

MRS <Xt>, ICC_BPR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b011

ICC_BPR1_EL1, Interrupt Controller Binary Point Register 1

Page 773

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_BPR1_EL1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_BPR1_EL1_S;

else
return ICC_BPR1_EL1_NS;

else
return ICC_BPR1_EL1;

elsif PSTATE.EL == EL2 then
if ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_BPR1_EL1_S;

else
return ICC_BPR1_EL1_NS;

else
return ICC_BPR1_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
return ICC_BPR1_EL1_S;

else
return ICC_BPR1_EL1_NS;

MSR ICC_BPR1_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b011

ICC_BPR1_EL1, Interrupt Controller Binary Point Register 1

Page 774

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_BPR1_EL1 = X[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_BPR1_EL1_S = X[t];

else
ICC_BPR1_EL1_NS = X[t];

else
ICC_BPR1_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_BPR1_EL1_S = X[t];

else
ICC_BPR1_EL1_NS = X[t];

else
ICC_BPR1_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
ICC_BPR1_EL1_S = X[t];

else
ICC_BPR1_EL1_NS = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_BPR1_EL1, Interrupt Controller Binary Point Register 1

Page 775

ICC_CTLR_EL1, Interrupt Controller Control Register
(EL1)

The ICC_CTLR_EL1 characteristics are:

Purpose
Controls aspects of the behavior of the GIC CPU interface and provides information about the features implemented.

Configuration
AArch64 System register ICC_CTLR_EL1 bits [31:0] (S) are architecturally mapped to AArch32 System register
ICC_CTLR[31:0] (S) .

AArch64 System register ICC_CTLR_EL1 bits [31:0] (NS) are architecturally mapped to AArch32 System register
ICC_CTLR[31:0] (NS) .

Attributes
ICC_CTLR_EL1 is a 64-bit register.

Field descriptions
The ICC_CTLR_EL1 bit assignments are:

636261605958575655545352 51 50 49 48 47 46 454443424140 39 38 37363534 33 32
RES0

RES0 ExtRangeRSSRES0A3VSEIS IDbits PRIbitsRES0PMHE RES0 EOImodeCBPR
313029282726252423222120 19 18 17 16 15 14 13121110 9 8 7 6 5 4 3 2 1 0

Bits [63:20]

Reserved, RES0.

ExtRange, bit [19]

Extended INTID range (read-only).

ExtRange Meaning
0b0 CPU interface does not support INTIDs in the range

1024..8191.
• Behaviour is UNPREDICTABLE if the IRI delivers an

interrupt in the range 1024 to 8191 to the CPU
interface.

Note
Arm strongly recommends that the
IRI is not configured to deliver
interrupts in this range to a PE that
does not support them.

0b1 CPU interface supports INTIDs in the range 1024..8191
• All INTIDs in the range 1024..8191 are treated as

requiring deactivation.

If EL3 is implemented, ICC_CTLR_EL1.ExtRange is an alias of ICC_CTLR_EL3.ExtRange.

ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)

Page 776

RSS, bit [18]

Range Selector Support. Possible values are:

RSS Meaning
0b0 Targeted SGIs with affinity level 0 values of 0 - 15 are supported.
0b1 Targeted SGIs with affinity level 0 values of 0 - 255 are supported.

This bit is read-only.

Bits [17:16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

A3V Meaning
0b0 The CPU interface logic only supports zero values of Affinity 3 in

SGI generation System registers.
0b1 The CPU interface logic supports non-zero values of Affinity 3 in

SGI generation System registers.

If EL3 is implemented, this bit is an alias of ICC_CTLR_EL3.A3V.

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports local generation of SEIs:

SEIS Meaning
0b0 The CPU interface logic does not support local generation of

SEIs.
0b1 The CPU interface logic supports local generation of SEIs.

If EL3 is implemented, this bit is an alias of ICC_CTLR_EL3.SEIS.

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of physical interrupt identifier bits supported:

IDbits Meaning
0b000 16 bits.
0b001 24 bits.

All other values are reserved.

If EL3 is implemented, this field is an alias of ICC_CTLR_EL3.IDbits.

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.

An implementation that supports two Security states must implement at least 32 levels of physical priority (5 priority
bits).

An implementation that supports only a single Security state must implement at least 16 levels of physical priority (4
priority bits).

Note

This field always returns the number of priority bits implemented, regardless
of the Security state of the access or the value of GICD_CTLR.DS.

ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)

Page 777

For physical accesses, this field determines the minimum value of ICC_BPR0_EL1.

If EL3 is implemented, physical accesses return the value from ICC_CTLR_EL3.PRIbits.

If EL3 is not implemented, physical accesses return the value from this field.

Bit [7]

Reserved, RES0.

PMHE, bit [6]

Priority Mask Hint Enable. Controls whether the priority mask register is used as a hint for interrupt distribution:

PMHE Meaning
0b0 Disables use of ICC_PMR_EL1 as a hint for interrupt

distribution.
0b1 Enables use of ICC_PMR_EL1 as a hint for interrupt

distribution.

If EL3 is implemented, this bit is an alias of ICC_CTLR_EL3.PMHE. Whether this bit can be written as part of an
access to this register depends on the value of GICD_CTLR.DS:

• If GICD_CTLR.DS == 0, this bit is read-only.
• If GICD_CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or read-write:

• If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.
• If this bit is read/write, it resets to zero.

Bits [5:2]

Reserved, RES0.

EOImode, bit [1]

EOI mode for the current Security state. Controls whether a write to an End of Interrupt register also deactivates the
interrupt:

EOImode Meaning
0b0 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide both priority

drop and interrupt deactivation functionality. Accesses to
ICC_DIR_EL1 are UNPREDICTABLE.

0b1 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide priority drop
functionality only. ICC_DIR_EL1 provides interrupt
deactivation functionality.

The Secure ICC_CTLR_EL1.EOImode is an alias of ICC_CTLR_EL3.EOImode_EL1S.

The Non-secure ICC_CTLR_EL1.EOImode is an alias of ICC_CTLR_EL3.EOImode_EL1NS

CBPR, bit [0]

Common Binary Point Register. Controls whether the same register is used for interrupt preemption of both Group 0
and Group 1 interrupts:

CBPR Meaning
0b0 ICC_BPR0_EL1 determines the preemption group for Group 0

interrupts only.
ICC_BPR1_EL1 determines the preemption group for Group 1
interrupts.

0b1 ICC_BPR0_EL1 determines the preemption group for both
Group 0 and Group 1 interrupts.

ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)

Page 778

If EL3 is implemented:

• This bit is an alias of ICC_CTLR_EL3.CBPR_EL1{S,NS} where S or NS corresponds to the current Security
state.

• If GICD_CTLR.DS == 0, this bit is read-only.
• If GICD_CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, this bit is read/write.

This field resets to an architecturally UNKNOWN value.

Accessing the ICC_CTLR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ICC_CTLR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_CTLR_EL1;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_CTLR_EL1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_CTLR_EL1_S;

else
return ICC_CTLR_EL1_NS;

else
return ICC_CTLR_EL1;

elsif PSTATE.EL == EL2 then
if ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_CTLR_EL1_S;

else
return ICC_CTLR_EL1_NS;

else
return ICC_CTLR_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
return ICC_CTLR_EL1_S;

else
return ICC_CTLR_EL1_NS;

MSR ICC_CTLR_EL1, <Xt>

op0 op1 CRn CRm op2

ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)

Page 779

0b11 0b000 0b1100 0b1100 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_CTLR_EL1 = X[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_CTLR_EL1 = X[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_CTLR_EL1_S = X[t];

else
ICC_CTLR_EL1_NS = X[t];

else
ICC_CTLR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_CTLR_EL1_S = X[t];

else
ICC_CTLR_EL1_NS = X[t];

else
ICC_CTLR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
ICC_CTLR_EL1_S = X[t];

else
ICC_CTLR_EL1_NS = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)

Page 780

ICC_CTLR_EL3, Interrupt Controller Control Register
(EL3)

The ICC_CTLR_EL3 characteristics are:

Purpose
Controls aspects of the behavior of the GIC CPU interface and provides information about the features implemented.

Configuration
AArch64 System register ICC_CTLR_EL3 bits [31:0] can be mapped to AArch32 System register ICC_MCTLR[31:0] ,
but this is not architecturally mandated.

This register is present only when EL3 is implemented. Otherwise, direct accesses to ICC_CTLR_EL3 are UNDEFINED.

Attributes
ICC_CTLR_EL3 is a 64-bit register.

Field descriptions
The ICC_CTLR_EL3 bit assignments are:

636261605958575655545352 51 50 49 48 47 46 454443424140 39 38 37 36 35 34 33 32
RES0

RES0 ExtRangeRSSnDSRES0A3VSEIS IDbits PRIbitsRES0PMHERMEOImode_EL1NSEOImode_EL1SEOImode_EL3CBPR_EL1NSCBPR_EL1S
313029282726252423222120 19 18 17 16 15 14 13121110 9 8 7 6 5 4 3 2 1 0

Bits [63:20]

Reserved, RES0.

ExtRange, bit [19]

Extended INTID range (read-only).

ExtRange Meaning
0b0 CPU interface does not support INTIDs in the range

1024..8191.
• Behaviour is UNPREDICTABLE if the IRI delivers an

interrupt in the range 1024 to 8191 to the CPU
interface.

Note
Arm strongly recommends that the
IRI is not configured to deliver
interrupts in this range to a PE that
does not support them.

0b1 CPU interface supports INTIDs in the range 1024..8191
• All INTIDs in the range 1024..8191 are treated as

requiring deactivation.

RSS, bit [18]

Range Selector Support.

ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

Page 781

RSS Meaning
0b0 Targeted SGIs with affinity level 0 values of 0-15 are supported.
0b1 Targeted SGIs with affinity level 0 values of 0-255 are supported.

This bit is read-only.

nDS, bit [17]

Disable Security not supported. Read-only and writes are ignored.

nDS Meaning
0b0 The CPU interface logic supports disabling of security.
0b1 The CPU interface logic does not support disabling of security,

and requires that security is not disabled.

Bit [16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored.

A3V Meaning
0b0 The CPU interface logic does not support non-zero values of the

Aff3 field in SGI generation System registers.
0b1 The CPU interface logic supports non-zero values of the Aff3 field

in SGI generation System registers.

If EL3 is present, ICC_CTLR_EL1.A3V is an alias of ICC_CTLR_EL3.A3V

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports generation of SEIs:

SEIS Meaning
0b0 The CPU interface logic does not support generation of SEIs.
0b1 The CPU interface logic supports generation of SEIs.

If EL3 is present, ICC_CTLR_EL1.SEIS is an alias of ICC_CTLR_EL3.SEIS

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. Indicates the number of physical interrupt identifier bits supported.

IDbits Meaning
0b000 16 bits.
0b001 24 bits.

All other values are reserved.

If EL3 is present, ICC_CTLR_EL1.IDbits is an alias of ICC_CTLR_EL3.IDbits

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.

An implementation that supports two Security states must implement at least 32 levels of physical priority (5 priority
bits).

An implementation that supports only a single Security state must implement at least 16 levels of physical priority (4
priority bits).

ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

Page 782

Note

This field always returns the number of priority bits implemented, regardless
of the value of SCR_EL3.NS or the value of GICD_CTLR.DS.

The division between group priority and subpriority is defined in the binary point registers ICC_BPR0_EL1 and
ICC_BPR1_EL1.

This field determines the minimum value of ICC_BPR0_EL1.

Bit [7]

Reserved, RES0.

PMHE, bit [6]

Priority Mask Hint Enable.

PMHE Meaning
0b0 Disables use of the priority mask register as a hint for interrupt

distribution.
0b1 Enables use of the priority mask register as a hint for interrupt

distribution.

Software must write ICC_PMR_EL1 to 0xFF before clearing this field to 0.

• An implementation might choose to make this field RAO/WI if priority-based routing is always used
• An implementation might choose to make this field RAZ/WI if priority-based routing is never used

If EL3 is present, ICC_CTLR_EL1.PMHE is an alias of ICC_CTLR_EL3.PMHE.

This field resets to 0.

RM, bit [5]

Routing Modifier. For legacy operation of EL1 software with GICC_CTLR.FIQEn set to 1, this bit indicates whether
interrupts can be acknowledged or observed as the Highest Priority Pending Interrupt, or whether a special INTID
value is returned.

Possible values of this bit are:

RM Meaning
0b0 Secure Group 0 and Non-secure Group 1 interrupts can be

acknowledged and observed as the highest priority interrupt at the
Secure Exception level where the interrupt is taken.

0b1 When accessed at EL3 in AArch64 state:
• Secure Group 0 interrupts return a special INTID value of

1020. This affects accesses to ICC_IAR0_EL1 and
ICC_HPPIR0_EL1.

• Non-secure Group 1 interrupts return a special INTID value
of 1021. This affects accesses to ICC_IAR1_EL1 and
ICC_HPPIR1_EL1.

Note

The Routing Modifier bit is supported in AArch64 only. In systems without EL3
the behavior is as if the value is 0. Software must ensure this bit is 0 when the
Secure copy of ICC_SRE_EL1.SRE is 1, otherwise system behavior is
UNPREDICTABLE. In systems without EL3 or where the Secure copy of
ICC_SRE_EL1.SRE is RAO/WI, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

Page 783

EOImode_EL1NS, bit [4]

EOI mode for interrupts handled at Non-secure EL1 and EL2. Controls whether a write to an End of Interrupt register
also deactivates the interrupt.

EOImode_EL1NS Meaning
0b0 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide both

priority drop and interrupt deactivation
functionality. Accesses to ICC_DIR_EL1 are
UNPREDICTABLE.

0b1 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide
priority drop functionality only. ICC_DIR_EL1
provides interrupt deactivation functionality.

If EL3 is present, ICC_CTLR_EL1(NS).EOImode is an alias of ICC_CTLR_EL3.EOImode_EL1NS.

This field resets to an architecturally UNKNOWN value.

EOImode_EL1S, bit [3]

EOI mode for interrupts handled at Secure EL1. Controls whether a write to an End of Interrupt register also
deactivates the interrupt.

EOImode_EL1S Meaning
0b0 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide both

priority drop and interrupt deactivation functionality.
Accesses to ICC_DIR_EL1 are UNPREDICTABLE.

0b1 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide priority
drop functionality only. ICC_DIR_EL1 provides
interrupt deactivation functionality.

If EL3 is present, ICC_CTLR_EL1(S).EOImode is an alias of ICC_CTLR_EL3.EOImode_EL1S.

This field resets to an architecturally UNKNOWN value.

EOImode_EL3, bit [2]

EOI mode for interrupts handled at EL3. Controls whether a write to an End of Interrupt register also deactivates the
interrupt.

EOImode_EL3 Meaning
0b0 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide both

priority drop and interrupt deactivation functionality.
Accesses to ICC_DIR_EL1 are UNPREDICTABLE.

0b1 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide priority
drop functionality only. ICC_DIR_EL1 provides
interrupt deactivation functionality.

This field resets to an architecturally UNKNOWN value.

CBPR_EL1NS, bit [1]

Common Binary Point Register, EL1 Non-secure. Controls whether the same register is used for interrupt preemption
of both Group 0 and Group 1 Non-secure interrupts at EL1 and EL2.

CBPR_EL1NS Meaning
0b0 ICC_BPR0_EL1 determines the preemption group for

Group 0 interrupts only.
ICC_BPR1_EL1 determines the preemption group for
Non-secure Group 1 interrupts.

0b1 ICC_BPR0_EL1 determines the preemption group for
Group 0 interrupts and Non-secure Group 1 interrupts.
Non-secure accesses to GICC_BPR and ICC_BPR1_EL1
access the state of ICC_BPR0_EL1.

If EL3 is present, ICC_CTLR_EL1(NS).CBPR is an alias of ICC_CTLR_EL3.CBPR_EL1NS.

ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

Page 784

This field resets to an architecturally UNKNOWN value.

CBPR_EL1S, bit [0]

Common Binary Point Register, EL1 Secure. Controls whether the same register is used for interrupt preemption of
both Group 0 and Group 1 Secure interrupts at EL1.

CBPR_EL1S Meaning
0b0 ICC_BPR0_EL1 determines the preemption group for

Group 0 interrupts only.
ICC_BPR1_EL1 determines the preemption group for
Secure Group 1 interrupts.

0b1 ICC_BPR0_EL1 determines the preemption group for
Group 0 interrupts and Secure Group 1 interrupts.
Secure EL1 accesses to ICC_BPR1_EL1 access the state
of ICC_BPR0_EL1.

If EL3 is present, ICC_CTLR_EL1(S).CBPR is an alias of ICC_CTLR_EL3.CBPR_EL1S.

This field resets to an architecturally UNKNOWN value.

Accessing the ICC_CTLR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, ICC_CTLR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b1100 0b1100 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_CTLR_EL3;

MSR ICC_CTLR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b1100 0b1100 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_CTLR_EL3 = X[t];

ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

Page 785

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

Page 786

ICC_DIR_EL1, Interrupt Controller Deactivate Interrupt
Register

The ICC_DIR_EL1 characteristics are:

Purpose
When interrupt priority drop is separated from interrupt deactivation, a write to this register deactivates the specified
interrupt.

Configuration
AArch64 System register ICC_DIR_EL1 performs the same function as AArch32 System register ICC_DIR.

Attributes
ICC_DIR_EL1 is a 64-bit register.

Field descriptions
The ICC_DIR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 INTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the interrupt to be deactivated.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16] of this register are
RES0.

Accessing the ICC_DIR_EL1
There are two cases when writing to ICC_DIR_EL1 that were UNPREDICTABLE for a corresponding GICv2 write to
GICC_DIR:

• When EOImode == 0. GICv3 implementations must ignore such writes. In systems supporting system error
generation, an implementation might generate an SEI.

• When EOImode == 1 but no EOI has been issued. The interrupt will be de-activated by the Distributor,
however the active priority in the CPU interface for the interrupt will remain set (because no EOI was issued).

Accesses to this register use the following encodings:

MSR ICC_DIR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1011 0b001

ICC_DIR_EL1, Interrupt Controller Deactivate Interrupt Register

Page 787

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TDIR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_DIR_EL1 = X[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_DIR_EL1 = X[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_DIR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_DIR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_DIR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_DIR_EL1, Interrupt Controller Deactivate Interrupt Register

Page 788

ICC_EOIR0_EL1, Interrupt Controller End Of Interrupt
Register 0

The ICC_EOIR0_EL1 characteristics are:

Purpose
A PE writes to this register to inform the CPU interface that it has completed the processing of the specified Group 0
interrupt.

Configuration
AArch64 System register ICC_EOIR0_EL1 performs the same function as AArch32 System register ICC_EOIR0.

Attributes
ICC_EOIR0_EL1 is a 64-bit register.

Field descriptions
The ICC_EOIR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 INTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICC_IAR0_EL1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16] of this register are
RES0.

If the EOImode bit for the current Exception level and Security state is 0, a write to this register drops the priority for
the interrupt, and also deactivates the interrupt.

If the EOImode bit for the current Exception level and Security state is 1, a write to this register only drops the
priority for the interrupt. Software must write to ICC_DIR_EL1 to deactivate the interrupt.

The EOImode bit for the current Exception level and Security state is determined as follows:

• If EL3 is not implemented, the appropriate bit is ICC_CTLR_EL1.EOIMode.
• If EL3 is implemented and the software is executing at EL3, the appropriate bit is

ICC_CTLR_EL3.EOImode_EL3.
• If EL3 is implemented and the software is not executing at EL3, the bit depends on the current Security state:

◦ If the software is executing in Secure state, the bit is ICC_CTLR_EL3.EOImode_EL1S.
◦ If the software is executing in Non-secure state, the bit is ICC_CTLR_EL3.EOImode_EL1NS.

ICC_EOIR0_EL1, Interrupt Controller End Of Interrupt Register 0

Page 789

Accessing the ICC_EOIR0_EL1
A write to this register must correspond to the most recent valid read by this PE from an Interrupt Acknowledge
Register, and must correspond to the INTID that was read from ICC_IAR0_EL1, otherwise the system behavior is
UNPREDICTABLE. A valid read is a read that returns a valid INTID that is not a special INTID.

A write of a Special INTID is ignored. See Special INTIDs, for more information.

Accesses to this register use the following encodings:

MSR ICC_EOIR0_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_EOIR0_EL1 = X[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_EOIR0_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_EOIR0_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_EOIR0_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_EOIR0_EL1, Interrupt Controller End Of Interrupt Register 0

Page 790

ICC_EOIR1_EL1, Interrupt Controller End Of Interrupt
Register 1

The ICC_EOIR1_EL1 characteristics are:

Purpose
A PE writes to this register to inform the CPU interface that it has completed the processing of the specified Group 1
interrupt.

Configuration
AArch64 System register ICC_EOIR1_EL1 performs the same function as AArch32 System register ICC_EOIR1.

Attributes
ICC_EOIR1_EL1 is a 64-bit register.

Field descriptions
The ICC_EOIR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 INTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICC_IAR1_EL1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16] of this register are
RES0.

If the EOImode bit for the current Exception level and Security state is 0, a write to this register drops the priority for
the interrupt, and also deactivates the interrupt.

If the EOImode bit for the current Exception level and Security state is 1, a write to this register only drops the
priority for the interrupt. Software must write to ICC_DIR_EL1 to deactivate the interrupt.

The EOImode bit for the current Exception level and Security state is determined as follows:

• If EL3 is not implemented, the appropriate bit is ICC_CTLR_EL1.EOIMode.
• If EL3 is implemented and the software is executing at EL3, the appropriate bit is

ICC_CTLR_EL3.EOImode_EL3.
• If EL3 is implemented and the software is not executing at EL3, the bit depends on the current Security state:

◦ If the software is executing in Secure state, the bit is ICC_CTLR_EL3.EOImode_EL1S.
◦ If the software is executing in Non-secure state, the bit is ICC_CTLR_EL3.EOImode_EL1NS.

ICC_EOIR1_EL1, Interrupt Controller End Of Interrupt Register 1

Page 791

Accessing the ICC_EOIR1_EL1
A write to this register must correspond to the most recent valid read by this PE from an Interrupt Acknowledge
Register, and must correspond to the INTID that was read from ICC_IAR1_EL1, otherwise the system behavior is
UNPREDICTABLE. A valid read is a read that returns a valid INTID that is not a special INTID.

A write of a Special INTID is ignored. See Special INTIDs, for more information.

Accesses to this register use the following encodings:

MSR ICC_EOIR1_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_EOIR1_EL1 = X[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_EOIR1_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_EOIR1_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_EOIR1_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_EOIR1_EL1, Interrupt Controller End Of Interrupt Register 1

Page 792

ICC_HPPIR0_EL1, Interrupt Controller Highest Priority
Pending Interrupt Register 0

The ICC_HPPIR0_EL1 characteristics are:

Purpose
Indicates the highest priority pending Group 0 interrupt on the CPU interface.

Configuration
AArch64 System register ICC_HPPIR0_EL1 performs the same function as AArch32 System register ICC_HPPIR0.

Attributes
ICC_HPPIR0_EL1 is a 64-bit register.

Field descriptions
The ICC_HPPIR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 INTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending interrupt, if that interrupt is observable at the current Security state and
Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason.
These special INTIDs can be one of: 1020, 1021, or 1023. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16] of this register are
RES0.

Accessing the ICC_HPPIR0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ICC_HPPIR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1000 0b010

ICC_HPPIR0_EL1, Interrupt Controller Highest Priority Pending Interrupt Register 0

Page 793

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_HPPIR0_EL1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_HPPIR0_EL1;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_HPPIR0_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_HPPIR0_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_HPPIR0_EL1, Interrupt Controller Highest Priority Pending Interrupt Register 0

Page 794

ICC_HPPIR1_EL1, Interrupt Controller Highest Priority
Pending Interrupt Register 1

The ICC_HPPIR1_EL1 characteristics are:

Purpose
Indicates the highest priority pending Group 1 interrupt on the CPU interface.

Configuration
AArch64 System register ICC_HPPIR1_EL1 performs the same function as AArch32 System register ICC_HPPIR1.

Attributes
ICC_HPPIR1_EL1 is a 64-bit register.

Field descriptions
The ICC_HPPIR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 INTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending interrupt, if that interrupt is observable at the current Security state and
Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason.
These special INTIDs can be one of: 1020, 1021, or 1023. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16] of this register are
RES0.

Accessing the ICC_HPPIR1_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ICC_HPPIR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b010

ICC_HPPIR1_EL1, Interrupt Controller Highest Priority Pending Interrupt Register 1

Page 795

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_HPPIR1_EL1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_HPPIR1_EL1;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_HPPIR1_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_HPPIR1_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_HPPIR1_EL1, Interrupt Controller Highest Priority Pending Interrupt Register 1

Page 796

ICC_IAR0_EL1, Interrupt Controller Interrupt
Acknowledge Register 0

The ICC_IAR0_EL1 characteristics are:

Purpose
The PE reads this register to obtain the INTID of the signaled Group 0 interrupt. This read acts as an acknowledge for
the interrupt.

Configuration
AArch64 System register ICC_IAR0_EL1 performs the same function as AArch32 System register ICC_IAR0.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU
interface logic must ensure that reads of this register are self-synchronising when interrupts are masked by the PE
(that is when PSTATE.{I,F} == {0,0}). This ensures that the effect of activating an interrupt on the signaling of
interrupt exceptions is observed when a read of this register is architecturally executed so that no spurious interrupt
exception occurs if interrupts are unmasked by an instruction immediately following the read. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes
ICC_IAR0_EL1 is a 64-bit register.

Field descriptions
The ICC_IAR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 INTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

This is the INTID of the highest priority pending interrupt, if that interrupt is of sufficient priority for it to be signaled
to the PE, and if it can be acknowledged at the current Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason.
These special INTIDs can be one of: 1020, 1021, or 1023. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16] of this register are
RES0.

Accessing the ICC_IAR0_EL1
Accesses to this register use the following encodings:

ICC_IAR0_EL1, Interrupt Controller Interrupt Acknowledge Register 0

Page 797

MRS <Xt>, ICC_IAR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_IAR0_EL1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_IAR0_EL1;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_IAR0_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_IAR0_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_IAR0_EL1, Interrupt Controller Interrupt Acknowledge Register 0

Page 798

ICC_IAR1_EL1, Interrupt Controller Interrupt
Acknowledge Register 1

The ICC_IAR1_EL1 characteristics are:

Purpose
The PE reads this register to obtain the INTID of the signaled Group 1 interrupt. This read acts as an acknowledge for
the interrupt.

Configuration
AArch64 System register ICC_IAR1_EL1 performs the same function as AArch32 System register ICC_IAR1.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU
interface logic must ensure that reads of this register are self-synchronising when interrupts are masked by the PE
(that is when PSTATE.{I,F} == {0,0}). This ensures that the effect of activating an interrupt on the signaling of
interrupt exceptions is observed when a read of this register is architecturally executed so that no spurious interrupt
exception occurs if interrupts are unmasked by an instruction immediately following the read. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes
ICC_IAR1_EL1 is a 64-bit register.

Field descriptions
The ICC_IAR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 INTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

This is the INTID of the highest priority pending interrupt, if that interrupt is of sufficient priority for it to be signaled
to the PE, and if it can be acknowledged at the current Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason.
These special INTIDs can be one of: 1020, 1021, or 1023. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16] of this register are
RES0.

Accessing the ICC_IAR1_EL1
Accesses to this register use the following encodings:

ICC_IAR1_EL1, Interrupt Controller Interrupt Acknowledge Register 1

Page 799

MRS <Xt>, ICC_IAR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_IAR1_EL1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_IAR1_EL1;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_IAR1_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_IAR1_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_IAR1_EL1, Interrupt Controller Interrupt Acknowledge Register 1

Page 800

ICC_IGRPEN0_EL1, Interrupt Controller Interrupt
Group 0 Enable register

The ICC_IGRPEN0_EL1 characteristics are:

Purpose
Controls whether Group 0 interrupts are enabled or not.

Configuration
AArch64 System register ICC_IGRPEN0_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ICC_IGRPEN0[31:0] .

Attributes
ICC_IGRPEN0_EL1 is a 64-bit register.

Field descriptions
The ICC_IGRPEN0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 Enable
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:1]

Reserved, RES0.

Enable, bit [0]

Enables Group 0 interrupts.

Enable Meaning
0b0 Group 0 interrupts are disabled.
0b1 Group 0 interrupts are enabled.

Virtual accesses to this register update ICH_VMCR_EL2.VENG0.

If the highest priority pending interrupt for that PE is a Group 0 interrupt using 1 of N model, then the interrupt will
be targeted to another PE as a result of the Enable bit changing from 1 to 0.

This field resets to 0.

Accessing the ICC_IGRPEN0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ICC_IGRPEN0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b110

ICC_IGRPEN0_EL1, Interrupt Controller Interrupt Group 0 Enable register

Page 801

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ICC_IGRPENn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then
return ICV_IGRPEN0_EL1;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_IGRPEN0_EL1;

elsif PSTATE.EL == EL2 then
if ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_IGRPEN0_EL1;
elsif PSTATE.EL == EL3 then

if ICC_SRE_EL3.SRE == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_IGRPEN0_EL1;

MSR ICC_IGRPEN0_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.ICC_IGRPENn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then
ICV_IGRPEN0_EL1 = X[t];

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_IGRPEN0_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_IGRPEN0_EL1 = X[t];
elsif PSTATE.EL == EL3 then

if ICC_SRE_EL3.SRE == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_IGRPEN0_EL1 = X[t];

ICC_IGRPEN0_EL1, Interrupt Controller Interrupt Group 0 Enable register

Page 802

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_IGRPEN0_EL1, Interrupt Controller Interrupt Group 0 Enable register

Page 803

ICC_IGRPEN1_EL1, Interrupt Controller Interrupt
Group 1 Enable register

The ICC_IGRPEN1_EL1 characteristics are:

Purpose
Controls whether Group 1 interrupts are enabled for the current Security state.

Configuration
AArch64 System register ICC_IGRPEN1_EL1 bits [31:0] (S) are architecturally mapped to AArch32 System register
ICC_IGRPEN1[31:0] (S) .

AArch64 System register ICC_IGRPEN1_EL1 bits [31:0] (NS) are architecturally mapped to AArch32 System register
ICC_IGRPEN1[31:0] (NS) .

Attributes
ICC_IGRPEN1_EL1 is a 64-bit register.

Field descriptions
The ICC_IGRPEN1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 Enable
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:1]

Reserved, RES0.

Enable, bit [0]

Enables Group 1 interrupts for the current Security state.

Enable Meaning
0b0 Group 1 interrupts are disabled for the current Security state.
0b1 Group 1 interrupts are enabled for the current Security state.

Virtual accesses to this register update ICH_VMCR_EL2.VENG1.

If EL3 is present:

• The Secure ICC_IGRPEN1_EL1.Enable bit is a read/write alias of the ICC_IGRPEN1_EL3.EnableGrp1S bit.
• The Non-secure ICC_IGRPEN1_EL1.Enable bit is a read/write alias of the ICC_IGRPEN1_EL3.EnableGrp1NS

bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N model, then the interrupt will
target another PE as a result of the Enable bit changing from 1 to 0.

This field resets to 0.

ICC_IGRPEN1_EL1, Interrupt Controller Interrupt Group 1 Enable register

Page 804

Accessing the ICC_IGRPEN1_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ICC_IGRPEN1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ICC_IGRPENn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then
return ICV_IGRPEN1_EL1;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) then
if SCR_EL3.NS == '0' then

return ICC_IGRPEN1_EL1_S;
else

return ICC_IGRPEN1_EL1_NS;
else

return ICC_IGRPEN1_EL1;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) then
if SCR_EL3.NS == '0' then

return ICC_IGRPEN1_EL1_S;
else

return ICC_IGRPEN1_EL1_NS;
else

return ICC_IGRPEN1_EL1;
elsif PSTATE.EL == EL3 then

if ICC_SRE_EL3.SRE == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
if SCR_EL3.NS == '0' then

return ICC_IGRPEN1_EL1_S;
else

return ICC_IGRPEN1_EL1_NS;

MSR ICC_IGRPEN1_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b111

ICC_IGRPEN1_EL1, Interrupt Controller Interrupt Group 1 Enable register

Page 805

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.ICC_IGRPENn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then
ICV_IGRPEN1_EL1 = X[t];

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) then
if SCR_EL3.NS == '0' then

ICC_IGRPEN1_EL1_S = X[t];
else

ICC_IGRPEN1_EL1_NS = X[t];
else

ICC_IGRPEN1_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) then
if SCR_EL3.NS == '0' then

ICC_IGRPEN1_EL1_S = X[t];
else

ICC_IGRPEN1_EL1_NS = X[t];
else

ICC_IGRPEN1_EL1 = X[t];
elsif PSTATE.EL == EL3 then

if ICC_SRE_EL3.SRE == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
if SCR_EL3.NS == '0' then

ICC_IGRPEN1_EL1_S = X[t];
else

ICC_IGRPEN1_EL1_NS = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_IGRPEN1_EL1, Interrupt Controller Interrupt Group 1 Enable register

Page 806

ICC_IGRPEN1_EL3, Interrupt Controller Interrupt
Group 1 Enable register (EL3)

The ICC_IGRPEN1_EL3 characteristics are:

Purpose
Controls whether Group 1 interrupts are enabled or not.

Configuration
AArch64 System register ICC_IGRPEN1_EL3 bits [31:0] can be mapped to AArch32 System register
ICC_MGRPEN1[31:0] , but this is not architecturally mandated.

This register is present only when EL3 is implemented. Otherwise, direct accesses to ICC_IGRPEN1_EL3 are
UNDEFINED.

Attributes
ICC_IGRPEN1_EL3 is a 64-bit register.

Field descriptions
The ICC_IGRPEN1_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 EnableGrp1SEnableGrp1NS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

EnableGrp1S, bit [1]

Enables Group 1 interrupts for the Secure state.

EnableGrp1S Meaning
0b0 Secure Group 1 interrupts are disabled.
0b1 Secure Group 1 interrupts are enabled.

The Secure ICC_IGRPEN1_EL1.Enable bit is a read/write alias of the ICC_IGRPEN1_EL3.EnableGrp1S bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N model, then the interrupt will
target another PE as a result of the Enable bit changing from 1 to 0.

This field resets to 0.

EnableGrp1NS, bit [0]

Enables Group 1 interrupts for the Non-secure state.

EnableGrp1NS Meaning
0b0 Non-secure Group 1 interrupts are disabled.
0b1 Non-secure Group 1 interrupts are enabled.

ICC_IGRPEN1_EL3, Interrupt Controller Interrupt Group 1 Enable register (EL3)

Page 807

The Non-secure ICC_IGRPEN1_EL1.Enable bit is a read/write alias of the ICC_IGRPEN1_EL3.EnableGrp1NS bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N model, then the interrupt will
target another PE as a result of the Enable bit changing from 1 to 0.

This field resets to 0.

Accessing the ICC_IGRPEN1_EL3
Accesses to this register use the following encodings:

MRS <Xt>, ICC_IGRPEN1_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b1100 0b1100 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_IGRPEN1_EL3;

MSR ICC_IGRPEN1_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b1100 0b1100 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_IGRPEN1_EL3 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_IGRPEN1_EL3, Interrupt Controller Interrupt Group 1 Enable register (EL3)

Page 808

ICC_PMR_EL1, Interrupt Controller Interrupt Priority
Mask Register

The ICC_PMR_EL1 characteristics are:

Purpose
Provides an interrupt priority filter. Only interrupts with a higher priority than the value in this register are signaled to
the PE.

Writes to this register must be high performance and must ensure that no interrupt of lower priority than the written
value occurs after the write, without requiring an ISB or an exception boundary.

Configuration
AArch64 System register ICC_PMR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ICC_PMR[31:0] .

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU
interface logic must ensure that writes to this register are self-synchronising. This ensures that no interrupts below
the written PMR value will be taken after a write to this register is architecturally executed. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes
ICC_PMR_EL1 is a 64-bit register.

Field descriptions
The ICC_PMR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 Priority
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:8]

Reserved, RES0.

Priority, bits [7:0]

The priority mask level for the CPU interface. If the priority of an interrupt is higher than the value indicated by this
field, the interface signals the interrupt to the PE.

The possible priority field values are as follows:

ICC_PMR_EL1, Interrupt Controller Interrupt Priority Mask Register

Page 809

Implemented
priority bits

Possible priority field
values

Number of
priority levels

[7:0] 0x00-0xFF (0-255), all
values

256

[7:1] 0x00-0xFE (0-254), even
values only

128

[7:2] 0x00-0xFC (0-252), in steps
of 4

64

[7:3] 0x00-0xF8 (0-248), in steps
of 8

32

[7:4] 0x00-0xF0 (0-240), in steps
of 16

16

Unimplemented priority bits are RAZ/WI.

This field resets to 0.

Accessing the ICC_PMR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ICC_PMR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_PMR_EL1;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_PMR_EL1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_PMR_EL1;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_PMR_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_PMR_EL1;

MSR ICC_PMR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0110 0b000

ICC_PMR_EL1, Interrupt Controller Interrupt Priority Mask Register

Page 810

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_PMR_EL1 = X[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_PMR_EL1 = X[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_PMR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_PMR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_PMR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_PMR_EL1, Interrupt Controller Interrupt Priority Mask Register

Page 811

ICC_RPR_EL1, Interrupt Controller Running Priority
Register

The ICC_RPR_EL1 characteristics are:

Purpose
Indicates the Running priority of the CPU interface.

Configuration
AArch64 System register ICC_RPR_EL1 performs the same function as AArch32 System register ICC_RPR.

Attributes
ICC_RPR_EL1 is a 64-bit register.

Field descriptions
The ICC_RPR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 Priority
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the CPU interface. This is the group priority of the current active interrupt.

If there are no active interrupts on the CPU interface, or all active interrupts have undergone a priority drop, the value
returned is the Idle priority.

The priority returned is the group priority as if the BPR for the current Exception level and Security state was set to
the minimum value of BPR for the number of implemented priority bits.

Note

If 8 bits of priority are implemented the group priority is bits[7:1] of the
priority.

Accessing the ICC_RPR_EL1
Software cannot determine the number of implemented priority bits from a read of this register.

Accesses to this register use the following encodings:

MRS <Xt>, ICC_RPR_EL1

op0 op1 CRn CRm op2

ICC_RPR_EL1, Interrupt Controller Running Priority Register

Page 812

0b11 0b000 0b1100 0b1011 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_RPR_EL1;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_RPR_EL1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_RPR_EL1;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_RPR_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_RPR_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_RPR_EL1, Interrupt Controller Running Priority Register

Page 813

ICC_SGI0R_EL1, Interrupt Controller Software
Generated Interrupt Group 0 Register

The ICC_SGI0R_EL1 characteristics are:

Purpose
Generates Secure Group 0 SGIs.

Configuration
AArch64 System register ICC_SGI0R_EL1 performs the same function as AArch32 System register ICC_SGI0R.

Attributes
ICC_SGI0R_EL1 is a 64-bit register.

Field descriptions
The ICC_SGI0R_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 Aff3 RS RES0 IRM Aff2

RES0 INTID Aff1 TargetList
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

RS, bits [47:44]

RangeSelector

Controls which group of 16 values is represented by the TargetList field.

TargetList[n] represents aff0 value ((RS * 16) + n).

When ICC_CTLR_EL1.RSS==0, RS is RES0.

When ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0, writing this register with RS != 0 is a CONSTRAINED
UNPREDICTABLE choice of :

• The write is ignored.
• The RS field is treated as 0.

Bits [43:41]

Reserved, RES0.

ICC_SGI0R_EL1, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 814

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible values are:

IRM Meaning
0b0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target

list>.
0b1 Interrupts routed to all PEs in the system, excluding "self".

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the PE within a cluster
with an Affinity 0 value equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the Distributor. It is
IMPLEMENTATION DEFINED whether, in such cases, a Distributor can signal a system error.

Note

This restricts a system to sending targeted SGIs to PEs with an affinity 0
number that is less than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the
System register interface to generate SGIs. Therefore, the Distributor must
always be able to receive and acknowledge Generate SGI packets received
from CPU interface regardless of the ARE settings for a Security state.
However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_SGI0R_EL1
This register allows software executing in a Secure state to generate Group 0 SGIs. It will also allow software
executing in a Non-secure state to generate Group 0 SGIs, if permitted by the settings of GICR_NSACR in the
Redistributor corresponding to the target PE.

When GICD_CTLR.DS==0, Non-secure writes do not generate an interrupt for a target PE if not permitted by the
GICR_NSACR register associated with the target PE. For more information see Use of control registers for SGI
forwarding.

Note

ICC_SGI0R_EL1, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 815

Accesses at EL3 are treated as Secure regardless of the value of SCR_EL3.NS.

Accesses to this register use the following encodings:

MSR ICC_SGI0R_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1011 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_SGI0R_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_SGI0R_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_SGI0R_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_SGI0R_EL1, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 816

ICC_SGI1R_EL1, Interrupt Controller Software
Generated Interrupt Group 1 Register

The ICC_SGI1R_EL1 characteristics are:

Purpose
Generates Group 1 SGIs for the current Security state.

Configuration
AArch64 System register ICC_SGI1R_EL1 performs the same function as AArch32 System register ICC_SGI1R.

Under certain conditions a write to ICC_SGI1R_EL1 can generate Group 0 interrupts, see Forwarding an SGI to a
target PE.

Attributes
ICC_SGI1R_EL1 is a 64-bit register.

Field descriptions
The ICC_SGI1R_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 Aff3 RS RES0 IRM Aff2

RES0 INTID Aff1 TargetList
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

RS, bits [47:44]

RangeSelector

Controls which group of 16 values is represented by the TargetList field.

TargetList[n] represents aff0 value ((RS * 16) + n).

When ICC_CTLR_EL1.RSS==0, RS is RES0.

When ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0, writing this register with RS != 0 is a CONSTRAINED
UNPREDICTABLE choice of :

• The write is ignored.
• The RS field is treated as 0.

ICC_SGI1R_EL1, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 817

Bits [43:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible values are:

IRM Meaning
0b0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target

list>.
0b1 Interrupts routed to all PEs in the system, excluding "self".

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the PE within a cluster
with an Affinity 0 value equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the Distributor. It is
IMPLEMENTATION DEFINED whether, in such cases, a Distributor can signal a system error.

Note

This restricts a system to sending targeted SGIs to PEs with an affinity 0
number that is less than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the
System register interface to generate SGIs. Therefore, the Distributor must
always be able to receive and acknowledge Generate SGI packets received
from CPU interface regardless of the ARE settings for a Security state.
However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_SGI1R_EL1

Note

Accesses at EL3 are treated as Secure regardless of the value of SCR_EL3.NS.

ICC_SGI1R_EL1, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 818

Accesses to this register use the following encodings:

MSR ICC_SGI1R_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1011 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_SGI1R_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_SGI1R_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_SGI1R_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_SGI1R_EL1, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 819

ICC_SRE_EL1, Interrupt Controller System Register
Enable register (EL1)

The ICC_SRE_EL1 characteristics are:

Purpose
Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for
EL1.

Configuration
AArch64 System register ICC_SRE_EL1 bits [31:0] (S) are architecturally mapped to AArch32 System register
ICC_SRE[31:0] (S) .

AArch64 System register ICC_SRE_EL1 bits [31:0] (NS) are architecturally mapped to AArch32 System register
ICC_SRE[31:0] (NS) .

Attributes
ICC_SRE_EL1 is a 64-bit register.

Field descriptions
The ICC_SRE_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 DIBDFBSRE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

DIB, bit [2]

Disable IRQ bypass.

DIB Meaning
0b0 IRQ bypass enabled.
0b1 IRQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS == 0, this field is a read-only alias of ICC_SRE_EL3.DIB.

If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a read-write alias of
ICC_SRE_EL3.DIB.

If EL3 is not implemented and EL2 is implemented, this field is a read-only alias of ICC_SRE_EL2.DIB.

If GICD_CTLR.DS == 1 and EL2 is implemented, this field is a read-only alias of ICC_SRE_EL2.DIB.

In systems that do not support IRQ bypass, this field is RAO/WI.

This field resets to 0.

ICC_SRE_EL1, Interrupt Controller System Register Enable register (EL1)

Page 820

DFB, bit [1]

Disable FIQ bypass.

DFB Meaning
0b0 FIQ bypass enabled.
0b1 FIQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS == 0, this field is a read-only alias of ICC_SRE_EL3.DFB.

If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a read-write alias of
ICC_SRE_EL3.DFB.

If EL3 is not implemented and EL2 is implemented, this field is a read-only alias of ICC_SRE_EL2.DFB.

If GICD_CTLR.DS == 1 and EL2 is implemented, this field is a read-only alias of ICC_SRE_EL2.DFB.

In systems that do not support FIQ bypass, this field is RAO/WI.

This field resets to 0.

SRE, bit [0]

System Register Enable.

SRE Meaning
0b0 The memory-mapped interface must be used. Access at EL1 to

any ICC_* System register other than ICC_SRE_EL1 is trapped to
EL1.

0b1 The System register interface for the current Security state is
enabled.

If software changes this bit from 1 to 0 in the Secure instance of this register, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is RAO/WI.

If EL3 is implemented and ICC_SRE_EL3.SRE==0 the Secure copy of this bit is RAZ/WI. If ICC_SRE_EL3.SRE is
changed from zero to one, the Secure copy of this bit becomes UNKNOWN.

If EL2 is implemented and ICC_SRE_EL2.SRE==0 the Non-secure copy of this bit is RAZ/WI. If ICC_SRE_EL2.SRE is
changed from zero to one, the Non-secure copy of this bit becomes UNKNOWN.

If EL3 is implemented and ICC_SRE_EL3.SRE==0 the Non-secure copy of this bit is RAZ/WI. If ICC_SRE_EL3.SRE is
changed from zero to one, the Non-secure copy of this bit becomes UNKNOWN.

GICv3 implementations that do not require GICv2 compatibility might choose to make this bit RAO/WI. The following
options are supported:

• The Non-secure copy of ICC_SRE_EL1.SRE can be RAO/WI if ICC_SRE_EL2.SRE is also RAO/WI. This means
all Non-secure software, including VMs using only virtual interrupts, must access the GIC using System
registers.

• The Secure copy of ICC_SRE_EL1.SRE can be RAO/WI if ICC_SRE_EL3.SRE and ICC_SRE_EL2.SRE are also
RAO/WI. This means that all Secure software must access the GIC using System registers and all Non-secure
accesses to registers for physical interrupts must use System registers.

Note

A VM using only virtual interrupts might still use memory-mapped access if
the Non-secure copy of ICC_SRE_EL1.SRE is not RAO/WI.

This field resets to 0.

Accessing the ICC_SRE_EL1
Execution with ICC_SRE_EL1.SRE set to 0 might make some System registers UNKNOWN.

Accesses to this register use the following encodings:

ICC_SRE_EL1, Interrupt Controller System Register Enable register (EL1)

Page 821

MRS <Xt>, ICC_SRE_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && ICC_SRE_EL2.Enable == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && ICC_SRE_EL3.Enable == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_SRE_EL1_S;

else
return ICC_SRE_EL1_NS;

else
return ICC_SRE_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && ICC_SRE_EL3.Enable == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_SRE_EL1_S;

else
return ICC_SRE_EL1_NS;

else
return ICC_SRE_EL1;

elsif PSTATE.EL == EL3 then
if SCR_EL3.NS == '0' then

return ICC_SRE_EL1_S;
else

return ICC_SRE_EL1_NS;

MSR ICC_SRE_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b101

ICC_SRE_EL1, Interrupt Controller System Register Enable register (EL1)

Page 822

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && ICC_SRE_EL2.Enable == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && ICC_SRE_EL3.Enable == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_SRE_EL1_S = X[t];

else
ICC_SRE_EL1_NS = X[t];

else
ICC_SRE_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && ICC_SRE_EL3.Enable == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_SRE_EL1_S = X[t];

else
ICC_SRE_EL1_NS = X[t];

else
ICC_SRE_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if SCR_EL3.NS == '0' then

ICC_SRE_EL1_S = X[t];
else

ICC_SRE_EL1_NS = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_SRE_EL1, Interrupt Controller System Register Enable register (EL1)

Page 823

ICC_SRE_EL2, Interrupt Controller System Register
Enable register (EL2)

The ICC_SRE_EL2 characteristics are:

Purpose
Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for
EL2.

Configuration
AArch64 System register ICC_SRE_EL2 is architecturally mapped to AArch32 System register ICC_HSRE.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ICC_SRE_EL2 is a 64-bit register.

Field descriptions
The ICC_SRE_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 EnableDIBDFBSRE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:4]

Reserved, RES0.

Enable, bit [3]

Enable. Enables lower Exception level access to ICC_SRE_EL1.

Enable Meaning
0b0 When EL2 is implemented and enabled in the current Security

state, EL1 accesses to ICC_SRE_EL1 trap to EL2.
0b1 EL1 accesses to ICC_SRE_EL1 do not trap to EL2.

If ICC_SRE_EL2.SRE is RAO/WI, an implementation is permitted to make the Enable bit RAO/WI.

If ICC_SRE_EL2.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value of the bit.

This field resets to an architecturally UNKNOWN value.

DIB, bit [2]

Disable IRQ bypass.

DIB Meaning
0b0 IRQ bypass enabled.
0b1 IRQ bypass disabled.

ICC_SRE_EL2, Interrupt Controller System Register Enable register (EL2)

Page 824

If EL3 is implemented and GICD_CTLR.DS is 0, this field is a read-only alias of ICC_SRE_EL3.DIB.

If EL3 is implemented and GICD_CTLR.DS is 1, this field is a read-write alias of ICC_SRE_EL3.DIB.

In systems that do not support IRQ bypass, this bit is RAO/WI.

This field resets to 0.

DFB, bit [1]

Disable FIQ bypass.

DFB Meaning
0b0 FIQ bypass enabled.
0b1 FIQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS is 0, this field is a read-only alias of ICC_SRE_EL3.DFB.

If EL3 is implemented and GICD_CTLR.DS is 1, this field is a read-write alias of ICC_SRE_EL3.DFB.

In systems that do not support FIQ bypass, this bit is RAO/WI.

This field resets to 0.

SRE, bit [0]

System Register Enable.

SRE Meaning
0b0 The memory-mapped interface must be used. Access at EL2 to

any ICH_* or ICC_* register other than ICC_SRE_EL1 or
ICC_SRE_EL2, is trapped to EL2.

0b1 The System register interface to the ICH_* registers and the EL1
and EL2 ICC_* registers is enabled for EL2.

If software changes this bit from 1 to 0, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is RAO/WI.

If EL3 is implemented and ICC_SRE_EL3.SRE==0 this bit is RAZ/WI. If ICC_SRE_EL3.SRE is changed from zero to
one, this bit becomes UNKNOWN.

GICv3 implementations that do not require GICv2 compatibility might choose to make this bit RAO/WI, but this is only
allowed if ICC_SRE_EL3.SRE is also RAO/WI.

This field resets to 0.

Accessing the ICC_SRE_EL2
Execution with ICC_SRE_EL2.SRE set to 0 might make some System registers UNKNOWN.

Accesses to this register use the following encodings:

MRS <Xt>, ICC_SRE_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b1001 0b101

ICC_SRE_EL2, Interrupt Controller System Register Enable register (EL2)

Page 825

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && ICC_SRE_EL3.Enable == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_SRE_EL2;

elsif PSTATE.EL == EL3 then
if !EL2Enabled() then

UNDEFINED;
else

return ICC_SRE_EL2;

MSR ICC_SRE_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b1001 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && ICC_SRE_EL3.Enable == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_SRE_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if !EL2Enabled() then

UNDEFINED;
else

ICC_SRE_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_SRE_EL2, Interrupt Controller System Register Enable register (EL2)

Page 826

ICC_SRE_EL3, Interrupt Controller System Register
Enable register (EL3)

The ICC_SRE_EL3 characteristics are:

Purpose
Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for
EL3.

Configuration
AArch64 System register ICC_SRE_EL3 bits [31:0] can be mapped to AArch32 System register ICC_MSRE[31:0] , but
this is not architecturally mandated.

This register is present only when EL3 is implemented. Otherwise, direct accesses to ICC_SRE_EL3 are UNDEFINED.

Attributes
ICC_SRE_EL3 is a 64-bit register.

Field descriptions
The ICC_SRE_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 EnableDIBDFBSRE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:4]

Reserved, RES0.

Enable, bit [3]

Enable. Enables lower Exception level access to ICC_SRE_EL1 and ICC_SRE_EL2.

Enable Meaning
0b0 EL1 accesses to ICC_SRE_EL1 trap to EL3, unless these

accesses are trapped to EL2 as a result of
ICC_SRE_EL2.Enable == 0.
EL2 accesses to ICC_SRE_EL1 and ICC_SRE_EL2 trap to EL3.

0b1 EL1 accesses to ICC_SRE_EL1 do not trap to EL3.
EL2 accesses to ICC_SRE_EL1 and ICC_SRE_EL2 do not trap
to EL3.

If ICC_SRE_EL3.SRE is RAO/WI, an implementation is permitted to make the Enable bit RAO/WI.

If ICC_SRE_EL3.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value of the bit.

This field resets to an architecturally UNKNOWN value.

DIB, bit [2]

Disable IRQ bypass.

ICC_SRE_EL3, Interrupt Controller System Register Enable register (EL3)

Page 827

DIB Meaning
0b0 IRQ bypass enabled.
0b1 IRQ bypass disabled.

In systems that do not support IRQ bypass, this bit is RAO/WI.

This field resets to 0.

DFB, bit [1]

Disable FIQ bypass.

DFB Meaning
0b0 FIQ bypass enabled.
0b1 FIQ bypass disabled.

In systems that do not support FIQ bypass, this bit is RAO/WI.

This field resets to 0.

SRE, bit [0]

System Register Enable.

SRE Meaning
0b0 The memory-mapped interface must be used. Access at EL3 to

any ICH_* or ICC_* register other than ICC_SRE_EL1,
ICC_SRE_EL2, or ICC_SRE_EL3 is trapped to EL3

0b1 The System register interface to the ICH_* registers and the EL1,
EL2, and EL3 ICC_* registers is enabled for EL3.

If software changes this bit from 1 to 0, the results are UNPREDICTABLE.

GICv3 implementations that do not require GICv2 compatibility might choose to make this bit RAO/WI.

This field resets to 0.

Accessing the ICC_SRE_EL3
This register is always System register accessible.

Accesses to this register use the following encodings:

MRS <Xt>, ICC_SRE_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b1100 0b1100 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return ICC_SRE_EL3;

MSR ICC_SRE_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b1100 0b1100 0b101

ICC_SRE_EL3, Interrupt Controller System Register Enable register (EL3)

Page 828

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
ICC_SRE_EL3 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_SRE_EL3, Interrupt Controller System Register Enable register (EL3)

Page 829

ICH_AP0R<n>_EL2, Interrupt Controller Hyp Active
Priorities Group 0 Registers, n = 0 - 3

The ICH_AP0R<n>_EL2 characteristics are:

Purpose
Provides information about Group 0 virtual active priorities for EL2.

Configuration
AArch64 System register ICH_AP0R<n>_EL2 bits [31:0] are architecturally mapped to AArch32 System register
ICH_AP0R<n>[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ICH_AP0R<n>_EL2 is a 64-bit register.

Field descriptions
The ICH_AP0R<n>_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

P31P30P29P28P27P26P25P24P23P22P21P20P19P18P17P16P15P14P13P12P11P10P9P8P7P6P5P4P3P2P1P0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

P<x>, bit [x], for x = 0 to 31

Provides the access to the virtual active priorities for Group 0 interrupts. Possible values of each bit are:

P<x> Meaning
0b0 There is no Group 0 interrupt active with this priority level, or

all active Group 0 interrupts with this priority level have
undergone priority-drop.

0b1 There is a Group 0 interrupt active with this priority level which
has not undergone priority drop.

The correspondence between priority levels and bits depends on the number of bits of priority that are implemented.

If 5 bits of preemption are implemented (bits [7:3] of priority), then there are 32 preemption levels, and the active
state of these preemption levels are held in ICH_AP0R0_EL2 in the bits corresponding to Priority[7:3].

If 6 bits of preemption are implemented (bits [7:2] of priority), then there are 64 preemption levels, and:

• The active state of preemption levels 0 - 124 are held in ICH_AP0R0_EL2 in the bits corresponding to
0:Priority[6:2].

• The active state of preemption levels 128 - 252 are held in ICH_AP0R1_EL2 in the bits corresponding to
1:Priority[6:2].

ICH_AP0R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3

Page 830

If 7 bits of preemption are implemented (bits [7:1] of priority), then there are 128 preemption levels, and:

• The active state of preemption levels 0 - 62 are held in ICH_AP0R0_EL2 in the bits corresponding to
00:Priority[5:1].

• The active state of preemption levels 64 - 126 are held in ICH_AP0R1_EL2 in the bits corresponding to
01:Priority[5:1].

• The active state of preemption levels 128 - 190 are held in ICH_AP0R2_EL2 in the bits corresponding to
10:Priority[5:1].

• The active state of preemption levels 192 - 254 are held in ICH_AP0R3_EL2 in the bits corresponding to
11:Priority[5:1].

Note

Having the bit corresponding to a priority set to 1 in both ICH_AP0R<n>_EL2
and ICH_AP1R<n>_EL2 might result in UNPREDICTABLE behavior of the
interrupt prioritization system for virtual interrupts.

This field resets to 0.

Software must ensure that ICH_AP0R<n>_EL2 is 0 for legacy VMs otherwise behaviour is UNPREDICTABLE. For more
information about support for legacy VMs, see Support for legacy operation of VMs.

The active priorities for Group 0 and Group 1 interrupts for legacy VMs are held in ICH_AP1R<n>_EL2 and reads and
writes to GICV_APR access ICH_AP1R<n>_EL2. This means that ICH_AP0R<n>_EL2 is inaccessible to legacy VMs.

Accessing the ICH_AP0R<n>_EL2
ICH_AP0R1_EL2 is only implemented in implementations that support 6 or more bits of preemption. ICH_AP0R2_EL2
and ICH_AP0R3_EL2 are only implemented in implementations that support 7 bits of preemption. Unimplemented
registers are UNDEFINED.

Note

The number of bits of preemption is indicated by ICH_VTR_EL2.PREbits

Writing to these registers with any value other than the last read value of the register (or 0x00000000 for a newly set
up virtual machine) can result in UNPREDICTABLE behavior of the virtual interrupt prioritization system allowing either:

• Virtual interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution at EL1 or EL0.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

• ICH_AP0R<n>_EL2.
• ICH_AP1R<n>_EL2.

Having the bit corresponding to a priority set in both ICH_AP0R<n>_EL2 and ICH_AP1R<n>_EL2 can result in
UNPREDICTABLE behavior of the interrupt prioritization system for virtual interrupts.

Accesses to this register use the following encodings:

MRS <Xt>, ICH_AP0R<n>_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b1000 0b0:n[1:0]

ICH_AP0R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3

Page 831

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x480+8*UInt(op2<1:0>)];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ICH_AP0R_EL2[UInt(op2<1:0>)];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICH_AP0R_EL2[UInt(op2<1:0>)];

MSR ICH_AP0R<n>_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b1000 0b0:n[1:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x480+8*UInt(op2<1:0>)] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
ICH_AP0R_EL2[UInt(op2<1:0>)] = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICH_AP0R_EL2[UInt(op2<1:0>)] = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_AP0R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3

Page 832

ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active
Priorities Group 1 Registers, n = 0 - 3

The ICH_AP1R<n>_EL2 characteristics are:

Purpose
Provides information about Group 1 virtual active priorities for EL2.

Configuration
AArch64 System register ICH_AP1R<n>_EL2 bits [31:0] are architecturally mapped to AArch32 System register
ICH_AP1R<n>[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ICH_AP1R<n>_EL2 is a 64-bit register.

Field descriptions
The ICH_AP1R<n>_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

P31P30P29P28P27P26P25P24P23P22P21P20P19P18P17P16P15P14P13P12P11P10P9P8P7P6P5P4P3P2P1P0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

P<x>, bit [x], for x = 0 to 31

Group 1 interrupt active priorities. Possible values of each bit are:

P<x> Meaning
0b0 There is no Group 1 interrupt active with this priority level, or

all active Group 1 interrupts with this priority level have
undergone priority-drop.

0b1 There is a Group 1 interrupt active with this priority level which
has not undergone priority drop.

The correspondence between priority levels and bits depends on the number of bits of priority that are implemented.

If 5 bits of preemption are implemented (bits [7:3] of priority), then there are 32 preemption levels, and the active
state of these preemption levels are held in ICH_AP1R0_EL2 in the bits corresponding to Priority[7:3].

If 6 bits of preemption are implemented (bits [7:2] of priority), then there are 64 preemption levels, and:

• The active state of preemption levels 0 - 124 are held in ICH_AP1R0_EL2 in the bits corresponding to
0:Priority[6:2].

• The active state of preemption levels 128 - 252 are held in ICH_AP1R1_EL2 in the bits corresponding to
1:Priority[6:2].

ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3

Page 833

If 7 bits of preemption are implemented (bits [7:1] of priority), then there are 128 preemption levels, and:

• The active state of preemption levels 0 - 62 are held in ICH_AP1R0_EL2 in the bits corresponding to
00:Priority[5:1].

• The active state of preemption levels 64 - 126 are held in ICH_AP1R1_EL2 in the bits corresponding to
01:Priority[5:1].

• The active state of preemption levels 128 - 190 are held in ICH_AP1R2_EL2 in the bits corresponding to
10:Priority[5:1].

• The active state of preemption levels 192 - 254 are held in ICH_AP1R3_EL2 in the bits corresponding to
11:Priority[5:1].

Note

Having the bit corresponding to a priority set to 1 in both ICH_AP0R<n>_EL2
and ICH_AP1R<n>_EL2 might result in UNPREDICTABLE behavior of the
interrupt prioritization system for virtual interrupts.

This field resets to 0.

This register is always used for legacy VMs, regardless of the group of the virtual interrupt. Reads and writes to
GICV_APR<n> access ICH_AP1R<n>_EL2. For more information about support for legacy VMs, see Support for
legacy operation of VMs.

Accessing the ICH_AP1R<n>_EL2
ICH_AP1R1_EL2 is only implemented in implementations that support 6 or more bits of preemption. ICH_AP1R2_EL2
and ICH_AP1R3_EL2 are only implemented in implementations that support 7 bits of preemption. Unimplemented
registers are UNDEFINED.

Note

The number of bits of preemption is indicated by ICH_VTR_EL2.PREbits

Writing to these registers with any value other than the last read value of the register (or 0x00000000 for a newly set
up virtual machine) can result in UNPREDICTABLE behavior of the virtual interrupt prioritization system allowing either:

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

Accesses to this register use the following encodings:

MRS <Xt>, ICH_AP1R<n>_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b1001 0b0:n[1:0]

ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3

Page 834

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x4A0+8*UInt(op2<1:0>)];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ICH_AP1R_EL2[UInt(op2<1:0>)];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICH_AP1R_EL2[UInt(op2<1:0>)];

MSR ICH_AP1R<n>_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b1001 0b0:n[1:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x4A0+8*UInt(op2<1:0>)] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
ICH_AP1R_EL2[UInt(op2<1:0>)] = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICH_AP1R_EL2[UInt(op2<1:0>)] = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3

Page 835

ICH_EISR_EL2, Interrupt Controller End of Interrupt
Status Register

The ICH_EISR_EL2 characteristics are:

Purpose
Indicates which List registers have outstanding EOI maintenance interrupts.

Configuration
AArch64 System register ICH_EISR_EL2 bits [31:0] are architecturally mapped to AArch32 System register
ICH_EISR[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ICH_EISR_EL2 is a 64-bit register.

Field descriptions
The ICH_EISR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 Status<n>, bit [n], for n = 0 to 15
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

Status<n>, bit [n], for n = 0 to 15

EOI maintenance interrupt status bit for List register <n>:

Status<n> Meaning
0b0 List register <n>, ICH_LR<n>_EL2, does not have an EOI

maintenance interrupt.
0b1 List register <n>, ICH_LR<n>_EL2, has an EOI

maintenance interrupt that has not been handled.

For any ICH_LR<n>_EL2, the corresponding status bit is set to 1 if all of the following are true:

• ICH_LR<n>_EL2.State is 0b00.
• ICH_LR<n>_EL2.HW is 0.
• ICH_LR<n>_EL2.EOI (bit [41]) is 1, indicating that when the interrupt corresponding to that List register is

deactivated, a maintenance interrupt is asserted.

Otherwise the status bit takes the value 0.

Accessing the ICH_EISR_EL2
Accesses to this register use the following encodings:

ICH_EISR_EL2, Interrupt Controller End of Interrupt Status Register

Page 836

MRS <Xt>, ICH_EISR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b1011 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ICH_EISR_EL2;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICH_EISR_EL2;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_EISR_EL2, Interrupt Controller End of Interrupt Status Register

Page 837

ICH_ELRSR_EL2, Interrupt Controller Empty List
Register Status Register

The ICH_ELRSR_EL2 characteristics are:

Purpose
These registers can be used to locate a usable List register when the hypervisor is delivering an interrupt to a VM.

Configuration
AArch64 System register ICH_ELRSR_EL2 bits [31:0] are architecturally mapped to AArch32 System register
ICH_ELRSR[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ICH_ELRSR_EL2 is a 64-bit register.

Field descriptions
The ICH_ELRSR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 Status<n>, bit [n], for n = 0 to 15
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

Status<n>, bit [n], for n = 0 to 15

Status bit for List register <n>, ICH_LR<n>_EL2:

Status<n> Meaning
0b0 List register ICH_LR<n>_EL2, if implemented, contains a

valid interrupt. Using this List register can result in
overwriting a valid interrupt.

0b1 List register ICH_LR<n>_EL2 does not contain a valid
interrupt. The List register is empty and can be used
without overwriting a valid interrupt or losing an EOI
maintenance interrupt.

For any List register <n>, the corresponding status bit is set to 1 if ICH_LR<n>_EL2.State is 0b00 and either
ICH_LR<n>_EL2.HW is 1 or ICH_LR<n>_EL2.EOI (bit [41]) is 0.

Otherwise the status bit takes the value 0.

Accessing the ICH_ELRSR_EL2
Accesses to this register use the following encodings:

ICH_ELRSR_EL2, Interrupt Controller Empty List Register Status Register

Page 838

MRS <Xt>, ICH_ELRSR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b1011 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ICH_ELRSR_EL2;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICH_ELRSR_EL2;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_ELRSR_EL2, Interrupt Controller Empty List Register Status Register

Page 839

ICH_HCR_EL2, Interrupt Controller Hyp Control
Register

The ICH_HCR_EL2 characteristics are:

Purpose
Controls the environment for VMs.

Configuration
AArch64 System register ICH_HCR_EL2 bits [31:0] are architecturally mapped to AArch32 System register
ICH_HCR[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ICH_HCR_EL2 is a 64-bit register.

Field descriptions
The ICH_HCR_EL2 bit assignments are:

6362616059585756555453525150494847 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

EOIcount RES0 TDIRTSEITALL1TALL0TCRES0vSGIEOICountVGrp1DIEVGrp1EIEVGrp0DIEVGrp0EIENPIELRENPIEUIEEn
3130292827262524232221201918171615 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

EOIcount, bits [31:27]

This field is incremented whenever a successful write to a virtual EOIR or DIR register would have resulted in a virtual
interrupt deactivation. That is either:

• A virtual write to EOIR with a valid interrupt identifier that is not in the LPI range (that is < 8192) when EOI
mode is zero and no List Register was found.

• A virtual write to DIR with a valid interrupt identifier that is not in the LPI range (that is < 8192) when EOI
mode is one and no List Register was found.

This allows software to manage more active interrupts than there are implemented List Registers.

It is CONSTRAINED UNPREDICTABLE whether a virtual write to EOIR that does not clear a bit in the Active Priorities
registers (ICH_AP0R<n>_EL2/ICH_AP1R<n>_EL2) increments EOIcount. Permitted behaviors are:

• Increment EOIcount.
• Leave EOIcount unchanged.

This field resets to 0.

Bits [26:15]

Reserved, RES0.

ICH_HCR_EL2, Interrupt Controller Hyp Control Register

Page 840

TDIR, bit [14]

Trap EL1 writes to ICC_DIR_EL1 and ICV_DIR_EL1.

TDIR Meaning
0b0 EL1 writes of ICC_DIR_EL1 and ICV_DIR_EL1 are not trapped to

EL2, unless trapped by other mechanisms.
0b1 EL1 writes of ICV_DIR_EL1 are trapped to EL2. It is

IMPLEMENTATION DEFINED whether writes of ICC_DIR_EL1 are
trapped. Not trapping ICC_DIR_EL1 writes is DEPRECATED.

Support for this bit is OPTIONAL, with support indicated by ICH_VTR_EL2.

If the implementation does not support this trap, this bit is RES0.

Arm deprecates not including this trap bit.

This field resets to 0.

TSEI, bit [13]

Trap all locally generated SEIs. This bit allows the hypervisor to intercept locally generated SEIs that would otherwise
be taken at EL1.

TSEI Meaning
0b0 Locally generated SEIs do not cause a trap to EL2.
0b1 Locally generated SEIs trap to EL2.

If ICH_VTR_EL2.SEIS is 0, this bit is RES0.

This field resets to 0.

TALL1, bit [12]

Trap all EL1 accesses to ICC_* and ICV_* System registers for Group 1 interrupts to EL2.

TALL1 Meaning
0b0 EL1 accesses to ICC_* and ICV_* registers for Group 1

interrupts proceed as normal.
0b1 EL1 accesses to ICC_* and ICV_* registers for Group 1

interrupts trap to EL2.

This field resets to 0.

TALL0, bit [11]

Trap all EL1 accesses to ICC_* and ICV_* System registers for Group 0 interrupts to EL2.

TALL0 Meaning
0b0 EL1 accesses to ICC_* and ICV_* registers for Group 0

interrupts proceed as normal.
0b1 EL1 accesses to ICC_* and ICV_* registers for Group 0

interrupts trap to EL2.

This field resets to 0.

TC, bit [10]

Trap all EL1 accesses to System registers that are common to Group 0 and Group 1 to EL2.

TC Meaning
0b0 EL1 accesses to common registers proceed as normal.
0b1 EL1 accesses to common registers trap to EL2.

This affects accesses to ICC_SGI0R_EL1, ICC_SGI1R_EL1, ICC_ASGI1R_EL1, ICC_CTLR_EL1, ICC_DIR_EL1,
ICC_PMR_EL1, ICC_RPR_EL1, ICV_CTLR_EL1, ICV_DIR_EL1, ICV_PMR_EL1, and ICV_RPR_EL1.

ICH_HCR_EL2, Interrupt Controller Hyp Control Register

Page 841

This field resets to 0.

Bit [9]

Reserved, RES0.

vSGIEOICount, bit [8]

When GICv4.1 is implemented:

Controls whether deactivation of virtual SGIs can increment ICH_HCR_EL2.EOIcount

vSGIEOICount Meaning
0b0 Deactivation of virtual SGIs can increment

ICH_HCR_EL2.EOIcount.
0b1 Deactivation of virtual SGIs does not increment

ICH_HCR_EL2.EOIcount.

This field resets to 0.

Otherwise:

Reserved, RES0.

VGrp1DIE, bit [7]

VM Group 1 Disabled Interrupt Enable. Enables the signaling of a maintenance interrupt while signaling of Group 1
interrupts from the virtual CPU interface to the connected vPE is disabled:

VGrp1DIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt signaled when

ICH_VMCR_EL2.VENG1 is 0.

This field resets to 0.

VGrp1EIE, bit [6]

VM Group 1 Enabled Interrupt Enable. Enables the signaling of a maintenance interrupt while signaling of Group 1
interrupts from the virtual CPU interface to the connected vPE is enabled:

VGrp1EIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt signaled when

ICH_VMCR_EL2.VENG1 is 1.

This field resets to 0.

VGrp0DIE, bit [5]

VM Group 0 Disabled Interrupt Enable. Enables the signaling of a maintenance interrupt while signaling of Group 0
interrupts from the virtual CPU interface to the connected vPE is disabled:

VGrp0DIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt signaled when

ICH_VMCR_EL2.VENG0 is 0.

This field resets to 0.

ICH_HCR_EL2, Interrupt Controller Hyp Control Register

Page 842

VGrp0EIE, bit [4]

VM Group 0 Enabled Interrupt Enable. Enables the signaling of a maintenance interrupt while signaling of Group 0
interrupts from the virtual CPU interface to the connected vPE is enabled:

VGrp0EIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt signaled when

ICH_VMCR_EL2.VENG0 is 1.

This field resets to 0.

NPIE, bit [3]

No Pending Interrupt Enable. Enables the signaling of a maintenance interrupt when there are no List registers with
the State field set to 0b01 (pending):

NPIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt signaled while the List registers contain

no interrupts in the pending state.

This field resets to 0.

LRENPIE, bit [2]

List Register Entry Not Present Interrupt Enable. Enables the signaling of a maintenance interrupt while the virtual
CPU interface does not have a corresponding valid List register entry for an EOI request:

LRENPIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt is asserted while the EOIcount field

is not 0.

This field resets to 0.

UIE, bit [1]

Underflow Interrupt Enable. Enables the signaling of a maintenance interrupt when the List registers are empty, or
hold only one valid entry:

UIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt is asserted if none, or only one, of the List

register entries is marked as a valid interrupt.

This field resets to 0.

En, bit [0]

Enable. Global enable bit for the virtual CPU interface:

En Meaning
0b0 Virtual CPU interface operation disabled.
0b1 Virtual CPU interface operation enabled.

When this field is set to 0:

• The virtual CPU interface does not signal any maintenance interrupts.
• The virtual CPU interface does not signal any virtual interrupts.
• A read of ICV_IAR0_EL1, ICV_IAR1_EL1, GICV_IAR or GICV_AIAR returns a spurious interrupt ID.

Note

This field is RES0 when SCR_EL3.{NS,EEL2}=={0,0}

ICH_HCR_EL2, Interrupt Controller Hyp Control Register

Page 843

This field resets to 0.

Accessing the ICH_HCR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, ICH_HCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b1011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x4C0];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ICH_HCR_EL2;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICH_HCR_EL2;

MSR ICH_HCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b1011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x4C0] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
ICH_HCR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICH_HCR_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_HCR_EL2, Interrupt Controller Hyp Control Register

Page 844

ICH_LR<n>_EL2, Interrupt Controller List Registers, n
= 0 - 15

The ICH_LR<n>_EL2 characteristics are:

Purpose
Provides interrupt context information for the virtual CPU interface.

Configuration
AArch64 System register ICH_LR<n>_EL2 bits [31:0] are architecturally mapped to AArch32 System register
ICH_LR<n>[31:0] .

AArch64 System register ICH_LR<n>_EL2 bits [63:32] are architecturally mapped to AArch32 System register
ICH_LRC<n>[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

If list register n is not implemented, then accesses to this register are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ICH_LR<n>_EL2 is a 64-bit register.

Field descriptions
The ICH_LR<n>_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
State HWGroup RES0 Priority RES0 pINTID

vINTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

State, bits [63:62]

The state of the interrupt:

State Meaning
0b00 Invalid (Inactive).
0b01 Pending.
0b10 Active.
0b11 Pending and active.

The GIC updates these state bits as virtual interrupts proceed through the interrupt life cycle. Entries in the invalid
state are ignored, except for the purpose of generating virtual maintenance interrupts.

For hardware interrupts, the pending and active state is held in the physical Distributor rather than the virtual CPU
interface. A hypervisor must only use the pending and active state for software originated interrupts, which are
typically associated with virtual devices, or SGIs.

This field resets to an architecturally UNKNOWN value.

ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15

Page 845

HW, bit [61]

Indicates whether this virtual interrupt maps directly to a hardware interrupt, meaning that it corresponds to a
physical interrupt. Deactivation of the virtual interrupt also causes the deactivation of the physical interrupt with the
ID that the pINTID field indicates.

HW Meaning
0b0 The interrupt is triggered entirely by software. No notification is

sent to the Distributor when the virtual interrupt is deactivated.
0b1 The interrupt maps directly to a hardware interrupt. A deactivate

interrupt request is sent to the Distributor when the virtual
interrupt is deactivated, using the pINTID field from this register
to indicate the physical interrupt ID.
If ICH_VMCR_EL2.VEOIM is 0, this request corresponds to a write
to ICC_EOIR0_EL1 or ICC_EOIR1_EL1. Otherwise, it corresponds
to a write to ICC_DIR_EL1.

This field resets to an architecturally UNKNOWN value.

Group, bit [60]

Indicates the group for this virtual interrupt.

Group Meaning
0b0 This is a Group 0 virtual interrupt. ICH_VMCR_EL2.VFIQEn

determines whether it is signaled as a virtual IRQ or as a virtual
FIQ, and ICH_VMCR_EL2.VENG0 enables signaling of this
interrupt to the virtual machine.

0b1 This is a Group 1 virtual interrupt, signaled as a virtual IRQ.
ICH_VMCR_EL2.VENG1 enables the signalling of this interrupt
to the virtual machine.
If ICH_VMCR_EL2.VCBPR is 0, then ICC_BPR1_EL1 determines
if a pending Group 1 interrupt has sufficient priority to preempt
current execution. Otherwise, ICH_LR<n>_EL2 determines
preemption.

This field resets to an architecturally UNKNOWN value.

Bits [59:56]

Reserved, RES0.

Priority, bits [55:48]

The priority of this interrupt.

It is IMPLEMENTATION DEFINED how many bits of priority are implemented, though at least five bits must be
implemented. Unimplemented bits are RES0 and start from bit[48] up to bit[50]. The number of implemented bits can
be discovered from ICH_VTR_EL2.PRIbits.

This field resets to an architecturally UNKNOWN value.

Bits [47:45]

Reserved, RES0.

pINTID, bits [44:32]

Physical INTID, for hardware interrupts.

When ICH_LR<n>_EL2.HW is 0 (there is no corresponding physical interrupt), this field has the following meaning:

• Bits[44:42] : RES0.
• Bit[41] : EOI. If this bit is 1, then when the interrupt identified by vINTID is deactivated, a maintenance

interrupt is asserted.

ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15

Page 846

• Bits[40:32] : RES0.

When ICH_LR<n>_EL2.HW is 1 (there is a corresponding physical interrupt):

• This field indicates the physical INTID. This field is only required to implement enough bits to hold a valid
value for the implemented INTID size. Any unused higher order bits are RES0.

• When ICC_CTLR_EL1.ExtRange is 0, then bits[44:42] of this field are RES0.
• If the value of pINTID is not a vald INTID, behavior is UNPREDICTABLE. If the value of pINTID indicates a PPI,

this field applies to the PPI associated with this same physical PE ID as the virtual CPU interface requesting
the deactivation.

A hardware physical identifier is only required in List Registers for interrupts that require deactivation. This means
only 13 bits of Physical INTID are required, regardless of the number specified by ICC_CTLR_EL1.IDbits.

This field resets to an architecturally UNKNOWN value.

vINTID, bits [31:0]

Virtual INTID of the interrupt.

If the value of vINTID is 1020-1023 and ICH_LR<n>_EL2.State!=0b00 (Inactive), behavior is UNPREDICTABLE.

Behavior is UNPREDICTABLE if two or more List Registers specify the same vINTID when:

• ICH_LR<n>_EL2.State == 0b01.
• ICH_LR<n>_EL2.State == 0b10.
• ICH_LR<n>_EL2.State == 0b11.

It is IMPLEMENTATION DEFINED how many bits are implemented, though at least 16 bits must be implemented.
Unimplemented bits are RES0. The number of implemented bits can be discovered from ICH_VTR_EL2.IDbits.

When ICC_SRE_EL1.SRE == 0, specifying a vINTID in the LPI range is UNPREDICTABLE

Note

When a VM is using memory-mapped access to the GIC, software must ensure
that the correct source PE ID is provided in bits[12:10].

This field resets to an architecturally UNKNOWN value.

Accessing the ICH_LR<n>_EL2
Accesses to this register use the following encodings:

MRS <Xt>, ICH_LR<n>_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b110:n[3] n[2:0]

ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15

Page 847

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x400+8*UInt(CRm<0>:op2<2:0>)];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ICH_LR_EL2[UInt(CRm<0>:op2<2:0>)];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICH_LR_EL2[UInt(CRm<0>:op2<2:0>)];

MSR ICH_LR<n>_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b110:n[3] n[2:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x400+8*UInt(CRm<0>:op2<2:0>)] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
ICH_LR_EL2[UInt(CRm<0>:op2<2:0>)] = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICH_LR_EL2[UInt(CRm<0>:op2<2:0>)] = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15

Page 848

ICH_MISR_EL2, Interrupt Controller Maintenance
Interrupt State Register

The ICH_MISR_EL2 characteristics are:

Purpose
Indicates which maintenance interrupts are asserted.

Configuration
AArch64 System register ICH_MISR_EL2 bits [31:0] are architecturally mapped to AArch32 System register
ICH_MISR[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ICH_MISR_EL2 is a 64-bit register.

Field descriptions
The ICH_MISR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 VGrp1DVGrp1EVGrp0DVGrp0ENPLRENP U EOI
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:8]

Reserved, RES0.

VGrp1D, bit [7]

vPE Group 1 Disabled.

VGrp1D Meaning
0b0 vPE Group 1 Disabled maintenance interrupt not asserted.
0b1 vPE Group 1 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.VGrp1DIE==1 and ICH_VMCR_EL2.VENG1==is 0.

This field resets to 0.

VGrp1E, bit [6]

vPE Group 1 Enabled.

VGrp1E Meaning
0b0 vPE Group 1 Enabled maintenance interrupt not asserted.
0b1 vPE Group 1 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.VGrp1EIE==1 and ICH_VMCR_EL2.VENG1==is 1.

ICH_MISR_EL2, Interrupt Controller Maintenance Interrupt State Register

Page 849

This field resets to 0.

VGrp0D, bit [5]

vPE Group 0 Disabled.

VGrp0D Meaning
0b0 vPE Group 0 Disabled maintenance interrupt not asserted.
0b1 vPE Group 0 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.VGrp0DIE==1 and ICH_VMCR_EL2.VENG0==0.

This field resets to 0.

VGrp0E, bit [4]

vPE Group 0 Enabled.

VGrp0E Meaning
0b0 vPE Group 0 Enabled maintenance interrupt not asserted.
0b1 vPE Group 0 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.VGrp0EIE==1 and ICH_VMCR_EL2.VENG0==1.

This field resets to 0.

NP, bit [3]

No Pending.

NP Meaning
0b0 No Pending maintenance interrupt not asserted.
0b1 No Pending maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.NPIE==1 and no List register is in pending state.

This field resets to 0.

LRENP, bit [2]

List Register Entry Not Present.

LRENP Meaning
0b0 List Register Entry Not Present maintenance interrupt not

asserted.
0b1 List Register Entry Not Present maintenance interrupt

asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.LRENPIE==1 and ICH_HCR_EL2.EOIcount is non-zero.

This field resets to 0.

U, bit [1]

Underflow.

U Meaning
0b0 Underflow maintenance interrupt not asserted.
0b1 Underflow maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.UIE==1 and zero or one of the List register entries are
marked as a valid interrupt, that is, if the corresponding ICH_LR<n>_EL2.State bits do not equal 0x0.

This field resets to 0.

ICH_MISR_EL2, Interrupt Controller Maintenance Interrupt State Register

Page 850

EOI, bit [0]

End Of Interrupt.

EOI Meaning
0b0 End Of Interrupt maintenance interrupt not asserted.
0b1 End Of Interrupt maintenance interrupt asserted.

This maintenance interrupt is asserted when at least one bit in ICH_EISR_EL2 is 1.

This field resets to 0.

The U and NP bits do not include the status of any pending/active VSET packets because these bits control generation
of interrupts that allow software management of the contents of the List Registers (which are not affected by VSET
packets).

Accessing the ICH_MISR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, ICH_MISR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b1011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ICH_MISR_EL2;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICH_MISR_EL2;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_MISR_EL2, Interrupt Controller Maintenance Interrupt State Register

Page 851

ICH_VMCR_EL2, Interrupt Controller Virtual Machine
Control Register

The ICH_VMCR_EL2 characteristics are:

Purpose
Enables the hypervisor to save and restore the virtual machine view of the GIC state.

Configuration
AArch64 System register ICH_VMCR_EL2 bits [31:0] are architecturally mapped to AArch32 System register
ICH_VMCR[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ICH_VMCR_EL2 is a 64-bit register.

Field descriptions
The ICH_VMCR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

VPMR VBPR0 VBPR1 RES0 VEOIM RES0 VCBPRVFIQEnVAckCtlVENG1VENG0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

VPMR, bits [31:24]

Virtual Priority Mask. The priority mask level for the virtual CPU interface. If the priority of a pending virtual interrupt
is higher than the value indicated by this field, the interface signals the virtual interrupt to the PE.

This field is an alias of ICV_PMR_EL1.Priority.

VBPR0, bits [23:21]

Virtual Binary Point Register, Group 0. Defines the point at which the priority value fields split into two parts, the
group priority field and the subpriority field. The group priority field determines Group 0 interrupt preemption, and
also determines Group 1 interrupt preemption if ICH_VMCR_EL2.VCBPR == 1.

This field is an alias of ICV_BPR0_EL1.BinaryPoint.

The minimum value of this field is determined by ICH_VTR_EL2.PREbits. An attempt to program the binary point field
to a value less than the minimum value sets the field to the minimum value.

ICH_VMCR_EL2, Interrupt Controller Virtual Machine Control Register

Page 852

VBPR1, bits [20:18]

Virtual Binary Point Register, Group 1. Defines the point at which the priority value fields split into two parts, the
group priority field and the subpriority field. The group priority field determines Group 1 interrupt preemption if
ICH_VMCR_EL2.VCBPR == 0.

This field is an alias of ICV_BPR1_EL1.BinaryPoint.

This field is always accessible to EL2 accesses, regardless of the setting of the ICH_VMCR_EL2.VCBPR field.

For Non-secure writes, the minimum value of this field is the minimum value of ICH_VMCR_EL2.VBPR0 plus one.

For Secure writes, the minimum value of this field is the minimum value of ICH_VMCR_EL2.VBPR0.

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum
value.

Bits [17:10]

Reserved, RES0.

VEOIM, bit [9]

Virtual EOI mode. Controls whether a write to an End of Interrupt register also deactivates the virtual interrupt:

VEOIM Meaning
0b0 ICV_EOIR0_EL1 and ICV_EOIR1_EL1 provide both priority

drop and interrupt deactivation functionality. Accesses to
ICV_DIR_EL1 are UNPREDICTABLE.

0b1 ICV_EOIR0_EL1 and ICV_EOIR1_EL1 provide priority drop
functionality only. ICV_DIR_EL1 provides interrupt
deactivation functionality.

This bit is an alias of ICV_CTLR_EL1.EOImode.

Bits [8:5]

Reserved, RES0.

VCBPR, bit [4]

Virtual Common Binary Point Register. Possible values of this bit are:

VCBPR Meaning
0b0 ICV_BPR1_EL1 determines the preemption group for virtual

Group 1 interrupts.
0b1 Reads of ICV_BPR1_EL1 return ICV_BPR0_EL1 plus one,

saturated to 0b111. Writes to ICV_BPR1_EL1 are ignored.

This field is an alias of ICV_CTLR_EL1.CBPR.

VFIQEn, bit [3]

Virtual FIQ enable. Possible values of this bit are:

VFIQEn Meaning
0b0 Group 0 virtual interrupts are presented as virtual IRQs.
0b1 Group 0 virtual interrupts are presented as virtual FIQs.

This bit is an alias of GICV_CTLR.FIQEn.

In implementations where the Non-secure copy of ICC_SRE_EL1.SRE is always 1, this bit is RES1.

ICH_VMCR_EL2, Interrupt Controller Virtual Machine Control Register

Page 853

VAckCtl, bit [2]

Virtual AckCtl. Possible values of this bit are:

VAckCtl Meaning
0b0 If the highest priority pending interrupt is Group 1, a read of

GICV_IAR or GICV_HPPIR returns an INTID of 1022.
0b1 If the highest priority pending interrupt is Group 1, a read of

GICV_IAR or GICV_HPPIR returns the INTID of the
corresponding interrupt.

This bit is an alias of GICV_CTLR.AckCtl.

This field is supported for backwards compatibility with GICv2. Arm deprecates the use of this field.

In implementations where the Non-secure copy of ICC_SRE_EL1.SRE is always 1, this bit is RES0.

VENG1, bit [1]

Virtual Group 1 interrupt enable. Possible values of this bit are:

VENG1 Meaning
0b0 Virtual Group 1 interrupts are disabled.
0b1 Virtual Group 1 interrupts are enabled.

This bit is an alias of ICV_IGRPEN1_EL1.Enable.

VENG0, bit [0]

Virtual Group 0 interrupt enable. Possible values of this bit are:

VENG0 Meaning
0b0 Virtual Group 0 interrupts are disabled.
0b1 Virtual Group 0 interrupts are enabled.

This bit is an alias of ICV_IGRPEN0_EL1.Enable.

Accessing the ICH_VMCR_EL2
When EL2 is using System register access, EL1 using either System register or memory-mapped access must be
supported.

Accesses to this register use the following encodings:

MRS <Xt>, ICH_VMCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b1011 0b111

ICH_VMCR_EL2, Interrupt Controller Virtual Machine Control Register

Page 854

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x4C8];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ICH_VMCR_EL2;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICH_VMCR_EL2;

MSR ICH_VMCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b1011 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x4C8] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
ICH_VMCR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICH_VMCR_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_VMCR_EL2, Interrupt Controller Virtual Machine Control Register

Page 855

ICH_VTR_EL2, Interrupt Controller VGIC Type Register
The ICH_VTR_EL2 characteristics are:

Purpose
Reports supported GIC virtualisartion features.

Configuration
AArch64 System register ICH_VTR_EL2 bits [31:0] are architecturally mapped to AArch32 System register
ICH_VTR[31:0] .

If EL2 is not implemented, all bits in this register are RES0 from EL3, except for nV4, which is RES1 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ICH_VTR_EL2 is a 64-bit register.

Field descriptions
The ICH_VTR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

PRIbits PREbits IDbits SEISA3VnV4TDS RES0 ListRegs
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

PRIbits, bits [31:29]

Priority bits. The number of virtual priority bits implemented, minus one.

An implementation must implement at least 32 levels of virtual priority (5 priority bits).

This field is an alias of ICV_CTLR_EL1.PRIbits.

PREbits, bits [28:26]

The number of virtual preemption bits implemented, minus one.

An implementation must implement at least 32 levels of virtual preemption priority (5 preemption bits).

The value of this field must be less than or equal to the value of ICH_VTR_EL2.PRIbits.

The maximum value of this field is 6, indicating 7 bits of preemption.

This field determines the minimum value of ICH_VMCR_EL2.VBPR0.

IDbits, bits [25:23]

The number of virtual interrupt identifier bits supported:

ICH_VTR_EL2, Interrupt Controller VGIC Type Register

Page 856

IDbits Meaning
0b000 16 bits.
0b001 24 bits.

All other values are reserved.

This field is an alias of ICV_CTLR_EL1.IDbits.

SEIS, bit [22]

SEI Support. Indicates whether the virtual CPU interface supports generation of SEIs:

SEIS Meaning
0b0 The virtual CPU interface logic does not support generation of

SEIs.
0b1 The virtual CPU interface logic supports generation of SEIs.

This bit is an alias of ICV_CTLR_EL1.SEIS.

A3V, bit [21]

Affinity 3 Valid. Possible values are:

A3V Meaning
0b0 The virtual CPU interface logic only supports zero values of

Affinity 3 in SGI generation System registers.
0b1 The virtual CPU interface logic supports non-zero values of

Affinity 3 in SGI generation System registers.

This bit is an alias of ICV_CTLR_EL1.A3V.

nV4, bit [20]

Direct injection of virtual interrupts not supported. Possible values are:

nV4 Meaning
0b0 The CPU interface logic supports direct injection of virtual

interrupts.
0b1 The CPU interface logic does not support direct injection of virtual

interrupts.

In GICv3 this bit is RES1.

TDS, bit [19]

Separate trapping of EL1 writes to ICV_DIR_EL1 supported.

TDS Meaning
0b0 Implementation does not support ICH_HCR_EL2.TDIR.
0b1 Implementation supports ICH_HCR_EL2.TDIR.

Bits [18:5]

Reserved, RES0.

ListRegs, bits [4:0]

The number of implemented List registers, minus one. For example, a value of 0b01111 indicates that the maximum of
16 List registers are implemented.

ICH_VTR_EL2, Interrupt Controller VGIC Type Register

Page 857

Accessing the ICH_VTR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, ICH_VTR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b1011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ICH_VTR_EL2;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICH_VTR_EL2;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_VTR_EL2, Interrupt Controller VGIC Type Register

Page 858

ICV_AP0R<n>_EL1, Interrupt Controller Virtual Active
Priorities Group 0 Registers, n = 0 - 3

The ICV_AP0R<n>_EL1 characteristics are:

Purpose
Provides information about virtual Group 0 active priorities.

Configuration
AArch64 System register ICV_AP0R<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ICV_AP0R<n>[31:0] .

Attributes
ICV_AP0R<n>_EL1 is a 64-bit register.

Field descriptions
The ICV_AP0R<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

IMPLEMENTATION DEFINED
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing the ICV_AP0R<n>_EL1
Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 0 active priorities) might result in UNPREDICTABLE behavior of the virtual interrupt prioritization system,
causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICV_AP0R1_EL1 is only implemented in implementations that support 6 or more bits of priority. ICV_AP0R2_EL1 and
ICV_AP0R3_EL1 are only implemented in implementations that support 7 bits of priority. Unimplemented registers are
UNDEFINED.

Writing to the active priority registers in any order other than the following order might result in UNPREDICTABLE
behavior of the interrupt prioritization system:

• ICV_AP0R<n>_EL1.

ICV_AP0R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 0 Registers, n = 0 - 3

Page 859

• ICV_AP1R<n>_EL1.

Accesses to this register use the following encodings:

MRS <Xt>, ICC_AP0R<n>_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1000 0b1:n[1:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_AP0R_EL1[UInt(op2<1:0>)];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_AP0R_EL1[UInt(op2<1:0>)];
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_AP0R_EL1[UInt(op2<1:0>)];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_AP0R_EL1[UInt(op2<1:0>)];

MSR ICC_AP0R<n>_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1000 0b1:n[1:0]

ICV_AP0R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 0 Registers, n = 0 - 3

Page 860

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_AP0R_EL1[UInt(op2<1:0>)] = X[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_AP0R_EL1[UInt(op2<1:0>)] = X[t];
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_AP0R_EL1[UInt(op2<1:0>)] = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_AP0R_EL1[UInt(op2<1:0>)] = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_AP0R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 0 Registers, n = 0 - 3

Page 861

ICV_AP1R<n>_EL1, Interrupt Controller Virtual Active
Priorities Group 1 Registers, n = 0 - 3

The ICV_AP1R<n>_EL1 characteristics are:

Purpose
Provides information about virtual Group 1 active priorities.

Configuration
AArch64 System register ICV_AP1R<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ICV_AP1R<n>[31:0] .

Attributes
ICV_AP1R<n>_EL1 is a 64-bit register.

Field descriptions
The ICV_AP1R<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

IMPLEMENTATION DEFINED
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing the ICV_AP1R<n>_EL1
Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 1 active priorities) might result in UNPREDICTABLE behavior of the virtual interrupt prioritization system,
causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICV_AP1R1_EL1 is only implemented in implementations that support 6 or more bits of priority. ICV_AP1R2_EL1 and
ICV_AP1R3_EL1 are only implemented in implementations that support 7 bits of priority. Unimplemented registers are
UNDEFINED.

Writing to the active priority registers in any order other than the following order might result in UNPREDICTABLE
behavior of the interrupt prioritization system:

• ICV_AP0R<n>_EL1.

ICV_AP1R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3

Page 862

• ICV_AP1R<n>_EL1.

Accesses to this register use the following encodings:

MRS <Xt>, ICC_AP1R<n>_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1001 0b0:n[1:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_AP1R_EL1[UInt(op2<1:0>)];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_AP1R_EL1_S[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1_NS[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1[UInt(op2<1:0>)];

elsif PSTATE.EL == EL2 then
if ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_AP1R_EL1_S[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1_NS[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1[UInt(op2<1:0>)];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
return ICC_AP1R_EL1_S[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1_NS[UInt(op2<1:0>)];

MSR ICC_AP1R<n>_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1001 0b0:n[1:0]

ICV_AP1R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3

Page 863

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_AP1R_EL1[UInt(op2<1:0>)] = X[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_AP1R_EL1_S[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1_NS[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1[UInt(op2<1:0>)] = X[t];

elsif PSTATE.EL == EL2 then
if ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_AP1R_EL1_S[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1_NS[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1[UInt(op2<1:0>)] = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
ICC_AP1R_EL1_S[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1_NS[UInt(op2<1:0>)] = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_AP1R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3

Page 864

ICV_BPR0_EL1, Interrupt Controller Virtual Binary
Point Register 0

The ICV_BPR0_EL1 characteristics are:

Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field.
The group priority field determines virtual Group 0 interrupt preemption.

Configuration
AArch64 System register ICV_BPR0_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ICV_BPR0[31:0] .

Attributes
ICV_BPR0_EL1 is a 64-bit register.

Field descriptions
The ICV_BPR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 BinaryPoint
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

The value of this field controls how the 8-bit interrupt priority field is split into a group priority field, that determines
interrupt preemption, and a subpriority field. This is done as follows:

Binary point
value

Group priority
field

Subpriority
field

Field with binary
point

0 [7:1] [0] ggggggg.s
1 [7:2] [1:0] gggggg.ss
2 [7:3] [2:0] ggggg.sss
3 [7:4] [3:0] gggg.ssss
4 [7:5] [4:0] ggg.sssss
5 [7:6] [5:0] gg.ssssss
6 [7] [6:0] g.sssssss
7 No preemption [7:0] .ssssssss

This field resets to an architecturally UNKNOWN value.

Accessing the ICV_BPR0_EL1
The minimum binary point value is derived from the number of implemented preemption bits, as shown in the
following table:

ICV_BPR0_EL1, Interrupt Controller Virtual Binary Point Register 0

Page 865

Number of implemented preemption bits Minimum value of BPR0
7 0
6 1
5 2

The number of implemented preemption bits is indicated by ICH_VTR_EL2.PREbits.

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum
value. On a reset, the binary point field is UNKNOWN.

Accesses to this register use the following encodings:

MRS <Xt>, ICC_BPR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1000 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_BPR0_EL1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_BPR0_EL1;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_BPR0_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_BPR0_EL1;

MSR ICC_BPR0_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1000 0b011

ICV_BPR0_EL1, Interrupt Controller Virtual Binary Point Register 0

Page 866

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_BPR0_EL1 = X[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_BPR0_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_BPR0_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_BPR0_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_BPR0_EL1, Interrupt Controller Virtual Binary Point Register 0

Page 867

ICV_BPR1_EL1, Interrupt Controller Virtual Binary
Point Register 1

The ICV_BPR1_EL1 characteristics are:

Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field.
The group priority field determines virtual Group 1 interrupt preemption.

Configuration
AArch64 System register ICV_BPR1_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ICV_BPR1[31:0] .

Attributes
ICV_BPR1_EL1 is a 64-bit register.

Field descriptions
The ICV_BPR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 BinaryPoint
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for virtual Group 0 and virtual Group 1 interrupts, the value
of this field controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt
preemption, and a subpriority field. This is done as follows:

Binary point
value

Group priority
field

Subpriority
field

Field with binary
point

0 - - -
1 [7:1] [0] ggggggg.s
2 [7:2] [1:0] gggggg.ss
3 [7:3] [2:0] ggggg.sss
4 [7:4] [3:0] gggg.ssss
5 [7:5] [4:0] ggg.sssss
6 [7:6] [5:0] gg.ssssss
7 [7] [6:0] g.sssssss

Writing 0 to this field will set this field to its reset value.

If ICV_CTLR_EL1.CBPR is set to 1, Non-secure EL1 reads return ICV_BPR0_EL1 + 1 saturated to 0b111. Non-secure
EL1 writes are ignored.

If ICV_CTLR_EL1.CBPR is set to 1, Secure EL1 reads return ICV_BPR0_EL1. Secure EL1 writes modify
ICV_BPR0_EL1.

This field resets to an IMPLEMENTATION DEFINED non-zero value.

ICV_BPR1_EL1, Interrupt Controller Virtual Binary Point Register 1

Page 868

Accessing the ICV_BPR1_EL1
The reset value is IMPLEMENTATION DEFINED, but is equal to the minimum value of ICV_BPR0_EL1 plus one.

An attempt to program the binary point field to a value less than the reset value sets the field to the reset value.

Accesses to this register use the following encodings:

MRS <Xt>, ICC_BPR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_BPR1_EL1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_BPR1_EL1_S;

else
return ICC_BPR1_EL1_NS;

else
return ICC_BPR1_EL1;

elsif PSTATE.EL == EL2 then
if ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_BPR1_EL1_S;

else
return ICC_BPR1_EL1_NS;

else
return ICC_BPR1_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
return ICC_BPR1_EL1_S;

else
return ICC_BPR1_EL1_NS;

MSR ICC_BPR1_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b011

ICV_BPR1_EL1, Interrupt Controller Virtual Binary Point Register 1

Page 869

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_BPR1_EL1 = X[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_BPR1_EL1_S = X[t];

else
ICC_BPR1_EL1_NS = X[t];

else
ICC_BPR1_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_BPR1_EL1_S = X[t];

else
ICC_BPR1_EL1_NS = X[t];

else
ICC_BPR1_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
ICC_BPR1_EL1_S = X[t];

else
ICC_BPR1_EL1_NS = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_BPR1_EL1, Interrupt Controller Virtual Binary Point Register 1

Page 870

ICV_CTLR_EL1, Interrupt Controller Virtual Control
Register

The ICV_CTLR_EL1 characteristics are:

Purpose
Controls aspects of the behavior of the GIC virtual CPU interface and provides information about the features
implemented.

Configuration
AArch64 System register ICV_CTLR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ICV_CTLR[31:0] .

Attributes
ICV_CTLR_EL1 is a 64-bit register.

Field descriptions
The ICV_CTLR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 ExtRangeRSSRES0A3VSEIS IDbits PRIbits RES0 EOImodeCBPR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:20]

Reserved, RES0.

ExtRange, bit [19]

Extended INTID range (read-only).

ExtRange Meaning
0b0 CPU interface does not support INTIDs in the range

1024..8191.
• Behaviour is UNPREDICTABLE if the IRI delivers an

interrupt in the range 1024 to 8191 to the CPU
interface.

Note
Arm strongly recommends that the
IRI is not configured to deliver
interrupts in this range to a PE that
does not support them.

0b1 CPU interface supports INTIDs in the range 1024..8191
• All INTIDs in the range 1024..8191 are treated as

requiring deactivation.

ICV_CTLR_EL1.ExtRange is an alias of ICC_CTLR_EL1.ExtRange.

RSS, bit [18]

Range Selector Support. Possible values are:

ICV_CTLR_EL1, Interrupt Controller Virtual Control Register

Page 871

RSS Meaning
0b0 Targeted SGIs with affinity level 0 values of 0 - 15 are supported.
0b1 Targeted SGIs with affinity level 0 values of 0 - 255 are supported.

This bit is read-only.

Bits [17:16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

A3V Meaning
0b0 The virtual CPU interface logic only supports zero values of

Affinity 3 in SGI generation System registers.
0b1 The virtual CPU interface logic supports non-zero values of

Affinity 3 in SGI generation System registers.

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the virtual CPU interface supports local generation
of SEIs:

SEIS Meaning
0b0 The virtual CPU interface logic does not support local generation

of SEIs.
0b1 The virtual CPU interface logic supports local generation of SEIs.

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of virtual interrupt identifier bits supported:

IDbits Meaning
0b000 16 bits.
0b001 24 bits.

All other values are reserved.

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.

An implementation must implement at least 32 levels of physical priority (5 priority bits).

Note

This field always returns the number of priority bits implemented.

The division between group priority and subpriority is defined in the binary point registers ICV_BPR0_EL1 and
ICV_BPR1_EL1.

Bits [7:2]

Reserved, RES0.

EOImode, bit [1]

Virtual EOI mode. Controls whether a write to an End of Interrupt register also deactivates the virtual interrupt:

ICV_CTLR_EL1, Interrupt Controller Virtual Control Register

Page 872

EOImode Meaning
0b0 ICV_EOIR0_EL1 and ICV_EOIR1_EL1 provide both priority

drop and interrupt deactivation functionality. Accesses to
ICV_DIR_EL1 are UNPREDICTABLE.

0b1 ICV_EOIR0_EL1 and ICV_EOIR1_EL1 provide priority drop
functionality only. ICV_DIR_EL1 provides interrupt
deactivation functionality.

This field resets to an architecturally UNKNOWN value.

CBPR, bit [0]

Common Binary Point Register. Controls whether the same register is used for interrupt preemption of both virtual
Group 0 and virtual Group 1 interrupts:

CBPR Meaning
0b0 ICV_BPR1_EL1 determines the preemption group for virtual

Group 1 interrupts.
0b1 Reads of ICV_BPR1_EL1 return ICV_BPR0_EL1 plus one,

saturated to 0b111. Writes to ICV_BPR1_EL1 are ignored.

This field resets to an architecturally UNKNOWN value.

Accessing the ICV_CTLR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ICC_CTLR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b100

ICV_CTLR_EL1, Interrupt Controller Virtual Control Register

Page 873

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_CTLR_EL1;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_CTLR_EL1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_CTLR_EL1_S;

else
return ICC_CTLR_EL1_NS;

else
return ICC_CTLR_EL1;

elsif PSTATE.EL == EL2 then
if ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_CTLR_EL1_S;

else
return ICC_CTLR_EL1_NS;

else
return ICC_CTLR_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
return ICC_CTLR_EL1_S;

else
return ICC_CTLR_EL1_NS;

MSR ICC_CTLR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b100

ICV_CTLR_EL1, Interrupt Controller Virtual Control Register

Page 874

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_CTLR_EL1 = X[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_CTLR_EL1 = X[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_CTLR_EL1_S = X[t];

else
ICC_CTLR_EL1_NS = X[t];

else
ICC_CTLR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_CTLR_EL1_S = X[t];

else
ICC_CTLR_EL1_NS = X[t];

else
ICC_CTLR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
ICC_CTLR_EL1_S = X[t];

else
ICC_CTLR_EL1_NS = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_CTLR_EL1, Interrupt Controller Virtual Control Register

Page 875

ICV_DIR_EL1, Interrupt Controller Deactivate Virtual
Interrupt Register

The ICV_DIR_EL1 characteristics are:

Purpose
When interrupt priority drop is separated from interrupt deactivation, a write to this register deactivates the specified
virtual interrupt.

Configuration
AArch64 System register ICV_DIR_EL1 bits [31:0] performs the same function as AArch32 System register
ICV_DIR[31:0] .

Attributes
ICV_DIR_EL1 is a 64-bit register.

Field descriptions
The ICV_DIR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 INTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the virtual interrupt to be deactivated.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR_EL1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_DIR_EL1
When EOImode == 0, writes are ignored. In systems supporting system error generation, an implementation might
generate an SEI.

Accesses to this register use the following encodings:

MSR ICC_DIR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1011 0b001

ICV_DIR_EL1, Interrupt Controller Deactivate Virtual Interrupt Register

Page 876

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TDIR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_DIR_EL1 = X[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_DIR_EL1 = X[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_DIR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_DIR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_DIR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_DIR_EL1, Interrupt Controller Deactivate Virtual Interrupt Register

Page 877

ICV_EOIR0_EL1, Interrupt Controller Virtual End Of
Interrupt Register 0

The ICV_EOIR0_EL1 characteristics are:

Purpose
A PE writes to this register to inform the CPU interface that it has completed the processing of the specified virtual
Group 0 interrupt.

Configuration
AArch64 System register ICV_EOIR0_EL1 performs the same function as AArch32 System register ICV_EOIR0.

Attributes
ICV_EOIR0_EL1 is a 64-bit register.

Field descriptions
The ICV_EOIR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 INTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICV_IAR0_EL1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR_EL1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

If the ICV_CTLR.EOImode bit is 0, a write to this register drops the priority for the virtual interrupt, and also
deactivates the virtual interrupt.

If the ICV_CTLR.EOImode bit is 1, a write to this register only drops the priority for the virtual interrupt. Software
must write to ICV_DIR_EL1 to deactivate the virtual interrupt.

Accessing the ICV_EOIR0_EL1
A write to this register must correspond to the most recent valid read by this vPE from a Virtual Interrupt
Acknowledge Register, and must correspond to the INTID that was read from ICV_IAR0_EL1, otherwise the system
behavior is UNPREDICTABLE. A valid read is a read that returns a valid INTID that is not a special INTID.

Accesses to this register use the following encodings:

MSR ICC_EOIR0_EL1, <Xt>

op0 op1 CRn CRm op2

ICV_EOIR0_EL1, Interrupt Controller Virtual End Of Interrupt Register 0

Page 878

0b11 0b000 0b1100 0b1000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_EOIR0_EL1 = X[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_EOIR0_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_EOIR0_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_EOIR0_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_EOIR0_EL1, Interrupt Controller Virtual End Of Interrupt Register 0

Page 879

ICV_EOIR1_EL1, Interrupt Controller Virtual End Of
Interrupt Register 1

The ICV_EOIR1_EL1 characteristics are:

Purpose
A PE writes to this register to inform the CPU interface that it has completed the processing of the specified virtual
Group 1 interrupt.

Configuration
AArch64 System register ICV_EOIR1_EL1 performs the same function as AArch32 System register ICV_EOIR1.

Attributes
ICV_EOIR1_EL1 is a 64-bit register.

Field descriptions
The ICV_EOIR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 INTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICV_IAR1_EL1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR_EL1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

If the ICV_CTLR.EOImode bit is 0, a write to this register drops the priority for the virtual interrupt, and also
deactivates the virtual interrupt.

If the ICV_CTLR.EOImode bit is 1, a write to this register only drops the priority for the virtual interrupt. Software
must write to ICV_DIR_EL1 to deactivate the virtual interrupt.

Accessing the ICV_EOIR1_EL1
A write to this register must correspond to the most recent valid read by this vPE from a Virtual Interrupt
Acknowledge Register, and must correspond to the INTID that was read from ICV_IAR1_EL1, otherwise the system
behavior is UNPREDICTABLE. A valid read is a read that returns a valid INTID that is not a special INTID.

Accesses to this register use the following encodings:

MSR ICC_EOIR1_EL1, <Xt>

op0 op1 CRn CRm op2

ICV_EOIR1_EL1, Interrupt Controller Virtual End Of Interrupt Register 1

Page 880

0b11 0b000 0b1100 0b1100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_EOIR1_EL1 = X[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_EOIR1_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_EOIR1_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_EOIR1_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_EOIR1_EL1, Interrupt Controller Virtual End Of Interrupt Register 1

Page 881

ICV_HPPIR0_EL1, Interrupt Controller Virtual Highest
Priority Pending Interrupt Register 0

The ICV_HPPIR0_EL1 characteristics are:

Purpose
Indicates the highest priority pending virtual Group 0 interrupt on the virtual CPU interface.

Configuration
AArch64 System register ICV_HPPIR0_EL1 performs the same function as AArch32 System register ICV_HPPIR0.

Attributes
ICV_HPPIR0_EL1 is a 64-bit register.

Field descriptions
The ICV_HPPIR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 INTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending virtual interrupt.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason.
This special INTID can take the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR_EL1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_HPPIR0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ICC_HPPIR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1000 0b010

ICV_HPPIR0_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

Page 882

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_HPPIR0_EL1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_HPPIR0_EL1;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_HPPIR0_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_HPPIR0_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_HPPIR0_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

Page 883

ICV_HPPIR1_EL1, Interrupt Controller Virtual Highest
Priority Pending Interrupt Register 1

The ICV_HPPIR1_EL1 characteristics are:

Purpose
Indicates the highest priority pending virtual Group 1 interrupt on the virtual CPU interface.

Configuration
AArch64 System register ICV_HPPIR1_EL1 performs the same function as AArch32 System register ICV_HPPIR1.

Attributes
ICV_HPPIR1_EL1 is a 64-bit register.

Field descriptions
The ICV_HPPIR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 INTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending virtual interrupt.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason.
This special INTID can take the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR_EL1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_HPPIR1_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ICC_HPPIR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b010

ICV_HPPIR1_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

Page 884

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_HPPIR1_EL1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_HPPIR1_EL1;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_HPPIR1_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_HPPIR1_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_HPPIR1_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

Page 885

ICV_IAR0_EL1, Interrupt Controller Virtual Interrupt
Acknowledge Register 0

The ICV_IAR0_EL1 characteristics are:

Purpose
The PE reads this register to obtain the INTID of the signaled virtual Group 0 interrupt. This read acts as an
acknowledge for the interrupt.

Configuration
AArch64 System register ICV_IAR0_EL1 performs the same function as AArch32 System register ICV_IAR0.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU
interface logic must ensure that reads of this register are self-synchronising when interrupts are masked by the PE
(that is when PSTATE.{I,F} == {0,0}). This ensures that the effect of activating an interrupt on the signaling of
interrupt exceptions is observed when a read of this register is architecturally executed so that no spurious interrupt
exception occurs if interrupts are unmasked by an instruction immediately following the read. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes
ICV_IAR0_EL1 is a 64-bit register.

Field descriptions
The ICV_IAR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 INTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled virtual interrupt.

This is the INTID of the highest priority pending virtual interrupt, if that interrupt is of sufficient priority for it to be
signaled to the PE, and if it can be acknowledged.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason.
This special INTID can take the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR_EL1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_IAR0_EL1
Accesses to this register use the following encodings:

ICV_IAR0_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 0

Page 886

MRS <Xt>, ICC_IAR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_IAR0_EL1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_IAR0_EL1;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_IAR0_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_IAR0_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_IAR0_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 0

Page 887

ICV_IAR1_EL1, Interrupt Controller Virtual Interrupt
Acknowledge Register 1

The ICV_IAR1_EL1 characteristics are:

Purpose
The PE reads this register to obtain the INTID of the signaled virtual Group 1 interrupt. This read acts as an
acknowledge for the interrupt.

Configuration
AArch64 System register ICV_IAR1_EL1 performs the same function as AArch32 System register ICV_IAR1.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU
interface logic must ensure that reads of this register are self-synchronising when interrupts are masked by the PE
(that is when PSTATE.{I,F} == {0,0}). This ensures that the effect of activating an interrupt on the signaling of
interrupt exceptions is observed when a read of this register is architecturally executed so that no spurious interrupt
exception occurs if interrupts are unmasked by an instruction immediately following the read. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes
ICV_IAR1_EL1 is a 64-bit register.

Field descriptions
The ICV_IAR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 INTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled virtual interrupt.

This is the INTID of the highest priority pending virtual interrupt, if that interrupt is of sufficient priority for it to be
signaled to the PE, and if it can be acknowledged.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason.
This special INTID can take the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR_EL1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_IAR1_EL1
Accesses to this register use the following encodings:

ICV_IAR1_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 1

Page 888

MRS <Xt>, ICC_IAR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_IAR1_EL1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_IAR1_EL1;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_IAR1_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_IAR1_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_IAR1_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 1

Page 889

ICV_IGRPEN0_EL1, Interrupt Controller Virtual
Interrupt Group 0 Enable register

The ICV_IGRPEN0_EL1 characteristics are:

Purpose
Controls whether virtual Group 0 interrupts are enabled or not.

Configuration
AArch64 System register ICV_IGRPEN0_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ICV_IGRPEN0[31:0] .

Attributes
ICV_IGRPEN0_EL1 is a 64-bit register.

Field descriptions
The ICV_IGRPEN0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 Enable
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:1]

Reserved, RES0.

Enable, bit [0]

Enables virtual Group 0 interrupts.

Enable Meaning
0b0 Virtual Group 0 interrupts are disabled.
0b1 Virtual Group 0 interrupts are enabled.

This field resets to an architecturally UNKNOWN value.

Accessing the ICV_IGRPEN0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ICC_IGRPEN0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b110

ICV_IGRPEN0_EL1, Interrupt Controller Virtual Interrupt Group 0 Enable register

Page 890

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ICC_IGRPENn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then
return ICV_IGRPEN0_EL1;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_IGRPEN0_EL1;

elsif PSTATE.EL == EL2 then
if ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_IGRPEN0_EL1;
elsif PSTATE.EL == EL3 then

if ICC_SRE_EL3.SRE == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_IGRPEN0_EL1;

MSR ICC_IGRPEN0_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.ICC_IGRPENn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then
ICV_IGRPEN0_EL1 = X[t];

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_IGRPEN0_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_IGRPEN0_EL1 = X[t];
elsif PSTATE.EL == EL3 then

if ICC_SRE_EL3.SRE == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_IGRPEN0_EL1 = X[t];

ICV_IGRPEN0_EL1, Interrupt Controller Virtual Interrupt Group 0 Enable register

Page 891

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_IGRPEN0_EL1, Interrupt Controller Virtual Interrupt Group 0 Enable register

Page 892

ICV_IGRPEN1_EL1, Interrupt Controller Virtual
Interrupt Group 1 Enable register

The ICV_IGRPEN1_EL1 characteristics are:

Purpose
Controls whether virtual Group 1 interrupts are enabled for the current Security state.

Configuration
AArch64 System register ICV_IGRPEN1_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ICV_IGRPEN1[31:0] .

Attributes
ICV_IGRPEN1_EL1 is a 64-bit register.

Field descriptions
The ICV_IGRPEN1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 Enable
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:1]

Reserved, RES0.

Enable, bit [0]

Enables virtual Group 1 interrupts.

Enable Meaning
0b0 Virtual Group 1 interrupts are disabled.
0b1 Virtual Group 1 interrupts are enabled.

This field resets to an architecturally UNKNOWN value.

Accessing the ICV_IGRPEN1_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ICC_IGRPEN1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b111

ICV_IGRPEN1_EL1, Interrupt Controller Virtual Interrupt Group 1 Enable register

Page 893

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ICC_IGRPENn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then
return ICV_IGRPEN1_EL1;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) then
if SCR_EL3.NS == '0' then

return ICC_IGRPEN1_EL1_S;
else

return ICC_IGRPEN1_EL1_NS;
else

return ICC_IGRPEN1_EL1;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) then
if SCR_EL3.NS == '0' then

return ICC_IGRPEN1_EL1_S;
else

return ICC_IGRPEN1_EL1_NS;
else

return ICC_IGRPEN1_EL1;
elsif PSTATE.EL == EL3 then

if ICC_SRE_EL3.SRE == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
if SCR_EL3.NS == '0' then

return ICC_IGRPEN1_EL1_S;
else

return ICC_IGRPEN1_EL1_NS;

MSR ICC_IGRPEN1_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b111

ICV_IGRPEN1_EL1, Interrupt Controller Virtual Interrupt Group 1 Enable register

Page 894

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.ICC_IGRPENn_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then
ICV_IGRPEN1_EL1 = X[t];

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) then
if SCR_EL3.NS == '0' then

ICC_IGRPEN1_EL1_S = X[t];
else

ICC_IGRPEN1_EL1_NS = X[t];
else

ICC_IGRPEN1_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) then
if SCR_EL3.NS == '0' then

ICC_IGRPEN1_EL1_S = X[t];
else

ICC_IGRPEN1_EL1_NS = X[t];
else

ICC_IGRPEN1_EL1 = X[t];
elsif PSTATE.EL == EL3 then

if ICC_SRE_EL3.SRE == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
if SCR_EL3.NS == '0' then

ICC_IGRPEN1_EL1_S = X[t];
else

ICC_IGRPEN1_EL1_NS = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_IGRPEN1_EL1, Interrupt Controller Virtual Interrupt Group 1 Enable register

Page 895

ICV_PMR_EL1, Interrupt Controller Virtual Interrupt
Priority Mask Register

The ICV_PMR_EL1 characteristics are:

Purpose
Provides a virtual interrupt priority filter. Only virtual interrupts with a higher priority than the value in this register
are signaled to the PE.

Configuration
AArch64 System register ICV_PMR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ICV_PMR[31:0] .

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU
interface logic must ensure that writes to this register are self-synchronising. This ensures that no interrupts below
the written PMR value will be taken after a write to this register is architecturally executed. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes
ICV_PMR_EL1 is a 64-bit register.

Field descriptions
The ICV_PMR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 Priority
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:8]

Reserved, RES0.

Priority, bits [7:0]

The priority mask level for the virtual CPU interface. If the priority of a virtual interrupt is higher than the value
indicated by this field, the interface signals the virtual interrupt to the PE.

The possible priority field values are as follows:

Implemented
priority bits

Possible priority field
values

Number of
priority levels

[7:0] 0x00-0xFF (0-255), all
values

256

[7:1] 0x00-0xFE (0-254), even
values only

128

[7:2] 0x00-0xFC (0-252), in steps
of 4

64

[7:3] 0x00-0xF8 (0-248), in steps
of 8

32

[7:4] 0x00-0xF0 (0-240), in steps
of 16

16

Unimplemented priority bits are RAZ/WI.

ICV_PMR_EL1, Interrupt Controller Virtual Interrupt Priority Mask Register

Page 896

This field resets to an architecturally UNKNOWN value.

Accessing the ICV_PMR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ICC_PMR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_PMR_EL1;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_PMR_EL1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_PMR_EL1;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_PMR_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_PMR_EL1;

MSR ICC_PMR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0110 0b000

ICV_PMR_EL1, Interrupt Controller Virtual Interrupt Priority Mask Register

Page 897

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_PMR_EL1 = X[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_PMR_EL1 = X[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_PMR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICC_PMR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_PMR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_PMR_EL1, Interrupt Controller Virtual Interrupt Priority Mask Register

Page 898

ICV_RPR_EL1, Interrupt Controller Virtual Running
Priority Register

The ICV_RPR_EL1 characteristics are:

Purpose
Indicates the Running priority of the virtual CPU interface.

Configuration
AArch64 System register ICV_RPR_EL1 performs the same function as AArch32 System register ICV_RPR.

Attributes
ICV_RPR_EL1 is a 64-bit register.

Field descriptions
The ICV_RPR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 Priority
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the virtual CPU interface. This is the group priority of the current active virtual
interrupt.

If there are no active interrupts on the virtual CPU interface, or all active interrupts have undergone a priority drop,
the value returned is the Idle priority.

The priority returned is the group priority as if the BPR for the current Exception level and Security state was set to
the minimum value of BPR for the number of implemented priority bits.

Note

If 8 bits of priority are implemented the group priority is bits[7:1] of the
priority.

Accessing the ICV_RPR_EL1
If there are no active interrupts on the virtual CPU interface, or all active interrupts have undergone a priority drop,
the value returned is the Idle priority.

Software cannot determine the number of implemented priority bits from a read of this register.

Accesses to this register use the following encodings:

ICV_RPR_EL1, Interrupt Controller Virtual Running Priority Register

Page 899

MRS <Xt>, ICC_RPR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1011 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ICC_SRE_EL1.SRE == '0' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_RPR_EL1;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_RPR_EL1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_RPR_EL1;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_RPR_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_RPR_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_RPR_EL1, Interrupt Controller Virtual Running Priority Register

Page 900

ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register
0

The ID_AA64AFR0_EL1 characteristics are:

Purpose
Provides information about the IMPLEMENTATION DEFINED features of the PE in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for fields in ID
registers.

Configuration
There are no configuration notes.

Attributes
ID_AA64AFR0_EL1 is a 64-bit register.

Field descriptions
The ID_AA64AFR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:28]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [27:24]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [23:20]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [19:16]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [15:12]

IMPLEMENTATION DEFINED.

ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register 0

Page 901

IMPLEMENTATION DEFINED, bits [11:8]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [7:4]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [3:0]

IMPLEMENTATION DEFINED.

Accessing the ID_AA64AFR0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_AA64AFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0101 0b100

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64AFR0_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64AFR0_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64AFR0_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register 0

Page 902

ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register
1

The ID_AA64AFR1_EL1 characteristics are:

Purpose
Reserved for future expansion of information about the IMPLEMENTATION DEFINED features of the PE in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for fields in ID
registers.

Configuration
There are no configuration notes.

Attributes
ID_AA64AFR1_EL1 is a 64-bit register.

Field descriptions
The ID_AA64AFR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0
RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, RES0.

Accessing the ID_AA64AFR1_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_AA64AFR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0101 0b101

ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register 1

Page 903

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64AFR1_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64AFR1_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64AFR1_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register 1

Page 904

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0
The ID_AA64DFR0_EL1 characteristics are:

Purpose
Provides top level information about the debug system in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for fields in ID
registers.

Configuration
The external register EDDFR gives information from this register.

Attributes
ID_AA64DFR0_EL1 is a 64-bit register.

Field descriptions
The ID_AA64DFR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 MTPMU TraceBuffer TraceFilt DoubleLock PMSVer

CTX_CMPs RES0 WRPs RES0 BRPs PMUVer TraceVer DebugVer
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:52]

Reserved, RES0.

MTPMU, bits [51:48]

Multi-threaded PMU extension. Defined values are:

MTPMU Meaning
0b0000 ARMv8.6-MTPMU not implemented. If PMUv3 is

implemented, it is IMPLEMENTATION DEFINED whether
PMEVTYPER<n>_EL0.MT are read/write or RES0.

0b0001 ARMv8.6-MTPMU implemented and
PMEVTYPER<n>_EL0.MT are read/write. When
ARMv8.6-MTPMU is disabled, the Effective values of
PMEVTYPER<n>_EL0.MT are 0.

0b1111 ARMv8.6-MTPMU not implemented. If PMUv3 is
implemented, PMEVTYPER<n>_EL0.MT are RES0.

All other values are reserved.

ARMv8.6-MTPMU implements the functionality identified by the value 0b0001.

In an Armv8.6-compliant implementation that includes PMUv3, the value 0b0000 is not permitted.

In an implementation that does not include PMUv3, the value 0b0001 is not permitted.

TraceBuffer, bits [47:44]

Trace Buffer Extension version. Defined values are:

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

Page 905

TraceBuffer Meaning
0b0000 Trace Buffer Extension not implemented.
0b0001 Trace Buffer Extension implemented.

All other values are reserved.

TraceFilt, bits [43:40]

Armv8.4 Self-hosted Trace Extension version. Defined values are:

TraceFilt Meaning
0b0000 Armv8.4 Self-hosted Trace Extension not implemented.
0b0001 Armv8.4 Self-hosted Trace Extension implemented.

All other values are reserved.

ARMv8.4-Trace implements the functionality identified by the value 0b0001.

DoubleLock, bits [39:36]

OS Double Lock implemented. Defined values are:

DoubleLock Meaning
0b0000 OS Double Lock implemented. OSDLR_EL1 is RW.
0b1111 OS Double Lock not implemented. OSDLR_EL1 is RAZ/

WI.

All other values are reserved.

ARMv8.0-DoubleLock implements the functionality identified by the value 0b0000.

PMSVer, bits [35:32]

Statistical Profiling Extension version. Defined values are:

PMSVer Meaning
0b0000 Statistical Profiling Extension not implemented.
0b0001 Statistical Profiling Extension implemented.
0b0010 As 0b0001 and also includes support for:

• The Event packet Alignment flag.
• If SVE is implemented, the Scalable Vector extensions to

Statistical Profiling.

All other values are reserved.

SPE implements the functionality identified by the value 0b0001.

ARMv8.3-SPE implements the functionality added by the value 0b0010.

If ARMv8.3-SPE is implemented, the values 0b0000 and 0b0001 are not permitted.

CTX_CMPs, bits [31:28]

Number of breakpoints that are context-aware, minus 1. These are the highest numbered breakpoints.

Bits [27:24]

Reserved, RES0.

WRPs, bits [23:20]

Number of watchpoints, minus 1. The value of 0b0000 is reserved.

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

Page 906

Bits [19:16]

Reserved, RES0.

BRPs, bits [15:12]

Number of breakpoints, minus 1. The value of 0b0000 is reserved.

PMUVer, bits [11:8]

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the Alternative ID scheme described in 'Alternative ID
scheme used for the Performance Monitors Extension version' in the Arm® Architecture Reference Manual, Armv8,
for Armv8-A architecture profile.

Defined values are:

PMUVer Meaning
0b0000 Performance Monitors Extension not implemented.
0b0001 Performance Monitors Extension implemented, PMUv3.
0b0100 PMUv3 for Armv8.1. As 0b0001, and also includes support

for:
• Extended 16-bit PMEVTYPER<n>_EL0.evtCount field.
• If EL2 is implemented, the MDCR_EL2.HPMD control

bit.
0b0101 PMUv3 for Armv8.4. As 0b0100 and also includes support for

the PMMIR_EL1 register.
0b0110 PMUv3 for Armv8.5. As 0b0101 and also includes support for:

• 64-bit event counters.
• If EL2 is implemented, the MDCR_EL2.HCCD control

bit.
• If EL3 is implemented, the MDCR_EL3.SCCD control bit.

0b1111 IMPLEMENTATION DEFINED form of performance monitors
supported, PMUv3 not supported. Arm does not recommend
this value in new implementations.

All other values are reserved.

ARMv8.1-PMU implements the functionality identified by the value 0b0100.

ARMv8.4-PMU implements the functionality identified by the value 0b0101.

ARMv8.5-PMU implements the functionality identified by the value 0b0110.

In an Armv8.1-compliant implementation that includes PMUv3, the value 0b0001 is not permitted.

In an Armv8.4-compliant implementation that includes PMUv3, the value 0b0100 is not permitted.

In an Armv8.5-compliant implementation that includes PMUv3, the value 0b0101 is not permitted.

TraceVer, bits [7:4]

Trace support. Indicates whether System register interface to a PE trace unit is implemented. Defined values are:

TraceVer Meaning
0b0000 PE trace unit System registers not implemented.
0b0001 PE trace unit System registers implemented.

All other values are reserved.

When PE trace unit System registers are implemented, see TRCIDR1 for tracing capabilities of the trace unit.

DebugVer, bits [3:0]

Debug architecture version. Indicates presence of Armv8 debug architecture. Defined values are:

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

Page 907

DebugVer Meaning
0b0110 Armv8 debug architecture.
0b0111 Armv8 debug architecture with Virtualization Host

Extensions.
0b1000 Armv8.2 debug architecture.
0b1001 Armv8.4 debug architecture.

All other values are reserved.

ARMv8.2-Debug adds the functionality identified by the value 0b1000.

• If ARMv8.1-VHE is not implemented the only permitted value is 0b0110.
• In an Armv8.0 implementation the value 0b1000 is not permitted.

Accessing the ID_AA64DFR0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_AA64DFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0101 0b000

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64DFR0_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64DFR0_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64DFR0_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

Page 908

ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1
The ID_AA64DFR1_EL1 characteristics are:

Purpose
Reserved for future expansion of top level information about the debug system in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for fields in ID
registers.

Configuration
There are no configuration notes.

Attributes
ID_AA64DFR1_EL1 is a 64-bit register.

Field descriptions
The ID_AA64DFR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0
RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, RES0.

Accessing the ID_AA64DFR1_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_AA64DFR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0101 0b001

ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1

Page 909

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64DFR1_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64DFR1_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64DFR1_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1

Page 910

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute
Register 0

The ID_AA64ISAR0_EL1 characteristics are:

Purpose
Provides information about the instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for fields in ID
registers.

Configuration
There are no configuration notes.

Attributes
ID_AA64ISAR0_EL1 is a 64-bit register.

Field descriptions
The ID_AA64ISAR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RNDR TLB TS FHM DP SM4 SM3 SHA3
RDM TME Atomic CRC32 SHA2 SHA1 AES RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RNDR, bits [63:60]

Indicates support for Random Number instructions in AArch64 state. Defined values are:

RNDR Meaning
0b0000 No Random Number instructions are implemented.
0b0001 RNDR and RNDRRS registers are implemented.

All other values are reserved.

ARMv8.5-RNG implements the functionality identified by the value 0b0001.

From Armv8.5, the permitted values are 0b0000 and 0b0001.

TLB, bits [59:56]

Indicates support for Outer shareable and TLB range maintenance instructions. Defined values are:

TLB Meaning
0b0000 Outer shareable and TLB range maintenance instructions are

not implemented.
0b0001 Outer shareable TLB maintenance instructions are

implemented.
0b0010 Outer shareable and TLB range maintenance instructions are

implemented.

All other values are reserved.

ARMv8.4-TLBI implements the functionality identified by the values 0b0001 and 0b0010.

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 911

From Armv8.4, the only permitted value is 0b0010.

TS, bits [55:52]

Indicates support for flag manipulation instructions. Defined values are:

TS Meaning
0b0000 No flag manipulation instructions are implemented.
0b0001 CFINV, RMIF, SETF16, and SETF8 instructions are

implemented.
0b0010 CFINV, RMIF, SETF16, SETF8, AXFLAG, and XAFLAG

instructions are implemented.

All other values are reserved.

ARMv8.4-CondM implements the functionality identified by the value 0b0001.

ARMv8.5-CondM implements the functionality identified by the value 0b0010.

From Armv8.4, the only permitted value is 0b0001.

From Armv8.5, the only permitted value is 0b0010.

FHM, bits [51:48]

Indicates support for FMLAL and FMLSL instructions. Defined values are:

FHM Meaning
0b0000 FMLAL and FMLSL instructions are not implemented.
0b0001 FMLAL and FMLSL instructions are implemented.

All other values are reserved.

ARMv8.2-FHM implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

DP, bits [47:44]

Indicates support for Dot Product instructions in AArch64 state. Defined values are:

DP Meaning
0b0000 No Dot Product instructions implemented.
0b0001 UDOT and SDOT instructions implemented.

All other values are reserved.

ARMv8.2-DotProd implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

SM4, bits [43:40]

Indicates support for SM4 instructions in AArch64 state. Defined values are:

SM4 Meaning
0b0000 No SM4 instructions implemented.
0b0001 SM4E and SM4EKEY instructions implemented.

All other values are reserved.

If ARMv8.2-SM is not implemented, the value 0b0001 is reserved.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

This field must have the same value as ID_AA64ISAR0_EL1.SM3.

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 912

SM3, bits [39:36]

Indicates support for SM3 instructions in AArch64 state. Defined values are:

SM3 Meaning
0b0000 No SM3 instructions implemented.
0b0001 SM3SS1, SM3TT1A, SM3TT1B, SM3TT2A, SM3TT2B,

SM3PARTW1, and SM3PARTW2 instructions implemented.

All other values are reserved.

If ARMv8.2-SM is not implemented, the value 0b0001 is reserved.

ARMv8.2-SM implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

This field must have the same value as ID_AA64ISAR0_EL1.SM4.

SHA3, bits [35:32]

Indicates support for SHA3 instructions in AArch64 state. Defined values are:

SHA3 Meaning
0b0000 No SHA3 instructions implemented.
0b0001 EOR3, RAX1, XAR, and BCAX instructions implemented.

All other values are reserved.

If ARMv8.2-SHA is not implemented, the value 0b0001 is reserved.

ARMv8.2-SHA implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR0_EL1.SHA1 is 0b0000, then this field must have the value 0b0000.

If the value of this field is 0b0001, then ID_AA64ISAR0_EL1.SHA2 must have the value 0b0010.

RDM, bits [31:28]

Indicates support for SQRDMLAH and SQRDMLSH instructions in AArch64 state. Defined values are:

RDM Meaning
0b0000 No RDMA instructions implemented.
0b0001 SQRDMLAH and SQRDMLSH instructions implemented.

All other values are reserved.

ARMv8.1-RDMA implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.

TME, bits [27:24]

Indicates support for TME instructions. Defined values are:

TME Meaning
0b0000 TME instructions are not implemented.
0b0001 TCANCEL, TCOMMIT, TSTART, and TTEST instructions are

implemented.

If HCR_EL2.TME == 0, reads of this field at EL1 return 0.

If SCR_EL3.TME == 0, reads of this field at EL1 or EL2 return 0.

All other values are reserved.

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 913

Atomic, bits [23:20]

Indicates support for Atomic instructions in AArch64 state. Defined values are:

Atomic Meaning
0b0000 No Atomic instructions implemented.
0b0010 LDADD, LDCLR, LDEOR, LDSET, LDSMAX, LDSMIN,

LDUMAX, LDUMIN, CAS, CASP, and SWP instructions
implemented.

All other values are reserved.

ARMv8.1-LSE implements the functionality identified by the value 0b0010.

From Armv8.1, the only permitted value is 0b0010.

CRC32, bits [19:16]

CRC32 instructions implemented in AArch64 state. Defined values are:

CRC32 Meaning
0b0000 No CRC32 instructions implemented.
0b0001 CRC32B, CRC32H, CRC32W, CRC32X, CRC32CB, CRC32CH,

CRC32CW, and CRC32CX instructions implemented.

All other values are reserved.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.1, the only permitted value is 0b0001.

SHA2, bits [15:12]

SHA2 instructions implemented in AArch64 state. Defined values are:

SHA2 Meaning
0b0000 No SHA2 instructions implemented.
0b0001 SHA256H, SHA256H2, SHA256SU0, and SHA256SU1

instructions implemented.
0b0010 As 0b0001, plus SHA512H, SHA512H2, SHA512SU0, and

SHA512SU1 instructions implemented.

All other values are reserved.

If ARMv8.2-SHA is not implemented the value 0b0010 is reserved.

From Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

If the value of ID_AA64ISAR0_EL1.SHA1 is 0b0000, then this field must have the value 0b0000.

If the value of this field is 0b0010, then ID_AA64ISAR0_EL1.SHA3 must have the value 0b0001.

SHA1, bits [11:8]

SHA1 instructions implemented in AArch64 state. Defined values are:

SHA1 Meaning
0b0000 No SHA1 instructions implemented.
0b0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1

instructions implemented.

All other values are reserved.

From Armv8, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR0_EL1.SHA2 is 0b0000, then this field must have the value 0b0000.

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 914

AES, bits [7:4]

AES instructions implemented in AArch64 state. Defined values are:

AES Meaning
0b0000 No AES instructions implemented.
0b0001 AESE, AESD, AESMC, and AESIMC instructions implemented.
0b0010 As for 0b0001, plus PMULL/PMULL2 instructions operating on

64-bit data quantities.

All other values are reserved.

From Armv8, the permitted values are 0b0000, 0b0001, and 0b0010.

Bits [3:0]

Reserved, RES0.

Accessing the ID_AA64ISAR0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_AA64ISAR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0110 0b000

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64ISAR0_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64ISAR0_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64ISAR0_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 915

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute
Register 1

The ID_AA64ISAR1_EL1 characteristics are:

Purpose
Provides information about the features and instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for fields in ID
registers.

Configuration
If ID_AA64ISAR1_EL1.{API, APA} == {0000, 0000}, then:

• The TCR_EL1.{TBID,TBID0}, TCR_EL2.{TBID0,TBID1}, TCR_EL2.TBID and TCR_EL3.TBID bits are RES0.
• APIAKeyHi_EL1, APIAKeyLo_EL1, APIBKeyHi_EL1, APIBKeyLo_EL1, APDAKeyHi_EL1, APDAKeyLo_EL1,

APDBKeyHi_EL1, APDBKeyLo_EL1 are not allocated.
• SCTLR_ELx.EnIA, SCTLR_ELx.EnIB, SCTLR_ELx.EnDA, SCTLR_ELx.EnDB are all RES0.

If ID_AA64ISAR1_EL1.{GPI, GPA, API, APA} == {0000, 0000, 0000, 0000}, then:

• HCR_EL2.APK and HCR_EL2.API are RES0.
• SCR_EL3.APK and SCR_EL3.API are RES0.

Attributes
ID_AA64ISAR1_EL1 is a 64-bit register.

Field descriptions
The ID_AA64ISAR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 I8MM DGH BF16 SPECRES SB FRINTTS

GPI GPA LRCPC FCMA JSCVT API APA DPB
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

I8MM, bits [55:52]

Indicates support for Floating-point and Advanced SIMD Int8 matrix multiplication instructions in AArch64 state.
Defined values of this field are:

I8MM Meaning
0b0000 Int8 matrix multiplication instructions are not implemented.
0b0001 SMMLA, SUDOT, UMMLA, USMMLA, and USDOT instructions

are implemented.

All other values are reserved.

ARMv8.2-I8MM implements the functionality identified by 0b0001.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 916

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ZFR0_EL1.I8MM.

From Armv8.6, the only permitted value is 0b0001.

DGH, bits [51:48]

Indicates support for the Data Gathering Hint instruction. Defined values are:

DGH Meaning
0b0000 Data Gathering Hint is not implemented.
0b0001 Data Gathering Hint is implemented.

All other values are reserved.

ARMv8.0-DGH implements the functionality identified by 0b0001.

From ARMv8.0, the permitted values are 0b0000 and 0b0001.

If the DGH instruction has no effect in preventing the merging of memory accesses, the value of this field is 0.

BF16, bits [47:44]

Indicates support for Advanced SIMD and Floating-point BFloat16 instructions in AArch64 state. Defined values are:

BF16 Meaning
0b0000 BFloat16 instructions are not implemented.
0b0001 BFDOT, BFMLAL, BFMLAL2, BFMMLA, BFCVT, and BFCVT2

instructions are implemented.

All other values are reserved.

ARMv8.2-BF16 implements the functionality identified by 0b0001.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ZFR0_EL1.BF16.

From ARMv8.6, the only permitted value is 0b0001.

SPECRES, bits [43:40]

Indicates support for prediction invalidation instructions in AArch64 state. Defined values are:

SPECRES Meaning
0b0000 CFP RCTX, DVP RCTX, and CPP RCTX instructions are not

implemented.
0b0001 CFP RCTX, DVP RCTX, and CPP RCTX instructions are

implemented.

All other values are reserved.

ARMv8.0-PredInv implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

SB, bits [39:36]

Indicates support for SB instruction in AArch64 state. Defined values are:

SB Meaning
0b0000 SB instruction is not implemented.
0b0001 SB instruction is implemented.

All other values are reserved.

ARMv8.0-SB implements the functionality identified by 0b0001.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 917

From Armv8.5, the only permitted value is 0b0001.

FRINTTS, bits [35:32]

Indicates support for the FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X instructions are implemented. Defined
values are:

FRINTTS Meaning
0b0000 FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X

instructions are not implemented.
0b0001 FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X

instructions are implemented.

All other values are reserved.

ARMv8.5-FRINT implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

GPI, bits [31:28]

Indicates support for an IMPLEMENTATION DEFINED algorithm is implemented in the PE for generic code authentication
in AArch64 state. Defined values are:

GPI Meaning
0b0000 Generic Authentication using an IMPLEMENTATION DEFINED

algorithm is not implemented.
0b0001 Generic Authentication using an IMPLEMENTATION DEFINED

algorithm is implemented. This includes the PACGA instruction.

All other values are reserved.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR1_EL1.GPA is non-zero, this field must have the value 0b0000.

GPA, bits [27:24]

Indicates whether QARMA or Architected algorithm is implemented in the PE for generic code authentication in
AArch64 state. Defined values are:

GPA Meaning
0b0000 Generic Authentication using an Architected algorithm is not

implemented.
0b0001 Generic Authentication using the QARMA algorithm is

implemented. This includes the PACGA instruction.

All other values are reserved.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR1_EL1.GPI is non-zero, this field must have the value 0b0000.

LRCPC, bits [23:20]

Indicates support for weaker release consistency, RCpc, based model. Defined values are:

LRCPC Meaning
0b0000 The LDAPR*, LDAPUR*, and STLUR* instructions are not

implemented.
0b0001 The LDAPR* instructions are implemented.
0b0010 The LDAPR*, LDAPUR*, and STLUR* instructions are

implemented.

ARMv8.3-RCPC implements the functionality identified by the value 0b0001.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 918

ARMv8.4-RCPC implements the functionality identified by the value 0b0010.

In Armv8.3, the only permitted value is 0b0001.

From Armv8.4, the only permitted value is 0b0010.

All other values are reserved.

FCMA, bits [19:16]

Indicates support for complex number addition and multiplication, where numbers are stored in vectors. Defined
values are:

FCMA Meaning
0b0000 The FCMLA and FCADD instructions are not implemented.
0b0001 The FCMLA and FCADD instructions are implemented.

All other values are reserved.

ARMv8.3-CompNum implements the functionality identified by the value 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is 0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value is 0b0000.

JSCVT, bits [15:12]

Indicates support for JavaScript conversion from double precision floating point values to integers in AArch64 state.
Defined values are:

JSCVT Meaning
0b0000 The FJCVTZS instruction is not implemented.
0b0001 The FJCVTZS instruction is implemented.

All other values are reserved.

ARMv8.3.JSConv implements the functionality identified by 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is 0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value is 0b0000.

API, bits [11:8]

Indicates whether an IMPLEMENTATION DEFINED algorithm is implemented in the PE for address authentication, in
AArch64 state. This applies to all Pointer Authentication instructions other than the PACGA instruction. Defined values
are:

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 919

API Meaning
0b0000 Address Authentication using an IMPLEMENTATION DEFINED

algorithm is not implemented.
0b0001 Address Authentication using an IMPLEMENTATION DEFINED

algorithm is implemented, with the HaveEnhancedPAC() and
HaveEnhancedPAC2() functions returning FALSE.

0b0010 Address Authentication using an IMPLEMENTATION DEFINED
algorithm is implemented, with the HaveEnhancedPAC()
function returning TRUE, and the HaveEnhancedPAC2()
function returning FALSE.

0b0011 Address Authentication using an IMPLEMENTATION DEFINED
algorithm is implemented, with the HaveEnhancedPAC2()
function returning TRUE, and the HaveEnhancedPAC() function
returning FALSE.

0b0100 Address Authentication using an IMPLEMENTATION DEFINED
algorithm is implemented, with the HaveEnhancedPAC2()
function returning TRUE, the HaveFPAC() function returning
TRUE, the HaveFPACCombined() function returning FALSE,
and the HaveEnhancedPAC() function returning FALSE.

0b0101 Address Authentication using an IMPLEMENTATION DEFINED
algorithm is implemented, with the HaveEnhancedPAC2()
function returning TRUE, the HaveFPAC() function returning
TRUE, the HaveFPACCombined() function returning TRUE, and
the HaveEnhancedPAC() function returning FALSE.

All other values are reserved.

ARMv8.3-PAuth implements the functionality added by the values 0b0000, 0b0001, and 0b0010.

ARMv8.3-PAuth2 implements the functionality added by the value 0b0011.

ARMv8.3-FPAC implements the functionality added by the values 0b0100 and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.

If the value of ID_AA64ISAR1_EL1.APA is non-zero, this field must have the value 0b0000.

APA, bits [7:4]

Indicates whether QARMA or Architected algorithm is implemented in the PE for address authentication, in AArch64
state. This applies to all Pointer Authentication instructions other than the PACGA instruction. Defined values are:

APA Meaning
0b0000 Address Authentication using an Architected algorithm is not

implemented.
0b0001 Address Authentication using the QARMA algorithm is

implemented, with the HaveEnhancedPAC() and
HaveEnhancedPAC2() functions returning FALSE.

0b0010 Address Authentication using the QARMA algorithm is
implemented, with the HaveEnhancedPAC() function returning
TRUE and the HaveEnhancedPAC2() function returning FALSE.

0b0011 Address Authentication using the QARMA algorithm is
implemented, with the HaveEnhancedPAC2() function
returning TRUE, the HaveFPAC() function returning FALSE, the
HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0100 Address Authentication using the QARMA algorithm is
implemented, with the HaveEnhancedPAC2() function
returning TRUE, the HaveFPAC() function returning TRUE, the
HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0101 Address Authentication using the QARMA algorithm is
implemented, with the HaveEnhancedPAC2() function
returning TRUE, the HaveFPAC() function returning TRUE, the
HaveFPACCombined() function returning TRUE, and the
HaveEnhancedPAC() function returning FALSE.

All other values are reserved.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 920

ARMv8.3-PAuth implements the functionality added by the values 0b0000, 0b0001, and 0b0010.

ARMv8.3-PAuth2 implements the functionality added by the value 0b0011.

ARMv8.3-FPAC implements the functionality added by the values 0b0100 and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.

If the value of the ID_AA64ISAR1_EL1.API is non-zero, this field must have the value 0b0000.

DPB, bits [3:0]

Data Persistence writeback. Indicates support for the DC CVAP and DC CVADP instructions in AArch64 state. Defined
values are:

DPB Meaning
0b0000 DC CVAP not supported.
0b0001 DC CVAP supported.
0b0010 DC CVAP and DC CVADP supported.

All other values are reserved.

ARMv8.2-DCPoP implements the functionality identified by the value 0b0001.

ARMv8.2-DCCVADP implements the functionality identified by the value 0b0010.

From Armv8.2 to Armv8.4, the only permitted value is 0b0001.

From Armv8.5, the only permitted value is 0b0010

Accessing the ID_AA64ISAR1_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_AA64ISAR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0110 0b001

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64ISAR1_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64ISAR1_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64ISAR1_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 921

ID_AA64MMFR0_EL1, AArch64 Memory Model Feature
Register 0

The ID_AA64MMFR0_EL1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for fields in ID
registers.

Configuration
There are no configuration notes.

Attributes
ID_AA64MMFR0_EL1 is a 64-bit register.

Field descriptions
The ID_AA64MMFR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ECV FGT RES0 ExS TGran4_2 TGran64_2 TGran16_2

TGran4 TGran64 TGran16 BigEndEL0 SNSMem BigEnd ASIDBits PARange
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ECV, bits [63:60]

Indicates presence of Enhanced Counter Virtualization. Defined values are:

ECV Meaning
0b0000 Enhanced Counter Virtualization is not implemented.
0b0001 Enhanced Counter Virtualization is implemented. Supports

CNTHCTL_EL2.{EL1TVT, EL1TVCT, EL1NVPCT, EL1NVVCT,
EVNTIS}, CNTKCTL_EL1.EVNTIS, CNTPCTSS_EL0 counter
views, and CNTVCTSS_EL0 counter views. Extends the
PMSCR_EL1.PCT, PMSCR_EL2.PCT, TRFCR_EL1.TS, and
TRFCR_EL2.TS fields.

0b0010 As 0b0001, and also includes support for CNTHCTL_EL2.ECV
and CNTPOFF_EL2.

All other values are reserved.

ARMv8.6-ECV implements the functionality identified by the values 0b0001 and 0b0010.

From Armv8.6, the only permitted values are 0b0001 and 0b0010.

FGT, bits [59:56]

Indicates presence of the Fine-Grained Trap controls:

• HAFGRTR_EL2, HDFGRTR_EL2, HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2 and HFGWTR_EL2 registers,
and their associated traps.

• MDCR_EL2.TDCC and MDCR_EL3.TDCC.
• SCR_EL3.FGTEn.

ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

Page 922

Defined values are:

FGT Meaning
0b0000 The fine-grained trap controls are not implemented.
0b0001 The fine-grained trap controls are implemented and can

generate fine-grained traps of EL1 and EL0 functionality.

All other values are reserved.

ARMv8.6-FGT implements the functionality identified by the value 0b0001.

From Armv8.6, the only permitted value is 0b0001.

Bits [55:48]

Reserved, RES0.

ExS, bits [47:44]

Indicates support for disabling context synchronizing exception entry and exit. Defined values are:

ExS Meaning
0b0000 All exception entries and exits are context synchronization

events.
0b0001 Non-context synchronizing exception entry and exit are

supported.

All other values are reserved.

ARMv8.5-CSEH implements the functionality identified by the value 0b0001.

TGran4_2, bits [43:40]

Indicates support for 4KB memory granule size for stage 2. Defined values are:

TGran4_2 Meaning
0b0000 4KB Stage 2 granule is identified in the

ID_AA64MMFR0_EL1.TGran4 field.
0b0001 4KB granule not supported at stage 2.
0b0010 4KB granule supported at stage 2.

All other values are reserved.

The 0b0000 value is deprecated.

TGran64_2, bits [39:36]

Indicates support for 64KB memory granule size for stage 2. Defined values are:

TGran64_2 Meaning
0b0000 64KB Stage 2 granule is identified in the

ID_AA64MMFR0_EL1.TGran64 field.
0b0001 64KB granule not supported at stage 2.
0b0010 64KB granule supported at stage 2.

All other values are reserved.

The 0b0000 value is deprecated.

TGran16_2, bits [35:32]

Indicates support for 16KB memory granule size for stage 2. Defined values are:

ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

Page 923

TGran16_2 Meaning
0b0000 16KB Stage 2 granule is identified in the

ID_AA64MMFR0_EL1.TGran16 field
0b0001 16KB granule not supported at stage 2
0b0010 16KB granule supported at stage 2

All other values are reserved.

The 0b0000 value is deprecated.

TGran4, bits [31:28]

Indicates support for 4KB memory translation granule size. Defined values are:

TGran4 Meaning
0b0000 4KB granule supported.
0b1111 4KB granule not supported.

All other values are reserved.

TGran64, bits [27:24]

Indicates support for 64KB memory translation granule size. Defined values are:

TGran64 Meaning
0b0000 64KB granule supported.
0b1111 64KB granule not supported.

All other values are reserved.

TGran16, bits [23:20]

Indicates support for 16KB memory translation granule size. Defined values are:

TGran16 Meaning
0b0000 16KB granule not supported.
0b0001 16KB granule supported.

All other values are reserved.

BigEndEL0, bits [19:16]

Indicates support for mixed-endian at EL0 only. Defined values are:

BigEndEL0 Meaning
0b0000 No mixed-endian support at EL0. The SCTLR_EL1.E0E bit

has a fixed value.
0b0001 Mixed-endian support at EL0. The SCTLR_EL1.E0E bit

can be configured.

All other values are reserved.

This field is invalid and is RES0 if ID_AA64MMFR0_EL1.BigEnd is not 0b0000.

SNSMem, bits [15:12]

Indicates support for a distinction between Secure and Non-secure Memory. Defined values are:

SNSMem Meaning
0b0000 Does not support a distinction between Secure and Non-

secure Memory.
0b0001 Does support a distinction between Secure and Non-secure

Memory.

All other values are reserved.

ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

Page 924

BigEnd, bits [11:8]

Indicates support for mixed-endian configuration. Defined values are:

BigEnd Meaning
0b0000 No mixed-endian support. The SCTLR_ELx.EE bits have a

fixed value. See the BigEndEL0 field, bits[19:16], for whether
EL0 supports mixed-endian.

0b0001 Mixed-endian support. The SCTLR_ELx.EE and
SCTLR_EL1.E0E bits can be configured.

All other values are reserved.

ASIDBits, bits [7:4]

Number of ASID bits. Defined values are:

ASIDBits Meaning
0b0000 8 bits.
0b0010 16 bits.

All other values are reserved.

PARange, bits [3:0]

Physical Address range supported. Defined values are:

PARange Meaning
0b0000 32 bits, 4GB.
0b0001 36 bits, 64GB.
0b0010 40 bits, 1TB.
0b0011 42 bits, 4TB.
0b0100 44 bits, 16TB.
0b0101 48 bits, 256TB.
0b0110 52 bits, 4PB.

All other values are reserved.

The value 0b0110 is permitted only if the implementation includes ARMv8.2-LPA, otherwise it is reserved.

Accessing the ID_AA64MMFR0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_AA64MMFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0111 0b000

ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

Page 925

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64MMFR0_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64MMFR0_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64MMFR0_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

Page 926

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature
Register 1

The ID_AA64MMFR1_EL1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for fields in ID
registers.

Configuration
There are no configuration notes.

Attributes
ID_AA64MMFR1_EL1 is a 64-bit register.

Field descriptions
The ID_AA64MMFR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 ETS TWED

XNX SpecSEI PAN LO HPDS VH VMIDBits HAFDBS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:40]

Reserved, RES0.

ETS, bits [39:36]

Indicates support for Enhanced Translation Synchronization. Defined values are:

ETS Meaning
0b0000 Enhanced Translation Synchronization is not supported.
0b0001 Enhanced Translation Synchronization is supported.

All other values are reserved.

ARMv8.0-ETS implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

TWED, bits [35:32]

Indicates support for the configurable delayed trapping of WFE. Defined values are:

TWED Meaning
0b0000 Configurable delayed trapping of WFE is not supported.
0b0001 Configurable delayed trapping of WFE is supported.

All other values are reserved.

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 927

ARMv8.6-TWED implements the functionality identified by the value 0b0001.

From Armv8.6, the permitted values are 0b0000 and 0b0001.

XNX, bits [31:28]

Indicates support for execute-never control distinction by Exception level at stage 2. Defined values are:

XNX Meaning
0b0000 Distinction between EL0 and EL1 execute-never control at

stage 2 not supported.
0b0001 Distinction between EL0 and EL1 execute-never control at

stage 2 supported.

All other values are reserved.

ARMv8.2-TTS2UXN implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

SpecSEI, bits [27:24]

Describes whether the PE can generate SError interrupt exceptions from speculative reads of memory, including
speculative instruction fetches. The defined values of this field are:

SpecSEI Meaning
0b0000 The PE never generates an SError interrupt due to an

External abort on a speculative read.
0b0001 The PE might generate an SError interrupt due to an

External abort on a speculative read.

All other values are reserved.

PAN, bits [23:20]

Privileged Access Never. Indicates support for the PAN bit in PSTATE, SPSR_EL1, SPSR_EL2, SPSR_EL3, and
DSPSR_EL0. Defined values are:

PAN Meaning
0b0000 PAN not supported.
0b0001 PAN supported.
0b0010 PAN supported and AT S1E1RP and AT S1E1WP instructions

supported.

All other values are reserved.

ARMv8.1-PAN implements the functionality identified by the value 0b0001.

ARMv8.2-ATS1E1 implements the functionality added by the value 0b0010.

In Armv8.1, the only permitted value is 0b0001.

From Armv8.2, the only permitted value is 0b0010.

LO, bits [19:16]

LORegions. Indicates support for LORegions. Defined values are:

LO Meaning
0b0000 LORegions not supported.
0b0001 LORegions supported.

All other values are reserved.

ARMv8.1-LOR implements the functionality identified by the value 0b0001.

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 928

From Armv8.1, the only permitted value is 0b0001.

HPDS, bits [15:12]

Hierarchical Permission Disables. Indicates support for disabling hierarchical controls in translation tables. Defined
values are:

HPDS Meaning
0b0000 Disabling of hierarchical controls not supported.
0b0001 Disabling of hierarchical controls supported with the

TCR_EL1.{HPD1, HPD0}, TCR_EL2.HPD or TCR_EL2.{HPD1,
HPD0}, and TCR_EL3.HPD bits.

0b0010 As for value 0b0001, and adds possible hardware allocation of
bits[62:59] of the translation table descriptors from the final
lookup level for IMPLEMENTATION DEFINED use.

All other values are reserved.

ARMv8.1-HPD implements the functionality identified by the value 0b0001.

ARMv8.2-TTPBHA implements the functionality identified by the value 0b0010.

From Armv8.1, the value 0b0000 is not permitted.

VH, bits [11:8]

Virtualization Host Extensions. Defined values are:

VH Meaning
0b0000 Virtualization Host Extensions not supported.
0b0001 Virtualization Host Extensions supported.

All other values are reserved.

ARMv8.1-VHE implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.

VMIDBits, bits [7:4]

Number of VMID bits. Defined values are:

VMIDBits Meaning
0b0000 8 bits
0b0010 16 bits

All other values are reserved.

ARMv8.1-VMID16 implements the functionality identified by the value 0b0010.

From Armv8.1, the permitted values are 0b0000 and 0b0010.

HAFDBS, bits [3:0]

Hardware updates to Access flag and Dirty state in translation tables. Defined values are:

HAFDBS Meaning
0b0000 Hardware update of the Access flag and dirty state are not

supported.
0b0001 Hardware update of the Access flag is supported.
0b0010 Hardware update of both the Access flag and dirty state is

supported.

All other values are reserved.

ARMv8.1-TTHM implements the functionality identified by the values 0b0001 and 0b0010.

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 929

From Armv8.1, the permitted values are 0b0000, 0b0001, and 0b0010.

Accessing the ID_AA64MMFR1_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_AA64MMFR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0111 0b001

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64MMFR1_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64MMFR1_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64MMFR1_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 930

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature
Register 2

The ID_AA64MMFR2_EL1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
This register is present only when AArch64 is supported at any Exception level. Otherwise, direct accesses to
ID_AA64MMFR2_EL1 are RES0.

Note

Prior to the introduction of the features described by this register, this
register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

Attributes
ID_AA64MMFR2_EL1 is a 64-bit register.

Field descriptions
The ID_AA64MMFR2_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
E0PD EVT BBM TTL RES0 FWB IDS AT

ST NV CCIDX VARange IESB LSM UAO CnP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E0PD, bits [63:60]

Indicates support for the E0PD mechanism. Defined values are:

E0PD Meaning
0b0000 E0PDx mechanism is not implemented.
0b0001 E0PDx mechanism is implemented.

All other values are reserved.

ARMv8.5-E0PD implements the functionality identified by the value 0b0001.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted values is 0b0001.

EVT, bits [59:56]

Enhanced Virtualization Traps. If EL2 is implemented, indicates support for the HCR_EL2.{TTLBOS, TTLBIS, TOCU,
TICAB, TID4} traps. Defined values are:

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 931

EVT Meaning
0b0000 HCR_EL2.{TTLBOS, TTLBIS, TOCU, TICAB, TID4} traps are

not supported.
0b0001 HCR_EL2.{TOCU, TICAB, TID4} traps are supported.

HCR_EL2.{TTLBOS, TTLBIS} traps are not supported.
0b0010 HCR_EL2.{TTLBOS, TTLBIS, TOCU, TICAB, TID4} traps are

supported.

All other values are reserved.

ARMv8.2-EVT implements the functionality identified by the values 0b0001 and 0b0010.

If EL2 is not implemented, the only permitted value is 0b0000.

From Armv8.1, the permitted values are 0b0000 and 0b0001.

From Armv8.5, if EL2 is implemented, the only permitted value is 0b0010.

BBM, bits [55:52]

Allows identification of the requirements of the hardware to have break-before-make sequences when changing block
size for a translation.

BBM Meaning
0b0000 Level 0 support for changing block size is supported.
0b0001 Level 1 support for changing block size is supported.
0b0010 Level 2 support for changing block size is supported.

All other values are reserved.

ARMv8.4-TTRem implements the functionality identified by the values 0b0000, 0b0001, and 0b0010.

From Armv8.4, the permitted values are 0b0000, 0b0001, and 0b0010.

TTL, bits [51:48]

Indicates support for TTL field in address operations. Defined values are:

TTL Meaning
0b0000 TLB maintenance instructions by address have bits[47:44] as

RES0.
0b0001 TLB maintenance instructions by address have bits[47:44]

holding the TTL field.

All other values are reserved.

ARMv8.4-TTL implements the functionality identified by the value 0b0001.

This field affects TLBI IPAS2E1, TLBI IPAS2E1IS, TLBI IPAS2E1OS, TLBI IPAS2LE1, TLBI IPAS2LE1IS, TLBI
IPAS2LE1OS, TLBI VAAE1, TLBI VAAE1IS, TLBI VAAE1OS, TLBI VAALE1, TLBI VAALE1IS, TLBI VAALE1OS, TLBI
VAE1, TLBI VAE1IS, TLBI VAE1OS, TLBI VAE2, TLBI VAE2IS, TLBI VAE2OS, TLBI VAE3, TLBI VAE3IS, TLBI
VAE3OS,TLBI VALE1, TLBI VALE1IS, TLBI VALE1OS, TLBI VALE2, TLBI VALE2IS, TLBI VALE2OS, TLBI VALE3, TLBI
VALE3IS, TLBI VALE3OS.

From Armv8.4, the only permitted value is 0b0001.

Bits [47:44]

Reserved, RES0.

FWB, bits [43:40]

Indicates support for HCR_EL2.FWB. Defined values are:

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 932

FWB Meaning
0b0000 HCR_EL2.FWB bit is not supported.
0b0001 HCR_EL2.FWB is supported.

All other values reserved.

ARMv8.4-S2FWB implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

IDS, bits [39:36]

Indicates the value of ESR_ELx.EC that reports an exception generated by a read access to the feature ID space.
Defined values are:

IDS Meaning
0b0000 An exception which is generated by a read access to the feature

ID space, other than a trap caused by HCR_EL2.TIDx,
SCTLR_EL1.UCT, or SCTLR_EL2.UCT, is reported by
ESR_ELx.EC == 0x0.

0b0001 All exceptions generated by an AArch64 read access to the
feature ID space are reported by ESR_ELx.EC == 0x18.

All other values are reserved.

The Feature ID space is defined as the System register space in AArch64 with op0==3, op1=={0, 1, 3}, CRn==0,
CRm=={0-7}, op2=={0-7}.

ARMv8.4-IDST implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

AT, bits [35:32]

Identifies support for unaligned single-copy atomicity and atomic functions. Defined values are:

AT Meaning
0b0000 Unaligned single-copy atomicity and atomic functions are not

supported.
0b0001 Unaligned single-copy atomicity and atomic functions with a

16-byte address range aligned to 16-bytes are supported.

All other values are reserved.

ARMv8.4-LSE implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

ST, bits [31:28]

Identifies support for small translation tables. Defined values are:

ST Meaning
0b0000 The maximum value of the TCR_ELx.{T0SZ,T1SZ} and

VTCR_EL2.T0SZ fields is 39.
0b0001 The maximum value of the TCR_ELx.{T0SZ,T1SZ} and

VTCR_EL2.T0SZ fields is 48 for 4KB and 16KB granules, and 47
for 64KB granules.

All other values are reserved.

ARMv8.4-TTST implements the functionality identified by the value 0b0001.

If ARMv8.4-SecEL2 is implemented, the only permitted value is 0b0001.

In an implementation which does not support ARMv8.4-SecEL2, the permitted values are 0b0000 and 0b0001.

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 933

NV, bits [27:24]

Nested Virtualization. If EL2 is implemented, indicates support for the use of nested virtualization. Defined values are:

NV Meaning
0b0000 Nested virtualization is not supported.
0b0001 The HCR_EL2.NV, HCR_EL2.NV1, HCR_EL2.AT bits are

implemented.
0b0010 The VNCR_EL2 register and the HCR_EL2.{AT, NV, NV1, NV2}

bits are implemented.

All other values are reserved.

ARMv8.3-NV implements the functionality identified by the value 0b0001.

In Armv8.3, the permitted values are:

• When EL2 is not implemented, 0b0000.
• When EL2 is implemented, 0b0001.

ARMv8.4-NV implements the functionality identified by the value 0b0010.

In Armv8.4, the permitted values are:

• When EL2 is not implemented, 0b0000.
• When EL2 is implemented, 0b0010.

CCIDX, bits [23:20]

Support for the use of revised CCSIDR_EL1 register format. Defined values are:

CCIDX Meaning
0b0000 32-bit format implemented for all levels of the CCSIDR_EL1.
0b0001 64-bit format implemented for all levels of the CCSIDR_EL1.

All other values are reserved.

ARMv8.3-CCIDX implements the functionality identified by the value 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

VARange, bits [19:16]

Indicates support for a larger virtual address. Defined values are:

VARange Meaning
0b0000 VMSAv8-64 supports 48-bit VAs.
0b0001 VMSAv8-64 supports 52-bit VAs when using the 64KB

translation granule. The other translation granules support
48-bit VAs.

All other values are reserved.

ARMv8.2-LVA implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

IESB, bits [15:12]

Indicates support for the IESB bit in the SCTLR_ELx registers. Defined values are:

IESB Meaning
0b0000 IESB bit in the SCTLR_ELx registers is not supported.
0b0001 IESB bit in the SCTLR_ELx registers is supported.

All other values are reserved.

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 934

ARMv8.2-IESB implements the functionality identified by the value 0b0001.

LSM, bits [11:8]

Indicates support for LSMAOE and nTLSMD bits in SCTLR_EL1 and SCTLR_EL2. Defined values are:

LSM Meaning
0b0000 LSMAOE and nTLSMD bits not supported.
0b0001 LSMAOE and nTLSMD bits supported.

All other values are reserved.

ARMv8.2-LSMAOC implements the functionality identified by the value 0b0001.

UAO, bits [7:4]

User Access Override. Defined values are:

UAO Meaning
0b0000 UAO not supported.
0b0001 UAO supported.

All other values are reserved.

ARMv8.2-UAO implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

CnP, bits [3:0]

Indicates support for Common not Private translations. Defined values are:

CnP Meaning
0b0000 Common not Private translations not supported.
0b0001 Common not Private translations supported.

All other values are reserved.

ARMv8.2-TTCNP implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

Accessing the ID_AA64MMFR2_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_AA64MMFR2_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0111 0b010

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 935

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!IsZero(ID_AA64MMFR2_EL1) || boolean

IMPLEMENTATION_DEFINED "ID_AA64MMFR2 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ID_AA64MMFR2_EL1;

elsif PSTATE.EL == EL2 then
return ID_AA64MMFR2_EL1;

elsif PSTATE.EL == EL3 then
return ID_AA64MMFR2_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 936

ID_AA64PFR0_EL1, AArch64 Processor Feature
Register 0

The ID_AA64PFR0_EL1 characteristics are:

Purpose
Provides additional information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for fields in ID
registers.

Configuration
The external register EDPFR gives information from this register.

Attributes
ID_AA64PFR0_EL1 is a 64-bit register.

Field descriptions
The ID_AA64PFR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CSV3 CSV2 RES0 DIT AMU MPAM SEL2 SVE
RAS GIC AdvSIMD FP EL3 EL2 EL1 EL0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSV3, bits [63:60]

Speculative use of faulting data. Defined values are:

CSV3 Meaning
0b0000 This Device does not disclose whether data loaded under

speculation with a permission or domain fault can be used to
form an address or generate condition codes or SVE predicate
values to be used by instructions newer than the load in the
speculative sequence

0b0001 Data loaded under speculation with a permission or domain
fault cannot be used to form an address or generate condition
codes or SVE predicate values to be used by instructions newer
than the load in the speculative sequence

From Armv8.5, the only permitted value is 0b0001.

All other values are reserved.

CSV2, bits [59:56]

Speculative use of out of context branch targets. Defined values are:

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 937

CSV2 Meaning
0b0000 This Device does not disclose whether branch targets trained in

one hardware described context can affect speculative
execution in a different hardware described context.

0b0001 Branch targets trained in one hardware described context can
only affect speculative execution in a different hardware
described context in a hard-to-determine way. Contexts do not
include the SCXTNUM_ELx register contexts, and these
registers are not supported.

0b0010 Branch targets trained in one hardware described context can
only affect speculative execution in a different hardware
described context in a hard-to-determine way. Contexts include
the SCXTNUM_ELx register contexts, and these registers are
supported.

From Armv8.5 the only permitted values are 0b0001 or 0b0010.

All other values are reserved.

Bits [55:52]

Reserved, RES0.

DIT, bits [51:48]

Data Independent Timing. Defined values are:

DIT Meaning
0b0000 AArch64 does not guarantee constant execution time of any

instructions.
0b0001 AArch64 provides the PSTATE.DIT mechanism to guarantee

constant execution time of certain instructions.

All other values are reserved.

ARMv8.4-DIT implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

AMU, bits [47:44]

Indicates support for Activity Monitors Extension. Defined values are:

AMU Meaning
0b0000 Activity Monitors Extension is not implemented.
0b0001 AMUv1 for Armv8.4 is implemented.
0b0010 AMUv1 for Armv8.6 is implemented. As 0b0001 and adds

support for virtualization of the activity monitor event counters.

All other values are reserved.

AMUv1 implements the functionality identified by the value 0b0001.

ARMv8.6-AMU implements the functionality identified by the value 0b0010.

MPAM, bits [43:40]

Indicates support for MPAM Extension. Defined values are:

MPAM Meaning
0b0000 MPAM is not implemented.
0b0001 MPAM is implemented.

All other values are reserved.

MPAM implements the functionality identified by the value 0b0001.

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 938

SEL2, bits [39:36]

Secure EL2. Defined values are:

SEL2 Meaning
0b0000 Secure EL2 is not implemented.
0b0001 Secure EL2 is implemented.

All other values are reserved.

ARMv8.4-SecEL2 implements the functionality identified by the value 0b0001.

SVE, bits [35:32]

Scalable Vector Extension. Defined values are:

SVE Meaning
0b0000 SVE architectural state and programmers' model are not

implemented.
0b0001 SVE architectural state and programmers' model are

implemented.

All other values are reserved.

If implemented, refer to ID_AA64ZFR0_EL1 for information about which SVE instructions are available.

RAS, bits [31:28]

RAS Extension version. Defined values are:

RAS Meaning
0b0000 No RAS Extension.
0b0001 RAS Extension present.
0b0010 ARMv8.4-RAS present. As 0b0001, and adds support for:

• If EL3 is implemented, ARMv8.4-DFE.
• Additional ERXMISC<m>_EL1 System registers.
• Additional System registers ERXPFGCDN_EL1,

ERXPFGCTL_EL1, and ERXPFGF_EL1, and the
SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to
support the optional RAS Common Fault Injection Model
Extension.

Error records accessed through System registers conform to
RAS System Architecture v1.1, which includes simplifications
to ERR<n>STATUS and support for the optional RAS
Timestamp and RAS Common Fault Injection Model Extensions.

All other values are reserved.

ARMv8.4-RAS implements the functionality identified by the value 0b0010.

In Armv8.0 and Armv8.1, the permitted values are 0b0000 and 0b0001.

In Armv8.2, the only permitted value is 0b0001.

From Armv8.4, when ARMv8.4-DFE is not implemented, and ERRIDR_EL1.NUM is zero, the permitted values are
IMPLEMENTATION DEFINED 0b0001 or 0b0010. Otherwise from Armv8.4, the only permitted value is 0b0010.

GIC, bits [27:24]

System register GIC CPU interface. Defined values are:

GIC Meaning
0b0000 GIC CPU interface system registers not implemented.
0b0001 System register interface to versions 3.0 and 4.0 of the GIC

CPU interface is supported.
0b0011 System register interface to version 4.1 of the GIC CPU

interface is supported.

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 939

All other values are reserved.

AdvSIMD, bits [23:20]

Advanced SIMD. Defined values are:

AdvSIMD Meaning
0b0000 Advanced SIMD is implemented, including support for the

following SISD and SIMD operations:
• Integer byte, halfword, word and doubleword

element operations.
• Single-precision and double-precision floating-point

arithmetic.
• Conversions between single-precision and half-

precision data types, and double-precision and half-
precision data types.

0b0001 As for 0b0000, and also includes support for half-precision
floating-point arithmetic.

0b1111 Advanced SIMD is not implemented.

All other values are reserved.

This field must have the same value as the FP field.

The permitted values are:

• 0b0000 in an implementation with Advanced SIMD support that does not include the ARMv8.2-FP16 extension.
• 0b0001 in an implementation with Advanced SIMD support that includes the ARMv8.2-FP16 extension.
• 0b1111 in an implementation without Advanced SIMD support.

FP, bits [19:16]

Floating-point. Defined values are:

FP Meaning
0b0000 Floating-point is implemented, and includes support for:

• Single-precision and double-precision floating-point
types.

• Conversions between single-precision and half-precision
data types, and double-precision and half-precision data
types.

0b0001 As for 0b0000, and also includes support for half-precision
floating-point arithmetic.

0b1111 Floating-point is not implemented.

All other values are reserved.

This field must have the same value as the AdvSIMD field.

The permitted values are:

• 0b0000 in an implementation with floating-point support that does not include the ARMv8.2-FP16 extension.
• 0b0001 in an implementation with floating-point support that includes the ARMv8.2-FP16 extension.
• 0b1111 in an implementation without floating-point support.

EL3, bits [15:12]

EL3 Exception level handling. Defined values are:

EL3 Meaning
0b0000 EL3 is not implemented.
0b0001 EL3 can be executed in AArch64 state only.
0b0010 EL3 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 940

EL2, bits [11:8]

EL2 Exception level handling. Defined values are:

EL2 Meaning
0b0000 EL2 is not implemented.
0b0001 EL2 can be executed in AArch64 state only.
0b0010 EL2 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL1, bits [7:4]

EL1 Exception level handling. Defined values are:

EL1 Meaning
0b0001 EL1 can be executed in AArch64 state only.
0b0010 EL1 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL0, bits [3:0]

EL0 Exception level handling. Defined values are:

EL0 Meaning
0b0001 EL0 can be executed in AArch64 state only.
0b0010 EL0 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

Accessing the ID_AA64PFR0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_AA64PFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0100 0b000

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64PFR0_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64PFR0_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64PFR0_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 941

ID_AA64PFR1_EL1, AArch64 Processor Feature
Register 1

The ID_AA64PFR1_EL1 characteristics are:

Purpose
Reserved for future expansion of information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for fields in ID
registers.

Configuration
There are no configuration notes.

Attributes
ID_AA64PFR1_EL1 is a 64-bit register.

Field descriptions
The ID_AA64PFR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 MPAM_frac RAS_frac MTE SSBS BT
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:20]

Reserved, RES0.

MPAM_frac, bits [19:16]

MPAM Extension fractional field. Defined values are:

MPAM_frac Meaning
0b0000 If ID_AA64PFR0_EL1.MPAM == 0b0000, MPAM Extension

not implemented.
If ID_AA64PFR0_EL1.MPAM == 0b0001, MPAM Extension
version 1.0 is implemented.

0b0001 If ID_AA64PFR0_EL1.MPAM == 0b0000, implements
MPAM version 0.1 which is like version 1.1 but reduces
support for Secure PARTIDs.
If ID_AA64PFR0_EL1.MPAM == 0b0001, implements
MPAM extension version 1.1 and adds support for TIDR
bit in MPAM2_EL2 to provide trapping of MPAMIDR_EL1
when MPAMHCR_EL2 is not present.

All other values are reserved.

RAS_frac, bits [15:12]

RAS Extension fractional field. Defined values are:

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Page 942

RAS_frac Meaning
0b0000 If ID_AA64PFR0_EL1.RAS == 0b0001, RAS Extension

implemented.
0b0001 If ID_AA64PFR0_EL1.RAS == 0b0001, as 0b0000 and adds

support for:
• Additional ERXMISC<m>_EL1 System registers.
• Additional System registers ERXPFGCDN_EL1,

ERXPFGCTL_EL1, and ERXPFGF_EL1, and the
SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to
support the optional RAS Common Fault Injection
Model Extension.

Error records accessed through System registers conform to
RAS System Architecture v1.1, which includes
simplifications to ERR<n>STATUS, and support for the
optional RAS Timestamp and RAS Common Fault Injection
Model Extensions.

All other values are reserved.

This field is valid only if ID_AA64PFR0_EL1.RAS == 0b0001.

MTE, bits [11:8]

Support for the Memory Tagging Extension. Defined values are:

MTE Meaning
0b0000 Memory Tagging Extension is not implemented.
0b0001 Memory Tagging Extension instructions accessible at EL0 are

implemented. Instructions and System Registers defined by the
extension not configurably accessible at EL0 are Unallocated
and other System Register fields defined by the extension are
RES0.

0b0010 Memory Tagging Extension is implemented.

All other values are reserved.

ARMv8.5-MemTag implements the functionality identified by the value 0b0001.

When ID_AA64PFR1_EL1.MTE != 0b0010:

• All register fields added to existing System registers and Special-purpose registers as part of the extension
are RES0, and treated as 0.

• The following System registers are UNDEFINED:

◦ GMID_EL1, GCR_EL1, RGSR_EL1, TFSRE0_EL1, and TFSR_ELx.

• The following System instructions are UNDEFINED:

◦ DC CGSW, DC CIGSW, DC IGSW, DC CGDSW, DC CIGDSW, DC IGDSW, DC IGVAC, and DC IGDVAC.

• The following instructions are UNDEFINED:

◦ LDGM, STGM, and STZGM.

• The Tagged memory type encoding in MAIR_ELx is UNPREDICTABLE.

SSBS, bits [7:4]

Speculative Store Bypassing controls in AArch64 state. Defined values are:

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Page 943

SSBS Meaning
0b0000 AArch64 provides no mechanism to control the use of

Speculative Store Bypassing.
0b0001 AArch64 provides the PSTATE.SSBS mechanism to mark

regions that are Speculative Store Bypass Safe.
0b0010 AArch64 provides the PSTATE.SSBS mechanism to mark

regions that are Speculative Store Bypassing Safe, and the
MSR and MRS instructions to directly read and write the
PSTATE.SSBS field

All other values are reserved.

BT, bits [3:0]

Branch Target Identification mechanism support in AArch64 state. Defined values are:

BT Meaning
0b0000 The Branch Target Identification mechanism is not

implemented.
0b0001 The Branch Target Identification mechanism is implemented.

All other values are reserved.

ARMv8.5-BTI implements the functionality identified by the value 0b0001.

From Armv8.5, the only permitted value is 0b0001.

Accessing the ID_AA64PFR1_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_AA64PFR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0100 0b001

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64PFR1_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64PFR1_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64PFR1_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Page 944

ID_AA64ZFR0_EL1, SVE Feature ID register 0
The ID_AA64ZFR0_EL1 characteristics are:

Purpose
Provides additional information about the implemented features of the AArch64 Scalable Vector Extension, when the
ID_AA64PFR0_EL1.SVE field is not zero.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID
registers.

Configuration
This register is present only when SVE is implemented. Otherwise, direct accesses to ID_AA64ZFR0_EL1 are RAZ.

Note

Prior to the introduction of the features described by this register, this
register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

Attributes
ID_AA64ZFR0_EL1 is a 64-bit register.

Field descriptions
The ID_AA64ZFR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 F64MM F32MM RES0 I8MM SM4 RES0 SHA3

RES0 BF16 BitPerm RES0 AES SVEver
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:60]

Reserved, RES0.

F64MM, bits [59:56]

Indicates support for SVE FP64 double-precision floating-point matrix multiplication instructions. Defined values are:

F64MM Meaning
0b0000 FP64 matrix multiplication and related instructions are not

implemented.
0b0001 FMMLA, and LD1RO* instructions are implemented. The

128-bit element variations of TRN1, TRN2, UZP1, UZP2, ZIP1,
and ZIP2 are also implemented.

All other values are reserved.

ARMv8.2-F64MM implements the functionality identified by 0b0001.

From Arm v8.2, the permitted values are 0b0000 and 0b0001.

ID_AA64ZFR0_EL1, SVE Feature ID register 0

Page 945

F32MM, bits [55:52]

Indicates support for the SVE FP32 single-precision floating-point matrix multiplication instruction. Defined values
are:

F32MM Meaning
0b0000 FP32 matrix multiplication instruction is not implemented.
0b0001 FMMLA instruction is implemented.

All other values are reserved.

ARMv8.2-F32MM implements the functionality identified by 0b0001.

From Arm v8.2, the permitted values are 0b0000 and 0b0001.

Bits [51:48]

Reserved, RES0.

I8MM, bits [47:44]

Indicates support for SVE Int8 matrix multiplication instructions. Defined values are:

I8MM Meaning
0b0000 Int8 matrix multiplication instructions are not implemented.
0b0001 SMMLA, SUDOT, UMMLA, USMMLA, and USDOT instructions

are implemented.

All other values are reserved.

ARMv8.2-I8MM implements the functionality identified by 0b0001.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ISAR1_EL1.I8MM.

From Armv8.6, the only permitted value is 0b0001.

SM4, bits [43:40]

Indicates support for SVE2 SM4 instructions. Defined values are:

SM4 Meaning
0b0000 SVE2 SM4 instructions are not implemented.
0b0001 SVE2 SM4E and SM4EKEY instructions are implemented.

All other values are reserved.

SVE2-SM4 implements the functionality identified by 0b0001.

Bits [39:36]

Reserved, RES0.

SHA3, bits [35:32]

Indicates support for the SVE2 SHA-3 instruction. Defined values are:

SHA3 Meaning
0b0000 SVE2 SHA-3 instructions are not implemented.
0b0001 SVE2 RAX1 instruction is implemented.

All other values are reserved.

SVE2-SHA3 implements the functionality identified by 0b0001.

ID_AA64ZFR0_EL1, SVE Feature ID register 0

Page 946

Bits [31:24]

Reserved, RES0.

BF16, bits [23:20]

Indicates support for SVE BFloat16 instructions. Defined values are:

BF16 Meaning
0b0000 BFloat16 instructions are not implemented.
0b0001 BFCVT, BFCVTNT, BFDOT, BFMLALB, BFMLALT, and BFMMLA

instructions are implemented.

All other values are reserved.

ARMv8.2-BF16 implements the functionality identified by 0b0001.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ISAR1_EL1.BF16.

From ARMv8.6, the only permitted value is 0b0001.

BitPerm, bits [19:16]

Indicates support for SVE2 bit permute instructions. Defined values are:

BitPerm Meaning
0b0000 SVE2 bit permute instructions are not implemented.
0b0001 SVE2 BDEP, BEXT and BGRP instructions are implemented.

All other values are reserved.

SVE2-BitPerm implements the functionality identified by 0b0001.

Bits [15:8]

Reserved, RES0.

AES, bits [7:4]

Indicates support for SVE2-AES instructions. Defined values are:

AES Meaning
0b0000 SVE2-AES instructions are not implemented.
0b0001 SVE2 AESE, AESD, AESMC and AESIMC instructions are

implemented.
0b0010 As 0b0001, plus SVE2 PMULLB and PMULLT instructions with

64-bit source.

All other values are reserved.

SVEver, bits [3:0]

Scalable Vector Extension instruction set version. Defined values are:

SVEver Meaning
0b0000 SVE instructions are implemented.
0b0001 SVE and the non-optional SVE2 instructions are implemented.

All other values are reserved. This field is only valid if the ID_AA64PFR0_EL1.SVE field is not zero.

ID_AA64ZFR0_EL1, SVE Feature ID register 0

Page 947

Accessing the ID_AA64ZFR0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_AA64ZFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0100 0b100

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!IsZero(ID_AA64ZFR0_EL1) || boolean

IMPLEMENTATION_DEFINED "ID_AA64ZFR0_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ID_AA64ZFR0_EL1;

elsif PSTATE.EL == EL2 then
return ID_AA64ZFR0_EL1;

elsif PSTATE.EL == EL3 then
return ID_AA64ZFR0_EL1;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64ZFR0_EL1, SVE Feature ID register 0

Page 948

ID_AFR0_EL1, AArch32 Auxiliary Feature Register 0
The ID_AFR0_EL1 characteristics are:

Purpose
Provides information about the IMPLEMENTATION DEFINED features of the PE in AArch32 state.

Must be interpreted with the Main ID Register, MIDR_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID
registers.

Configuration
AArch64 System register ID_AFR0_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_AFR0[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_AFR0_EL1 are UNKNOWN.

Attributes
ID_AFR0_EL1 is a 64-bit register.

Field descriptions
The ID_AFR0_EL1 bit assignments are:

63626160595857565554535251504948 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

31302928272625242322212019181716 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [15:12]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [11:8]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [7:4]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [3:0]

IMPLEMENTATION DEFINED.

ID_AFR0_EL1, AArch32 Auxiliary Feature Register 0

Page 949

Accessing the ID_AFR0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_AFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0001 0b011

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AFR0_EL1;
elsif PSTATE.EL == EL2 then

return ID_AFR0_EL1;
elsif PSTATE.EL == EL3 then

return ID_AFR0_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AFR0_EL1, AArch32 Auxiliary Feature Register 0

Page 950

ID_DFR0_EL1, AArch32 Debug Feature Register 0
The ID_DFR0_EL1 characteristics are:

Purpose
Provides top level information about the debug system in AArch32 state.

Must be interpreted with the Main ID Register, MIDR_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID
registers.

Configuration
AArch64 System register ID_DFR0_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_DFR0[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_DFR0_EL1 are UNKNOWN.

Attributes
ID_DFR0_EL1 is a 64-bit register.

Field descriptions
The ID_DFR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

TraceFilt PerfMon MProfDbg RES0 MMapDbg CopSDbg CopDbg
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TraceFilt, bits [31:28]

Armv8.4 Self-hosted Trace Extension version. Defined values are:

TraceFilt Meaning
0b0000 Armv8.4 Self-hosted Trace Extension not implemented.
0b0001 Armv8.4 Self-hosted Trace Extension implemented.

All other values are reserved.

ARMv8.4-Trace implements the functionality added by the value 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

PerfMon, bits [27:24]

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the Alternative ID scheme described in 'Alternative ID
scheme used for the Performance Monitors Extension version' in the Arm® Architecture Reference Manual, Armv8,
for Armv8-A architecture profile, section D10.1.4.

ID_DFR0_EL1, AArch32 Debug Feature Register 0

Page 951

Defined values are:

PerfMon Meaning
0b0000 Performance Monitors Extension not implemented.
0b0001 Performance Monitors Extension version 1 implemented,

PMUv1.
0b0010 Performance Monitors Extension version 2 implemented,

PMUv2.
0b0011 Performance Monitors Extension version 3 implemented,

PMUv3.
0b0100 PMUv3 for Armv8.1. As 0b0011, and also includes support

for:
• Extended 16-bit PMEVTYPER<n>.evtCount field.
• If EL2 is implemented, the HDCR.HPMD control bit.

0b0101 PMUv3 for Armv8.4. As 0b0100 and also includes support for
the PMMIR register.

0b0110 PMUv3 for Armv8.5. As 0b0101 and also includes support
for:

• 64-bit event counters.
• If EL2 is implemented, the HDCR.HCCD control bit.
• If EL3 is implemented, the SDCR.SCCD control bit.

0b1111 IMPLEMENTATION DEFINED form of performance monitors
supported, PMUv3 not supported. Arm does not recommend
this value in new implementations.

ARMv8.1-PMU implements the functionality added by the value 0b0100.

ARMv8.4-PMU implements the functionality added by the value 0b0101.

ARMv8.5-PMU implements the functionality added by the value 0b0110.

All other values are reserved.

In any Armv8 implementation, the values 0b0001 and 0b0010 are not permitted.

From Armv8.1, the value 0b0011 is not permitted.

From Armv8.4, the value 0b0100 is not permitted.

From Armv8.5, the value 0b0101 is not permitted.

Note

In Armv7, the value 0b0000 can mean that PMUv1 is implemented. PMUv1 is
not permitted in an Armv8 implementation.

MProfDbg, bits [23:20]

M Profile Debug. Support for memory-mapped debug model for M profile processors. Defined values are:

MProfDbg Meaning
0b0000 Not supported.
0b0001 Support for M profile Debug architecture, with memory-

mapped access.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Bits [19:12]

Reserved, RES0.

MMapDbg, bits [11:8]

Memory Mapped Debug. Support for v7 memory-mapped debug model, for A and R profile processors.

ID_DFR0_EL1, AArch32 Debug Feature Register 0

Page 952

In Armv8-A, this field is RES0.

The optional memory map defined by Armv8 is not compatible with Armv7.

CopSDbg, bits [7:4]

Support for a System registers-based Secure debug model, using registers in the coproc = 0b1110 encoding space, for
an A profile processor that includes EL3.

If EL3 is not implemented and the implemented Security state is Non-secure state, this field is RES0. Otherwise, this
field reads the same as bits [3:0].

CopDbg, bits [3:0]

Support for System registers-based debug model, using registers in the coproc == 0b1110 encoding space, for A and R
profile processors. Defined values are:

CopDbg Meaning
0b0000 Not supported.
0b0010 Support for Armv6, v6 Debug architecture, with System

registers access.
0b0011 Support for Armv6, v6.1 Debug architecture, with System

registers access.
0b0100 Support for Armv7, v7 Debug architecture, with System

registers access.
0b0101 Support for Armv7, v7.1 Debug architecture, with System

registers access.
0b0110 Support for Armv8 debug architecture, with System registers

access.
0b0111 Support for Armv8 debug architecture, with System registers

access, and Virtualization Host extensions.
0b1000 Support for Armv8.2 debug architecture.
0b1001 Support for Armv8.4 debug architecture.

All other values are reserved.

In any Armv8 implementation, the values 0b0000, 0b0010, 0b0011, 0b0100, and 0b0101 are not permitted.

If ARMv8.1-VHE is not implemented, the only permitted value is 0b0110.

In an Armv8.0 implementation, the value 0b1000 is not permitted.

Accessing the ID_DFR0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_DFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0001 0b010

ID_DFR0_EL1, AArch32 Debug Feature Register 0

Page 953

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_DFR0_EL1;
elsif PSTATE.EL == EL2 then

return ID_DFR0_EL1;
elsif PSTATE.EL == EL3 then

return ID_DFR0_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_DFR0_EL1, AArch32 Debug Feature Register 0

Page 954

ID_DFR1_EL1, Debug Feature Register 1
The ID_DFR1_EL1 characteristics are:

Purpose
Provides top level information about the debug system in AArch32.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID
registers.

Configuration
AArch64 System register ID_DFR1_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_DFR1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_DFR1_EL1 are RES0.

Note

Prior to the introduction of the features described by this register, this
register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

Attributes
ID_DFR1_EL1 is a 64-bit register.

Field descriptions
The ID_DFR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 MTPMU
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:4]

Reserved, RES0.

MTPMU, bits [3:0]

Multi-threaded PMU extension. Defined values are:

MTPMU Meaning
0b0000 ARMv8.6-MTPMU not implemented. If PMUv3 is

implemented, it is IMPLEMENTATION DEFINED whether
PMEVTYPER<n>_EL0.MT are read/write or RES0.

0b0001 ARMv8.6-MTPMU implemented and
PMEVTYPER<n>_EL0.MT are read/write. When
ARMv8.6-MTPMU is disabled, the Effective values of
PMEVTYPER<n>.MT are 0.

0b1111 ARMv8.6-MTPMU not implemented. If PMUv3 is
implemented, PMEVTYPER<n>_EL0.MT are RES0.

All other values are reserved.

ID_DFR1_EL1, Debug Feature Register 1

Page 955

ARMv8.6-MTPMU implements the functionality identified by the value 0b0001.

In an Armv8.6-compliant implementation that includes PMUv3, the value 0b0000 is not permitted.

In an implementation that does not include PMUv3, the value 0b0001 is not permitted.

Accessing the ID_DFR1_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_DFR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0011 0b101

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!IsZero(ID_DFR1_EL1) || boolean

IMPLEMENTATION_DEFINED "ID_DFR1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ID_DFR1_EL1;

elsif PSTATE.EL == EL2 then
return ID_DFR1_EL1;

elsif PSTATE.EL == EL3 then
return ID_DFR1_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_DFR1_EL1, Debug Feature Register 1

Page 956

ID_ISAR0_EL1, AArch32 Instruction Set Attribute
Register 0

The ID_ISAR0_EL1 characteristics are:

Purpose
Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, and ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID
registers.

Configuration
AArch64 System register ID_ISAR0_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_ISAR0[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_ISAR0_EL1 are UNKNOWN.

Attributes
ID_ISAR0_EL1 is a 64-bit register.

Field descriptions
The ID_ISAR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 Divide Debug Coproc CmpBranch BitField BitCount Swap
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:28]

Reserved, RES0.

Divide, bits [27:24]

Indicates the implemented Divide instructions. Defined values are:

Divide Meaning
0b0000 None implemented.
0b0001 Adds SDIV and UDIV in the T32 instruction set.
0b0010 As for 0b0001, and adds SDIV and UDIV in the A32 instruction

set.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Debug, bits [23:20]

Indicates the implemented Debug instructions. Defined values are:

ID_ISAR0_EL1, AArch32 Instruction Set Attribute Register 0

Page 957

Debug Meaning
0b0000 None implemented.
0b0001 Adds BKPT.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Coproc, bits [19:16]

Indicates the implemented System register access instructions. Defined values are:

Coproc Meaning
0b0000 None implemented, except for instructions separately

attributed by the architecture to provide access to AArch32
System registers and System instructions.

0b0001 Adds generic CDP, LDC, MCR, MRC, and STC.
0b0010 As for 0b0001, and adds generic CDP2, LDC2, MCR2, MRC2,

and STC2.
0b0011 As for 0b0010, and adds generic MCRR and MRRC.
0b0100 As for 0b0011, and adds generic MCRR2 and MRRC2.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

CmpBranch, bits [15:12]

Indicates the implemented combined Compare and Branch instructions in the T32 instruction set. Defined values are:

CmpBranch Meaning
0b0000 None implemented.
0b0001 Adds CBNZ and CBZ.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

BitField, bits [11:8]

Indicates the implemented BitField instructions. Defined values are:

BitField Meaning
0b0000 None implemented.
0b0001 Adds BFC, BFI, SBFX, and UBFX.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

BitCount, bits [7:4]

Indicates the implemented Bit Counting instructions. Defined values are:

BitCount Meaning
0b0000 None implemented.
0b0001 Adds CLZ.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Swap, bits [3:0]

Indicates the implemented Swap instructions in the A32 instruction set. Defined values are:

ID_ISAR0_EL1, AArch32 Instruction Set Attribute Register 0

Page 958

Swap Meaning
0b0000 None implemented.
0b0001 Adds SWP and SWPB.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Accessing the ID_ISAR0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_ISAR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0010 0b000

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_ISAR0_EL1;
elsif PSTATE.EL == EL2 then

return ID_ISAR0_EL1;
elsif PSTATE.EL == EL3 then

return ID_ISAR0_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR0_EL1, AArch32 Instruction Set Attribute Register 0

Page 959

ID_ISAR1_EL1, AArch32 Instruction Set Attribute
Register 1

The ID_ISAR1_EL1 characteristics are:

Purpose
Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, and ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID
registers.

Configuration
AArch64 System register ID_ISAR1_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_ISAR1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_ISAR1_EL1 are UNKNOWN.

Attributes
ID_ISAR1_EL1 is a 64-bit register.

Field descriptions
The ID_ISAR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

Jazelle Interwork Immediate IfThen Extend Except_AR Except Endian
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Jazelle, bits [31:28]

Indicates the implemented Jazelle extension instructions. Defined values are:

Jazelle Meaning
0b0000 No support for Jazelle.
0b0001 Adds the BXJ instruction and the J bit in the PSR. This setting

might indicate a trivial implementation of the Jazelle extension.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Interwork, bits [27:24]

Indicates the implemented Interworking instructions. Defined values are:

ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1

Page 960

Interwork Meaning
0b0000 None implemented.
0b0001 Adds the BX instruction, and the T bit in the PSR.
0b0010 As for 0b0001, and adds the BLX instruction. PC loads have

BX-like behavior.
0b0011 As for 0b0010, and guarantees that data-processing

instructions in the A32 instruction set with the PC as the
destination and the S bit clear have BX-like behavior.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.

Immediate, bits [23:20]

Indicates the implemented data-processing instructions with long immediates. Defined values are:

Immediate Meaning
0b0000 None implemented.
0b0001 Adds:

• The MOVT instruction.
• The MOV instruction encodings with zero-extended

16-bit immediates.
• The T32 ADD and SUB instruction encodings with

zero-extended 12-bit immediates, and the other ADD,
ADR, and SUB encodings cross-referenced by the
pseudocode for those encodings.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

IfThen, bits [19:16]

Indicates the implemented If-Then instructions in the T32 instruction set. Defined values are:

IfThen Meaning
0b0000 None implemented.
0b0001 Adds the IT instructions, and the IT bits in the PSRs.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Extend, bits [15:12]

Indicates the implemented Extend instructions. Defined values are:

Extend Meaning
0b0000 No scalar sign-extend or zero-extend instructions are

implemented, where scalar instructions means non-Advanced
SIMD instructions.

0b0001 Adds the SXTB, SXTH, UXTB, and UXTH instructions.
0b0010 As for 0b0001, and adds the SXTB16, SXTAB, SXTAB16,

SXTAH, UXTB16, UXTAB, UXTAB16, and UXTAH instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Except_AR, bits [11:8]

Indicates the implemented A and R profile exception-handling instructions. Defined values are:

ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1

Page 961

Except_AR Meaning
0b0000 None implemented.
0b0001 Adds the SRS and RFE instructions, and the A and R

profile forms of the CPS instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Except, bits [7:4]

Indicates the implemented exception-handling instructions in the A32 instruction set. Defined values are:

Except Meaning
0b0000 Not implemented. This indicates that the User bank and

Exception return forms of the LDM and STM instructions are
not implemented.

0b0001 Adds the LDM (exception return), LDM (user registers), and
STM (user registers) instruction versions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Endian, bits [3:0]

Indicates the implemented Endian instructions. Defined values are:

Endian Meaning
0b0000 None implemented.
0b0001 Adds the SETEND instruction, and the E bit in the PSRs.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

Accessing the ID_ISAR1_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_ISAR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0010 0b001

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_ISAR1_EL1;
elsif PSTATE.EL == EL2 then

return ID_ISAR1_EL1;
elsif PSTATE.EL == EL3 then

return ID_ISAR1_EL1;

ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1

Page 962

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1

Page 963

ID_ISAR2_EL1, AArch32 Instruction Set Attribute
Register 2

The ID_ISAR2_EL1 characteristics are:

Purpose
Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, and ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID
registers.

Configuration
AArch64 System register ID_ISAR2_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_ISAR2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_ISAR2_EL1 are UNKNOWN.

Attributes
ID_ISAR2_EL1 is a 64-bit register.

Field descriptions
The ID_ISAR2_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

Reversal PSR_AR MultU MultS Mult MultiAccessInt MemHint LoadStore
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Reversal, bits [31:28]

Indicates the implemented Reversal instructions. Defined values are:

Reversal Meaning
0b0000 None implemented.
0b0001 Adds the REV, REV16, and REVSH instructions.
0b0010 As for 0b0001, and adds the RBIT instruction.

All other values are reserved.

In Armv8-A the only permitted value is 0b0010.

PSR_AR, bits [27:24]

Indicates the implemented A and R profile instructions to manipulate the PSR. Defined values are:

ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2

Page 964

PSR_AR Meaning
0b0000 None implemented.
0b0001 Adds the MRS and MSR instructions, and the exception

return forms of data-processing instructions.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

The exception return forms of the data-processing instructions are:

• In the A32 instruction set, data-processing instructions with the PC as the destination and the S bit set. These
instructions might be affected by the WithShifts attribute.

• In the T32 instruction set, the SUBS PC,LR,#N instruction.

MultU, bits [23:20]

Indicates the implemented advanced unsigned Multiply instructions. Defined values are:

MultU Meaning
0b0000 None implemented.
0b0001 Adds the UMULL and UMLAL instructions.
0b0010 As for 0b0001, and adds the UMAAL instruction.

All other values are reserved.

In Armv8-A the only permitted value is 0b0010.

MultS, bits [19:16]

Indicates the implemented advanced signed Multiply instructions. Defined values are:

MultS Meaning
0b0000 None implemented.
0b0001 Adds the SMULL and SMLAL instructions.
0b0010 As for 0b0001, and adds the SMLABB, SMLABT, SMLALBB,

SMLALBT, SMLALTB, SMLALTT, SMLATB, SMLATT, SMLAWB,
SMLAWT, SMULBB, SMULBT, SMULTB, SMULTT, SMULWB,
and SMULWT instructions. Also adds the Q bit in the PSRs.

0b0011 As for 0b0010, and adds the SMLAD, SMLADX, SMLALD,
SMLALDX, SMLSD, SMLSDX, SMLSLD, SMLSLDX, SMMLA,
SMMLAR, SMMLS, SMMLSR, SMMUL, SMMULR, SMUAD,
SMUADX, SMUSD, and SMUSDX instructions.

All other values are reserved.

In Armv8-A the only permitted value is 0b0011.

Mult, bits [15:12]

Indicates the implemented additional Multiply instructions. Defined values are:

Mult Meaning
0b0000 No additional instructions implemented. This means only MUL

is implemented.
0b0001 Adds the MLA instruction.
0b0010 As for 0b0001, and adds the MLS instruction.

All other values are reserved.

In Armv8-A the only permitted value is 0b0010.

MultiAccessInt, bits [11:8]

Indicates the support for interruptible multi-access instructions. Defined values are:

ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2

Page 965

MultiAccessInt Meaning
0b0000 No support. This means the LDM and STM

instructions are not interruptible.
0b0001 LDM and STM instructions are restartable.
0b0010 LDM and STM instructions are continuable.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

MemHint, bits [7:4]

Indicates the implemented Memory Hint instructions. Defined values are:

MemHint Meaning
0b0000 None implemented.
0b0001 Adds the PLD instruction.
0b0010 Adds the PLD instruction. (0b0001 and 0b0010 have

identical effects.)
0b0011 As for 0b0001 (or 0b0010), and adds the PLI instruction.
0b0100 As for 0b0011, and adds the PLDW instruction.

All other values are reserved.

In Armv8-A the only permitted value is 0b0100.

LoadStore, bits [3:0]

Indicates the implemented additional load/store instructions. Defined values are:

LoadStore Meaning
0b0000 No additional load/store instructions implemented.
0b0001 Adds the LDRD and STRD instructions.
0b0010 As for 0b0001, and adds the Load Acquire (LDAB, LDAH,

LDA, LDAEXB, LDAEXH, LDAEX, LDAEXD) and Store
Release (STLB, STLH, STL, STLEXB, STLEXH, STLEX,
STLEXD) instructions.

All other values are reserved.

In Armv8-A the only permitted value is 0b0010.

Accessing the ID_ISAR2_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_ISAR2_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0010 0b010

ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2

Page 966

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_ISAR2_EL1;
elsif PSTATE.EL == EL2 then

return ID_ISAR2_EL1;
elsif PSTATE.EL == EL3 then

return ID_ISAR2_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2

Page 967

ID_ISAR3_EL1, AArch32 Instruction Set Attribute
Register 3

The ID_ISAR3_EL1 characteristics are:

Purpose
Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR4_EL1, and ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID
registers.

Configuration
AArch64 System register ID_ISAR3_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_ISAR3[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_ISAR3_EL1 are UNKNOWN.

Attributes
ID_ISAR3_EL1 is a 64-bit register.

Field descriptions
The ID_ISAR3_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

T32EE TrueNOP T32Copy TabBranch SynchPrim SVC SIMD Saturate
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

T32EE, bits [31:28]

Indicates the implemented T32EE instructions. Defined values are:

T32EE Meaning
0b0000 None implemented.
0b0001 Adds the ENTERX and LEAVEX instructions, and modifies the

load behavior to include null checking.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

TrueNOP, bits [27:24]

Indicates the implemented true NOP instructions. Defined values are:

ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3

Page 968

TrueNOP Meaning
0b0000 None implemented. This means there are no NOP

instructions that do not have any register dependencies.
0b0001 Adds true NOP instructions in both the T32 and A32

instruction sets. This also permits additional NOP-
compatible hints.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

T32Copy, bits [23:20]

Indicates the support for T32 non flag-setting MOV instructions. Defined values are:

T32Copy Meaning
0b0000 Not supported. This means that in the T32 instruction set,

encoding T1 of the MOV (register) instruction does not
support a copy from a low register to a low register.

0b0001 Adds support for T32 instruction set encoding T1 of the MOV
(register) instruction, copying from a low register to a low
register.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

TabBranch, bits [19:16]

Indicates the implemented Table Branch instructions in the T32 instruction set. Defined values are:

TabBranch Meaning
0b0000 None implemented.
0b0001 Adds the TBB and TBH instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

SynchPrim, bits [15:12]

Used in conjunction with ID_ISAR4.SynchPrim_frac to indicate the implemented Synchronization Primitive
instructions. Defined values are:

SynchPrim Meaning
0b0000 If SynchPrim_frac == 0b0000, no Synchronization

Primitives implemented.
0b0001 If SynchPrim_frac == 0b0000, adds the LDREX and STREX

instructions.
If SynchPrim_frac == 0b0011, also adds the CLREX,
LDREXB, STREXB, and STREXH instructions.

0b0010 If SynchPrim_frac == 0b0000, as for [0b0001, 0b0011] and
also adds the LDREXD and STREXD instructions.

All other combinations of SynchPrim and SynchPrim_frac are reserved.

In Armv8-A, the only permitted value is 0b0010.

SVC, bits [11:8]

Indicates the implemented SVC instructions. Defined values are:

SVC Meaning
0b0000 Not implemented.
0b0001 Adds the SVC instruction.

ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3

Page 969

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

SIMD, bits [7:4]

Indicates the implemented SIMD instructions. Defined values are:

SIMD Meaning
0b0000 None implemented.
0b0001 Adds the SSAT and USAT instructions, and the Q bit in the

PSRs.
0b0011 As for 0b0001, and adds the PKHBT, PKHTB, QADD16, QADD8,

QASX, QSUB16, QSUB8, QSAX, SADD16, SADD8, SASX, SEL,
SHADD16, SHADD8, SHASX, SHSUB16, SHSUB8, SHSAX,
SSAT16, SSUB16, SSUB8, SSAX, SXTAB16, SXTB16, UADD16,
UADD8, UASX, UHADD16, UHADD8, UHASX, UHSUB16,
UHSUB8, UHSAX, UQADD16, UQADD8, UQASX, UQSUB16,
UQSUB8, UQSAX, USAD8, USADA8, USAT16, USUB16,
USUB8, USAX, UXTAB16, and UXTB16 instructions. Also adds
support for the GE[3:0] bits in the PSRs.

All other values are reserved.

In Armv8-A the only permitted value is 0b0011.

The SIMD field relates only to implemented instructions that perform SIMD operations on the general-purpose
registers. In an implementation that supports floating-point and Advanced SIMD instructions, MVFR0, MVFR1, and
MVFR2 give information about the implemented Advanced SIMD instructions.

Saturate, bits [3:0]

Indicates the implemented Saturate instructions. Defined values are:

Saturate Meaning
0b0000 None implemented. This means no non-Advanced SIMD

saturate instructions are implemented.
0b0001 Adds the QADD, QDADD, QDSUB, and QSUB instructions,

and the Q bit in the PSRs.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Accessing the ID_ISAR3_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_ISAR3_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0010 0b011

ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3

Page 970

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_ISAR3_EL1;
elsif PSTATE.EL == EL2 then

return ID_ISAR3_EL1;
elsif PSTATE.EL == EL3 then

return ID_ISAR3_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3

Page 971

ID_ISAR4_EL1, AArch32 Instruction Set Attribute
Register 4

The ID_ISAR4_EL1 characteristics are:

Purpose
Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, and ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID
registers.

Configuration
AArch64 System register ID_ISAR4_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_ISAR4[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_ISAR4_EL1 are UNKNOWN.

Attributes
ID_ISAR4_EL1 is a 64-bit register.

Field descriptions
The ID_ISAR4_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

SWP_frac PSR_M SynchPrim_frac Barrier SMC Writeback WithShifts Unpriv
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

SWP_frac, bits [31:28]

Indicates support for the memory system locking the bus for SWP or SWPB instructions. Defined values are:

SWP_frac Meaning
0b0000 SWP or SWPB instructions not implemented.
0b0001 SWP or SWPB implemented but only in a uniprocessor

context. SWP and SWPB do not guarantee whether memory
accesses from other masters can come between the load
memory access and the store memory access of the SWP or
SWPB.

All other values are reserved. This field is valid only if ID_ISAR0.Swap is 0b0000.

In Armv8-A, the only permitted value is 0b0000.

ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4

Page 972

PSR_M, bits [27:24]

Indicates the implemented M profile instructions to modify the PSRs. Defined values are:

PSR_M Meaning
0b0000 None implemented.
0b0001 Adds the M profile forms of the CPS, MRS, and MSR

instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

SynchPrim_frac, bits [23:20]

Used in conjunction with ID_ISAR3.SynchPrim to indicate the implemented Synchronization Primitive instructions.
Possible values are:

SynchPrim_frac Meaning
0b0000 If SynchPrim == 0b0000, no Synchronization

Primitives implemented. If SynchPrim == 0b0001,
adds the LDREX and STREX instructions. If
SynchPrim == 0b0010, also adds the CLREX,
LDREXB, LDREXH, STREXB, STREXH, LDREXD, and
STREXD instructions.

0b0011 If SynchPrim == 0b0001, adds the LDREX, STREX,
CLREX, LDREXB, LDREXH, STREXB, and STREXH
instructions.

All other combinations of SynchPrim and SynchPrim_frac are reserved.

In Armv8-A, the only permitted value is 0b0000.

Barrier, bits [19:16]

Indicates the implemented Barrier instructions in the A32 and T32 instruction sets. Defined values are:

Barrier Meaning
0b0000 None implemented. Barrier operations are provided only as

System instructions in the (coproc==0b1111) encoding space.
0b0001 Adds the DMB, DSB, and ISB barrier instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

SMC, bits [15:12]

Indicates the implemented SMC instructions. Defined values are:

SMC Meaning
0b0000 None implemented.
0b0001 Adds the SMC instruction.

All other values are reserved.

In Armv8-A, the permitted values are 0b0001 and 0b0000.

If EL1 cannot use AArch32, then this field has the value 0b0000.

Writeback, bits [11:8]

Indicates the support for Writeback addressing modes. Defined values are:

ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4

Page 973

Writeback Meaning
0b0000 Basic support. Only the LDM, STM, PUSH, POP, SRS, and

RFE instructions support writeback addressing modes.
These instructions support all of their writeback
addressing modes.

0b0001 Adds support for all of the writeback addressing modes.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

WithShifts, bits [7:4]

Indicates the support for instructions with shifts. Defined values are:

WithShifts Meaning
0b0000 Nonzero shifts supported only in MOV and shift

instructions.
0b0001 Adds support for shifts of loads and stores over the range

LSL 0-3.
0b0011 As for 0b0001, and adds support for other constant shift

options, both on load/store and other instructions.
0b0100 As for 0b0011, and adds support for register-controlled

shift options.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0100.

Unpriv, bits [3:0]

Indicates the implemented unprivileged instructions. Defined values are:

Unpriv Meaning
0b0000 None implemented. No T variant instructions are implemented.
0b0001 Adds the LDRBT, LDRT, STRBT, and STRT instructions.
0b0010 As for 0b0001, and adds the LDRHT, LDRSBT, LDRSHT, and

STRHT instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Accessing the ID_ISAR4_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_ISAR4_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0010 0b100

ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4

Page 974

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_ISAR4_EL1;
elsif PSTATE.EL == EL2 then

return ID_ISAR4_EL1;
elsif PSTATE.EL == EL3 then

return ID_ISAR4_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4

Page 975

ID_ISAR5_EL1, AArch32 Instruction Set Attribute
Register 5

The ID_ISAR5_EL1 characteristics are:

Purpose
Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, and ID_ISAR4_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID
registers.

Configuration
AArch64 System register ID_ISAR5_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_ISAR5[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_ISAR5_EL1 are UNKNOWN.

Attributes
ID_ISAR5_EL1 is a 64-bit register.

Field descriptions
The ID_ISAR5_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

VCMA RDM RES0 CRC32 SHA2 SHA1 AES SEVL
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

VCMA, bits [31:28]

Indicates AArch32 support for complex number addition and multiplication where numbers are stored in vectors.
Defined values are:

VCMA Meaning
0b0000 The VCMLA and VCADD instructions are not implemented in

AArch32.
0b0001 The VCMLA and VCADD instructions are implemented in

AArch32.

All other values are reserved.

ARMv8.3-CompNum implements the functionality identified by 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, the only permitted value is 0b0001.

ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5

Page 976

RDM, bits [27:24]

Indicates whether the VQRDMLAH and VQRDMLSH instructions are implemented in AArch32 state. Defined values
are:

RDM Meaning
0b0000 No VQRDMLAH and VQRDMLSH instructions implemented.
0b0001 VQRDMLAH and VQRDMLSH instructions implemented.

All other values are reserved.

ARMv8.1-RDMA implements the functionality identified by the value 0b0001.

In Armv8.0, the only permitted value is 0b0000.

From Armv8.1, the only permitted value is 0b0001.

Bits [23:20]

Reserved, RES0.

CRC32, bits [19:16]

Indicates whether the CRC32 instructions are implemented in AArch32 state.

CRC32 Meaning
0b0000 No CRC32 instructions implemented.
0b0001 CRC32B, CRC32H, CRC32W, CRC32CB, CRC32CH, and

CRC32CW instructions implemented.

All other values are reserved.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.1, the only permitted value is 0b0001.

SHA2, bits [15:12]

Indicates whether the SHA2 instructions are implemented in AArch32 state.

SHA2 Meaning
0b0000 No SHA2 instructions implemented.
0b0001 SHA256H, SHA256H2, SHA256SU0, and SHA256SU1

implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

SHA1, bits [11:8]

Indicates whether the SHA1 instructions are implemented in AArch32 state.

SHA1 Meaning
0b0000 No SHA1 instructions implemented.
0b0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1

implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

AES, bits [7:4]

Indicates whether the AES instructions are implemented in AArch32 state.

ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5

Page 977

AES Meaning
0b0000 No AES instructions implemented.
0b0001 AESE, AESD, AESMC, and AESIMC implemented.
0b0010 As for 0b0001, plus VMULL (polynomial) instructions operating

on 64-bit data quantities.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0010.

SEVL, bits [3:0]

Indicates whether the SEVL instruction is implemented in AArch32 state.

SEVL Meaning
0b0000 SEVL is implemented as a NOP.
0b0001 SEVL is implemented as Send Event Local.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Accessing the ID_ISAR5_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_ISAR5_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0010 0b101

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_ISAR5_EL1;
elsif PSTATE.EL == EL2 then

return ID_ISAR5_EL1;
elsif PSTATE.EL == EL3 then

return ID_ISAR5_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5

Page 978

ID_ISAR6_EL1, AArch32 Instruction Set Attribute
Register 6

The ID_ISAR6_EL1 characteristics are:

Purpose
Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1 and
ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID
registers.

Configuration
AArch64 System register ID_ISAR6_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_ISAR6[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_ISAR6_EL1 are UNKNOWN.

Note

Prior to the introduction of the features described by this register, this
register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

Attributes
ID_ISAR6_EL1 is a 64-bit register.

Field descriptions
The ID_ISAR6_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 I8MM BF16 SPECRES SB FHM DP JSCVT
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:28]

Reserved, RES0.

I8MM, bits [27:24]

Indicates support for Advanced SIMD and floating-point Int8 matrix multiplication instructions in AArch32 state.
Defined values of this field are:

I8MM Meaning
0b0000 Int8 matrix multiplication instructions are not implemented.
0b0001 VSMMLA, VSUDOT, VUMMLA, VUSMMLA, and VUSDOT

instructions are implemented.

All other values are reserved.

ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6

Page 979

ARMv8.2-AA32I8MM implements the functionality identified by 0b0001.

BF16, bits [23:20]

Indicates support for Advanced SIMD and floating-point BFloat16 instructions in AArch32 state. Defined values are:

BF16 Meaning
0b0000 BFloat16 instructions are not implemented.
0b0001 VCVT, VCVTB, VCVTT, VDOT, VFMAL, and VMMLA instructions

with BF16 operand or result types are implemented.

All other values are reserved.

ARMv8.2-AA32BF16 implements the functionality identified by 0b0001.

SPECRES, bits [19:16]

Indicates support for Speculation invalidation instructions in AArch32 state. Defined values are:

SPECRES Meaning
0b0000 Prediction invalidation instructions are not implemented.
0b0001 CFPRCTX, DVPRCTX, and CPPRCTX instructions are

implemented.

All other values are reserved.

ARMv8.0-PredInv implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

SB, bits [15:12]

Indicates support for the SB instruction in AArch32 state. Defined values are:

SB Meaning
0b0000 SB instruction is not implemented.
0b0001 SB instruction is implemented.

All other values are reserved.

ARMv8.0-SB implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

FHM, bits [11:8]

Indicates support for Advanced SIMD and floating-point VFMAL and VFMSL instructions in AArch32 state. Defined
values are:

FHM Meaning
0b0000 VFMAL and VMFSL instructions are not implemented.
0b0001 VFMAL and VMFSL instructions are implemented.

All other values are reserved.

ARMv8.2-FHM implements the functionality identified by 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

DP, bits [7:4]

Indicates support for Advanced SIMD and floating-point VFMAL and VFMSL instructions in AArch32 state. Defined
values are:

ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6

Page 980

DP Meaning
0b0000 Dot product instructions are not implemented.
0b0001 UDOT and VSDOT instructions are implemented.

All other values are reserved.

ARMv8.2-DotProd implements the functionality identified by 0b0001.

In Armv8.2, the permitted values are 0b0000 and 0b0001.

From Armv8.4, the only permitted value is 0b0001.

JSCVT, bits [3:0]

Indicates support for the VJCVT instruction in AArch32 state. Defined values are:

JSCVT Meaning
0b0000 The VJCVT instruction is not implemented.
0b0001 The VJCVT instruction is implemented.

All other values are reserved.

ARMv8.3-JSConv implements the functionality identified by 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is 0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value is 0b0000.

Accessing the ID_ISAR6_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_ISAR6_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0010 0b111

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!IsZero(ID_ISAR6_EL1) || boolean

IMPLEMENTATION_DEFINED "ID_ISAR6_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ID_ISAR6_EL1;

elsif PSTATE.EL == EL2 then
return ID_ISAR6_EL1;

elsif PSTATE.EL == EL3 then
return ID_ISAR6_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6

Page 981

ID_MMFR0_EL1, AArch32 Memory Model Feature
Register 0

The ID_MMFR0_EL1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR1_EL1, ID_MMFR2_EL1, ID_MMFR3_EL1, and ID_MMFR4_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID
registers.

Configuration
AArch64 System register ID_MMFR0_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_MMFR0[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_MMFR0_EL1 are UNKNOWN.

Attributes
ID_MMFR0_EL1 is a 64-bit register.

Field descriptions
The ID_MMFR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

InnerShr FCSE AuxReg TCM ShareLvl OuterShr PMSA VMSA
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

InnerShr, bits [31:28]

Innermost Shareability. Indicates the innermost shareability domain implemented. Defined values are:

InnerShr Meaning
0b0000 Implemented as Non-cacheable.
0b0001 Implemented with hardware coherency support.
0b1111 Shareability ignored.

All other values are reserved.

From Armv8 the permitted values are 0b0000, 0b0001, and 0b1111.

This field is valid only if the implementation supports two levels of shareability, as indicated by
ID_MMFR0_EL1.ShareLvl having the value 0b0001.

When ID_MMFR0_EL1.ShareLvl is zero, this field is UNKNOWN.

ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0

Page 982

FCSE, bits [27:24]

Indicates whether the implementation includes the FCSE. Defined values are:

FCSE Meaning
0b0000 Not supported.
0b0001 Support for FCSE.

All other values are reserved.

From Armv8 the only permitted value is 0b0000.

AuxReg, bits [23:20]

Auxiliary Registers. Indicates support for Auxiliary registers. Defined values are:

AuxReg Meaning
0b0000 None supported.
0b0001 Support for Auxiliary Control Register only.
0b0010 Support for Auxiliary Fault Status Registers (AIFSR and

ADFSR) and Auxiliary Control Register.

All other values are reserved.

From Armv8 the only permitted value is 0b0010.

Note

Accesses to unimplemented Auxiliary registers are UNDEFINED.

TCM, bits [19:16]

Indicates support for TCMs and associated DMAs. Defined values are:

TCM Meaning
0b0000 Not supported.
0b0001 Support is IMPLEMENTATION DEFINED. Armv7 requires this

setting.
0b0010 Support for TCM only, Armv6 implementation.
0b0011 Support for TCM and DMA, Armv6 implementation.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

ShareLvl, bits [15:12]

Shareability Levels. Indicates the number of shareability levels implemented. Defined values are:

ShareLvl Meaning
0b0000 One level of shareability implemented.
0b0001 Two levels of shareability implemented.

All other values are reserved.

From Armv8 the only permitted value is 0b0001.

OuterShr, bits [11:8]

Outermost Shareability. Indicates the outermost shareability domain implemented. Defined values are:

ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0

Page 983

OuterShr Meaning
0b0000 Implemented as Non-cacheable.
0b0001 Implemented with hardware coherency support.
0b1111 Shareability ignored.

All other values are reserved.

From Armv8 the permitted values are 0b0000, 0b0001, and 0b1111.

PMSA, bits [7:4]

Indicates support for a PMSA. Defined values are:

PMSA Meaning
0b0000 Not supported.
0b0001 Support for IMPLEMENTATION DEFINED PMSA.
0b0010 Support for PMSAv6, with a Cache Type Register implemented.
0b0011 Support for PMSAv7, with support for memory subsections.

Armv7-R profile.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

VMSA, bits [3:0]

Indicates support for a VMSA. Defined values are:

VMSA Meaning
0b0000 Not supported.
0b0001 Support for IMPLEMENTATION DEFINED VMSA.
0b0010 Support for VMSAv6, with Cache and TLB Type Registers

implemented.
0b0011 Support for VMSAv7, with support for remapping and the

Access flag. Armv7-A profile.
0b0100 As for 0b0011, and adds support for the PXN bit in the Short-

descriptor translation table format descriptors.
0b0101 As for 0b0100, and adds support for the Long-descriptor

translation table format.

All other values are reserved.

In Armv8-A the only permitted value is 0b0101.

Accessing the ID_MMFR0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_MMFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0001 0b100

ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0

Page 984

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_MMFR0_EL1;
elsif PSTATE.EL == EL2 then

return ID_MMFR0_EL1;
elsif PSTATE.EL == EL3 then

return ID_MMFR0_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0

Page 985

ID_MMFR1_EL1, AArch32 Memory Model Feature
Register 1

The ID_MMFR1_EL1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0_EL1, ID_MMFR2_EL1, ID_MMFR3_EL1, and ID_MMFR4_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID
registers.

Configuration
AArch64 System register ID_MMFR1_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_MMFR1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_MMFR1_EL1 are UNKNOWN.

Attributes
ID_MMFR1_EL1 is a 64-bit register.

Field descriptions
The ID_MMFR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

BPred L1TstCln L1Uni L1Hvd L1UniSW L1HvdSW L1UniVA L1HvdVA
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

BPred, bits [31:28]

Branch Predictor. Indicates branch predictor management requirements. Defined values are:

ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1

Page 986

BPred Meaning
0b0000 No branch predictor, or no MMU present. Implies a fixed MPU

configuration.
0b0001 Branch predictor requires flushing on:

• Enabling or disabling a stage of address translation.
• Writing new data to instruction locations.
• Writing new mappings to the translation tables.
• Changes to the TTBR0, TTBR1, or TTBCR registers.
• Changes to the ContextID or ASID, or to the FCSE

ProcessID if this is supported.
0b0010 Branch predictor requires flushing on:

• Enabling or disabling a stage of address translation.
• Writing new data to instruction locations.
• Writing new mappings to the translation tables.
• Any change to the TTBR0, TTBR1, or TTBCR registers

without a change to the corresponding ContextID or ASID,
or FCSE ProcessID if this is supported.

0b0011 Branch predictor requires flushing only on writing new data to
instruction locations.

0b0100 For execution correctness, branch predictor requires no
flushing at any time.

All other values are reserved.

In Armv8-A the permitted values are 0b0010, 0b0011, or 0b0100. For values other than 0b0000 and 0b0100 the Arm
Architecture Reference Manual, or the product documentation, might give more information about the required
maintenance.

L1TstCln, bits [27:24]

Level 1 cache Test and Clean. Indicates the supported Level 1 data cache test and clean operations, for Harvard or
unified cache implementations. Defined values are:

L1TstCln Meaning
0b0000 None supported.
0b0001 Supported Level 1 data cache test and clean operations are:

• Test and clean data cache.
0b0010 As for 0001, and adds:

• Test, clean, and invalidate data cache.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

L1Uni, bits [23:20]

Level 1 Unified cache. Indicates the supported entire Level 1 cache maintenance operations for a unified cache
implementation. Defined values are:

L1Uni Meaning
0b0000 None supported.
0b0001 Supported entire Level 1 cache operations are:

• Invalidate cache, including branch predictor if
appropriate.

• Invalidate branch predictor, if appropriate.
0b0010 As for 0001, and adds:

• Clean cache, using a recursive model that uses the cache
dirty status bit.

• Clean and invalidate cache, using a recursive model that
uses the cache dirty status bit.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1

Page 987

L1Hvd, bits [19:16]

Level 1 Harvard cache. Indicates the supported entire Level 1 cache maintenance operations for a Harvard cache
implementation. Defined values are:

L1Hvd Meaning
0b0000 None supported.
0b0001 Supported entire Level 1 cache operations are:

• Invalidate instruction cache, including branch predictor if
appropriate.

• Invalidate branch predictor, if appropriate.
0b0010 As for 0001, and adds:

• Invalidate data cache.
• Invalidate data cache and instruction cache, including

branch predictor if appropriate.
0b0011 As for 0010, and adds:

• Clean data cache, using a recursive model that uses the
cache dirty status bit.

• Clean and invalidate data cache, using a recursive model
that uses the cache dirty status bit.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

L1UniSW, bits [15:12]

Level 1 Unified cache by Set/Way. Indicates the supported Level 1 cache line maintenance operations by set/way, for a
unified cache implementation. Defined values are:

L1UniSW Meaning
0b0000 None supported.
0b0001 Supported Level 1 unified cache line maintenance

operations by set/way are:
• Clean cache line by set/way.

0b0010 As for 0001, and adds:
• Clean and invalidate cache line by set/way.

0b0011 As for 0010, and adds:
• Invalidate cache line by set/way.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

L1HvdSW, bits [11:8]

Level 1 Harvard cache by Set/Way. Indicates the supported Level 1 cache line maintenance operations by set/way, for a
Harvard cache implementation. Defined values are:

L1HvdSW Meaning
0b0000 None supported.
0b0001 Supported Level 1 Harvard cache line maintenance

operations by set/way are:
• Clean data cache line by set/way.
• Clean and invalidate data cache line by set/way.

0b0010 As for 0001, and adds:
• Invalidate data cache line by set/way.

0b0011 As for 0010, and adds:
• Invalidate instruction cache line by set/way.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1

Page 988

L1UniVA, bits [7:4]

Level 1 Unified cache by Virtual Address. Indicates the supported Level 1 cache line maintenance operations by VA,
for a unified cache implementation. Defined values are:

L1UniVA Meaning
0b0000 None supported.
0b0001 Supported Level 1 unified cache line maintenance operations

by VA are:
• Clean cache line by VA.
• Invalidate cache line by VA.
• Clean and invalidate cache line by VA.

0b0010 As for 0001, and adds:
• Invalidate branch predictor by VA, if branch predictor is

implemented.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

L1HvdVA, bits [3:0]

Level 1 Harvard cache by Virtual Address. Indicates the supported Level 1 cache line maintenance operations by VA,
for a Harvard cache implementation. Defined values are:

L1HvdVA Meaning
0b0000 None supported.
0b0001 Supported Level 1 Harvard cache line maintenance

operations by VA are:
• Clean data cache line by VA.
• Invalidate data cache line by VA.
• Clean and invalidate data cache line by VA.
• Clean instruction cache line by VA.

0b0010 As for 0001, and adds:
• Invalidate branch predictor by VA, if branch predictor

is implemented.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

Accessing the ID_MMFR1_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_MMFR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0001 0b101

ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1

Page 989

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_MMFR1_EL1;
elsif PSTATE.EL == EL2 then

return ID_MMFR1_EL1;
elsif PSTATE.EL == EL3 then

return ID_MMFR1_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1

Page 990

ID_MMFR2_EL1, AArch32 Memory Model Feature
Register 2

The ID_MMFR2_EL1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0_EL1, ID_MMFR1_EL1, ID_MMFR3_EL1, and ID_MMFR4_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID
registers.

Configuration
AArch64 System register ID_MMFR2_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_MMFR2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_MMFR2_EL1 are UNKNOWN.

Attributes
ID_MMFR2_EL1 is a 64-bit register.

Field descriptions
The ID_MMFR2_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

HWAccFlg WFIStall MemBarr UniTLB HvdTLB L1HvdRng L1HvdBG L1HvdFG
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

HWAccFlg, bits [31:28]

Hardware Access Flag. In earlier versions of the Arm Architecture, this field indicates support for a Hardware Access
flag, as part of the VMSAv7 implementation. Defined values are:

HWAccFlg Meaning
0b0000 Not supported.
0b0001 Support for VMSAv7 Access flag, updated in hardware.

All other values are reserved.

From Armv8 the only permitted value is 0b0000.

WFIStall, bits [27:24]

Wait For Interrupt Stall. Indicates the support for Wait For Interrupt (WFI) stalling. Defined values are:

ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2

Page 991

WFIStall Meaning
0b0000 Not supported.
0b0001 Support for WFI stalling.

All other values are reserved.

From Armv8 the permitted values are 0b0000 and 0b0001.

MemBarr, bits [23:20]

Memory Barrier. Indicates the supported memory barrier System instructions in the (coproc==0b1111) encoding
space:

MemBarr Meaning
0b0000 None supported.
0b0001 Supported memory barrier System instructions are:

• Data Synchronization Barrier (DSB).
0b0010 As for 0001, and adds:

• Instruction Synchronization Barrier (ISB).
• Data Memory Barrier (DMB).

All other values are reserved.

From Armv8 the only permitted value is 0b0010.

Arm deprecates the use of these operations. ID_ISAR4.Barrier_instrs indicates the level of support for the preferred
barrier instructions.

UniTLB, bits [19:16]

Unified TLB. Indicates the supported TLB maintenance operations, for a unified TLB implementation. Defined values
are:

UniTLB Meaning
0b0000 Not supported.
0b0001 Supported unified TLB maintenance operations are:

• Invalidate all entries in the TLB.
• Invalidate TLB entry by VA.

0b0010 As for 0001, and adds:
• Invalidate TLB entries by ASID match.

0b0011 As for 0010, and adds:
• Invalidate instruction TLB and data TLB entries by VA All

ASID. This is a shared unified TLB operation.
0b0100 As for 0011, and adds:

• Invalidate Hyp mode unified TLB entry by VA.
• Invalidate entire Non-secure PL1&0 unified TLB.
• Invalidate entire Hyp mode unified TLB.

0b0101 As for 0b0100, and adds the following operations:
TLBIMVALIS, TLBIMVAALIS, TLBIMVALHIS, TLBIMVAL,
TLBIMVAAL, TLBIMVALH.

0b0110 As for 0b0101, and adds the following operations:
TLBIIPAS2IS, TLBIIPAS2LIS, TLBIIPAS2, TLBIIPAS2L.

All other values are reserved.

In Armv8-A the only permitted value is 0b0110.

HvdTLB, bits [15:12]

If the Unified TLB field (UniTLB, bits [19:16]) is not 0000, then the meaning of this field is IMPLEMENTATION DEFINED.
Arm deprecates the use of this field by software.

L1HvdRng, bits [11:8]

Level 1 Harvard cache Range. Indicates the supported Level 1 cache maintenance range operations, for a Harvard
cache implementation. Defined values are:

ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2

Page 992

L1HvdRng Meaning
0b0000 Not supported.
0b0001 Supported Level 1 Harvard cache maintenance range

operations are:
• Invalidate data cache range by VA.
• Invalidate instruction cache range by VA.
• Clean data cache range by VA.
• Clean and invalidate data cache range by VA.

All other values are reserved.

From Armv8 the only permitted value is 0b0000.

L1HvdBG, bits [7:4]

Level 1 Harvard cache Background fetch. Indicates the supported Level 1 cache background fetch operations, for a
Harvard cache implementation. When supported, background fetch operations are non-blocking operations. Defined
values are:

L1HvdBG Meaning
0b0000 Not supported.
0b0001 Supported Level 1 Harvard cache background fetch

operations are:
• Fetch instruction cache range by VA.
• Fetch data cache range by VA.

All other values are reserved.

From Armv8 the only permitted value is 0b0000.

L1HvdFG, bits [3:0]

Level 1 Harvard cache Foreground fetch. Indicates the supported Level 1 cache foreground fetch operations, for a
Harvard cache implementation. When supported, foreground fetch operations are blocking operations. Defined values
are:

L1HvdFG Meaning
0b0000 Not supported.
0b0001 Supported Level 1 Harvard cache foreground fetch

operations are:
• Fetch instruction cache range by VA.
• Fetch data cache range by VA.

All other values are reserved.

From Armv8 the only permitted value is 0b0000.

Accessing the ID_MMFR2_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_MMFR2_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0001 0b110

ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2

Page 993

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_MMFR2_EL1;
elsif PSTATE.EL == EL2 then

return ID_MMFR2_EL1;
elsif PSTATE.EL == EL3 then

return ID_MMFR2_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2

Page 994

ID_MMFR3_EL1, AArch32 Memory Model Feature
Register 3

The ID_MMFR3_EL1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0_EL1, ID_MMFR1_EL1, ID_MMFR2_EL1, and ID_MMFR4_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID
registers.

Configuration
AArch64 System register ID_MMFR3_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_MMFR3[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_MMFR3_EL1 are UNKNOWN.

Attributes
ID_MMFR3_EL1 is a 64-bit register.

Field descriptions
The ID_MMFR3_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

Supersec CMemSz CohWalk PAN MaintBcst BPMaint CMaintSW CMaintVA
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Supersec, bits [31:28]

Supersections. On a VMSA implementation, indicates whether Supersections are supported. Defined values are:

Supersec Meaning
0b0000 Supersections supported.
0b1111 Supersections not supported.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b1111.

CMemSz, bits [27:24]

Cached Memory Size. Indicates the physical memory size supported by the caches. Defined values are:

ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

Page 995

CMemSz Meaning
0b0000 4GB, corresponding to a 32-bit physical address range.
0b0001 64GB, corresponding to a 36-bit physical address range.
0b0010 1TB or more, corresponding to a 40-bit or larger physical

address range.

All other values are reserved.

In Armv8-A the permitted values are 0b0000, 0b0001, and 0b0010.

CohWalk, bits [23:20]

Coherent Walk. Indicates whether Translation table updates require a clean to the Point of Unification. Defined values
are:

CohWalk Meaning
0b0000 Updates to the translation tables require a clean to the Point

of Unification to ensure visibility by subsequent translation
table walks.

0b0001 Updates to the translation tables do not require a clean to
the Point of Unification to ensure visibility by subsequent
translation table walks.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

PAN, bits [19:16]

Privileged Access Never. Indicates support for the PAN bit in CPSR, SPSR, and DSPSR in AArch32 state. Defined
values are:

PAN Meaning
0b0000 PAN not supported.
0b0001 PAN supported.
0b0010 PAN supported and ATS1CPRP and ATS1CPWP instructions

supported.

All other values are reserved.

ARMv8.1-PAN implements the functionality identified by the value 0b0001.

ARMv8.2-ATS1E1 implements the functionality added by the value 0b0010.

In Armv8.1 the value 0b0000 is not permitted.

From Armv8.2, the only permitted value is 0b0010.

MaintBcst, bits [15:12]

Maintenance Broadcast. Indicates whether Cache, TLB, and branch predictor operations are broadcast. Defined values
are:

MaintBcst Meaning
0b0000 Cache, TLB, and branch predictor operations only affect

local structures.
0b0001 Cache and branch predictor operations affect structures

according to shareability and defined behavior of
instructions. TLB operations only affect local structures.

0b0010 Cache, TLB, and branch predictor operations affect
structures according to shareability and defined behavior
of instructions.

All other values are reserved.

In Armv8-A the only permitted value is 0b0010.

ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

Page 996

BPMaint, bits [11:8]

Branch Predictor Maintenance. Indicates the supported branch predictor maintenance operations in an
implementation with hierarchical cache maintenance operations. Defined values are:

BPMaint Meaning
0b0000 None supported.
0b0001 Supported branch predictor maintenance operations are:

• Invalidate all branch predictors.
0b0010 As for 0001, and adds:

• Invalidate branch predictors by VA.

All other values are reserved.

In Armv8-A the only permitted value is 0b0010.

CMaintSW, bits [7:4]

Cache Maintenance by Set/Way. Indicates the supported cache maintenance operations by set/way, in an
implementation with hierarchical caches. Defined values are:

CMaintSW Meaning
0b0000 None supported.
0b0001 Supported hierarchical cache maintenance instructions by

set/way are:
• Invalidate data cache by set/way.
• Clean data cache by set/way.
• Clean and invalidate data cache by set/way.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

In a unified cache implementation, the data cache maintenance operations apply to the unified caches.

CMaintVA, bits [3:0]

Cache Maintenance by Virtual Address. Indicates the supported cache maintenance operations by VA, in an
implementation with hierarchical caches. Defined values are:

CMaintVA Meaning
0b0000 None supported.
0b0001 Supported hierarchical cache maintenance operations by

VA are:
• Invalidate data cache by VA.
• Clean data cache by VA.
• Clean and invalidate data cache by VA.
• Invalidate instruction cache by VA.
• Invalidate all instruction cache entries.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

In a unified cache implementation, data cache maintenance operations apply to the unified caches, and the instruction
cache maintenance instructions are not implemented.

Accessing the ID_MMFR3_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_MMFR3_EL1

op0 op1 CRn CRm op2

ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

Page 997

0b11 0b000 0b0000 0b0001 0b111

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_MMFR3_EL1;
elsif PSTATE.EL == EL2 then

return ID_MMFR3_EL1;
elsif PSTATE.EL == EL3 then

return ID_MMFR3_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

Page 998

ID_MMFR4_EL1, AArch32 Memory Model Feature
Register 4

The ID_MMFR4_EL1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0_EL1, ID_MMFR1_EL1, ID_MMFR2_EL1, and ID_MMFR3_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID
registers.

Configuration
AArch64 System register ID_MMFR4_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_MMFR4[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_MMFR4_EL1 are UNKNOWN.

Attributes
ID_MMFR4_EL1 is a 64-bit register.

Field descriptions
The ID_MMFR4_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

EVT CCIDX LSM HPDS CnP XNX AC2 SpecSEI
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

EVT, bits [31:28]

Enhanced Virtualization Traps. If EL2 is implemented, indicates support for the HCR2.{TTLBIS, TOCU, TICAB, TID4}
traps. Defined values are:

EVT Meaning
0b0000 HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are not supported.
0b0001 HCR2.{TOCU, TICAB, TID4} traps are supported.

HCR2.TTLBIS trap is not supported.
0b0010 HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are supported.

All other values are reserved.

ARMv8.2-EVT implements the functionality identified by the values 0b0001 and 0b0010.

If EL2 is not implemented, the only permitted value is 0b0000.

From Armv8.1, the permitted values are 0b0000 and 0b0001.

From Armv8.5, if EL2 is implemented, the only permitted value is 0b0010.

ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4

Page 999

CCIDX, bits [27:24]

Support for use of the revised CCSIDR format and the presence of the CCSIDR2 is indicated. Defined values are:

CCIDX Meaning
0b0000 32-bit format implemented for all levels of the CCSIDR, and the

CCSIDR2 register is not implemented.
0b0001 64-bit format implemented for all levels of the CCSIDR, and the

CCSIDR2 register is implemented.

All other values are reserved.

ARMv8.3-CCIDX implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

LSM, bits [23:20]

Indicates support for LSMAOE and nTLSMD bits in HSCTLR and SCTLR. Defined values are:

LSM Meaning
0b0000 LSMAOE and nTLSMD bits not supported.
0b0001 LSMAOE and nTLSMD bits supported.

All other values are reserved.

ARMv8.2-LSMAOC implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

HPDS, bits [19:16]

Hierarchical permission disables bits in translation tables. Defined values are:

HPDS Meaning
0b0000 Disabling of hierarchical controls not supported.
0b0001 Supports disabling of hierarchical controls using the

TTBCR2.HPD0, TTBCR2.HPD1, and HTCR.HPD bits.
0b0010 As for value 0b0001, and adds possible hardware allocation of

bits[62:59] of the translation table descriptors from the final
lookup level for IMPLEMENTATION DEFINED use.

All other values are reserved.

ARMv8.2-AA32HPD implements the functionality identified by the value 0b0001.

ARMv8.2-TTPBHA implements the functionality added by the value 0b0010.

Note

The value 0b0000 implies that the encoding for TTBCR2 is UNDEFINED.

CnP, bits [15:12]

Common not Private translations. Defined values are:

CnP Meaning
0b0000 Common not Private translations not supported.
0b0001 Common not Private translations supported.

All other values are reserved.

ARMv8.2-TTCNP implements the functionality identified by the value 0b0001.

From Armv8.2 the only permitted value is 0b0001.

ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4

Page 1000

XNX, bits [11:8]

Support for execute-never control distinction by Exception level at stage 2. Defined values are:

XNX Meaning
0b0000 Distinction between EL0 and EL1 execute-never control at

stage 2 not supported.
0b0001 Distinction between EL0 and EL1 execute-never control at

stage 2 supported.

All other values are reserved.

ARMv8.2-TTS2UXN implements the functionality identified by the value 0b0001.

When ARMv8.2-TTS2UXN is implemented:

• If all of the following conditions are true, it is IMPLEMENTATION DEFINED whether the value of
ID_MMFR4_EL1.XNX is 0b0000 or 0b0001:

◦ ID_AA64MMFR1_EL1.XNX ==1.
◦ EL2 cannot use AArch32.
◦ EL1 can use AArch32.

• If EL2 can use AArch32 then the only permitted value is 0b0001.

AC2, bits [7:4]

Indicates the extension of the ACTLR and HACTLR registers using ACTLR2 and HACTLR2. Defined values are:

AC2 Meaning
0b0000 ACTLR2 and HACTLR2 are not implemented.
0b0001 ACTLR2 and HACTLR2 are implemented.

All other values are reserved.

In Armv8.0 and Armv8.1 the permitted values are 0b0000 and 0b0001.

From Armv8.2, the only permitted value is 0b0001.

SpecSEI, bits [3:0]

Describes whether the PE can generate SError interrupt exceptions from speculative reads of memory, including
speculative instruction fetches. The defined values of this field are:

SpecSEI Meaning
0b0000 The PE never generates an SError interrupt due to an

External abort on a speculative read.
0b0001 The PE might generate an SError interrupt due to an

External abort on a speculative read.

All other values are reserved.

Accessing the ID_MMFR4_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_MMFR4_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0010 0b110

ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4

Page 1001

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!IsZero(ID_MMFR4_EL1) || boolean

IMPLEMENTATION_DEFINED "ID_MMFR4_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ID_MMFR4_EL1;

elsif PSTATE.EL == EL2 then
return ID_MMFR4_EL1;

elsif PSTATE.EL == EL3 then
return ID_MMFR4_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4

Page 1002

ID_MMFR5_EL1, AArch32 Memory Model Feature
Register 5

The ID_MMFR5_EL1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch32 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section D10.4.1.

Configuration
AArch64 System register ID_MMFR5_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_MMFR5[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_MMFR5_EL1 are UNKNOWN.

Attributes
ID_MMFR5_EL1 is a 64-bit register.

Field descriptions
The ID_MMFR5_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 ETS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:4]

Reserved, RES0.

ETS, bits [3:0]

Support for Enhanced Translation Synchronization. Defined values are:

ETS Meaning
0b0000 Enhanced Translation Synchronization is not supported.
0b0001 Enhanced Translation Synchronization is supported.

All other values are reserved.

ARMv8.0-ETS implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

Accessing the ID_MMFR5_EL1
Accesses to this register use the following encodings:

ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5

Page 1003

MRS <Xt>, ID_MMFR5_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0011 0b110

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!IsZero(ID_MMFR5_EL1) || boolean

IMPLEMENTATION_DEFINED "ID_MMFR5_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ID_MMFR5_EL1;

elsif PSTATE.EL == EL2 then
return ID_MMFR5_EL1;

elsif PSTATE.EL == EL3 then
return ID_MMFR5_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5

Page 1004

ID_PFR0_EL1, AArch32 Processor Feature Register 0
The ID_PFR0_EL1 characteristics are:

Purpose
Gives top-level information about the instruction sets supported by the PE in AArch32 state.

Must be interpreted with ID_PFR1_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID
registers.

Configuration
AArch64 System register ID_PFR0_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_PFR0[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_PFR0_EL1 are UNKNOWN.

Attributes
ID_PFR0_EL1 is a 64-bit register.

Field descriptions
The ID_PFR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RAS DIT AMU CSV2 State3 State2 State1 State0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

RAS, bits [31:28]

RAS Extension version. Defined values are:

RAS Meaning
0b0000 No RAS Extension.
0b0001 RAS Extension present.
0b0010 ARMv8.4-RAS present. As 0b0001, and adds support for

additional ERXMISC<m> System registers.
Error records accessed through System registers conform to
RAS System Architecture v1.1, which includes simplifications
to ERR<n>STATUS and support for the optional RAS
Timestamp Extension.

All other values are reserved.

ARMv8.4-RAS implements the functionality identified by the value 0b0010.

In Armv8.0 and Armv8.1, the permitted values are 0b0000 and 0b0001.

In Armv8.2, the only permitted value is 0b0001.

ID_PFR0_EL1, AArch32 Processor Feature Register 0

Page 1005

From Armv8.4, when ARMv8.4-DFE is not implemented, and ERRIDR.NUM is zero, the permitted values are
IMPLEMENTATION DEFINED 0b0001 or 0b0010. Otherwise from Armv8.4 the only permitted value is 0b0010.

DIT, bits [27:24]

Data Independent Timing. Defined values are:

DIT Meaning
0b0000 AArch32 does not guarantee constant execution time of any

instructions.
0b0001 AArch32 provides the CPSR.DIT mechanism to guarantee

constant execution time of certain instructions.

All other values are reserved.

ARMv8.4-DIT implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

AMU, bits [23:20]

Activity Monitors Extension. Defined values are:

AMU Meaning
0b0000 Activity Monitors Extension is not implemented.
0b0001 AMUv1 for Armv8.4 is implemented.
0b0010 AMUv1 for Armv8.6 is implemented. As 0b0001 and adds

support for virtualization of the activity monitor event counters.

All other values are reserved.

AMUv1 implements the functionality identified by the value 0b0001.

ARMv8.6-AMU implements the functionality identified by the value 0b0010.

CSV2, bits [19:16]

Speculative use of out of context branch targets. Defined values are:

CSV2 Meaning
0b0000 This Device does not disclose whether branch targets trained in

one hardware described context can affect speculative
execution in a different hardware described context.

0b0001 Branch targets trained in one hardware described context can
only affect speculative execution in a different hardware
described context in a hard-to-determine way.

All other values are reserved.

ARMv8.0-CSV2 implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

State3, bits [15:12]

T32EE instruction set support. Defined values are:

State3 Meaning
0b0000 Not implemented.
0b0001 T32EE instruction set implemented.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

ID_PFR0_EL1, AArch32 Processor Feature Register 0

Page 1006

State2, bits [11:8]

Jazelle extension support. Defined values are:

State2 Meaning
0b0000 Not implemented.
0b0001 Jazelle extension implemented, without clearing of JOSCR.CV

on exception entry.
0b0010 Jazelle extension implemented, with clearing of JOSCR.CV on

exception entry.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

State1, bits [7:4]

T32 instruction set support. Defined values are:

State1 Meaning
0b0000 T32 instruction set not implemented.
0b0001 T32 encodings before the introduction of Thumb-2 technology

implemented:
• All instructions are 16-bit.
• A BL or BLX is a pair of 16-bit instructions.
• 32-bit instructions other than BL and BLX cannot be

encoded.
0b0011 T32 encodings after the introduction of Thumb-2 technology

implemented, for all 16-bit and 32-bit T32 basic instructions.

All other values are reserved.

In Armv8-A the only permitted value is 0b0011.

State0, bits [3:0]

A32 instruction set support. Defined values are:

State0 Meaning
0b0000 A32 instruction set not implemented.
0b0001 A32 instruction set implemented.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

Accessing the ID_PFR0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_PFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0001 0b000

ID_PFR0_EL1, AArch32 Processor Feature Register 0

Page 1007

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_PFR0_EL1;
elsif PSTATE.EL == EL2 then

return ID_PFR0_EL1;
elsif PSTATE.EL == EL3 then

return ID_PFR0_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_PFR0_EL1, AArch32 Processor Feature Register 0

Page 1008

ID_PFR1_EL1, AArch32 Processor Feature Register 1
The ID_PFR1_EL1 characteristics are:

Purpose
Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID
registers.

Configuration
AArch64 System register ID_PFR1_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_PFR1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_PFR1_EL1 are UNKNOWN.

Attributes
ID_PFR1_EL1 is a 64-bit register.

Field descriptions
The ID_PFR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

GIC Virt_frac Sec_frac GenTimer Virtualization MProgMod Security ProgMod
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

GIC, bits [31:28]

System register GIC CPU interface. Defined values are:

GIC Meaning
0b0000 GIC CPU interface system registers not implemented.
0b0001 System register interface to versions 3.0 and 4.0 of the GIC

CPU interface is supported.
0b0011 System register interface to version 4.1 of the GIC CPU

interface is supported.

All other values are reserved.

Virt_frac, bits [27:24]

Virtualization fractional field. When the Virtualization field is 0b0000, determines the support for features from the
ARMv7 Virtualization Extensions. Defined values are:

ID_PFR1_EL1, AArch32 Processor Feature Register 1

Page 1009

Virt_frac Meaning
0b0000 No features from the ARMv7 Virtualization Extensions are

implemented.
0b0001 The following features of the ARMv7 Virtualization

Extensions are implemented:
• The SCR.SIF bit, if EL3 is implemented.
• The modifications to the SCR.AW and SCR.FW bits

described in the Virtualization Extensions, if EL3 is
implemented.

• The MSR (banked register) and MRS (banked register)
instructions.

• The ERET instruction.

All other values are reserved.

In Armv8-A the permitted values are:

• 0b0000 when EL2 is implemented.
• 0b0001 when EL2 is not implemented.

This field is only valid when the value of ID_PFR1_EL1.Virtualization is 0, otherwise it holds the value 0b0000.

Note

The ID_ISAR registers do not identify whether the instructions added by the
ARMv7 Virtualization Extensions are implemented.

Sec_frac, bits [23:20]

Security fractional field. When the Security field is 0b0000, determines the support for features from the ARMv7
Security Extensions. Defined values are:

Sec_frac Meaning
0b0000 No features from the ARMv7 Security Extensions are

implemented.
0b0001 The following features from the ARMv7 Security Extensions

are implemented:
• The VBAR register.
• The TTBCR.PD0 and TTBCR.PD1 bits.

0b0010 As for 0b0001, plus the ability to access Secure or Non-
secure physical memory is supported.

All other values are reserved.

In Armv8-A the permitted values are:

• 0b0000 when EL3 is implemented.
• 0b0001 or 0b0010 when EL3 is not implemented.

This field is only valid when the value of ID_PFR1_EL1.Security is 0, otherwise it holds the value 0b0000.

GenTimer, bits [19:16]

Generic Timer support. Defined values are:

GenTimer Meaning
0b0000 Generic Timer is not implemented.
0b0001 Generic Timer is implemented.
0b0010 Generic Timer is implemented, and also includes support

for CNTHCTL.EVNTIS and CNTKCTL.EVNTIS fields, and
CNTPCTSS and CNTVCVSS counter views.

All other values are reserved.

ARMv8.6-ECV implements the functionality identified by the value 0b0010.

In Armv8.0, Armv8.1, Armv8.2, Armv8.3, Armv8.4, and Armv8.5, the only permitted value is 0b0001.

ID_PFR1_EL1, AArch32 Processor Feature Register 1

Page 1010

AArch32-cntvcvss.html

From Armv8.6, the only permitted value is 0b0010.

Virtualization, bits [15:12]

Virtualization support. Defined values are:

Virtualization Meaning
0b0000 EL2, Hyp mode, and the HVC instruction not

implemented.
0b0001 EL2, Hyp mode, the HVC instruction, and all the

features described by Virt_frac == 0b0001
implemented.

All other values are reserved.

In Armv8-A the permitted values are:

• 0b0000 when EL2 is not implemented.
• 0b0001 when EL2 is implemented.

In an implementation that includes EL2, if EL2 cannot use AArch32 but EL1 can use AArch32 then this field has the
value 0b0001.

If EL1 cannot use AArch32 then this field has the value 0b0000.

Note

The ID_ISARs do not identify whether the HVC instruction is implemented.

MProgMod, bits [11:8]

M profile programmers' model support. Defined values are:

MProgMod Meaning
0b0000 Not supported.
0b0010 Support for two-stack programmers' model.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

Security, bits [7:4]

Security support. Defined values are:

Security Meaning
0b0000 EL3, Monitor mode, and the SMC instruction not

implemented.
0b0001 EL3, Monitor mode, the SMC instruction, and all the features

described by Sec_frac == 0b0001 implemented.
0b0010 As for 0b0001, and adds the ability to set the NSACR.RFR bit.

Not permitted in Armv8 as the NSACR.RFR bit is RES0.

All other values are reserved.

In Armv8-A the permitted values are:

• 0b0000 when EL3 is not implemented.
• 0b0001 when EL3 is implemented.

In an implementation that includes EL3, if EL3 cannot use AArch32 but EL1 can use AArch32 then this field has the
value 0b0001.

If EL1 cannot use AArch32 then this field has the value 0b0000.

ID_PFR1_EL1, AArch32 Processor Feature Register 1

Page 1011

ProgMod, bits [3:0]

Support for the standard programmers' model for Armv4 and later. Model must support User, FIQ, IRQ, Supervisor,
Abort, Undefined, and System modes. Defined values are:

ProgMod Meaning
0b0000 Not supported.
0b0001 Supported.

All other values are reserved.

In Armv8-A the permitted values are 0b0001 and 0b0000.

If EL1 cannot use AArch32 then this field has the value 0b0000.

Accessing the ID_PFR1_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_PFR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0001 0b001

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_PFR1_EL1;
elsif PSTATE.EL == EL2 then

return ID_PFR1_EL1;
elsif PSTATE.EL == EL3 then

return ID_PFR1_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_PFR1_EL1, AArch32 Processor Feature Register 1

Page 1012

ID_PFR2_EL1, AArch32 Processor Feature Register 2
The ID_PFR2_EL1 characteristics are:

Purpose
Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0_EL1 and ID_PFR1_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID
registers.

Configuration
AArch64 System register ID_PFR2_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_PFR2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_PFR2_EL1 are UNKNOWN.

Attributes
ID_PFR2_EL1 is a 64-bit register.

Field descriptions
The ID_PFR2_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 RAS_frac SSBS CSV3
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:12]

Reserved, RES0.

RAS_frac, bits [11:8]

RAS Extension fractional field. Defined values are:

RAS_frac Meaning
0b0000 If ID_PFR0_EL1.RAS == 0b0001, RAS Extension

implemented.
0b0001 If ID_PFR0_EL1.RAS == 0b0001, as 0b0000 and adds

support for additional ERXMISC<m> System registers.
Error records accessed through System registers conform to
RAS System Architecture v1.1, which includes
simplifications to ERR<n>STATUS and support for the
optional RAS Timestamp Extension.

All other values are reserved.

This field is valid only if ID_PFR0_EL1.RAS == 0b0001.

ID_PFR2_EL1, AArch32 Processor Feature Register 2

Page 1013

SSBS, bits [7:4]

Speculative Store Bypassing controls in AArch64 state. Defined values are:

SSBS Meaning
0b0000 AArch32 provides no mechanism to control the use of

Speculative Store Bypassing.
0b0001 AArch32 provides the PSTATE.SSBS mechanism to mark

regions that are Speculative Store Bypass Safe.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

All other values are reserved.

CSV3, bits [3:0]

Speculative use of faulting data. Defined values are:

CSV3 Meaning
0b0000 This Device does not disclose whether data loaded under

speculation with a permission or domain fault can be used to
form an address or generate condition codes or SVE predicate
values to be used by instructions newer than the load in the
speculative sequence

0b0001 Data loaded under speculation with a permission or domain
fault cannot be used to form an address or generate condition
codes or SVE predicate values to be used by instructions newer
than the load in the speculative sequence

From Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

All other values are reserved.

Accessing the ID_PFR2_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_PFR2_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0011 0b100

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_PFR2_EL1;
elsif PSTATE.EL == EL2 then

return ID_PFR2_EL1;
elsif PSTATE.EL == EL3 then

return ID_PFR2_EL1;

ID_PFR2_EL1, AArch32 Processor Feature Register 2

Page 1014

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_PFR2_EL1, AArch32 Processor Feature Register 2

Page 1015

IFSR32_EL2, Instruction Fault Status Register (EL2)
The IFSR32_EL2 characteristics are:

Purpose
Allows access to the AArch32 IFSR register from AArch64 state only. Its value has no effect on execution in AArch64
state.

Configuration
AArch64 System register IFSR32_EL2 bits [31:0] are architecturally mapped to AArch32 System register IFSR[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
IFSR32_EL2 are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this register is not RES0.

Attributes
IFSR32_EL2 is a 64-bit register.

Field descriptions
The IFSR32_EL2 bit assignments are:

When TTBCR.EAE == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 FnV RES0 ExTRES0FS[4]LPAE RES0 FS[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

FnV Meaning
0b0 IFAR is valid.
0b1 IFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a synchronous External abort other than a synchronous External abort on a translation table
walk. It is RES0 for all other Prefetch Abort exceptions.

This field resets to an architecturally UNKNOWN value.

Bits [15:13]

Reserved, RES0.

IFSR32_EL2, Instruction Fault Status Register (EL2)

Page 1016

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

This field resets to an architecturally UNKNOWN value.

Bit [11]

Reserved, RES0.

FS[4], bit [10]

This field is bit[4] of FS[4:0].

Fault Status bits. Bits [10] and [3:0] are interpreted together.

FS Meaning Applies when
0b00001 PC alignment fault.
0b00010 Debug exception.
0b00011 Access flag fault, level 1.
0b00101 Translation fault, level 1.
0b00110 Access flag fault, level 2.
0b00111 Translation fault, level 2.
0b01000 Synchronous External abort, not on

translation table walk.
0b01001 Domain fault, level 1.
0b01011 Domain fault, level 2.
0b01100 Synchronous External abort, on translation

table walk, level 1.
0b01101 Permission fault, level 1.
0b01110 Synchronous External abort, on translation

table walk, level 2.
0b01111 Permission fault, level 2.
0b10000 TLB conflict abort.
0b10100 IMPLEMENTATION DEFINED fault (Lockdown

fault).
0b11001 Synchronous parity or ECC error on

memory access, not on translation table
walk.

When RAS is
not
implemented

0b11100 Synchronous parity or ECC error on
translation table walk, level 1.

When RAS is
not
implemented

0b11110 Synchronous parity or ECC error on
translation table walk, level 2.

When RAS is
not
implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults on a
Short-descriptor translation table lookup' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile.

The FS field is split as follows:

• FS[4] is IFSR32_EL2[10].
• FS[3:0] is IFSR32_EL2[3:0].

This field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

IFSR32_EL2, Instruction Fault Status Register (EL2)

Page 1017

LPAE Meaning
0b0 Using the Short-descriptor translation table formats.
0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set
this bit to 0 or 1 without affecting operation.

This field resets to an architecturally UNKNOWN value.

Bits [8:4]

Reserved, RES0.

FS[3:0], bits [3:0]

This field is bits[3:0] of FS[4:0].

See FS[4] for the field description.

When TTBCR.EAE == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 FnV RES0 ExT RES0 LPAE RES0 STATUS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

FnV Meaning
0b0 IFAR is valid.
0b1 IFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a synchronous External abort other than a synchronous External abort on a translation table
walk. It is RES0 for all other Prefetch Abort exceptions.

This field resets to an architecturally UNKNOWN value.

Bits [15:13]

Reserved, RES0.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

This field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

IFSR32_EL2, Instruction Fault Status Register (EL2)

Page 1018

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

LPAE Meaning
0b0 Using the Short-descriptor translation table formats.
0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set
this bit to 0 or 1 without affecting operation.

This field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status bits. Possible values of this field are:

STATUS Meaning Applies
when

0b000000 Address size fault in translation table base
register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not on

translation table walk.
0b010101 Synchronous External abort, on translation

table walk, level 1.
0b010110 Synchronous External abort, on translation

table walk, level 2.
0b010111 Synchronous External abort, on translation

table walk, level 3.
0b011000 Synchronous parity or ECC error on

memory access, not on translation table
walk.

When RAS is
not
implemented

0b011101 Synchronous parity or ECC error on
memory access on translation table walk,
level 1.

When RAS is
not
implemented

0b011110 Synchronous parity or ECC error on
memory access on translation table walk,
level 2.

When RAS is
not
implemented

0b011111 Synchronous parity or ECC error on
memory access on translation table walk,
level 3.

When RAS is
not
implemented

0b100001 PC alignment fault.
0b100010 Debug exception.
0b110000 TLB conflict abort.

All other values are reserved.

When the RAS Extension is implemented, 0b011000, 0b011101, 0b011110, and 0b011111, are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults on a
Long-descriptor translation table lookup' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile.

IFSR32_EL2, Instruction Fault Status Register (EL2)

Page 1019

This field resets to an architecturally UNKNOWN value.

Accessing the IFSR32_EL2
Accesses to this register use the following encodings:

MRS <Xt>, IFSR32_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return IFSR32_EL2;
elsif PSTATE.EL == EL3 then

return IFSR32_EL2;

MSR IFSR32_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

IFSR32_EL2 = X[t];
elsif PSTATE.EL == EL3 then

IFSR32_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IFSR32_EL2, Instruction Fault Status Register (EL2)

Page 1020

ISR_EL1, Interrupt Status Register
The ISR_EL1 characteristics are:

Purpose
Shows the pending status of the IRQ, FIQ, or SError interrupt.

When executing at EL2, EL3 or Secure EL1 when SCR_EL3.EEL2 == 0b0, this shows the pending status of the
physical IRQ, FIQ, or SError interrupts.

When executing at either Non-secure EL1 or at Secure EL1 when SCR_EL3.EEL2 == 0b1:

• If the HCR_EL2.{IMO,FMO,AMO} bit has a value of 1, the corresponding ISR_EL1.{I,F,A} bit shows the
pending status of the virtual IRQ, FIQ, or SError.

• If the HCR_EL2.{IMO,FMO,AMO} bit has a value of 0, the corresponding ISR_EL1.{I,F,A} bit shows the
pending status of the physical IRQ, FIQ, or SError.

Configuration
AArch64 System register ISR_EL1 bits [31:0] are architecturally mapped to AArch32 System register ISR[31:0] .

Attributes
ISR_EL1 is a 64-bit register.

Field descriptions
The ISR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 A I F RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:9]

Reserved, RES0.

A, bit [8]

SError interrupt pending bit.

A Meaning
0b0 No pending SError.
0b1 An SError interrupt is pending.

If the SError interrupt is edge-triggered, this field is cleared to zero when the physical SError interrupt is taken.

I, bit [7]

IRQ pending bit. Indicates whether an IRQ interrupt is pending:

I Meaning
0b0 No pending IRQ.
0b1 An IRQ interrupt is pending.

ISR_EL1, Interrupt Status Register

Page 1021

F, bit [6]

FIQ pending bit. Indicates whether an FIQ interrupt is pending.

F Meaning
0b0 No pending FIQ.
0b1 An FIQ interrupt is pending.

Bits [5:0]

Reserved, RES0.

Accessing the ISR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ISR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.ISR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ISR_EL1;

elsif PSTATE.EL == EL2 then
return ISR_EL1;

elsif PSTATE.EL == EL3 then
return ISR_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ISR_EL1, Interrupt Status Register

Page 1022

LORC_EL1, LORegion Control (EL1)
The LORC_EL1 characteristics are:

Purpose
Enables and disables LORegions, and selects the current LORegion descriptor.

Configuration
This register is present only when ARMv8.1-LOR is implemented. Otherwise, direct accesses to LORC_EL1 are
UNDEFINED.

If no LORegion descriptors are supported by the PE, then this register is RES0.

Attributes
LORC_EL1 is a 64-bit register.

Field descriptions
The LORC_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 DS RES0EN
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:10]

Reserved, RES0.

DS, bits [9:2]

Descriptor Select. Selects the current LORegion descriptor accessed by LORSA_EL1, LOREA_EL1, and LORN_EL1.

The number of LORegion descriptors in IMPLEMENTATION DEFINED. The maximum number of LORegion descriptors
supported is 256. If the number is less than 256, then bits[63:M+2] are RES0, where M is Log2(Number of LORegion
descriptors supported by the implementation).

If this field points to an LORegion descriptor that is not supported by an implementation, then the registers
LORN_EL1, LOREA_EL1, and LORSA_EL1 are RES0.

This field resets to an architecturally UNKNOWN value.

Bit [1]

Reserved, RES0.

EN, bit [0]

Enable. Indicates whether LORegions are enabled.

EN Meaning
0b0 Disabled. Memory accesses do not match any LORegions.
0b1 Enabled. Memory accesses may match a LORegion.

LORC_EL1, LORegion Control (EL1)

Page 1023

This bit is permitted to be cached in a TLB.

This field resets to 0.

Accessing the LORC_EL1
Accesses to this register use the following encodings:

MRS <Xt>, LORC_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0100 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TLOR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.LORC_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TLOR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return LORC_EL1;

elsif PSTATE.EL == EL2 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TLOR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return LORC_EL1;
elsif PSTATE.EL == EL3 then

if SCR_EL3.NS == '0' then
UNDEFINED;

else
return LORC_EL1;

MSR LORC_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0100 0b011

LORC_EL1, LORegion Control (EL1)

Page 1024

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TLOR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.LORC_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TLOR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
LORC_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TLOR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

LORC_EL1 = X[t];
elsif PSTATE.EL == EL3 then

if SCR_EL3.NS == '0' then
UNDEFINED;

else
LORC_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LORC_EL1, LORegion Control (EL1)

Page 1025

LOREA_EL1, LORegion End Address (EL1)
The LOREA_EL1 characteristics are:

Purpose
Holds the physical address of the end of the LORegion described in the current LORegion descriptor selected by
LORC_EL1.DS.

Configuration
This register is present only when ARMv8.1-LOR is implemented. Otherwise, direct accesses to LOREA_EL1 are
UNDEFINED.

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.
• LORC_EL1.DS points to a LORegion that is not supported by the PE.

Attributes
LOREA_EL1 is a 64-bit register.

Field descriptions
The LOREA_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 EA[51:48] EA[47:16]

EA[47:16] RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:52]

Reserved, RES0.

EA[51:48], bits [51:48]

When ARMv8.2-LPA is implemented:

Extension to EA[47:16]. See EA[47:16] for more details.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EA[47:16], bits [47:16]

Bits [47:16] of the end physical address of an LORegion described in the current LORegion descriptor selected by
LORC_EL1.DS. Bits[15:0] of this address are defined to be 0xFFFF. For implementations with fewer than 48 bits, the
upper bits of this field are RES0.

LOREA_EL1, LORegion End Address (EL1)

Page 1026

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, EA[51:48] form
the upper part of the address value. Otherwise, for implementations with fewer than 52 physical address bits,
EA[51:48] are RES0.

This field resets to an architecturally UNKNOWN value.

Bits [15:0]

Reserved, RES0.

Accessing the LOREA_EL1
Accesses to this register use the following encodings:

MRS <Xt>, LOREA_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TLOR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.LOREA_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TLOR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return LOREA_EL1;

elsif PSTATE.EL == EL2 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TLOR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return LOREA_EL1;
elsif PSTATE.EL == EL3 then

if SCR_EL3.NS == '0' then
UNDEFINED;

else
return LOREA_EL1;

MSR LOREA_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0100 0b001

LOREA_EL1, LORegion End Address (EL1)

Page 1027

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TLOR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.LOREA_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TLOR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
LOREA_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TLOR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

LOREA_EL1 = X[t];
elsif PSTATE.EL == EL3 then

if SCR_EL3.NS == '0' then
UNDEFINED;

else
LOREA_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LOREA_EL1, LORegion End Address (EL1)

Page 1028

LORID_EL1, LORegionID (EL1)
The LORID_EL1 characteristics are:

Purpose
Indicates the number of LORegions and LORegion descriptors supported by the PE.

Configuration
This register is present only when ARMv8.1-LOR is implemented. Otherwise, direct accesses to LORID_EL1 are
UNDEFINED.

If no LORegion descriptors are implemented, then the registers LORC_EL1, LORN_EL1, LOREA_EL1, and LORSA_EL1
are RES0.

Attributes
LORID_EL1 is a 64-bit register.

Field descriptions
The LORID_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 LD RES0 LR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

LD, bits [23:16]

Number of LORegion descriptors supported by the PE. This is an 8-bit binary number.

Bits [15:8]

Reserved, RES0.

LR, bits [7:0]

Number of LORegions supported by the PE. This is an 8-bit binary number.

Note

If LORID_EL1 indicates that no LORegions are implemented, then
LoadLOAcquire and StoreLORelease will behave as LoadAcquire and
StoreRelease.

Accessing the LORID_EL1
Accesses to this register use the following encodings:

LORID_EL1, LORegionID (EL1)

Page 1029

MRS <Xt>, LORID_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0100 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TLOR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.LORID_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TLOR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return LORID_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TLOR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return LORID_EL1;
elsif PSTATE.EL == EL3 then

return LORID_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LORID_EL1, LORegionID (EL1)

Page 1030

LORN_EL1, LORegion Number (EL1)
The LORN_EL1 characteristics are:

Purpose
Holds the number of the LORegion described in the current LORegion descriptor selected by LORC_EL1.DS.

Configuration
This register is present only when ARMv8.1-LOR is implemented. Otherwise, direct accesses to LORN_EL1 are
UNDEFINED.

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.
• LORC_EL1.DS points to a LORegion that is not supported by the PE.

Attributes
LORN_EL1 is a 64-bit register.

Field descriptions
The LORN_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 Num
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:8]

Reserved, RES0.

Num, bits [7:0]

Number of the LORegion described in the current LORegion descriptor selected by LORC_EL1.DS.

The maximum number of LORegions supported by the PE is 256. If the maximum number is less than 256, then
bits[8:N] are RES0, where N is (Log2(Number of LORegions supported by the PE)).

If this field points to a LORegion that is not supported by the PE, then the current LORegion descriptor does not match
any LORegion.

This field resets to an architecturally UNKNOWN value.

Accessing the LORN_EL1
Accesses to this register use the following encodings:

MRS <Xt>, LORN_EL1

op0 op1 CRn CRm op2

LORN_EL1, LORegion Number (EL1)

Page 1031

0b11 0b000 0b1010 0b0100 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TLOR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.LORN_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TLOR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return LORN_EL1;

elsif PSTATE.EL == EL2 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TLOR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return LORN_EL1;
elsif PSTATE.EL == EL3 then

if SCR_EL3.NS == '0' then
UNDEFINED;

else
return LORN_EL1;

MSR LORN_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0100 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TLOR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.LORN_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TLOR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
LORN_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TLOR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

LORN_EL1 = X[t];
elsif PSTATE.EL == EL3 then

if SCR_EL3.NS == '0' then
UNDEFINED;

else
LORN_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

LORN_EL1, LORegion Number (EL1)

Page 1032

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LORN_EL1, LORegion Number (EL1)

Page 1033

LORSA_EL1, LORegion Start Address (EL1)
The LORSA_EL1 characteristics are:

Purpose
Indicates whether the current LORegion descriptor selected by LORC_EL1.DS is enabled, and holds the physical
address of the start of the LORegion.

Configuration
This register is present only when ARMv8.1-LOR is implemented. Otherwise, direct accesses to LORSA_EL1 are
UNDEFINED.

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.
• LORC_EL1.DS points to a LORegion that is not supported by the PE.

Attributes
LORSA_EL1 is a 64-bit register.

Field descriptions
The LORSA_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 SA[51:48] SA[47:16]

SA[47:16] RES0 Valid
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:52]

Reserved, RES0.

SA[51:48], bits [51:48]

When ARMv8.2-LPA is implemented:

Extension to SA[47:16]. See SA[47:16] for more details.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SA[47:16], bits [47:16]

Bits [47:16] of the start physical address of the LORegion described in the current LORegion descriptor selected by
LORC_EL1.DS. Bits[15:0] of this address are defined to be 0x0000. For implementations with fewer than 48 bits, the
upper bits of this field are RES0.

LORSA_EL1, LORegion Start Address (EL1)

Page 1034

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, SA[51:48] form
the upper part of the address value. Otherwise, for implementations with fewer than 52 physical address bits,
SA[51:48] are RES0.

This field resets to an architecturally UNKNOWN value.

Bits [15:1]

Reserved, RES0.

Valid, bit [0]

Indicates whether the current LORegion Descriptor is enabled.

Valid Meaning
0b0 Disabled
0b1 Enabled

This field resets to 0.

Accessing the LORSA_EL1
Accesses to this register use the following encodings:

MRS <Xt>, LORSA_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TLOR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.LORSA_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TLOR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return LORSA_EL1;

elsif PSTATE.EL == EL2 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TLOR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return LORSA_EL1;
elsif PSTATE.EL == EL3 then

if SCR_EL3.NS == '0' then
UNDEFINED;

else
return LORSA_EL1;

MSR LORSA_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0100 0b000

LORSA_EL1, LORegion Start Address (EL1)

Page 1035

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TLOR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.LORSA_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TLOR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
LORSA_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TLOR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

LORSA_EL1 = X[t];
elsif PSTATE.EL == EL3 then

if SCR_EL3.NS == '0' then
UNDEFINED;

else
LORSA_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LORSA_EL1, LORegion Start Address (EL1)

Page 1036

MAIR_EL1, Memory Attribute Indirection Register
(EL1)

The MAIR_EL1 characteristics are:

Purpose
Provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format
translation table entry for stage 1 translations at EL1.

Configuration
AArch64 System register MAIR_EL1 bits [31:0] are architecturally mapped to AArch32 System register PRRR[31:0]
when TTBCR.EAE == 0.

AArch64 System register MAIR_EL1 bits [31:0] are architecturally mapped to AArch32 System register MAIR0[31:0]
when TTBCR.EAE == 1.

AArch64 System register MAIR_EL1 bits [63:32] are architecturally mapped to AArch32 System register NMRR[31:0]
when TTBCR.EAE == 0.

AArch64 System register MAIR_EL1 bits [63:32] are architecturally mapped to AArch32 System register MAIR1[31:0]
when TTBCR.EAE == 1.

Attributes
MAIR_EL1 is a 64-bit register.

Field descriptions
The MAIR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Attr7 Attr6 Attr5 Attr4
Attr3 Attr2 Attr1 Attr0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAIR_EL1 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n = 0 to 7

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where
AttrIndx[2:0] gives the value of <n> in Attr<n>.

Attr is encoded as follows:

MAIR_EL1, Memory Attribute Indirection Register (EL1)

Page 1037

Attr Meaning
0b0000dd00 Device memory. See encoding of 'dd' for the type of

Device memory.
0b0000ddxx, (xx
!= 00)

UNPREDICTABLE

0booooiiii, (oooo
!= 0000 and iiii
!= 0000)

Normal memory. See encoding of 'oooo' and 'iiii' for
the type of Normal Memory.

0b11110000 Tagged Normal Memory. Inner+Outer Write-Back
Non-transient memory, Inner+Outer Read-Allocate,
Inner+Outer Write-Allocate.

0bxxxx0000,
(xxxx != 0000
and xxxx !=
1111)

UNPREDICTABLE

'dd' is encoded as follows:

dd | Meaning
0b00 | Device-nGnRnE memory
0b01 | Device-nGnRE memory
0b10 | Device-nGRE memory
0b11 | Device-GRE memory

'oooo' is encoded as follows:

'oooo' Meaning
0b0000 See encoding of Attr
0b00RW, RW not
0b00

Normal memory, Outer Write-Through Transient

0b0100 Normal memory, Outer Non-cacheable
0b01RW, RW not
0b00

Normal memory, Outer Write-Back Transient

0b10RW Normal memory, Outer Write-Through Non-
transient

0b11RW Normal memory, Outer Write-Back Non-transient

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

'iiii' Meaning
0b0000 See encoding of Attr
0b00RW, RW not
0b00

Normal memory, Inner Write-Through Transient

0b0100 Normal memory, Inner Non-cacheable
0b01RW, RW not
0b00

Normal memory, Inner Write-Back Transient

0b10RW Normal memory, Inner Write-Through Non-
transient

0b11RW Normal memory, Inner Write-Back Non-transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

R or W Meaning
0b0 No Allocate
0b1 Allocate

This field resets to an architecturally UNKNOWN value.

Accessing the MAIR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic MAIR_EL1 or
MAIR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MAIR_EL1, Memory Attribute Indirection Register (EL1)

Page 1038

MRS <Xt>, MAIR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.MAIR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x140];

else
return MAIR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return MAIR_EL2;
else

return MAIR_EL1;
elsif PSTATE.EL == EL3 then

return MAIR_EL1;

MSR MAIR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.MAIR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x140] = X[t];

else
MAIR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

MAIR_EL2 = X[t];
else

MAIR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

MAIR_EL1 = X[t];

MRS <Xt>, MAIR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b1010 0b0010 0b000

MAIR_EL1, Memory Attribute Indirection Register (EL1)

Page 1039

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x140];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return MAIR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return MAIR_EL1;
else

UNDEFINED;

MSR MAIR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x140] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
MAIR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

MAIR_EL1 = X[t];
else

UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MAIR_EL1, Memory Attribute Indirection Register (EL1)

Page 1040

MAIR_EL2, Memory Attribute Indirection Register
(EL2)

The MAIR_EL2 characteristics are:

Purpose
Provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format
translation table entry for stage 1 translations at EL2.

Configuration
AArch64 System register MAIR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HMAIR0[31:0]
.

AArch64 System register MAIR_EL2 bits [63:32] are architecturally mapped to AArch32 System register
HMAIR1[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
MAIR_EL2 is a 64-bit register.

Field descriptions
The MAIR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Attr7 Attr6 Attr5 Attr4
Attr3 Attr2 Attr1 Attr0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAIR_EL2 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n = 0 to 7

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where
AttrIndx[2:0] gives the value of <n> in Attr<n>.

Attr is encoded as follows:

Attr Meaning
0b0000dd00 Device memory. See encoding of 'dd' for the type of

Device memory.
0b0000ddxx, (xx
!= 00)

UNPREDICTABLE

0booooiiii, (oooo
!= 0000 and iiii
!= 0000)

Normal memory. See encoding of 'oooo' and 'iiii' for
the type of Normal Memory.

0b11110000 Tagged Normal Memory. Inner+Outer Write-Back
Non-transient memory, Inner+Outer Read-Allocate,
Inner+Outer Write-Allocate.

0bxxxx0000,
(xxxx != 0000
and xxxx !=
1111)

UNPREDICTABLE

MAIR_EL2, Memory Attribute Indirection Register (EL2)

Page 1041

'dd' is encoded as follows:

dd | Meaning
0b00 | Device-nGnRnE memory
0b01 | Device-nGnRE memory
0b10 | Device-nGRE memory
0b11 | Device-GRE memory

'oooo' is encoded as follows:

'oooo' Meaning
0b0000 See encoding of Attr
0b00RW, RW not
0b00

Normal memory, Outer Write-Through Transient

0b0100 Normal memory, Outer Non-cacheable
0b01RW, RW not
0b00

Normal memory, Outer Write-Back Transient

0b10RW Normal memory, Outer Write-Through Non-
transient

0b11RW Normal memory, Outer Write-Back Non-transient

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

'iiii' Meaning
0b0000 See encoding of Attr
0b00RW, RW not
0b00

Normal memory, Inner Write-Through Transient

0b0100 Normal memory, Inner Non-cacheable
0b01RW, RW not
0b00

Normal memory, Inner Write-Back Transient

0b10RW Normal memory, Inner Write-Through Non-
transient

0b11RW Normal memory, Inner Write-Back Non-transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

R or W Meaning
0b0 No Allocate
0b1 Allocate

This field resets to an architecturally UNKNOWN value.

Accessing the MAIR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic MAIR_EL2 or
MAIR_EL1 is not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, MAIR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0010 0b000

MAIR_EL2, Memory Attribute Indirection Register (EL2)

Page 1042

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return MAIR_EL2;
elsif PSTATE.EL == EL3 then

return MAIR_EL2;

MSR MAIR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

MAIR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

MAIR_EL2 = X[t];

MRS <Xt>, MAIR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.MAIR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x140];

else
return MAIR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return MAIR_EL2;
else

return MAIR_EL1;
elsif PSTATE.EL == EL3 then

return MAIR_EL1;

MSR MAIR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0010 0b000

MAIR_EL2, Memory Attribute Indirection Register (EL2)

Page 1043

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.MAIR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x140] = X[t];

else
MAIR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

MAIR_EL2 = X[t];
else

MAIR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

MAIR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MAIR_EL2, Memory Attribute Indirection Register (EL2)

Page 1044

MAIR_EL3, Memory Attribute Indirection Register
(EL3)

The MAIR_EL3 characteristics are:

Purpose
Provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format
translation table entry for stage 1 translations at EL3.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to MAIR_EL3 are UNDEFINED.

Attributes
MAIR_EL3 is a 64-bit register.

Field descriptions
The MAIR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Attr7 Attr6 Attr5 Attr4
Attr3 Attr2 Attr1 Attr0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAIR_EL3 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n = 0 to 7

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where
AttrIndx[2:0] gives the value of <n> in Attr<n>.

Attr is encoded as follows:

Attr Meaning
0b0000dd00 Device memory. See encoding of 'dd' for the type of

Device memory.
0b0000ddxx, (xx
!= 00)

UNPREDICTABLE

0booooiiii, (oooo
!= 0000 and iiii
!= 0000)

Normal memory. See encoding of 'oooo' and 'iiii' for
the type of Normal Memory.

0b11110000 Tagged Normal Memory. Inner+Outer Write-Back
Non-transient memory, Inner+Outer Read-Allocate,
Inner+Outer Write-Allocate.

0bxxxx0000,
(xxxx != 0000
and xxxx !=
1111)

UNPREDICTABLE

'dd' is encoded as follows:

dd | Meaning
0b00 | Device-nGnRnE memory
0b01 | Device-nGnRE memory
0b10 | Device-nGRE memory
0b11 | Device-GRE memory

MAIR_EL3, Memory Attribute Indirection Register (EL3)

Page 1045

'oooo' is encoded as follows:

'oooo' Meaning
0b0000 See encoding of Attr
0b00RW, RW not
0b00

Normal memory, Outer Write-Through Transient

0b0100 Normal memory, Outer Non-cacheable
0b01RW, RW not
0b00

Normal memory, Outer Write-Back Transient

0b10RW Normal memory, Outer Write-Through Non-
transient

0b11RW Normal memory, Outer Write-Back Non-transient

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

'iiii' Meaning
0b0000 See encoding of Attr
0b00RW, RW not
0b00

Normal memory, Inner Write-Through Transient

0b0100 Normal memory, Inner Non-cacheable
0b01RW, RW not
0b00

Normal memory, Inner Write-Back Transient

0b10RW Normal memory, Inner Write-Through Non-
transient

0b11RW Normal memory, Inner Write-Back Non-transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

R or W Meaning
0b0 No Allocate
0b1 Allocate

This field resets to an architecturally UNKNOWN value.

Accessing the MAIR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, MAIR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return MAIR_EL3;

MSR MAIR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b1010 0b0010 0b000

MAIR_EL3, Memory Attribute Indirection Register (EL3)

Page 1046

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
MAIR_EL3 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MAIR_EL3, Memory Attribute Indirection Register (EL3)

Page 1047

MDCCINT_EL1, Monitor DCC Interrupt Enable Register
The MDCCINT_EL1 characteristics are:

Purpose
Enables interrupt requests to be signaled based on the DCC status flags.

Configuration
AArch64 System register MDCCINT_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGDCCINT[31:0] .

Attributes
MDCCINT_EL1 is a 64-bit register.

Field descriptions
The MDCCINT_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0RX TX RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:31]

Reserved, RES0.

RX, bit [30]

DCC interrupt request enable control for DTRRX. Enables a common COMMIRQ interrupt request to be signaled
based on the DCC status flags.

RX Meaning
0b0 No interrupt request generated by DTRRX.
0b1 Interrupt request will be generated on RXfull == 1.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the value of this bit.

On a Warm reset, this field resets to 0.

TX, bit [29]

DCC interrupt request enable control for DTRTX. Enables a common COMMIRQ interrupt request to be signaled
based on the DCC status flags.

TX Meaning
0b0 No interrupt request generated by DTRTX.
0b1 Interrupt request will be generated on TXfull == 0.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the value of this bit.

On a Warm reset, this field resets to 0.

MDCCINT_EL1, Monitor DCC Interrupt Enable Register

Page 1048

Bits [28:0]

Reserved, RES0.

Accessing the MDCCINT_EL1
Accesses to this register use the following encodings:

MRS <Xt>, MDCCINT_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MDCCINT_EL1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return MDCCINT_EL1;

elsif PSTATE.EL == EL3 then
return MDCCINT_EL1;

MSR MDCCINT_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0010 0b000

MDCCINT_EL1, Monitor DCC Interrupt Enable Register

Page 1049

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

MDCCINT_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
MDCCINT_EL1 = X[t];

elsif PSTATE.EL == EL3 then
MDCCINT_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MDCCINT_EL1, Monitor DCC Interrupt Enable Register

Page 1050

MDCCSR_EL0, Monitor DCC Status Register
The MDCCSR_EL0 characteristics are:

Purpose
Read-only register containing control status flags for the DCC.

Configuration
AArch64 System register MDCCSR_EL0 bits [30:29] are architecturally mapped to External register EDSCR[30:29] .

AArch64 System register MDCCSR_EL0 bits [30:29] are architecturally mapped to AArch32 System register
DBGDSCRint[30:29] .

Attributes
MDCCSR_EL0 is a 64-bit register.

Field descriptions
The MDCCSR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0RXfullTXfull RES0 RAZ RES0 RAZ RES0 RAZ RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:31]

Reserved, RES0.

RXfull, bit [30]

DTRRX full. Read-only view of the equivalent bit in the EDSCR.

TXfull, bit [29]

DTRTX full. Read-only view of the equivalent bit in the EDSCR.

Bits [28:19]

Reserved, RES0.

Bits [18:15]

Reserved, RAZ.

Bits [14:13]

Reserved, RES0.

MDCCSR_EL0, Monitor DCC Status Register

Page 1051

Bit [12]

Reserved, RAZ.

Bits [11:6]

Reserved, RES0.

Bits [5:2]

Reserved, RAZ.

Bits [1:0]

Reserved, RES0.

Accessing the MDCCSR_EL0
Accesses to this register use the following encodings:

MRS <Xt>, MDCCSR_EL0

op0 op1 CRn CRm op2
0b10 0b011 0b0000 0b0001 0b000

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> !=
'00') then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MDCCSR_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return MDCCSR_EL0;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MDCCSR_EL0;
elsif PSTATE.EL == EL3 then

return MDCCSR_EL0;

MDCCSR_EL0, Monitor DCC Status Register

Page 1052

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MDCCSR_EL0, Monitor DCC Status Register

Page 1053

MDCR_EL2, Monitor Debug Configuration Register
(EL2)

The MDCR_EL2 characteristics are:

Purpose
Provides EL2 configuration options for self-hosted debug and the Performance Monitors Extension.

Configuration
AArch64 System register MDCR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HDCR[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
MDCR_EL2 is a 64-bit register.

Field descriptions
The MDCR_EL2 bit assignments are:

636261 60 59 58 57 56 55 545352 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 3635343332
RES0

RES0 MTPMETDCCHLPE2TBHCCD RES0 TTRFRES0HPMDRES0TPMSE2PBTDRATDOSATDATDEHPMETPMTPMCR HPMN
313029 28 27 26 25 24 23 222120 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:29]

Reserved, RES0.

MTPME, bit [28]

When ARMv8.6-MTPMU is implemented and EL3 is not implemented:

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>_EL0.MT bits.

MTPME Meaning
0b0 ARMv8.6-MTPMU is disabled. The Effective value of

PMEVTYPER<n>_EL0.MT is zero.
0b1 PMEVTYPER<n>_EL0.MT bits not affected by this bit.

If ARMv8.6-MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as the PE, it is
IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0.

On a Cold reset, this field resets to 1.

Otherwise:

Reserved, RES0.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 1054

TDCC, bit [27]

When ARMv8.6-FGT is implemented:

Trap DCC. Traps use of the Debug Comms Channel at EL1 and EL0 to EL2.

TDCC Meaning
0b0 This control does not cause any register accesses to be trapped.
0b1 If EL2 is implemented and enabled in the current Security state,

accesses to the DCC registers at EL1 and EL0 generate a Trap
exception to EL2, unless the access also generates a higher
priority exception.
Traps on the DCC data transfer registers are ignored when the
PE is in Debug state.

The DCC registers trapped by this control are:

AArch64: OSDTRRX_EL1, OSDTRTX_EL1, MDCCSR_EL0, MDCCINT_EL1, and, when the PE is in Non-debug state,
DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is in Non-debug state,
DBGDTRRXint and DBGDTRTXint.

The traps are reported with EC syndrome value:

• 0x05 for trapped AArch32 MRC and MCR accesses with coproc == 0b1110.

• 0x06 for trapped AArch32 LDC to DBGDTRTXint and STC from DBGDTRRXint.

• 0x18 for trapped AArch64 MRS and MSR accesses.

When the PE is in Debug state, MDCR_EL2.TDCC does not trap any accesses to:

AArch64: DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXint and DBGDTRTXint.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HLP, bit [26]

When ARMv8.5-PMU is implemented:

Hypervisor Long event counter enable. Determines when unsigned overflow is recorded by a counter overflow bit.

HLP Meaning
0b0 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[31:0].
0b1 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[63:0].

If MDCR_EL2.HPMN is less than PMCR_EL0.N or PMCR.N, this bit affects the operation of event counters in the
range [MDCR_EL2.HPMN..(PMCR_EL0.N-1)] or [MDCR_EL2.HPMN..(PMCR.N-1)]. Otherwise this bit has no effect on
the operation of the event counters.

Note

The effect of MDCR_EL2.HPMN on the operation of this bit always applies if
EL2 is implemented, at all Exception levels including EL2 and EL3, and
regardless of whether EL2 is enabled in the current Security state.

For more information see the description of the MDCR_EL2.HPMN field.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 1055

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E2TB, bits [25:24]

When TRBE is implemented:

EL2 Trace Buffer. If EL2 is implemented and enabled in the current Security state, controls the owning translation
regime and access to Trace Buffer control registers from EL1.

E2TB Meaning
0b00 If EL2 is implemented and enabled in the current Security state,

Trace Buffer owning Exception level is EL2. Accesses to Trace
Buffer controls at EL1 generate a Trap exception to EL2.

0b10 Trace Buffer owning Exception level is EL1. If
TraceBufferEnabled() == TRUE, tracing is prohibited at EL2. If
EL2 is implemented and enabled in the current Security state,
accesses to Trace Buffer controls at EL1 generate a Trap
exception to EL2.

0b11 Trace Buffer owning Exception level is EL1. If
TraceBufferEnabled() == TRUE, tracing is prohibited at EL2.

The Trace Buffer control registers trapped by this control are: TRBBASER_EL1, TRBLIMITR_EL1, TRBMAR_EL1,
TRBPTR_EL1, TRBSR_EL1, and TRBTRG_EL1.

If EL2 is not implemented or is disabled, the PE behaves as if this field is 0b11, other than for a direct read of the
register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HCCD, bit [23]

When ARMv8.5-PMU is implemented:

Hypervisor Cycle Counter Disable. Prohibits PMCCNTR_EL0 from counting at EL2.

HCCD Meaning
0b0 Cycle counting by PMCCNTR_EL0 is not affected by this bit.
0b1 Cycle counting by PMCCNTR_EL0 is prohibited at EL2.

This bit does not affect the CPU_CYCLES event or any other event that counts cycles.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [22:20]

Reserved, RES0.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 1056

TTRF, bit [19]

When ARMv8.4-Trace is implemented:

Traps use of the Trace Filter Control registers at EL1 to EL2, as follows:

• Access to TRFCR_EL1 is trapped to EL2, reported using EC syndrome value 0x18.

• Access to TRFCR is trapped to EL2, reported using EC syndrome value 0x03.

TTRF Meaning
0b0 Accesses to TRFCR_EL1 and TRFCR at EL1 are not affected by

this control.
0b1 Accesses to TRFCR_EL1 and TRFCR at EL1 generate a trap

exception to EL2 when EL2 is enabled in the current Security
state.

Otherwise:

Reserved, RES0.

Bit [18]

Reserved, RES0.

HPMD, bit [17]

When ARMv8.1-PMU is implemented:

Guest Performance Monitors Disable. This control prohibits event counting at EL2.

HPMD Meaning
0b0 Event counting allowed at EL2.
0b1 Event counting prohibited at EL2.

If ARMv8.2-Debug is not implemented, event counting is
prohibited unless enabled by the IMPLEMENTATION DEFINED
authentication interface
ExternalSecureNoninvasiveDebugEnabled().

This control applies only to:

• The event counters in the range [0..(MDCR_EL2.HPMN-1)].
• If PMCR_EL0.DP is set to 1, PMCCNTR_EL0.

The other event counters are unaffected, and when PMCR_EL0.DP is set to 0, PMCCNTR_EL0 is unaffected.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [16:15]

Reserved, RES0.

TPMS, bit [14]

When SPE is implemented:

Trap Performance Monitor Sampling. When EL2 is enabled in the current Security state, this field controls access to
Statistical Profiling control registers from EL1.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 1057

TPMS Meaning
0b0 Do not trap Statistical Profiling controls to EL2.
0b1 Accesses to Statistical Profiling controls at EL1 generate a Trap

exception to EL2 when EL2 is enabled in the current Security
state.

The Statistical Profiling control registers trapped by this control are: PMSCR_EL1, PMSEVFR_EL1, PMSFCR_EL1,
PMSICR_EL1, PMSIDR_EL1, PMSIRR_EL1, and PMSLATFR_EL1.

Otherwise:

Reserved, RES0.

E2PB, bits [13:12]

When SPE is implemented:

EL2 Profiling Buffer. If EL2 is implemented and enabled in the Profiling Buffer owning Security state, this field
controls the owning translation regime. If EL2 is implemented and enabled in the current Security state, this field
controls access to Profiling Buffer control registers from EL1.

E2PB Meaning
0b00 If EL2 is implemented and enabled in the Profiling Buffer

owning Security state, the Profiling Buffer uses the EL2 or
EL2&0 stage 1 translation regime. Otherwise the Profiling
Buffer uses the EL1&0 stage 1 translation regime.
If EL2 is implemented and enabled in the current Security state,
accesses to Profiling Buffer control registers at EL1 generate a
Trap exception to EL2.

0b10 Profiling Buffer uses the EL1&0 stage 1 translation regime. If
EL2 is implemented and enabled in the current Security state,
accesses to Profiling Buffer control registers at EL1 generate a
Trap exception to EL2.

0b11 Profiling Buffer uses the EL1&0 stage 1 translation regime.
Accesses to Profiling Buffer control registers at EL1 are not
trapped to EL2.

All other values are reserved.

The Profiling Buffer control registers trapped by this control are: PMBLIMITR_EL1, PMBPTR_EL1, and PMBSR_EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps System register accesses to the Debug ROM registers to EL2 when
EL2 is enabled in the current Security state as follows:

• If EL1 is using AArch64 state, accesses to MDRAR_EL1 are trapped to EL2, reported using EC syndrome value
0x18.

• If EL0 or EL1 is using AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2,
reported using EC syndrome value 0x05 and MRRC or MCRR accesses are trapped to EL2, reported using EC
syndrome value 0x0C:

◦ DBGDRAR, DBGDSAR.
TDRA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0 and EL1 System register accesses to the Debug ROM

registers are trapped to EL2 when EL2 is enabled in the current
Security state, unless it is trapped by DBGDSCRext.UDCCdis or
MDSCR_EL1.TDCC.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 1058

This field is treated as being 1 for all purposes other than a direct read when one or more of the following are true:

• MDCR_EL2.TDE == 1.
• HCR_EL2.TGE == 1.

Note

EL2 does not provide traps on debug register accesses through the optional
memory-mapped external debug interfaces.

System register accesses to the debug registers might have side-effects. When a System register access is trapped to
EL2, no side-effects occur before the exception is taken to EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDOSA, bit [10]

When ARMv8.0-DoubleLock is implemented:

Trap debug OS-related register access. Traps EL1 System register accesses to the powerdown debug registers to EL2,
from both Execution states as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value
0x18:

◦ OSLAR_EL1, OSLSR_EL1, OSDLR_EL1, and DBGPRCR_EL1.
◦ Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as

trapped by this bit.
• In AArch32 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value

0x05:
◦ DBGOSLSR, DBGOSLAR, DBGOSDLR, and DBGPRCR.
◦ Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as

trapped by this bit.
TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 System register accesses to the powerdown debug

registers are trapped to EL2 when EL2 is enabled in the
current Security state.

Note

These registers are not accessible at EL0.

This field is treated as being 1 for all purposes other than a direct read when one or more of the following are true:

• MDCR_EL2.TDE == 1.
• HCR_EL2.TGE == 1.

System register accesses to the debug registers might have side-effects. When a System register access is trapped to
EL2, no side-effects occur before the exception is taken to EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Trap debug OS-related register access. Traps EL1 System register accesses to the powerdown debug registers to EL2,
from both Execution states as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value
0x18:

◦ OSLAR_EL1, OSLSR_EL1, and DBGPRCR_EL1.

◦ Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies
as trapped by this bit.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 1059

• In AArch32 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value
0x05:

◦ DBGOSLSR, DBGOSLAR, and DBGPRCR.

◦ Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies
as trapped by this bit.

It is IMPLEMENTATION DEFINED whether accesses to OSDLR_EL1 are trapped.

It is IMPLEMENTATION DEFINED whether accesses to DBGOSDLR are trapped.

TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 System register accesses to the powerdown debug

registers are trapped to EL2 when EL2 is enabled in the
current Security state.

Note

These registers are not accessible at EL0.

This field is treated as being 1 for all purposes other than a direct read when one or more of the following are true:

• MDCR_EL2.TDE == 1.
• HCR_EL2.TGE == 1.

Note

EL2 does not provide traps on debug register accesses through the optional
memory-mapped external debug interfaces.

System register accesses to the debug registers might have side-effects. When a System register access is trapped to
EL2, no side-effects occur before the exception is taken to EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDA, bit [9]

Trap Debug Access. Traps EL0 and EL1 System register accesses to debug System registers that are not trapped by
MDCR_EL2.TDRA or MDCR_EL2.TDOSA, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2 reported using EC syndrome value
0x18:

◦ MDCCSR_EL0, MDCCINT_EL1, OSDTRRX_EL1, MDSCR_EL1, OSDTRTX_EL1, OSECCR_EL1,
DBGBVR<n>_EL1, DBGBCR<n>_EL1, DBGWVR<n>_EL1, DBGWCR<n>_El1, DBGCLAIMSET_EL1,
DBGCLAIMCLR_EL1, DBGAUTHSTATUS_EL1.

◦ When not in Debug state, DBGDTR_EL0, DBGDTRRX_EL0, DBGDTRTX_EL0.
• In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2, reported using EC

syndrome value 0x05.
◦ DBGDIDR, DBGDSCRint, DBGDCCINT, DBGWFAR, DBGVCR, DBGDSCRext, DBGDTRTXext,

DBGDTRRXext, DBGBVR<n>, DBGBCR<n>, DBGBXVR<n>, DBGWCR<n>, DBGWVR<n>,
DBGCLAIMSET, DBGCLAIMCLR, DBGAUTHSTATUS, DBGDEVID, DBGDEVID1, DBGDEVID2,
DBGOSECCR.

◦ When not in Debug state, DBGDTRRXint and DBGDTRTXint.
• In AArch32 state, STC accesses to DBGDTRRXint and LDC accesses to DBGDTRTXint are trapped to EL2,

reported using EC syndrome value 0x06.
TDA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0 or EL1 System register accesses to the debug registers are

trapped from both Execution states to EL2 when EL2 is enabled
in the current Security state, unless the access generates a
higher priority exception.

Traps of AArch32 accesses to DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

Traps of AArch64 accesses to DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0 are ignored in Debug state.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 1060

This field is treated as being 1 for all purposes other than a direct read when one or more of the following are true:

• MDCR_EL2.TDE == 1
• HCR_EL2.TGE == 1

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDE, bit [8]

Trap Debug exceptions.

TDE Meaning
0b0 This control has no effect on the routing of debug exceptions, and

has no effect on accesses to debug registers.
0b1 Debug exceptions generated at EL1 or EL0 are routed to EL2

when EL2 is enabled in the current Security state. The
MDCR_EL2.{TDRA, TDOSA, TDA} fields are treated as being 1
for all purposes other than returning the result of a direct read of
the register.

This field is treated as being 1 for all purposes other than a direct read when HCR_EL2.TGE == 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

HPME, bit [7]

When PMUv3 is implemented:

[MDCR_EL2.HPMN..(N-1)] event counters enable.

HPME Meaning
0b0 Event counters in the range

[MDCR_EL2.HPMN..(PMCR_EL0.N-1)] are disabled.
0b1 Event counters in the range

[MDCR_EL2.HPMN..(PMCR_EL0.N-1)] are enabled by
PMCNTENSET_EL0.

If MDCR_EL2.HPMN is less than PMCR_EL0.N or PMCR.N, the event counters in the range
[MDCR_EL2.HPMN..(PMCR_EL0.N-1)] or [HDCR.HPMN..(PMCR.N-1)], are enabled and disabled by this bit. Otherwise
this bit has no effect on the operation of the event counters.

Note

The effect of MDCR_EL2.HPMN on the operation of this bit applies regardless
of whether EL2 is enabled in the current Security state.

For more information see the description of the HPMN field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TPM, bit [6]

When PMUv3 is implemented:

Trap Performance Monitors accesses. Traps EL0 and EL1 accesses to all Performance Monitor registers to EL2 when
EL2 is enabled in the current Security state, from both Execution states, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value
0x18:

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 1061

◦ PMCR_EL0, PMCNTENSET_EL0, PMCNTENCLR_EL0, PMOVSCLR_EL0, PMSWINC_EL0,
PMSELR_EL0, PMCEID0_EL0, PMCEID1_EL0, PMCCNTR_EL0, PMXEVTYPER_EL0,
PMXEVCNTR_EL0, PMUSERENR_EL0, PMINTENSET_EL1, PMINTENCLR_EL1, PMOVSSET_EL0,
PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0, PMCCFILTR_EL0.

◦ If ARMv8.4-PMU is implemented, PMMIR_EL1

• In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2 and reported using
EC syndrome value 0x03, MRRC or MCRR accesses are trapped to EL2 and reported using EC syndrome
value 0x04:

◦ PMCR, PMCNTENSET, PMCNTENCLR, PMOVSR, PMSWINC, PMSELR, PMCEID0, PMCEID1,
PMCCNTR, PMXEVTYPER, PMXEVNTR, PMUSERENR, PMINTENSET, PMINTENCLR,
PMOVSSET, PMEVCNTR<n>, PMEVTYPER<n>, PMCCFILTR.

◦ If ARMv8.4-PMU is implemented, PMMIR.

◦ If ARMv8.1-PMU is implemented, PMCEID2, and PMCEID3.

TPM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0 and EL1 accesses to all Performance Monitor registers are

trapped to EL2 when EL2 is enabled in the current Security
state.

Note

EL2 does not provide traps on Performance Monitor register accesses through
the optional memory-mapped external debug interface.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TPMCR, bit [5]

When PMUv3 is implemented:

Trap PMCR_EL0 or PMCR accesses. Traps EL0 and EL1 accesses to EL2, when EL2 is enabled in the current Security
state, as follows:

• In AArch64 state, accesses to PMCR_EL0 are trapped to EL2, reported using EC syndrome value 0x18.

• In AArch32 state, accesses to PMCR are trapped to EL2, reported using EC syndrome value 0x03.

TPMCR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0 and EL1 accesses to the PMCR_EL0 or PMCR are trapped

to EL2 when EL2 is enabled in the current Security state,
unless it is trapped by PMUSERENR.EN or
PMUSERENR_EL0.EN.

Note

EL2 does not provide traps on Performance Monitor register accesses through
the optional memory-mapped external debug interface.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 1062

AArch32-pmxevntr.html

HPMN, bits [4:0]

When PMUv3 is implemented:

Defines the number of event counters that are accessible from EL3, EL2, EL1, and from EL0 if permitted.

If HPMN is less than PMCR_EL0.N, HPMN divides the Performance Monitors into two ranges: [0..(HPMN-1)] and
[HPMN..(PMCR_EL0.N-1)].

For an event counter in the range [0..(HPMN-1)]:

• The counter is accessible from EL3, EL2, and EL1, and from EL0 if permitted by PMUSERENR_EL0 or
PMUSERENR.

• If ARMv8.5-PMU is implemented, PMCR_EL0.LP or PMCR.LP determines whether the counter overflow flag is
set on unsigned overflow of PMEVCNTR<n>_EL0[31:0] or PMEVCNTR<n>_EL0[63:0].

• The counter is enabled by PMCR_EL0.E or PMCR.E and bit <n> of PMCNTENSET_EL0.

Note

If HPMN is equal to PMCR_EL0.N, this applies to all event counters.

If HPMN is less than PMCR_EL0.N, for an event counter in the range [HPMN..(PMCR_EL0.N-1)]:

• The counter is accessible from EL2 and EL3.
• If ARMv8.4-SecEL2 is disabled or is not implemented, the counter is also accessible from Secure EL1, and

from Secure EL0 if permitted by PMUSERENR_EL0.
• If ARMv8.5-PMU is implemented, MDCR_EL2.HLP or HDCR.HLP determines whether the counter overflow

flag is set on unsigned overflow of PMEVCNTR<n>_EL0[31:0] or PMEVCNTR<n>_EL0[63:0].
• The counter is enabled by MDCR_EL2.HPME or HDCR.HPME and bit <n> of PMCNTENSET_EL0.

If this field is set to 0, or to a value larger than PMCR_EL0.N, then the following CONSTRAINED UNPREDICTABLE behaviors
apply:

• The value returned by a direct read of MDCR_EL2.HPMN is UNKNOWN.
• Either:

◦ An UNKNOWN number of counters are reserved for EL2 and EL3 use. That is, the PE behaves as if
MDCR_EL2.HPMN is set to an UNKNOWN non-zero value less than or equal to PMCR_EL0.N.

◦ All counters are reserved for EL2 and EL3 use, meaning no counters are accessible from EL1 and
EL0.

On a Warm reset, this field resets to the value in PMCR_EL0.N.

Otherwise:

Reserved, RES0.

Accessing the MDCR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, MDCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b001

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 1063

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return MDCR_EL2;

elsif PSTATE.EL == EL3 then
return MDCR_EL2;

MSR MDCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
MDCR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
MDCR_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 1064

MDCR_EL3, Monitor Debug Configuration Register
(EL3)

The MDCR_EL3 characteristics are:

Purpose
Provides EL3 configuration options for self-hosted debug and the Performance Monitors Extension.

Configuration
AArch64 System register MDCR_EL3 bits [31:0] can be mapped to AArch32 System register SDCR[31:0] , but this is
not architecturally mandated.

This register is present only when EL3 is implemented. Otherwise, direct accesses to MDCR_EL3 are UNDEFINED.

Attributes
MDCR_EL3 is a 64-bit register.

Field descriptions
The MDCR_EL3 bit assignments are:

636261 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 373635343332
RES0

RES0 MTPMETDCCRES0NSTBSCCDETADEPMADEDADTTRFSTESPMESDDSPD32NSPBRES0TDOSATDARES0TPM RES0
313029 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:29]

Reserved, RES0.

MTPME, bit [28]

When ARMv8.6-MTPMU is implemented:

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>_EL0.MT bits.

MTPME Meaning
0b0 ARMv8.6-MTPMU is disabled. The Effective value of

PMEVTYPER<n>_EL0.MT is zero.
0b1 PMEVTYPER<n>_EL0.MT bits not affected by this bit.

If ARMv8.6-MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as the PE, it is
IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0.

On a Cold reset, this field resets to 1.

Otherwise:

Reserved, RES0.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 1065

TDCC, bit [27]

When ARMv8.6-FGT is implemented:

Trap DCC. Traps use of the Debug Comms Channel at EL2, EL1, and EL0 to EL3.

TDCC Meaning
0b0 This control does not cause any register accesses to be trapped.
0b1 Accesses to the DCC registers at EL2, EL1, and EL0 generate a

Trap exception to EL3, unless the access also generates a
higher priority exception.
Traps on the DCC data transfer registers are ignored when the
PE is in Debug state.

The DCC registers trapped by this control are:

AArch64: OSDTRRX_EL1, OSDTRTX_EL1, MDCCSR_EL0, MDCCINT_EL1, and, when the PE is in Non-debug state,
DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is in Non-debug state,
DBGDTRRXint and DBGDTRTXint.

The traps are reported with EC syndrome value:

• 0x05 for trapped AArch32 MRC and MCR accesses with coproc == 0b1110.

• 0x06 for trapped AArch32 LDC to DBGDTRTXint and STC from DBGDTRRXint.

• 0x18 for trapped AArch64 MRS and MSR accesses.

When the PE is in Debug state, MDCR_EL3.TDCC does not trap any accesses to:

AArch64: DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXint and DBGDTRTXint.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [26]

Reserved, RES0.

NSTB, bits [25:24]

When TRBE is implemented:

Non-secure Trace Buffer. Controls the owning translation regime and accesses to Trace Buffer control registers from
EL2 and EL1.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 1066

NSTB Meaning
0b00 Trace Buffer owning security state is Secure state. If

TraceBufferEnabled() == TRUE, tracing is prohibited in Non-
secure state. Accesses to Trace Buffer control registers at EL2
and EL1 generate Trap exceptions to EL3.

0b01 Trace Buffer owning security state is Secure state. If
TraceBufferEnabled() == TRUE, tracing is prohibited in Non-
secure state. Accesses to Trace Buffer control registers at EL2
and EL1 in Non-secure state generate Trap exceptions to EL3.

0b10 Trace Buffer owning security state is Non-secure state. If
TraceBufferEnabled() == TRUE, tracing is prohibited in Secure
state. Accesses to Trace Buffer control registers at EL2 and EL1
generate Trap exceptions to EL3.

0b11 Trace Buffer owning security state is Non-secure state. If
TraceBufferEnabled() == TRUE, tracing is prohibited in Secure
state. Accesses to Trace Buffer control registers at EL2 and EL1
in Secure state generate Trap exceptions to EL3.

The Trace Buffer control registers trapped by this control are: TRBBASER_EL1, TRBLIMITR_EL1, TRBMAR_EL1,
TRBPTR_EL1, TRBSR_EL1, and TRBTRG_EL1.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b1, the PE behaves as if this field is 0b11.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, the PE behaves as if this field is 0b01.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCCD, bit [23]

When ARMv8.5-PMU is implemented:

Secure Cycle Counter Disable. Prohibits PMCCNTR_EL0 from counting in Secure state.

SCCD Meaning
0b0 Cycle counting by PMCCNTR_EL0 is not affected by this bit.
0b1 Cycle counting by PMCCNTR_EL0 is prohibited in Secure state.

This bit does not affect the CPU_CYCLES event or any other event that counts cycles.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

ETAD, bit [22]

When TRBE is implemented:

External Trace Non-secure Access Disable. Controls Non-secure access to PE Trace Unit registers by an external
debugger.

ETAD Meaning
0b0 Non-secure accesses from an external debugger to PE Trace

Unit are allowed.
0b1 Non-secure accesses from an external debugger to PE Trace

Unit are prohibited.

If the Trace Extension does not support external debug interface accesses this bit is RES0.

Otherwise, if EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this
field is 0b1.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 1067

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EPMAD, bit [21]

When ARMv8.4-Debug is implemented and PMUv3 is implemented:

External Performance Monitors Non-secure Access Disable. Controls Non-secure access to Performance Monitor
registers by an external debugger.

EPMAD Meaning
0b0 Non-secure access to Performance Monitor registers from

external debugger is permitted.
0b1 Non-secure access to Performance Monitor registers from

external debugger is not permitted.

If the Performance Monitors Extension does not support external debug interface accesses this bit is RES0.

Otherwise, if EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this bit
is 0b1.

On a Warm reset, this field resets to 0.

When PMUv3 is implemented:

External Performance Monitors Access Disable. Controls access to Performance Monitor registers by an external
debugger.

EPMAD Meaning
0b0 Access to Performance Monitor registers from external

debugger is permitted.
0b1 Access to Performance Monitor registers from external

debugger is not permitted, unless overridden by the
IMPLEMENTATION DEFINED authentication interface.

If the Performance Monitors Extension does not support external debug interface accesses this bit is RES0.

Otherwise, if EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this bit
is 0b1.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EDAD, bit [20]

When ARMv8.4-Debug is implemented:

External Debug Non-secure Access Disable. Controls Non-secure access to breakpoint, watchpoint, and OSLAR_EL1
registers by an external debugger.

EDAD Meaning
0b0 Non-secure access to debug registers from external debugger is

permitted.
0b1 Non-secure access to breakpoint and watchpoint registers, and

OSLAR_EL1 from external debugger is not permitted.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this field is 0b1.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 1068

On a Warm reset, this field resets to 0.

When ARMv8.2-Debug is implemented:

External Debug Access Disable. Controls access to breakpoint, watchpoint, and OSLAR_EL1 registers by an external
debugger.

EDAD Meaning
0b0 Access to debug registers, and to OSLAR_EL1 from external

debugger is permitted.
0b1 Access to breakpoint and watchpoint registers, and to

OSLAR_EL1 from external debugger is not permitted, unless
overridden by the IMPLEMENTATION DEFINED authentication
interface.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this field is 0b1.

On a Warm reset, this field resets to 0.

Otherwise:

External Debug Access disable. Controls access to breakpoint, watchpoint, and optionally OSLAR_EL1 registers by an
external debugger.

EDAD Meaning
0b0 Access to debug registers from external debugger is permitted.
0b1 Access to breakpoint and watchpoint registers from an external

debugger is not permitted, unless overridden by the
IMPLEMENTATION DEFINED authentication interface.
It is IMPLEMENTATION DEFINED whether access to the OSLAR_EL1
register from an external debugger is permitted or not
permitted.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this field is 0b1.

On a Warm reset, this field resets to 0.

TTRF, bit [19]

When ARMv8.4-Trace is implemented:

Trap Trace Filter controls. Traps use of the Trace Filter control registers at EL2 and EL1 to EL3.

The Trace Filter registers trapped by this control are:

• TRFCR_EL2, TRFCR_EL12, TRFCR_EL1, reported using EC syndrome value 0x18.

• HTRFCR and TRFCR, reported using EC syndrome value 0x03.

TTRF Meaning
0b0 Accesses to Trace Filter registers at EL2 and EL1 are not

affected by this bit.
0b1 Accesses to Trace Filter registers at EL2 and EL1 generate a

Trap exception to EL3, unless the access generates a higher
priority exception.

Otherwise:

Reserved, RES0.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 1069

STE, bit [18]

When ARMv8.4-Trace is implemented:

Secure Trace enable. Enables tracing in Secure state.

STE Meaning
0b0 Trace prohibited in Secure state unless overridden by the

IMPLEMENTATION DEFINED authentication interface.
0b1 Trace in Secure state is not affected by this bit.

This bit also controls the level of authentication required by an external debugger to enable external tracing. See
'Register controls to enable self-hosted trace' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile.

If EL3 is not implemented the Effective value of SCR_EL3.NS is 0b0, the Effective value of this bit is 0b1.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SPME, bit [17]

When ARMv8.2-Debug is implemented and PMUv3 is implemented:

Secure Performance Monitors enable. This allows event counting in Secure state.

SPME Meaning
0b0 Event counting prohibited in Secure state.
0b1 Event counting in Secure state not affected by this bit.

If EL3 is not implemented the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this bit is 0b1.

On a Warm reset, this field resets to 0.

When PMUv3 is implemented:

Secure Performance Monitors enable. This allows event counting in Secure state.

SPME Meaning
0b0 Event counting prohibited in Secure state, unless

ExternalSecureNoninvasiveDebugEnabled() is TRUE.
0b1 Event counting in Secure state not affected by this bit.

If EL3 is not implemented the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this bit is 0b1.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SDD, bit [16]

AArch64 Secure Self-hosted invasive debug disable. Disables Software debug exceptions in Secure state, other than
Breakpoint Instruction exceptions.

SDD Meaning
0b0 Debug exceptions in Secure state are not affected by this bit.
0b1 Debug exceptions, other than Breakpoint Instruction exceptions,

are disabled from all Exception levels in Secure state.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 1070

The SDD bit is ignored unless both of the following are true:

• The PE is in Secure state.
• The Effective value of SCR_EL3.RW is 0b1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPD32, bits [15:14]

When EL1 is capable of using AArch32:

AArch32 Secure self-hosted privileged debug. Enables or disables debug exceptions from Secure EL1 using AArch32,
other than Breakpoint Instruction exceptions.

SPD32 Meaning
0b00 Legacy mode. Debug exceptions from Secure EL1 are enabled

by the IMPLEMENTATION DEFINED authentication interface.
0b10 Secure privileged debug disabled. Debug exceptions from

Secure EL1 are disabled.
0b11 Secure privileged debug enabled. Debug exceptions from

Secure EL1 are enabled.

Other values are reserved, and have the CONSTRAINED UNPREDICTABLE behavior that they must have the same behavior
as 0b00. Software must not rely on this property as the behavior of reserved values might change in a future revision
of the architecture.

This field has no effect on Breakpoint Instruction exceptions. These are always enabled.

This field is ignored if the PE is either:

• In Non-secure state.
• In Secure state and Secure EL1 is using AArch64.

If Secure EL1 is using AArch32 then:

• If debug exceptions from Secure EL1 are enabled, then debug exceptions from Secure EL0 are also enabled.
• Otherwise, debug exceptions from Secure EL0 are enabled only if the value of SDER32_EL3.SUIDEN is 0b1.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this field is 0b11.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSPB, bits [13:12]

When SPE is implemented:

Non-secure Profiling Buffer. This field controls the owning translation regime and accesses to Statistical Profiling and
Profiling Buffer control registers.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 1071

NSPB Meaning
0b00 Profiling Buffer uses Secure Virtual Addresses. Statistical

Profiling enabled in Secure state and disabled in Non-secure
state. Accesses to Statistical Profiling and Profiling Buffer
control registers at EL2 and EL1 in both security states
generate Trap exceptions to EL3.

0b01 Profiling Buffer uses Secure Virtual Addresses. Statistical
Profiling enabled in Secure state and disabled in Non-secure
state. Accesses to Statistical Profiling and Profiling Buffer
control registers at EL2 and EL1 in Non-secure state generate
Trap exceptions to EL3.

0b10 Profiling Buffer uses Non-secure Virtual Addresses. Statistical
Profiling enabled in Non-secure state and disabled in Secure
state. Accesses to Statistical Profiling and Profiling Buffer
control registers at EL2 and EL1 in both security states
generate Trap exceptions to EL3.

0b11 Profiling Buffer uses Non-secure Virtual Addresses. Statistical
Profiling enabled in Non-secure state and disabled in Secure
state. Accesses to Statistical Profiling and Profiling Buffer
control registers at EL2 and EL1 in Secure state generate Trap
exceptions to EL3.

The Statistical Profiling and Profiling Buffer control registers trapped by this control are: PMBLIMITR_EL1,
PMBPTR_EL1, PMBSR_EL1, PMSCR_EL1, PMSCR_EL2, PMSEVFR_EL1, PMSFCR_EL1, PMSICR_EL1, PMSIDR_EL1,
PMSIRR_EL1, and PMSLATFR_EL1.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b1, the Effective value of this field is 0b11.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, the Effective value of this field is 0b01.

On a Warm reset, this field resets to an UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [11]

Reserved, RES0.

TDOSA, bit [10]

When ARMv8.0-DoubleLock is implemented:

Trap debug OS-related register access. Traps EL2 and EL1 System register accesses to the powerdown debug
registers to EL3.

Accesses to the registers are trapped as follows:

• Accesses from AArch64 state, OSLAR_EL1, OSLSR_EL1, OSDLR_EL1, DBGPRCR_EL1 and any IMPLEMENTATION
DEFINED register with similar functionality that the implementation specifies as trapped by this bit, are trapped
to EL3 and reported using EC syndrome value 0x18.

• Accesses using MCR or MRC to DBGOSLAR, DBGOSLSR, DBGOSDLR, and DBGPRCR, are trapped to EL3 and
reported using EC syndrome value 0x05.

• Accesses to any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies
as trapped by this bit.

TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL2 and EL1 System register accesses to the powerdown

debug registers are trapped to EL3, unless it is trapped by
HDCR.TDOSA or MDCR_EL2.TDOSA.

Note

The powerdown debug registers are not accessible at EL0.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 1072

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Trap debug OS-related register access. Traps EL2 and EL1 System register accesses to the powerdown debug
registers to EL3.

The following registers are affected by this trap:

• AArch64: OSLAR_EL1, OSLSR_EL1, and DBGPRCR_EL1.
• AArch32: DBGOSLAR, DBGOSLSR, and DBGPRCR.
• AArch64 and AArch32: Any IMPLEMENTATION DEFINED register with similar functionality that the

implementation specifies as trapped by this bit.
• It is IMPLEMENTATION DEFINED whether accesses to OSDLR_EL1 and DBGOSDLR are trapped.

TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL2 and EL1 System register accesses to the powerdown

debug registers are trapped to EL3, unless it is trapped by
HDCR.TDOSA or MDCR_EL2.TDOSA.

Note

The powerdown debug registers are not accessible at EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDA, bit [9]

Trap Debug Access. Traps EL2, EL1, and EL0 System register accesses to those debug System registers that cannot
be trapped using the MDCR_EL3.TDOSA field.

Accesses to the debug registers are trapped as follows:

• In AArch64 state, the following registers are trapped to EL3 and reported using EC syndrome value 0x18:
◦ DBGBVR<n>_EL1, DBGBCR<n>_EL1, DBGWVR<n>_EL1, DBGWCR<n>_EL1, DBGCLAIMSET_EL1,

DBGCLAIMCLR_EL1, DBGAUTHSTATUS_EL1, DBGVCR32_EL2.
◦ AArch64: MDCR_EL2, MDRAR_EL1, MDCCSR_EL0, MDCCINT_EL1, MDSCR_EL1, OSDTRRX_EL1,

OSDTRTX_EL1, OSECCR_EL1.
• In AArch32 state, SDER is trapped to EL3 and reported using EC syndrome value 0x03.
• In AArch32 state, accesses using MCR or MRC to the following registers are reported using EC syndrome

value 0x05, accesses using MCRR or MRRC are reported using EC syndrome value 0x0C:
◦ HDCR, DBGDRAR, DBGDSAR, DBGDIDR, DBGDCCINT, DBGWFAR, DBGVCR, DBGBVR<n>,

DBGBCR<n>, DBGBXVR<n>, DBGWCR<n>, DBGWVR<n>.
◦ DBGCLAIMSET, DBGCLAIMCLR, DBGAUTHSTATUS, DBGDEVID, DBGDEVID1, DBGDEVID2,

DBGOSECCR.
• In AArch32 state, STC accesses to DBGDTRRXint and LDC accesses to DBGDTRTXint are reported using EC

syndrome value 0x06.
• When not in Debug state, the following registers are also trapped to EL3:

◦ AArch64 accesses to DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0, reported using EC
syndrome value 0x18.

◦ AArch32 accesses using MCR or MRC to DBGDTRRXint and DBGDTRTXint, reported using EC
syndrome value 0x05.

TDA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0, EL1, and EL2 accesses to the debug registers, other than

the registers that can be trapped by MDCR_EL3.TDOSA, are
trapped to EL3, from both Security states and both Execution
states, unless it is trapped by DBGDSCRext.UDCCdis,
MDSCR_EL1.TDCC, HDCR.TDA or MDCR_EL2.TDA.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:7]

Reserved, RES0.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 1073

TPM, bit [6]

When PMUv3 is implemented:

Trap Performance Monitor register accesses. Accesses to all Performance Monitor registers from EL0, EL1 and EL2 to
EL3, from both Security states and both Execution states are trapped as follows:

• In AArch64 state, accesses to the following registers are trapped to EL3 and are reported using EC syndrome
value 0x18:

◦ PMCR_EL0, PMCNTENSET_EL0, PMCNTENCLR_EL0, PMOVSCLR_EL0, PMSWINC_EL0,
PMSELR_EL0, PMCEID0_EL0, PMCEID1_EL0, PMCCNTR_EL0, PMXEVTYPER_EL0,
PMXEVCNTR_EL0, PMUSERENR_EL0, PMINTENSET_EL1, PMINTENCLR_EL1, PMOVSSET_EL0,
PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0, PMCCFILTR_EL0.

◦ If ARMv8.4-PMU is implemented, PMMIR_EL1
• In AArch32 state, accesses using MCR or MRC to the following registers are reported using EC syndrome

value 0x03, accesses using MCRR or MRRC are reported using EC syndrome value 0x04:
◦ PMCR, PMCNTENSET, PMCNTENCLR, PMOVSR, PMSWINC, PMSELR, PMCEID0, PMCEID1,

PMCCNTR, PMXEVTYPER, PMXEVCNTR, PMUSERENR, PMINTENSET, PMINTENCLR, PMOVSSET,
PMEVCNTR<n>, PMEVTPER<n>, PMCFILTR.

◦ If ARMv8.1-PMU is implemented, PMCEID2, and PMCEID3.
◦ If ARMv8.4-PMU is implemented, PMMIR.

TPM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL2, EL1, and EL0 System register accesses to all Performance

Monitor registers are trapped to EL3, unless it is trapped by
HDCR.TPM or MDCR_EL2.TPM.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [5:0]

Reserved, RES0.

Accessing the MDCR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, MDCR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return MDCR_EL3;

MSR MDCR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0011 0b001

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 1074

AArch32-pmevtpern.html
AArch32-pmcfiltr.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
MDCR_EL3 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 1075

MDRAR_EL1, Monitor Debug ROM Address Register
The MDRAR_EL1 characteristics are:

Purpose
Defines the base physical address of a 4KB-aligned memory-mapped debug component, usually a ROM table that
locates and describes the memory-mapped debug components in the system. Armv8 deprecates any use of this
register.

Configuration
AArch64 System register MDRAR_EL1 bits [63:0] are architecturally mapped to AArch32 System register
DBGDRAR[63:0] .

Attributes
MDRAR_EL1 is a 64-bit register.

Field descriptions
The MDRAR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 ROMADDR[51:48] ROMADDR[47:12]

ROMADDR[47:12] RES0 Valid
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:52]

Reserved, RES0.

ROMADDR[51:48], bits [51:48]

When ARMv8.2-LPA is implemented:

Extension to ROMADDR[47:12]. See ROMADDR[47:12] for more details.

Otherwise:

Reserved, RES0.

ROMADDR[47:12], bits [47:12]

Bits[47:12] of the ROM table physical address.

When ARMv8.2-LPA is implemented, ROMADDR[51:48] forms the upper part of the address value. Otherwise,
ROMADDR[51:48] is RES0.

If the physical address size in bits (PAsize) is less than 52, then the register bits corresponding to ROMADDR
[51:PAsize] are RES0.

Bits [11:0] of the ROM table physical address are zero.

Arm strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system that supports AArch32 at the
highest implemented Exception level.

MDRAR_EL1, Monitor Debug ROM Address Register

Page 1076

In an implementation that includes EL3, ROMADDR is an address in Non-secure memory. It is IMPLEMENTATION DEFINED
whether the ROM table is also accessible in Secure memory.

Bits [11:2]

Reserved, RES0.

Valid, bits [1:0]

This field indicates whether the ROM Table address is valid. The permitted values of this field are:

Valid Meaning
0b00 ROM Table address is not valid. Software must ignore

ROMADDR.
0b11 ROM Table address is valid.

Other values are reserved.

Accessing the MDRAR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, MDRAR_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDRA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MDRAR_EL1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return MDRAR_EL1;

elsif PSTATE.EL == EL3 then
return MDRAR_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MDRAR_EL1, Monitor Debug ROM Address Register

Page 1077

MDSCR_EL1, Monitor Debug System Control Register
The MDSCR_EL1 characteristics are:

Purpose
Main control register for the debug implementation.

Configuration
AArch64 System register MDSCR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGDSCRext[31:0] .

Attributes
MDSCR_EL1 is a 64-bit register.

Field descriptions
The MDSCR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 504948 47 46 45 44 4342414039 38 3736353433 32
RES0

TFORXfullTXfullRES0RXOTXURES0INTdisTDARES0SC2 RAZ/
WI MDEHDEKDETDCC RES0 ERR RES0 SS

31 30 29 28 27 26 25 24 23 22 21 20 19 181716 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TFO, bit [31]

When ARMv8.4-Trace is implemented:

Trace Filter override. Used for save/restore of EDSCR.TFO.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TFO. Reads and writes of this bit are indirect
accesses to EDSCR.TFO.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Otherwise:

Reserved, RES0.

RXfull, bit [30]

Used for save/restore of EDSCR.RXfull.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

MDSCR_EL1, Monitor Debug System Control Register

Page 1078

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.RXfull. Reads and writes of this bit are indirect
accesses to EDSCR.RXfull.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

TXfull, bit [29]

Used for save/restore of EDSCR.TXfull.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TXfull. Reads and writes of this bit are indirect
accesses to EDSCR.TXfull.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bit [28]

Reserved, RES0.

RXO, bit [27]

Used for save/restore of EDSCR.RXO.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.RXO. Reads and writes of this bit are indirect
accesses to EDSCR.RXO.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

TXU, bit [26]

Used for save/restore of EDSCR.TXU.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TXU. Reads and writes of this bit are indirect
accesses to EDSCR.TXU.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bits [25:24]

Reserved, RES0.

MDSCR_EL1, Monitor Debug System Control Register

Page 1079

INTdis, bits [23:22]

Used for save/restore of EDSCR.INTdis.

When OSLSR_EL1.OSLK == 0, and software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this field holds the value of EDSCR.INTdis. Reads and writes of this field are indirect
accesses to EDSCR.INTdis.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

TDA, bit [21]

Used for save/restore of EDSCR.TDA.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TDA. Reads and writes of this bit are indirect
accesses to EDSCR.TDA.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bit [20]

Reserved, RES0.

SC2, bit [19]

When ARMv8.0-PCSample is implemented, ARMv8.1-VHE is implemented and ARMv8.2-PCSample is not implemented:

Used for save/restore of EDSCR.SC2.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.SC2. Reads and writes of this bit are indirect
accesses to EDSCR.SC2.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [18:16]

Reserved, RAZ/WI.

Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as zero, and must use a
read-modify-write sequence to write to the register.

MDSCR_EL1, Monitor Debug System Control Register

Page 1080

MDE, bit [15]

Monitor debug events. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.

MDE Meaning
0b0 Breakpoint, Watchpoint, and Vector Catch exceptions disabled.
0b1 Breakpoint, Watchpoint, and Vector Catch exceptions enabled.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

HDE, bit [14]

Used for save/restore of EDSCR.HDE.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.HDE. Reads and writes of this bit are indirect
accesses to EDSCR.HDE.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

KDE, bit [13]

Local (kernel) debug enable. If ELD is using AArch64, enable debug exceptions within ELD. Permitted values are:

KDE Meaning
0b0 Debug exceptions, other than Breakpoint Instruction exceptions,

disabled within ELD.
0b1 All debug exceptions enabled within ELD.

RES0 if ELD is using AArch32.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDCC, bit [12]

Traps EL0 accesses to the Debug Communication Channel (DCC) registers to EL1, or to EL2 when it is implemented
and enabled for the current Security state and HCR_EL2.TGE is 1, from both Execution states, as follows:

• In AArch64 state, MRS or MSR accesses to the following DCC registers are trapped, reported using EC
syndrome value 0x18:

◦ MDCCSR_EL0.
◦ If not in Debug state, DBGDTR_EL0, DBGDTRTX_EL0, and DBGDTRRX_EL0.

• In AArch32 state, MRC or MCR accesses to the following registers are trapped, reported using EC syndrome
value 0x05.

◦ DBGDSCRint, DBGDIDR, DBGDSAR, DBGDRAR.
◦ If not in Debug state, DBGDTRRXint, and DBGDTRTXint.

• In AArch32 state, LDC access to DBGDTRRXint and STC access to DBGDTRTXint are trapped, reported using
EC syndrome value 0x06.

• In AArch32 state, MRRC accesses to DBGDSAR and DBGDRAR are trapped, reported using EC syndrome
value 0x0C.

TDCC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0 using AArch64: EL0 accesses to the AArch64 DCC registers

are trapped.
EL0 using AArch32: EL0 accesses to the AArch32 DCC registers
are trapped.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

MDSCR_EL1, Monitor Debug System Control Register

Page 1081

Bits [11:7]

Reserved, RES0.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.ERR. Reads and writes of this bit are indirect
accesses to EDSCR.ERR.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bits [5:1]

Reserved, RES0.

SS, bit [0]

Software step control bit. If ELD is using AArch64, enable Software step. Permitted values are:

SS Meaning
0b0 Software step disabled
0b1 Software step enabled.

RES0 if ELD is using AArch32.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the MDSCR_EL1
Individual fields within this register might have restricted accessibility when OSLSR_EL1.OSLK == 0 (the OS lock is
unlocked). See the field descriptions for more detail.

Accesses to this register use the following encodings:

MRS <Xt>, MDSCR_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0010 0b010

MDSCR_EL1, Monitor Debug System Control Register

Page 1082

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.MDSCR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then
return NVMem[0x158];

else
return MDSCR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MDSCR_EL1;
elsif PSTATE.EL == EL3 then

return MDSCR_EL1;

MSR MDSCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.MDSCR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then
NVMem[0x158] = X[t];

else
MDSCR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

MDSCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

MDSCR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MDSCR_EL1, Monitor Debug System Control Register

Page 1083

MIDR_EL1, Main ID Register
The MIDR_EL1 characteristics are:

Purpose
Provides identification information for the PE, including an implementer code for the device and a device ID number.

Configuration
AArch64 System register MIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register MIDR[31:0] .

AArch64 System register MIDR_EL1 bits [31:0] are architecturally mapped to External register MIDR_EL1[31:0] .

Attributes
MIDR_EL1 is a 64-bit register.

Field descriptions
The MIDR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

Implementer Variant Architecture PartNum Revision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm. Assigned codes
include the following:

Hex representation Implementer
0x00 Reserved for software use
0xC0 Ampere Computing
0x41 Arm Limited
0x42 Broadcom Corporation
0x43 Cavium Inc.
0x44 Digital Equipment Corporation
0x46 Fujitsu Ltd.
0x49 Infineon Technologies AG
0x4D Motorola or Freescale Semiconductor Inc.
0x4E NVIDIA Corporation
0x50 Applied Micro Circuits Corporation
0x51 Qualcomm Inc.
0x56 Marvell International Ltd.
0x69 Intel Corporation

Arm can assign codes that are not published in this manual. All values not assigned by Arm are reserved and must not
be used.

MIDR_EL1, Main ID Register

Page 1084

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product
variants, or major revisions of a product.

Architecture, bits [19:16]

The permitted values of this field are:

Architecture Meaning
0b0001 Armv4.
0b0010 Armv4T.
0b0011 Armv5 (obsolete).
0b0100 Armv5T.
0b0101 Armv5TE.
0b0110 Armv5TEJ.
0b0111 Armv6.
0b1111 Architectural features are individually identified in the

ID_* registers, see 'ID registers' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section K12.3.3.

All other values are reserved.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7, the variant and
architecture are encoded differently.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

Accessing the MIDR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, MIDR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0000 0b000

MIDR_EL1, Main ID Register

Page 1085

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.MIDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) then
return VPIDR_EL2;

else
return MIDR_EL1;

elsif PSTATE.EL == EL2 then
return MIDR_EL1;

elsif PSTATE.EL == EL3 then
return MIDR_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MIDR_EL1, Main ID Register

Page 1086

MPAM0_EL1, MPAM0 Register (EL1)
The MPAM0_EL1 characteristics are:

Purpose
Holds information to generate MPAM labels for memory requests when executing at EL0. When EL2 is present and
enabled, the MPAM virtualization option is present, MPAMHCR_EL2.GSTAPP_PLK == 1 and HCR_EL2.TGE == 0,
MPAM1_EL1 is used instead of MPAM0_EL1 to generate MPAM information to label memory requests.

If EL2 is present and enabled, and HCR_EL2.E2H == 0 or HCR_EL2.TGE == 0, the MPAM virtualization option is
present and MPAMHCR_EL2.EL0_VPMEN == 1, then MPAM PARTIDs in MPAM0_EL1 are virtual and mapped into
physical PARTIDs for the current Security state.

Configuration
This register is present only when MPAM is implemented. Otherwise, direct accesses to MPAM0_EL1 are UNDEFINED.

Attributes
MPAM0_EL1 is a 64-bit register.

Field descriptions
The MPAM0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 PMG_D PMG_I

PARTID_D PARTID_I
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

PMG_D, bits [47:40]

Performance monitoring group property for PARTID_D.

This field resets to an architecturally UNKNOWN value.

PMG_I, bits [39:32]

Performance monitoring group property for PARTID_I.

This field resets to an architecturally UNKNOWN value.

PARTID_D, bits [31:16]

Partition ID for data accesses, including load and store accesses, made from EL0.

This field resets to an architecturally UNKNOWN value.

PARTID_I, bits [15:0]

Partition ID for instruction accesses made from EL0.

MPAM0_EL1, MPAM0 Register (EL1)

Page 1087

This field resets to an architecturally UNKNOWN value.

Accessing the MPAM0_EL1
None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings:

MRS <Xt>, MPAM0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0101 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MPAM2_EL2.TRAPMPAM0EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return MPAM0_EL1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return MPAM0_EL1;

elsif PSTATE.EL == EL3 then
return MPAM0_EL1;

MSR MPAM0_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0101 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MPAM2_EL2.TRAPMPAM0EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

MPAM0_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
MPAM0_EL1 = X[t];

elsif PSTATE.EL == EL3 then
MPAM0_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAM0_EL1, MPAM0 Register (EL1)

Page 1088

MPAM1_EL1, MPAM1 Register (EL1)
The MPAM1_EL1 characteristics are:

Purpose
Holds information to generate MPAM labels for memory requests when executing at EL1.

When EL2 is present and enabled, the MPAM virtualization option is present, MPAMHCR_EL2.GSTAPP_PLK == 1 and
HCR_EL2.TGE == 0, MPAM1_EL1 is used instead of MPAM0_EL1 to generate MPAM labels for memory requests when
executing at EL0.

MPAM1_EL1 is an alias for MPAM2_EL2 when executing at EL2 with HCR_EL2.E2H == 1.

MPAM1_EL12 is an alias for MPAM1_EL1 when executing at EL2 or EL3 with HCR_EL2.E2H == 1.

If EL2 is is present and enabled, the MPAM virtualization option is present and MPAMHCR_EL2.EL1_VPMEN == 1,
MPAM PARTIDs in MPAM1_EL1 are virtual and mapped into physical PARTIDs for the current Security state. This
mapping of MPAM1_EL1 virtual PARTIDs to physical PARTIDs when EL1_VPMEN is 1 also applies when MPAM1_EL1
is used at EL0 due to MPAMHCR_EL2.GSTAPP_PLK.

Configuration
AArch64 System register MPAM1_EL1 bit [63] is architecturally mapped to AArch64 System register MPAM3_EL3[63]
when EL3 is implemented.

AArch64 System register MPAM1_EL1 bit [63] is architecturally mapped to AArch64 System register MPAM2_EL2[63]
when EL3 is not implemented and EL2 is implemented.

This register is present only when MPAM is implemented. Otherwise, direct accesses to MPAM1_EL1 are UNDEFINED.

Attributes
MPAM1_EL1 is a 64-bit register.

Field descriptions
The MPAM1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
MPAMENRES0FORCED_NS RES0 PMG_D PMG_I

PARTID_D PARTID_I
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPAMEN, bit [63]

MPAM Enable. MPAM is enabled when MPAMEN == 1. When disabled, all PARTIDs and PMGs are output as their
default value in the corresponding ID space.

MPAMEN Meaning
0b0 The default PARTID and default PMG are output in MPAM

information.
0b1 MPAM information is output based on the MPAMn_ELx

register for ELn according the MPAM configuration.

If neither EL3 nor EL2 is implemented, this field is read/write.

If EL3 is implemented, this field is read-only and reads the current value of the read/write bit MPAM3_EL3.MPAMEN.

If EL3 is not implemented and EL2 is implemented, this field is read-only and reads the current value of the read/write
bit MPAM2_EL2.MPAMEN.

MPAM1_EL1, MPAM1 Register (EL1)

Page 1089

This field resets to 0.

Accessing this field has the following behavior:

• When EL3 is not implemented and EL2 is not implemented, access to this field is RW.
• Otherwise, access to this field is RO.

Bits [62:61]

Reserved, RES0.

FORCED_NS, bit [60]

When ARMv8.6-MPAM is implemented:

In the Secure state, FORCED_NS indicates the state of MPAM3_EL3.FORCE_NS.

FORCED_NS Meaning
0b0 In the Non-secure state, always reads as 0.

In the Secure state, indicates that
MPAM3_EL3.FORCE_NS == 0.

0b1 In the Secure state, indicates that
MPAM3_EL3.FORCE_NS == 1.

Always reads as 0 in the Non-secure state.

Writes are ignored.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [59:48]

Reserved, RES0.

PMG_D, bits [47:40]

Performance monitoring group property for PARTID_D.

This field resets to an architecturally UNKNOWN value.

PMG_I, bits [39:32]

Performance monitoring group property for PARTID_I.

This field resets to an architecturally UNKNOWN value.

PARTID_D, bits [31:16]

Partition ID for data accesses, including load and store accesses, made from EL1.

This field resets to an architecturally UNKNOWN value.

PARTID_I, bits [15:0]

Partition ID for instruction accesses made from EL1.

This field resets to an architecturally UNKNOWN value.

MPAM1_EL1, MPAM1 Register (EL1)

Page 1090

Accessing the MPAM1_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, accesses from EL3 using the mnemonic MPAM1_EL1 or
MPAM1_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings:

MRS <Xt>, MPAM1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0101 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MPAM2_EL2.TRAPMPAM1EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x900];
else

return MPAM1_EL1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HCR_EL2.E2H == '1' then
return MPAM2_EL2;

else
return MPAM1_EL1;

elsif PSTATE.EL == EL3 then
return MPAM1_EL1;

MSR MPAM1_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0101 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MPAM2_EL2.TRAPMPAM1EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x900] = X[t];
else

MPAM1_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HCR_EL2.E2H == '1' then
MPAM2_EL2 = X[t];

else
MPAM1_EL1 = X[t];

elsif PSTATE.EL == EL3 then
MPAM1_EL1 = X[t];

MPAM1_EL1, MPAM1 Register (EL1)

Page 1091

MRS <Xt>, MPAM1_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b1010 0b0101 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x900];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return MPAM1_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return MPAM1_EL1;
else

UNDEFINED;

MSR MPAM1_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1010 0b0101 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x900] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
MPAM1_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

MPAM1_EL1 = X[t];
else

UNDEFINED;

MPAM1_EL1, MPAM1 Register (EL1)

Page 1092

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAM1_EL1, MPAM1 Register (EL1)

Page 1093

MPAM2_EL2, MPAM2 Register (EL2)
The MPAM2_EL2 characteristics are:

Purpose
Holds information to generate MPAM labels for memory requests when executing at EL2.

Configuration
AArch64 System register MPAM2_EL2 bit [63] is architecturally mapped to AArch64 System register MPAM3_EL3[63]
when EL3 is implemented.

AArch64 System register MPAM2_EL2 bit [63] is architecturally mapped to AArch64 System register MPAM1_EL1[63]
.

This register is present only when MPAM is implemented. Otherwise, direct accesses to MPAM2_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
MPAM2_EL2 is a 64-bit register.

Field descriptions
The MPAM2_EL2 bit assignments are:

63 62616059 58 5756555453525150 49 48 47464544434241403938373635343332
MPAMEN RES0 TIDR RES0 TRAPMPAM0EL1TRAPMPAM1EL1 PMG_D PMG_I

PARTID_D PARTID_I
31 30292827 26 2524232221201918 17 16 151413121110 9 8 7 6 5 4 3 2 1 0

MPAMEN, bit [63]

MPAM Enable. MPAM is enabled when MPAMEN == 1. When disabled, all PARTIDs and PMGs are output as their
default value in the corresponding ID space.

MPAMEN Meaning
0b0 The default PARTID and default PMG are output in MPAM

information from all Exception levels.
0b1 MPAM information is output based on the MPAMn_ELx

register for ELn according the MPAM configuration.

If EL3 is not implemented, this field is read/write.

If EL3 is implemented, this field is read-only and reads the current value of the read/write MPAM3_EL3.MPAMEN bit.

This field resets to 0.

Accessing this field has the following behavior:

• When EL3 is not implemented, access to this field is RW.
• Otherwise, access to this field is RO.

Bits [62:59]

Reserved, RES0.

MPAM2_EL2, MPAM2 Register (EL2)

Page 1094

TIDR, bit [58]

When ARMv8.6-MPAM is implemented and MPAMIDR_EL1.HAS_TIDR == 1:

TIDR traps accesses to MPAMIDR_EL1 from EL1 to EL2.

TIDR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Trap accesses to MPAMIDR_EL1 from EL1 to EL2.

MPAMHCR_EL2.TRAP_MPAMIDR_EL1 == 1 also traps MPAMIDR_EL1 accesses from EL1 to EL2. If either TIDR or
TRAP_MPAMIDR_EL1 are 1, accesses are trapped.

Otherwise:

Reserved, RES0.

Bits [57:50]

Reserved, RES0.

TRAPMPAM0EL1, bit [49]

TRAPMPAM0EL1: Trap accesses from EL1 to the MPAM0_EL1 register trap to EL2.

TRAPMPAM0EL1 Meaning
0b0 Accesses to MPAM0_EL1 from EL1 are not trapped.
0b1 Accesses to MPAM0_EL1 from EL1 are trapped to

EL2.

This field resets to:

• If EL3 is not implemented, 1.
• If EL3 is implemented, an architecturally UNKNOWN value.

TRAPMPAM1EL1, bit [48]

TRAPMPAM1EL1: Trap accesses from EL1 to the MPAM1_EL1 register trap to EL2.

TRAPMPAM1EL1 Meaning
0b0 Accesses to MPAM1_EL1 from EL1 are not trapped.
0b1 Accesses to MPAM1_EL1 from EL1 are trapped to

EL2.

This field resets to:

• If EL3 is not implemented, 1.
• If EL3 is implemented, an architecturally UNKNOWN value.

PMG_D, bits [47:40]

Performance monitoring group for data accesses.

This field resets to an architecturally UNKNOWN value.

PMG_I, bits [39:32]

Performance monitoring group for instruction accesses.

This field resets to an architecturally UNKNOWN value.

MPAM2_EL2, MPAM2 Register (EL2)

Page 1095

PARTID_D, bits [31:16]

Partition ID for data accesses, including load and store accesses, made from EL2.

This field resets to an architecturally UNKNOWN value.

PARTID_I, bits [15:0]

Partition ID for instruction accesses made from EL2.

This field resets to an architecturally UNKNOWN value.

Accessing the MPAM2_EL2
None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings:

MRS <Xt>, MPAM2_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0101 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MPAM2_EL2;
elsif PSTATE.EL == EL3 then

return MPAM2_EL2;

MSR MPAM2_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0101 0b000

MPAM2_EL2, MPAM2 Register (EL2)

Page 1096

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

MPAM2_EL2 = X[t];
elsif PSTATE.EL == EL3 then

MPAM2_EL2 = X[t];

MRS <Xt>, MPAM1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0101 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MPAM2_EL2.TRAPMPAM1EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x900];
else

return MPAM1_EL1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HCR_EL2.E2H == '1' then
return MPAM2_EL2;

else
return MPAM1_EL1;

elsif PSTATE.EL == EL3 then
return MPAM1_EL1;

MSR MPAM1_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0101 0b000

MPAM2_EL2, MPAM2 Register (EL2)

Page 1097

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MPAM2_EL2.TRAPMPAM1EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x900] = X[t];
else

MPAM1_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HCR_EL2.E2H == '1' then
MPAM2_EL2 = X[t];

else
MPAM1_EL1 = X[t];

elsif PSTATE.EL == EL3 then
MPAM1_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAM2_EL2, MPAM2 Register (EL2)

Page 1098

MPAM3_EL3, MPAM3 Register (EL3)
The MPAM3_EL3 characteristics are:

Purpose
Holds information to generate MPAM labels for memory requests when executing at EL3.

Configuration
AArch64 System register MPAM3_EL3 bit [63] is architecturally mapped to AArch64 System register MPAM2_EL2[63]
when EL2 is implemented.

AArch64 System register MPAM3_EL3 bit [63] is architecturally mapped to AArch64 System register MPAM1_EL1[63]
.

This register is present only when MPAM is implemented. Otherwise, direct accesses to MPAM3_EL3 are UNDEFINED.

Attributes
MPAM3_EL3 is a 64-bit register.

Field descriptions
The MPAM3_EL3 bit assignments are:

63 62 61 60 59585756555453525150494847464544434241403938373635343332
MPAMENTRAPLOWERSDEFLTFORCE_NS RES0 PMG_D PMG_I

PARTID_D PARTID_I
31 30 29 28 272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

MPAMEN, bit [63]

MPAM Enable. MPAM is enabled when MPAMEN == 1. When disabled, all PARTIDs and PMGs are output as their
default value in the corresponding ID space.

Values of this field are:

MPAMEN Meaning
0b0 The default PARTID and default PMG are output in MPAM

information when executing at any ELn.
0b1 MPAM information is output based on the MPAMn_ELx

register for ELn according the MPAM configuration.

This field is always read/write in MPAM3_EL3.

This field resets to 0.

TRAPLOWER, bit [62]

Trap direct accesses to any MPAM system registers that are not UNDEFINED from all ELn lower than EL3.

TRAPLOWER Meaning
0b0 Do not force trapping of direct accesses of MPAM

system registers to EL3.
0b1 Force all direct accesses of MPAM system registers to

trap to EL3.

On a Cold reset, this field resets to 1.

MPAM3_EL3, MPAM3 Register (EL3)

Page 1099

SDEFLT, bit [61]

When ARMv8.6-MPAM is implemented and MPAMIDR_EL1.HAS_SDEFLT == 1:

SDEFLT overrides the PARTID with the default PARTID when executing in the Secure state.

SDEFLT Meaning
0b0 The PARTID is determined normally in the Secure state.
0b1 The PARTID is always PARTID 0 when executing in the Secure

state.

This field resets to an UNKNOWN value.

Otherwise:

Reserved, RES0.

FORCE_NS, bit [60]

When ARMv8.6-MPAM is implemented and MPAMIDR_EL1.HAS_FORCE_NS == 1:

FORCE_NS forces MPAM_NS to always be 1 in the Secure state.

FORCE_NS Meaning
0b0 MPAM_NS is 0 when executing in the Secure state.
0b1 MPAM_NS is 1 when executing in the Secure state.

An implementation is permitted to have this field as RAO if the implementation does not support generating MPAM_NS
as 0.

This field resets to an UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [59:48]

Reserved, RES0.

PMG_D, bits [47:40]

Performance monitoring group for data accesses.

This field resets to an architecturally UNKNOWN value.

PMG_I, bits [39:32]

Performance monitoring group for instruction accesses.

PARTID_D, bits [31:16]

Partition ID for data accesses, including load and store accesses, made from EL3.

This field resets to an architecturally UNKNOWN value.

PARTID_I, bits [15:0]

Partition ID for instruction accesses made from EL3.

This field resets to an architecturally UNKNOWN value.

MPAM3_EL3, MPAM3 Register (EL3)

Page 1100

Accessing the MPAM3_EL3
None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings:

MRS <Xt>, MPAM3_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b1010 0b0101 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return MPAM3_EL3;

MSR MPAM3_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b1010 0b0101 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
MPAM3_EL3 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAM3_EL3, MPAM3 Register (EL3)

Page 1101

MPAMHCR_EL2, MPAM Hypervisor Control Register
(EL2)

The MPAMHCR_EL2 characteristics are:

Purpose
Controls the PARTID virtualization features of MPAM. It controls the mapping of virtual PARTIDs into physical
PARTIDs in MPAM0_EL1 when EL0_VPMEN == 1 and in MPAM1_EL1 when EL1_VPMEN == 1.

Configuration
This register is present only when MPAM is implemented and MPAMIDR_EL1.HAS_HCR == 1. Otherwise, direct
accesses to MPAMHCR_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
MPAMHCR_EL2 is a 64-bit register.

Field descriptions
The MPAMHCR_EL2 bit assignments are:

63 62616059585756555453525150494847464544434241 40 393837363534 33 32
RES0

TRAP_MPAMIDR_EL1 RES0 GSTAPP_PLK RES0 EL1_VPMENEL0_VPMEN
31 302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TRAP_MPAMIDR_EL1, bit [31]

Trap accesses from EL1 to MPAMIDR_EL1 to EL2.

TRAP_MPAMIDR_EL1 Meaning
0b0 This control does not cause any instructions to

be trapped.
0b1 Direct accesses to MPAMIDR_EL1 from EL1

are trapped to EL2.

This field resets to:

• If EL3 is not implemented, 1.
• If EL3 is implemented, an architecturally UNKNOWN value.

Bits [30:9]

Reserved, RES0.

MPAMHCR_EL2, MPAM Hypervisor Control Register (EL2)

Page 1102

GSTAPP_PLK, bit [8]

Make the PARTIDs at EL0 the same as the PARTIDs at EL1. When executing at EL0, EL2 is enabled, HCR_EL2.TGE ==
0 and GSTAPP_PLK = 1, MPAM1_EL1 is used instead of MPAM0_EL1 to generate MPAM labels for memory requests.

GSTAPP_PLK Meaning
0b0 MPAM0_EL1 is used to generate MPAM labels when

executing at EL0.
0b1 MPAM1_EL1 is used to generate MPAM labels when

executing at EL0 with EL2 enabled and HCR_EL2.TGE
== 0. Otherwise MPAM0_EL1 is used.

This field resets to an architecturally UNKNOWN value.

Bits [7:2]

Reserved, RES0.

EL1_VPMEN, bit [1]

Enable the virtual PARTID mapping of the PARTID fields in MPAM1_EL1 when executing at EL1. This bit also enables
virtual PARTID mapping when MPAM1_EL1 is used to generate MPAM labels for memory requests at EL0 due to
GSTAPP_PLK == 1.

EL1_VPMEN Meaning
0b0 MPAM1_EL1.PARTID_I and MPAM1_EL1.PARTID_D are

physical PARTIDs that are used to label memory system
requests.

0b1 MPAM1_EL1.PARTID_I and MPAM1_EL1.PARTID_D are
virtual PARTIDs that are used to index the PhyPARTID
fields of MPAMVPM0_EL2 to MPAMVPM7_EL2 registers
to map the virtual PARTID into a physical PARTID to
label memory system requests.

This field resets to an architecturally UNKNOWN value.

EL0_VPMEN, bit [0]

Enable the virtual PARTID mapping of the PARTID fields of MPAM0_EL1 unless HCR_EL2.E2H == 1 and
HCR_EL2.TGE == 1.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1, EL0_VPMEN is ignored and MPAM0_EL1 PARTID fields are not
mapped.

When MPAMHCR_EL2.GSTAPP_PLK == 1 and HCR_EL2.TGE == 0, MPAM1_EL1 is used as the source of PARTIDs
and the virtual PARTID mapping of MPAM1_EL1 PARTIDs is controlled by MPAMHCR_EL2.EL1_VPMEN.

EL0_VPMEN Meaning
0b0 MPAM0_EL1.PARTID_I and MPAM0_EL1.PARTID_D are

physical PARTIDs that are used to label memory system
requests.

0b1 MPAM0_EL1.PARTID_I and MPAM0_EL1.PARTID_D are
virtual PARTIDs that are used to index the PhyPARTID
fields of MPAMVPM0_EL2 to MPAMVPM7_EL2 registers
to map the virtual PARTID into a physical PARTID to
label memory system requests.

This field resets to an architecturally UNKNOWN value.

Accessing the MPAMHCR_EL2
Accesses to this register use the following encodings:

MPAMHCR_EL2, MPAM Hypervisor Control Register (EL2)

Page 1103

MRS <Xt>, MPAMHCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x930];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MPAMHCR_EL2;
elsif PSTATE.EL == EL3 then

return MPAMHCR_EL2;

MSR MPAMHCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x930] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

MPAMHCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

MPAMHCR_EL2 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMHCR_EL2, MPAM Hypervisor Control Register (EL2)

Page 1104

MPAMIDR_EL1, MPAM ID Register (EL1)
The MPAMIDR_EL1 characteristics are:

Purpose
Indicates the presence and maximum PARTID and PMG values supported in the implementation. It also indicates
whether the implementation supports MPAM virtualization.

Configuration
This register is present only when MPAM is implemented. Otherwise, direct accesses to MPAMIDR_EL1 are
UNDEFINED.

Attributes
MPAMIDR_EL1 is a 64-bit register.

Field descriptions
The MPAMIDR_EL1 bit assignments are:

63 62 61 60 59 58 5756555453 52 51 50 49 48 47464544434241403938373635343332
RES0HAS_SDEFLTHAS_FORCE_NSRES0HAS_TIDR RES0 PMG_MAX

RES0 VPMR_MAXHAS_HCRRES0 PARTID_MAX
31 30 29 28 27 26 2524232221 20 19 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 0

MPAMIDR_EL1 indicates the MPAM implementation parameters of the PE.

Bits [63:62]

Reserved, RES0.

HAS_SDEFLT, bit [61]

HAS_SDEFLT indicates support for MPAM3_EL3.SDEFLT bit. Defined values are:

HAS_SDEFLT Meaning
0b0 The SDEFLT bit is not implemented in MPAM3_EL3.
0b1 The SDEFLT bit is implemented in MPAM3_EL3.

When MPAM3_EL3.SDEFLT == 1, accesses from the Secure execution state use the default PARTID, PARTID == 0.

HAS_FORCE_NS, bit [60]

HAS_FORCE_NS indicates support for MPAM3_EL3.FORCE_NS bit. Defined values are:

HAS_FORCE_NS Meaning
0b0 The FORCE_NS bit is not implemented in

MPAM3_EL3.
0b1 The FORCE_NS bit is implemented in MPAM3_EL3.

When MPAM3_EL3.FORCE_NS == 1, accesses from the Secure execution state have MPAM_NS == 1.

Bit [59]

Reserved, RES0.

MPAMIDR_EL1, MPAM ID Register (EL1)

Page 1105

HAS_TIDR, bit [58]

HAS_TIDR indicates support for MPAM2_EL2.TIDR bit. Defined values are:

HAS_TIDR Meaning
0b0 The TIDR bit is not implemented in MPAM2_EL2.
0b1 The TIDR bit is implemented in MPAM2_EL2.

Bits [57:40]

Reserved, RES0.

PMG_MAX, bits [39:32]

The largest value of PMG that the implementation can generate. The PMG_I and PMG_D fields of every MPAMn_ELx
must implement at least enough bits to represent PMG_MAX.

Bits [31:21]

Reserved, RES0.

VPMR_MAX, bits [20:18]

If HAS_HCR == 0, VPMR_MAX must be 0b000. Otherwise, it indicates the maximum register index n for the
MPAMVPM<n>_EL2 registers.

HAS_HCR, bit [17]

HAS_HCR indicates that the PE implementation supports MPAM virtualization, including MPAMHCR_EL2,
MPAMVPMV_EL2 and MPAMVPM<n>_EL2 with n in the range 0 to VPMR_MAX. Must be 0 if EL2 is not implemented
in either security state.

HAS_HCR Meaning
0b0 MPAM virtualization is not supported.
0b1 MPAM virtualization is supported.

Bit [16]

Reserved, RES0.

PARTID_MAX, bits [15:0]

The largest value of PARTID that the implementation can generate. The PARTID_I and PARTID_D fields of every
MPAMn_ELx must implement at least enough bits to represent PARTID_MAX.

Accessing the MPAMIDR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, MPAMIDR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0100 0b100

MPAMIDR_EL1, MPAM ID Register (EL1)

Page 1106

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MPAMIDR_EL1.HAS_HCR == '1' &&

MPAMHCR_EL2.TRAP_MPAMIDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MPAMIDR_EL1.HAS_TIDR == '1' && MPAM2_EL2.TIDR ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return MPAMIDR_EL1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return MPAMIDR_EL1;

elsif PSTATE.EL == EL3 then
return MPAMIDR_EL1;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMIDR_EL1, MPAM ID Register (EL1)

Page 1107

MPAMVPM0_EL2, MPAM Virtual PARTID Mapping
Register 0

The MPAMVPM0_EL2 characteristics are:

Purpose
MPAMVPM0_EL2 provides mappings from virtual PARTIDs 0 - 3 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented MPAMVPM<n>_EL2 register.
VPMR_MAX can be as large as 7 (8 registers) or 32 virtual PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only
a single MPAMVPM<n>_EL2 register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in MPAM1_EL1 and by
MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the MPAMVPMV_EL2.VPM_V bit in bit
position n is set to 1.

Configuration
This register is present only when MPAM is implemented and MPAMIDR_EL1.HAS_HCR == 1. Otherwise, direct
accesses to MPAMVPM0_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
MPAMVPM0_EL2 is a 64-bit register.

Field descriptions
The MPAMVPM0_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
PhyPARTID3 PhyPARTID2
PhyPARTID1 PhyPARTID0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PhyPARTID3, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 3. PhyPARTID3 gives the mapping of virtual PARTID 3 to a physical
PARTID.

This field resets to an architecturally UNKNOWN value.

PhyPARTID2, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 2. PhyPARTID2 gives the mapping of virtual PARTID 2 to a physical
PARTID.

This field resets to an architecturally UNKNOWN value.

PhyPARTID1, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 1. PhyPARTID1 gives the mapping of virtual PARTID 1 to a physical
PARTID.

MPAMVPM0_EL2, MPAM Virtual PARTID Mapping Register 0

Page 1108

This field resets to an architecturally UNKNOWN value.

PhyPARTID0, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 0. PhyPARTID0 gives the mapping of virtual PARTID 0 to a physical
PARTID.

This field resets to an architecturally UNKNOWN value.

Accessing the MPAMVPM0_EL2
Accesses to this register use the following encodings:

MRS <Xt>, MPAMVPM0_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x940];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MPAMVPM0_EL2;
elsif PSTATE.EL == EL3 then

return MPAMVPM0_EL2;

MSR MPAMVPM0_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x940] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

MPAMVPM0_EL2 = X[t];
elsif PSTATE.EL == EL3 then

MPAMVPM0_EL2 = X[t];

MPAMVPM0_EL2, MPAM Virtual PARTID Mapping Register 0

Page 1109

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMVPM0_EL2, MPAM Virtual PARTID Mapping Register 0

Page 1110

MPAMVPM1_EL2, MPAM Virtual PARTID Mapping
Register 1

The MPAMVPM1_EL2 characteristics are:

Purpose
MPAMVPM1_EL2 provides mappings from virtual PARTIDs 4 - 7 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented MPAMVPM0_EL2 to MPAMVPM7_EL2
registers. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0,
there is only a single MPAMVPM<n>_EL2 register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in MPAM1_EL1 and by
MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the MPAMVPMV_EL2.VPM_V bit in bit
position n is set to 1.

Configuration
This register is present only when MPAM is implemented, MPAMIDR_EL1.HAS_HCR == 1 and
MPAMIDR_EL1.VPMR_MAX > 0. Otherwise, direct accesses to MPAMVPM1_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
MPAMVPM1_EL2 is a 64-bit register.

Field descriptions
The MPAMVPM1_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
PhyPARTID7 PhyPARTID6
PhyPARTID5 PhyPARTID4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PhyPARTID7, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 7. PhyPARTID7 gives the mapping of virtual PARTID 7 to a physical
PARTID.

This field resets to an architecturally UNKNOWN value.

PhyPARTID6, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 6. PhyPARTID6 gives the mapping of virtual PARTID 6 to a physical
PARTID.

This field resets to an architecturally UNKNOWN value.

PhyPARTID5, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 5. PhyPARTID5 gives the mapping of virtual PARTID 5 to a physical
PARTID.

MPAMVPM1_EL2, MPAM Virtual PARTID Mapping Register 1

Page 1111

This field resets to an architecturally UNKNOWN value.

PhyPARTID4, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 4. PhyPARTID4 gives the mapping of virtual PARTID 4 to a physical
PARTID.

This field resets to an architecturally UNKNOWN value.

Accessing the MPAMVPM1_EL2
Accesses to this register use the following encodings:

MRS <Xt>, MPAMVPM1_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0110 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x948];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MPAMVPM1_EL2;
elsif PSTATE.EL == EL3 then

return MPAMVPM1_EL2;

MSR MPAMVPM1_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0110 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x948] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

MPAMVPM1_EL2 = X[t];
elsif PSTATE.EL == EL3 then

MPAMVPM1_EL2 = X[t];

MPAMVPM1_EL2, MPAM Virtual PARTID Mapping Register 1

Page 1112

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMVPM1_EL2, MPAM Virtual PARTID Mapping Register 1

Page 1113

MPAMVPM2_EL2, MPAM Virtual PARTID Mapping
Register 2

The MPAMVPM2_EL2 characteristics are:

Purpose
MPAMVPM2_EL2 provides mappings from virtual PARTIDs 8 - 11 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented MPAMVPM0_EL2 to MPAMVPM7_EL2
registers. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0,
there is only a single MPAMVPM<n>_EL2 register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in MPAM1_EL1 and by
MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the MPAMVPMV_EL2.VPM_V bit in bit
position n is set to 1.

Configuration
This register is present only when MPAM is implemented, MPAMIDR_EL1.HAS_HCR == 1 and
MPAMIDR_EL1.VPMR_MAX > 1. Otherwise, direct accesses to MPAMVPM2_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
MPAMVPM2_EL2 is a 64-bit register.

Field descriptions
The MPAMVPM2_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
PhyPARTID11 PhyPARTID10
PhyPARTID9 PhyPARTID8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PhyPARTID11, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 11. PhyPARTID11 gives the mapping of virtual PARTID 11 to a
physical PARTID.

This field resets to an architecturally UNKNOWN value.

PhyPARTID10, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 10. PhyPARTID10 gives the mapping of virtual PARTID 10 to a
physical PARTID.

This field resets to an architecturally UNKNOWN value.

PhyPARTID9, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 9. PhyPARTID9 gives the mapping of virtual PARTID 9 to a physical
PARTID.

MPAMVPM2_EL2, MPAM Virtual PARTID Mapping Register 2

Page 1114

This field resets to an architecturally UNKNOWN value.

PhyPARTID8, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 8. PhyPARTID8 gives the mapping of virtual PARTID 8 to a physical
PARTID.

This field resets to an architecturally UNKNOWN value.

Accessing the MPAMVPM2_EL2
Accesses to this register use the following encodings:

MRS <Xt>, MPAMVPM2_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0110 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x950];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MPAMVPM2_EL2;
elsif PSTATE.EL == EL3 then

return MPAMVPM2_EL2;

MSR MPAMVPM2_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0110 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x950] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

MPAMVPM2_EL2 = X[t];
elsif PSTATE.EL == EL3 then

MPAMVPM2_EL2 = X[t];

MPAMVPM2_EL2, MPAM Virtual PARTID Mapping Register 2

Page 1115

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMVPM2_EL2, MPAM Virtual PARTID Mapping Register 2

Page 1116

MPAMVPM3_EL2, MPAM Virtual PARTID Mapping
Register 3

The MPAMVPM3_EL2 characteristics are:

Purpose
MPAMVPM3_EL2 provides mappings from virtual PARTIDs 12 - 15 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented MPAMVPM<n>_EL2 registers.
VPMR_MAX can be as large as 7 (8 registers) or 32 virtual PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only
a single MPAMVPM<n>_EL2 register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in MPAM1_EL1 and by
MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the MPAMVPMV_EL2.VPM_V bit in bit
position n is set to 1.

Configuration
This register is present only when MPAM is implemented, MPAMIDR_EL1.HAS_HCR == 1 and
MPAMIDR_EL1.VPMR_MAX > 2. Otherwise, direct accesses to MPAMVPM3_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
MPAMVPM3_EL2 is a 64-bit register.

Field descriptions
The MPAMVPM3_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
PhyPARTID15 PhyPARTID14
PhyPARTID13 PhyPARTID12

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PhyPARTID15, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 15. PhyPARTID15 gives the mapping of virtual PARTID 15 to a
physical PARTID.

This field resets to an architecturally UNKNOWN value.

PhyPARTID14, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 14. PhyPARTID14 gives the mapping of virtual PARTID 14 to a
physical PARTID.

This field resets to an architecturally UNKNOWN value.

PhyPARTID13, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 13. PhyPARTID13 gives the mapping of virtual PARTID 13 to a
physical PARTID.

MPAMVPM3_EL2, MPAM Virtual PARTID Mapping Register 3

Page 1117

This field resets to an architecturally UNKNOWN value.

PhyPARTID12, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 12. PhyPARTID12 gives the mapping of virtual PARTID 12 to a
physical PARTID.

This field resets to an architecturally UNKNOWN value.

Accessing the MPAMVPM3_EL2
Accesses to this register use the following encodings:

MRS <Xt>, MPAMVPM3_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0110 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x958];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MPAMVPM3_EL2;
elsif PSTATE.EL == EL3 then

return MPAMVPM3_EL2;

MSR MPAMVPM3_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0110 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x958] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

MPAMVPM3_EL2 = X[t];
elsif PSTATE.EL == EL3 then

MPAMVPM3_EL2 = X[t];

MPAMVPM3_EL2, MPAM Virtual PARTID Mapping Register 3

Page 1118

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMVPM3_EL2, MPAM Virtual PARTID Mapping Register 3

Page 1119

MPAMVPM4_EL2, MPAM Virtual PARTID Mapping
Register 4

The MPAMVPM4_EL2 characteristics are:

Purpose
MPAMVPM4_EL2 provides mappings from virtual PARTIDs 16 - 19 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented MPAMVPM<n>_EL2 registers.
VPMR_MAX can be as large as 7 (8 registers) or 32 virtual PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only
a single MPAMVPM<n>_EL2 register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in MPAM1_EL1 and by
MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the MPAMVPMV_EL2.VPM_V bit in bit
position n is set to 1.

Configuration
This register is present only when MPAM is implemented, MPAMIDR_EL1.HAS_HCR == 1 and
MPAMIDR_EL1.VPMR_MAX > 3. Otherwise, direct accesses to MPAMVPM4_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
MPAMVPM4_EL2 is a 64-bit register.

Field descriptions
The MPAMVPM4_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
PhyPARTID19 PhyPARTID18
PhyPARTID17 PhyPARTID16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PhyPARTID19, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 19. PhyPARTID19 gives the mapping of virtual PARTID 19 to a
physical PARTID.

This field resets to an architecturally UNKNOWN value.

PhyPARTID18, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 18. PhyPARTID18 gives the mapping of virtual PARTID 18 to a
physical PARTID.

This field resets to an architecturally UNKNOWN value.

PhyPARTID17, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 17. PhyPARTID17 gives the mapping of virtual PARTID 17 to a
physical PARTID.

MPAMVPM4_EL2, MPAM Virtual PARTID Mapping Register 4

Page 1120

This field resets to an architecturally UNKNOWN value.

PhyPARTID16, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 16. PhyPARTID16 gives the mapping of virtual PARTID 16 to a
physical PARTID.

This field resets to an architecturally UNKNOWN value.

Accessing the MPAMVPM4_EL2
Accesses to this register use the following encodings:

MRS <Xt>, MPAMVPM4_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0110 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x960];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MPAMVPM4_EL2;
elsif PSTATE.EL == EL3 then

return MPAMVPM4_EL2;

MSR MPAMVPM4_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0110 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x960] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

MPAMVPM4_EL2 = X[t];
elsif PSTATE.EL == EL3 then

MPAMVPM4_EL2 = X[t];

MPAMVPM4_EL2, MPAM Virtual PARTID Mapping Register 4

Page 1121

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMVPM4_EL2, MPAM Virtual PARTID Mapping Register 4

Page 1122

MPAMVPM5_EL2, MPAM Virtual PARTID Mapping
Register 5

The MPAMVPM5_EL2 characteristics are:

Purpose
MPAMVPM5_EL2 provides mappings from virtual PARTIDs 20 - 23 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented MPAMVPM<n>_EL2 registers.
VPMR_MAX can be as large as 7 (8 registers) or 32 virtual PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only
a single MPAMVPM<n>_EL2 register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in MPAM1_EL1 and by
MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the MPAMVPMV_EL2.VPM_V bit in bit
position n is set to 1.

Configuration
This register is present only when MPAM is implemented, MPAMIDR_EL1.HAS_HCR == 1 and
MPAMIDR_EL1.VPMR_MAX > 4. Otherwise, direct accesses to MPAMVPM5_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
MPAMVPM5_EL2 is a 64-bit register.

Field descriptions
The MPAMVPM5_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
PhyPARTID23 PhyPARTID22
PhyPARTID21 PhyPARTID20

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PhyPARTID23, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 23. PhyPARTID23 gives the mapping of virtual PARTID 23 to a
physical PARTID.

This field resets to an architecturally UNKNOWN value.

PhyPARTID22, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 22. PhyPARTID22 gives the mapping of virtual PARTID 22 to a
physical PARTID.

This field resets to an architecturally UNKNOWN value.

PhyPARTID21, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 21. PhyPARTID21 gives the mapping of virtual PARTID 21 to a
physical PARTID.

MPAMVPM5_EL2, MPAM Virtual PARTID Mapping Register 5

Page 1123

This field resets to an architecturally UNKNOWN value.

PhyPARTID20, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 20. PhyPARTID20 gives the mapping of virtual PARTID 20 to a
physical PARTID.

This field resets to an architecturally UNKNOWN value.

Accessing the MPAMVPM5_EL2
Accesses to this register use the following encodings:

MRS <Xt>, MPAMVPM5_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0110 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x968];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MPAMVPM5_EL2;
elsif PSTATE.EL == EL3 then

return MPAMVPM5_EL2;

MSR MPAMVPM5_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0110 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x968] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

MPAMVPM5_EL2 = X[t];
elsif PSTATE.EL == EL3 then

MPAMVPM5_EL2 = X[t];

MPAMVPM5_EL2, MPAM Virtual PARTID Mapping Register 5

Page 1124

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMVPM5_EL2, MPAM Virtual PARTID Mapping Register 5

Page 1125

MPAMVPM6_EL2, MPAM Virtual PARTID Mapping
Register 6

The MPAMVPM6_EL2 characteristics are:

Purpose
MPAMVPM6_EL2 provides mappings from virtual PARTIDs 24 - 27 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented MPAMVPM<n>_EL2 registers.
VPMR_MAX can be as large as 7 (8 registers) or 32 virtual PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only
a single MPAMVPM<n>_EL2 register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in MPAM1_EL1 and by
MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the MPAMVPMV_EL2.VPM_V bit in bit
position n is set to 1.

Configuration
This register is present only when MPAM is implemented, MPAMIDR_EL1.HAS_HCR == 1 and
MPAMIDR_EL1.VPMR_MAX > 5. Otherwise, direct accesses to MPAMVPM6_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
MPAMVPM6_EL2 is a 64-bit register.

Field descriptions
The MPAMVPM6_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
PhyPARTID27 PhyPARTID26
PhyPARTID25 PhyPARTID24

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PhyPARTID27, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 27. PhyPARTID27 gives the mapping of virtual PARTID 27 to a
physical PARTID.

This field resets to an architecturally UNKNOWN value.

PhyPARTID26, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 26. PhyPARTID26 gives the mapping of virtual PARTID 26 to a
physical PARTID.

This field resets to an architecturally UNKNOWN value.

PhyPARTID25, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 25. PhyPARTID25 gives the mapping of virtual PARTID 25 to a
physical PARTID.

MPAMVPM6_EL2, MPAM Virtual PARTID Mapping Register 6

Page 1126

This field resets to an architecturally UNKNOWN value.

PhyPARTID24, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 24. PhyPARTID24 gives the mapping of virtual PARTID 24 to a
physical PARTID.

This field resets to an architecturally UNKNOWN value.

Accessing the MPAMVPM6_EL2
Accesses to this register use the following encodings:

MRS <Xt>, MPAMVPM6_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0110 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x970];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MPAMVPM6_EL2;
elsif PSTATE.EL == EL3 then

return MPAMVPM6_EL2;

MSR MPAMVPM6_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0110 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x970] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

MPAMVPM6_EL2 = X[t];
elsif PSTATE.EL == EL3 then

MPAMVPM6_EL2 = X[t];

MPAMVPM6_EL2, MPAM Virtual PARTID Mapping Register 6

Page 1127

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMVPM6_EL2, MPAM Virtual PARTID Mapping Register 6

Page 1128

MPAMVPM7_EL2, MPAM Virtual PARTID Mapping
Register 7

The MPAMVPM7_EL2 characteristics are:

Purpose
MPAMVPM7_EL2 provides mappings from virtual PARTIDs 28 - 31 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented MPAMVPM<n>_EL2 registers.
VPMR_MAX can be as large as 7 (8 registers) or 32 virtual PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only
a single MPAMVPM<n>_EL2 register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in MPAM1_EL1 and by
MPAMHCR_EL2.EL0_VPMEN for MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the MPAMVPMV_EL2.VPM_V bit in bit
position n is set to 1.

Configuration
This register is present only when MPAM is implemented, MPAMIDR_EL1.HAS_HCR == 1 and
MPAMIDR_EL1.VPMR_MAX == 111. Otherwise, direct accesses to MPAMVPM7_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
MPAMVPM7_EL2 is a 64-bit register.

Field descriptions
The MPAMVPM7_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
PhyPARTID31 PhyPARTID30
PhyPARTID29 PhyPARTID28

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PhyPARTID31, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 31. PhyPARTID31 gives the mapping of virtual PARTID 31 to a
physical PARTID.

This field resets to an architecturally UNKNOWN value.

PhyPARTID30, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 30. PhyPARTID30 gives the mapping of virtual PARTID 30 to a
physical PARTID.

This field resets to an architecturally UNKNOWN value.

PhyPARTID29, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 29. PhyPARTID29 gives the mapping of virtual PARTID 29 to a
physical PARTID.

MPAMVPM7_EL2, MPAM Virtual PARTID Mapping Register 7

Page 1129

This field resets to an architecturally UNKNOWN value.

PhyPARTID28, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 28. PhyPARTID28 gives the mapping of virtual PARTID 28 to a
physical PARTID.

This field resets to an architecturally UNKNOWN value.

Accessing the MPAMVPM7_EL2
Accesses to this register use the following encodings:

MRS <Xt>, MPAMVPM7_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0110 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x978];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MPAMVPM7_EL2;
elsif PSTATE.EL == EL3 then

return MPAMVPM7_EL2;

MSR MPAMVPM7_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0110 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x978] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

MPAMVPM7_EL2 = X[t];
elsif PSTATE.EL == EL3 then

MPAMVPM7_EL2 = X[t];

MPAMVPM7_EL2, MPAM Virtual PARTID Mapping Register 7

Page 1130

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMVPM7_EL2, MPAM Virtual PARTID Mapping Register 7

Page 1131

MPAMVPMV_EL2, MPAM Virtual Partition Mapping
Valid Register

The MPAMVPMV_EL2 characteristics are:

Purpose
Valid bits for virtual PARTID mapping entries. Each bit m corresponds to virtual PARTID mapping entry m in the
MPAMVPM<n>_EL2 registers where n = m >> 2.

Configuration
This register is present only when MPAM is implemented and MPAMIDR_EL1.HAS_HCR == 1. Otherwise, direct
accesses to MPAMVPMV_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
MPAMVPMV_EL2 is a 64-bit register.

Field descriptions
The MPAMVPMV_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

VPM_V<m>, bit [m], for m = 0 to 31
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

VPM_V<m>, bit [m], for m = 0 to 31

Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID<m>.

This field resets to an architecturally UNKNOWN value.

Accessing the MPAMVPMV_EL2
Accesses to this register use the following encodings:

MRS <Xt>, MPAMVPMV_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0100 0b001

MPAMVPMV_EL2, MPAM Virtual Partition Mapping Valid Register

Page 1132

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x938];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MPAMVPMV_EL2;
elsif PSTATE.EL == EL3 then

return MPAMVPMV_EL2;

MSR MPAMVPMV_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x938] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

MPAMVPMV_EL2 = X[t];
elsif PSTATE.EL == EL3 then

MPAMVPMV_EL2 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMVPMV_EL2, MPAM Virtual Partition Mapping Valid Register

Page 1133

MPIDR_EL1, Multiprocessor Affinity Register
The MPIDR_EL1 characteristics are:

Purpose
In a multiprocessor system, provides an additional PE identification mechanism for scheduling purposes.

Configuration
AArch64 System register MPIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register MPIDR[31:0]
.

In a uniprocessor system Arm recommends that each Aff<n> field of this register returns a value of 0.

Attributes
MPIDR_EL1 is a 64-bit register.

Field descriptions
The MPIDR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 Aff3

RES1 U RES0 MT Aff2 Aff1 Aff0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

Affinity level 3. See the description of Aff0 for more information.

Aff3 is not supported in AArch32 state.

Bit [31]

Reserved, RES1.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system. The possible values of this bit are:

U Meaning
0b0 Processor is part of a multiprocessor system.
0b1 Processor is part of a uniprocessor system.

Bits [29:25]

Reserved, RES0.

MPIDR_EL1, Multiprocessor Affinity Register

Page 1134

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading type
approach. See the description of Aff0 for more information about affinity levels. The possible values of this bit are:

MT Meaning
0b0 Performance of PEs at the lowest affinity level, or PEs with

MPIDR_EL1.MT set to 1, different affinity level 0 values, and the
same values for affinity level 1 and higher, is largely independent.

0b1 Performance of PEs at the lowest affinity level, or PEs with
MPIDR_EL1.MT set to 1, different affinity level 0 values, and the
same values for affinity level 1 and higher, is very interdependent.

Aff2, bits [23:16]

Affinity level 2. See the description of Aff0 for more information.

Aff1, bits [15:8]

Affinity level 1. See the description of Aff0 for more information.

Aff0, bits [7:0]

Affinity level 0. This is the affinity level that is most significant for determining PE behavior. Higher affinity levels are
increasingly less significant in determining PE behavior. The assigned value of the MPIDR.{Aff2, Aff1, Aff0} or
MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set of fields of each PE must be unique within the system as a whole.

Accessing the MPIDR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, MPIDR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0000 0b101

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.MPIDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) then
return VMPIDR_EL2;

else
return MPIDR_EL1;

elsif PSTATE.EL == EL2 then
return MPIDR_EL1;

elsif PSTATE.EL == EL3 then
return MPIDR_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPIDR_EL1, Multiprocessor Affinity Register

Page 1135

MVFR0_EL1, AArch32 Media and VFP Feature Register
0

The MVFR0_EL1 characteristics are:

Purpose
Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR1_EL1 and MVFR2_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section D10.4.1.

Configuration
AArch64 System register MVFR0_EL1 bits [31:0] are architecturally mapped to AArch32 System register MVFR0[31:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
MVFR0_EL1 are UNKNOWN.

In an implementation where at least one Exception level supports execution in AArch32 state, but there is no support
for Advanced SIMD and floating-point operation, this register is RAZ.

Attributes
MVFR0_EL1 is a 64-bit register.

Field descriptions
The MVFR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

FPRound FPShVec FPSqrt FPDivide FPTrap FPDP FPSP SIMDReg
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

FPRound, bits [31:28]

Floating-Point Rounding modes. Indicates whether the floating-point implementation provides support for rounding
modes. Defined values are:

FPRound Meaning
0b0000 Not implemented, or only Round to Nearest mode

supported, except that Round towards Zero mode is
supported for VCVT instructions that always use that
rounding mode regardless of the FPSCR setting.

0b0001 All rounding modes supported.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

MVFR0_EL1, AArch32 Media and VFP Feature Register 0

Page 1136

FPShVec, bits [27:24]

Short Vectors. Indicates whether the floating-point implementation provides support for the use of short vectors.
Defined values are:

FPShVec Meaning
0b0000 Short vectors not supported.
0b0001 Short vector operation supported.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

FPSqrt, bits [23:20]

Square Root. Indicates whether the floating-point implementation provides support for the ARMv6 VFP square root
operations. Defined values are:

FPSqrt Meaning
0b0000 Not supported in hardware.
0b0001 Supported.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

The VSQRT.F32 instruction also requires the single-precision floating-point attribute, bits [7:4], and the VSQRT.F64
instruction also requires the double-precision floating-point attribute, bits [11:8].

FPDivide, bits [19:16]

Indicates whether the floating-point implementation provides support for VFP divide operations. Defined values are:

FPDivide Meaning
0b0000 Not supported in hardware.
0b0001 Supported.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

The VDIV.F32 instruction also requires the single-precision floating-point attribute, bits [7:4], and the VDIV.F64
instruction also requires the double-precision floating-point attribute, bits [11:8].

FPTrap, bits [15:12]

Floating Point Exception Trapping. Indicates whether the floating-point implementation provides support for exception
trapping. Defined values are:

FPTrap Meaning
0b0000 Not supported.
0b0001 Supported.

All other values are reserved.

A value of 0b0001 indicates that, when the corresponding trap is enabled, a floating-point exception generates an
exception.

FPDP, bits [11:8]

Double Precision. Indicates whether the floating-point implementation provides support for double-precision
operations. Defined values are:

MVFR0_EL1, AArch32 Media and VFP Feature Register 0

Page 1137

FPDP Meaning
0b0000 Not supported in hardware.
0b0001 Supported, VFPv2.
0b0010 Supported, VFPv3, VFPv4, or Armv8. VFPv3 and Armv8 add an

instruction to load a double-precision floating-point constant,
and conversions between double-precision and fixed-point
values.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0010.

A value of 0b0001 or 0b0010 indicates support for all VFP double-precision instructions in the supported version of
VFP, except that, in addition to this field being nonzero:

• VSQRT.F64 is only available if the Square root field is 0b0001.
• VDIV.F64 is only available if the Divide field is 0b0001.
• Conversion between double-precision and single-precision is only available if the single-precision field is

nonzero.

FPSP, bits [7:4]

Single Precision. Indicates whether the floating-point implementation provides support for single-precision operations.
Defined values are:

FPSP Meaning
0b0000 Not supported in hardware.
0b0001 Supported, VFPv2.
0b0010 Supported, VFPv3 or VFPv4. VFPv3 adds an instruction to load

a single-precision floating-point constant, and conversions
between single-precision and fixed-point values.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0010.

A value of 0b0001 or 0b0010 indicates support for all VFP single-precision instructions in the supported version of VFP,
except that, in addition to this field being nonzero:

• VSQRT.F32 is only available if the Square root field is 0b0001.
• VDIV.F32 is only available if the Divide field is 0b0001.
• Conversion between double-precision and single-precision is only available if the double-precision field is

nonzero.

SIMDReg, bits [3:0]

Advanced SIMD registers. Indicates whether the Advanced SIMD and floating-point implementation provides support
for the Advanced SIMD and floating-point register bank. Defined values are:

SIMDReg Meaning
0b0000 The implementation has no Advanced SIMD and floating-

point support.
0b0001 The implementation includes floating-point support with 16

x 64-bit registers.
0b0010 The implementation includes Advanced SIMD and floating-

point support with 32 x 64-bit registers.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0010.

Accessing the MVFR0_EL1
Accesses to this register use the following encodings:

MVFR0_EL1, AArch32 Media and VFP Feature Register 0

Page 1138

MRS <Xt>, MVFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0011 0b000

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return MVFR0_EL1;
elsif PSTATE.EL == EL2 then

return MVFR0_EL1;
elsif PSTATE.EL == EL3 then

return MVFR0_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVFR0_EL1, AArch32 Media and VFP Feature Register 0

Page 1139

MVFR1_EL1, AArch32 Media and VFP Feature Register
1

The MVFR1_EL1 characteristics are:

Purpose
Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR0_EL1 and MVFR2_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section D10.4.1.

Configuration
AArch64 System register MVFR1_EL1 bits [31:0] are architecturally mapped to AArch32 System register MVFR1[31:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
MVFR1_EL1 are UNKNOWN.

In an implementation where at least one Exception level supports execution in AArch32 state, but there is no support
for Advanced SIMD and floating-point operation, this register is RAZ.

Attributes
MVFR1_EL1 is a 64-bit register.

Field descriptions
The MVFR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

SIMDFMAC FPHP SIMDHP SIMDSP SIMDInt SIMDLS FPDNaN FPFtZ
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

SIMDFMAC, bits [31:28]

Advanced SIMD Fused Multiply-Accumulate. Indicates whether the Advanced SIMD implementation provides fused
multiply accumulate instructions. Defined values are:

SIMDFMAC Meaning
0b0000 Not implemented.
0b0001 Implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

The Advanced SIMD and floating-point implementations must provide the same level of support for these instructions.

MVFR1_EL1, AArch32 Media and VFP Feature Register 1

Page 1140

FPHP, bits [27:24]

Floating Point Half Precision. Indicates the level of half-precision floating-point support. Defined values are:

FPHP Meaning
0b0000 Not supported.
0b0001 Floating-point half-precision conversion instructions are

supported for conversion between single-precision and half-
precision.

0b0010 As for 0b0001, and adds instructions for conversion between
double-precision and half-precision.

0b0011 As for 0b0010, and adds support for half-precision floating-point
arithmetic.

All other values are reserved.

In Armv8-A the permitted values are:

• 0b0000 in an implementation without floating-point support.
• 0b0010 in an implementation with floating-point support that does not include the ARMv8.2-FP16 extension.
• 0b0011 in an implementation with floating-point support that includes the ARMv8.2-FP16 extension.

The level of support indicated by this field must be equivalent to the level of support indicated by the SIMDHP field,
meaning the permitted values are:

Half Precision instructions supported FPHP SIMDHP
No support 0b0000 0b0000
Conversions only 0b0010 0b0001
Conversions and arithmetic 0b0011 0b0010

SIMDHP, bits [23:20]

Advanced SIMD Half Precision. Indicates the level of half-precision floating-point support. Defined values are:

SIMDHP Meaning
0b0000 Not supported.
0b0001 SIMD half-precision conversion instructions are supported

for conversion between single-precision and half-precision.
0b0010 As for 0b0001, and adds support for half-precision floating-

point arithmetic.

All other values are reserved.

In Armv8-A the permitted values are:

• 0b0000 in an implementation without SIMD floating-point support.
• 0b0010 in an implementation with SIMD floating-point support that does not include the ARMv8.2-FP16

extension.
• 0b0011 in an implementation with SIMD floating-point support that includes the ARMv8.2-FP16 extension.

The level of support indicated by this field must be equivalent to the level of support indicated by the FPHP field,
meaning the permitted values are:

Half Precision instructions supported FPHP SIMDHP
No support 0b0000 0b0000
Conversions only 0b0010 0b0001
Conversions and arithmetic 0b0011 0b0010

SIMDSP, bits [19:16]

Advanced SIMD Single Precision. Indicates whether the Advanced SIMD and floating-point implementation provides
single-precision floating-point instructions. Defined values are:

SIMDSP Meaning
0b0000 Not implemented.
0b0001 Implemented. This value is permitted only if the SIMDInt

field is 0b0001.

MVFR1_EL1, AArch32 Media and VFP Feature Register 1

Page 1141

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

SIMDInt, bits [15:12]

Advanced SIMD Integer. Indicates whether the Advanced SIMD and floating-point implementation provides integer
instructions. Defined values are:

SIMDInt Meaning
0b0000 Not implemented.
0b0001 Implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

SIMDLS, bits [11:8]

Advanced SIMD Load/Store. Indicates whether the Advanced SIMD and floating-point implementation provides load/
store instructions. Defined values are:

SIMDLS Meaning
0b0000 Not implemented.
0b0001 Implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

FPDNaN, bits [7:4]

Default NaN mode. Indicates whether the floating-point implementation provides support only for the Default NaN
mode. Defined values are:

FPDNaN Meaning
0b0000 Not implemented, or hardware supports only the Default

NaN mode.
0b0001 Hardware supports propagation of NaN values.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

FPFtZ, bits [3:0]

Flush to Zero mode. Indicates whether the floating-point implementation provides support only for the Flush-to-Zero
mode of operation. Defined values are:

FPFtZ Meaning
0b0000 Not implemented, or hardware supports only the Flush-to-Zero

mode of operation.
0b0001 Hardware supports full denormalized number arithmetic.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

Accessing the MVFR1_EL1
Accesses to this register use the following encodings:

MVFR1_EL1, AArch32 Media and VFP Feature Register 1

Page 1142

MRS <Xt>, MVFR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0011 0b001

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return MVFR1_EL1;
elsif PSTATE.EL == EL2 then

return MVFR1_EL1;
elsif PSTATE.EL == EL3 then

return MVFR1_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVFR1_EL1, AArch32 Media and VFP Feature Register 1

Page 1143

MVFR2_EL1, AArch32 Media and VFP Feature Register
2

The MVFR2_EL1 characteristics are:

Purpose
Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR0_EL1 and MVFR1_EL1.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section D7.1.3.

Configuration
AArch64 System register MVFR2_EL1 bits [31:0] are architecturally mapped to AArch32 System register MVFR2[31:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
MVFR2_EL1 are UNKNOWN.

In an implementation where at least one Exception level supports execution in AArch32 state, but there is no support
for Advanced SIMD and floating-point operation, this register is RAZ.

Attributes
MVFR2_EL1 is a 64-bit register.

Field descriptions
The MVFR2_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 FPMisc SIMDMisc
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:8]

Reserved, RES0.

FPMisc, bits [7:4]

Indicates whether the floating-point implementation provides support for miscellaneous VFP features.

FPMisc Meaning
0b0000 Not implemented, or no support for miscellaneous features.
0b0001 Support for Floating-point selection.
0b0010 As 0b0001, and Floating-point Conversion to Integer with

Directed Rounding modes.
0b0011 As 0b0010, and Floating-point Round to Integer Floating-point.
0b0100 As 0b0011, and Floating-point MaxNum and MinNum.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0100.

MVFR2_EL1, AArch32 Media and VFP Feature Register 2

Page 1144

SIMDMisc, bits [3:0]

Indicates whether the Advanced SIMD implementation provides support for miscellaneous Advanced SIMD features.

SIMDMisc Meaning
0b0000 Not implemented, or no support for miscellaneous

features.
0b0001 Floating-point Conversion to Integer with Directed

Rounding modes.
0b0010 As 0b0001, and Floating-point Round to Integer Floating-

point.
0b0011 As 0b0010, and Floating-point MaxNum and MinNum.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0011.

Accessing the MVFR2_EL1
Accesses to this register use the following encodings:

MRS <Xt>, MVFR2_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0011 0b010

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return MVFR2_EL1;
elsif PSTATE.EL == EL2 then

return MVFR2_EL1;
elsif PSTATE.EL == EL3 then

return MVFR2_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVFR2_EL1, AArch32 Media and VFP Feature Register 2

Page 1145

NZCV, Condition Flags
The NZCV characteristics are:

Purpose
Allows access to the condition flags.

Configuration
There are no configuration notes.

Attributes
NZCV is a 64-bit register.

Field descriptions
The NZCV bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative condition flag. Set to 1 if the result of the last flag-setting instruction was negative.

Z, bit [30]

Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0 otherwise. A result of
zero often indicates an equal result from a comparison.

C, bit [29]

Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for example an unsigned
overflow on an addition.

V, bit [28]

Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition, for example a
signed overflow on an addition.

Bits [27:0]

Reserved, RES0.

NZCV, Condition Flags

Page 1146

Accessing the NZCV
Accesses to this register use the following encodings:

MRS <Xt>, NZCV

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b000

if PSTATE.EL == EL0 then
return Zeros(32):PSTATE.<N,Z,C,V>:Zeros(28);

elsif PSTATE.EL == EL1 then
return Zeros(32):PSTATE.<N,Z,C,V>:Zeros(28);

elsif PSTATE.EL == EL2 then
return Zeros(32):PSTATE.<N,Z,C,V>:Zeros(28);

elsif PSTATE.EL == EL3 then
return Zeros(32):PSTATE.<N,Z,C,V>:Zeros(28);

MSR NZCV, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b000

if PSTATE.EL == EL0 then
PSTATE.<N,Z,C,V> = X[t]<31:28>;

elsif PSTATE.EL == EL1 then
PSTATE.<N,Z,C,V> = X[t]<31:28>;

elsif PSTATE.EL == EL2 then
PSTATE.<N,Z,C,V> = X[t]<31:28>;

elsif PSTATE.EL == EL3 then
PSTATE.<N,Z,C,V> = X[t]<31:28>;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NZCV, Condition Flags

Page 1147

OSDLR_EL1, OS Double Lock Register
The OSDLR_EL1 characteristics are:

Purpose
Used to control the OS Double Lock.

Configuration
AArch64 System register OSDLR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGOSDLR[31:0] .

Attributes
OSDLR_EL1 is a 64-bit register.

Field descriptions
The OSDLR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 DLK
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:1]

Reserved, RES0.

DLK, bit [0]

When ARMv8.0-DoubleLock is implemented:

OS Double Lock control bit.

DLK Meaning
0b0 OS Double Lock unlocked.
0b1 OS Double Lock locked, if DBGPRCR_EL1.CORENPDRQ (Core no

powerdown request) bit is set to 0 and the PE is in Non-debug
state.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RAZ/WI.

Accessing the OSDLR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, OSDLR_EL1

op0 op1 CRn CRm op2

OSDLR_EL1, OS Double Lock Register

Page 1148

0b10 0b000 0b0001 0b0011 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

IsFeatureImplemented("ARMv8.0-DoubleLock") && HDFGRTR_EL2.OSDLR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' &&
(IsFeatureImplemented("ARMv8.0-DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL2.TDOSA") then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&

(IsFeatureImplemented("ARMv8.0-DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return OSDLR_EL1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented("ARMv8.0-DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return OSDLR_EL1;
elsif PSTATE.EL == EL3 then

return OSDLR_EL1;

MSR OSDLR_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0001 0b0011 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

IsFeatureImplemented("ARMv8.0-DoubleLock") && HDFGWTR_EL2.OSDLR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' &&
(IsFeatureImplemented("ARMv8.0-DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL2.TDOSA") then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&

(IsFeatureImplemented("ARMv8.0-DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then

AArch64.SystemAccessTrap(EL3, 0x18);
else

OSDLR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented("ARMv8.0-DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then

AArch64.SystemAccessTrap(EL3, 0x18);
else

OSDLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

OSDLR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

OSDLR_EL1, OS Double Lock Register

Page 1149

OSDTRRX_EL1, OS Lock Data Transfer Register,
Receive

The OSDTRRX_EL1 characteristics are:

Purpose
Used for save/restore of DBGDTRRX_EL0. It is a component of the Debug Communications Channel.

Configuration
AArch64 System register OSDTRRX_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGDTRRXext[31:0] .

Attributes
OSDTRRX_EL1 is a 64-bit register.

Field descriptions
The OSDTRRX_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

Update DTRRX without side-effect
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Update DTRRX without side-effect.

Writes to this register update the value in DTRRX and do not change RXfull.

Reads of this register return the last value written to DTRRX and do not change RXfull.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction
Transfer Register' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter H4.

Accessing the OSDTRRX_EL1
Arm deprecates reads and writes of OSDTRRX_EL1 when the OS Lock is unlocked.

Accesses to this register use the following encodings:

MRS <Xt>, OSDTRRX_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0000 0b010

OSDTRRX_EL1, OS Lock Data Transfer Register, Receive

Page 1150

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return OSDTRRX_EL1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return OSDTRRX_EL1;

elsif PSTATE.EL == EL3 then
return OSDTRRX_EL1;

MSR OSDTRRX_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

OSDTRRX_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
OSDTRRX_EL1 = X[t];

elsif PSTATE.EL == EL3 then
OSDTRRX_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

OSDTRRX_EL1, OS Lock Data Transfer Register, Receive

Page 1151

OSDTRTX_EL1, OS Lock Data Transfer Register,
Transmit

The OSDTRTX_EL1 characteristics are:

Purpose
Used for save/restore of DBGDTRTX_EL0. It is a component of the Debug Communications Channel.

Configuration
AArch64 System register OSDTRTX_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGDTRTXext[31:0] .

Attributes
OSDTRTX_EL1 is a 64-bit register.

Field descriptions
The OSDTRTX_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

Return DTRTX without side-effect
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Return DTRTX without side-effect.

Reads of this register return the value in DTRTX and do not change TXfull.

Writes of this register update the value in DTRTX and do not change TXfull.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction
Transfer Register' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter H4.

Accessing the OSDTRTX_EL1
Arm deprecates reads and writes of OSDTRTX_EL1 when the OS Lock is unlocked.

Accesses to this register use the following encodings:

MRS <Xt>, OSDTRTX_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0011 0b010

OSDTRTX_EL1, OS Lock Data Transfer Register, Transmit

Page 1152

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return OSDTRTX_EL1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return OSDTRTX_EL1;

elsif PSTATE.EL == EL3 then
return OSDTRTX_EL1;

MSR OSDTRTX_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

OSDTRTX_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
OSDTRTX_EL1 = X[t];

elsif PSTATE.EL == EL3 then
OSDTRTX_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

OSDTRTX_EL1, OS Lock Data Transfer Register, Transmit

Page 1153

OSECCR_EL1, OS Lock Exception Catch Control
Register

The OSECCR_EL1 characteristics are:

Purpose
Provides a mechanism for an operating system to access the contents of EDECCR that are otherwise invisible to
software, so it can save/restore the contents of EDECCR over powerdown on behalf of the external debugger.

Configuration
AArch64 System register OSECCR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGOSECCR[31:0] .

AArch64 System register OSECCR_EL1 bits [31:0] are architecturally mapped to External register EDECCR[31:0] .

If OSLSR_EL1.OSLK == 0, then OSECCR_EL1 returns an UNKNOWN value on reads and ignores writes.

Attributes
OSECCR_EL1 is a 64-bit register.

Field descriptions
The OSECCR_EL1 bit assignments are:

When OSLSR_EL1.OSLK == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

EDECCR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

EDECCR, bits [31:0]

Used for save/restore to EDECCR over powerdown.

Reads or writes to this field are indirect accesses to EDECCR.

Accessing the OSECCR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, OSECCR_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0110 0b010

OSECCR_EL1, OS Lock Exception Catch Control Register

Page 1154

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.OSECCR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return OSECCR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return OSECCR_EL1;
elsif PSTATE.EL == EL3 then

return OSECCR_EL1;

MSR OSECCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0110 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.OSECCR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
OSECCR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

OSECCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

OSECCR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

OSECCR_EL1, OS Lock Exception Catch Control Register

Page 1155

OSLAR_EL1, OS Lock Access Register
The OSLAR_EL1 characteristics are:

Purpose
Used to lock or unlock the OS Lock.

Configuration
AArch64 System register OSLAR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGOSLAR[31:0] .

AArch64 System register OSLAR_EL1 bits [31:0] are architecturally mapped to External register OSLAR_EL1[31:0] .

Attributes
OSLAR_EL1 is a 64-bit register.

Field descriptions
The OSLAR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 OSLK
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:1]

Reserved, RES0.

OSLK, bit [0]

On writes to OSLAR_EL1, bit[0] is copied to the OS Lock.

Use OSLSR_EL1.OSLK to check the current status of the lock.

Accessing the OSLAR_EL1
Accesses to this register use the following encodings:

MSR OSLAR_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0001 0b0000 0b100

OSLAR_EL1, OS Lock Access Register

Page 1156

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.OSLAR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
OSLAR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

OSLAR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

OSLAR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

OSLAR_EL1, OS Lock Access Register

Page 1157

OSLSR_EL1, OS Lock Status Register
The OSLSR_EL1 characteristics are:

Purpose
Provides the status of the OS Lock.

Configuration
AArch64 System register OSLSR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGOSLSR[31:0] .

Attributes
OSLSR_EL1 is a 64-bit register.

Field descriptions
The OSLSR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 OSLM[1]nTTOSLKOSLM[0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:4]

Reserved, RES0.

OSLM[1], bit [3]

This field is bit[1] of OSLM[1:0].

OS lock model implemented. Identifies the form of OS save and restore mechanism implemented.

OSLM Meaning
0b00 OS Lock not implemented.
0b10 OS Lock implemented.

All other values are reserved. In an Armv8 implementation the value 0b00 is not permitted.

The OSLM field is split as follows:

• OSLM[1] is OSLSR_EL1[3].
• OSLM[0] is OSLSR_EL1[0].

nTT, bit [2]

Not 32-bit access. This bit is always RAZ. It indicates that a 32-bit access is needed to write the key to the OS Lock
Access Register.

OSLK, bit [1]

OS Lock Status.

OSLSR_EL1, OS Lock Status Register

Page 1158

OSLK Meaning
0b0 OS Lock unlocked.
0b1 OS Lock locked.

The OS Lock is locked and unlocked by writing to the OS Lock Access Register.

The following resets apply:

• On a Cold reset, this field resets to 1.

• On a Warm reset, the value of this field is unchanged.

OSLM[0], bit [0]

This field is bit[0] of OSLM[1:0].

See OSLM[1] for the field description.

Accessing the OSLSR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, OSLSR_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0001 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.OSLSR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return OSLSR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return OSLSR_EL1;
elsif PSTATE.EL == EL3 then

return OSLSR_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

OSLSR_EL1, OS Lock Status Register

Page 1159

PAN, Privileged Access Never
The PAN characteristics are:

Purpose
Allows access to the Privileged Access Never bit.

Configuration
This register is present only when ARMv8.1-PAN is implemented. Otherwise, direct accesses to PAN are UNDEFINED.

Attributes
PAN is a 64-bit register.

Field descriptions
The PAN bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 PAN RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:23]

Reserved, RES0.

PAN, bit [22]

Privileged Access Never.

PAN Meaning
0b0 Privileged reads and write are not disabled by this mechanism.
0b1 Disables privileged read and write accesses to addresses

accessible at EL0 for an enabled stage 1 translation regime that
defines the EL0 permissions.

The value of this bit is usually preserved on taking an exception, except in the following situations:

• When the target of the exception is EL1, and the value of the SCTLR_EL1.SPAN bit is 0, this bit is set to 1.
• When the target of the exception is EL2, HCR_EL2.{E2H, TGE} is {1, 1}, and the value of the

SCTLR_EL2.SPAN bit is 0, this bit is set to 1.

Bits [21:0]

Reserved, RES0.

Accessing the PAN
Accesses to this register use the following encodings:

PAN, Privileged Access Never

Page 1160

MRS <Xt>, PAN

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0010 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
return Zeros(41):PSTATE.PAN:Zeros(22);

elsif PSTATE.EL == EL2 then
return Zeros(41):PSTATE.PAN:Zeros(22);

elsif PSTATE.EL == EL3 then
return Zeros(41):PSTATE.PAN:Zeros(22);

MSR PAN, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0010 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
PSTATE.PAN = X[t]<22>;

elsif PSTATE.EL == EL2 then
PSTATE.PAN = X[t]<22>;

elsif PSTATE.EL == EL3 then
PSTATE.PAN = X[t]<22>;

MSR PAN, #<imm>

op0 op1 CRn op2
0b00 0b000 0b0100 0b100

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PAN, Privileged Access Never

Page 1161

PAR_EL1, Physical Address Register
The PAR_EL1 characteristics are:

Purpose
Returns the output address (OA) from an Address translation instruction that executed successfully, or fault
information if the instruction did not execute successfully.

Configuration
AArch64 System register PAR_EL1 bits [63:0] are architecturally mapped to AArch32 System register PAR[63:0] .

Attributes
PAR_EL1 is a 64-bit register.

Field descriptions
The PAR_EL1 bit assignments are:

When PAR_EL1.F == 0b0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ATTR RES0 PA[51:48] PA[47:12]

PA[47:12] RES1IMPLEMENTATION
DEFINED NS SH RES0 F

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This section describes the register value returned by the successful execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of the
PE.

On a successful conversion, the PAR_EL1 can return a value that indicates the resulting attributes, rather than the
values that appear in the translation table descriptors. More precisely:

• The PAR_EL1.{ATTR, SH} fields are permitted to report the resulting attributes, as determined by any
permitted implementation choices and any applicable configuration bits, instead of reporting the values that
appear in the translation table descriptors.

• See the PAR_EL1.NS bit description for constraints on the value it returns.

ATTR, bits [63:56]

Memory attributes for the returned output address. This field uses the same encoding as the Attr<n> fields in
MAIR_EL1, MAIR_EL2, and MAIR_EL3.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices
and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

This field resets to an architecturally UNKNOWN value.

Bits [55:52]

Reserved, RES0.

PAR_EL1, Physical Address Register

Page 1162

PA[51:48], bits [51:48]

When ARMv8.2-LPA is implemented:

Extension to PA[47:12]. See PA[47:12] for more details.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PA[47:12], bits [47:12]

Output address. The output address (OA) corresponding to the supplied input address. This field returns address
bits[47:12].

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, the PA[51:48]
bits form the upper part of the address value. Otherwise the PA[51:48] bits are RES0.

For implementations with fewer than 48 physical address bits, the corresponding upper bits in this field are RES0.

This field resets to an architecturally UNKNOWN value.

Bit [11]

Reserved, RES1.

IMPLEMENTATION DEFINED, bit [10]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

NS, bit [9]

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, when SCR_EL3.EEL2 is 1, this bit reflects the Security state of the
intermediate physical address space of the translation for the instructions:

• In AArch64 state: AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP, AT S1E0R, and AT S1E0W.
• In AArch32 state: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP, ATS1CUR, and ATS1CUW.

Otherwise, this bit reflects the Security state of the physical address space of the translation. This means it reflects the
effect of the NSTable bits of earlier levels of the translation table walk if those NSTable bits have an effect on the
translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

SH, bits [8:7]

Shareability attribute, for the returned output address. Permitted values are:

SH Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

The value 0b01 is reserved.

Note

PAR_EL1, Physical Address Register

Page 1163

This field returns the value 0b10 for:

• Any type of Device memory.
• Normal memory with both Inner Non-cacheable and Outer Non-

cacheable attributes.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices
and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

This field resets to an architecturally UNKNOWN value.

Bits [6:1]

Reserved, RES0.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
0b0 Address translation completed successfully.

This field resets to an architecturally UNKNOWN value.

When PAR_EL1.F == 0b1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED RES0
RES0 RES1RES0 S PTWRES0 FST F

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This section describes the register value returned by a fault on the execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of the
PE.

IMPLEMENTATION DEFINED, bits [63:56]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [55:52]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [51:48]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Bits [47:12]

Reserved, RES0.

Bit [11]

Reserved, RES1.

PAR_EL1, Physical Address Register

Page 1164

Bit [10]

Reserved, RES0.

S, bit [9]

Indicates the translation stage at which the translation aborted:

S Meaning
0b0 Translation aborted because of a fault in the stage 1 translation.
0b1 Translation aborted because of a fault in the stage 2 translation.

This field resets to an architecturally UNKNOWN value.

PTW, bit [8]

If this bit is set to 1, it indicates the translation aborted because of a stage 2 fault during a stage 1 translation table
walk.

This field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

FST, bits [6:1]

Fault status code, as shown in the Data Abort ESR encoding.

PAR_EL1, Physical Address Register

Page 1165

FST Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation table
base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not

on translation table walk or
hardware update of translation
table.

0b010001 Synchronous Tag Check Fault. When
ARMv8.5-MemTag is
implemented

0b010100 Synchronous External abort, on
translation table walk or
hardware update of translation
table, level 0.

0b010101 Synchronous External abort, on
translation table walk or
hardware update of translation
table, level 1.

0b010110 Synchronous External abort, on
translation table walk or
hardware update of translation
table, level 2.

0b010111 Synchronous External abort, on
translation table walk or
hardware update of translation
table, level 3.

0b011000 Synchronous parity or ECC error
on memory access, not on
translation table walk.

When RAS is not
implemented

0b011100 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 0.

When RAS is not
implemented

0b011101 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 1.

When RAS is not
implemented

0b011110 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 2.

When RAS is not
implemented

0b011111 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 3.

When RAS is not
implemented

0b100001 Alignment fault.
0b110000 TLB conflict abort.
0b110001 Unsupported atomic hardware

update fault.
When ARMv8.1-TTHM
is implemented

0b111101 Section Domain fault, from an
AArch32 stage 1 EL1&0
translation regime using Short-
descriptor translation table
format.

When AArch32 is
supported at any
Exception level and
EL1 is capable of using
AArch32

0b111110 Page Domain fault, from an
AArch32 stage 1 EL1&0

When AArch32 is
supported at any

PAR_EL1, Physical Address Register

Page 1166

translation regime using Short-
descriptor translation table
format.

Exception level and
EL1 is capable of using
AArch32

This field resets to an architecturally UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
0b1 Address translation aborted.

This field resets to an architecturally UNKNOWN value.

Accessing the PAR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, PAR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0111 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.PAR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return PAR_EL1;

elsif PSTATE.EL == EL2 then
return PAR_EL1;

elsif PSTATE.EL == EL3 then
return PAR_EL1;

MSR PAR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0111 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.PAR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
PAR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
PAR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
PAR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PAR_EL1, Physical Address Register

Page 1167

PMBIDR_EL1, Profiling Buffer ID Register
The PMBIDR_EL1 characteristics are:

Purpose
Provides information to software as to whether the buffer can be programmed at the current Exception level.

Configuration
This register is present only when SPE is implemented. Otherwise, direct accesses to PMBIDR_EL1 are UNDEFINED.

Attributes
PMBIDR_EL1 is a 64-bit register.

Field descriptions
The PMBIDR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 F P Align
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:6]

Reserved, RES0.

F, bit [5]

Flag updates. Defines whether the address translation performed by the Profiling Buffer manages the Access Flag and
dirty state.

F Meaning
0b0 Hardware management of the Access Flag and dirty state for

accesses made by the Statistical Profiling Extension is always
disabled for all translation stages.

0b1 Hardware management for the Access Flag and dirty state for
accesses made by the Statistical Profiling Extension is controlled in
the same way as explicit memory accesses in the owning
translation regime.

If hardware management of the Access Flag is disabled for a stage of translation, an access to Page or Block with the
Access flag bit not set in the descriptor will generate an Access Flag fault.

If hardware management of the dirty state is disabled for a stage of translation, an access to a Page or Block will
ignore the Dirty Bit Modifier in the descriptor might generate a Permission fault, depending on the values of the
access permission bits in the descriptor.

P, bit [4]

Programming not allowed. The Profiling Buffer is owned by a higher Exception level or the other Security state.

PMBIDR_EL1, Profiling Buffer ID Register

Page 1168

P Meaning
0b0 Profiling Buffer is owned by the current or a lower Exception level

in the current Security state.
0b1 Profiling Buffer is owned by a higher Exception level or the other

Security state.

The value read from this field depends on the current Exception level and the Effective values of MDCR_EL3.NSPB
and MDCR_EL2.E2PB:

• If EL3 is implemented, and either MDCR_EL3.NSPB == 0b00 or MDCR_EL3.NSPB == 0b01, this bit reads as
one from:

◦ Non-secure EL1.
◦ Non-secure EL2.
◦ If Secure EL2 is implemented and enabled, and MDCR_EL2.E2PB == 0b00, Secure EL1.

• If EL3 is implemented, and either MDCR_EL3.NSPB == 0b10 or MDCR_EL3.NSPB == 0b11, this bit reads as
one from:

◦ Secure EL1.
◦ If Secure EL2 is implemented, Secure EL2.
◦ If EL2 is implemented and MDCR_EL2.E2PB == 0b00, Non-secure EL1.

• If EL3 is not implemented, EL2 is implemented, and MDCR_EL2.E2PB == 0b00, this bit reads as one from
EL1.

• Otherwise, this bit reads as zero.

Align, bits [3:0]

Defines the minimum alignment constraint for PMBPTR_EL1. If this field is non-zero, then the PE must pad every
record up to a multiple of this size.

Align Meaning
0b0000 Byte
0b0001 Halfword.
0b0010 Word.
0b0011 Doubleword.
0b0100 16 Bytes.
0b0101 32 Bytes.
0b0110 64 Bytes.
0b0111 128 Bytes.
0b1000 256 Bytes.
0b1001 512 Bytes.
0b1010 1KB.
0b1011 2KB.

For more information, see Restrictions on the current write pointer.

Accessing the PMBIDR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, PMBIDR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1010 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
return PMBIDR_EL1;

elsif PSTATE.EL == EL2 then
return PMBIDR_EL1;

elsif PSTATE.EL == EL3 then
return PMBIDR_EL1;

PMBIDR_EL1, Profiling Buffer ID Register

Page 1169

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMBIDR_EL1, Profiling Buffer ID Register

Page 1170

PMBLIMITR_EL1, Profiling Buffer Limit Address
Register

The PMBLIMITR_EL1 characteristics are:

Purpose
Defines the upper limit for the profiling buffer, and enables the profiling buffer

Configuration
This register is present only when SPE is implemented. Otherwise, direct accesses to PMBLIMITR_EL1 are UNDEFINED.

Attributes
PMBLIMITR_EL1 is a 64-bit register.

Field descriptions
The PMBLIMITR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
LIMIT

LIMIT RES0 FM E
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LIMIT, bits [63:12]

Limit address. PMBLIMITR_EL1.LIMIT:Zeros(12) is the address of the first byte in memory after the last byte in the
profiling buffer. If the smallest implemented translation granule is not 4KB, then bits[N-1:12] are RES0, where N is the
IMPLEMENTATION DEFINED value, Log2(smallest implemented translation granule).

This field resets to an architecturally UNKNOWN value.

Bits [11:3]

Reserved, RES0.

FM, bits [2:1]

Fill mode

FM Meaning
0b00 Stop collection and raise maintenance interrupt on buffer fill.

All other values are reserved. If this field is programmed with a reserved value, the PE behaves as if this field has a
defined value, other than for a direct read of the register. Software must not rely on the behavior of reserved values,
as they might change in a future version of the architecture.

This field resets to an architecturally UNKNOWN value.

E, bit [0]

Profiling Buffer enable

PMBLIMITR_EL1, Profiling Buffer Limit Address Register

Page 1171

E Meaning
0b0 All output is discarded.
0b1 Profiling buffer enabled.

On a Warm reset, this field resets to 0.

Accessing the PMBLIMITR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, PMBLIMITR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMBLIMITR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2PB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then
return NVMem[0x800];

else
return PMBLIMITR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMBLIMITR_EL1;
elsif PSTATE.EL == EL3 then

return PMBLIMITR_EL1;

MSR PMBLIMITR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1010 0b000

PMBLIMITR_EL1, Profiling Buffer Limit Address Register

Page 1172

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMBLIMITR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2PB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then
NVMem[0x800] = X[t];

else
PMBLIMITR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMBLIMITR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

PMBLIMITR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMBLIMITR_EL1, Profiling Buffer Limit Address Register

Page 1173

PMBPTR_EL1, Profiling Buffer Write Pointer Register
The PMBPTR_EL1 characteristics are:

Purpose
Defines the current write pointer for the profiling buffer.

Configuration
This register is present only when SPE is implemented. Otherwise, direct accesses to PMBPTR_EL1 are UNDEFINED.

Attributes
PMBPTR_EL1 is a 64-bit register.

Field descriptions
The PMBPTR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
PTR
PTR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PTR, bits [63:0]

Current write address. Defines the virtual address of the next entry to be written to the buffer.

The architecture places restrictions on the values software can write to the pointer. For more information see
'Restrictions on the current write pointer' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section D6.3.5.

Note

As a result, an implementation might treat some of bits[M:0], where M is
defined by PMBIDR_EL1.Align, as RES0.

On a management interrupt, PMBPTR_EL1 is frozen.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMBPTR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, PMBPTR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1010 0b001

PMBPTR_EL1, Profiling Buffer Write Pointer Register

Page 1174

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMBPTR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2PB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then
return NVMem[0x810];

else
return PMBPTR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMBPTR_EL1;
elsif PSTATE.EL == EL3 then

return PMBPTR_EL1;

MSR PMBPTR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMBPTR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2PB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then
NVMem[0x810] = X[t];

else
PMBPTR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMBPTR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

PMBPTR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMBPTR_EL1, Profiling Buffer Write Pointer Register

Page 1175

PMBSR_EL1, Profiling Buffer Status/syndrome Register
The PMBSR_EL1 characteristics are:

Purpose
Provides syndrome information to software when the buffer is disabled because the management interrupt has been
raised.

Configuration
This register is present only when SPE is implemented. Otherwise, direct accesses to PMBSR_EL1 are UNDEFINED.

Attributes
PMBSR_EL1 is a 64-bit register.

Field descriptions
The PMBSR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

EC RES0 DL EA S COLL MSS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

EC, bits [31:26]

Exception class

Top-level description of the cause of the buffer management event

EC Meaning MSS
0b000000 Other buffer management event. All

buffer management events other than
those described by other defined
Exception class codes.

MSS encoding for
other buffer
management
events

0b100100 Stage 1 Data Abort on write to
Profiling Buffer.

MSS encoding for
stage 1 or stage 2
Data Aborts on
write to buffer

0b100101 Stage 2 Data Abort on write to
Profiling Buffer.

MSS encoding for
stage 1 or stage 2
Data Aborts on
write to buffer

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Writing a reserved value to this field will make the value of this field UNKNOWN. Values that are not supported act as
reserved values when writing to this register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 1176

Bits [25:20]

Reserved, RES0.

DL, bit [19]

Partial record lost.

Following a buffer management event other than an asynchronous External abort, indicates whether the last record
written to the Profiling Buffer is complete.

DL Meaning
0b0 PMBPTR_EL1 points to the first byte after the last complete record

written to the Profiling Buffer.
0b1 Part of a record was lost because of a buffer management event or

synchronous External abort. PMBPTR_EL1 might not point to the
first byte after the last complete record written to the buffer, and
so restarting collection might result in a data record stream that
software cannot parse. All records prior to the last record have
been written to the buffer.

When the buffer management event was because of an asynchronous external abort, this bit is set to 1 and software
must not assume that any valid data has been written to the Profiling Buffer.

This bit is RES0 if the PE never sets this bit as a result of a buffer management event caused by an asynchronous
External abort.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [18]

External abort.

EA Meaning
0b0 An external abort has not been asserted.
0b1 An external abort has been asserted and detected by the Statistical

Profiling Extension.

This bit is RES0 if the PE never sets this bit as the result of an External abort.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

S, bit [17]

Service

S Meaning
0b0 PMBIRQ is not asserted.
0b1 PMBIRQ is asserted. All profiling data has either been written to

the buffer or discarded.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

COLL, bit [16]

Collision detected.

COLL Meaning
0b0 No collision events detected.
0b1 At least one collision event was recorded.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 1177

MSS, bits [15:0]

Management Event Specific Syndrome.

Contains syndrome specific to the management event.

The syndrome contents for each management event are described in the following sections.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

MSS encoding for stage 1 or stage 2 Data Aborts on write to buffer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 FSC

Bits [15:6]

Reserved, RES0.

FSC, bits [5:0]

Fault status code

FSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation table
base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not

on translation table walk or
hardware update of translation
table.

0b010001 Asynchronous External abort.
0b010100 Synchronous External abort, on

translation table walk or hardware
update of translation table, level 0.

0b010101 Synchronous External abort, on
translation table walk or hardware
update of translation table, level 1.

0b010110 Synchronous External abort, on
translation table walk or hardware
update of translation table, level 2.

0b010111 Synchronous External abort, on
translation table walk or hardware
update of translation table, level 3.

0b100001 Alignment fault.
0b110000 TLB conflict abort.
0b110001 Unsupported atomic hardware

update fault.
When
ARMv8.1-TTHM
is implemented

All other values are reserved.

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 1178

It is IMPLEMENTATION DEFINED whether each of the Access Flag fault, asynchronous External abort and
synchronous External abort, Alignment fault, and TLB Conflict abort values can be generated by the PE. For
more information see Faults and Watchpoints.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

MSS encoding for other buffer management events

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BSC

Bits [15:6]

Reserved, RES0.

BSC, bits [5:0]

Buffer status code

BSC Meaning
0b000000 Buffer not filled
0b000001 Buffer filled

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Writing a reserved value to this field will make the value of this field UNKNOWN. Values that are not supported
act as reserved values when writing to this register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMBSR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, PMBSR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1010 0b011

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 1179

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMBSR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2PB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then
return NVMem[0x820];

else
return PMBSR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMBSR_EL1;
elsif PSTATE.EL == EL3 then

return PMBSR_EL1;

MSR PMBSR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1010 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMBSR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2PB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then
NVMem[0x820] = X[t];

else
PMBSR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMBSR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

PMBSR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 1180

PMCCFILTR_EL0, Performance Monitors Cycle Count
Filter Register

The PMCCFILTR_EL0 characteristics are:

Purpose
Determines the modes in which the Cycle Counter, PMCCNTR_EL0, increments.

Configuration
AArch64 System register PMCCFILTR_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMCCFILTR[31:0] .

AArch64 System register PMCCFILTR_EL0 bits [31:0] are architecturally mapped to External register
PMCCFILTR_EL0[31:0] .

This register is present only when PMUv3 is implemented. Otherwise, direct accesses to PMCCFILTR_EL0 are
UNDEFINED.

Attributes
PMCCFILTR_EL0 is a 64-bit register.

Field descriptions
The PMCCFILTR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

P U NSKNSUNSH M RES0SH T RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMCCFILTR_EL0.NSK bit.

P Meaning
0b0 Count cycles in EL1.
0b1 Do not count cycles in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering bit. Controls counting in EL0.

If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMCCFILTR_EL0.NSU bit.

PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register

Page 1181

U Meaning
0b0 Count cycles in EL0.
0b1 Do not count cycles in EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of the PMCCFILTR_EL0.P bit, cycles in Non-secure EL1 are counted.

Otherwise, cycles in Non-secure EL1 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 (Unprivileged) filtering bit. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of the PMCCFILTR_EL0.U bit, cycles in Non-secure EL0 are counted.

Otherwise, cycles in Non-secure EL0 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 (Hypervisor) filtering bit. Controls counting in EL2.

If Secure EL2 is implemented, counting in Secure EL2 is further controlled by the PMCCFILTR_EL0.SH bit.

NSH Meaning
0b0 Do not count cycles in EL2.
0b1 Count cycles in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M, bit [26]

When EL3 is implemented:

Secure EL3 filtering bit.

If the value of this bit is equal to the value of the PMCCFILTR_EL0.P bit, cycles in Secure EL3 are counted.

PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register

Page 1182

Otherwise, cycles in Secure EL3 are not counted.

Most applications can ignore this field and set its value to 0.

Note

This field is not visible in the AArch32 PMCCFILTR System register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [25]

Reserved, RES0.

SH, bit [24]

When ARMv8.4-SecEL2 is implemented:

Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMCCFILTR_EL0.NSH bit, cycles in Secure EL2 are counted.

Otherwise, cycles in Secure EL2 are not counted.

If Secure EL2 is not implemented or is disabled, this field is RES0.

Note

This field is not visible in the AArch32 PMCCFILTR System register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

T, bit [23]

When TME is implemented:

Non-transactional state filtering bit.

T Meaning
0b0 This bit has no effect on filtering of cycles.
0b1 Do not count cycles in Non-transactional state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [22:0]

Reserved, RES0.

PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register

Page 1183

Accessing the PMCCFILTR_EL0
PMCCFILTR_EL0 can also be accessed by using PMXEVTYPER_EL0 with PMSELR_EL0.SEL set to 0b11111.

Accesses to this register use the following encodings:

MRS <Xt>, PMCCFILTR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b1111 0b111

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCCFILTR_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMCCFILTR_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMCCFILTR_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMCCFILTR_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMCCFILTR_EL0;

elsif PSTATE.EL == EL3 then
return PMCCFILTR_EL0;

MSR PMCCFILTR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b1111 0b111

PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register

Page 1184

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCCFILTR_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMCCFILTR_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMCCFILTR_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMCCFILTR_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMCCFILTR_EL0 = X[t];

elsif PSTATE.EL == EL3 then
PMCCFILTR_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register

Page 1185

PMCCNTR_EL0, Performance Monitors Cycle Count
Register

The PMCCNTR_EL0 characteristics are:

Purpose
Holds the value of the processor Cycle Counter, CCNT, that counts processor clock cycles. See 'Time as measured by
the Performance Monitors cycle counter' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile for more information.

PMCCFILTR_EL0 determines the modes and states in which the PMCCNTR_EL0 can increment.

Configuration
AArch64 System register PMCCNTR_EL0 bits [63:0] are architecturally mapped to AArch32 System register
PMCCNTR[63:0] .

AArch64 System register PMCCNTR_EL0 bits [63:0] are architecturally mapped to External register
PMCCNTR_EL0[63:0] .

This register is present only when PMUv3 is implemented. Otherwise, direct accesses to PMCCNTR_EL0 are
UNDEFINED.

All counters are subject to any changes in clock frequency, including clock stopping caused by the WFI and WFE
instructions. This means that it is CONSTRAINED UNPREDICTABLE whether or not PMCCNTR_EL0 continues to increment
when clocks are stopped by WFI and WFE instructions.

Attributes
PMCCNTR_EL0 is a 64-bit register.

Field descriptions
The PMCCNTR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CCNT
CCNT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCNT, bits [63:0]

Cycle count. Depending on the values of PMCR_EL0.{LC,D}, this field increments in one of the following ways:

• Every processor clock cycle.
• Every 64th processor clock cycle.

Writing 1 to PMCR_EL0.C sets this field to 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMCCNTR_EL0
Accesses to this register use the following encodings:

PMCCNTR_EL0, Performance Monitors Cycle Count Register

Page 1186

MRS <Xt>, PMCCNTR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1101 0b000

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.<CR,EN> == '00' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCCNTR_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMCCNTR_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMCCNTR_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMCCNTR_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMCCNTR_EL0;

elsif PSTATE.EL == EL3 then
return PMCCNTR_EL0;

MSR PMCCNTR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1101 0b000

PMCCNTR_EL0, Performance Monitors Cycle Count Register

Page 1187

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCCNTR_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMCCNTR_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMCCNTR_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMCCNTR_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMCCNTR_EL0 = X[t];

elsif PSTATE.EL == EL3 then
PMCCNTR_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCCNTR_EL0, Performance Monitors Cycle Count Register

Page 1188

PMCEID0_EL0, Performance Monitors Common Event
Identification register 0

The PMCEID0_EL0 characteristics are:

Purpose
Defines which common architectural events and common microarchitectural events are implemented, or counted,
using PMU events in the ranges 0x0000 to 0x001F and 0x4000 to 0x401F.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

Note

Arm recommends that, if a common event is never counted, the value of the
corresponding register bit is 0.

For more information about the common events and the use of the PMCEID<n>_EL0 registers see The section
describing 'Event numbers and common events' in chapter D5 'The Performance Monitors Extension' of the Arm
Architecture Reference Manual, for Armv8-A architecture profile.

Configuration
AArch64 System register PMCEID0_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMCEID0[31:0] .

AArch64 System register PMCEID0_EL0 bits [63:32] are architecturally mapped to AArch32 System register
PMCEID2[31:0] .

AArch64 System register PMCEID0_EL0 bits [31:0] are architecturally mapped to External register PMCEID0[31:0] .

AArch64 System register PMCEID0_EL0 bits [63:32] are architecturally mapped to External register PMCEID2[31:0] .

This register is present only when PMUv3 is implemented. Otherwise, direct accesses to PMCEID0_EL0 are
UNDEFINED.

Attributes
PMCEID0_EL0 is a 64-bit register.

Field descriptions
The PMCEID0_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IDhi<n>, bit [n+32], for n = 0 to 31

ID31ID30ID29ID28ID27ID26ID25ID24ID23ID22ID21ID20ID19ID18ID17ID16ID15ID14ID13ID12ID11ID10ID9ID8ID7ID6ID5ID4ID3ID2ID1ID0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi<n>, bit [n+32], for n = 0 to 31

When ARMv8.1-PMU is implemented:

IDhi[n] corresponds to common event (0x4000 + n).

For each bit:

PMCEID0_EL0, Performance Monitors Common Event Identification register 0

Page 1189

IDhi<n> Meaning
0b0 The common event is not implemented, or not counted.
0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU
architecture, provided the event does not require any additional PMU features
and has an event number that can be represented in the PMCEID<n>_EL0
registers of that earlier version of the PMU architecture.

Otherwise:

Reserved, RES0.

ID<n>, bit [n], for n = 0 to 31

ID[n] corresponds to common event n.

For each bit:

ID<n> Meaning
0b0 The common event is not implemented, or not counted.
0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU
architecture, provided the event does not require any additional PMU features
and has an event number that can be represented in the PMCEID<n>_EL0
registers of that earlier version of the PMU architecture.

Accessing the PMCEID0_EL0
Accesses to this register use the following encodings:

MRS <Xt>, PMCEID0_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b110

PMCEID0_EL0, Performance Monitors Common Event Identification register 0

Page 1190

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMCEID0_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMCEID0_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMCEID0_EL0;

elsif PSTATE.EL == EL3 then
return PMCEID0_EL0;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID0_EL0, Performance Monitors Common Event Identification register 0

Page 1191

PMCEID1_EL0, Performance Monitors Common Event
Identification register 1

The PMCEID1_EL0 characteristics are:

Purpose
Defines which common architectural events and common microarchitectural events are implemented, or counted,
using PMU events in the ranges 0x0020 to 0x003F and 0x4020 to 0x403F.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

Note

Arm recommends that, if a common event is never counted, the value of the
corresponding register bit is 0.

For more information about the common events and the use of the PMCEID<n>_EL0 registers see The section
describing 'Event numbers and common events' in chapter D5 'The Performance Monitors Extension' of the Arm
Architecture Reference Manual, for Armv8-A architecture profile.

Configuration
AArch64 System register PMCEID1_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMCEID1[31:0] .

AArch64 System register PMCEID1_EL0 bits [63:32] are architecturally mapped to AArch32 System register
PMCEID3[31:0] .

AArch64 System register PMCEID1_EL0 bits [31:0] are architecturally mapped to External register PMCEID1[31:0] .

AArch64 System register PMCEID1_EL0 bits [63:32] are architecturally mapped to External register PMCEID3[31:0] .

This register is present only when PMUv3 is implemented. Otherwise, direct accesses to PMCEID1_EL0 are
UNDEFINED.

Attributes
PMCEID1_EL0 is a 64-bit register.

Field descriptions
The PMCEID1_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IDhi<n>, bit [n+32], for n = 0 to 31

ID31ID30ID29ID28ID27ID26ID25ID24ID23ID22ID21ID20ID19ID18ID17ID16ID15ID14ID13ID12ID11ID10ID9ID8ID7ID6ID5ID4ID3ID2ID1ID0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi<n>, bit [n+32], for n = 0 to 31

When ARMv8.1-PMU is implemented:

IDhi[n] corresponds to common event (0x4020 + n).

For each bit:

PMCEID1_EL0, Performance Monitors Common Event Identification register 1

Page 1192

IDhi<n> Meaning
0b0 The common event is not implemented, or not counted.
0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU
architecture, provided the event does not require any additional PMU features
and has an event number that can be represented in the PMCEID<n>_EL0
registers of that earlier version of the PMU architecture.

Otherwise:

Reserved, RES0.

ID<n>, bit [n], for n = 0 to 31

ID[n] corresponds to common event (0x0020 + n).

For each bit:

ID<n> Meaning
0b0 The common event is not implemented, or not counted.
0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU
architecture, provided the event does not require any additional PMU features
and has an event number that can be represented in the PMCEID<n>_EL0
registers of that earlier version of the PMU architecture.

Accessing the PMCEID1_EL0
Accesses to this register use the following encodings:

MRS <Xt>, PMCEID1_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b111

PMCEID1_EL0, Performance Monitors Common Event Identification register 1

Page 1193

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMCEID1_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMCEID1_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMCEID1_EL0;

elsif PSTATE.EL == EL3 then
return PMCEID1_EL0;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID1_EL0, Performance Monitors Common Event Identification register 1

Page 1194

PMCNTENCLR_EL0, Performance Monitors Count
Enable Clear register

The PMCNTENCLR_EL0 characteristics are:

Purpose
Disables the Cycle Count Register, PMCCNTR_EL0, and any implemented event counters PMEVCNTR<n>. Reading
this register shows which counters are enabled.

Configuration
AArch64 System register PMCNTENCLR_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMCNTENCLR[31:0] .

AArch64 System register PMCNTENCLR_EL0 bits [31:0] are architecturally mapped to External register
PMCNTENCLR_EL0[31:0] .

This register is present only when PMUv3 is implemented. Otherwise, direct accesses to PMCNTENCLR_EL0 are
UNDEFINED.

Attributes
PMCNTENCLR_EL0 is a 64-bit register.

Field descriptions
The PMCNTENCLR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

C P<n>, bit [n]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

C, bit [31]

PMCCNTR_EL0 disable bit. Disables the cycle counter register. Possible values are:

C Meaning
0b0 When read, means the cycle counter is disabled. When written, has

no effect.
0b1 When read, means the cycle counter is enabled. When written,

disables the cycle counter.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter disable bit for PMEVCNTR<n>_EL0.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state,
in EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in PMCR_EL0.N.

PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register

Page 1195

P<n> Meaning
0b0 When read, means that PMEVCNTR<n>_EL0 is disabled. When

written, has no effect.
0b1 When read, means that PMEVCNTR<n>_EL0 is enabled. When

written, disables PMEVCNTR<n>_EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMCNTENCLR_EL0
Accesses to this register use the following encodings:

MRS <Xt>, PMCNTENCLR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b010

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCNTEN == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMCNTENCLR_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMCNTEN == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMCNTENCLR_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMCNTENCLR_EL0;

elsif PSTATE.EL == EL3 then
return PMCNTENCLR_EL0;

MSR PMCNTENCLR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b010

PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register

Page 1196

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCNTEN == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMCNTENCLR_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMCNTEN == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMCNTENCLR_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMCNTENCLR_EL0 = X[t];

elsif PSTATE.EL == EL3 then
PMCNTENCLR_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register

Page 1197

PMCNTENSET_EL0, Performance Monitors Count
Enable Set register

The PMCNTENSET_EL0 characteristics are:

Purpose
Enables the Cycle Count Register, PMCCNTR_EL0, and any implemented event counters PMEVCNTR<n>. Reading
this register shows which counters are enabled.

Configuration
AArch64 System register PMCNTENSET_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMCNTENSET[31:0] .

AArch64 System register PMCNTENSET_EL0 bits [31:0] are architecturally mapped to External register
PMCNTENSET_EL0[31:0] .

This register is present only when PMUv3 is implemented. Otherwise, direct accesses to PMCNTENSET_EL0 are
UNDEFINED.

Attributes
PMCNTENSET_EL0 is a 64-bit register.

Field descriptions
The PMCNTENSET_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

C P<n>, bit [n]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

C, bit [31]

PMCCNTR_EL0 enable bit. Enables the cycle counter register. Possible values are:

C Meaning
0b0 When read, means the cycle counter is disabled. When written, has

no effect.
0b1 When read, means the cycle counter is enabled. When written,

enables the cycle counter.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter enable bit for PMEVCNTR<n>_EL0.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state,
in EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in PMCR_EL0.N.

PMCNTENSET_EL0, Performance Monitors Count Enable Set register

Page 1198

P<n> Meaning
0b0 When read, means that PMEVCNTR<n>_EL0 is disabled. When

written, has no effect.
0b1 When read, means that PMEVCNTR<n>_EL0 event counter is

enabled. When written, enables PMEVCNTR<n>_EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMCNTENSET_EL0
Accesses to this register use the following encodings:

MRS <Xt>, PMCNTENSET_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b001

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCNTEN == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMCNTENSET_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMCNTEN == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMCNTENSET_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMCNTENSET_EL0;

elsif PSTATE.EL == EL3 then
return PMCNTENSET_EL0;

MSR PMCNTENSET_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b001

PMCNTENSET_EL0, Performance Monitors Count Enable Set register

Page 1199

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCNTEN == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMCNTENSET_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMCNTEN == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMCNTENSET_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMCNTENSET_EL0 = X[t];

elsif PSTATE.EL == EL3 then
PMCNTENSET_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCNTENSET_EL0, Performance Monitors Count Enable Set register

Page 1200

PMCR_EL0, Performance Monitors Control Register
The PMCR_EL0 characteristics are:

Purpose
Provides details of the Performance Monitors implementation, including the number of counters implemented, and
configures and controls the counters.

Configuration
AArch64 System register PMCR_EL0 bits [31:0] are architecturally mapped to AArch32 System register PMCR[31:0] .

AArch64 System register PMCR_EL0 bits [7:0] are architecturally mapped to External register PMCR_EL0[7:0] .

This register is present only when PMUv3 is implemented. Otherwise, direct accesses to PMCR_EL0 are UNDEFINED.

Attributes
PMCR_EL0 is a 64-bit register.

Field descriptions
The PMCR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

IMP IDCODE N RES0 LP LC DP X D C P E
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

IMP, bits [31:24]

Implementer code. This field has an IMPLEMENTATION DEFINED value.

If this field is zero, then PMCR_EL0.IDCODE is RES0 and software must use the MIDR_EL1 to identify the PE.

Otherwise, this field and PMCR_EL0.IDCODE identifies the PMU implementation to software. The implementer codes
are allocated by Arm. A non-zero value has the same interpretation as MIDR_EL1.Implementer.

Access to this field is RO.

IDCODE, bits [23:16]

When PMCR_EL0.IMP != 0x00:

Identification code. This field has an IMPLEMENTATION DEFINED value.

Each implementer must maintain a list of identification codes that are specific to the implementer. A specific
implementation is identified by the combination of the implementer code and the identification code.

Access to this field is RO.

PMCR_EL0, Performance Monitors Control Register

Page 1201

Otherwise:

Reserved, RES0.

N, bits [15:11]

Indicates the number of event counters implemented. This value is in the range of 0b00000-0b11111. If the value is
0b00000 then only PMCCNTR_EL0 is implemented. If the value is 0b11111 PMCCNTR_EL0 and 31 event counters are
implemented.

When EL2 is implemented and enabled for the current Security state, reads of this field from EL1 and EL0 return the
value of MDCR_EL2.HPMN.

Access to this field is RO.

Bits [10:8]

Reserved, RES0.

LP, bit [7]

When ARMv8.5-PMU is implemented:

Long event counter enable. Determines when unsigned overflow is recorded by a counter overflow bit.

LP Meaning
0b0 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[31:0].
0b1 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[63:0].

If EL2 is implemented and MDCR_EL2.HPMN or HDCR.HPMN is less than PMCR_EL0.N, this bit does not affect the
operation of event counters in the range [HDCR.HPMN..(PMCR_EL0.N-1)] or [MDCR_EL2.HPMN..(PMCR_EL0.N-1)].

Note

The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this bit
always applies if EL2 is implemented, at all Exception levels including EL2
and EL3, and regardless of whether EL2 is enabled in the current Security
state. For more information, see the description of MDCR_EL2.HPMN or
HDCR.HPMN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LC, bit [6]

When AArch32 is supported at any Exception level:

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter overflow bit.

LC Meaning
0b0 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR_EL0[31:0].
0b1 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR_EL0[63:0].

Arm deprecates use of PMCR_EL0.LC = 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMCR_EL0, Performance Monitors Control Register

Page 1202

Otherwise:

Reserved, RES1.

DP, bit [5]

When EL3 is implemented or (ARMv8.1-PMU is implemented and EL2 is implemented):

Disable cycle counter when event counting is prohibited.

DP Meaning
0b0 Cycle counting by PMCCNTR_EL0 is not affected by this bit.
0b1 When event counting for counters in the range

[0..(MDCR_EL2.HPMN-1)] is prohibited, cycle counting by
PMCCNTR_EL0 is disabled.

For more information about the interaction between the Performance Monitors and EL3, see 'Effect of EL3 and EL2' in
the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

X, bit [4]

When the implementation includes a PMU event export bus:

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

X Meaning
0b0 Do not export events.
0b1 Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus to another device,
for example to an OPTIONAL PE trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or signaling to a cross-
trigger interface (CTI) that can be implemented as signals exported from the PE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

D, bit [3]

When AArch32 is supported at any Exception level:

Clock divider.

D Meaning
0b0 When enabled, PMCCNTR_EL0 counts every clock cycle.
0b1 When enabled, PMCCNTR_EL0 counts once every 64 clock cycles.

If PMCR_EL0.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR_EL0.D = 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMCR_EL0, Performance Monitors Control Register

Page 1203

Otherwise:

Reserved, RES0.

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

C Meaning
0b0 No action.
0b1 Reset PMCCNTR_EL0 to zero.

This bit is always RAZ.

Note

Resetting PMCCNTR_EL0 does not change the cycle counter overflow bit.

The value of PMCR_EL0.LC is ignored, and bits [63:0] of all affected event
counters are reset.

Access to this field is WO.

P, bit [1]

Event counter reset. The effects of writing to this bit are:

P Meaning
0b0 No action.
0b1 Reset all event counters accessible in the current Exception level,

not including PMCCNTR_EL0, to zero.

This bit is always RAZ.

In EL0 and EL1:

• If EL2 is implemented and enabled in the current Security state, and MDCR_EL2.HPMN is less than
PMCR_EL0.N, a write of 1 to this bit does not reset event counters in the range
[MDCR_EL2.HPMN..(PMCR_EL0.N-1)].

• If EL2 is not implemented, EL2 is disabled in the current Security state, or MDCR_EL2.HPMN equals
PMCR_EL0.N, a write of 1 to this bit resets all the event counters.

In EL2 and EL3, a write of 1 to this bit resets all the event counters.

Note

Resetting the event counters does not change the event counter overflow bits.

If ARMv8.5-PMU is implemented, the values of MDCR_EL2.HLP and
PMCR_EL0.LP are ignored, and bits [63:0] of all affected event counters are
reset.

Access to this field is WO.

E, bit [0]

Enable.

E Meaning
0b0 All event counters in the range [0..(PMN-1)] and PMCCNTR_EL0,

are disabled.
0b1 All event counters in the range [0..(PMN-1)] and PMCCNTR_EL0,

are enabled by PMCNTENSET_EL0.

PMCR_EL0, Performance Monitors Control Register

Page 1204

If EL2 is implemented, then:

• If EL2 is using AArch32, PMN is HDCR.HPMN.
• If EL2 is using AArch64, PMN is MDCR_EL2.HPMN.
• If PMN is less than PMCR_EL0.N, this bit does not affect the operation of event counters in the range

[PMN..(PMCR_EL0.N-1)].

If EL2 is not implemented, PMN is PMCR_EL0.N.

Note

The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this bit
always applies if EL2 is implemented, at all Exception levels including EL2
and EL3, and regardless of whether EL2 is enabled in the current Security
state. For more information, see the description of MDCR_EL2.HPMN or
HDCR.HPMN.

On a Warm reset, this field resets to 0.

Accessing the PMCR_EL0
Accesses to this register use the following encodings:

MRS <Xt>, PMCR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b000

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMCR_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMCR_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMCR_EL0;

elsif PSTATE.EL == EL3 then
return PMCR_EL0;

MSR PMCR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b000

PMCR_EL0, Performance Monitors Control Register

Page 1205

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCR_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMCR_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMCR_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMCR_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMCR_EL0 = X[t];

elsif PSTATE.EL == EL3 then
PMCR_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCR_EL0, Performance Monitors Control Register

Page 1206

PMEVCNTR<n>_EL0, Performance Monitors Event
Count Registers, n = 0 - 30

The PMEVCNTR<n>_EL0 characteristics are:

Purpose
Holds event counter n, which counts events, where n is 0 to 30.

Configuration
AArch64 System register PMEVCNTR<n>_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMEVCNTR<n>[31:0] .

AArch64 System register PMEVCNTR<n>_EL0 bits [31:0] are architecturally mapped to External register
PMEVCNTR<n>_EL0[31:0] .

This register is present only when PMUv3 is implemented. Otherwise, direct accesses to PMEVCNTR<n>_EL0 are
UNDEFINED.

Attributes
PMEVCNTR<n>_EL0 is a 64-bit register.

Field descriptions
The PMEVCNTR<n>_EL0 bit assignments are:

When ARMv8.5-PMU is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Event counter n
Event counter n

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number from 0 to 30.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

Event counter n
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number from 0 to 30.

PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

Page 1207

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMEVCNTR<n>_EL0
PMEVCNTR<n>_EL0 can also be accessed by using PMXEVCNTR_EL0 with PMSELR_EL0.SEL set to the value of
<n>.

If ARMv8.6-FGT is implemented and <n> is greater than or equal to the number of accessible counters, then the
behavior of permitted reads and writes of PMEVCNTR<n>_EL0 is as follows:

• If <n> is an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

If ARMv8.6-FGT is not implemented and <n> is greater than or equal to the number of accessible counters, then reads
and writes of PMEVCNTR<n>_EL0 are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of

implemented counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.{ER,EN}.

If EL2 is implemented and enabled in the current Security state, in EL1 and
EL0, MDCR_EL2.HPMN identifies the number of accessible counters.
Otherwise, the number of accessible counters is the number of implemented
counters. See MDCR_EL2.HPMN for more details.

Accesses to this register use the following encodings:

MRS <Xt>, PMEVCNTR<n>_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b10:n[4:3] n[2:0]

PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

Page 1208

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.<ER,EN> == '00' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];

elsif PSTATE.EL == EL3 then
return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];

MSR PMEVCNTR<n>_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b10:n[4:3] n[2:0]

PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

Page 1209

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];

elsif PSTATE.EL == EL3 then
PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

Page 1210

PMEVTYPER<n>_EL0, Performance Monitors Event
Type Registers, n = 0 - 30

The PMEVTYPER<n>_EL0 characteristics are:

Purpose
Configures event counter n, where n is 0 to 30.

Configuration
AArch64 System register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMEVTYPER<n>[31:0] .

AArch64 System register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to External register
PMEVTYPER<n>_EL0[31:0] .

This register is present only when PMUv3 is implemented. Otherwise, direct accesses to PMEVTYPER<n>_EL0 are
UNDEFINED.

Attributes
PMEVTYPER<n>_EL0 is a 64-bit register.

Field descriptions
The PMEVTYPER<n>_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

P U NSKNSUNSH M MT SH T RES0 evtCount[15:10] evtCount[9:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMEVTYPER<n>_EL0.NSK bit.

P Meaning
0b0 Count events in EL1.
0b1 Do not count events in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering bit. Controls counting in EL0.

If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMEVTYPER<n>_EL0.NSU bit.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1211

U Meaning
0b0 Count events in EL0.
0b1 Do not count events in EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in Non-secure EL1 are counted.

Otherwise, events in Non-secure EL1 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 (Unprivileged) filtering bit. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.U bit, events in Non-secure EL0 are counted.

Otherwise, events in Non-secure EL0 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 (Hypervisor) filtering bit. Controls counting in EL2.

If Secure EL2 is implemented, and EL3 is implemented, counting in Secure EL2 is further controlled by the
PMEVTYPER<n>_EL0.SH bit.

NSH Meaning
0b0 Do not count events in EL2.
0b1 Count events in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M, bit [26]

When EL3 is implemented:

Secure EL3 filtering bit.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1212

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in Secure EL3 are counted.

Otherwise, events in Secure EL3 are not counted.

Most applications can ignore this field and set its value to 0b0.

Note

This field is not visible in the AArch32 PMEVTYPER<n> System register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MT, bit [25]

When (ARMv8.6-MTPMU is implemented and enabled) or an IMPLEMENTATION DEFINED multi-threaded PMU Extension is
implemented:

Multithreading.

MT Meaning
0b0 Count events only on controlling PE.
0b1 Count events from any PE with the same affinity at level 1 and

above as this PE.

Note
• When the lowest level of affinity consists of logical PEs that are

implemented using a multi-threading type approach, an implementation
is described as multi-threaded. That is, the performance of PEs at the
lowest affinity level is highly interdependent.

• Events from a different thread of a multithreaded implementation are
not Attributable to the thread counting the event.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SH, bit [24]

When ARMv8.4-SecEL2 is implemented and EL3 is implemented:

Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMEVTYPER<n>_EL0.NSH bit, events in Secure EL2 are
counted.

Otherwise, events in Secure EL2 are not counted.

Note

This field is not visible in the AArch32 PMEVTYPER<n> System register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1213

T, bit [23]

When TME is implemented:

Transactional state filtering bit. Controls counting in Transactional state. The possible values of this bit are:

T Meaning
0b0 This bit has no effect on the filtering of events.
0b1 Do not count events in Transactional state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [22:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]

When ARMv8.1-PMU is implemented:

Extension to evtCount[9:0]. See evtCount[9:0] for more details.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>_EL0.

Software must program this field with an event that is supported by the PE being programmed.

The ranges of event numbers allocated to each type of event are shown in Allocation of the PMU event number space.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior depends on the value
written:

• For the range 0x0000 to 0x003F, no events are counted, and the value returned by a direct or external read of
the evtCount field is the value written to the field.

• If 16-bit evtCount is implemented, for the range 0x4000 to 0x403F, no events are counted, and the value
returned by a direct or external read of the evtCount field is the value written to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted, and the value returned
by a direct or external read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

Arm recommends that the behavior across a family of implementations is defined such that if a given implementation
does not include an event from a set of common IMPLEMENTATION DEFINED events, then no event is counted and the
value read back on evtCount is the value written.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1214

Accessing the PMEVTYPER<n>_EL0
PMEVTYPER<n>_EL0 can also be accessed by using PMXEVTYPER_EL0 with PMSELR_EL0.SEL set to n.

If ARMv8.6-FGT is implemented and <n> is greater than or equal to the number of accessible counters, then the
behavior of permitted reads and writes of PMEVTYPER<n>_EL0 is as follows:

• If <n> is an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

If ARMv8.6-FGT is not implemented and <n> is greater than or equal to the number of accessible counters, then reads
and writes of PMEVTYPER<n>_EL0 are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of

implemented counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, in EL1 and
EL0, MDCR_EL2.HPMN identifies the number of accessible counters.
Otherwise, the number of accessible counters is the number of implemented
counters. See MDCR_EL2.HPMN for more details.

Accesses to this register use the following encodings:

MRS <Xt>, PMEVTYPER<n>_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b11:n[4:3] n[2:0]

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1215

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];

elsif PSTATE.EL == EL3 then
return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];

MSR PMEVTYPER<n>_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b11:n[4:3] n[2:0]

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1216

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];

elsif PSTATE.EL == EL3 then
PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1217

PMINTENCLR_EL1, Performance Monitors Interrupt
Enable Clear register

The PMINTENCLR_EL1 characteristics are:

Purpose
Disables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR_EL0, and the
event counters PMEVCNTR<n>_EL0. Reading the register shows which overflow interrupt requests are enabled.

Configuration
AArch64 System register PMINTENCLR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
PMINTENCLR[31:0] .

AArch64 System register PMINTENCLR_EL1 bits [31:0] are architecturally mapped to External register
PMINTENCLR_EL1[31:0] .

This register is present only when PMUv3 is implemented. Otherwise, direct accesses to PMINTENCLR_EL1 are
UNDEFINED.

Attributes
PMINTENCLR_EL1 is a 64-bit register.

Field descriptions
The PMINTENCLR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

C P<n>, bit [n]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

C, bit [31]

PMCCNTR_EL0 overflow interrupt request disable bit. Possible values are:

C Meaning
0b0 When read, means the cycle counter overflow interrupt request is

disabled. When written, has no effect.
0b1 When read, means the cycle counter overflow interrupt request is

enabled. When written, disables the cycle count overflow interrupt
request.

P<n>, bit [n], for n = 0 to 30

Event counter overflow interrupt request disable bit for PMEVCNTR<n>_EL0.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state,
in EL1, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in PMCR_EL0.N.

PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register

Page 1218

P<n> Meaning
0b0 When read, means that the PMEVCNTR<n>_EL0 event counter

interrupt request is disabled. When written, has no effect.
0b1 When read, means that the PMEVCNTR<n>_EL0 event counter

interrupt request is enabled. When written, disables the
PMEVCNTR<n>_EL0 interrupt request.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMINTENCLR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, PMINTENCLR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1110 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMINTEN == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMINTENCLR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMINTENCLR_EL1;
elsif PSTATE.EL == EL3 then

return PMINTENCLR_EL1;

MSR PMINTENCLR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1110 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMINTEN == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMINTENCLR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMINTENCLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

PMINTENCLR_EL1 = X[t];

PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register

Page 1219

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register

Page 1220

PMINTENSET_EL1, Performance Monitors Interrupt
Enable Set register

The PMINTENSET_EL1 characteristics are:

Purpose
Enables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR_EL0, and the
event counters PMEVCNTR<n>_EL0. Reading the register shows which overflow interrupt requests are enabled.

Configuration
AArch64 System register PMINTENSET_EL1 bits [31:0] are architecturally mapped to AArch32 System register
PMINTENSET[31:0] .

AArch64 System register PMINTENSET_EL1 bits [31:0] are architecturally mapped to External register
PMINTENSET_EL1[31:0] .

This register is present only when PMUv3 is implemented. Otherwise, direct accesses to PMINTENSET_EL1 are
UNDEFINED.

Attributes
PMINTENSET_EL1 is a 64-bit register.

Field descriptions
The PMINTENSET_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

C P<n>, bit [n]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

C, bit [31]

PMCCNTR_EL0 overflow interrupt request enable bit. Possible values are:

C Meaning
0b0 When read, means the cycle counter overflow interrupt request is

disabled. When written, has no effect.
0b1 When read, means the cycle counter overflow interrupt request is

enabled. When written, enables the cycle count overflow interrupt
request.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter overflow interrupt request enable bit for PMEVCNTR<n>_EL0.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state,
in EL1, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in PMCR_EL0.N.

PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register

Page 1221

P<n> Meaning
0b0 When read, means that the PMEVCNTR<n>_EL0 event counter

interrupt request is disabled. When written, has no effect.
0b1 When read, means that the PMEVCNTR<n>_EL0 event counter

interrupt request is enabled. When written, enables the
PMEVCNTR<n>_EL0 interrupt request.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMINTENSET_EL1
Accesses to this register use the following encodings:

MRS <Xt>, PMINTENSET_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1110 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMINTEN == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMINTENSET_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMINTENSET_EL1;
elsif PSTATE.EL == EL3 then

return PMINTENSET_EL1;

MSR PMINTENSET_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1110 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMINTEN == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMINTENSET_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMINTENSET_EL1 = X[t];
elsif PSTATE.EL == EL3 then

PMINTENSET_EL1 = X[t];

PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register

Page 1222

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register

Page 1223

PMMIR_EL1, Performance Monitors Machine
Identification Register

The PMMIR_EL1 characteristics are:

Purpose
Describes Performance Monitors parameters specific to the implementation to software.

Configuration
This register is present only when ARMv8.4-PMU is implemented. Otherwise, direct accesses to PMMIR_EL1 are
UNDEFINED.

Attributes
PMMIR_EL1 is a 64-bit register.

Field descriptions
The PMMIR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 SLOTS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:8]

Reserved, RES0.

SLOTS, bits [7:0]

Operation width. The largest value by which the STALL_SLOT event might increment by in a single cycle. If the
STALL_SLOT event is not implemented, this field might read as zero.

Accessing the PMMIR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, PMMIR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1110 0b110

PMMIR_EL1, Performance Monitors Machine Identification Register

Page 1224

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMMIR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMMIR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMMIR_EL1;
elsif PSTATE.EL == EL3 then

return PMMIR_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMMIR_EL1, Performance Monitors Machine Identification Register

Page 1225

PMOVSCLR_EL0, Performance Monitors Overflow Flag
Status Clear Register

The PMOVSCLR_EL0 characteristics are:

Purpose
Contains the state of the overflow bit for the Cycle Count Register, PMCCNTR_EL0, and each of the implemented
event counters PMEVCNTR<n>. Writing to this register clears these bits.

Configuration
AArch64 System register PMOVSCLR_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMOVSR[31:0] .

AArch64 System register PMOVSCLR_EL0 bits [31:0] are architecturally mapped to External register
PMOVSCLR_EL0[31:0] .

This register is present only when PMUv3 is implemented. Otherwise, direct accesses to PMOVSCLR_EL0 are
UNDEFINED.

Attributes
PMOVSCLR_EL0 is a 64-bit register.

Field descriptions
The PMOVSCLR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

C P<n>, bit [n]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

C, bit [31]

Cycle counter overflow clear bit.

C Meaning
0b0 When read, means the cycle counter has not overflowed since this

bit was last cleared. When written, has no effect.
0b1 When read, means the cycle counter has overflowed since this bit

was last cleared. When written, clears the cycle counter overflow
bit to 0.

PMCR_EL0.LC controls whether an overflow is detected from unsigned overflow of PMCCNTR_EL0[31:0] or unsigned
overflow of PMCCNTR_EL0[63:0].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter overflow clear bit for PMEVCNTR<n>_EL0.

PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear Register

Page 1226

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state,
in EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in PMCR_EL0.N.

P<n> Meaning
0b0 When read, means that PMEVCNTR<n>_EL0 has not

overflowed since this bit was last cleared. When written, has no
effect.

0b1 When read, means that PMEVCNTR<n>_EL0 has overflowed
since this bit was last cleared. When written, clears the
PMEVCNTR<n>_EL0 overflow bit to 0.

If ARMv8.5-PMU is implemented, MDCR_EL2.HLP and PMCR_EL0.LP control whether an overflow is detected from
unsigned overflow of PMEVCNTR<n>_EL0[31:0] or unsigned overflow of PMEVCNTR<n>_EL0[63:0].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMOVSCLR_EL0
Accesses to this register use the following encodings:

MRS <Xt>, PMOVSCLR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b011

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMOVS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMOVSCLR_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMOVS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMOVSCLR_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMOVSCLR_EL0;

elsif PSTATE.EL == EL3 then
return PMOVSCLR_EL0;

MSR PMOVSCLR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b011

PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear Register

Page 1227

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMOVS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMOVSCLR_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMOVS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMOVSCLR_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMOVSCLR_EL0 = X[t];

elsif PSTATE.EL == EL3 then
PMOVSCLR_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear Register

Page 1228

PMOVSSET_EL0, Performance Monitors Overflow Flag
Status Set register

The PMOVSSET_EL0 characteristics are:

Purpose
Sets the state of the overflow bit for the Cycle Count Register, PMCCNTR_EL0, and each of the implemented event
counters PMEVCNTR<n>.

Configuration
AArch64 System register PMOVSSET_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMOVSSET[31:0] .

AArch64 System register PMOVSSET_EL0 bits [31:0] are architecturally mapped to External register
PMOVSSET_EL0[31:0] .

This register is present only when PMUv3 is implemented. Otherwise, direct accesses to PMOVSSET_EL0 are
UNDEFINED.

Attributes
PMOVSSET_EL0 is a 64-bit register.

Field descriptions
The PMOVSSET_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

C P<n>, bit [n]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

C, bit [31]

Cycle counter overflow set bit.

C Meaning
0b0 When read, means the cycle counter has not overflowed since this

bit was last cleared. When written, has no effect.
0b1 When read, means the cycle counter has overflowed since this bit

was last cleared. When written, sets the cycle counter overflow bit
to 1.

PMCR_EL0.LC controls whether an overflow is detected from unsigned overflow of PMCCNTR_EL0[31:0] or unsigned
overflow of PMCCNTR_EL0[63:0].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter overflow set bit for PMEVCNTR<n>_EL0.

PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register

Page 1229

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state,
in EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in PMCR_EL0.N.

P<n> Meaning
0b0 When read, means that PMEVCNTR<n>_EL0 has not

overflowed since this bit was last cleared. When written, has no
effect.

0b1 When read, means that PMEVCNTR<n>_EL0 has overflowed
since this bit was last cleared. When written, sets the
PMEVCNTR<n>_EL0 overflow bit to 1.

If ARMv8.5-PMU is implemented, MDCR_EL2.HLP and PMCR_EL0.LP control whether an overflow is detected from
unsigned overflow of PMEVCNTR<n>_EL0[31:0] or unsigned overflow of PMEVCNTR<n>_EL0[63:0].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMOVSSET_EL0
Accesses to this register use the following encodings:

MRS <Xt>, PMOVSSET_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1110 0b011

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMOVS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMOVSSET_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMOVS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMOVSSET_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMOVSSET_EL0;

elsif PSTATE.EL == EL3 then
return PMOVSSET_EL0;

MSR PMOVSSET_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1110 0b011

PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register

Page 1230

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMOVS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMOVSSET_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMOVS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMOVSSET_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMOVSSET_EL0 = X[t];

elsif PSTATE.EL == EL3 then
PMOVSSET_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register

Page 1231

PMSCR_EL1, Statistical Profiling Control Register
(EL1)

The PMSCR_EL1 characteristics are:

Purpose
Provides EL1 controls for Statistical Profiling

Configuration
This register is present only when SPE is implemented. Otherwise, direct accesses to PMSCR_EL1 are UNDEFINED.

Attributes
PMSCR_EL1 is a 64-bit register.

Field descriptions
The PMSCR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 PCT TS PA CXRES0E1SPEE0SPE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:8]

Reserved, RES0.

PCT, bits [7:6]

When EL2 is implemented:

Physical Timestamp. If timestamp sampling is enabled and the Profiling Buffer is owned by EL1, requests which
timestamp counter value is collected.

If ARMv8.6-ECV is implemented, this is a two bit field as shown. Otherwise, bit[7] is RES0.

PCT Meaning Applies when
0b00 Virtual counter, CNTVCT_EL0, is

collected.
0b01 Physical counter, CNTPCT_EL0, is

collected.
0b11 Physical counter, CNTPCT_EL0, minus

CNTPOFF_EL2 is collected.
When ARMv8.6-ECV
is implemented

If the Profiling Buffer owning Exception level is EL2, this field is ignored.

If the Profiling Buffer owning Exception level is EL1, this field is combined with PMSCR_EL2.PCT to determine which
timestamp counter value is collected. For more information, see 'Controlling the data that is collected' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

When EL2 is implemented and enabled in the current Security state, the physical counter uses a fixed physical offset
of zero if either of the following are true:

• CNTHCTL_EL2.ECV is 0.
• SCR_EL3.ECVEn is 0.
• HCR_EL2.{E2H, TGE} is {1, 1}.

PMSCR_EL1, Statistical Profiling Control Register (EL1)

Page 1232

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Physical Timestamp. Reserved. This field reads as 0b01 and ignores writes. Software should treat this field as UNK/
SBZP.

When EL2 is not implemented, the Effective values of CNTVOFF_EL2 and CNTPOFF_EL2 are zero, meaning the virtual
counter and physical counter have the same value.

TS, bit [5]

Timestamp enable.

TS Meaning
0b0 Timestamp sampling disabled.
0b1 Timestamp sampling enabled.

This bit is ignored by the PE if EL2 is implemented and the Profiling Buffer is owned by EL2. For more information,
see 'Controlling the data that is collected' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PA, bit [4]

Physical Address sample enable.

PA Meaning
0b0 Physical addresses are not collected.
0b1 Physical addresses are collected.

If EL2 is implemented:

• If the Profiling Buffer is owned by EL1, this bit is combined with PMSCR_EL2.PA to determine which address
is collected. For more information, see 'Controlling the data that is collected' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile.

• If the Profiling Buffer is owned by EL2, this bit is ignored by the PE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CX, bit [3]

CONTEXTIDR_EL1 sample enable.

CX Meaning
0b0 CONTEXTIDR_EL1 is not collected.
0b1 CONTEXTIDR_EL1 is collected.

If EL2 is implemented and enabled in the current Security state when an operation is sampled:

• If the PE is at EL2, this bit is ignored by the PE.
• If HCR_EL2.TGE == 1, this bit is ignored by the PE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [2]

Reserved, RES0.

E1SPE, bit [1]

EL1 Statistical Profiling Enable.

PMSCR_EL1, Statistical Profiling Control Register (EL1)

Page 1233

E1SPE Meaning
0b0 Sampling disabled at EL1.
0b1 Sampling enabled at EL1.

If EL2 is implemented and enabled in the current Security state, this bit is ignored by the PE when HCR_EL2.TGE ==
1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E0SPE, bit [0]

EL0 Statistical Profiling Enable. Controls sampling at EL0 when HCR_EL2.TGE == 0 or if EL2 is disabled or not
implemented.

E0SPE Meaning
0b0 Sampling disabled at EL0.
0b1 Sampling enabled at EL0.

If EL2 is implemented and enabled in the current Security state, this bit is ignored by the PE when HCR_EL2.TGE ==
1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMSCR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, PMSCR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMSCR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x828];

else
return PMSCR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

return PMSCR_EL2;
else

return PMSCR_EL1;
elsif PSTATE.EL == EL3 then

return PMSCR_EL1;

MSR PMSCR_EL1, <Xt>

op0 op1 CRn CRm op2

PMSCR_EL1, Statistical Profiling Control Register (EL1)

Page 1234

0b11 0b000 0b1001 0b1001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMSCR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x828] = X[t];

else
PMSCR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

PMSCR_EL2 = X[t];
else

PMSCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

PMSCR_EL1 = X[t];

MRS <Xt>, PMSCR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b1001 0b1001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x828];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11'

then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMSCR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return PMSCR_EL1;
else

UNDEFINED;

MSR PMSCR_EL12, <Xt>

op0 op1 CRn CRm op2

PMSCR_EL1, Statistical Profiling Control Register (EL1)

Page 1235

0b11 0b101 0b1001 0b1001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x828] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11'

then
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMSCR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

PMSCR_EL1 = X[t];
else

UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMSCR_EL1, Statistical Profiling Control Register (EL1)

Page 1236

PMSCR_EL2, Statistical Profiling Control Register
(EL2)

The PMSCR_EL2 characteristics are:

Purpose
Provides EL2 controls for Statistical Profiling

Configuration
This register is present only when SPE is implemented. Otherwise, direct accesses to PMSCR_EL2 are UNDEFINED.

Attributes
PMSCR_EL2 is a 64-bit register.

Field descriptions
The PMSCR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 PCT TS PA CXRES0E2SPEE0HSPE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:8]

Reserved, RES0.

PCT, bits [7:6]

Physical Timestamp. If timestamp sampling is enabled, determines which counter is collected. The behavior depends
on the Profiling Buffer owning Exception level.

If ARMv8.6-ECV is implemented, this is a two bit field as shown. Otherwise, bit[7] is RES0.

PCT Meaning Applies
when

0b00 Virtual counter, CNTVCT_EL0, is collected.
0b01 If the Profiling Buffer owning Exception level is

EL2: Physical counter, CNTPCT_EL0, is
collected.
If the Profiling Buffer owning Exception level is
EL1: Timestamp value is selected by
PMSCR_EL1.PCT.

0b11 If the Profiling Buffer owning Exception level is
EL2: Physical counter, CNTPCT_EL0, minus
CNTPOFF_EL2 is collected.
If the Profiling Buffer owning Exception level is
EL1: If PMSCR_EL1.PCT == 0b00, the virtual
counter, CNTVCT_EL0 is collected. Otherwise,
the physical counter, CNTPCT_EL0, minus
CNTPOFF_EL2 is collected.

When
ARMv8.6-ECV
is
implemented

When EL2 is implemented and enabled in the current Security state, the physical counter uses a fixed physical offset
of zero if either of the following are true:

PMSCR_EL2, Statistical Profiling Control Register (EL2)

Page 1237

• CNTHCTL_EL2.ECV is 0.
• SCR_EL3.ECVEn is 0.
• HCR_EL2.{E2H, TGE} is {1, 1}.

If EL2 is not implemented or EL2 is disabled in the current Security state, the PE behaves as if this field is set to 0b01,
other than for a direct read of the register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TS, bit [5]

Timestamp Enable.

TS Meaning
0b0 Timestamp sampling disabled.
0b1 Timestamp sampling enabled.

This bit is ignored by the PE when any of the following are true:

• The Profiling Buffer owning Exception level is EL1.

• In Secure state, and either ARMv8.4-SecEL2 is not implemented or Secure EL2 is disabled.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PA, bit [4]

Physical Address Sample Enable.

PA Meaning
0b0 Physical addresses are not collected.
0b1 Physical addresses are collected.

If the Profiling Buffer owning Exception level is EL1, and EL2 is enabled in the current Security state, this bit is
combined with PMSCR_EL1.PA to determine which address is collected.

If EL2 is not implemented or EL2 is disabled in the current Security state, the PE ignores the value of this bit and
behaves as if this bit is set to 1, other than for a direct read of the register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CX, bit [3]

CONTEXTIDR_EL2 Sample Enable.

CX Meaning
0b0 CONTEXTIDR_EL2 is not collected.
0b1 CONTEXTIDR_EL2 is collected.

If EL2 is not implemented or EL2 is disabled in the current Security state, the PE ignores the value of this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [2]

Reserved, RES0.

E2SPE, bit [1]

EL2 Statistical Profiling Enable.

E2SPE Meaning
0b0 Sampling disabled at EL2.
0b1 Sampling enabled at EL2.

PMSCR_EL2, Statistical Profiling Control Register (EL2)

Page 1238

This bit is RES0 if MDCR_EL2.E2PB != 0b00.

If EL2 is disabled in the current Security state, this bit is ignored by the PE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E0HSPE, bit [0]

EL0 Statistical Profiling Enable.

E0HSPE Meaning
0b0 Sampling disabled at EL0.
0b1 Sampling enabled at EL0.

If MDCR_EL2.E2PB != 0b00, this bit is RES0.

If EL2 is implemented and enabled in the current Security state, this bit is ignored by the PE when HCR_EL2.TGE ==
0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMSCR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, PMSCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1001 0b1001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMSCR_EL2;

elsif PSTATE.EL == EL3 then
return PMSCR_EL2;

MSR PMSCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1001 0b1001 0b000

PMSCR_EL2, Statistical Profiling Control Register (EL2)

Page 1239

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMSCR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
PMSCR_EL2 = X[t];

MRS <Xt>, PMSCR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMSCR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x828];

else
return PMSCR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

return PMSCR_EL2;
else

return PMSCR_EL1;
elsif PSTATE.EL == EL3 then

return PMSCR_EL1;

MSR PMSCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b000

PMSCR_EL2, Statistical Profiling Control Register (EL2)

Page 1240

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMSCR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x828] = X[t];

else
PMSCR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

PMSCR_EL2 = X[t];
else

PMSCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

PMSCR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMSCR_EL2, Statistical Profiling Control Register (EL2)

Page 1241

PMSELR_EL0, Performance Monitors Event Counter
Selection Register

The PMSELR_EL0 characteristics are:

Purpose
Selects the current event counter PMEVCNTR<n>_EL0 or the cycle counter, CCNT.

PMSELR_EL0 is used in conjunction with PMXEVTYPER_EL0 to determine the event that increments a selected event
counter, and the modes and states in which the selected counter increments.

It is also used in conjunction with PMXEVCNTR_EL0, to determine the value of a selected event counter.

Configuration
AArch64 System register PMSELR_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMSELR[31:0] .

This register is present only when PMUv3 is implemented. Otherwise, direct accesses to PMSELR_EL0 are UNDEFINED.

Attributes
PMSELR_EL0 is a 64-bit register.

Field descriptions
The PMSELR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 SEL
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:5]

Reserved, RES0.

SEL, bits [4:0]

Selects event counter, PMEVCNTR<n>_EL0, where n is the value held in this field. This value identifies which event
counter is accessed when a subsequent access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 occurs.

This field can take any value from 0 (0b00000) to (PMCR.N)-1, or 31 (0b11111).

When PMSELR_EL0.SEL is 0b11111, it selects the cycle counter and:

• A read of the PMXEVTYPER_EL0 returns the value of PMCCFILTR_EL0.
• A write of the PMXEVTYPER_EL0 writes to PMCCFILTR_EL0.
• A read or write of PMXEVCNTR_EL0 has CONSTRAINED UNPREDICTABLE effects. See PMXEVCNTR_EL0 for more

details.

For details of the results of accesses to the event counters, see PMXEVTYPER_EL0 and PMXEVCNTR_EL0.

For information about the number of counters accessible at each Exception level, see MDCR_EL2.HPMN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMSELR_EL0, Performance Monitors Event Counter Selection Register

Page 1242

Accessing the PMSELR_EL0
Accesses to this register use the following encodings:

MRS <Xt>, PMSELR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b101

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.<ER,EN> == '00' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSELR_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMSELR_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMSELR_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMSELR_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMSELR_EL0;

elsif PSTATE.EL == EL3 then
return PMSELR_EL0;

MSR PMSELR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b101

PMSELR_EL0, Performance Monitors Event Counter Selection Register

Page 1243

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.<ER,EN> == '00' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSELR_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMSELR_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMSELR_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMSELR_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMSELR_EL0 = X[t];

elsif PSTATE.EL == EL3 then
PMSELR_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMSELR_EL0, Performance Monitors Event Counter Selection Register

Page 1244

PMSEVFR_EL1, Sampling Event Filter Register
The PMSEVFR_EL1 characteristics are:

Purpose
Controls sample filtering by events. The overall filter is the logical AND of these filters. For example, if E[3] and E[5]
are both set to 1, only samples that have both event 3 (Level 1 unified or data cache refill) and event 5 set (TLB walk)
are recorded

Configuration
This register is present only when SPE is implemented. Otherwise, direct accesses to PMSEVFR_EL1 are UNDEFINED.

Attributes
PMSEVFR_EL1 is a 64-bit register.

Field descriptions
The PMSEVFR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 424140 39 38 37 36 35 34 33 32
E[63]E[62]E[61]E[60]E[59]E[58]E[57]E[56]E[55]E[54]E[53]E[52]E[51]E[50]E[49]E[48] RAZ/WI
E[31]E[30]E[29]E[28]E[27]E[26]E[25]E[24] RAZ/WI E[18]E[17]E[16]E[15]E[14]E[13]E[12]E[11] RAZ/

WI E[7]RAZ/
WI E[5]RAZ/

WI E[3]RAZ/
WI E[1]RAZ/

WI
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E[63], bit [63]

E[63] is the event filter for event 63. If event 63 is not implemented, or filtering on event 63 is not supported, the
corresponding bit is RAZ/WI.

E[63] Meaning
0b0 Event 63 is ignored.
0b1 Do not record samples that have event 63 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[62], bit [62]

E[62] is the event filter for event 62. If event 62 is not implemented, or filtering on event 62 is not supported, the
corresponding bit is RAZ/WI.

E[62] Meaning
0b0 Event 62 is ignored.
0b1 Do not record samples that have event 62 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMSEVFR_EL1, Sampling Event Filter Register

Page 1245

E[61], bit [61]

E[61] is the event filter for event 61. If event 61 is not implemented, or filtering on event 61 is not supported, the
corresponding bit is RAZ/WI.

E[61] Meaning
0b0 Event 61 is ignored.
0b1 Do not record samples that have event 61 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[60], bit [60]

E[60] is the event filter for event 60. If event 60 is not implemented, or filtering on event 60 is not supported, the
corresponding bit is RAZ/WI.

E[60] Meaning
0b0 Event 60 is ignored.
0b1 Do not record samples that have event 60 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[59], bit [59]

E[59] is the event filter for event 59. If event 59 is not implemented, or filtering on event 59 is not supported, the
corresponding bit is RAZ/WI.

E[59] Meaning
0b0 Event 59 is ignored.
0b1 Do not record samples that have event 59 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[58], bit [58]

E[58] is the event filter for event 58. If event 58 is not implemented, or filtering on event 58 is not supported, the
corresponding bit is RAZ/WI.

E[58] Meaning
0b0 Event 58 is ignored.
0b1 Do not record samples that have event 58 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMSEVFR_EL1, Sampling Event Filter Register

Page 1246

E[57], bit [57]

E[57] is the event filter for event 57. If event 57 is not implemented, or filtering on event 57 is not supported, the
corresponding bit is RAZ/WI.

E[57] Meaning
0b0 Event 57 is ignored.
0b1 Do not record samples that have event 57 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[56], bit [56]

E[56] is the event filter for event 56. If event 56 is not implemented, or filtering on event 56 is not supported, the
corresponding bit is RAZ/WI.

E[56] Meaning
0b0 Event 56 is ignored.
0b1 Do not record samples that have event 56 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[55], bit [55]

E[55] is the event filter for event 55. If event 55 is not implemented, or filtering on event 55 is not supported, the
corresponding bit is RAZ/WI.

E[55] Meaning
0b0 Event 55 is ignored.
0b1 Do not record samples that have event 55 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[54], bit [54]

E[54] is the event filter for event 54. If event 54 is not implemented, or filtering on event 54 is not supported, the
corresponding bit is RAZ/WI.

E[54] Meaning
0b0 Event 54 is ignored.
0b1 Do not record samples that have event 54 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMSEVFR_EL1, Sampling Event Filter Register

Page 1247

E[53], bit [53]

E[53] is the event filter for event 53. If event 53 is not implemented, or filtering on event 53 is not supported, the
corresponding bit is RAZ/WI.

E[53] Meaning
0b0 Event 53 is ignored.
0b1 Do not record samples that have event 53 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[52], bit [52]

E[52] is the event filter for event 52. If event 52 is not implemented, or filtering on event 52 is not supported, the
corresponding bit is RAZ/WI.

E[52] Meaning
0b0 Event 52 is ignored.
0b1 Do not record samples that have event 52 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[51], bit [51]

E[51] is the event filter for event 51. If event 51 is not implemented, or filtering on event 51 is not supported, the
corresponding bit is RAZ/WI.

E[51] Meaning
0b0 Event 51 is ignored.
0b1 Do not record samples that have event 51 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[50], bit [50]

E[50] is the event filter for event 50. If event 50 is not implemented, or filtering on event 50 is not supported, the
corresponding bit is RAZ/WI.

E[50] Meaning
0b0 Event 50 is ignored.
0b1 Do not record samples that have event 50 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMSEVFR_EL1, Sampling Event Filter Register

Page 1248

E[49], bit [49]

E[49] is the event filter for event 49. If event 49 is not implemented, or filtering on event 49 is not supported, the
corresponding bit is RAZ/WI.

E[49] Meaning
0b0 Event 49 is ignored.
0b1 Do not record samples that have event 49 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[48], bit [48]

E[48] is the event filter for event 48. If event 48 is not implemented, or filtering on event 48 is not supported, the
corresponding bit is RAZ/WI.

E[48] Meaning
0b0 Event 48 is ignored.
0b1 Do not record samples that have event 48 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [47:32]

Reserved, RAZ/WI.

E[31], bit [31]

E[31] is the event filter for event 31. If event 31 is not implemented, or filtering on event 31 is not supported, the
corresponding bit is RAZ/WI.

E[31] Meaning
0b0 Event 31 is ignored.
0b1 Do not record samples that have event 31 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[30], bit [30]

E[30] is the event filter for event 30. If event 30 is not implemented, or filtering on event 30 is not supported, the
corresponding bit is RAZ/WI.

E[30] Meaning
0b0 Event 30 is ignored.
0b1 Do not record samples that have event 30 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

PMSEVFR_EL1, Sampling Event Filter Register

Page 1249

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[29], bit [29]

E[29] is the event filter for event 29. If event 29 is not implemented, or filtering on event 29 is not supported, the
corresponding bit is RAZ/WI.

E[29] Meaning
0b0 Event 29 is ignored.
0b1 Do not record samples that have event 29 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[28], bit [28]

E[28] is the event filter for event 28. If event 28 is not implemented, or filtering on event 28 is not supported, the
corresponding bit is RAZ/WI.

E[28] Meaning
0b0 Event 28 is ignored.
0b1 Do not record samples that have event 28 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[27], bit [27]

E[27] is the event filter for event 27. If event 27 is not implemented, or filtering on event 27 is not supported, the
corresponding bit is RAZ/WI.

E[27] Meaning
0b0 Event 27 is ignored.
0b1 Do not record samples that have event 27 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[26], bit [26]

E[26] is the event filter for event 26. If event 26 is not implemented, or filtering on event 26 is not supported, the
corresponding bit is RAZ/WI.

E[26] Meaning
0b0 Event 26 is ignored.
0b1 Do not record samples that have event 26 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMSEVFR_EL1, Sampling Event Filter Register

Page 1250

E[25], bit [25]

E[25] is the event filter for event 25. If event 25 is not implemented, or filtering on event 25 is not supported, the
corresponding bit is RAZ/WI.

E[25] Meaning
0b0 Event 25 is ignored.
0b1 Do not record samples that have event 25 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[24], bit [24]

E[24] is the event filter for event 24. If event 24 is not implemented, or filtering on event 24 is not supported, the
corresponding bit is RAZ/WI.

E[24] Meaning
0b0 Event 24 is ignored.
0b1 Do not record samples that have event 24 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:19]

Reserved, RAZ/WI.

E[18], bit [18]

When ARMv8.3-SPE is implemented and SVE is implemented:

Empty predicate.

E[18] Meaning
0b0 Empty predicate event is ignored.
0b1 Do not record samples that have the Empty predicate event ==

0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[17], bit [17]

When ARMv8.3-SPE is implemented and SVE is implemented:

Partial predicate.

E[17] Meaning
0b0 Partial predicate event is ignored.
0b1 Do not record samples that have the Partial predicate event ==

0.

PMSEVFR_EL1, Sampling Event Filter Register

Page 1251

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[16], bit [16]

When TME is implemented:

Transactional

E[16] Meaning
0b0 Transactional event is ignored.
0b1 Do not record samples that have the Transactional event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[15], bit [15]

E[15] is the event filter for event 15. If event 15 is not implemented, or filtering on event 15 is not supported, the
corresponding bit is RAZ/WI.

E[15] Meaning
0b0 Event 15 is ignored.
0b1 Do not record samples that have event 15 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[14], bit [14]

E[14] is the event filter for event 14. If event 14 is not implemented, or filtering on event 14 is not supported, the
corresponding bit is RAZ/WI.

E[14] Meaning
0b0 Event 14 is ignored.
0b1 Do not record samples that have event 14 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[13], bit [13]

E[13] is the event filter for event 13. If event 13 is not implemented, or filtering on event 13 is not supported, the
corresponding bit is RAZ/WI.

PMSEVFR_EL1, Sampling Event Filter Register

Page 1252

E[13] Meaning
0b0 Event 13 is ignored.
0b1 Do not record samples that have event 13 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[12], bit [12]

E[12] is the event filter for event 12. If event 12 is not implemented, or filtering on event 12 is not supported, the
corresponding bit is RAZ/WI.

E[12] Meaning
0b0 Event 12 is ignored.
0b1 Do not record samples that have event 12 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[11], bit [11]

When ARMv8.3-SPE is implemented:

Alignment.

E[11] Meaning
0b0 Alignment event is ignored.
0b1 Do not record samples that have the Alignment event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

Bits [10:8]

Reserved, RAZ/WI.

E[7], bit [7]

Mispredicted.

E[7] Meaning
0b0 Mispredicted event is ignored.
0b1 Do not record samples that have the Mispredicted event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RAZ/WI.

PMSEVFR_EL1, Sampling Event Filter Register

Page 1253

E[5], bit [5]

TLB walk.

E[5] Meaning
0b0 TLB walk event is ignored.
0b1 Do not record samples that have the TLB walk event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [4]

Reserved, RAZ/WI.

E[3], bit [3]

Level 1 data or unified cache refill.

E[3] Meaning
0b0 Level 1 data or unified cache refill event is ignored.
0b1 Do not record samples that have the Level 1 data or unified cache

refill event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [2]

Reserved, RAZ/WI.

E[1], bit [1]

When the PE supports sampling of speculative instructions:

Architecturally retired.

When the PE supports sampling of speculative instructions:

E[1] Meaning
0b0 Architecturally retired event is ignored.
0b1 Do not record samples that have the Architecturally retired event

== 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

If the PE does not support the sampling of speculative instructions, or always discards the sample record for
speculative instructions, this bit reads as an UNKNOWN value and the PE ignores its value.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, UNKNOWN.

Bit [0]

Reserved, RAZ/WI.

PMSEVFR_EL1, Sampling Event Filter Register

Page 1254

Accessing the PMSEVFR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, PMSEVFR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMSEVFR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then
return NVMem[0x830];

else
return PMSEVFR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMSEVFR_EL1;
elsif PSTATE.EL == EL3 then

return PMSEVFR_EL1;

MSR PMSEVFR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b101

PMSEVFR_EL1, Sampling Event Filter Register

Page 1255

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMSEVFR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then
NVMem[0x830] = X[t];

else
PMSEVFR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMSEVFR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

PMSEVFR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMSEVFR_EL1, Sampling Event Filter Register

Page 1256

PMSFCR_EL1, Sampling Filter Control Register
The PMSFCR_EL1 characteristics are:

Purpose
Controls sample filtering. The filter is the logical AND of the FL, FT and FE bits. For example, if FE == 1 and FT == 1
only samples including the selected operation types and the selected events will be recorded

Configuration
This register is present only when SPE is implemented. Otherwise, direct accesses to PMSFCR_EL1 are UNDEFINED.

Attributes
PMSFCR_EL1 is a 64-bit register.

Field descriptions
The PMSFCR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 ST LD B RES0 FL FT FE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:19]

Reserved, RES0.

ST, bit [18]

Store filter enable

ST Meaning
0b0 Do not record store operations
0b1 Record all store operations, including vector stores and all atomic

operations

This bit is ignored by the PE when PMSFCR_EL1.FT == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

LD, bit [17]

Load filter enable

LD Meaning
0b0 Do not record load operations
0b1 Record all load operations, including vector loads and atomic

operations that return data

This bit is ignored by the PE when PMSFCR_EL1.FT == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMSFCR_EL1, Sampling Filter Control Register

Page 1257

B, bit [16]

Branch filter enable

B Meaning
0b0 Do not record branch and exception return operations
0b1 Record all branch and exception return operations

This bit is ignored by the PE when PMSFCR_EL1.FT == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:3]

Reserved, RES0.

FL, bit [2]

Filter by latency

FL Meaning
0b0 Latency filtering disabled
0b1 Latency filtering enabled. Samples with a total latency less than

PMSLATFR_EL1.MINLAT will not be recorded

If this field is set to 1 and PMSLATFR_EL1.MINLAT is set to zero, it is CONSTRAINED UNPREDICTABLE whether no samples
are recorded or the PE behaves as if PMSFCR_EL1.FL is set to 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

FT, bit [1]

Filter by operation type. The filter is the logical OR of the ST, LD and B bits. For example, if LD and ST are both set,
both load and store operations are recorded

FT Meaning
0b0 Type filtering disabled
0b1 Type filtering enabled. Samples not one of the selected operation

types will not be recorded

If this field is set to 1 and the PMSFCR_EL1.{ST, LD, B} bits are all set to zero, it is CONSTRAINED UNPREDICTABLE
whether no samples are recorded or the PE behaves as if PMSFCR_EL1.FT is set to 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

FE, bit [0]

Filter by event

FE Meaning
0b0 Event filtering disabled
0b1 Event filtering enabled. Samples not including the events selected

by PMSEVFR_EL1 will not be recorded

If this field is set to 1 and PMSEVFR_EL1 is set to zero, it is CONSTRAINED UNPREDICTABLE whether no samples are
recorded or the PE behaves as if PMSFCR_EL1.FE is set to 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMSFCR_EL1
Accesses to this register use the following encodings:

PMSFCR_EL1, Sampling Filter Control Register

Page 1258

MRS <Xt>, PMSFCR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMSFCR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMSFCR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMSFCR_EL1;
elsif PSTATE.EL == EL3 then

return PMSFCR_EL1;

MSR PMSFCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMSFCR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMSFCR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMSFCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

PMSFCR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMSFCR_EL1, Sampling Filter Control Register

Page 1259

PMSICR_EL1, Sampling Interval Counter Register
The PMSICR_EL1 characteristics are:

Purpose
Software must write zero to PMSICR_EL1 before enabling sample profiling for a sampling session. Software must then
treat PMSICR_EL1 as an opaque, 64-bit, read/write register used for context switches only.

Configuration
This register is present only when SPE is implemented. Otherwise, direct accesses to PMSICR_EL1 are UNDEFINED.

Attributes
The value of PMSICR_EL1 does not change whilst profiling is disabled.

Field descriptions
The PMSICR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ECOUNT RES0

COUNT
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ECOUNT, bits [63:56]

When PMSIDR_EL1.ERnd == 0b1:

Secondary sample interval counter.

When PMSIDR_EL1.ERnd is 1, this field provides the secondary counter used after the primary counter reaches zero.
Whilst the secondary counter is nonzero and profiling is enabled, the secondary counter decrements by 1 for each
member of the sample population. The primary counter also continues to decrement since it is also nonzero. When the
secondary counter reaches zero, a member of the sampling population is selected for sampling.

When PMSIDR_EL1.ERnd is 0, this field is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [55:32]

Reserved, RES0.

COUNT, bits [31:0]

Primary sample interval counter

Provides the primary counter used for sampling.

The primary counter is reloaded when the value of this register is zero and the PE moves from a state or Exception
level where profiling is disabled to a state or Exception level where profiling is enabled

PMSICR_EL1, Sampling Interval Counter Register

Page 1260

Whilst the primary counter is nonzero and sampling is enabled, the primary counter decrements by 1 for each member
of the sample population

When the counter reaches zero, the behavior depends on the values of PMSIDR_EL1.ERnd and PMSIRR_EL1.RND

• If PMSIRR_EL1.RND == 0 or PMSIDR_EL1.ERnd == 0:
◦ A member of the sampling population is selected for sampling
◦ The primary counter is reloaded

• If PMSIRR_EL1.RND == 1 and PMSIDR_EL1.ERnd == 1:
◦ The secondary counter is set to a random or pseudorandom value in the range 0x00 to 0xFF
◦ The primary counter is reloaded

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMSICR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, PMSICR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMSICR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then
return NVMem[0x838];

else
return PMSICR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMSICR_EL1;
elsif PSTATE.EL == EL3 then

return PMSICR_EL1;

MSR PMSICR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b010

PMSICR_EL1, Sampling Interval Counter Register

Page 1261

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMSICR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then
NVMem[0x838] = X[t];

else
PMSICR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMSICR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

PMSICR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMSICR_EL1, Sampling Interval Counter Register

Page 1262

PMSIDR_EL1, Sampling Profiling ID Register
The PMSIDR_EL1 characteristics are:

Purpose
Describes the Statistical Profiling implementation to software

Configuration
This register is present only when SPE is implemented. Otherwise, direct accesses to PMSIDR_EL1 are UNDEFINED.

Attributes
PMSIDR_EL1 is a 64-bit register.

Field descriptions
The PMSIDR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 CountSize MaxSize Interval RES0 ERndLDSArchInst FL FT FE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:20]

Reserved, RES0.

CountSize, bits [19:16]

Defines the size of the counters

CountSize Meaning
0b0010 12-bit saturating counters

All other values are reserved. Reserved values might be defined in a future version of the architecture.

MaxSize, bits [15:12]

Defines the largest size for a single record, rounded up to a power-of-two. If this is the same as the minimum
alignment (PMBIDR_EL1.Align), then each record is exactly this size

MaxSize Meaning
0b0100 16 bytes
0b0101 32 bytes
0b0110 64 bytes
0b0111 128 bytes
0b1000 256 bytes
0b1001 512 bytes
0b1010 1024 bytes
0b1011 2KB

All other values are reserved. Reserved values might be defined in a future version of the architecture.

PMSIDR_EL1, Sampling Profiling ID Register

Page 1263

Interval, bits [11:8]

Recommended minimum sampling interval. This provides guidance from the implementer to the smallest minimum
sampling interval, N.

Interval Meaning
0b0000 256
0b0010 512
0b0011 768
0b0100 1,024
0b0101 1,536
0b0110 2,048
0b0111 3,072
0b1000 4,096

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Bits [7:6]

Reserved, RES0.

ERnd, bit [5]

Defines how the random number generator is used in determining the interval between samples, when enabled by
PMSIRR_EL1.RND.

ERnd Meaning
0b0 The random number is added at the start of the interval, and the

sample is taken and a new interval started when the combined
interval expires.

0b1 The random number is added and the new interval started after
the interval programmed in PMSIRR_EL1.INTERVAL expires,
and the sample is taken when the random interval expires.

LDS, bit [4]

Data source indicator for sampled load instructions

LDS Meaning
0b0 Loaded data source not implemented
0b1 Loaded data source implemented

ArchInst, bit [3]

Architectural instruction profiling

ArchInst Meaning
0b0 Micro-op sampling implemented
0b1 Architecture instruction sampling implemented

FL, bit [2]

Filtering by latency. This bit is RAO.

FT, bit [1]

Filtering by operation type. This bit is RAO.

FE, bit [0]

Filtering by events. This bit is RAO.

PMSIDR_EL1, Sampling Profiling ID Register

Page 1264

Accessing the PMSIDR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, PMSIDR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMSIDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMSIDR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMSIDR_EL1;
elsif PSTATE.EL == EL3 then

return PMSIDR_EL1;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMSIDR_EL1, Sampling Profiling ID Register

Page 1265

PMSIRR_EL1, Sampling Interval Reload Register
The PMSIRR_EL1 characteristics are:

Purpose
Defines the interval between samples

Configuration
This register is present only when SPE is implemented. Otherwise, direct accesses to PMSIRR_EL1 are UNDEFINED.

Attributes
PMSIRR_EL1 is a 64-bit register.

Field descriptions
The PMSIRR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

INTERVAL RES0 RND
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

INTERVAL, bits [31:8]

Bits [31:8] of the PMSICR_EL1 interval counter reload value. Software must set this to a non-zero value. If software
sets this to zero, an UNKNOWN sampling interval is used. Software should set this to a value greater than the minimum
indicated by PMSIDR_EL1.Interval

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:1]

Reserved, RES0.

RND, bit [0]

Controls randomization of the sampling interval

RND Meaning
0b0 Disable randomization of sampling interval
0b1 Add (pseudo-)random jitter to sampling interval

The random number generator is not architected.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMSIRR_EL1
Accesses to this register use the following encodings:

PMSIRR_EL1, Sampling Interval Reload Register

Page 1266

MRS <Xt>, PMSIRR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMSIRR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then
return NVMem[0x840];

else
return PMSIRR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMSIRR_EL1;
elsif PSTATE.EL == EL3 then

return PMSIRR_EL1;

MSR PMSIRR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMSIRR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then
NVMem[0x840] = X[t];

else
PMSIRR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMSIRR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

PMSIRR_EL1 = X[t];

PMSIRR_EL1, Sampling Interval Reload Register

Page 1267

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMSIRR_EL1, Sampling Interval Reload Register

Page 1268

PMSLATFR_EL1, Sampling Latency Filter Register
The PMSLATFR_EL1 characteristics are:

Purpose
Controls sample filtering by latency

Configuration
This register is present only when SPE is implemented. Otherwise, direct accesses to PMSLATFR_EL1 are UNDEFINED.

Attributes
PMSLATFR_EL1 is a 64-bit register.

Field descriptions
The PMSLATFR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 MINLAT
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:12]

Reserved, RES0.

MINLAT, bits [11:0]

Minimum latency. When PMSFCR_EL1.FL == 1, defines the minimum total latency for filtered operations. Samples
with a total latency less than MINLAT will not be recorded

This field is ignored by the PE when PMSFCR_EL1.FL == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMSLATFR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, PMSLATFR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b110

PMSLATFR_EL1, Sampling Latency Filter Register

Page 1269

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMSLATFR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then
return NVMem[0x848];

else
return PMSLATFR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMSLATFR_EL1;
elsif PSTATE.EL == EL3 then

return PMSLATFR_EL1;

MSR PMSLATFR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMSLATFR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then
NVMem[0x848] = X[t];

else
PMSLATFR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMSLATFR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

PMSLATFR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMSLATFR_EL1, Sampling Latency Filter Register

Page 1270

PMSWINC_EL0, Performance Monitors Software
Increment register

The PMSWINC_EL0 characteristics are:

Purpose
Increments a counter that is configured to count the Software increment event, event 0x00. For more information, see
'SW_INCR' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section D5.

Configuration
AArch64 System register PMSWINC_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMSWINC[31:0] .

AArch64 System register PMSWINC_EL0 bits [31:0] are architecturally mapped to External register
PMSWINC_EL0[31:0] .

This register is present only when PMUv3 is implemented. Otherwise, direct accesses to PMSWINC_EL0 are
UNDEFINED.

Attributes
PMSWINC_EL0 is a 64-bit register.

Field descriptions
The PMSWINC_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 P<n>, bit [n]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:31]

Reserved, RES0.

P<n>, bit [n], for n = 0 to 30

Event counter software increment bit for PMEVCNTR<n>_EL0.

If N is less than 31, then bits [30:N] are WI. When EL2 is implemented and enabled in the current Security state, in
EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in PMCR_EL0.N.

P<n> Meaning
0b0 No action. The write to this bit is ignored.
0b1 If PMEVCNTR<n>_EL0 is enabled and configured to count the

software increment event, increments PMEVCNTR<n>_EL0 by
1. If PMEVCNTR<n>_EL0 is disabled, or not configured to
count the software increment event, the write to this bit is
ignored.

Accessing the PMSWINC_EL0
Accesses to this register use the following encodings:

PMSWINC_EL0, Performance Monitors Software Increment register

Page 1271

MSR PMSWINC_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b100

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.<SW,EN> == '00' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSWINC_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMSWINC_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMSWINC_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMSWINC_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMSWINC_EL0 = X[t];

elsif PSTATE.EL == EL3 then
PMSWINC_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMSWINC_EL0, Performance Monitors Software Increment register

Page 1272

PMUSERENR_EL0, Performance Monitors User Enable
Register

The PMUSERENR_EL0 characteristics are:

Purpose
Enables or disables EL0 access to the Performance Monitors.

Configuration
AArch64 System register PMUSERENR_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMUSERENR[31:0] .

This register is present only when PMUv3 is implemented. Otherwise, direct accesses to PMUSERENR_EL0 are
UNDEFINED.

Attributes
PMUSERENR_EL0 is a 64-bit register.

Field descriptions
The PMUSERENR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 ER CR SW EN
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:4]

Reserved, RES0.

ER, bit [3]

Event counter Read. Traps EL0 access to event counters to EL1, or to EL2 when it is implemented and enabled for the
current Security state and HCR_EL2.TGE is 1.

In AArch64 state, trapped accesses are reported using EC syndrome value 0x18.

In AArch32 state, trapped accesses are reported using EC syndrome value 0x03.

ER Meaning
0b0 EL0 using AArch64: EL0 reads of the PMXEVCNTR_EL0 and

PMEVCNTR<n>_EL0, and EL0 read/write accesses to the
PMSELR_EL0, are trapped if PMUSERENR_EL0.EN is also 0.
EL0 using AArch32: EL0 reads of the PMXEVCNTR and
PMEVCNTR<n>, and EL0 read/write accesses to the PMSELR, are
trapped if PMUSERENR_EL0.EN is also 0.

0b1 Overrides PMUSERENR_EL0.EN and enables RO access to
PMXEVCNTR_EL0 and PMEVCNTR<n>_EL0, and RW access to
PMSELR_EL0 and PMSELR at EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMUSERENR_EL0, Performance Monitors User Enable Register

Page 1273

CR, bit [2]

Cycle counter Read. Traps EL0 access to cycle counter reads to EL1, or to EL2 when it is implemented and enabled for
the current Security state and HCR_EL2.TGE is 1.

In AArch64 state, trapped accesses are reported using EC syndrome value 0x18.

In AArch32 state, trapped MRC accesses are reported using EC syndrome value 0x03, trapped MRRC accesses are
reported using EC syndrome value 0x04.

CR Meaning
0b0 EL0 using AArch64: EL0 read accesses to the PMCCNTR_EL0 are

trapped if PMUSERENR_EL0.EN is also 0.
EL0 using AArch32: EL0 read accesses to the PMCCNTR are
trapped if PMUSERENR_EL0.EN is also 0.

0b1 Overrides PMUSERENR_EL0.EN and enables access to
PMCCNTR_EL0 and PMCCNTR at EL0.

SW, bit [1]

Traps Software Increment writes to EL1, or to EL2 when it is implemented and enabled for the current Security state
and HCR_EL2.TGE is 1.

In AArch64 state, trapped accesses are reported using EC syndrome value 0x18.

In AArch32 state, trapped accesses are reported using EC syndrome value 0x03.

SW Meaning
0b0 EL0 using AArch64: EL0 writes to the PMSWINC_EL0 are trapped

if PMUSERENR_EL0.EN is also 0.
EL0 using AArch32: EL0 writes to the PMSWINC are trapped if
PMUSERENR_EL0.EN is also 0.

0b1 Overrides PMUSERENR_EL0.EN and enables access to:
• PMSWINC_EL0 at EL0.
• PMSWINC at EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

EN, bit [0]

Traps EL0 accesses to the Performance Monitor registers to EL1, or to EL2 when it is implemented and enabled for
the current Security state and HCR_EL2.TGE is 1, from both Execution states as follows:

• In AArch64 state, MRS or MSR accesses to the following registers are reported using EC syndrome value
0x18:

◦ PMCR_EL0, PMOVSCLR_EL0, PMSELR_EL0, PMCEID0_EL0, PMCEID1_EL0, PMCCNTR_EL0,
PMXEVTYPER_EL0, PMXEVCNTR_EL0, PMCNTENSET_EL0, PMCNTENSET_EL0,
PMOVSSET_EL0, PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0, PMCCFILTR_EL0.

◦ PMSWINC_EL0, MSR accesses only.

◦ If ARMv8.4-PMU is implemented, PMMIR_EL1

• In AArch32 state, MRC or MCR accesses to the following registers are reported using EC syndrome value
0x03, MRRC or MCRR accesses are trapped to EL2 and reported using EC syndrome value 0x04:

◦ PMCR, PMOVSR, PMSELR, PMCEID0, PMCEID1, PMCCNTR, PMXEVTYPER, PMXEVNTR,
PMCNTENSET, PMCNTENCLR, PMOVSSET, PMEVCNTR<n>, PMEVTYPER<n>, PMCCFILTR.

◦ PMSWINC, MCR accesses only.

◦ If ARMv8.4-PMU is implemented, PMMIR.

◦ If ARMv8.1-PMU is implemented, in AArch32 state, PMCEID2, and PMCEID3.

• In AArch32 state, MRRC or MCRR accesses to PMCCNTR are reported using EC syndrome value 0x04.

PMUSERENR_EL0, Performance Monitors User Enable Register

Page 1274

AArch32-pmxevntr.html

EN Meaning
0b0 While at EL0, accesses to the specified registers at EL0 are

trapped, unless overridden by one of PMUSERENR_EL0.{ER, CR,
SW}.

0b1 While at EL0, software can access all of the specified registers.

Note

The EL0 access is trapped only if the corresponding EL1 access is permitted.
If PMUSERENR_EL0.EN is 0, write access to PMSWINC_EL0 and PMSWINC
from EL0 are trapped, but read access is UNDEFINED.

The affected registers do not include PMINTENSET_EL1, PMINTENCLR_EL1,
PMINTENSET and PMINTENCLR.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMUSERENR_EL0
Accesses to this register use the following encodings:

MRS <Xt>, PMUSERENR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1110 0b000

if PSTATE.EL == EL0 then
if EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMUSERENR_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMUSERENR_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMUSERENR_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMUSERENR_EL0;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMUSERENR_EL0;
elsif PSTATE.EL == EL3 then

return PMUSERENR_EL0;

MSR PMUSERENR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1110 0b000

PMUSERENR_EL0, Performance Monitors User Enable Register

Page 1275

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMUSERENR_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMUSERENR_EL0 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMUSERENR_EL0 = X[t];
elsif PSTATE.EL == EL3 then

PMUSERENR_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMUSERENR_EL0, Performance Monitors User Enable Register

Page 1276

PMXEVCNTR_EL0, Performance Monitors Selected
Event Count Register

The PMXEVCNTR_EL0 characteristics are:

Purpose
Reads or writes the value of the selected event counter, PMEVCNTR<n>_EL0. PMSELR_EL0.SEL determines which
event counter is selected.

Configuration
AArch64 System register PMXEVCNTR_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMXEVCNTR[31:0] .

This register is present only when PMUv3 is implemented. Otherwise, direct accesses to PMXEVCNTR_EL0 are
UNDEFINED.

Attributes
PMXEVCNTR_EL0 is a 64-bit register.

Field descriptions
The PMXEVCNTR_EL0 bit assignments are:

When ARMv8.5-PMU is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
PMEVCNTR<n>
PMEVCNTR<n>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PMEVCNTR<n>, bits [63:0]

Value of the selected event counter, PMEVCNTR<n>_EL0, where n is the value stored in PMSELR_EL0.SEL.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

PMEVCNTR<n>
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

PMEVCNTR<n>, bits [31:0]

Value of the selected event counter, PMEVCNTR<n>_EL0, where n is the value stored in PMSELR_EL0.SEL.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register

Page 1277

Accessing the PMXEVCNTR_EL0
If ARMv8.6-FGT is implemented and PMSELR_EL0.SEL is greater than or equal to the number of accessible counters,
then the behavior of permitted reads and writes of PMXEVCNTR_EL0 is as follows:

• If PMSELR_EL0.SEL selects an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

If ARMv8.6-FGT is not implemented and PMSELR_EL0.SEL is greater than or equal to the number of accessible
counters, then reads and writes of PMXEVCNTR_EL0 are CONSTRAINED UNPREDICTABLE, and the following behaviors are
permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP
• Accesses to the register behave as if PMSELR_EL0.SEL has an UNKNOWN value less than the number of

counters accessible at the current Exception level and Security state.
• If EL2 is implemented and enabled in the current Security state, and PMSELR_EL0.SEL is less than the

number of implemented counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.{ER,EN}.

If EL2 is implemented and enabled in the current Security state, in EL1 and
EL0, MDCR_EL2.HPMN identifies the number of accessible counters.
Otherwise, the number of accessible counters is the number of implemented
counters. See MDCR_EL2.HPMN for more details.

Accesses to this register use the following encodings:

MRS <Xt>, PMXEVCNTR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1101 0b010

PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register

Page 1278

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.<ER,EN> == '00' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMXEVCNTR_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMXEVCNTR_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMXEVCNTR_EL0;

elsif PSTATE.EL == EL3 then
return PMXEVCNTR_EL0;

MSR PMXEVCNTR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1101 0b010

PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register

Page 1279

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMXEVCNTR_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMXEVCNTR_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMXEVCNTR_EL0 = X[t];

elsif PSTATE.EL == EL3 then
PMXEVCNTR_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register

Page 1280

PMXEVTYPER_EL0, Performance Monitors Selected
Event Type Register

The PMXEVTYPER_EL0 characteristics are:

Purpose
When PMSELR_EL0.SEL selects an event counter, this accesses a PMEVTYPER<n>_EL0 register. When
PMSELR_EL0.SEL selects the cycle counter, this accesses PMCCFILTR_EL0.

Configuration
AArch64 System register PMXEVTYPER_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMXEVTYPER[31:0] .

This register is present only when PMUv3 is implemented. Otherwise, direct accesses to PMXEVTYPER_EL0 are
UNDEFINED.

Attributes
PMXEVTYPER_EL0 is a 64-bit register.

Field descriptions
The PMXEVTYPER_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

Event type register or PMCCFILTR_EL0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Bits [31:0]

When PMSELR_EL0.SEL == 31, this register accesses PMCCFILTR_EL0.

Otherwise, this register accesses PMEVTYPER<n>_EL0 where n is the value in PMSELR_EL0.SEL.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMXEVTYPER_EL0
If ARMv8.6-FGT is implemented, and PMSELR_EL0.SEL is not 31 and is greater than or equal to the number of
accessible counters, then the behavior of permitted reads and writes of PMXEVTYPER_EL0 is as follows:

• If PMSELR_EL0.SEL selects an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

If ARMv8.6-FGT is not implemented, and PMSELR_EL0.SEL is not 31 and is greater than or equal to the number of
accessible counters, then reads and writes of PMXEVTYPER_EL0 are CONSTRAINED UNPREDICTABLE, and the following
behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.

PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register

Page 1281

• Accesses to the register execute as a NOP
• Accesses to the register behave as if PMSELR_EL0.SEL has an UNKNOWN value less than the number of

counters accessible at the current Exception level and Security state.
• Accesses to the register behave as if PMSELR_EL0.SEL is 31.
• If EL2 is implemented and enabled in the current Security state, PMSELR_EL0 is less than the number of

implemented counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, in EL1 and
EL0, MDCR_EL2.HPMN identifies the number of accessible counters.
Otherwise, the number of accessible counters is the number of implemented
counters. See MDCR_EL2.HPMN for more details.

Accesses to this register use the following encodings:

MRS <Xt>, PMXEVTYPER_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1101 0b001

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMXEVTYPER_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMXEVTYPER_EL0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMXEVTYPER_EL0;

elsif PSTATE.EL == EL3 then
return PMXEVTYPER_EL0;

MSR PMXEVTYPER_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1101 0b001

PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register

Page 1282

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMXEVTYPER_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMXEVTYPER_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMXEVTYPER_EL0 = X[t];

elsif PSTATE.EL == EL3 then
PMXEVTYPER_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register

Page 1283

REVIDR_EL1, Revision ID Register
The REVIDR_EL1 characteristics are:

Purpose
Provides implementation-specific minor revision information.

Configuration
AArch64 System register REVIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
REVIDR[31:0] .

If REVIDR_EL1 has the same value as MIDR_EL1, then its contents have no significance.

Attributes
REVIDR_EL1 is a 64-bit register.

Field descriptions
The REVIDR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the REVIDR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, REVIDR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0000 0b110

REVIDR_EL1, Revision ID Register

Page 1284

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.REVIDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return REVIDR_EL1;

elsif PSTATE.EL == EL2 then
return REVIDR_EL1;

elsif PSTATE.EL == EL3 then
return REVIDR_EL1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REVIDR_EL1, Revision ID Register

Page 1285

RGSR_EL1, Random Allocation Tag Seed Register.
The RGSR_EL1 characteristics are:

Purpose
Random Allocation Tag Seed Register.

Configuration
This register is present only when ARMv8.5-MemTag is implemented and ID_AA64PFR1_EL1.MTE != 0b0001.
Otherwise, direct accesses to RGSR_EL1 are UNDEFINED.

When GCR_EL1.RRND==0b1, updates to RGSR_EL1 are implementation-specific.

Attributes
RGSR_EL1 is a 64-bit register.

Field descriptions
The RGSR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 SEED RES0 TAG
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

SEED, bits [23:8]

Seed register used for generating values returned by RandomAllocationTag().

This field resets to an architecturally UNKNOWN value.

Bits [7:4]

Reserved, RES0.

TAG, bits [3:0]

Tag generated by the most recent IRG instruction.

This field resets to an architecturally UNKNOWN value.

Accessing the RGSR_EL1
Accesses to this register use the following encodings:

RGSR_EL1, Random Allocation Tag Seed Register.

Page 1286

MRS <Xt>, RGSR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.ATA == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return RGSR_EL1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return RGSR_EL1;

elsif PSTATE.EL == EL3 then
return RGSR_EL1;

MSR RGSR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.ATA == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

RGSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
RGSR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
RGSR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RGSR_EL1, Random Allocation Tag Seed Register.

Page 1287

RMR_EL1, Reset Management Register (EL1)
The RMR_EL1 characteristics are:

Purpose
When this register is implemented:

• A write to the register at EL1 can request a Warm reset.
• If EL1 can use all Execution states, this register specifies the Execution state that the PE boots into on a Warm

reset.

Configuration
AArch64 System register RMR_EL1 bits [31:0] are architecturally mapped to AArch32 System register RMR[31:0]
when the highest implemented Exception level is EL1.

This register is present only when the highest implemented Exception level is EL1. Otherwise, direct accesses to
RMR_EL1 are UNDEFINED.

When EL1 is the highest implemented Exception level:

• If EL1 can use all Execution states then this register must be implemented.
• If EL1 cannot use AArch32 then it is IMPLEMENTATION DEFINED whether the register is implemented.

Attributes
RMR_EL1 is a 64-bit register.

Field descriptions
The RMR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 RRAA64
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

This field resets to 0.

AA64, bit [0]

When AArch32 is supported at any Exception level:

When EL1 can use AArch32, determines which Execution state the PE boots into after a Warm reset:

AA64 Meaning
0b0 AArch32.
0b1 AArch64.

RMR_EL1, Reset Management Register (EL1)

Page 1288

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector address of the specified
Execution state.

If EL1 can only use AArch64 state, this bit is RAO/WI.

When implemented as a RW field, this field resets to 1 on a Cold reset.

Otherwise:

Reserved, RAO/WI.

Accessing the RMR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, RMR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0000 0b010

if PSTATE.EL == EL1 && IsHighestEL(EL1) then
return RMR_EL1;

else
UNDEFINED;

MSR RMR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0000 0b010

if PSTATE.EL == EL1 && IsHighestEL(EL1) then
RMR_EL1 = X[t];

else
UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RMR_EL1, Reset Management Register (EL1)

Page 1289

RMR_EL2, Reset Management Register (EL2)
The RMR_EL2 characteristics are:

Purpose
When this register is implemented:

• A write to the register at EL2 can request a Warm reset.
• If EL2 can use all Execution states, this register specifies the Execution state that the PE boots into on a Warm

reset.

Configuration
AArch64 System register RMR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HRMR[31:0]
when the highest implemented Exception level is EL2.

This register is present only when the highest implemented Exception level is EL2. Otherwise, direct accesses to
RMR_EL2 are UNDEFINED.

When EL2 is the highest implemented Exception level:

• If EL2 can use all Execution states then this register must be implemented.
• If EL2 cannot use AArch32 then it is IMPLEMENTATION DEFINED whether the register is implemented.

Attributes
RMR_EL2 is a 64-bit register.

Field descriptions
The RMR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 RRAA64
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

This field resets to 0.

AA64, bit [0]

When AArch32 is supported at any Exception level:

When EL2 can use AArch32, determines which Execution state the PE boots into after a Warm reset:

AA64 Meaning
0b0 AArch32.
0b1 AArch64.

RMR_EL2, Reset Management Register (EL2)

Page 1290

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector address of the specified
Execution state.

If EL2 can only use AArch64 state, this bit is RAO/WI.

When implemented as a RW field, this field resets to 1 on a Cold reset.

Otherwise:

Reserved, RAO/WI.

Accessing the RMR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, RMR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b0000 0b010

if PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then
return RMR_EL2;

else
UNDEFINED;

MSR RMR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b0000 0b010

if PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then
RMR_EL2 = X[t];

else
UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RMR_EL2, Reset Management Register (EL2)

Page 1291

RMR_EL3, Reset Management Register (EL3)
The RMR_EL3 characteristics are:

Purpose
If EL3 is the implemented and this register is implemented:

• A write to the register at EL3 can request a Warm reset.
• If EL3 can use all Execution states, this register specifies the Execution state that the PE boots into on a Warm

reset.

Configuration
AArch64 System register RMR_EL3 bits [31:0] are architecturally mapped to AArch32 System register RMR[31:0]
when EL3 is implemented.

This register is present only when EL3 is implemented. Otherwise, direct accesses to RMR_EL3 are UNDEFINED.

When EL3 is implemented:

• If EL3 can use all Execution states then this register must be implemented.
• If EL3 cannot use AArch32 then it is IMPLEMENTATION DEFINED whether the register is implemented.

Otherwise, direct accesses to RMR_EL3 are UNDEFINED.

Attributes
RMR_EL3 is a 64-bit register.

Field descriptions
The RMR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 RRAA64
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

This field resets to 0.

AA64, bit [0]

When AArch32 is supported at any Exception level:

When EL3 can use AArch32, determines which Execution state the PE boots into after a Warm reset:

AA64 Meaning
0b0 AArch32.
0b1 AArch64.

RMR_EL3, Reset Management Register (EL3)

Page 1292

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector address of the specified
Execution state.

If EL3 can only use AArch64 state, this bit is RAO/WI.

When implemented as a RW field, this field resets to 1 on a Cold reset.

Otherwise:

Reserved, RAO/WI.

Accessing the RMR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, RMR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b1100 0b0000 0b010

if PSTATE.EL == EL3 && IsHighestEL(EL3) then
return RMR_EL3;

else
UNDEFINED;

MSR RMR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b1100 0b0000 0b010

if PSTATE.EL == EL3 && IsHighestEL(EL3) then
RMR_EL3 = X[t];

else
UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RMR_EL3, Reset Management Register (EL3)

Page 1293

RNDR, Random Number
The RNDR characteristics are:

Purpose
Random Number. Returns a 64-bit random number which is reseeded from the True Random Number source at an
IMPLEMENTATION DEFINED rate.

If the hardware returns a genuine random number, PSTATE.NZCV is set to 0b0000.

If the instruction cannot return a genuine random number in a reasonable period of time, PSTATE.NZCV is set to
0b0100 and the data value returned is 0.

RNDR is a read-only register.

Configuration
This register is present only when ARMv8.5-RNG is implemented. Otherwise, direct accesses to RNDR are UNDEFINED.

Attributes
RNDR is a 64-bit register.

Field descriptions
The RNDR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RNDR
RNDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RNDR, bits [63:0]

Random Number. Returns a 64-bit Random Number which is reseeded from the True Random Number source at an
IMPLEMENTATION DEFINED rate.

This field resets to an architecturally UNKNOWN value.

Accessing the RNDR
Accesses to this register use the following encodings:

MRS <Xt>, RNDR

op0 op1 CRn CRm op2
0b11 0b011 0b0010 0b0100 0b000

RNDR, Random Number

Page 1294

if PSTATE.EL == EL0 then
return RNDR;

elsif PSTATE.EL == EL1 then
return RNDR;

elsif PSTATE.EL == EL2 then
return RNDR;

elsif PSTATE.EL == EL3 then
return RNDR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RNDR, Random Number

Page 1295

RNDRRS, Reseeded Random Number
The RNDRRS characteristics are:

Purpose
Reseeded Random Number. Returns a 64-bit random number which is reseeded from the True Random Number
source at an IMPLEMENTATION DEFINED rate.

If the hardware returns a genuine random number, PSTATE.NZCV is set to 0b0000.

If the instruction cannot return a genuine random number in a reasonable period of time, PSTATE.NZCV is set to
0b0100 and the data value returned is 0.

RNDRRS is a read-only register.

Configuration
This register is present only when ARMv8.5-RNG is implemented. Otherwise, direct accesses to RNDRRS are
UNDEFINED.

Attributes
RNDRRS is a 64-bit register.

Field descriptions
The RNDRRS bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RNDRRS
RNDRRS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RNDRRS, bits [63:0]

Reseeded Random Number. Returns a 64-bit Random Number which is reseeded from the True Random Number
source immediately before this read.

This field resets to an architecturally UNKNOWN value.

Accessing the RNDRRS
Accesses to this register use the following encodings:

MRS <Xt>, RNDRRS

op0 op1 CRn CRm op2
0b11 0b011 0b0010 0b0100 0b001

RNDRRS, Reseeded Random Number

Page 1296

if PSTATE.EL == EL0 then
return RNDRRS;

elsif PSTATE.EL == EL1 then
return RNDRRS;

elsif PSTATE.EL == EL2 then
return RNDRRS;

elsif PSTATE.EL == EL3 then
return RNDRRS;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RNDRRS, Reseeded Random Number

Page 1297

RVBAR_EL1, Reset Vector Base Address Register (if
EL2 and EL3 not implemented)

The RVBAR_EL1 characteristics are:

Purpose
If EL1 is the highest Exception level implemented, contains the IMPLEMENTATION DEFINED address that execution starts
from after reset when executing in AArch64 state.

Configuration
This register is present only when the highest implemented Exception level is EL1. Otherwise, direct accesses to
RVBAR_EL1 are UNDEFINED.

Attributes
RVBAR_EL1 is a 64-bit register.

Field descriptions
The RVBAR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Reset Address
Reset Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reset Address. The IMPLEMENTATION DEFINED address that execution starts from after reset when executing in 64-bit
state. Bits[1:0] of this register are 00, as this address must be aligned, and the address must be within the physical
address size supported by the PE.

Accessing the RVBAR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, RVBAR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0000 0b001

if PSTATE.EL == EL1 && IsHighestEL(EL1) then
return RVBAR_EL1;

else
UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RVBAR_EL1, Reset Vector Base Address Register (if EL2 and EL3 not implemented)

Page 1298

RVBAR_EL2, Reset Vector Base Address Register (if
EL3 not implemented)

The RVBAR_EL2 characteristics are:

Purpose
If EL2 is the highest Exception level implemented, contains the IMPLEMENTATION DEFINED address that execution starts
from after reset when executing in AArch64 state.

Configuration
This register is present only when the highest implemented Exception level is EL2. Otherwise, direct accesses to
RVBAR_EL2 are UNDEFINED.

Attributes
RVBAR_EL2 is a 64-bit register.

Field descriptions
The RVBAR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Reset Address
Reset Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reset Address. The IMPLEMENTATION DEFINED address that execution starts from after reset when executing in 64-bit
state. Bits[1:0] of this register are 00, as this address must be aligned, and the address must be within the physical
address size supported by the PE.

Accessing the RVBAR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, RVBAR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b0000 0b001

if PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then
return RVBAR_EL2;

else
UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

RVBAR_EL2, Reset Vector Base Address Register (if EL3 not implemented)

Page 1299

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RVBAR_EL2, Reset Vector Base Address Register (if EL3 not implemented)

Page 1300

RVBAR_EL3, Reset Vector Base Address Register (if
EL3 implemented)

The RVBAR_EL3 characteristics are:

Purpose
If EL3 is the highest Exception level implemented, contains the IMPLEMENTATION DEFINED address that execution starts
from after reset when executing in AArch64 state.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to RVBAR_EL3 are UNDEFINED.

Only implemented if the highest Exception level implemented is EL3.

Attributes
RVBAR_EL3 is a 64-bit register.

Field descriptions
The RVBAR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Reset Address
Reset Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reset Address. The IMPLEMENTATION DEFINED address that execution starts from after reset when executing in 64-bit
state. Bits[1:0] of this register are 00, as this address must be aligned, and the address must be within the physical
address size supported by the PE.

Accessing the RVBAR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, RVBAR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b1100 0b0000 0b001

if PSTATE.EL == EL3 && IsHighestEL(EL3) then
return RVBAR_EL3;

else
UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RVBAR_EL3, Reset Vector Base Address Register (if EL3 implemented)

Page 1301

S1_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION
DEFINED maintenance instructions

The S1_<op1>_<Cn>_<Cm>_<op2> characteristics are:

Purpose
This area of the System instruction encoding space is reserved for IMPLEMENTATION DEFINED System instructions.

Configuration
There are no configuration notes.

Attributes
S1_<op1>_<Cn>_<Cm>_<op2> is a 64-bit System instruction.

Field descriptions
The S1_<op1>_<Cn>_<Cm>_<op2> input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Executing the S1_<op1>_<Cn>_<Cm>_<op2> instruction
Accesses to this instruction use the following encodings:

SYS #<op1>, <Cn>, <Cm>, #<op2>{, <Xt>}

op0 op1 CRn CRm op2
0b01 op1[2:0] 0b1x11 Cm[3:0] op2[2:0]

if PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TIDCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

IMPLEMENTATION_DEFINED "";
else

IMPLEMENTATION_DEFINED "";

SYSL <Xt>, #<op1>, <Cn>, <Cm>, #<op2>

op0 op1 CRn CRm op2
0b01 op1[2:0] 0b1x11 Cm[3:0] op2[2:0]

S1_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED maintenance instructions

Page 1302

if PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TIDCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

IMPLEMENTATION_DEFINED "";
else

IMPLEMENTATION_DEFINED "";

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

S1_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED maintenance instructions

Page 1303

S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION
DEFINED registers

The S3_<op1>_<Cn>_<Cm>_<op2> characteristics are:

Purpose
This area of the instruction set space is reserved for IMPLEMENTATION DEFINED registers.

Configuration
There are no configuration notes.

Attributes
S3_<op1>_<Cn>_<Cm>_<op2> is a 64-bit register.

Field descriptions
The S3_<op1>_<Cn>_<Cm>_<op2> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the S3_<op1>_<Cn>_<Cm>_<op2>
Accesses to this register use the following encodings:

MRS <Xt>, S3_<op1>_C<Cn>_C<Cm>_<op2>

op0 op1 CRn CRm op2
0b11 op1[2:0] 0b1x11 Cm[3:0] op2[2:0]

if PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TIDCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

IMPLEMENTATION_DEFINED "";
else

IMPLEMENTATION_DEFINED "";

MSR S3_<op1>_C<Cn>_C<Cm>_<op2>, <Xt>

op0 op1 CRn CRm op2
0b11 op1[2:0] 0b1x11 Cm[3:0] op2[2:0]

S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED registers

Page 1304

if PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TIDCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

IMPLEMENTATION_DEFINED "";
else

IMPLEMENTATION_DEFINED "";

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED registers

Page 1305

SCR_EL3, Secure Configuration Register
The SCR_EL3 characteristics are:

Purpose
Defines the configuration of the current Security state. It specifies:

• The Security state of EL0, EL1, and EL2. The Security state is either Secure or Non-secure.
• The Execution state at lower Exception levels.
• Whether IRQ, FIQ, SError interrupts, and External abort exceptions are taken to EL3.
• Whether various operations are trapped to EL3.

Configuration
AArch64 System register SCR_EL3 bits [31:0] can be mapped to AArch32 System register SCR[31:0] , but this is not
architecturally mandated.

This register is present only when EL3 is implemented. Otherwise, direct accesses to SCR_EL3 are UNDEFINED.

Attributes
SCR_EL3 is a 64-bit register.

Field descriptions
The SCR_EL3 bit assignments are:

63 62 61 60 59 58 57 565554 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 AMVOFFENTMETWEDEL

TWEDELTWEDEnECVEnFGTEnATAEnSCXT RES0 FIENNMEAEASEEEL2APIAPKTERRTLORTWETWISTRWSIFHCESMDRES0RES1 EA FIQ IRQ NS
31 30 29 28 27 26 25 242322 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:36]

Reserved, RES0.

AMVOFFEN, bit [35]

When ARMv8.6-AMU is implemented:

Activity Monitors Virtual Offsets Enable.

AMVOFFEN Meaning
0b0 Accesses to AMEVCNTVOFF0<n>_EL2 and

AMEVCNTVOFF1<n>_EL2 at EL2 are trapped to EL3.
Indirect reads of the virtual offset registers are zero.

0b1 Accesses to AMEVCNTVOFF0<n>_EL2 and
AMEVCNTVOFF1<n>_EL2 are not affected by this field.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TME, bit [34]

SCR_EL3, Secure Configuration Register

Page 1306

When TME is implemented:

Enables access to the TSTART, TCOMMIT, TTEST and TCANCEL instructions at EL0, EL1 and EL2.

TME Meaning
0b0 EL0, EL1 and EL2 accesses to TSTART, TCOMMIT, TTEST and

TCANCEL instructions are UNDEFINED.
0b1 This control does not cause any instruction to be UNDEFINED.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEL, bits [33:30]

When ARMv8.6-TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when SCR_EL3.TWEDEn is 1, encodes the minimum delay in taking a trap
of WFE caused by SCR_EL3.TWE as 2^(TWEDEL + 8) cycles.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [29]

When ARMv8.6-TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE instruction caused by SCR_EL3.TWE.

TWEDEn Meaning
0b0 The delay for taking a WFE trap is IMPLEMENTATION DEFINED.
0b1 The delay for taking a WFE trap is at least the number of

cycles defined in SCR_EL3.TWEDEL.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ECVEn, bit [28]

When ARMv8.6-ECV is implemented:

ECV Enable. Enables access to the CNTPOFF_EL2 register.

ECVEn Meaning
0b0 EL2 accesses to CNTPOFF_EL2 are trapped to EL3, and the

value of CNTPOFF_EL2 is treated as 0 for all purposes other
than direct reads or writes to the register from EL3.

0b1 EL2 accesses to CNTPOFF_EL2 are not trapped to EL3 by this
mechanism.

This field resets to an architecturally UNKNOWN value.

SCR_EL3, Secure Configuration Register

Page 1307

Otherwise:

Reserved, RES0.

FGTEn, bit [27]

When ARMv8.6-FGT is implemented:

Enables access to the Fine-Grained Traps registers: HAFGRTR_EL2, HDFGRTR_EL2, HDFGWTR_EL2, HFGRTR_EL2,
HFGITR_EL2 and HFGWTR_EL2.

FGTEn Meaning
0b0 EL2 Accesses to HAFGRTR_EL2, HDFGRTR_EL2,

HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2 and
HFGWTR_EL2 registers are trapped to EL3, and those
registers behave as if all bits are set to 0.

0b1 EL2 Accesses to HAFGRTR_EL2, HDFGRTR_EL2,
HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2 and
HFGWTR_EL2 registers are not trapped to EL3 by this
mechanism.

Traps caused by accesses to the fine-grained trap registers are reported using the EC code of 0x18 and its associated
ISS.

Otherwise:

Reserved, RES0.

ATA, bit [26]

When ARMv8.5-MemTag is implemented:

Allocation Tag Access. Controls access at EL2, EL1 and EL0 to Allocation Tags.

When access is prevented:

• Instructions which Load or Store data are Unchecked.

• Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.

• Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the
Logical Address Tag as 0.

• Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent
Clean and Invalidate operation on Allocation Tags.

• MRS and MSR instructions at EL1 and EL2 using GCR_EL1, RGSR_EL1, TFSR_EL1, TFSR_EL2 or
TFSRE0_EL1 that are not UNDEFINED or trapped to a lower Exception level are trapped to EL3.

• MRS and MSR instructions at EL2 using TFSR_EL12 that are not UNDEFINED are trapped to EL3.

ATA Meaning
0b0 Access is prevented.
0b1 Access is not prevented.

This field is permitted to be cached in a TLB.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnSCXT, bit [25]

SCR_EL3, Secure Configuration Register

Page 1308

When ARMv8.0-CSV2 is implemented:

Enable access to the SCXTNUM_EL2, SCXTNUM_EL1, and SCXTNUM_EL0 registers. The defined values are:

EnSCXT Meaning
0b0 EL2, EL1 and EL0 access to SCXTNUM_EL0, EL2 and EL1

access to SCXTNUM_EL1, EL2 access to SCXTNUM_EL2
registers are disabled by this mechanism, causing an
exception to EL3, and the values of these registers to be
treated as 0.

0b1 This control does not cause accesses to SCXTNUM_EL0,
SCXTNUM_EL1, SCXTNUM_EL2 to be trapped.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [24:22]

Reserved, RES0.

FIEN, bit [21]

When ARMv8.4-RAS is implemented:

Fault Injection enable. Trap accesses to the RAS ERX* registers ERXPFGCDN_EL1, ERXPFGCTL_EL1, and
ERXPFGF_EL1 from EL1 and EL2 to EL3, reported using EC syndrome value 0x18.

FIEN Meaning
0b0 Accesses to the specified registers from EL1 and EL2 generate a

Trap exception to EL3.
0b1 This control does not cause any instructions to be trapped.

If EL3 is not implemented, the Effective value of SCR_EL3.FIEN is 0b1.

If ERRIDR_EL1.NUM is zero, meaning no error records are implemented, or no error record accessible using System
registers is owned by a node that implements the RAS Common Fault Injection Model Extension, then this bit might be
RES0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NMEA, bit [20]

When ARMv8.4-DFE is implemented:

Non-maskable External Aborts. When SCR_EL3.EA == 1, controls whether PSTATE.A masks SError interrupts at EL3.

NMEA Meaning
0b0 If SCR_EL3.EA == 1, asserted SError interrupts are not taken

at EL3 if PSTATE.A == 1.
0b1 If SCR_EL3.EA == 1, asserted SError interrupts are taken at

EL3 regardless of the value of PSTATE.A.

When SCR_EL3.EA == 0:

• Asserted SError interrupts are not taken at EL3 regardless of the value of PSTATE.A and this field.
• This field is ignored and its Effective value is 0.

SCR_EL3, Secure Configuration Register

Page 1309

This field resets to 0.

Otherwise:

Reserved, RES0.

EASE, bit [19]

When ARMv8.4-DFE is implemented:

External aborts to SError interrupt vector.

EASE Meaning
0b0 Synchronous External abort exceptions taken to EL3 are taken

to the appropriate synchronous exception vector offset from
VBAR_EL3.

0b1 Synchronous External abort exceptions taken to EL3 are taken
to the appropriate SError interrupt vector offset from
VBAR_EL3.

This field resets to 0.

Otherwise:

Reserved, RES0.

EEL2, bit [18]

When ARMv8.4-SecEL2 is implemented:

Secure EL2 Enable.

EEL2 Meaning
0b0 All behaviors associated with Secure EL2 are disabled. All

registers, including timer registers, defined by ARMv8.4-SecEL2
are UNDEFINED, and those timers are disabled.

0b1 All behaviors associated with Secure EL2 are enabled.

When the value of this bit is 1, then:

• When SCR_EL3.NS == 0, the SCR_EL3.RW bit is treated as 1 for all purposes other than reading or writing
the register.

• If Secure EL1 is using AArch32, then any of the following operations, executed in Secure EL1, is trapped to
Secure EL2, using the EC value of ESR_EL2.EC== 0x3 :

◦ A read or write of the SCR.
◦ A read or write of the NSACR.
◦ A read or write of the MVBAR.
◦ A read or write of the SDCR.
◦ Execution of an ATS12NSO** instruction.

• If Secure EL1 is using AArch32, then any of the following operations, executed in Secure EL1, is trapped to
Secure EL2 using the EC value of ESR_EL2.EC== 0x0 :

◦ Execution of an SRS instruction that uses R13_mon.
◦ Execution of an MRS (Banked register) or MSR (Banked register) instruction that would access

SPSR_mon, R13_mon, or R14_mon.

Note

If the Effective value of SCR_EL3.EEL2 is 0, then these operations executed in
Secure EL1 using AArch32 are trapped to EL3.

SCR_EL3, Secure Configuration Register

Page 1310

In a Secure only implementation that does not implement EL3 but implements EL2, behaves as if SCR_EL3.EEL2 ==
1.

This bit is permitted to be cached in a TLB.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

API, bit [17]

When ARMv8.4-SecEL2 is implemented and ARMv8.3-PAuth is implemented:

Controls the use of the following instructions related to Pointer Authentication. Traps are reported using EC syndrome
value 0x09:

• PACGA, which is always enabled.
• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP,

AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB,
PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZB, RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ,
BRABZ, BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and LDRAB when:

◦ In EL0, when HCR_EL2.TGE==0 or HCR_EL2.E2H==0, and the associated SCTLR_EL1.En<N><M>
== 1.

◦ In EL0, when HCR_EL2.TGE==1 and HCR_EL2.E2H==1, and the associated
SCTLR_EL2.En<N><M> == 1.

◦ In EL1, when the associated SCTLR_EL1.En<N><M> == 1.
◦ In EL2, when the associated SCTLR_EL2.En<N><M> == 1.

API Meaning
0b0 The use of any instruction related to pointer authentication in any

Exception level except EL3 when the instructions are enabled are
trapped to EL3 unless they are trapped to EL2 as a result of the
HCR_EL2.API bit.

0b1 This control does not cause any instructions to be trapped.

An instruction is trapped only if Pointer Authentication is enabled for that instruction, for more information, see
'System register control of pointer authentication' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile.

Note

If ARMv8.3-PAuth is implemented but EL3 is not implemented, the system
behaves as if this bit is 1.

This field resets to an architecturally UNKNOWN value.

When ARMv8.4-SecEL2 is not implemented and ARMv8.3-PAuth is implemented:

Controls the use of instructions related to Pointer Authentication:

• PACGA.
• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP,

AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB,
PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZ, RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ, BRABZ,
BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and LDRAB when:

◦ In Non-secure EL0, when HCR_EL2.TGE==0 or HCR_EL2.E2H==0, and the associated
SCTLR_EL1.En<N><M>== 1.

◦ In Non-secure EL0, when HCR_EL2.TGE==1 and HCR_EL2.E2H==1, and the associated
SCTLR_EL2.En<N><M> == 1.

◦ In Secure EL0, when the associated SCTLR_EL2.En<N><M> == 1.
◦ In Secure or Non-secure EL1, when the associated SCTLR_EL1.En<N><M> == 1.
◦ In EL2, when the associated SCTLR_EL2.En<N><M> == 1.

SCR_EL3, Secure Configuration Register

Page 1311

API Meaning
0b0 The use of any instruction related to pointer authentication in any

Exception level except EL3 when the instructions are enabled are
trapped to EL3 unless they are trapped to EL2 as a result of the
HCR_EL2.API bit.

0b1 This control does not cause any instructions to be trapped.

Note

If ARMv8.3-PAuth is implemented but EL3 is not implemented, the system
behaves as if this bit is 1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APK, bit [16]

When ARMv8.3-PAuth is implemented:

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following registers, using EC
syndrome value 0x18, from EL1 or EL2 to EL3 unless they are trapped to EL2 as a result of the HCR_EL2.APK bit or
other traps:

• APIAKeyLo_EL1, APIAKeyHi_EL1, APIBKeyLo_EL1, APIBKeyHi_EL1.

• APDAKeyLo_EL1, APDAKeyHi_EL1, APDBKeyLo_EL1, APDBKeyHi_EL1.

• APGAKeyLo_EL1, and APGAKeyHi_EL1.

APK Meaning
0b0 Access to the registers holding "key" values for pointer

authentication from EL1 or EL2 are trapped to EL3 unless they
are trapped to EL2 as a result of the HCR_EL2.APK bit or other
traps.

0b1 This control does not cause any instructions to be trapped.

For more information, see 'System register control of pointer authentication' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

Note

If ARMv8.3-PAuth is implemented but EL3 is not implemented, the system
behaves as if this bit is 1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TERR, bit [15]

When RAS is implemented:

Trap Error record accesses. Accesses to the RAS ERR and RAS ERX registers from EL1 and EL2 to EL3 are trapped as
follows:

• If EL1 is using AArch64, ERRIDR_EL1, ERRSELR_EL1, ERXADDR_EL1, ERXCTLR_EL1, ERXFR_EL1,
ERXMISC0_EL1, ERXMISC1_EL1, and ERXSTATUS_EL1, are trapped and reported using EC syndrome value
0x18.

SCR_EL3, Secure Configuration Register

Page 1312

• If ARMv8.4-RAS is implemented, ERXMISC2_EL1, and ERXMISC3_EL1, are trapped and reported using EC
syndrome value 0x18.

• If EL1 is using AArch32, accesses by MCR or MRC to the following registers are reported using EC
syndrome value 0x03, accesses by MCRR or MRRC are reported using EC syndrome value 0x04:

◦ ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR, ERXFR2, ERXMISC0,
ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS.

• If ARMv8.4-RAS is implemented, accesses by MCR or MRC to the following registers are reported using EC
syndrome value 0x03, accesses by MCRR or MRRC are reported using EC syndrome value 0x04:

◦ ERXMISC4, ERXMISC5, ERXMISC6, and ERXMISC7.
TERR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Accesses to the specified registers from EL1 and EL2 generate a

Trap exception to EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLOR, bit [14]

When ARMv8.1-LOR is implemented:

Trap LOR registers. Traps accesses to the LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1, and LORID_EL1
registers from EL1 and EL2 to EL3, unless the access has been trapped to EL2.

TLOR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 and EL2 accesses to the LOR registers that are not

UNDEFINED are trapped to EL3, unless it is trapped
HCR_EL2.TLOR.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWE, bit [13]

Traps EL2, EL1, and EL0 execution of WFE instructions to EL3, from both Security states and both Execution states,
reported using EC syndrome value 0x01.

TWE Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFE instruction at any Exception level

lower than EL3 is trapped to EL3, if the instruction would
otherwise have caused the PE to enter a low-power state and it is
not trapped by SCTLR.nTWE, HCR.TWE, SCTLR_EL1.nTWE,
SCTLR_EL2.nTWE, or HCR_EL2.TWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its
condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event,
the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or

SCR_EL3, Secure Configuration Register

Page 1313

WFI is executed when there is no Wakeup event. The only guarantee is that if
the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

For more information about when WFE instructions can cause the PE to enter a low-power state, see 'Wait for Event
mechanism and Send event' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

TWI, bit [12]

Traps EL2, EL1, and EL0 execution of WFI instructions to EL3, from both Security states and both Execution states,
reported using EC syndrome value 0x01.

TWI Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFI instruction at any Exception level

lower than EL3 is trapped to EL3, if the instruction would
otherwise have caused the PE to enter a low-power state and it is
not trapped by SCTLR.nTWI, HCR.TWI, SCTLR_EL1.nTWI,
SCTLR_EL2.nTWI, or HCR_EL2.TWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its
condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event,
the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or
WFI is executed when there is no Wakeup event. The only guarantee is that if
the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

For more information about when WFI instructions can cause the PE to enter a low-power state, see 'Wait for
Interrupt' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

ST, bit [11]

Traps Secure EL1 accesses to the Counter-timer Physical Secure timer registers to EL3, from AArch64 state only,
reported using EC syndrome value 0x18.

ST Meaning
0b0 Secure EL1 using AArch64 accesses to the CNTPS_TVAL_EL1,

CNTPS_CTL_EL1, and CNTPS_CVAL_EL1 are trapped to EL3 when
Secure EL2 is disabled. If Secure EL2 is enabled, the behavior is as
if the value of this field was 0b1.

0b1 This control does not cause any instructions to be trapped.

Note

Accesses to the Counter-timer Physical Secure timer registers are always
enabled at EL3. These registers are not accessible at EL0.

This field resets to an architecturally UNKNOWN value.

RW, bit [10]

When AArch32 is supported at any Exception level:

Execution state control for lower Exception levels.

SCR_EL3, Secure Configuration Register

Page 1314

RW Meaning
0b0 Lower levels are all AArch32.
0b1 The next lower level is AArch64.

If EL2 is present:
• EL2 is AArch64.
• EL2 controls EL1 and EL0 behaviors.

If EL2 is not present:
• EL1 is AArch64.
• EL0 is determined by the Execution state described in the

current process state when executing at EL0.

If AArch32 state is not supported by the implementation at EL2 and AArch32 state is not supported by the
implementation at EL1, then this bit is RAO/WI.

If AArch32 state is supported by the implementation at EL1, SCR_EL3.NS == 1 and AArch32 state is not supported by
the implementation at EL2, the Effective value of this bit is 1.

If AArch32 state is supported by the implementation at EL1, ARMv8.4-SecEL2 is implemented and SCR_EL3.{EEL2,
NS} == {1, 0}, the Effective value of this bit is 1.

This bit is permitted to be cached in a TLB.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAO/WI.

SIF, bit [9]

When ARMv8.4-SecEL2 is implemented:

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from memory marked in the
first stage of translation as being Non-secure. The possible values for this bit are:

SIF Meaning
0b0 Secure state instruction fetches from memory marked in the first

stage of translation as being Non-secure are permitted.
0b1 Secure state instruction fetches from memory marked in the first

stage of translation as being Non-secure are not permitted.

This bit is permitted to be cached in a TLB.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from Non-secure memory.

SIF Meaning
0b0 Secure state instruction fetches from Non-secure memory are

permitted.
0b1 Secure state instruction fetches from Non-secure memory are not

permitted.

This bit is permitted to be cached in a TLB.

This field resets to an architecturally UNKNOWN value.

HCE, bit [8]

Hypervisor Call instruction enable. Enables HVC instructions at EL3 and, if EL2 is enabled in the current Security
state, at EL2 and EL1, in both Execution states, reported using EC syndrome value 0x00.

SCR_EL3, Secure Configuration Register

Page 1315

HCE Meaning
0b0 HVC instructions are UNDEFINED.
0b1 HVC instructions are enabled at EL3, EL2, and EL1.

Note

HVC instructions are always UNDEFINED at EL0 and, if Secure EL2 is disabled,
at Secure EL1. Any resulting exception is taken from the current Exception
level to the current Exception level.

If EL2 is not implemented, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

SMD, bit [7]

Secure Monitor Call disable. Disables SMC instructions at EL1 and above, from both Security states and both Execution
states, reported using EC syndrome value 0x00.

SMD Meaning
0b0 SMC instructions are enabled at EL3, EL2 and EL1.
0b1 SMC instructions are UNDEFINED.

Note

SMC instructions are always UNDEFINED at EL0. Any resulting exception is
taken from the current Exception level to the current Exception level.

If HCR_EL2.TSC or HCR.TSC traps attempted EL1 execution of SMC
instructions to EL2, that trap has priority over this disable.

This field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

EA, bit [3]

External Abort and SError interrupt routing.

EA Meaning
0b0 When executing at Exception levels below EL3, External aborts

and SError interrupts are not taken to EL3.
In addition, when executing at EL3:

• SError interrupts are not taken.
• External aborts are taken to EL3.

0b1 When executing at any Exception level, External aborts and SError
interrupts are taken to EL3.

For more information, see 'Asynchronous exception routing' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section D1 (The AArch64 System Level Programmers' Model).

This field resets to an architecturally UNKNOWN value.

FIQ, bit [2]

Physical FIQ Routing.

SCR_EL3, Secure Configuration Register

Page 1316

FIQ Meaning
0b0 When executing at Exception levels below EL3, physical FIQ

interrupts are not taken to EL3.
When executing at EL3, physical FIQ interrupts are not taken.

0b1 When executing at any Exception level, physical FIQ interrupts are
taken to EL3.

For more information, see 'Asynchronous exception routing' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section D1.

This field resets to an architecturally UNKNOWN value.

IRQ, bit [1]

Physical IRQ Routing.

IRQ Meaning
0b0 When executing at Exception levels below EL3, physical IRQ

interrupts are not taken to EL3.
When executing at EL3, physical IRQ interrupts are not taken.

0b1 When executing at any Exception level, physical IRQ interrupts
are taken to EL3.

For more information, see 'Asynchronous exception routing' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section D1.

This field resets to an architecturally UNKNOWN value.

NS, bit [0]

Non-secure bit.

NS Meaning
0b0 Indicates that EL0 and EL1 are in Secure state.
0b1 Indicates that Exception levels lower than EL3 are in Non-secure

state, and so memory accesses from those Exception levels cannot
access Secure memory.

When SCR_EL3.{EEL2, NS} == {1, 0}, then EL2 is using AArch64 and in Secure state.

This field resets to an architecturally UNKNOWN value.

Accessing the SCR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, SCR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return SCR_EL3;

SCR_EL3, Secure Configuration Register

Page 1317

MSR SCR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
SCR_EL3 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCR_EL3, Secure Configuration Register

Page 1318

SCTLR_EL1, System Control Register (EL1)
The SCTLR_EL1 characteristics are:

Purpose
Provides top level control of the system, including its memory system, at EL1 and EL0.

Configuration
AArch64 System register SCTLR_EL1 bits [31:0] are architecturally mapped to AArch32 System register SCTLR[31:0]
.

Attributes
SCTLR_EL1 is a 64-bit register.

Field descriptions
The SCTLR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 343332
RES0 TME TME0 TMT TMT0 TWEDEL TWEDEnDSSBS ATA ATA0 TCF TCF0 ITFSB BT1BT0 RES0

EnIAEnIBLSMAOEnTLSMDEnDAUCIEEE0ESPANEISIESBTSCXTWXNnTWERES0nTWIUCTDZE EnDB I EOSEnRCTXUMASEDITDnAACP15BENSA0 SA C A M
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:54]

Reserved, RES0.

TME, bit [53]

When TME is implemented:

Enables the Transactional Memory Extension at EL1.

TME Meaning
0b0 Any attempt to execute a TSTART instruction at EL1 is trapped to

EL1, unless HCR_EL2.TME or SCR_EL3.TME causes TSTART
instructions to be UNDEFINED at EL1.

0b1 This control does not cause any TSTART instruction to be
trapped.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TME0, bit [52]

When TME is implemented:

Enables the Transactional Memory Extension at EL0.

SCTLR_EL1, System Control Register (EL1)

Page 1319

TME0 Meaning
0b0 Any attempt to execute a TSTART instruction at EL0 is trapped

to EL1, unless HCR_EL2.TME or SCR_EL3.TME causes TSTART
instructions to be UNDEFINED at EL0.

0b1 This control does not cause any TSTART instruction to be
trapped.

If ARMv8.1-VHE is implemented, EL2 is implemented and enabled in the current Security state, and HCR_EL2.{E2H,
TGE} == {1,1}, this field has no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TMT, bit [51]

When TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL1.

TMT Meaning
0b0 This control does not cause any TSTART instruction to fail.
0b1 When the TSTART instruction is executed at EL1, the transaction

fails with a TRIVIAL failure cause.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TMT0, bit [50]

When TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL0.

TMT0 Meaning
0b0 This control does not cause any TSTART instruction to fail.
0b1 When the TSTART instruction is executed at EL0, the

transaction fails with a TRIVIAL failure cause.

If ARMv8.1-VHE is implemented, EL2 is implemented and enabled in the current Security state, and HCR_EL2.{E2H,
TGE} == {1,1}, this field has no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEL, bits [49:46]

When ARMv8.6-TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when SCTLR_EL1.TWEDEn is 1, encodes the minimum delay in taking a
trap of WFE caused by SCTLR_EL1.nTWE as 2(TWEDEL + 8) cycles.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

SCTLR_EL1, System Control Register (EL1)

Page 1320

Otherwise:

Reserved, RES0.

TWEDEn, bit [45]

When ARMv8.6-TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE instruction caused by SCTLR_EL1.nTWE.

TWEDEn Meaning
0b0 The delay for taking a WFE trap is IMPLEMENTATION DEFINED.
0b1 The delay for taking a WFE trap is at least the number of

cycles defined in SCTLR_EL1.TWEDEL.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DSSBS, bit [44]

When ARMv8.0-SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry. The defined values are:

DSSBS Meaning
0b0 PSTATE.SSBS is set to 0 on an exception to EL1.
0b1 PSTATE.SSBS is set to 1 on an exception to EL1.

In a system where the PE resets into EL1, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

ATA, bit [43]

When ARMv8.5-MemTag is implemented:

Allocation Tag Access in EL1. When SCR_EL3.ATA=1 and HCR_EL2.ATA=1, controls EL1 access to Allocation Tags.

When access to Allocation Tags is prevented:

• Instructions which Load or Store data are Unchecked.

• Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.

• Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the
Logical Address Tag as 0.

• Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent
Clean and Invalidate operation on Allocation Tags.

ATA Meaning
0b0 Access to Allocation Tags is prevented.
0b1 Access to Allocation Tags is not prevented.

This bit is permitted to be cached in a TLB.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

SCTLR_EL1, System Control Register (EL1)

Page 1321

Otherwise:

Reserved, RES0.

ATA0, bit [42]

When ARMv8.5-MemTag is implemented:

Allocation Tag Access in EL0. When SCR_EL3.ATA=1, HCR_EL2.ATA=1, and HCR_EL2.{E2H,TGE} != {1,1}, controls
EL0 access to Allocation Tags.

When access to Allocation Tags is prevented:

• Instructions which Load or Store data are Unchecked.

• Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.

• Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the
Logical Address Tag as 0.

• Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent
Clean and Invalidate operation on Allocation Tags.

ATA0 Meaning
0b0 Access to Allocation Tags is prevented.
0b1 Access to Allocation Tags is not prevented.

This field is permitted to be cached in a TLB.

Note

Software may change this control bit on a context switch.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCF, bits [41:40]

When ARMv8.5-MemTag is implemented:

Tag Check Fault in EL1. Controls the effect of Tag Check Faults due to Loads and Stores in EL1.

TCF Meaning
0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults causes a synchronous exception.
0b10 Tag Check Faults are asynchronously accumulated.

The value 0b11 is reserved.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCTLR_EL1, System Control Register (EL1)

Page 1322

TCF0, bits [39:38]

When ARMv8.5-MemTag is implemented:

Tag Check Fault in EL0. When HCR_EL2.{E2H,TGE} != {1,1}, controls the effect of Tag Check Faults due to Loads
and Stores in EL0.

TCF0 Meaning
0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults causes a synchronous exception.
0b10 Tag Check Faults are asynchronously accumulated.

The value 0b11 is reserved.

Note

Software may change this control bit on a context switch.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ITFSB, bit [37]

When ARMv8.5-MemTag is implemented:

When synchronous exceptions are not being generated by Tag Check Faults which are generated for Loads and Stores
in EL0 or EL1, controls the auto-synchronization of Tag Check Faults into TFSRE0_EL1 and TFSR_EL1.

ITFSB Meaning
0b0 Tag Check Faults are not synchronized on entry to EL1.
0b1 Tag Check Faults are synchronized on entry to EL1.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BT1, bit [36]

When ARMv8.5-BTI is implemented:

PAC Branch Type compatibility at EL1.

BT1 Meaning
0b0 When the PE is executing at EL1, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL1, PACIASP and PACIBSP are not

compatible with PSTATE.BTYPE == 0b11.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCTLR_EL1, System Control Register (EL1)

Page 1323

BT0, bit [35]

When ARMv8.5-BTI is implemented:

PAC Branch Type compatibility at EL0.

BT0 Meaning
0b0 When the PE is executing at EL0, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL0, PACIASP and PACIBSP are not

compatible with PSTATE.BTYPE == 0b11.

When HCR_EL2.E2H == 1 && HCR_EL2.TGE == 1, the value of the SCTLR_EL1.BT0 has no effect on execution at
EL0

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [34:32]

Reserved, RES0.

EnIA, bit [31]

When ARMv8.3-PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see 'System register control of pointer authentication' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

EnIA Meaning
0b0 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode
functions. Specifically, when the field is 1, AddPACIA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIA
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnIB, bit [30]

When ARMv8.3-PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see 'System register control of pointer authentication' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

SCTLR_EL1, System Control Register (EL1)

Page 1324

EnIB Meaning
0b0 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode
functions. Specifically, when the field is 1, AddPACIB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIB
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LSMAOE, bit [29]

When ARMv8.2-LSMAOC is implemented:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

LSMAOE Meaning
0b0 For all memory accesses at EL0, A32 and T32 Load Multiple

and Store Multiple can have an interrupt taken during the
sequence memory accesses, and the memory accesses are
not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load
Multiple and Store Multiple at EL0 is as defined for Armv8.0.

This bit is permitted to be cached in a TLB.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

nTLSMD, bit [28]

When ARMv8.2-LSMAOC is implemented:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

nTLSMD Meaning
0b0 All memory accesses by A32 and T32 Load Multiple and

Store Multiple at EL0 that are marked at stage 1 as Device-
nGRE/Device-nGnRE/Device-nGnRnE memory are trapped
and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and
Store Multiple at EL0 that are marked at stage 1 as Device-
nGRE/Device-nGnRE/Device-nGnRnE memory are not
trapped.

This bit is permitted to be cached in a TLB.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

SCTLR_EL1, System Control Register (EL1)

Page 1325

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

EnDA, bit [27]

When ARMv8.3-PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see 'System register control of pointer authentication' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

EnDA Meaning
0b0 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode
functions. Specifically, when the field is 1, AddPACDA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDA
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UCI, bit [26]

Traps EL0 execution of cache maintenance instructions, to EL1, or to EL2 when it is implemented and enabled for the
current Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using EC syndrome value 0x18.

This applies to DC CVAU, DC CIVAC, DC CVAC, DC CVAP, and IC IVAU.

If ARMv8.2-DCCVADP is implemented, this trap also applies to DC CVADP.

If ARMv8.5-MemTag is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC CGVAC, DC CGDVAC, DC
CGVAP, and DC CGDVAP.

If ARMv8.2-DCCVADP and ARMv8.5-MemTag are implemented, this trap also applies to DC CGVADP and DC
CGDVADP.

UCI Meaning
0b0 Execution of the specified instructions at EL0 using AArch64 is

trapped.
0b1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any
data or unified cache clean, or clean and invalidate instruction that operates by VA to the point of coherency can be
trapped when the value of this control is 1.

SCTLR_EL1, System Control Register (EL1)

Page 1326

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any
data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control
is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution
of any instruction cache invalidate by VA to the Point of Unification instruction can be trapped when the value of this
control is 1.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

EE, bit [25]

Endianness of data accesses at EL1, and stage 1 translation table walks in the EL1&0 translation regime.

The possible values of this bit are:

EE Meaning
0b0 Explicit data accesses at EL1, and stage 1 translation table walks

in the EL1&0 translation regime are little-endian.
0b1 Explicit data accesses at EL1, and stage 1 translation table walks

in the EL1&0 translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

In a system where the PE resets into EL1, this field resets to an IMPLEMENTATION DEFINED value.

E0E, bit [24]

Endianness of data accesses at EL0.

The possible values of this bit are:

E0E Meaning
0b0 Explicit data accesses at EL0 are little-endian.
0b1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0 then this bit is RES0. This option is not permitted
when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0 then this bit is RES1. This option is not permitted when
SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at EL1.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

SPAN, bit [23]

When ARMv8.1-PAN is implemented:

Set Privileged Access Never, on taking an exception to EL1.

SPAN Meaning
0b0 PSTATE.PAN is set to 1 on taking an exception to EL1.
0b1 The value of PSTATE.PAN is left unchanged on taking an

exception to EL1.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

SCTLR_EL1, System Control Register (EL1)

Page 1327

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

EIS, bit [22]

When ARMv8.5-CSEH is implemented:

Exception Entry is Context Synchronizing. The defined values are:

EIS Meaning
0b0 The taking of an exception to EL1 is not a context synchronizing

event.
0b1 The taking of an exception to EL1 is a context synchronizing event.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

If SCTLR_EL1.EIS is set to 0b0:

• Indirect writes to ESR_EL1, FAR_EL1, SPSR_EL1, ELR_EL1 are synchronized on exception entry to EL1, so
that a direct read of the register after exception entry sees the indirectly written value caused by the
exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL1.EIS:

• Changes to the PSTATE information on entry to EL1.
• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and

data processing instructions.
• Exit from Debug state.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

IESB, bit [21]

When ARMv8.2-IESB is implemented:

Implicit Error Synchronization event enable. Possible values are:

IESB Meaning
0b0 Disabled.
0b1 An implicit error synchronization event is added:

• At each exception taken to EL1.
• Before the operational pseudocode of each ERET instruction

executed at EL1.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might be 0
or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error synchronization
event is added after each DCPSX instruction taken to EL1 and before each DRPS instruction executed at EL1, in addition
to the other cases where it is added.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

SCTLR_EL1, System Control Register (EL1)

Page 1328

Otherwise:

Reserved, RES0.

TSCXT, bit [20]

When ARMv8.0-CSV2 is implemented:

Trap EL0 Access to the SCXTNUM_EL0 register, when EL0 is using AArch64. The defined values are:

TSCXT Meaning
0b0 EL0 access to SCXTNUM_EL0 is not disabled by this

mechanism.
0b1 EL0 access to SCXTNUM_EL0 is disabled, causing an

exception to EL1, or to EL2 when it is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1.
The value of SCXTNUM_EL0 is treated as 0.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL1&0 translation regime, this bit can force all memory regions
that are writable to be treated as XN. The possible values of this bit are:

WXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable in the EL1&0 translation regime is

forced to XN for accesses from software executing at EL1 or
EL0.

This bit applies only when SCTLR_EL1.M bit is set.

The WXN bit is permitted to be cached in a TLB.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to EL1, or to EL2 when it is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1, from both Execution states, reported using EC syndrome value 0x01.

nTWE Meaning
0b0 Any attempt to execute a WFE instruction at EL0 is trapped, if

the instruction would otherwise have caused the PE to enter a
low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its
condition code check.

Note

SCTLR_EL1, System Control Register (EL1)

Page 1329

Since a WFE or WFI can complete at any time, even without a Wakeup event,
the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or
WFI is executed when there is no Wakeup event. The only guarantee is that if
the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to EL1, or to EL2 when it is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1, from both Execution states, reported using EC syndrome value 0x01.

nTWI Meaning
0b0 Any attempt to execute a WFI instruction at EL0 is trapped, if

the instruction would otherwise have caused the PE to enter a
low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its
condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event,
the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or
WFI is executed when there is no Wakeup event. The only guarantee is that if
the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

UCT, bit [15]

Traps EL0 accesses to the CTR_EL0 to EL1, or to EL2 when it is implemented and enabled for the current Security
state and HCR_EL2.TGE is 1, from AArch64 state only, reported using EC value 0x18.

UCT Meaning
0b0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped.
0b1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

DZE, bit [14]

Traps EL0 execution of DC ZVA instructions to EL1, or to EL2 when it is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using EC syndrome value 0x18.

If ARMv8.5-MemTag is implemented, this trap also applies to DC GVA and DC GZVA.

SCTLR_EL1, System Control Register (EL1)

Page 1330

DZE Meaning
0b0 Any attempt to execute an instruction that this trap applies to at

EL0 using AArch64 is trapped.
Reading DCZID_EL0.DZP from EL0 returns 1, indicating that the
instructions this trap applies to are not supported.

0b1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

EnDB, bit [13]

When ARMv8.3-PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see 'System register control of pointer authentication' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

EnDB Meaning
0b0 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode
functions. Specifically, when the field is 1, AddPACDB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDB
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL0 and EL1:

I Meaning
0b0 All instruction access to Normal memory from EL0 and EL1 are

Non-cacheable for all levels of instruction and unified cache.
If the value of SCTLR_EL1.M is 0, instruction accesses from stage
1 of the EL1&0 translation regime are to Normal, Outer Shareable,
Inner Non-cacheable, Outer Non-cacheable memory.

0b1 This control has no effect on the Cacheability of instruction access
to Normal memory from EL0 and EL1.
If the value of SCTLR_EL1.M is 0, instruction accesses from stage
1 of the EL1&0 translation regime are to Normal, Outer Shareable,
Inner Write-Through, Outer Write-Through memory.

When the value of the HCR_EL2.DC bit is 1, then instruction access to Normal memory from EL0 and EL1 are
Cacheable regardless of the value of the SCTLR_EL1.I bit.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

In a system where the PE resets into EL1, this field resets to 0.

SCTLR_EL1, System Control Register (EL1)

Page 1331

EOS, bit [11]

When ARMv8.5-CSEH is implemented:

Exception Exit is Context Synchronizing. The defined values are:

EOS Meaning
0b0 An exception return from EL1 is not a context synchronizing

event
0b1 An exception return from EL1 is a context synchronizing event

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

If SCTLR_EL1.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL1.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL1 and ELR_EL1 on exception return is
synchronized.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and
data processing instructions.

• Exit from Debug state.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

EnRCTX, bit [10]

When ARMv8.0-PredInv is implemented:

Enable EL0 Access to the following instructions:

• AArch32 CFPRCTX, DVPRCTX and CPPRCTX instructions.

• AArch64 CFP RCTX, DVP RCT and CPP RCTX instructions.

The defined values are:

EnRCTX Meaning
0b0 EL0 access to these instructions is disabled, and these

instructions are trapped to EL1, or to EL2 when it is
implemented and enabled for the current Security state and
HCR_EL2.TGE is 1.

0b1 EL0 access to these instructions is enabled.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCTLR_EL1, System Control Register (EL1)

Page 1332

UMA, bit [9]

User Mask Access. Traps EL0 execution of MSR and MRS instructions that access the PSTATE.{D, A, I, F} masks to
EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from
AArch64 state only, reported using EC syndrome value 0x18.

UMA Meaning
0b0 Any attempt at EL0 using AArch64 to execute an MRS,

MSR(REGISTER), or MSR(IMMEDIATE) instruction that accesses the
DAIF is trapped.

0b1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

SED, bit [8]

When AArch32 is supported at any Exception level and EL0 is capable of using AArch32:

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

SED Meaning
0b0 SETEND instruction execution is enabled at EL0 using AArch32.
0b1 SETEND instructions are UNDEFINED at EL0 using AArch32 and

any attempt at EL0 to access a SETEND instruction generates an
exception to EL1, or to EL2 when it is implemented and enabled
for the current Security state and HCR_EL2.TGE is 1, reported
using EC syndrome value 0x00.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

ITD, bit [7]

When AArch32 is supported at any Exception level and EL0 is capable of using AArch32:

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

SCTLR_EL1, System Control Register (EL1)

Page 1333

ITD Meaning
0b0 All IT instruction functionality is enabled at EL0 using AArch32.
0b1 Any attempt at EL0 using AArch32 to execute any of the following

is UNDEFINED and generates an exception, reported using EC
syndrome value 0x00, to EL1 or to EL2 when it is implemented
and enabled for the current Security state and HCR_EL2.TGE is 1:

• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the

following values for hw1:
◦ 0b11xxxxxxxxxxxxxx: All 32-bit instructions, and

the 16-bit instructions B, UDF, SVC, LDM, and STM.
◦ 0b1011xxxxxxxxxxxx: All instructions in

'Miscellaneous 16-bit instructions' in the Arm®
Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section F3.2.5.

◦ 0b10100xxxxxxxxxxx: ADD Rd, PC, #imm
◦ 0b01001xxxxxxxxxxx: LDR Rd, [PC, #imm]
◦ 0b0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC;

MOV Rd, PC; BX PC; BLX PC.
◦ 0b010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm;

MOV PC, Rm. This pattern also covers
unpredictable cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether
they would pass or fail the condition code check that applies to
them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated
as:

• A 16-bit instruction, that can only be followed by another
16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either the
second 16-bit instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is
treated as a 16-bit instruction or the first half of a 32-bit
instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is
CONSTRAINED UNPREDICTABLE. For more information see 'Changes to an ITD control by an instruction in an IT block' in
the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section E1.2.4

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not
implemented then this bit is RAZ/WI.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

nAA, bit [6]

When ARMv8.4-LSE is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL1 and EL0 under certain conditions.

SCTLR_EL1, System Control Register (EL1)

Page 1334

nAA Meaning
0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW,

LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLR, STLRH,
STLUR, and STLURH generate an Alignment fault if all bytes
being accessed are not within a single 16-byte quantity, aligned to
16 bytes for accesses.

0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR,
LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR,
LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, or STLURH to
generate an Alignment fault if all bytes being accessed are not
within a single 16-byte quantity, aligned to 16 bytes.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CP15BEN, bit [5]

When AArch32 is supported at any Exception level and EL0 is capable of using AArch32:

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the
(coproc==0b1111) encoding space from EL0:

CP15BEN Meaning
0b0 EL0 using AArch32: EL0 execution of the CP15DMB,

CP15DSB, and CP15ISB instructions is UNDEFINED and
generates an exception to EL1, or to EL2 when it is
implemented and enabled for the current Security state and
HCR_EL2.TGE is 1. The exception is reported using EC
syndrome value 0x00.

0b1 EL0 using AArch32: EL0 execution of the CP15DMB,
CP15DSB, and CP15ISB instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it
is not implemented then this bit is RAO/WI.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SA0, bit [4]

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as the
base address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For
more information, see 'SP alignment checking' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section D1 (The AArch64 System Level Programmers' Model).

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

SCTLR_EL1, System Control Register (EL1)

Page 1335

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL1 uses the SP as the base
address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more
information, see 'SP alignment checking' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section D1 (The AArch64 System Level Programmers' Model).

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

C, bit [2]

Cacheability control, for data accesses.

C Meaning
0b0 All data access to Normal memory from EL0 and EL1, and all

Normal memory accesses to the EL1&0 stage 1 translation tables,
are Non-cacheable for all levels of data and unified cache.

0b1 This control has no effect on the Cacheability of:
• Data access to Normal memory from EL0 and EL1.
• Normal memory accesses to the EL1&0 stage 1 translation

tables.

When the value of the HCR_EL2.DC bit is 1, the PE ignores SCLTR.C. This means that Non-secure EL0 and Non-secure
EL1 data accesses to Normal memory are Cacheable.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

In a system where the PE resets into EL1, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL1 and EL0 .

A Meaning
0b0 Alignment fault checking disabled when executing at EL1 or EL0.

Instructions that load or store one or more registers, other than
load/store exclusive and load-acquire/store-release, do not check
that the address being accessed is aligned to the size of the data
element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL1 or EL0.
All instructions that load or store one or more registers have an
alignment check that the address being accessed is aligned to the
size of the data element(s) being accessed. If this check fails it
causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of
the A bit.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL1&0 stage 1 address translation.

M Meaning
0b0 EL1&0 stage 1 address translation disabled.

See the SCTLR_EL1.I field for the behavior of instruction accesses
to Normal memory.

0b1 EL1&0 stage 1 address translation enabled.

SCTLR_EL1, System Control Register (EL1)

Page 1336

If the value of HCR_EL2.{DC, TGE} is not {0, 0} then in Non-secure state the PE behaves as if the value of the
SCTLR_EL1.M field is 0 for all purposes other than returning the value of a direct read of the field.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

In a system where the PE resets into EL1, this field resets to 0.

Accessing the SCTLR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SCTLR_EL1 or
SCTLR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, SCTLR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.SCTLR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x110];

else
return SCTLR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return SCTLR_EL2;
else

return SCTLR_EL1;
elsif PSTATE.EL == EL3 then

return SCTLR_EL1;

MSR SCTLR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.SCTLR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x110] = X[t];

else
SCTLR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

SCTLR_EL2 = X[t];
else

SCTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

SCTLR_EL1 = X[t];

SCTLR_EL1, System Control Register (EL1)

Page 1337

MRS <Xt>, SCTLR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x110];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return SCTLR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return SCTLR_EL1;
else

UNDEFINED;

MSR SCTLR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x110] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
SCTLR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

SCTLR_EL1 = X[t];
else

UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCTLR_EL1, System Control Register (EL1)

Page 1338

SCTLR_EL2, System Control Register (EL2)
The SCTLR_EL2 characteristics are:

Purpose
Provides top level control of the system, including its memory system, at EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, these controls apply also to
execution at EL0.

Configuration
AArch64 System register SCTLR_EL2 bits [31:0] are architecturally mapped to AArch32 System register
HSCTLR[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
SCTLR_EL2 is a 64-bit register.

Field descriptions
The SCTLR_EL2 bit assignments are:

When HCR_EL2.E2H != 0b1 or HCR_EL2.TGE != 0b1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 4140 39 38 37 36 35 343332
RES0 TMERES0 TMT RES0 DSSBS ATA RES0 TCF RES0 ITFSBBT RES0

EnIAEnIBRES1EnDARES0EERES0RES1EISIESBRES0WXNRES1RES0RES1RES0EnDB I EOS RES0 nAA RES1 SA C A M
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This format applies in all Armv8.0 implementations, and from Armv8.1 when the Effective value of HCR_EL2.{E2H,
TGE} != {1, 1}.

Bits [63:54]

Reserved, RES0.

TME, bit [53]

When TME is implemented:

Enables the Transactional Memory Extension at EL2.

TME Meaning
0b0 Any attempt to execute a TSTART instruction at EL2 is trapped,

unless HCR_EL2.TME or SCR_EL3.TME causes TSTART
instructions to be UNDEFINED at EL2.

0b1 This control does not cause any TSTART instruction to be
trapped.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

SCTLR_EL2, System Control Register (EL2)

Page 1339

Otherwise:

Reserved, RES0.

Bit [52]

Reserved, RES0.

TMT, bit [51]

When TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL2.

TMT Meaning
0b0 This control does not cause any TSTART instruction to fail.
0b1 When the TSTART instruction is executed at EL2, the transaction

fails with a TRIVIAL failure cause.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [50:45]

Reserved, RES0.

DSSBS, bit [44]

When ARMv8.0-SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

DSSBS Meaning
0b0 PSTATE.SSBS is set to 0 on an exception to EL2.
0b1 PSTATE.SSBS is set to 1 on an exception to EL2.

In a system where the PE resets into EL2, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

ATA, bit [43]

When ARMv8.5-MemTag is implemented:

Allocation Tag Access. When SCR_EL3.ATA=1, controls EL2 access to Allocation Tags.

When access to Allocation Tags is prevented:

• Instructions that Load or Store data are Unchecked.

• Instructions that Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.

• Instructions that insert Logical Address Tags into addresses treat the Allocation Tag used to generate the
Logical Address Tag as 0.

• Cache maintenance instructions that invalidate Allocation Tags from caches behave as the equivalent Clean
and Invalidate operation on Allocation Tags.

SCTLR_EL2, System Control Register (EL2)

Page 1340

ATA Meaning
0b0 Access to Allocation Tags is prevented.
0b1 Access to Allocation Tags is not prevented.

This bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [42]

Reserved, RES0.

TCF, bits [41:40]

When ARMv8.5-MemTag is implemented:

Tag Check Fault. Controls the effect of Tag Check Faults due to Loads and Stores in EL2.

TCF Meaning
0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults cause a synchronous exception.
0b10 Tag Check Faults are asynchronously accumulated.

The value 0b11 is reserved.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [39:38]

Reserved, RES0.

ITFSB, bit [37]

When ARMv8.5-MemTag is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, which are generated for Loads and Stores
in EL0, EL1 or EL2, controls the auto-synchronizaton of Tag Check Faults into TFSRE0_EL1, TFSR_EL1, and
TFSR_EL2.

ITFSB Meaning
0b0 Tag Check Faults are not synchronized on entry to EL2.
0b1 Tag Check Faults are synchronized on entry to EL2.

Otherwise:

Reserved, RES0.

BT, bit [36]

When ARMv8.5-BTI is implemented:

PAC Branch Type compatibility at EL2.

SCTLR_EL2, System Control Register (EL2)

Page 1341

BT Meaning
0b0 When the PE is executing at EL2, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL2, PACIASP and PACIBSP are not

compatible with PSTATE.BTYPE == 0b11.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [35:32]

Reserved, RES0.

EnIA, bit [31]

When ARMv8.3-PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL2&0
translation regime.

For more information, see 'System register control of pointer authentication' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

EnIA Meaning
0b0 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode
functions. Specifically, when the field is 1, AddPACIA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIA
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnIB, bit [30]

When ARMv8.3-PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL2&0
translation regime.

For more information, see 'System register control of pointer authentication' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

EnIB Meaning
0b0 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is enabled.

Note

SCTLR_EL2, System Control Register (EL2)

Page 1342

This field controls the behavior of the AddPACIB and AuthIB pseudocode
functions. Specifically, when the field is 1, AddPACIB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIB
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:28]

Reserved, RES1.

EnDA, bit [27]

When ARMv8.3-PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL2&0
translation regime.

For more information, see 'System register control of pointer authentication' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

EnDA Meaning
0b0 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode
functions. Specifically, when the field is 1, AddPACDA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDA
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [26]

Reserved, RES0.

EE, bit [25]

Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and stage
2 translation table walks in the EL1&0 translation regime.

SCTLR_EL2, System Control Register (EL2)

Page 1343

EE Meaning
0b0 Explicit data accesses at EL2, stage 1 translation table walks in the

EL2 or EL2&0 translation regime, and stage 2 translation table
walks in the EL1&0 translation regime are little-endian.

0b1 Explicit data accesses at EL2, stage 1 translation table walks in the
EL2 or EL2&0 translation regime, and stage 2 translation table
walks in the EL1&0 translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

Bit [23]

Reserved, RES1.

EIS, bit [22]

When ARMv8.5-CSEH is implemented:

Exception entry is a context synchronization event. The defined values are:

EIS Meaning
0b0 The taking of an exception to EL2 is not a context synchronization

event.
0b1 The taking of an exception to EL2 is a context synchronization

event.

If SCTLR_EL2.EIS is set to 0b0:

• Indirect writes to ESR_EL2, FAR_EL2, SPSR_EL2, ELR_EL2, and HPFAR_EL2 are synchronized on exception
entry to EL2, so that a direct read of the register after exception entry sees the indirectly written value caused
by the exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EIS:

• Changes to the PSTATE information on entry to EL2.
• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores, and

data processing instructions.
• Exit from Debug state.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

IESB, bit [21]

When ARMv8.2-IESB is implemented:

Implicit Error Synchronization event enable.

SCTLR_EL2, System Control Register (EL2)

Page 1344

IESB Meaning
0b0 Disabled.
0b1 An implicit error synchronization event is added:

• At each exception taken to EL2.
• Before the operational pseudocode of each ERET instruction

executed at EL2.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might be 0
or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error synchronization
event is added after each DCPSX instruction taken to EL2 and before each DRPS instruction executed at EL2, in addition
to the other cases where it is added.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit can force all memory
regions that are writable to be treated as XN:

WXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable in the EL2 or EL2&0 translation

regime is forced to XN for accesses from software executing at
EL2.

This bit applies only when SCTLR_EL2.M bit is set.

The WXN bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Bit [18]

Reserved, RES1.

Bit [17]

Reserved, RES0.

Bit [16]

Reserved, RES1.

Bits [15:14]

Reserved, RES0.

EnDB, bit [13]

When ARMv8.3-PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL2&0
translation regime.

SCTLR_EL2, System Control Register (EL2)

Page 1345

For more information, see 'System register control of pointer authentication' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

EnDB Meaning
0b0 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode
functions. Specifically, when the field is 1, AddPACDB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDB
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2:

I Meaning
0b0 All instruction accesses to Normal memory from EL2 are Non-

cacheable for all levels of instruction and unified cache.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage
1 of the EL2 or EL2&0 translation regime are to Normal, Outer
Shareable, Inner Non-cacheable, Outer Non-cacheable memory.

0b1 This control has no effect on the Cacheability of instruction access
to Normal memory from EL2.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage
1 of the EL2 or EL2&0 translation regime are to Normal, Outer
Shareable, Inner Write-Through, Outer Write-Through memory.

This bit has no effect on the EL1&0 or EL3 translation regimes.

In a system where the PE resets into EL2, this field resets to 0.

EOS, bit [11]

When ARMv8.5-CSEH is implemented:

Exception exit is a context synchronization Event.

EOS Meaning
0b0 An exception return from EL2 is not a context synchronization

event.
0b1 An exception return from EL2 is a context synchronization event.

If SCTLR_EL2.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL2 and ELR_EL2 on exception return is
synchronized.

SCTLR_EL2, System Control Register (EL2)

Page 1346

• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores, and
data processing instructions.

• Exit from Debug state.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bits [10:7]

Reserved, RES0.

nAA, bit [6]

When ARMv8.4-LSE is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL2 under certain conditions.

nAA Meaning
0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW,

LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLR, STLRH,
STLUR, and STLURH generate an Alignment fault if all bytes
being accessed are not within a single 16-byte quantity, aligned to
16 bytes for accesses.

0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR,
LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR,
LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, or STLURH to
generate an Alignment fault if all bytes being accessed are not
within a single 16-byte quantity, aligned to 16 bytes.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the SP as the base
address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated. For more
information, see 'SP alignment checking' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section D1 (The AArch64 System Level Programmers' Model).

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

C, bit [2]

Cacheability control, for data accesses.

C Meaning
0b0 All data accesses to Normal memory from EL2, and all Normal

memory accesses to the EL2 translation tables, are Non-cacheable
for all levels of data and unified cache.

0b1 This control has no effect on the Cacheability of:
• Data access to Normal memory from EL2.
• Normal memory accesses to the EL2 translation tables.

SCTLR_EL2, System Control Register (EL2)

Page 1347

This bit has no effect on the EL1&0 or EL3 translation regimes.

In a system where the PE resets into EL2, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2:

A Meaning
0b0 Alignment fault checking disabled when executing at EL2.

Instructions that load or store one or more registers, other than
load/store exclusive and load-acquire/store-release, do not check
that the address being accessed is aligned to the size of the data
element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL2.
All instructions that load or store one or more registers have an
alignment check that the address being accessed is aligned to the
size of the data element(s) being accessed. If this check fails it
causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of
the A bit.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL2 stage 1 address translation.

M Meaning
0b0 EL2 stage 1 address translation disabled.

See the SCTLR_EL2.I field for the behavior of instruction accesses
to Normal memory.

0b1 EL2 stage 1 address translation enabled.

In a system where the PE resets into EL2, this field resets to 0.

When HCR_EL2.E2H == 0b1 and HCR_EL2.TGE == 0b1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 343332
RES0 TME TME0 TMT TMT0 TWEDEL TWEDEnDSSBS ATA ATA0 TCF TCF0 ITFSB BT1BT0 RES0

EnIAEnIBLSMAOEnTLSMDEnDAUCIEEE0ESPANEISIESBTSCXTWXNnTWERES0nTWIUCTDZE EnDB I EOSEnRCTXRES0SEDITDnAACP15BENSA0 SA C A M
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This format applies only from Armv8.1 when EL2 is enabled in the current Security state and HCR_EL2.{E2H, TGE}
== {1, 1}.

Bits [63:54]

Reserved, RES0.

TME, bit [53]

When TME is implemented:

Enables the Transactional Memory Extension at EL2.

TME Meaning
0b0 Any attempt to execute a TSTART instruction at EL2 is trapped,

unless HCR_EL2.TME or SCR_EL3.TME causes TSTART
instructions to be UNDEFINED at EL2.

0b1 This control does not cause any TSTART instruction to be
trapped.

SCTLR_EL2, System Control Register (EL2)

Page 1348

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TME0, bit [52]

When TME is implemented:

Enables the Transactional Memory Extension at EL0.

TME0 Meaning
0b0 Any attempt to execute a TSTART instruction at EL0 is trapped

to EL2, unless HCR_EL2.TME or SCR_EL3.TME causes TSTART
instructions to be UNDEFINED at EL0.

0b1 This control does not cause any TSTART instruction to be
trapped.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TMT, bit [51]

When TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL2.

TMT Meaning
0b0 This control does not cause any TSTART instruction to fail.
0b1 When the TSTART instruction is executed at EL2, the transaction

fails with a TRIVIAL failure cause.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TMT0, bit [50]

When TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL0.

TMT0 Meaning
0b0 This control does not cause any TSTART instruction to fail.
0b1 When the TSTART instruction is executed at EL0, the

transaction fails with a TRIVIAL failure cause.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEL, bits [49:46]

SCTLR_EL2, System Control Register (EL2)

Page 1349

When ARMv8.6-TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when SCTLR_EL2.TWEDEn is 1, encodes the minimum delay in taking a
trap of WFE caused by SCTLR_EL2.nTWE as 2^(TWEDEL + 8) cycles.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [45]

When ARMv8.6-TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE instruction caused by SCTLR_EL2.nTWE.

TWEDEn Meaning
0b0 The delay for taking a WFE trap is IMPLEMENTATION DEFINED.
0b1 The delay for taking a WFE trap is at least the number of

cycles defined in SCTLR_EL2.TWEDEL.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DSSBS, bit [44]

When ARMv8.0-SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

DSSBS Meaning
0b0 PSTATE.SSBS is set to 0 on an exception to EL2.
0b1 PSTATE.SSBS is set to 1 on an exception to EL2.

In a system where the PE resets into EL2, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

ATA, bit [43]

When ARMv8.5-MemTag is implemented:

Allocation Tag Access in EL2. When SCR_EL3.ATA=1, controls EL2 access to Allocation Tags.

When access to Allocation Tags is prevented:

• Instructions which Load or Store data are Unchecked.

• Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.

• Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the
Logical Address Tag as 0.

• Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent
Clean and Invalidate operation on Allocation Tags.

SCTLR_EL2, System Control Register (EL2)

Page 1350

ATA Meaning
0b0 Access to Allocation Tags is prevented.
0b1 Access to Allocation Tags is not prevented.

This bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ATA0, bit [42]

When ARMv8.5-MemTag is implemented:

Allocation Tag Access in EL0. When SCR_EL3.ATA=1, controls EL0 access to Allocation Tags.

When access to Allocation Tags is prevented:

• Instructions which Load or Store data are Unchecked.

• Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.

• Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the
Logical Address Tag as 0.

• Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent
Clean and Invalidate operation on Allocation Tags.

ATA0 Meaning
0b0 Access to Allocation Tags is prevented.
0b1 Access to Allocation Tags is not prevented.

This field is permitted to be cached in a TLB.

Note

Software may change this control bit on a context switch.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCF, bits [41:40]

When ARMv8.5-MemTag is implemented:

Tag Check Fault in EL2. Controls the effect of Tag Check Faults due to Loads and Stores in EL2.

TCF Meaning
0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults causes a synchronous exception.
0b10 Tag Check Faults are asynchronously accumulated.

The value 0b11 is reserved.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

SCTLR_EL2, System Control Register (EL2)

Page 1351

Otherwise:

Reserved, RES0.

TCF0, bits [39:38]

When ARMv8.5-MemTag is implemented:

Tag Check Fault in EL0. Controls the effect of Tag Check Faults due to Loads and Stores in EL0.

TCF0 Meaning
0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults causes a synchronous exception.
0b10 Tag Check Faults are asynchronously accumulated.

The value 0b11 is reserved.

Note

Software may change this control bit on a context switch.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ITFSB, bit [37]

When ARMv8.5-MemTag is implemented:

When synchronous exceptions are not being generated by Tag Check Faults which are generated for Loads and Stores
in EL0, EL1 or EL2, controls the auto-synchronizaton of Tag Check Faults into TFSRE0_EL1, TFSR_EL1 and
TFSR_EL2.

ITFSB Meaning
0b0 Tag Check Faults are not synchronized on entry to EL2.
0b1 Tag Check Faults are synchronized on entry to EL2.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BT1, bit [36]

When ARMv8.5-BTI is implemented:

PAC Branch Type compatibility at EL2.

BT1 Meaning
0b0 When the PE is executing at EL2, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL2, PACIASP and PACIBSP are not

compatible with PSTATE.BTYPE == 0b11.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

SCTLR_EL2, System Control Register (EL2)

Page 1352

Otherwise:

Reserved, RES0.

BT0, bit [35]

When ARMv8.5-BTI is implemented:

PAC Branch Type compatibility at EL0.

BT0 Meaning
0b0 When the PE is executing at EL0, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL0, PACIASP and PACIBSP are not

compatible with PSTATE.BTYPE == 0b11.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [34:32]

Reserved, RES0.

EnIA, bit [31]

When ARMv8.3-PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL2&0
translation regime.

For more information, see 'System register control of pointer authentication' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

EnIA Meaning
0b0 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode
functions. Specifically, when the field is 1, AddPACIA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIA
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnIB, bit [30]

When ARMv8.3-PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL2&0
translation regime.

SCTLR_EL2, System Control Register (EL2)

Page 1353

For more information, see 'System register control of pointer authentication' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

EnIB Meaning
0b0 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode
functions. Specifically, when the field is 1, AddPACIB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIB
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LSMAOE, bit [29]

When ARMv8.2-LSMAOC is implemented:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

LSMAOE Meaning
0b0 For all memory accesses at EL0, A32 and T32 Load Multiple

and Store Multiple can have an interrupt taken during the
sequence memory accesses, and the memory accesses are
not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load
Multiple and Store Multiple at EL0 is as defined for Armv8.0.

This bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

nTLSMD, bit [28]

When ARMv8.2-LSMAOC is implemented:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

nTLSMD Meaning
0b0 All memory accesses by A32 and T32 Load Multiple and

Store Multiple at EL0 that are marked at stage 1 as Device-
nGRE/Device-nGnRE/Device-nGnRnE memory are trapped
and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and
Store Multiple at EL0 that are marked at stage 1 as Device-
nGRE/Device-nGnRE/Device-nGnRnE memory are not
trapped.

This bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

SCTLR_EL2, System Control Register (EL2)

Page 1354

Otherwise:

Reserved, RES1.

EnDA, bit [27]

When ARMv8.3-PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL2&0
translation regime.

For more information, see 'System register control of pointer authentication' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

EnDA Meaning
0b0 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode
functions. Specifically, when the field is 1, AddPACDA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDA
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UCI, bit [26]

Traps EL0 execution of cache maintenance instructions to EL2, from AArch64 state only. This applies to DC CVAU, DC
CIVAC, DC CVAC, DC CVAP, and IC IVAU.

If ARMv8.2-DCCVADP is implemented, this trap also applies to DC CVADP.

If ARMv8.5-MemTag is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC CGVAC, DC CGDVAC, DC
CGVAP, and DC CGDVAP.

If ARMv8.2-DCCVADP and ARMv8.5-MemTag are implemented, this trap also applies to DC CGVADP and DC
CGDVADP.

UCI Meaning
0b0 Any attempt to execute an instruction that this trap applies to at

EL0 using AArch64 is trapped to EL2.
0b1 This control does not cause any instructions to be trapped.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any
data or unified cache clean, or clean and invalidate instruction that operates by VA to the point of coherency can be
trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any
data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control
is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution
of any instruction cache invalidate by VA to the Point of Unification instruction can be trapped when the value of this
control is 1.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

SCTLR_EL2, System Control Register (EL2)

Page 1355

EE, bit [25]

Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and stage
2 translation table walks in the EL2&0 translation regime.

The possible values of this bit are:

EE Meaning
0b0 Explicit data accesses at EL2, stage 1 translation table walks in the

EL2 or EL2&0 translation regime, and stage 2 translation table
walks in the EL2&0 translation regime are little-endian.

0b1 Explicit data accesses at EL2, stage 1 translation table walks in the
EL2 or EL2&0 translation regime, and stage 2 translation table
walks in the EL2&0 translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to an IMPLEMENTATION DEFINED value.

E0E, bit [24]

Endianness of data accesses at EL0.

E0E Meaning
0b0 Explicit data accesses at EL0 are little-endian.
0b1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0 then this bit is RES0. This option is not permitted
when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0 then this bit is RES1. This option is not permitted when
SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at EL1.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

SPAN, bit [23]

Set Privileged Access Never, on taking an exception to EL2.

SPAN Meaning
0b0 PSTATE.PAN is set to 1 on taking an exception to EL2.
0b1 The value of PSTATE.PAN is left unchanged on taking an

exception to EL2.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

EIS, bit [22]

When ARMv8.5-CSEH is implemented:

Exception Entry is a context synchronization event.

EIS Meaning
0b0 The taking of an exception to EL2 is not a context synchronization

event.
0b1 The taking of an exception to EL2 is a context synchronization

event.

If SCTLR_EL2.EIS is set to 0b0:

SCTLR_EL2, System Control Register (EL2)

Page 1356

• Indirect writes to ESR_EL2, FAR_EL2, SPSR_EL2, ELR_EL2, HPFAR_EL2 are synchronized on exception entry
to EL2, so that a direct read of the register after exception entry sees the indirectly written value caused by
the exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EIS:

• Changes to the PSTATE information on entry to EL2.
• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and

data processing instructions.
• Exit from Debug state.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

IESB, bit [21]

When ARMv8.2-IESB is implemented:

Implicit Error Synchronization event Enable.

IESB Meaning
0b0 Disabled.
0b1 An implicit error synchronization event is added:

• After each exception taken to EL2.
• Before the operational pseudocode of each ERET

instruction executed at EL2.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might be 0
or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error synchronization
event is added after each DCPSx instruction taken to EL2 and before each DRPS instruction executed at EL2, in
addition to the other cases where it is added.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TSCXT, bit [20]

When ARMv8.0-CSV2 is implemented:

Trap EL0 Access to the SCXTNUM_EL0 register, when EL0 is using AArch64.

TSCXT Meaning
0b0 EL0 access to SCXTNUM_EL0 is not disabled by this

mechanism.
0b1 EL0 access to SCXTNUM_EL0 is disabled, causing an

exception to EL2, and the SCXTNUM_EL0 value is treated at 0.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

SCTLR_EL2, System Control Register (EL2)

Page 1357

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit can force all memory
regions that are writable to be treated as XN. The possible values of this bit are:

WXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable in the EL2 or EL2&0 translation

regime is forced to XN for accesses from software executing at
EL2.

This bit applies only when SCTLR_EL2.M bit is set.

The WXN bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to EL2, from both Execution states.

nTWE Meaning
0b0 Any attempt to execute a WFE instruction at EL0 is trapped to

EL2, if the instruction would otherwise have caused the PE to
enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its
condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event,
the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or
WFI is executed when there is no Wakeup event. The only guarantee is that if
the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to EL2, from both Execution states.

nTWI Meaning
0b0 Any attempt to execute a WFI instruction at EL0 is trapped EL2,

if the instruction would otherwise have caused the PE to enter a
low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its
condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event,
the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or
WFI is executed when there is no Wakeup event. The only guarantee is that if
the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

SCTLR_EL2, System Control Register (EL2)

Page 1358

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

UCT, bit [15]

Traps EL0 accesses to the CTR_EL0 to EL2, from AArch64 state only.

UCT Meaning
0b0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped to

EL2.
0b1 This control does not cause any instructions to be trapped.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

DZE, bit [14]

Traps EL0 execution of DC ZVA instructions to EL2, from AArch64 state only.

If ARMv8.5-MemTag is implemented, this trap also applies to DC GVA and DC GZVA.

DZE Meaning
0b0 Any attempt to execute an instruction that this trap applies to at

EL0 using AArch64 is trapped to EL2. Reading DCZID_EL0.DZP
from EL0 returns 1, indicating that the instructions that this trap
applies to are not supported.

0b1 This control does not cause any instructions to be trapped.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

EnDB, bit [13]

When ARMv8.3-PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL2&0
translation regime.

For more information, see 'System register control of pointer authentication' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

EnDB Meaning
0b0 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode
functions. Specifically, when the field is 1, AddPACDB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDB
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2 and EL0:

SCTLR_EL2, System Control Register (EL2)

Page 1359

I Meaning
0b0 All instruction access to Normal memory from EL2 and EL0 are

Non-cacheable for all levels of instruction and unified cache.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage
1 of the EL2&0 translation regime are to Normal, Outer Shareable,
Inner Non-cacheable, Outer Non-cacheable memory.

0b1 This control has no effect on the Cacheability of instruction access
to Normal memory from EL2 and EL0.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage
1 of the EL2&0 translation regime are to Normal, Outer Shareable,
Inner Write-Through, Outer Write-Through memory.

This bit has no effect on the EL3 translation regimes.

In a system where the PE resets into EL2, this field resets to 0.

EOS, bit [11]

When ARMv8.5-CSEH is implemented:

Exception exit is a context synchronization event.

EOS Meaning
0b0 An exception return from EL2 is not a context synchronization

event.
0b1 An exception return from EL2 is a context synchronization event.

If SCTLR_EL2.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL2 and ELR_EL2 on exception return is
synchronized.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and
data processing instructions.

• Exit from Debug state.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

EnRCTX, bit [10]

When ARMv8.0-PredInv is implemented:

Enable EL0 Access to the following instructions:

• AArch32 CFPRCTX, DVPRCTX and CPPRCTX instructions.

• AArch64 CFP RCTX, DVP RCT and CPP RCTX instructions.

The defined values are:

EnRCTX Meaning
0b0 EL0 access to these instructions is disabled, and these

instructions are trapped to EL1.
0b1 EL0 access to these instructions is enabled.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

SCTLR_EL2, System Control Register (EL2)

Page 1360

Otherwise:

Reserved, RES0.

Bit [9]

Reserved, RES0.

SED, bit [8]

When AArch32 is supported at any Exception level and EL0 is capable of using AArch32:

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

SED Meaning
0b0 SETEND instruction execution is enabled at EL0 using AArch32.
0b1 SETEND instructions are UNDEFINED at EL0 using AArch32.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

ITD, bit [7]

When AArch32 is supported at any Exception level and EL0 is capable of using AArch32:

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

ITD Meaning
0b0 All IT instruction functionality is enabled at EL0 using AArch32.
0b1 Any attempt at EL0 using AArch32 to execute any of the following

is UNDEFINED:
• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the

following values for hw1:
◦ 0b11xxxxxxxxxxxxxx: All 32-bit instructions, and the

16-bit instructions B, UDF, SVC, LDM, and STM.
◦ 0b1011xxxxxxxxxxxx: All instructions in

'Miscellaneous 16-bit instructions' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section F3.2.5.

◦ 0b10100xxxxxxxxxxx: ADD Rd, PC, #imm
◦ 0b01001xxxxxxxxxxx: LDR Rd, [PC, #imm]
◦ 0b0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC;

MOV Rd, PC; BX PC; BLX PC.
◦ 0b010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm;

MOV PC, Rm. This pattern also covers UNPREDICTABLE
cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether
they would pass or fail the condition code check that applies to
them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated
as:

• A 16-bit instruction, that can only be followed by another
16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either the
second 16-bit instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is
treated as a 16-bit instruction or the first half of a 32-bit
instruction.

SCTLR_EL2, System Control Register (EL2)

Page 1361

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is
CONSTRAINED UNPREDICTABLE. For more information see 'Changes to an ITD control by an instruction in an IT block' in
the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section E1.2.4

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not
implemented then this bit is RAZ/WI.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

nAA, bit [6]

When ARMv8.4-LSE is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL2 and EL0 under certain conditions.

nAA Meaning
0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW,

LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLR, STLRH,
STLUR, and STLURH generate an Alignment fault if all bytes
being accessed are not within a single 16-byte quantity, aligned to
16 bytes for accesses.

0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR,
LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR,
LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, or STLURH to
generate an Alignment fault if all bytes being accessed are not
within a single 16-byte quantity, aligned to 16 bytes.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CP15BEN, bit [5]

When AArch32 is supported at any Exception level and EL0 is capable of using AArch32:

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the
(coproc==0b1111) encoding space from EL0:

CP15BEN Meaning
0b0 EL0 using AArch32: EL0 execution of the CP15DMB,

CP15DSB, and CP15ISB instructions is UNDEFINED.
0b1 EL0 using AArch32: EL0 execution of the CP15DMB,

CP15DSB, and CP15ISB instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it
is not implemented then this bit is RAO/WI.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SA0, bit [4]

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as the
base address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For

SCTLR_EL2, System Control Register (EL2)

Page 1362

more information, see 'SP alignment checking' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section D1 (The AArch64 System Level Programmers' Model).

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the SP as the base
address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more
information, see 'SP alignment checking' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section D1 (The AArch64 System Level Programmers' Model).

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

C, bit [2]

Cacheability control, for data accesses.

C Meaning
0b0 All data access to Normal memory from EL2 and EL0, and all

Normal memory accesses to the EL2&0 translation tables, are
Non-cacheable for all levels of data and unified cache.

0b1 This control has no effect on the Cacheability of:
• Data access to Normal memory from EL2 and EL0.
• Normal memory accesses to the EL2&0 translation tables.

This bit has no effect on the EL3 translation regimes.

In a system where the PE resets into EL2, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2 and EL0.

A Meaning
0b0 Alignment fault checking disabled when executing at EL2 and EL0.

Instructions that load or store one or more registers, other than
load/store exclusive and load-acquire/store-release, do not check
that the address being accessed is aligned to the size of the data
element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL2 and EL0.
All instructions that load or store one or more registers have an
alignment check that the address being accessed is aligned to the
size of the data element(s) being accessed. If this check fails it
causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of
the A bit.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL2&0 stage 1 address translation. Possible values of this bit are:

M Meaning
0b0 EL2&0 stage 1 address translation disabled.

See the SCTLR_EL2.I field for the behavior of instruction accesses
to Normal memory.

0b1 EL2&0 stage 1 address translation enabled.

In a system where the PE resets into EL2, this field resets to 0.

SCTLR_EL2, System Control Register (EL2)

Page 1363

Accessing the SCTLR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SCTLR_EL2 or
SCTLR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, SCTLR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return SCTLR_EL2;
elsif PSTATE.EL == EL3 then

return SCTLR_EL2;

MSR SCTLR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SCTLR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

SCTLR_EL2 = X[t];

MRS <Xt>, SCTLR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b000

SCTLR_EL2, System Control Register (EL2)

Page 1364

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.SCTLR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x110];

else
return SCTLR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return SCTLR_EL2;
else

return SCTLR_EL1;
elsif PSTATE.EL == EL3 then

return SCTLR_EL1;

MSR SCTLR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.SCTLR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x110] = X[t];

else
SCTLR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

SCTLR_EL2 = X[t];
else

SCTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

SCTLR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCTLR_EL2, System Control Register (EL2)

Page 1365

SCTLR_EL3, System Control Register (EL3)
The SCTLR_EL3 characteristics are:

Purpose
Provides top level control of the system, including its memory system, at EL3.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to SCTLR_EL3 are UNDEFINED.

Attributes
SCTLR_EL3 is a 64-bit register.

Field descriptions
The SCTLR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 4140 39 38 37 36 35 343332
RES0 TMERES0 TMT RES0 DSSBS ATA RES0 TCF RES0 ITFSBBT RES0

EnIAEnIBRES1EnDARES0EERES0RES1EISIESBRES0WXNRES1RES0RES1RES0EnDB I EOS RES0 nAA RES1 SA C A M
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:54]

Reserved, RES0.

TME, bit [53]

When TME is implemented:

Enables the Transactional Memory Extension at EL3.

TME Meaning
0b0 Any attempt to execute a TSTART instruction at EL3 is trapped,

unless HCR_EL2.TME or SCR_EL3.TME causes TSTART
instructions to be UNDEFINED at EL3.

0b1 This control does not cause any TSTART instruction to be
trapped.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [52]

Reserved, RES0.

SCTLR_EL3, System Control Register (EL3)

Page 1366

TMT, bit [51]

When TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL3.

TMT Meaning
0b0 This control does not cause any TSTART instruction to fail.
0b1 When the TSTART instruction is executed at EL3, the transaction

fails with a TRIVIAL failure cause.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [50:45]

Reserved, RES0.

DSSBS, bit [44]

When ARMv8.0-SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

DSSBS Meaning
0b0 PSTATE.SSBS is set to 0 on an exception to EL3.
0b1 PSTATE.SSBS is set to 1 on an exception to EL3.

In a system where the PE resets into EL3, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

ATA, bit [43]

When ARMv8.5-MemTag is implemented:

Allocation Tag Access in EL3. Controls EL3 access to Allocation Tags.

When access to Allocation Tags is prevented:

• Instructions which Load or Store data are Unchecked.

• Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.

• Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the
Logical Address Tag as 0.

• Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent
Clean and Invalidate operation on Allocation Tags.

ATA Meaning
0b0 Access to Allocation Tags is prevented.
0b1 Access to Allocation Tags is not prevented.

This bit is permitted to be cached in a TLB.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

SCTLR_EL3, System Control Register (EL3)

Page 1367

Otherwise:

Reserved, RES0.

Bit [42]

Reserved, RES0.

TCF, bits [41:40]

When ARMv8.5-MemTag is implemented:

Tag Check Fault in EL3. Controls the effect of Tag Check Faults due to Loads and Stores in EL3.

TCF Meaning
0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults causes a synchronous exception.
0b10 Tag Check Faults are asynchronously accumulated.

The value 0b11 is reserved.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [39:38]

Reserved, RES0.

ITFSB, bit [37]

When ARMv8.5-MemTag is implemented:

When asynchronous exceptions are being generated by Tag Check Faults which are generated for Loads and Stores at
any exception level, controls the auto-synchronisaton of Tag Check Faults into TFSRE0_EL1 and TFSR_ELx.

ITFSB Meaning
0b0 Tag Check Faults are not synchronized on entry to EL3.
0b1 Tag Check Faults are synchronized on entry to EL3.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BT, bit [36]

When ARMv8.5-BTI is implemented:

PAC Branch Type compatibility at EL3.

BT Meaning
0b0 When the PE is executing at EL3, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL3, PACIASP and PACIBSP are not

compatible with PSTATE.BTYPE == 0b11.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

SCTLR_EL3, System Control Register (EL3)

Page 1368

AArch64-tfsr_elx.html

Otherwise:

Reserved, RES0.

Bits [35:32]

Reserved, RES0.

EnIA, bit [31]

When ARMv8.3-PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL3
translation regime.

Possible values of this bit are:

EnIA Meaning
0b0 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is enabled.

For more information, see 'System register control of pointer authentication' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode
functions. Specifically, when the field is 1, AddPACIA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIA
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnIB, bit [30]

When ARMv8.3-PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL3
translation regime.

Possible values of this bit are:

EnIB Meaning
0b0 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is enabled.

For more information, see 'System register control of pointer authentication' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode
functions. Specifically, when the field is 1, AddPACIB returns a copy of a

SCTLR_EL3, System Control Register (EL3)

Page 1369

pointer to which a pointer authentication code has been added, and AuthIB
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:28]

Reserved, RES1.

EnDA, bit [27]

When ARMv8.3-PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL3
translation regime.

EnDA Meaning
0b0 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is enabled.

For more information, see 'System register control of pointer authentication' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode
functions. Specifically, when the field is 1, AddPACDA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDA
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [26]

Reserved, RES0.

EE, bit [25]

Endianness of data accesses at EL3, and stage 1 translation table walks in the EL3 translation regime.

EE Meaning
0b0 Explicit data accesses at EL3, and stage 1 translation table walks

in the EL3 translation regime are little-endian.
0b1 Explicit data accesses at EL3, and stage 1 translation table walks

in the EL3 translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

SCTLR_EL3, System Control Register (EL3)

Page 1370

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

In a system where the PE resets into EL3, this field resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

Bit [23]

Reserved, RES1.

EIS, bit [22]

When ARMv8.5-CSEH is implemented:

Exception Entry is Context Synchronizing.

EIS Meaning
0b0 The taking of an exception to EL3 is not a context synchronizing

event.
0b1 The taking of an exception to EL3 is a context synchronizing event.

If SCTLR_EL3.EIS is set to 0b0:

• Indirect writes to ESR_EL3, FAR_EL3, SPSR_EL3, ELR_EL3 are synchronized on exception entry to EL3, so
that a direct read of the register after exception entry sees the indirectly written value caused by the
exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL3.EIS:

• Changes to the PSTATE information on entry to EL3.
• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and

data processing instructions.
• Debug state exit.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

IESB, bit [21]

When ARMv8.2-IESB is implemented:

Implicit Error Synchronization event enable.

IESB Meaning
0b0 Disabled.
0b1 An implicit error synchronization event is added:

• At each exception taken to EL3.
• Before the operational pseudocode of each ERET

instruction executed at EL3.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might be 0
or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error synchronization
event is added after each DCPSX instruction taken to EL3 and before each DRPS instruction executed at EL3, in addition
to the other cases where it is added.

SCTLR_EL3, System Control Register (EL3)

Page 1371

When ARMv8.4-DFE is implemented, and the Effective value of SCR_EL3.NMEA is 1, this field is ignored and its
Effective value is 1.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL3 translation regime, this bit can force all memory regions
that are writable to be treated as XN. The possible values of this bit are:

WXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable in the EL3 translation regime is

forced to XN for accesses from software executing at EL3.

This bit applies only when SCTLR_EL3.M bit is set.

The WXN bit is permitted to be cached in a TLB.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Bit [18]

Reserved, RES1.

Bit [17]

Reserved, RES0.

Bit [16]

Reserved, RES1.

Bits [15:14]

Reserved, RES0.

EnDB, bit [13]

When ARMv8.3-PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL3
translation regime.

EnDB Meaning
0b0 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is enabled.

For more information, see 'System register control of pointer authentication' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

Note

SCTLR_EL3, System Control Register (EL3)

Page 1372

This field controls the behavior of the AddPACDB and AuthDB pseudocode
functions. Specifically, when the field is 1, AddPACDB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDB
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL3:

I Meaning
0b0 All instruction access to Normal memory from EL3 are Non-

cacheable for all levels of instruction and unified cache.
If the value of SCTLR_EL3.M is 0, instruction accesses from stage
1 of the EL3 translation regime are to Normal, Outer Shareable,
Inner Non-cacheable, Outer Non-cacheable memory.

0b1 This control has no effect on the Cacheability of instruction access
to Normal memory from EL3.
If the value of SCTLR_EL3.M is 0, instruction accesses from stage
1 of the EL3 translation regime are to Normal, Outer Shareable,
Inner Write-Through, Outer Write-Through memory.

This bit has no effect on the EL1&0, EL2, or EL2&0 translation regimes.

In a system where the PE resets into EL3, this field resets to 0.

EOS, bit [11]

When ARMv8.5-CSEH is implemented:

Exception Exit is Context Synchronizing.

EOS Meaning
0b0 An exception return from EL3 is not a context synchronizing

event
0b1 An exception return from EL3 is a context synchronizing event

If SCTLR_EL3.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL3.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL3 and ELR_EL3 on exception return is
synchronized.

• If the PE enters Debug state before the first instruction after an Exception return from EL3 to Non-secure
state, any pending Halting debug event completes execution.

• The GIC behavior that allocates interrupts to FIQ or IRQ changes simultaneously with leaving the EL3
Exception level.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and
data processing instructions.

• Exit from Debug state.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

SCTLR_EL3, System Control Register (EL3)

Page 1373

Otherwise:

Reserved, RES1.

Bits [10:7]

Reserved, RES0.

nAA, bit [6]

When ARMv8.4-LSE is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL3 under certain conditions.

nAA Meaning
0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW,

LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLR, STLRH,
STLUR, and STLURH generate an Alignment fault if all bytes
being accessed are not within a single 16-byte quantity, aligned to
16 bytes for accesses.

0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR,
LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR,
LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, or STLURH to
generate an Alignment fault if all bytes being accessed are not
within a single 16-byte quantity, aligned to 16 bytes.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL3 uses the SP as the base
address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more
information, see 'SP alignment checking' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section D1 (The AArch64 System Level Programmers' Model).

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

C, bit [2]

Cacheability control, for data accesses.

C Meaning
0b0 All data access to Normal memory from EL3, and all Normal

memory accesses to the EL3 translation tables, are Non-cacheable
for all levels of data and unified cache.

0b1 This control has no effect on the Cacheability of:
• Data access to Normal memory from EL3.
• Normal memory accesses to the EL3 translation tables.

This bit has no effect on the EL1&0, EL2, or EL2&0 translation regimes.

In a system where the PE resets into EL3, this field resets to 0.

SCTLR_EL3, System Control Register (EL3)

Page 1374

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL3.

A Meaning
0b0 Alignment fault checking disabled when executing at EL3.

Instructions that load or store one or more registers, other than
load/store exclusive and load-acquire/store-release, do not check
that the address being accessed is aligned to the size of the data
element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL3.
All instructions that load or store one or more registers have an
alignment check that the address being accessed is aligned to the
size of the data element(s) being accessed. If this check fails it
causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of
the A bit.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL3 stage 1 address translation. Possible values of this bit are:

M Meaning
0b0 EL3 stage 1 address translation disabled.

See the SCTLR_EL3.I field for the behavior of instruction accesses
to Normal memory.

0b1 EL3 stage 1 address translation enabled.

In a system where the PE resets into EL3, this field resets to 0.

Accessing the SCTLR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, SCTLR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return SCTLR_EL3;

MSR SCTLR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0000 0b000

SCTLR_EL3, System Control Register (EL3)

Page 1375

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
SCTLR_EL3 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCTLR_EL3, System Control Register (EL3)

Page 1376

SCXTNUM_EL0, EL0 Read/Write Software Context
Number

The SCXTNUM_EL0 characteristics are:

Purpose
Provides a number that can be used to separate out different context numbers with the EL0 exception level, for the
purpose of protecting against side-channels using branch prediction and similar resources.

Configuration
This register is present only when ARMv8.0-CSV2 is implemented. Otherwise, direct accesses to SCXTNUM_EL0 are
UNDEFINED.

Attributes
SCXTNUM_EL0 is a 64-bit register.

Field descriptions
The SCXTNUM_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Software Context Number
Software Context Number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Software Context Number. A number to identify the context within the EL0 exception level.

This field resets to an architecturally UNKNOWN value.

Accessing the SCXTNUM_EL0
Accesses to this register use the following encodings:

MRS <Xt>, SCXTNUM_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0000 0b111

SCXTNUM_EL0, EL0 Read/Write Software Context Number

Page 1377

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.TSCXT ==

'1' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.EnSCXT ==

'0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCXTNUM_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.TSCXT ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.EnSCXT == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return SCXTNUM_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.EnSCXT == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.SCXTNUM_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.EnSCXT == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return SCXTNUM_EL0;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.EnSCXT == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return SCXTNUM_EL0;
elsif PSTATE.EL == EL3 then

return SCXTNUM_EL0;

MSR SCXTNUM_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0000 0b111

SCXTNUM_EL0, EL0 Read/Write Software Context Number

Page 1378

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.TSCXT ==

'1' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.EnSCXT ==

'0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCXTNUM_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.TSCXT ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.EnSCXT == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
SCXTNUM_EL0 = X[t];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.EnSCXT == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.SCXTNUM_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.EnSCXT == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
SCXTNUM_EL0 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.EnSCXT == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

SCXTNUM_EL0 = X[t];
elsif PSTATE.EL == EL3 then

SCXTNUM_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCXTNUM_EL0, EL0 Read/Write Software Context Number

Page 1379

SCXTNUM_EL1, EL1 Read/Write Software Context
Number

The SCXTNUM_EL1 characteristics are:

Purpose
Provides a number that can be used to separate out different context numbers with the EL1 exception level, for the
purpose of protecting against side-channels using branch prediction and similar resources.

Configuration
This register is present only when ARMv8.0-CSV2 is implemented. Otherwise, direct accesses to SCXTNUM_EL1 are
UNDEFINED.

Attributes
SCXTNUM_EL1 is a 64-bit register.

Field descriptions
The SCXTNUM_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Software Context Number
Software Context Number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Software Context Number. A number to identify the context within the EL1 exception level.

This field resets to an architecturally UNKNOWN value.

Accessing the SCXTNUM_EL1
Accesses to this register use the following encodings:

MRS <Xt>, SCXTNUM_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1101 0b0000 0b111

SCXTNUM_EL1, EL1 Read/Write Software Context Number

Page 1380

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.EnSCXT == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.SCXTNUM_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.EnSCXT == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x188];

else
return SCXTNUM_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.EnSCXT == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

return SCXTNUM_EL2;
else

return SCXTNUM_EL1;
elsif PSTATE.EL == EL3 then

return SCXTNUM_EL1;

MSR SCXTNUM_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1101 0b0000 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.EnSCXT == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.SCXTNUM_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.EnSCXT == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x188] = X[t];

else
SCXTNUM_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.EnSCXT == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

SCXTNUM_EL2 = X[t];
else

SCXTNUM_EL1 = X[t];
elsif PSTATE.EL == EL3 then

SCXTNUM_EL1 = X[t];

MRS <Xt>, SCXTNUM_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b1101 0b0000 0b111

SCXTNUM_EL1, EL1 Read/Write Software Context Number

Page 1381

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x188];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.EnSCXT == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return SCXTNUM_EL1;
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
return SCXTNUM_EL1;

else
UNDEFINED;

MSR SCXTNUM_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1101 0b0000 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x188] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.EnSCXT == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

SCXTNUM_EL1 = X[t];
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
SCXTNUM_EL1 = X[t];

else
UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCXTNUM_EL1, EL1 Read/Write Software Context Number

Page 1382

SCXTNUM_EL2, EL2 Read/Write Software Context
Number

The SCXTNUM_EL2 characteristics are:

Purpose
Provides a number that can be used to separate out different context numbers with the EL2 exception level, for the
purpose of protecting against side-channels using branch prediction and similar resources.

Configuration
This register is present only when ARMv8.0-CSV2 is implemented. Otherwise, direct accesses to SCXTNUM_EL2 are
UNDEFINED.

Attributes
SCXTNUM_EL2 is a 64-bit register.

Field descriptions
The SCXTNUM_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Software Context Number
Software Context Number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Software Context Number. A number to identify the context within the EL2 exception level.

This field resets to an architecturally UNKNOWN value.

Accessing the SCXTNUM_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SCXTNUM_EL2 or
SCXTNUM_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, SCXTNUM_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1101 0b0000 0b111

SCXTNUM_EL2, EL2 Read/Write Software Context Number

Page 1383

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.EnSCXT == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return SCXTNUM_EL2;

elsif PSTATE.EL == EL3 then
return SCXTNUM_EL2;

MSR SCXTNUM_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1101 0b0000 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.EnSCXT == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
SCXTNUM_EL2 = X[t];

elsif PSTATE.EL == EL3 then
SCXTNUM_EL2 = X[t];

MRS <Xt>, SCXTNUM_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1101 0b0000 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.EnSCXT == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.SCXTNUM_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.EnSCXT == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x188];

else
return SCXTNUM_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.EnSCXT == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

return SCXTNUM_EL2;
else

return SCXTNUM_EL1;
elsif PSTATE.EL == EL3 then

return SCXTNUM_EL1;

SCXTNUM_EL2, EL2 Read/Write Software Context Number

Page 1384

MSR SCXTNUM_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1101 0b0000 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.EnSCXT == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.SCXTNUM_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.EnSCXT == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x188] = X[t];

else
SCXTNUM_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.EnSCXT == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

SCXTNUM_EL2 = X[t];
else

SCXTNUM_EL1 = X[t];
elsif PSTATE.EL == EL3 then

SCXTNUM_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCXTNUM_EL2, EL2 Read/Write Software Context Number

Page 1385

SCXTNUM_EL3, EL3 Read/Write Software Context
Number

The SCXTNUM_EL3 characteristics are:

Purpose
Provides a number that can be used to separate out different context numbers with the EL3 exception level, for the
purpose of protecting against side-channels using branch prediction and similar resources.

Configuration
This register is present only when EL3 is implemented and ARMv8.0-CSV2 is implemented. Otherwise, direct accesses
to SCXTNUM_EL3 are UNDEFINED.

Attributes
SCXTNUM_EL3 is a 64-bit register.

Field descriptions
The SCXTNUM_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Software Context Number
Software Context Number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Software Context Number. A number to identify the context within the EL3 exception level.

This field resets to an architecturally UNKNOWN value.

Accessing the SCXTNUM_EL3
Accesses to this register use the following encodings:

MRS <Xt>, SCXTNUM_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b1101 0b0000 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return SCXTNUM_EL3;

SCXTNUM_EL3, EL3 Read/Write Software Context Number

Page 1386

MSR SCXTNUM_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b1101 0b0000 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
SCXTNUM_EL3 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCXTNUM_EL3, EL3 Read/Write Software Context Number

Page 1387

SDER32_EL2, AArch32 Secure Debug Enable Register
The SDER32_EL2 characteristics are:

Purpose
Allows access to the AArch32 register SDER from Secure EL2 and EL3 only.

Configuration
This register is present only when ARMv8.4-SecEL2 is implemented and EL1 supports AArch32. Otherwise, direct
accesses to SDER32_EL2 are UNDEFINED.

This register is ignored by the PE when when one or more of the following are true:

• The PE is in Non-secure state.

• EL1 is using AArch64.

Attributes
SDER32_EL2 is a 64-bit register.

Field descriptions
The SDER32_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 SUNIDENSUIDEN
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

SUNIDEN, bit [1]

Secure User Non-Invasive Debug Enable.

SUNIDEN Meaning
0b0 This bit does not affect Performance Monitors event

counting at Secure EL0.
0b1 If EL1 is using AArch32, Performance Monitors event

counting is allowed in Secure EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SUIDEN, bit [0]

Secure User Invasive Debug Enable.

SUIDEN Meaning
0b0 This bit does not affect the generation of debug exceptions at

Secure EL0.
0b1 If EL1 is using AArch32, debug exceptions from Secure EL0

are enabled.

SDER32_EL2, AArch32 Secure Debug Enable Register

Page 1388

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SDER32_EL2
Accesses to this register use the following encodings:

MRS <Xt>, SDER32_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return SDER32_EL2;

elsif PSTATE.EL == EL3 then
return SDER32_EL2;

MSR SDER32_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
SDER32_EL2 = X[t];

elsif PSTATE.EL == EL3 then
SDER32_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDER32_EL2, AArch32 Secure Debug Enable Register

Page 1389

SDER32_EL3, AArch32 Secure Debug Enable Register
The SDER32_EL3 characteristics are:

Purpose
Allows access to the AArch32 register SDER from AArch64 state only. Its value has no effect on execution in AArch64
state.

Configuration
AArch64 System register SDER32_EL3 bits [31:0] are architecturally mapped to AArch32 System register SDER[31:0]
.

This register is present only when EL3 is implemented and EL1 supports AArch32. Otherwise, direct accesses to
SDER32_EL3 are UNDEFINED.

This register is ignored by the PE when when one or more of the following are true:

• The PE is in Non-secure state.

• EL1 is using AArch64.

Attributes
SDER32_EL3 is a 64-bit register.

Field descriptions
The SDER32_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 SUNIDENSUIDEN
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

SUNIDEN, bit [1]

Secure User Non-Invasive Debug Enable.

SUNIDEN Meaning
0b0 This bit does not affect Performance Monitors event

counting at Secure EL0.
0b1 If EL1 is using AArch32, Performance Monitors event

counting is allowed in Secure EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SUIDEN, bit [0]

Secure User Invasive Debug Enable.

SDER32_EL3, AArch32 Secure Debug Enable Register

Page 1390

SUIDEN Meaning
0b0 This bit does not affect the generation of debug exceptions at

Secure EL0.
0b1 If EL1 is using AArch32, debug exceptions from Secure EL0

are enabled.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SDER32_EL3
Accesses to this register use the following encodings:

MRS <Xt>, SDER32_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return SDER32_EL3;

MSR SDER32_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
SDER32_EL3 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDER32_EL3, AArch32 Secure Debug Enable Register

Page 1391

SP_EL0, Stack Pointer (EL0)
The SP_EL0 characteristics are:

Purpose
Holds the stack pointer associated with EL0. At higher Exception levels, this is used as the current stack pointer when
the value of SPSel.SP is 0.

Configuration
There are no configuration notes.

Attributes
SP_EL0 is a 64-bit register.

Field descriptions
The SP_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Stack pointer
Stack pointer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Stack pointer.

This field resets to an architecturally UNKNOWN value.

Accessing the SP_EL0
When the value of PSTATE.SP is 0, this register is accessible at all Exception levels as the current stack pointer.

Accesses to this register use the following encodings:

MRS <Xt>, SP_EL0

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0001 0b000

SP_EL0, Stack Pointer (EL0)

Page 1392

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if PSTATE.SP == '0' then

UNDEFINED;
else

return SP_EL0;
elsif PSTATE.EL == EL2 then

if PSTATE.SP == '0' then
UNDEFINED;

else
return SP_EL0;

elsif PSTATE.EL == EL3 then
if PSTATE.SP == '0' then

UNDEFINED;
else

return SP_EL0;

MSR SP_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if PSTATE.SP == '0' then

UNDEFINED;
else

SP_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if PSTATE.SP == '0' then
UNDEFINED;

else
SP_EL0 = X[t];

elsif PSTATE.EL == EL3 then
if PSTATE.SP == '0' then

UNDEFINED;
else

SP_EL0 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SP_EL0, Stack Pointer (EL0)

Page 1393

SP_EL1, Stack Pointer (EL1)
The SP_EL1 characteristics are:

Purpose
Holds the stack pointer associated with EL1. When executing at EL1, the value of SPSel.SP determines the current
stack pointer:

SPSel.SP Current stack pointer
0b0 SP_EL0
0b1 SP_EL1

Configuration
There are no configuration notes.

Attributes
SP_EL1 is a 64-bit register.

Field descriptions
The SP_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Stack pointer
Stack pointer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Stack pointer.

This field resets to an architecturally UNKNOWN value.

Accessing the SP_EL1
This accessibility information only applies to accesses using the MRS or MSR instructions.

When the value of SPSel.SP is 1, this register is also accessible at EL1 as the current stack pointer.

Note

When the value of SPSel.SP is 0, SP_EL0 is used as the current stack pointer
at all Exception levels.

Accesses to this register use the following encodings:

MRS <Xt>, SP_EL1

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0001 0b000

SP_EL1, Stack Pointer (EL1)

Page 1394

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x240];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return SP_EL1;
elsif PSTATE.EL == EL3 then

return SP_EL1;

MSR SP_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x240] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SP_EL1 = X[t];
elsif PSTATE.EL == EL3 then

SP_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SP_EL1, Stack Pointer (EL1)

Page 1395

SP_EL2, Stack Pointer (EL2)
The SP_EL2 characteristics are:

Purpose
Holds the stack pointer associated with EL2. When executing at EL2, the value of SPSel. SP determines the current
stack pointer:

SPSel.SP Current stack pointer
0b0 SP_EL0
0b1 SP_EL2

Configuration
This register has no effect if EL2 is not enabled in the current Security state.

Attributes
SP_EL2 is a 64-bit register.

Field descriptions
The SP_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Stack pointer
Stack pointer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Stack pointer.

This field resets to an architecturally UNKNOWN value.

Accessing the SP_EL2
This accessibility information only applies to accesses using the MRS or MSR instructions.

When the value of SPSel.SP is 1, this register is also accessible at EL2 as the current stack pointer.

Note

When the value of SPSel.SP is 0, SP_EL0 is used as the current stack pointer
at all Exception levels.

Accesses to this register use the following encodings:

MRS <Xt>, SP_EL2

op0 op1 CRn CRm op2
0b11 0b110 0b0100 0b0001 0b000

SP_EL2, Stack Pointer (EL2)

Page 1396

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return SP_EL2;

MSR SP_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0100 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
SP_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SP_EL2, Stack Pointer (EL2)

Page 1397

SP_EL3, Stack Pointer (EL3)
The SP_EL3 characteristics are:

Purpose
Holds the stack pointer associated with EL3. When executing at EL3, the value of SPSel.SP determines the current
stack pointer:

SPSel.SP Current stack pointer
0b0 SP_EL0
0b1 SP_EL3

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to SP_EL3 are UNDEFINED.

Attributes
SP_EL3 is a 64-bit register.

Field descriptions
The SP_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Stack pointer
Stack pointer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Stack pointer.

This field resets to an architecturally UNKNOWN value.

Accessing the SP_EL3
This register is not accessible using MRS and MSR instructions.

When the value of SPSel.SP is 1, this register is accessible at EL3 as the current stack pointer.

Note

When the value of SPSel.SP is 0, SP_EL0 is used as the current stack pointer
at all Exception levels.

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SP_EL3, Stack Pointer (EL3)

Page 1398

SPSel, Stack Pointer Select
The SPSel characteristics are:

Purpose
Allows the Stack Pointer to be selected between SP_EL0 and SP_ELx.

Configuration
There are no configuration notes.

Attributes
SPSel is a 64-bit register.

Field descriptions
The SPSel bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 SP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:1]

Reserved, RES0.

SP, bit [0]

Stack pointer to use. Possible values of this bit are:

SP Meaning
0b0 Use SP_EL0 at all Exception levels.
0b1 Use SP_ELx for Exception level ELx.

This field resets to 1.

Accessing the SPSel
Accesses to this register use the following encodings:

MRS <Xt>, SPSel

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0010 0b000

SPSel, Stack Pointer Select

Page 1399

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
return Zeros(63):PSTATE.SP;

elsif PSTATE.EL == EL2 then
return Zeros(63):PSTATE.SP;

elsif PSTATE.EL == EL3 then
return Zeros(63):PSTATE.SP;

MSR SPSel, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
PSTATE.SP = X[t]<0>;

elsif PSTATE.EL == EL2 then
PSTATE.SP = X[t]<0>;

elsif PSTATE.EL == EL3 then
PSTATE.SP = X[t]<0>;

MSR SPSel, #<imm>

op0 op1 CRn op2
0b00 0b000 0b0100 0b101

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSel, Stack Pointer Select

Page 1400

SPSR_abt, Saved Program Status Register (Abort
mode)

The SPSR_abt characteristics are:

Purpose
Holds the saved process state when an exception is taken to Abort mode.

Configuration
AArch64 System register SPSR_abt bits [31:0] are architecturally mapped to AArch32 System register SPSR_abt[31:0]
.

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes
SPSR_abt is a 64-bit register.

Field descriptions
The SPSR_abt bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Abort mode, and copied to PSTATE.N
on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Abort mode, and copied to PSTATE.Z on
executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Abort mode, and copied to PSTATE.C on
executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 1401

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Abort mode, and copied to PSTATE.V
on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Abort mode, and copied to
PSTATE.Q on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Abort mode, and copied to PSTATE.IT[1:0] on
executing an exception return operation in Abort mode.

On executing an exception return operation in Abort mode SPSR_abt.IT must contain a value that is valid for the
instruction being returned to.

This field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Abort mode, and copied to
PSTATE.SSBS on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Abort mode, and copied to
PSTATE.PAN on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 1402

DIT, bit [21]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Abort mode, and copied to
PSTATE.DIT on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Abort mode, and copied to PSTATE.IL
on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Abort mode, and copied to
PSTATE.GE on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Abort mode, and copied to PSTATE.IT[7:2] on
executing an exception return operation in Abort mode.

SPSR_abt.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Abort mode, and copied to PSTATE.E on executing
an exception return operation in Abort mode.

If the implementation does not support big-endian operation, SPSR_abt.E is RES0. If the implementation does not
support little-endian operation, SPSR_abt.E is RES1. On executing an exception return operation in Abort mode, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_abt.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_abt.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Abort mode, and copied to PSTATE.A on
executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Abort mode, and copied to PSTATE.I on
executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 1403

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Abort mode, and copied to PSTATE.F on
executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Abort mode, and copied to PSTATE.T
on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Abort mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in Abort mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_abt.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in Abort mode is an illegal return event, as described in 'Illegal return events
from AArch32 state' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_abt
Accesses to this register use the following encodings:

MRS <Xt>, SPSR_abt

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return SPSR_abt;
elsif PSTATE.EL == EL3 then

return SPSR_abt;

MSR SPSR_abt, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b001

SPSR_abt, Saved Program Status Register (Abort mode)

Page 1404

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SPSR_abt = X[t];
elsif PSTATE.EL == EL3 then

SPSR_abt = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 1405

SPSR_EL1, Saved Program Status Register (EL1)
The SPSR_EL1 characteristics are:

Purpose
Holds the saved process state when an exception is taken to EL1.

Configuration
AArch64 System register SPSR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
SPSR_svc[31:0] .

Attributes
SPSR_EL1 is a 64-bit register.

Field descriptions
The SPSR_EL1 bit assignments are:

When AArch32 is supported at any Exception level and exception taken from
AArch32 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0]DITSSBSPAN SS IL GE IT[7:2] E A I F T M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An exception return from EL1 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL1, and copied to PSTATE.N on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL1, and copied to PSTATE.Z on executing
an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL1, and copied to PSTATE.C on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

SPSR_EL1, Saved Program Status Register (EL1)

Page 1406

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL1, and copied to PSTATE.V on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL1, and copied to PSTATE.Q on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to EL1, and copied to PSTATE.IT[1:0] on executing
an exception return operation in EL1.

On executing an exception return operation in EL1 SPSR_EL1.IT must contain a value that is valid for the instruction
being returned to.

This field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL1, and copied to PSTATE.DIT on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL1, and copied to
PSTATE.SSBS on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL1, and copied to PSTATE.PAN on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

SPSR_EL1, Saved Program Status Register (EL1)

Page 1407

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL1, and conditionally copied to PSTATE.SS on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL1, and copied to PSTATE.IL on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL1, and copied to PSTATE.GE
on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to EL1, and copied to PSTATE.IT[7:2] on executing
an exception return operation in EL1.

SPSR_EL1.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to EL1, and copied to PSTATE.E on executing an
exception return operation in EL1.

If the implementation does not support big-endian operation, SPSR_EL1.E is RES0. If the implementation does not
support little-endian operation, SPSR_EL1.E is RES1. On executing an exception return operation in EL1, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_EL1.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_EL1.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL1, and copied to PSTATE.A on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL1, and copied to PSTATE.I on executing
an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

SPSR_EL1, Saved Program Status Register (EL1)

Page 1408

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL1, and copied to PSTATE.F on executing
an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL1, and copied to PSTATE.T on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL1 from AArch32 state, and copied
to PSTATE.nRW on executing an exception return operation in EL1.

M[4] Meaning
0b1 AArch32 execution state.

This field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL1, and copied to PSTATE.M[3:0] on
executing an exception return operation in EL1.

M[3:0] Meaning
0b0000 User.
0b0001 FIQ.
0b0010 IRQ.
0b0011 Supervisor.
0b0111 Abort.
0b1011 Undefined.
0b1111 System.

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL1 is an illegal return event, as described in 'Illegal return events
from AArch64 state' in the Arm®Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

When exception taken from AArch64 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V RES0 TCODITUAOPANSS IL RES0 SSBSBTYPE D A I F RES0M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An exception return from EL1 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL1, and copied to PSTATE.N on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

SPSR_EL1, Saved Program Status Register (EL1)

Page 1409

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL1, and copied to PSTATE.Z on executing
an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL1, and copied to PSTATE.C on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL1, and copied to PSTATE.V on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

TCO, bit [25]

When ARMv8.5-MemTag is implemented:

Tag Check Override. Set to the value of PSTATE.TCO on taking an exception to EL1, and copied to PSTATE.TCO on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL1, and copied to PSTATE.DIT on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UAO, bit [23]

When ARMv8.2-UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL1, and copied to PSTATE.UAO on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

SPSR_EL1, Saved Program Status Register (EL1)

Page 1410

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL1, and copied to PSTATE.PAN on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL1, and conditionally copied to PSTATE.SS on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL1, and copied to PSTATE.IL on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

SSBS, bit [12]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL1, and copied to
PSTATE.SSBS on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BTYPE, bits [11:10]

When ARMv8.5-BTI is implemented:

Branch Type Indicator. Set to the value of PSTATE.BTYPE on taking an exception to EL1, and copied to PSTATE.BTYPE
on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPSR_EL1, Saved Program Status Register (EL1)

Page 1411

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL1, and copied to PSTATE.D on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL1, and copied to PSTATE.A on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL1, and copied to PSTATE.I on executing
an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL1, and copied to PSTATE.F on executing
an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

When AArch32 is supported at any Exception level:

Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL1 from AArch64 state, and copied
to PSTATE.nRW on executing an exception return operation in EL1.

M[4] Meaning
0b0 AArch64 execution state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

M[3:0] Meaning
0b0000 EL0t.
0b0100 EL1t.
0b0101 EL1h.

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL1 is an illegal return event, as described in 'Illegal return events
from AArch64 state' in the Arm®Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

The bits in this field are interpreted as follows:

SPSR_EL1, Saved Program Status Register (EL1)

Page 1412

• M[3:2] is set to the value of PSTATE.EL on taking an exception to EL1 and copied to PSTATE.EL on executing
an exception return operation in EL1.

• M[1] is unused and is 0 for all non-reserved values.
• M[0] is set to the value of PSTATE.SP on taking an exception to EL1 and copied to PSTATE.SP on executing an

exception return operation in EL1

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SPSR_EL1 or
SPSR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, SPSR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x160];
else

return SPSR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return SPSR_EL2;

else
return SPSR_EL1;

elsif PSTATE.EL == EL3 then
return SPSR_EL1;

MSR SPSR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x160] = X[t];
else

SPSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
SPSR_EL2 = X[t];

else
SPSR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
SPSR_EL1 = X[t];

SPSR_EL1, Saved Program Status Register (EL1)

Page 1413

MRS <Xt>, SPSR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x160];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return SPSR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return SPSR_EL1;
else

UNDEFINED;

MSR SPSR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x160] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
SPSR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

SPSR_EL1 = X[t];
else

UNDEFINED;

MRS <Xt>, SPSR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b000

SPSR_EL1, Saved Program Status Register (EL1)

Page 1414

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return SPSR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return SPSR_EL2;
elsif PSTATE.EL == EL3 then

return SPSR_EL2;

MSR SPSR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

SPSR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SPSR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

SPSR_EL2 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_EL1, Saved Program Status Register (EL1)

Page 1415

SPSR_EL2, Saved Program Status Register (EL2)
The SPSR_EL2 characteristics are:

Purpose
Holds the saved process state when an exception is taken to EL2.

Configuration
AArch64 System register SPSR_EL2 bits [31:0] are architecturally mapped to AArch32 System register
SPSR_hyp[31:0] .

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
SPSR_EL2 is a 64-bit register.

Field descriptions
The SPSR_EL2 bit assignments are:

When AArch32 is supported at any Exception level and exception taken from
AArch32 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0]DITSSBSPAN SS IL GE IT[7:2] E A I F T M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An exception return from EL2 using AArch64 makes SPSR_EL2 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL2, and copied to PSTATE.N on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL2, and copied to PSTATE.Z on executing
an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL2, and copied to PSTATE.C on
executing an exception return operation in EL2.

SPSR_EL2, Saved Program Status Register (EL2)

Page 1416

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL2, and copied to PSTATE.V on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL2, and copied to PSTATE.Q on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to EL2, and copied to PSTATE.IT[1:0] on executing
an exception return operation in EL2.

On executing an exception return operation in EL2 SPSR_EL2.IT must contain a value that is valid for the instruction
being returned to.

This field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL2, and copied to PSTATE.DIT on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL2, and copied to
PSTATE.SSBS on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL2, and copied to PSTATE.PAN on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

SPSR_EL2, Saved Program Status Register (EL2)

Page 1417

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL2, and conditionally copied to PSTATE.SS on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL2, and copied to PSTATE.IL on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL2, and copied to PSTATE.GE
on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to EL2, and copied to PSTATE.IT[7:2] on executing
an exception return operation in EL2.

SPSR_EL2.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to EL2, and copied to PSTATE.E on executing an
exception return operation in EL2.

If the implementation does not support big-endian operation, SPSR_EL2.E is RES0. If the implementation does not
support little-endian operation, SPSR_EL2.E is RES1. On executing an exception return operation in EL2, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_EL2.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_EL2.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL2, and copied to PSTATE.A on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL2, and copied to PSTATE.I on executing
an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

SPSR_EL2, Saved Program Status Register (EL2)

Page 1418

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL2, and copied to PSTATE.F on executing
an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL2, and copied to PSTATE.T on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL2 from AArch32 state, and copied
to PSTATE.nRW on executing an exception return operation in EL2.

M[4] Meaning
0b1 AArch32 execution state.

This field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL2, and copied to PSTATE.M[3:0] on
executing an exception return operation in EL2.

M[3:0] Meaning
0b0000 User.
0b0001 FIQ.
0b0010 IRQ.
0b0011 Supervisor.
0b0111 Abort.
0b1010 Hyp.
0b1011 Undefined.
0b1111 System.

Other values are reserved. If SPSR_EL2.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL2 is an illegal return event, as described in 'Illegal return events
from AArch64 state' in the Arm®Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

When exception taken from AArch64 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V RES0 TCODITUAOPANSS IL RES0 SSBSBTYPE D A I F RES0M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An exception return from EL2 using AArch64 makes SPSR_EL2 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL2, and copied to PSTATE.N on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

SPSR_EL2, Saved Program Status Register (EL2)

Page 1419

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL2, and copied to PSTATE.Z on executing
an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL2, and copied to PSTATE.C on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL2, and copied to PSTATE.V on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

TCO, bit [25]

When ARMv8.5-MemTag is implemented:

Tag Check Override. Set to the value of PSTATE.TCO on taking an exception to EL2, and copied to PSTATE.TCO on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL2, and copied to PSTATE.DIT on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UAO, bit [23]

When ARMv8.2-UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL2, and copied to PSTATE.UAO on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

SPSR_EL2, Saved Program Status Register (EL2)

Page 1420

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL2, and copied to PSTATE.PAN on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL2, and conditionally copied to PSTATE.SS on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL2, and copied to PSTATE.IL on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

SSBS, bit [12]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL2, and copied to
PSTATE.SSBS on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BTYPE, bits [11:10]

When ARMv8.5-BTI is implemented:

Branch Type Indicator. Set to the value of PSTATE.BTYPE on taking an exception to EL2, and copied to PSTATE.BTYPE
on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPSR_EL2, Saved Program Status Register (EL2)

Page 1421

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL2, and copied to PSTATE.D on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL2, and copied to PSTATE.A on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL2, and copied to PSTATE.I on executing
an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL2, and copied to PSTATE.F on executing
an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

When AArch32 is supported at any Exception level:

Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL2 from AArch64 state, and copied
to PSTATE.nRW on executing an exception return operation in EL2.

M[4] Meaning
0b0 AArch64 execution state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

M[3:0] Meaning
0b0000 EL0t.
0b0100 EL1t.
0b0101 EL1h.
0b1000 EL2t.
0b1001 EL2h.

Other values are reserved. If SPSR_EL2.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL2 is an illegal return event, as described in 'Illegal return events
from AArch64 state' in the Arm®Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

SPSR_EL2, Saved Program Status Register (EL2)

Page 1422

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on taking an exception to EL2 and copied to PSTATE.EL on executing
an exception return operation in EL2.

• M[1] is unused and is 0 for all non-reserved values.
• M[0] is set to the value of PSTATE.SP on taking an exception to EL2 and copied to PSTATE.SP on executing an

exception return operation in EL2

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SPSR_EL2 or
SPSR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, SPSR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return SPSR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return SPSR_EL2;
elsif PSTATE.EL == EL3 then

return SPSR_EL2;

MSR SPSR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

SPSR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SPSR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

SPSR_EL2 = X[t];

MRS <Xt>, SPSR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b000

SPSR_EL2, Saved Program Status Register (EL2)

Page 1423

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x160];
else

return SPSR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return SPSR_EL2;

else
return SPSR_EL1;

elsif PSTATE.EL == EL3 then
return SPSR_EL1;

MSR SPSR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x160] = X[t];
else

SPSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
SPSR_EL2 = X[t];

else
SPSR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
SPSR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_EL2, Saved Program Status Register (EL2)

Page 1424

SPSR_EL3, Saved Program Status Register (EL3)
The SPSR_EL3 characteristics are:

Purpose
Holds the saved process state when an exception is taken to EL3.

Configuration
AArch64 System register SPSR_EL3 bits [31:0] can be mapped to AArch32 System register SPSR_mon[31:0] , but this
is not architecturally mandated.

This register is present only when EL3 is implemented. Otherwise, direct accesses to SPSR_EL3 are UNDEFINED.

Attributes
SPSR_EL3 is a 64-bit register.

Field descriptions
The SPSR_EL3 bit assignments are:

When AArch32 is supported at any Exception level and exception taken from
AArch32 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0]DITSSBSPAN SS IL GE IT[7:2] E A I F T M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An exception return from EL3 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL3, and copied to PSTATE.N on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL3, and copied to PSTATE.Z on executing
an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL3, and copied to PSTATE.C on
executing an exception return operation in EL3.

SPSR_EL3, Saved Program Status Register (EL3)

Page 1425

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL3, and copied to PSTATE.V on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL3, and copied to PSTATE.Q on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to EL3, and copied to PSTATE.IT[1:0] on executing
an exception return operation in EL3.

On executing an exception return operation in EL3 SPSR_EL1.IT must contain a value that is valid for the instruction
being returned to.

This field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL3, and copied to PSTATE.DIT on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL3, and copied to
PSTATE.SSBS on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL3, and copied to PSTATE.PAN on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

SPSR_EL3, Saved Program Status Register (EL3)

Page 1426

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL3, and conditionally copied to PSTATE.SS on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL3, and copied to PSTATE.IL on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL3, and copied to PSTATE.GE
on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to EL3, and copied to PSTATE.IT[7:2] on executing
an exception return operation in EL3.

SPSR_EL1.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to EL3, and copied to PSTATE.E on executing an
exception return operation in EL3.

If the implementation does not support big-endian operation, SPSR_EL1.E is RES0. If the implementation does not
support little-endian operation, SPSR_EL1.E is RES1. On executing an exception return operation in EL3, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_EL1.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_EL1.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL3, and copied to PSTATE.A on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL3, and copied to PSTATE.I on executing
an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

SPSR_EL3, Saved Program Status Register (EL3)

Page 1427

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL3, and copied to PSTATE.F on executing
an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL3, and copied to PSTATE.T on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL3 from AArch32 state, and copied
to PSTATE.nRW on executing an exception return operation in EL3.

M[4] Meaning
0b1 AArch32 execution state.

This field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL3, and copied to PSTATE.M[3:0] on
executing an exception return operation in EL3.

M[3:0] Meaning
0b0000 User.
0b0001 FIQ.
0b0010 IRQ.
0b0011 Supervisor.
0b0110 Monitor.
0b0111 Abort.
0b1010 Hyp.
0b1011 Undefined.
0b1111 System.

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL3 is an illegal return event, as described in 'Illegal return events
from AArch64 state' in the Arm®Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

When exception taken from AArch64 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V RES0 TCODITUAOPANSS IL RES0 SSBSBTYPE D A I F RES0M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An exception return from EL3 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL3, and copied to PSTATE.N on
executing an exception return operation in EL3.

SPSR_EL3, Saved Program Status Register (EL3)

Page 1428

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL3, and copied to PSTATE.Z on executing
an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL3, and copied to PSTATE.C on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL3, and copied to PSTATE.V on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

TCO, bit [25]

When ARMv8.5-MemTag is implemented:

Tag Check Override. Set to the value of PSTATE.TCO on taking an exception to EL3, and copied to PSTATE.TCO on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL3, and copied to PSTATE.DIT on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UAO, bit [23]

When ARMv8.2-UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL3, and copied to PSTATE.UAO on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

SPSR_EL3, Saved Program Status Register (EL3)

Page 1429

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL3, and copied to PSTATE.PAN on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL3, and conditionally copied to PSTATE.SS on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL3, and copied to PSTATE.IL on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

SSBS, bit [12]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL3, and copied to
PSTATE.SSBS on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BTYPE, bits [11:10]

When ARMv8.5-BTI is implemented:

Branch Type Indicator. Set to the value of PSTATE.BTYPE on taking an exception to EL3, and copied to PSTATE.BTYPE
on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPSR_EL3, Saved Program Status Register (EL3)

Page 1430

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL3, and copied to PSTATE.D on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL3, and copied to PSTATE.A on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL3, and copied to PSTATE.I on executing
an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL3, and copied to PSTATE.F on executing
an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

When AArch32 is supported at any Exception level:

Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL3 from AArch64 state, and copied
to PSTATE.nRW on executing an exception return operation in EL3.

M[4] Meaning
0b0 AArch64 execution state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

M[3:0] Meaning
0b0000 EL0t.
0b0100 EL1t.
0b0101 EL1h.
0b1000 EL2t.
0b1001 EL2h.
0b1100 EL3t.
0b1101 EL3h.

SPSR_EL3, Saved Program Status Register (EL3)

Page 1431

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL3 is an illegal return event, as described in 'Illegal return events
from AArch64 state' in the Arm®Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on taking an exception to EL3 and copied to PSTATE.EL on executing
an exception return operation in EL3.

• M[1] is unused and is 0 for all non-reserved values.
• M[0] is set to the value of PSTATE.SP on taking an exception to EL3 and copied to PSTATE.SP on executing an

exception return operation in EL3

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, SPSR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return SPSR_EL3;

MSR SPSR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
SPSR_EL3 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_EL3, Saved Program Status Register (EL3)

Page 1432

SPSR_fiq, Saved Program Status Register (FIQ mode)
The SPSR_fiq characteristics are:

Purpose
Holds the saved process state when an exception is taken to FIQ mode.

Configuration
AArch64 System register SPSR_fiq bits [31:0] are architecturally mapped to AArch32 System register SPSR_fiq[31:0] .

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes
SPSR_fiq is a 64-bit register.

Field descriptions
The SPSR_fiq bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to FIQ mode, and copied to PSTATE.N on
executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to FIQ mode, and copied to PSTATE.Z on
executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to FIQ mode, and copied to PSTATE.C on
executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to FIQ mode, and copied to PSTATE.V on
executing an exception return operation in FIQ mode.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 1433

This field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to FIQ mode, and copied to PSTATE.Q
on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to FIQ mode, and copied to PSTATE.IT[1:0] on
executing an exception return operation in FIQ mode.

On executing an exception return operation in FIQ mode SPSR_fiq.IT must contain a value that is valid for the
instruction being returned to.

This field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to FIQ mode, and copied to
PSTATE.SSBS on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to FIQ mode, and copied to
PSTATE.PAN on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to FIQ mode, and copied to
PSTATE.DIT on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 1434

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to FIQ mode, and copied to PSTATE.IL on
executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to FIQ mode, and copied to
PSTATE.GE on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to FIQ mode, and copied to PSTATE.IT[7:2] on
executing an exception return operation in FIQ mode.

SPSR_fiq.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to FIQ mode, and copied to PSTATE.E on executing
an exception return operation in FIQ mode.

If the implementation does not support big-endian operation, SPSR_fiq.E is RES0. If the implementation does not
support little-endian operation, SPSR_fiq.E is RES1. On executing an exception return operation in FIQ mode, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_fiq.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_fiq.E
is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to FIQ mode, and copied to PSTATE.A on
executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to FIQ mode, and copied to PSTATE.I on
executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to FIQ mode, and copied to PSTATE.F on
executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 1435

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to FIQ mode, and copied to PSTATE.T
on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to FIQ mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in FIQ mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_fiq.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in FIQ mode is an illegal return event, as described in 'Illegal return events
from AArch32 state' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_fiq
Accesses to this register use the following encodings:

MRS <Xt>, SPSR_fiq

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return SPSR_fiq;
elsif PSTATE.EL == EL3 then

return SPSR_fiq;

MSR SPSR_fiq, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b011

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 1436

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SPSR_fiq = X[t];
elsif PSTATE.EL == EL3 then

SPSR_fiq = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 1437

SPSR_irq, Saved Program Status Register (IRQ mode)
The SPSR_irq characteristics are:

Purpose
Holds the saved process state when an exception is taken to IRQ mode.

Configuration
AArch64 System register SPSR_irq bits [31:0] are architecturally mapped to AArch32 System register SPSR_irq[31:0] .

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes
SPSR_irq is a 64-bit register.

Field descriptions
The SPSR_irq bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to IRQ mode, and copied to PSTATE.N
on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to IRQ mode, and copied to PSTATE.Z on
executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to IRQ mode, and copied to PSTATE.C on
executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to IRQ mode, and copied to PSTATE.V on
executing an exception return operation in IRQ mode.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 1438

This field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to IRQ mode, and copied to
PSTATE.Q on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to IRQ mode, and copied to PSTATE.IT[1:0] on
executing an exception return operation in IRQ mode.

On executing an exception return operation in IRQ mode SPSR_irq.IT must contain a value that is valid for the
instruction being returned to.

This field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to IRQ mode, and copied to
PSTATE.SSBS on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to IRQ mode, and copied to
PSTATE.PAN on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to IRQ mode, and copied to
PSTATE.DIT on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 1439

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to IRQ mode, and copied to PSTATE.IL on
executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to IRQ mode, and copied to
PSTATE.GE on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to IRQ mode, and copied to PSTATE.IT[7:2] on
executing an exception return operation in IRQ mode.

SPSR_irq.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to IRQ mode, and copied to PSTATE.E on executing
an exception return operation in IRQ mode.

If the implementation does not support big-endian operation, SPSR_irq.E is RES0. If the implementation does not
support little-endian operation, SPSR_irq.E is RES1. On executing an exception return operation in IRQ mode, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_irq.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_irq.E
is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to IRQ mode, and copied to PSTATE.A on
executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to IRQ mode, and copied to PSTATE.I on
executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to IRQ mode, and copied to PSTATE.F on
executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 1440

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to IRQ mode, and copied to PSTATE.T
on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to IRQ mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in IRQ mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_irq.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in IRQ mode is an illegal return event, as described in 'Illegal return events
from AArch32 state' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_irq
Accesses to this register use the following encodings:

MRS <Xt>, SPSR_irq

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return SPSR_irq;
elsif PSTATE.EL == EL3 then

return SPSR_irq;

MSR SPSR_irq, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b000

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 1441

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SPSR_irq = X[t];
elsif PSTATE.EL == EL3 then

SPSR_irq = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 1442

SPSR_und, Saved Program Status Register (Undefined
mode)

The SPSR_und characteristics are:

Purpose
Holds the saved process state when an exception is taken to Undefined mode.

Configuration
AArch64 System register SPSR_und bits [31:0] are architecturally mapped to AArch32 System register
SPSR_und[31:0] .

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes
SPSR_und is a 64-bit register.

Field descriptions
The SPSR_und bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Undefined mode, and copied to
PSTATE.N on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Undefined mode, and copied to PSTATE.Z
on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Undefined mode, and copied to PSTATE.C
on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 1443

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Undefined mode, and copied to
PSTATE.V on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Undefined mode, and copied to
PSTATE.Q on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Undefined mode, and copied to PSTATE.IT[1:0]
on executing an exception return operation in Undefined mode.

On executing an exception return operation in Undefined mode SPSR_und.IT must contain a value that is valid for the
instruction being returned to.

This field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Undefined mode, and copied to
PSTATE.SSBS on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Undefined mode, and copied to
PSTATE.PAN on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 1444

DIT, bit [21]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Undefined mode, and copied to
PSTATE.DIT on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Undefined mode, and copied to
PSTATE.IL on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Undefined mode, and copied to
PSTATE.GE on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Undefined mode, and copied to PSTATE.IT[7:2]
on executing an exception return operation in Undefined mode.

SPSR_und.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Undefined mode, and copied to PSTATE.E on
executing an exception return operation in Undefined mode.

If the implementation does not support big-endian operation, SPSR_und.E is RES0. If the implementation does not
support little-endian operation, SPSR_und.E is RES1. On executing an exception return operation in Undefined mode, if
the implementation does not support big-endian operation at the Exception level being returned to, SPSR_und.E is
RES0, and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_und.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Undefined mode, and copied to
PSTATE.A on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Undefined mode, and copied to PSTATE.I
on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 1445

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Undefined mode, and copied to PSTATE.F
on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Undefined mode, and copied to
PSTATE.T on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Undefined mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in Undefined mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_und.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in Undefined mode is an illegal return event, as described in 'Illegal return
events from AArch32 state' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_und
Accesses to this register use the following encodings:

MRS <Xt>, SPSR_und

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return SPSR_und;
elsif PSTATE.EL == EL3 then

return SPSR_und;

MSR SPSR_und, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b010

SPSR_und, Saved Program Status Register (Undefined mode)

Page 1446

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SPSR_und = X[t];
elsif PSTATE.EL == EL3 then

SPSR_und = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 1447

SSBS, Speculative Store Bypass Safe
The SSBS characteristics are:

Purpose
Allows access to the Speculative Store Bypass Safe bit.

Configuration
This register is present only when ARMv8.0-SSBS is implemented. Otherwise, direct accesses to SSBS are UNDEFINED.

Attributes
SSBS is a 64-bit register.

Field descriptions
The SSBS bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 SSBS RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:13]

Reserved, RES0.

SSBS, bit [12]

Speculative Store Bypass Safe.

Prohibits speculative loads or stores which might practically allow a cache timing side channel.

A cache timing side channel might be exploited where a load or store uses an address that is derived from a register
that is being loaded from memory using a load instruction speculatively read from a memory location. If PSTATE.SSBS
is enabled, the address derived from the load instruction might be from earlier in the coherence order than the latest
store to that memory location with the same virtual address.

SSBS Meaning
0b0 Hardware is not permitted to load or store speculatively, in a

manner that could practically give rise to a cache timing side
channel, using an address derived from a register value that has
been loaded from memory using a load instruction (L) that
speculatively reads an entry from earlier in the coherence order
from that location being loaded from than the entry generated
by the latest store (S) to that location using the same virtual
address as L.

0b1 Hardware is permitted to load or store speculatively, in a
manner that could practically give rise to a cache timing side
channel, using an address derived from a register value that has
been loaded from memory using a load instruction (L) that
speculatively reads an entry from earlier in the coherence order
fro that location being loaded from than the entry generated by
the latest store (S) to that location using the same virtual
address as L.

The value of this bit is set to the value in the SCTLR_ELx.DSSBS field on taking an exception to ELx.

SSBS, Speculative Store Bypass Safe

Page 1448

This field resets to an IMPLEMENTATION DEFINED value.

Bits [11:0]

Reserved, RES0.

Accessing the SSBS
Accesses to this register use the following encodings:

MRS <Xt>, SSBS

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b110

if PSTATE.EL == EL0 then
return Zeros(51):PSTATE.SSBS:Zeros(12);

elsif PSTATE.EL == EL1 then
return Zeros(51):PSTATE.SSBS:Zeros(12);

elsif PSTATE.EL == EL2 then
return Zeros(51):PSTATE.SSBS:Zeros(12);

elsif PSTATE.EL == EL3 then
return Zeros(51):PSTATE.SSBS:Zeros(12);

MSR SSBS, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b110

if PSTATE.EL == EL0 then
PSTATE.SSBS = X[t]<12>;

elsif PSTATE.EL == EL1 then
PSTATE.SSBS = X[t]<12>;

elsif PSTATE.EL == EL2 then
PSTATE.SSBS = X[t]<12>;

elsif PSTATE.EL == EL3 then
PSTATE.SSBS = X[t]<12>;

MSR SSBS, #<imm>

op0 op1 CRn op2
0b00 0b011 0b0100 0b001

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSBS, Speculative Store Bypass Safe

Page 1449

TCO, Tag Check Override
The TCO characteristics are:

Purpose
When ARMv8.5-MemTag is implemented, this register allows tag checks to be disabled globally.

Configuration
This register is present only when ARMv8.5-MemTag is implemented. Otherwise, direct accesses to TCO are
UNDEFINED.

Attributes
TCO is a 64-bit register.

Field descriptions
The TCO bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 TCO RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:26]

Reserved, RES0.

TCO, bit [25]

Allows memory tag checks to be globally disabled.

TCO Meaning
0b0 Loads and Stores are not affected by this control.
0b1 Loads and Stores are unchecked.

Bits [24:0]

Reserved, RES0.

Accessing the TCO
For details on the operation of the MSR (immediate) accessor, see MSR (immediate).

Accesses to this register use the following encodings:

MRS <Xt>, TCO

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b111

TCO, Tag Check Override

Page 1450

if PSTATE.EL == EL0 then
return Zeros(38):PSTATE.TCO:Zeros(25);

elsif PSTATE.EL == EL1 then
return Zeros(38):PSTATE.TCO:Zeros(25);

elsif PSTATE.EL == EL2 then
return Zeros(38):PSTATE.TCO:Zeros(25);

elsif PSTATE.EL == EL3 then
return Zeros(38):PSTATE.TCO:Zeros(25);

MSR TCO, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b111

if PSTATE.EL == EL0 then
PSTATE.TCO = X[t]<25>;

elsif PSTATE.EL == EL1 then
PSTATE.TCO = X[t]<25>;

elsif PSTATE.EL == EL2 then
PSTATE.TCO = X[t]<25>;

elsif PSTATE.EL == EL3 then
PSTATE.TCO = X[t]<25>;

MSR TCO, #<imm>

op0 op1 CRn op2
0b00 0b011 0b0100 0b100

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TCO, Tag Check Override

Page 1451

TCR_EL1, Translation Control Register (EL1)
The TCR_EL1 characteristics are:

Purpose
The control register for stage 1 of the EL1&0 translation regime.

Configuration
AArch64 System register TCR_EL1 bits [31:0] are architecturally mapped to AArch32 System register TTBCR[31:0] .

AArch64 System register TCR_EL1 bits [63:32] are architecturally mapped to AArch32 System register TTBCR2[31:0]
.

Attributes
TCR_EL1 is a 64-bit register.

Field descriptions
The TCR_EL1 bit assignments are:

63626160 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 343332
RES0 TCMA1TCMA0E0PD1E0PD0NFD1NFD0TBID1TBID0HWU162HWU161HWU160HWU159HWU062HWU061HWU060HWU059HPD1HPD0HD HA TBI1 TBI0ASRES0 IPS

TG1SH1 ORGN1 IRGN1 EPD1 A1 T1SZ TG0 SH0 ORGN0 IRGN0 EPD0RES0 T0SZ
31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the bits in TCR_EL1, other than the A1 bit and the EPDx bits when they have the value 1, are permitted to be
cached in a TLB.

Bits [63:59]

Reserved, RES0.

TCMA1, bit [58]

When ARMv8.5-MemTag is implemented:

Controls the generation of Unchecked accesses at EL1, and at EL0 if HCR_EL2.{E2H,TGE}!={1,1}, when
address[59:55] = 0b11111.

TCMA1 Meaning
0b0 This control has no effect on the generation of Unchecked

accesses at EL1 or EL0.
0b1 All accesses at EL1 and EL0 are Unchecked.

Note

Software may change this control bit on a context switch.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCR_EL1, Translation Control Register (EL1)

Page 1452

TCMA0, bit [57]

When ARMv8.5-MemTag is implemented:

Controls the generation of Unchecked accesses at EL1, and at EL0 if HCR_EL2.{E2H,TGE}!={1,1}, when
address[59:55] = 0b00000.

TCMA0 Meaning
0b0 This control has no effect on the generation of Unchecked

accesses at EL1 or EL0.
0b1 All accesses at EL1 and EL0 are Unchecked.

Note

Software may change this control bit on a context switch.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E0PD1, bit [56]

When ARMv8.5-E0PD is implemented:

Faulting control for EL0 access to any address translated by TTBR1_EL1.

E0PD1 Meaning
0b0 Unprivileged access to any address translated by TTBR1_EL1

will not generate a fault by this mechanism.
0b1 Unprivileged access to any address translated by TTBR1_EL1

will generate a level 0 translation fault

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E0PD0, bit [55]

When ARMv8.5-E0PD is implemented:

Faulting control for EL0 access to any address translated by TTBR0_EL1.

E0PD0 Meaning
0b0 Unprivileged access to any address translated by TTBR0_EL1

will not generate a fault by this mechanism.
0b1 Unprivileged access to any address translated by TTBR0_EL1

will generate a level 0 translation fault

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCR_EL1, Translation Control Register (EL1)

Page 1453

NFD1, bit [54]

When SVE is implemented or TME is implemented:

Non-fault translation table walk disable for stage 1 translations using TTBR1_EL1.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault access from EL0 for a
virtual address that is translated using TTBR1_EL1.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.
• Accesses due to an SVE first-fault gather load instruction that are not for the First active element. Accesses

due to an SVE first-fault contiguous load instruction are not affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

See 'The Scalable Vector Extension (SVE)', in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile for more information.

If TME is implemented, the affected access types include all accesses generated by a load or store instruction in
Transactional state.

Defined values are:

NFD1 Meaning
0b0 Does not disable stage 1 translation table walks using

TTBR1_EL1.
0b1 A TLB miss on a virtual address that is translated using

TTBR1_EL1 due to the specified access types causes the access
to fail without taking an exception. No stage 1 translation table
walk is performed.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NFD0, bit [53]

When SVE is implemented or TME is implemented:

Non-fault translation table walk disable for stage 1 translations using TTBR0_EL1.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault access from EL0 for a
virtual address that is translated using TTBR0_EL1.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.
• Accesses due to an SVE first-fault gather load instruction that are not for the First active element. Accesses

due to an SVE first-fault contiguous load instruction are not affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

See 'The Scalable Vector Extension (SVE)', in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile for more information.

If TME is implemented, the affected access types include all accesses generated by a load or store instruction in
Transactional state.

Defined values are:

TCR_EL1, Translation Control Register (EL1)

Page 1454

NFD0 Meaning
0b0 Does not disable stage 1 translation table walks using

TTBR0_EL1.
0b1 A TLB miss on a virtual address that is translated using

TTBR0_EL1 due to the specified access types causes the access
to fail without taking an exception. No stage 1 translation table
walk is performed.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBID1, bit [52]

When ARMv8.3-PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform address
translation are treated as data accesses.

For more information, see 'Address tagging in AArch64 state' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile.

TBID1 Meaning
0b0 TCR_EL1.TBI1 applies to Instruction and Data accesses.
0b1 TCR_EL1.TBI1 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR1_EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBID0, bit [51]

When ARMv8.3-PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform address
translation are treated as data accesses.

For more information, see 'Address tagging in AArch64 state' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile.

TBID0 Meaning
0b0 TCR_EL1.TBI0 applies to Instruction and Data accesses.
0b1 TCR_EL1.TBI0 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU162, bit [50]

TCR_EL1, Translation Control Register (EL1)

Page 1455

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or
Page entry for translations using TTBR1_EL1.

HWU162 Meaning
0b0 For translations using TTBR1_EL1, bit[62] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[62] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU161, bit [49]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or
Page entry for translations using TTBR1_EL1.

HWU161 Meaning
0b0 For translations using TTBR1_EL1, bit[61] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[61] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU160, bit [48]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or
Page entry for translations using TTBR1_EL1.

HWU160 Meaning
0b0 For translations using TTBR1_EL1, bit[60] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[60] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

TCR_EL1, Translation Control Register (EL1)

Page 1456

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU159, bit [47]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or
Page entry for translations using TTBR1_EL1.

HWU159 Meaning
0b0 For translations using TTBR1_EL1, bit[59] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[59] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU062, bit [46]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or
Page entry for translations using TTBR0_EL1.

HWU062 Meaning
0b0 For translations using TTBR0_EL1, bit[62] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[62] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU061, bit [45]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or
Page entry for translations using TTBR0_EL1.

TCR_EL1, Translation Control Register (EL1)

Page 1457

HWU061 Meaning
0b0 For translations using TTBR0_EL1, bit[61] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[61] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU060, bit [44]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or
Page entry for translations using TTBR0_EL1.

HWU060 Meaning
0b0 For translations using TTBR0_EL1, bit[60] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[60] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU059, bit [43]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or
Page entry for translations using TTBR0_EL1.

HWU059 Meaning
0b0 For translations using TTBR0_EL1, bit[59] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[59] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCR_EL1, Translation Control Register (EL1)

Page 1458

HPD1, bit [42]

When ARMv8.1-HPD is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except
NSTable, in the translation tables pointed to by TTBR1_EL1.

HPD1 Meaning
0b0 Hierarchical permissions are enabled.
0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD0, bit [41]

When ARMv8.1-HPD is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except
NSTable, in the translation tables pointed to by TTBR0_EL1.

HPD0 Meaning
0b0 Hierarchical permissions are enabled.
0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HD, bit [40]

When ARMv8.1-TTHM is implemented:

Hardware management of dirty state in stage 1 translations from EL0 and EL1.

HD Meaning
0b0 Stage 1 hardware management of dirty state disabled.
0b1 Stage 1 hardware management of dirty state enabled, only if the

HA bit is also set to 1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HA, bit [39]

When ARMv8.1-TTHM is implemented:

Hardware Access flag update in stage 1 translations from EL0 and EL1.

TCR_EL1, Translation Control Register (EL1)

Page 1459

HA Meaning
0b0 Stage 1 Access flag update disabled.
0b1 Stage 1 Access flag update enabled.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBI1, bit [38]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the TTBR1_EL1 region,
or ignored and used for tagged addresses. Defined values are:

TBI1 Meaning
0b0 Top Byte used in the address calculation.
0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1 using AArch64 where the address would be translated by tables
pointed to by TTBR1_EL1. It has an effect whether the EL1&0 translation regime is enabled or not.

If ARMv8.3-PAuth is implemented and TCR_EL1.TBID1 is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI1 is 1 and bit [55] of the target address to be stored to the PC is 1, then bits[63:56] of
that target address are also set to 1 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

This field resets to an architecturally UNKNOWN value.

TBI0, bit [37]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the TTBR0_EL1 region,
or ignored and used for tagged addresses. Defined values are:

TBI0 Meaning
0b0 Top Byte used in the address calculation.
0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1 using AArch64 where the address would be translated by tables
pointed to by TTBR0_EL1. It has an effect whether the EL1&0 translation regime is enabled or not.

If ARMv8.3-PAuth is implemented and TCR_EL1.TBID0 is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI0 is 1 and bit [55] of the target address to be stored to the PC is 0, then bits[63:56] of
that target address are also set to 0 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

This field resets to an architecturally UNKNOWN value.

AS, bit [36]

ASID Size. Defined values are:

TCR_EL1, Translation Control Register (EL1)

Page 1460

AS Meaning
0b0 8 bit - the upper 8 bits of TTBR0_EL1 and TTBR1_EL1 are ignored

by hardware for every purpose except reading back the register,
and are treated as if they are all zeros for when used for allocation
and matching entries in the TLB.

0b1 16 bit - the upper 16 bits of TTBR0_EL1 and TTBR1_EL1 are used
for allocation and matching in the TLB.

If the implementation has only 8 bits of ASID, this field is RES0.

This field resets to an architecturally UNKNOWN value.

Bit [35]

Reserved, RES0.

IPS, bits [34:32]

Intermediate Physical Address Size.

IPS Meaning
0b000 32 bits, 4GB.
0b001 36 bits, 64GB.
0b010 40 bits, 1TB.
0b011 42 bits, 4TB.
0b100 44 bits, 16TB.
0b101 48 bits, 256TB.
0b110 52 bits, 4PB.

Other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not rely on this
property as the behavior of the reserved values might change in a future revision of the architecture.

The value 0b110 is permitted only if ARMv8.2-LPA is implemented and the translation granule size is 64KB.

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated as 0b110, then
bits[51:48] of every translation table base address for the stage of translation controlled by TCR_EL1 are 0b0000.

This field resets to an architecturally UNKNOWN value.

TG1, bits [31:30]

Granule size for the TTBR1_EL1.

TG1 Meaning
0b01 16KB.
0b10 4KB.
0b11 64KB.

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will
treat the field as if it has been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been
implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to
the size chosen.

This field resets to an architecturally UNKNOWN value.

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1_EL1.

TCR_EL1, Translation Control Register (EL1)

Page 1461

SH1 Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED
UNPREDICTABLE, as described in 'Reserved values in AArch64 System registers and translation table entries' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

ORGN1 Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

IRGN1 Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate

Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No Write-

Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

EPD1, bit [23]

Translation table walk disable for translations using TTBR1_EL1. This bit controls whether a translation table walk is
performed on a TLB miss, for an address that is translated using TTBR1_EL1. The encoding of this bit is:

EPD1 Meaning
0b0 Perform translation table walks using TTBR1_EL1.
0b1 A TLB miss on an address that is translated using TTBR1_EL1

generates a Translation fault. No translation table walk is
performed.

This field resets to an architecturally UNKNOWN value.

A1, bit [22]

Selects whether TTBR0_EL1 or TTBR1_EL1 defines the ASID. The encoding of this bit is:

A1 Meaning
0b0 TTBR0_EL1.ASID defines the ASID.
0b1 TTBR1_EL1.ASID defines the ASID.

This field resets to an architecturally UNKNOWN value.

TCR_EL1, Translation Control Register (EL1)

Page 1462

T1SZ, bits [21:16]

The size offset of the memory region addressed by TTBR1_EL1. The region size is 2(64-T1SZ) bytes.

The maximum and minimum possible values for T1SZ depend on the level of translation table and the memory
translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

This field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]

Granule size for the TTBR0_EL1.

TG0 Meaning
0b00 4KB
0b01 64KB
0b10 16KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will
treat the field as if it has been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been
implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to
the size chosen.

This field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL1.

SH0 Meaning
0b00 Non-shareable
0b10 Outer Shareable
0b11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED
UNPREDICTABLE, as described in 'Reserved values in AArch64 System registers and translation table entries' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

ORGN0 Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

TCR_EL1, Translation Control Register (EL1)

Page 1463

IRGN0 Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate

Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No Write-

Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

EPD0, bit [7]

Translation table walk disable for translations using TTBR0_EL1. This bit controls whether a translation table walk is
performed on a TLB miss, for an address that is translated using TTBR0_EL1. The encoding of this bit is:

EPD0 Meaning
0b0 Perform translation table walks using TTBR0_EL1.
0b1 A TLB miss on an address that is translated using TTBR0_EL1

generates a Translation fault. No translation table walk is
performed.

This field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL1. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory
translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

This field resets to an architecturally UNKNOWN value.

Accessing the TCR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TCR_EL1 or
TCR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, TCR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b010

TCR_EL1, Translation Control Register (EL1)

Page 1464

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.TCR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x120];

else
return TCR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return TCR_EL2;
else

return TCR_EL1;
elsif PSTATE.EL == EL3 then

return TCR_EL1;

MSR TCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.TCR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x120] = X[t];

else
TCR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

TCR_EL2 = X[t];
else

TCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

TCR_EL1 = X[t];

MRS <Xt>, TCR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0010 0b0000 0b010

TCR_EL1, Translation Control Register (EL1)

Page 1465

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x120];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return TCR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return TCR_EL1;
else

UNDEFINED;

MSR TCR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0010 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x120] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TCR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

TCR_EL1 = X[t];
else

UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TCR_EL1, Translation Control Register (EL1)

Page 1466

TCR_EL2, Translation Control Register (EL2)
The TCR_EL2 characteristics are:

Purpose
The control register for stage 1 of the EL2, or EL2&0, translation regime:

• When the Effective value of HCR_EL2.E2H is 0, this register controls stage 1 of the EL2 translation regime,
that supports a single VA range, translated using TTBR0_EL2.

• When the value of HCR_EL2.E2H is 1, this register controls stage 1 of the EL2&0 translation regime, that
supports both:

◦ A lower VA range, translated using TTBR0_EL2.
◦ A higher VA range, translated using TTBR1_EL2.

Configuration
AArch64 System register TCR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HTCR[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
TCR_EL2 is a 64-bit register.

Field descriptions
The TCR_EL2 bit assignments are:

When HCR_EL2.E2H == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50494847464544 43 42 41 40 39 38 373635343332
RES0

RES1TCMATBIDHWU62HWU61HWU60HWU59HPDRES1HDHATBIRES0 PS TG0SH0ORGN0IRGN0RES0 T0SZ
31 30 29 28 27 26 25 24 23 22 21 20 19 18171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Any of the bits in TCR_EL2, other than the A1 bit and the EPDx bits when they have the value 1, are permitted to be
cached in a TLB.

Bits [63:32]

Reserved, RES0.

Bit [31]

Reserved, RES1.

TCMA, bit [30]

When ARMv8.5-MemTag is implemented:

Controls the generation of Unchecked accesses at EL2 when address [59:56] = 0b0000.

TCR_EL2, Translation Control Register (EL2)

Page 1467

TCMA Meaning
0b0 This control has no effect on the generation of Unchecked

accesses.
0b1 All accesses are Unchecked.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBID, bit [29]

When ARMv8.3-PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform address
translation are treated as data accesses.

For more information, see 'Address tagging in AArch64 state' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile.

TBID Meaning
0b0 TCR_EL2.TBI applies to Instruction and Data accesses.
0b1 TCR_EL2.TBI applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU62, bit [28]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or
Page entry.

HWU62 Meaning
0b0 Bit[62] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[62] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 1468

HWU61, bit [27]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or
Page entry.

HWU61 Meaning
0b0 Bit[61] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[61] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU60, bit [26]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or
Page entry.

HWU60 Meaning
0b0 Bit[60] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[60] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU59, bit [25]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or
Page entry.

HWU59 Meaning
0b0 Bit[59] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[59] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

This field resets to an architecturally UNKNOWN value.

TCR_EL2, Translation Control Register (EL2)

Page 1469

Otherwise:

Reserved, RES0.

HPD, bit [24]

When ARMv8.1-HPD is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except
NSTable, in the translation tables pointed to by TTBR0_EL2.

HPD Meaning
0b0 Hierarchical permissions are enabled.
0b1 Hierarchical permissions are disabled.

Note
In this case bit[61] (APTable[0]) and
bit[59] (PXNTable) of the next level
descriptor attributes are required to be
ignored by the PE, and are no longer
reserved, allowing them to be used by
software.

When disabled, the permissions are treated as if the bits are zero.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [23]

Reserved, RES1.

HD, bit [22]

When ARMv8.1-TTHM is implemented:

Hardware management of dirty state in stage 1 translations from EL2.

HD Meaning
0b0 Stage 1 hardware management of dirty state disabled.
0b1 Stage 1 hardware management of dirty state enabled, only if the

HA bit is also set to 1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HA, bit [21]

When ARMv8.1-TTHM is implemented:

Hardware Access flag update in stage 1 translations from EL2.

HA Meaning
0b0 Stage 1 Access flag update disabled.
0b1 Stage 1 Access flag update enabled.

TCR_EL2, Translation Control Register (EL2)

Page 1470

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBI, bit [20]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the TTBR0_EL2 region,
or ignored and used for tagged addresses.

For more information, see 'Address tagging in AArch64 state' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile.

TBI Meaning
0b0 Top Byte used in the address calculation.
0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL2 using AArch64 where the address would be translated by tables pointed to by
TTBR0_EL2. It has an effect whether the EL2, or EL2&0, translation regime is enabled or not.

If ARMv8.3-PAuth is implemented and TCR_EL2.TBID is 1, then this field only applies to Data accesses.

If the value of TBI is 1, then bits[63:56] of that target address are also set to 0 before the address is stored in the PC,
in the following cases:

• A branch or procedure return within EL2.
• An exception taken to EL2.
• An exception return to EL2.

This field resets to an architecturally UNKNOWN value.

Bit [19]

Reserved, RES0.

PS, bits [18:16]

Physical Address Size.

PS Meaning
0b000 32 bits, 4GB.
0b001 36 bits, 64GB.
0b010 40 bits, 1TB.
0b011 42 bits, 4TB.
0b100 44 bits, 16TB.
0b101 48 bits, 256TB.
0b110 52 bits, 4PB.

Other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not rely on this
property as the behavior of the reserved values might change in a future revision of the architecture.

The value 0b110 is permitted only if ARMv8.2-LPA is implemented and the translation granule size is 64KB.

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated as 0b110, then
bits[51:48] of every translation table base address for the stage of translation controlled by TCR_EL2 are 0b0000.

This field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]

Granule size for the TTBR0_EL2.

TCR_EL2, Translation Control Register (EL2)

Page 1471

TG0 Meaning
0b00 4KB.
0b01 64KB.
0b10 16KB.

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will
treat the field as if it has been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been
implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to
the size chosen.

This field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL2.

SH0 Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED
UNPREDICTABLE, as described in 'Reserved values in AArch64 System registers and translation table entries' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

ORGN0 Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

IRGN0 Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate

Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No Write-

Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

Bits [7:6]

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 1472

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory
translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

This field resets to an architecturally UNKNOWN value.

When ARMv8.1-VHE is implemented and HCR_EL2.E2H == 1:

63626160 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 343332
RES0 TCMA1TCMA0E0PD1E0PD0NFD1NFD0TBID1TBID0HWU162HWU161HWU160HWU159HWU062HWU061HWU060HWU059HPD1HPD0HD HA TBI1 TBI0ASRES0 IPS

TG1SH1 ORGN1 IRGN1 EPD1 A1 T1SZ TG0 SH0 ORGN0 IRGN0 EPD0RES0 T0SZ
31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This view of the register is only valid from Armv8.1 when HCR_EL2.E2H is 1.

Any of the bits in TCR_EL2 are permitted to be cached in a TLB.

Bits [63:59]

Reserved, RES0.

TCMA1, bit [58]

When ARMv8.5-MemTag is implemented:

Controls the generation of Unchecked accesses at EL2, and at EL0 if HCR_EL2.TGE=1, when address[59:55] =
0b11111.

TCMA1 Meaning
0b0 This control has no effect on the generation of Unchecked

accesses at EL2 or EL0.
0b1 All accesses are Unchecked.

Note

Software may change this control bit on a context switch.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCMA0, bit [57]

When ARMv8.5-MemTag is implemented:

Controls the generation of Unchecked accesses at EL2, and at EL0 if HCR_EL2.TGE=1, when address[59:55] =
0b00000.

TCMA0 Meaning
0b0 This control has no effect on the generation of Unchecked

accesses at EL2 or EL0.
0b1 All accesses are Unchecked.

Note

Software may change this control bit on a context switch.

This field resets to an architecturally UNKNOWN value.

TCR_EL2, Translation Control Register (EL2)

Page 1473

Otherwise:

Reserved, RES0.

E0PD1, bit [56]

When ARMv8.5-E0PD is implemented:

Faulting control for EL0 access to any address translated by TTBR1_EL2.

E0PD1 Meaning
0b0 Unprivileged access to any address translated by TTBR1_EL2

will not generate a fault by this mechanism.
0b1 Unprivileged access to any address translated by TTBR1_EL2

will generate a level 0 translation fault

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E0PD0, bit [55]

When ARMv8.5-E0PD is implemented:

Faulting control for EL0 access to any address translated by TTBR0_EL2.

E0PD0 Meaning
0b0 Unprivileged access to any address translated by TTBR0_EL2

will not generate a fault by this mechanism.
0b1 Unprivileged access to any address translated by TTBR0_EL2

will generate a level 0 translation fault

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NFD1, bit [54]

When SVE is implemented or TME is implemented:

Non-fault translation table walk disable for stage 1 translations using TTBR1_EL2.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault access from EL0 for a
virtual address that is translated using TTBR1_EL2.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.
• Accesses due to an SVE first-fault gather load instruction that are not for the First active element. Accesses

due to an SVE first-fault contiguous load instruction are not affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

See 'The Scalable Vector Extension (SVE)', in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile for more information.

If TME is implemented, the affected access types include all accesses generated by a load or store instruction in
Transactional state.

Defined values are:

TCR_EL2, Translation Control Register (EL2)

Page 1474

NFD1 Meaning
0b0 Does not disable stage 1 translation table walks using

TTBR1_EL2.
0b1 A TLB miss on a virtual address that is translated using

TTBR1_EL2 due to the specified access types causes the access
to fail without taking an exception. No stage 1 translation table
walk is performed.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NFD0, bit [53]

When SVE is implemented or TME is implemented:

Non-fault translation table walk disable for stage 1 translations using TTBR0_EL2.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault access from EL0 for a
virtual address that is translated using TTBR0_EL2.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.
• Accesses due to an SVE first-fault gather load instruction that are not for the First active element. Accesses

due to an SVE first-fault contiguous load instruction are not affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

See 'The Scalable Vector Extension (SVE)', in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile for more information.

If TME is implemented, the affected access types include all accesses generated by a load or store instruction in
Transactional state.

Defined values are:

NFD0 Meaning
0b0 Does not disable stage 1 translation table walks using

TTBR0_EL2.
0b1 A TLB miss on a virtual address that is translated using

TTBR0_EL2 due to the specified access types causes the access
to fail without taking an exception. No stage 1 translation table
walk is performed.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBID1, bit [52]

When ARMv8.3-PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform address
translation are treated as data accesses.

For more information, see 'Address tagging in AArch64 state' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile.

TCR_EL2, Translation Control Register (EL2)

Page 1475

TBID1 Meaning
0b0 TCR_EL2.TBI1 applies to Instruction and Data accesses.
0b1 TCR_EL2.TBI1 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR1_EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBID0, bit [51]

When ARMv8.3-PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For more information, see 'Address tagging in AArch64 state' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile.

TBID0 Meaning
0b0 TCR_EL2.TBI0 applies to Instruction and Data accesses.
0b1 TCR_EL2.TBI0 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU162, bit [50]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or
Page entry for translations using TTBR1_EL2.

HWU162 Meaning
0b0 For translations using TTBR1_EL2, bit[62] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL2, bit[62] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU161, bit [49]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or
Page entry for translations using TTBR1_EL2.

TCR_EL2, Translation Control Register (EL2)

Page 1476

HWU161 Meaning
0b0 For translations using TTBR1_EL2, bit[61] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL2, bit[61] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU160, bit [48]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or
Page entry for translations using TTBR1_EL2.

HWU160 Meaning
0b0 For translations using TTBR1_EL2, bit[60] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL2, bit[60] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU159, bit [47]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or
Page entry for translations using TTBR1_EL2.

HWU159 Meaning
0b0 For translations using TTBR1_EL2, bit[59] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL2, bit[59] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 1477

HWU062, bit [46]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or
Page entry for translations using TTBR0_EL1.

HWU062 Meaning
0b0 For translations using TTBR0_EL1, bit[62] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[62] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU061, bit [45]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or
Page entry for translations using TTBR0_EL1.

HWU061 Meaning
0b0 For translations using TTBR0_EL1, bit[61] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[61] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU060, bit [44]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or
Page entry for translations using TTBR0_EL1.

HWU060 Meaning
0b0 For translations using TTBR0_EL1, bit[60] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[60] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

TCR_EL2, Translation Control Register (EL2)

Page 1478

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU059, bit [43]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or
Page entry for translations using TTBR0_EL1.

HWU059 Meaning
0b0 For translations using TTBR0_EL1, bit[59] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[59] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD1, bit [42]

When ARMv8.1-HPD is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except
NSTable, in the translation tables pointed to by TTBR1_EL2.

HPD1 Meaning
0b0 Hierarchical permissions are enabled.
0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD0, bit [41]

When ARMv8.1-HPD is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except
NSTable, in the translation tables pointed to by TTBR0_EL2.

HPD0 Meaning
0b0 Hierarchical permissions are enabled.
0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

This field resets to an architecturally UNKNOWN value.

TCR_EL2, Translation Control Register (EL2)

Page 1479

Otherwise:

Reserved, RES0.

HD, bit [40]

When ARMv8.1-TTHM is implemented:

Hardware management of dirty state in stage 1 translations from EL2.

HD Meaning
0b0 Stage 1 hardware management of dirty state disabled.
0b1 Stage 1 hardware management of dirty state enabled, only if the

HA bit is also set to 1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HA, bit [39]

When ARMv8.1-TTHM is implemented:

Hardware Access flag update in stage 1 translations from EL2.

HA Meaning
0b0 Stage 1 Access flag update disabled.
0b1 Stage 1 Access flag update enabled.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBI1, bit [38]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the TTBR1_EL2 region,
or ignored and used for tagged addresses.

For more information, see 'Address tagging in AArch64 state' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile.

TBI1 Meaning
0b0 Top Byte used in the address calculation.
0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be translated by tables
pointed to by TTBR1_EL2. It has an effect whether the EL2, or EL2&0, translation regime is enabled or not.

If ARMv8.3-PAuth is implemented and TCR_EL2.TBID1 is 1, then this field only applies to Data accesses.

If the value of TBI1 is 1 and bit [55] of the target address to be stored to the PC is 1, then bits[63:56] of that target
address are also set to 1 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

This field resets to an architecturally UNKNOWN value.

TCR_EL2, Translation Control Register (EL2)

Page 1480

TBI0, bit [37]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the TTBR0_EL2 region,
or ignored and used for tagged addresses.

For more information, see 'Address tagging in AArch64 state' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile.

TBI0 Meaning
0b0 Top Byte used in the address calculation.
0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be translated by tables
pointed to by TTBR0_EL2. It has an effect whether the EL2, or EL2&0, translation regime is enabled or not.

If ARMv8.3-PAuth is implemented and TCR_EL2.TBID0 is 1, then this field only applies to Data accesses.

If the value of TBI0 is 1 and bit [55] of the target address to be stored to the PC is 0, then bits[63:56] of that target
address are also set to 0 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

This field resets to an architecturally UNKNOWN value.

AS, bit [36]

ASID Size. Defined values are:

AS Meaning
0b0 8 bit - the upper 8 bits of TTBR0_EL2 and TTBR1_EL2 are ignored

by hardware for every purpose except reading back the register,
and are treated as if they are all zeros for when used for allocation
and matching entries in the TLB.

0b1 16 bit - the upper 16 bits of TTBR0_EL2 and TTBR1_EL2 are used
for allocation and matching in the TLB.

If the implementation has only 8 bits of ASID, this field is RES0.

This field resets to an architecturally UNKNOWN value.

Bit [35]

Reserved, RES0.

IPS, bits [34:32]

Intermediate Physical Address Size.

IPS Meaning Applies when
0b000 32 bits, 4GB.
0b001 36 bits, 64GB.
0b010 40 bits, 1TB.
0b011 42 bits, 4TB.
0b100 44 bits, 16TB.
0b101 48 bits, 256TB.
0b110 52 bits, 4PB. When ARMv8.2-LPA is implemented

Other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not rely on this
property as the behavior of the reserved values might change in a future revision of the architecture.

The value 0b110 is permitted only if ARMv8.2-LPA is implemented and the translation granule size is 64KB.

TCR_EL2, Translation Control Register (EL2)

Page 1481

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated as 0b110, then
bits[51:48] of every translation table base address for the stage of translation controlled by TCR_EL2 are 0b0000.

This field resets to an architecturally UNKNOWN value.

TG1, bits [31:30]

Granule size for the TTBR1_EL2.

TG1 Meaning
0b01 16KB.
0b10 4KB.
0b11 64KB.

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will
treat the field as if it has been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been
implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to
the size chosen.

This field resets to an architecturally UNKNOWN value.

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1_EL2. Defined values are:

SH1 Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED
UNPREDICTABLE, as described in 'Reserved values in AArch64 System registers and translation table entries' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1_EL2.

ORGN1 Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1_EL2.

TCR_EL2, Translation Control Register (EL2)

Page 1482

IRGN1 Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate

Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No Write-

Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

EPD1, bit [23]

Translation table walk disable for translations using TTBR1_EL2. This bit controls whether a translation table walk is
performed on a TLB miss, for an address that is translated using TTBR1_EL2. The encoding of this bit is:

EPD1 Meaning
0b0 Perform translation table walks using TTBR1_EL2.
0b1 A TLB miss on an address that is translated using TTBR1_EL2

generates a Translation fault. No translation table walk is
performed.

This field resets to an architecturally UNKNOWN value.

A1, bit [22]

Selects whether TTBR0_EL2 or TTBR1_EL2 defines the ASID. The encoding of this bit is:

A1 Meaning
0b0 TTBR0_EL2.ASID defines the ASID.
0b1 TTBR1_EL2.ASID defines the ASID.

This field resets to an architecturally UNKNOWN value.

T1SZ, bits [21:16]

The size offset of the memory region addressed by TTBR1_EL2. The region size is 2(64-T1SZ) bytes.

The maximum and minimum possible values for T1SZ depend on the level of translation table and the memory
translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

This field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]

Granule size for the TTBR0_EL2.

TG0 Meaning
0b00 4KB.
0b01 64KB.
0b10 16KB.

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will
treat the field as if it has been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been
implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to
the size chosen.

This field resets to an architecturally UNKNOWN value.

TCR_EL2, Translation Control Register (EL2)

Page 1483

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL2.

SH0 Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED
UNPREDICTABLE, as described in 'Reserved values in AArch64 System registers and translation table entries' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

ORGN0 Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

IRGN0 Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate

Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No Write-

Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

EPD0, bit [7]

Translation table walk disable for translations using TTBR0_EL2. This bit controls whether a translation table walk is
performed on a TLB miss, for an address that is translated using TTBR0_EL2. The encoding of this bit is:

EPD0 Meaning
0b0 Perform translation table walks using TTBR0_EL2.
0b1 A TLB miss on an address that is translated using TTBR0_EL2

generates a Translation fault. No translation table walk is
performed.

This field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 1484

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory
translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

This field resets to an architecturally UNKNOWN value.

Accessing the TCR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TCR_EL2 or
TCR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, TCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return TCR_EL2;
elsif PSTATE.EL == EL3 then

return TCR_EL2;

MSR TCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

TCR_EL2 = X[t];

MRS <Xt>, TCR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b010

TCR_EL2, Translation Control Register (EL2)

Page 1485

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.TCR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x120];

else
return TCR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return TCR_EL2;
else

return TCR_EL1;
elsif PSTATE.EL == EL3 then

return TCR_EL1;

MSR TCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.TCR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x120] = X[t];

else
TCR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

TCR_EL2 = X[t];
else

TCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

TCR_EL1 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TCR_EL2, Translation Control Register (EL2)

Page 1486

TCR_EL3, Translation Control Register (EL3)
The TCR_EL3 characteristics are:

Purpose
The control register for stage 1 of the EL3 translation regime.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to TCR_EL3 are UNDEFINED.

Attributes
TCR_EL3 is a 64-bit register.

Field descriptions
The TCR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50494847464544 43 42 41 40 39 38 373635343332
RES0

RES1TCMATBIDHWU62HWU61HWU60HWU59HPDRES1HDHATBIRES0 PS TG0SH0ORGN0IRGN0RES0 T0SZ
31 30 29 28 27 26 25 24 23 22 21 20 19 18171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Any of the bits in TCR_EL3 are permitted to be cached in a TLB.

Bits [63:32]

Reserved, RES0.

Bit [31]

Reserved, RES1.

TCMA, bit [30]

When ARMv8.5-MemTag is implemented:

Controls the generation of Unchecked accesses at EL3 when address [59:56] = 0b0000.

TCMA Meaning
0b0 This control has no effect on the generation of Unchecked

accesses.
0b1 All accesses are Unchecked.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCR_EL3, Translation Control Register (EL3)

Page 1487

TBID, bit [29]

When ARMv8.3-PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

TBID Meaning
0b0 TCR_EL3.TBI applies to Instruction and Data accesses.
0b1 TCR_EL3.TBI applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL3.

For the purpose of this field, all cache maintenance and address translation instructions that perform address
translation are treated as data accesses.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU62, bit [28]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or
Page entry.

HWU62 Meaning
0b0 Bit[62] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[62] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of TCR_EL3.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU61, bit [27]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or
Page entry.

HWU61 Meaning
0b0 Bit[61] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[61] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of TCR_EL3.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

This field resets to an architecturally UNKNOWN value.

TCR_EL3, Translation Control Register (EL3)

Page 1488

Otherwise:

Reserved, RES0.

HWU60, bit [26]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or
Page entry.

HWU60 Meaning
0b0 Bit[60] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[60] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of TCR_EL3.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU59, bit [25]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or
Page entry.

HWU59 Meaning
0b0 Bit[59] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[59] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of TCR_EL3.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD, bit [24]

When ARMv8.1-HPD is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except
NSTable, in the translation tables pointed to by TTBR0_EL3.

TCR_EL3, Translation Control Register (EL3)

Page 1489

HPD Meaning
0b0 Hierarchical permissions are enabled.
0b1 Hierarchical permissions are disabled.

Note
In this case bit[61] (APTable[0]) and
bit[59] (PXNTable) of the next level
descriptor attributes are required to be
ignored by the PE, and are no longer
reserved, allowing them to be used by
software.

When disabled, the permissions are treated as if the bits are zero.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [23]

Reserved, RES1.

HD, bit [22]

When ARMv8.1-TTHM is implemented:

Hardware management of dirty state in stage 1 translations from EL3.

HD Meaning
0b0 Stage 1 hardware management of dirty state disabled.
0b1 Stage 1 hardware management of dirty state enabled, only if the

HA bit is also set to 1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HA, bit [21]

When ARMv8.1-TTHM is implemented:

Hardware Access flag update in stage 1 translations from EL3.

HA Meaning
0b0 Stage 1 Access flag update disabled.
0b1 Stage 1 Access flag update enabled.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBI, bit [20]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the TTBR0_EL3 region,
or ignored and used for tagged addresses.

TCR_EL3, Translation Control Register (EL3)

Page 1490

TBI Meaning
0b0 Top Byte used in the address calculation.
0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL3 using AArch64 where the address would be translated by tables pointed to by
TTBR0_EL3. It has an effect whether the EL3 translation regime is enabled or not.

If ARMv8.3-PAuth is implemented and TCR_EL3.TBID is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI is 1, then bits[63:56] of that target address are also set to 0 before the address is stored
in the PC, in the following cases:

• A branch or procedure return within EL3.
• A exception taken to EL3.
• An exception return to EL3.

For more information, see 'Address tagging in AArch64 state' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile.

Note

This control detrmines the scope of address tagging. It never causes an
exception to be generated.

This field resets to an architecturally UNKNOWN value.

Bit [19]

Reserved, RES0.

PS, bits [18:16]

Physical Address Size.

PS Meaning
0b000 32 bits, 4GB.
0b001 36 bits, 64GB.
0b010 40 bits, 1TB.
0b011 42 bits, 4TB.
0b100 44 bits, 16TB.
0b101 48 bits, 256TB.
0b110 52 bits, 4PB.

Other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not rely on this
property as the behavior of the reserved values might change in a future revision of the architecture.

The value 0b110 is permitted only if ARMv8.2-LPA is implemented and the translation granule size is 64KB.

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated as 0b110, then
bits[51:48] of every translation table base address for the stage of translation controlled by TCR_EL3 are 0b0000.

This field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]

Granule size for the TTBR0_EL3.

TG0 Meaning
0b00 4KB.
0b01 64KB.
0b10 16KB.

Other values are reserved.

TCR_EL3, Translation Control Register (EL3)

Page 1491

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will
treat the field as if it has been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been
implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to
the size chosen.

This field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL3.

SH0 Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED
UNPREDICTABLE, as described in 'Reserved values in AArch64 System registers and translation table entries' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section K1.2.2.

This field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL3.

ORGN0 Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL3.

IRGN0 Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate

Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No Write-

Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

Bits [7:6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL3. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory
translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

TCR_EL3, Translation Control Register (EL3)

Page 1492

This field resets to an architecturally UNKNOWN value.

Accessing the TCR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, TCR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0010 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return TCR_EL3;

MSR TCR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0010 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TCR_EL3 = X[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TCR_EL3, Translation Control Register (EL3)

Page 1493

TFSR_EL1, Tag Fault Status Register (EL1)
The TFSR_EL1 characteristics are:

Purpose
Holds accumulated Tag Check Faults occurring in EL1 that are not taken precisely.

Configuration
This register is present only when ARMv8.5-MemTag is implemented and ID_AA64PFR1_EL1.MTE != 0b0001.
Otherwise, direct accesses to TFSR_EL1 are UNDEFINED.

Attributes
TFSR_EL1 is a 64-bit register.

Field descriptions
The TFSR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 TF1TF0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

TF1, bit [1]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with bit[55] == 0b1 occurs.

This field resets to an architecturally UNKNOWN value.

TF0, bit [0]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with bit[55] == 0b0 occurs.

This field resets to an architecturally UNKNOWN value.

Accessing the TFSR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, TFSR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0110 0b000

TFSR_EL1, Tag Fault Status Register (EL1)

Page 1494

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.ATA == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x190];
else

return TFSR_EL1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HCR_EL2.E2H == '1' then
return TFSR_EL2;

else
return TFSR_EL1;

elsif PSTATE.EL == EL3 then
return TFSR_EL1;

MSR TFSR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.ATA == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x190] = X[t];
else

TFSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HCR_EL2.E2H == '1' then
TFSR_EL2 = X[t];

else
TFSR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
TFSR_EL1 = X[t];

MRS <Xt>, TFSR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0101 0b0110 0b000

TFSR_EL1, Tag Fault Status Register (EL1)

Page 1495

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x190];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TFSR_EL1;
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
return TFSR_EL1;

else
UNDEFINED;

MSR TFSR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0101 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x190] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TFSR_EL1 = X[t];
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
TFSR_EL1 = X[t];

else
UNDEFINED;

MRS <Xt>, TFSR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0110 0b000

TFSR_EL1, Tag Fault Status Register (EL1)

Page 1496

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.ATA == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TFSR_EL1;

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TFSR_EL2;
elsif PSTATE.EL == EL3 then

return TFSR_EL2;

MSR TFSR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.ATA == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TFSR_EL1 = X[t];

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TFSR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

TFSR_EL2 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TFSR_EL1, Tag Fault Status Register (EL1)

Page 1497

TFSR_EL2, Tag Fault Status Register (EL2)
The TFSR_EL2 characteristics are:

Purpose
Holds accumulated Tag Check Faults occurring in EL2 that are not taken precisely.

Configuration
This register is present only when ARMv8.5-MemTag is implemented and ID_AA64PFR1_EL1.MTE != 0b0001.
Otherwise, direct accesses to TFSR_EL2 are UNDEFINED.

Attributes
TFSR_EL2 is a 64-bit register.

Field descriptions
The TFSR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 TF1TF0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

TF1, bit [1]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with bit[55] == 0b1 occurs.

When HCR_EL2.E2H==0b0, this field is RES0.

This field resets to an architecturally UNKNOWN value.

TF0, bit [0]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with bit[55] == 0b0 occurs.

This field resets to an architecturally UNKNOWN value.

Accessing the TFSR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TFSR_EL2 or
TFSR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, TFSR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0110 0b000

TFSR_EL2, Tag Fault Status Register (EL2)

Page 1498

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.ATA == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TFSR_EL1;

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TFSR_EL2;
elsif PSTATE.EL == EL3 then

return TFSR_EL2;

MSR TFSR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.ATA == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TFSR_EL1 = X[t];

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TFSR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

TFSR_EL2 = X[t];

MRS <Xt>, TFSR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0110 0b000

TFSR_EL2, Tag Fault Status Register (EL2)

Page 1499

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.ATA == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x190];
else

return TFSR_EL1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HCR_EL2.E2H == '1' then
return TFSR_EL2;

else
return TFSR_EL1;

elsif PSTATE.EL == EL3 then
return TFSR_EL1;

MSR TFSR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.ATA == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x190] = X[t];
else

TFSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HCR_EL2.E2H == '1' then
TFSR_EL2 = X[t];

else
TFSR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
TFSR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TFSR_EL2, Tag Fault Status Register (EL2)

Page 1500

TFSR_EL3, Tag Fault Status Register (EL3)
The TFSR_EL3 characteristics are:

Purpose
Holds accumulated Tag Check Faults occurring in EL3 that are not taken precisely.

Configuration
This register is present only when ARMv8.5-MemTag is implemented and ID_AA64PFR1_EL1.MTE != 0b0001.
Otherwise, direct accesses to TFSR_EL3 are UNDEFINED.

Attributes
TFSR_EL3 is a 64-bit register.

Field descriptions
The TFSR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 TF0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:1]

Reserved, RES0.

TF0, bit [0]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with bit[55] == 0b0 occurs.

This field resets to an architecturally UNKNOWN value.

Accessing the TFSR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, TFSR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0101 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return TFSR_EL3;

TFSR_EL3, Tag Fault Status Register (EL3)

Page 1501

MSR TFSR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0101 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TFSR_EL3 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TFSR_EL3, Tag Fault Status Register (EL3)

Page 1502

TFSRE0_EL1, Tag Fault Status Register (EL0).
The TFSRE0_EL1 characteristics are:

Purpose
Holds accumulated Tag Check Faults occurring in EL0 that are not taken precisely.

Configuration
This register is present only when ARMv8.5-MemTag is implemented and ID_AA64PFR1_EL1.MTE != 0b0001.
Otherwise, direct accesses to TFSRE0_EL1 are UNDEFINED.

Attributes
TFSRE0_EL1 is a 64-bit register.

Field descriptions
The TFSRE0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 TF1TF0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

TF1, bit [1]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with bit[55] == 0b1 occurs.

This field resets to an architecturally UNKNOWN value.

TF0, bit [0]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with bit[55] == 0b0 occurs.

This field resets to an architecturally UNKNOWN value.

Accessing the TFSRE0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, TFSRE0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0110 0b001

TFSRE0_EL1, Tag Fault Status Register (EL0).

Page 1503

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.ATA == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TFSRE0_EL1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TFSRE0_EL1;

elsif PSTATE.EL == EL3 then
return TFSRE0_EL1;

MSR TFSRE0_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0110 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.ATA == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TFSRE0_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.ATA == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TFSRE0_EL1 = X[t];

elsif PSTATE.EL == EL3 then
TFSRE0_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TFSRE0_EL1, Tag Fault Status Register (EL0).

Page 1504

TLBI ALLE1, TLB Invalidate All, EL1
The TLBI ALLE1 characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.

• If SCR_EL3.NS is 0 and the entry would be required to translate an address using the Secure EL1&0
translation regime.

• If SCR_EL3.NS is 1 and the entry would be required to translate an address using the Non-secure EL1&0
translation regime.

The invalidation applies to entries with any VMID.

The invalidation only applies to the PE that executes this System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global
entries, and non-global entries with any ASID.

Configuration
There are no configuration notes.

Attributes
TLBI ALLE1 is a 64-bit System instruction.

Field descriptions
TLBI ALLE1 ignores the value in the register specified by the instruction encoding. Software does not have to write a
value to the register before issuing this instruction.

Executing the TLBI ALLE1 instruction
Accesses to this instruction use the following encodings:

TLBI ALLE1{, <Xt>}

op0 op1 CRn CRm op2 Rt
0b01 0b100 0b1000 0b0111 0b100 0b11111

TLBI ALLE1, TLB Invalidate All, EL1

Page 1505

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_ALLE1();
elsif PSTATE.EL == EL3 then

TLBI_ALLE1();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ALLE1, TLB Invalidate All, EL1

Page 1506

TLBI ALLE1IS, TLB Invalidate All, EL1, Inner Shareable
The TLBI ALLE1IS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.

• If SCR_EL3.NS is 0 and the entry would be required to translate an address using the Secure EL1&0
translation regime.

• If SCR_EL3.NS is 1 and the entry would be required to translate an address using the Non-secure EL1&0
translation regime.

The invalidation applies to entries with any VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global
entries, and non-global entries with any ASID.

Configuration
There are no configuration notes.

Attributes
TLBI ALLE1IS is a 64-bit System instruction.

Field descriptions
TLBI ALLE1IS ignores the value in the register specified by the instruction encoding. Software does not have to write
a value to the register before issuing this instruction.

Executing the TLBI ALLE1IS instruction
Accesses to this instruction use the following encodings:

TLBI ALLE1IS{, <Xt>}

op0 op1 CRn CRm op2 Rt
0b01 0b100 0b1000 0b0011 0b100 0b11111

TLBI ALLE1IS, TLB Invalidate All, EL1, Inner Shareable

Page 1507

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_ALLE1IS();
elsif PSTATE.EL == EL3 then

TLBI_ALLE1IS();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ALLE1IS, TLB Invalidate All, EL1, Inner Shareable

Page 1508

TLBI ALLE1OS, TLB Invalidate All, EL1, Outer
Shareable

The TLBI ALLE1OS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.

• If SCR_EL3.NS is 0 and the entry would be required to translate an address using the Secure EL1&0
translation regime.

• If SCR_EL3.NS is 1 and the entry would be required to translate an address using the Non-secure EL1&0
translation regime.

The invalidation applies to entries with any VMID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global
entries, and non-global entries with any ASID.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI ALLE1OS are
UNDEFINED.

Attributes
TLBI ALLE1OS is a 64-bit System instruction.

Field descriptions
TLBI ALLE1OS ignores the value in the register specified by the instruction encoding. Software does not have to write
a value to the register before issuing this instruction.

Executing the TLBI ALLE1OS instruction
Accesses to this instruction use the following encodings:

TLBI ALLE1OS{, <Xt>}

op0 op1 CRn CRm op2 Rt
0b01 0b100 0b1000 0b0001 0b100 0b11111

TLBI ALLE1OS, TLB Invalidate All, EL1, Outer Shareable

Page 1509

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_ALLE1OS();
elsif PSTATE.EL == EL3 then

TLBI_ALLE1OS();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ALLE1OS, TLB Invalidate All, EL1, Outer Shareable

Page 1510

TLBI ALLE2, TLB Invalidate All, EL2
The TLBI ALLE2 characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• If SCR_EL3.NS is 1 and the entry would be required to translate an address using the Non-secure EL2 or
Non-secure EL2&0 translation regime.

• If SCR_EL3.NS is 0 and the entry would be required to translate an address using the Secure EL2 or Secure
EL2&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configuration
There are no configuration notes.

Attributes
TLBI ALLE2 is a 64-bit System instruction.

Field descriptions
TLBI ALLE2 ignores the value in the register specified by the instruction encoding. Software does not have to write a
value to the register before issuing this instruction.

Executing the TLBI ALLE2 instruction
Accesses to this instruction use the following encodings:

TLBI ALLE2{, <Xt>}

op0 op1 CRn CRm op2 Rt
0b01 0b100 0b1000 0b0111 0b000 0b11111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_ALLE2();
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
TLBI_ALLE2();

TLBI ALLE2, TLB Invalidate All, EL2

Page 1511

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ALLE2, TLB Invalidate All, EL2

Page 1512

TLBI ALLE2IS, TLB Invalidate All, EL2, Inner Shareable
The TLBI ALLE2IS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• If SCR_EL3.NS is 1 and the entry would be required to translate an address using the Non-secure EL2 or
Non-secure EL2&0 translation regime.

• If SCR_EL3.NS is 0 and the entry would be required to translate an address using the Secure EL2 or Secure
EL2&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Configuration
There are no configuration notes.

Attributes
TLBI ALLE2IS is a 64-bit System instruction.

Field descriptions
TLBI ALLE2IS ignores the value in the register specified by the instruction encoding. Software does not have to write
a value to the register before issuing this instruction.

Executing the TLBI ALLE2IS instruction
Accesses to this instruction use the following encodings:

TLBI ALLE2IS{, <Xt>}

op0 op1 CRn CRm op2 Rt
0b01 0b100 0b1000 0b0011 0b000 0b11111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_ALLE2IS();
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
TLBI_ALLE2IS();

TLBI ALLE2IS, TLB Invalidate All, EL2, Inner Shareable

Page 1513

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ALLE2IS, TLB Invalidate All, EL2, Inner Shareable

Page 1514

TLBI ALLE2OS, TLB Invalidate All, EL2, Outer
Shareable

The TLBI ALLE2OS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• If SCR_EL3.NS is 1 and the entry would be required to translate an address using the Non-secure EL2 or
Non-secure EL2&0 translation regime.

• If SCR_EL3.NS is 0 and the entry would be required to translate an address using the Secure EL2 or Secure
EL2&0 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI ALLE2OS are
UNDEFINED.

Attributes
TLBI ALLE2OS is a 64-bit System instruction.

Field descriptions
TLBI ALLE2OS ignores the value in the register specified by the instruction encoding. Software does not have to write
a value to the register before issuing this instruction.

Executing the TLBI ALLE2OS instruction
Accesses to this instruction use the following encodings:

TLBI ALLE2OS{, <Xt>}

op0 op1 CRn CRm op2 Rt
0b01 0b100 0b1000 0b0001 0b000 0b11111

TLBI ALLE2OS, TLB Invalidate All, EL2, Outer Shareable

Page 1515

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_ALLE2OS();
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
TLBI_ALLE2OS();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ALLE2OS, TLB Invalidate All, EL2, Outer Shareable

Page 1516

TLBI ALLE3, TLB Invalidate All, EL3
The TLBI ALLE3 characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be required to translate an address using the EL3 translation regime.

The invalidation applies to the PE that executes this System instruction.

Configuration
There are no configuration notes.

Attributes
TLBI ALLE3 is a 64-bit System instruction.

Field descriptions
TLBI ALLE3 ignores the value in the register specified by the instruction encoding. Software does not have to write a
value to the register before issuing this instruction.

Executing the TLBI ALLE3 instruction
Accesses to this instruction use the following encodings:

TLBI ALLE3{, <Xt>}

op0 op1 CRn CRm op2 Rt
0b01 0b110 0b1000 0b0111 0b000 0b11111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_ALLE3();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ALLE3, TLB Invalidate All, EL3

Page 1517

TLBI ALLE3IS, TLB Invalidate All, EL3, Inner Shareable
The TLBI ALLE3IS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be required to translate an address using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Configuration
There are no configuration notes.

Attributes
TLBI ALLE3IS is a 64-bit System instruction.

Field descriptions
TLBI ALLE3IS ignores the value in the register specified by the instruction encoding. Software does not have to write
a value to the register before issuing this instruction.

Executing the TLBI ALLE3IS instruction
Accesses to this instruction use the following encodings:

TLBI ALLE3IS{, <Xt>}

op0 op1 CRn CRm op2 Rt
0b01 0b110 0b1000 0b0011 0b000 0b11111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_ALLE3IS();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ALLE3IS, TLB Invalidate All, EL3, Inner Shareable

Page 1518

TLBI ALLE3OS, TLB Invalidate All, EL3, Outer
Shareable

The TLBI ALLE3OS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be required to translate an address using the EL3 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI ALLE3OS are
UNDEFINED.

Attributes
TLBI ALLE3OS is a 64-bit System instruction.

Field descriptions
TLBI ALLE3OS ignores the value in the register specified by the instruction encoding. Software does not have to write
a value to the register before issuing this instruction.

Executing the TLBI ALLE3OS instruction
Accesses to this instruction use the following encodings:

TLBI ALLE3OS{, <Xt>}

op0 op1 CRn CRm op2 Rt
0b01 0b110 0b1000 0b0001 0b000 0b11111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_ALLE3OS();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ALLE3OS, TLB Invalidate All, EL3, Outer Shareable

Page 1519

TLBI ASIDE1, TLB Invalidate by ASID, EL1
The TLBI ASIDE1 characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

◦ Is from a level of lookup above the final level.

◦ Is a non-global entry from the final level of lookup.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate an address using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate an address using the
EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate an address using the EL1&0 translation regime.

The invalidation applies to the PE that executes this System instruction.

Configuration
There are no configuration notes.

Attributes
TLBI ASIDE1 is a 64-bit System instruction.

Field descriptions
The TLBI ASIDE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID RES0

RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by this System
instruction.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

Bits [47:0]

Reserved, RES0.

TLBI ASIDE1, TLB Invalidate by ASID, EL1

Page 1520

Executing the TLBI ASIDE1 instruction
Accesses to this instruction use the following encodings:

TLBI ASIDE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0111 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIASIDE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
TLBI_ASIDE1IS(X[t]);

else
TLBI_ASIDE1(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_ASIDE1(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_ASIDE1(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ASIDE1, TLB Invalidate by ASID, EL1

Page 1521

TLBI ASIDE1IS, TLB Invalidate by ASID, EL1, Inner
Shareable

The TLBI ASIDE1IS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

◦ Is from a level of lookup above the final level.

◦ Is a non-global entry from the final level of lookup.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate an address using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate an address using the
EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate an address using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Configuration
There are no configuration notes.

Attributes
TLBI ASIDE1IS is a 64-bit System instruction.

Field descriptions
The TLBI ASIDE1IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID RES0

RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by this System
instruction.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

Bits [47:0]

Reserved, RES0.

TLBI ASIDE1IS, TLB Invalidate by ASID, EL1, Inner Shareable

Page 1522

Executing the TLBI ASIDE1IS instruction
Accesses to this instruction use the following encodings:

TLBI ASIDE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIASIDE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_ASIDE1IS(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_ASIDE1IS(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_ASIDE1IS(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ASIDE1IS, TLB Invalidate by ASID, EL1, Inner Shareable

Page 1523

TLBI ASIDE1OS, TLB Invalidate by ASID, EL1, Outer
Shareable

The TLBI ASIDE1OS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

◦ Is from a level of lookup above the final level.

◦ Is a non-global entry from the final level of lookup.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate an address using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate an address using the
EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate an address using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI ASIDE1OS
are UNDEFINED.

Attributes
TLBI ASIDE1OS is a 64-bit System instruction.

Field descriptions
The TLBI ASIDE1OS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID RES0

RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by this System
instruction.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

TLBI ASIDE1OS, TLB Invalidate by ASID, EL1, Outer Shareable

Page 1524

Bits [47:0]

Reserved, RES0.

Executing the TLBI ASIDE1OS instruction
Accesses to this instruction use the following encodings:

TLBI ASIDE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIASIDE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_ASIDE1OS(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_ASIDE1OS(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_ASIDE1OS(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ASIDE1OS, TLB Invalidate by ASID, EL1, Outer Shareable

Page 1525

TLBI IPAS2E1, TLB Invalidate by Intermediate Physical
Address, Stage 2, EL1

The TLBI IPAS2E1 characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

◦ SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to the PE that executes this System instruction.

For more information about the architectural requirements for this System instruction see 'Invalidation of TLB entries
from stage 2 translations' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Configuration
There are no configuration notes.

Attributes
TLBI IPAS2E1 is a 64-bit System instruction.

Field descriptions
The TLBI IPAS2E1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TTL RES0 IPA[51:48] IPA[47:12]

IPA[47:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

When ARMv8.4-SecEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

TLBI IPAS2E1, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 1526

When ARMv8.4-SecEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

When ARMv8.2-LPA is implemented:

Extension to IPA[47:12]. See IPA[47:12] for more details.

Otherwise:

Reserved, RES0.

TLBI IPAS2E1, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 1527

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48 bits, the upper bits
of this field are RES0.

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form
the upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2E1 instruction
Accesses to this instruction use the following encodings:

TLBI IPAS2E1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_IPAS2E1(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_IPAS2E1(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI IPAS2E1, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 1528

TLBI IPAS2E1IS, TLB Invalidate by Intermediate
Physical Address, Stage 2, EL1, Inner Shareable

The TLBI IPAS2E1IS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

◦ SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

For more information about the architectural requirements for this System instruction see 'Invalidation of TLB entries
from stage 2 translations' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Configuration
There are no configuration notes.

Attributes
TLBI IPAS2E1IS is a 64-bit System instruction.

Field descriptions
The TLBI IPAS2E1IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TTL RES0 IPA[51:48] IPA[47:12]

IPA[47:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

When ARMv8.4-SecEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

TLBI IPAS2E1IS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable

Page 1529

When ARMv8.4-SecEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

When ARMv8.2-LPA is implemented:

Extension to IPA[47:12]. See IPA[47:12] for more details.

Otherwise:

Reserved, RES0.

TLBI IPAS2E1IS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable

Page 1530

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48 bits, the upper bits
of this field are RES0.

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form
the upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2E1IS instruction
Accesses to this instruction use the following encodings:

TLBI IPAS2E1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_IPAS2E1IS(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_IPAS2E1IS(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI IPAS2E1IS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable

Page 1531

TLBI IPAS2E1OS, TLB Invalidate by Intermediate
Physical Address, Stage 2, EL1, Outer Shareable

The TLBI IPAS2E1OS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

◦ SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

For more information about the architectural requirements for this System instruction see 'Invalidation of TLB entries
from stage 2 translations' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI IPAS2E1OS
are UNDEFINED.

Attributes
TLBI IPAS2E1OS is a 64-bit System instruction.

Field descriptions
The TLBI IPAS2E1OS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TTL RES0 IPA[51:48] IPA[47:12]

IPA[47:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

TLBI IPAS2E1OS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable

Page 1532

When ARMv8.4-SecEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

Extension to IPA[47:12]. See IPA[47:12] for more details.

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48 bits, the upper bits
of this field are RES0.

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form
the upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2E1OS instruction
Accesses to this instruction use the following encodings:

TLBI IPAS2E1OS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable

Page 1533

TLBI IPAS2E1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_IPAS2E1OS(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_IPAS2E1OS(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI IPAS2E1OS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable

Page 1534

TLBI IPAS2LE1, TLB Invalidate by Intermediate
Physical Address, Stage 2, Last level, EL1

The TLBI IPAS2LE1 characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

◦ SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to the PE that executes this System instruction.

For more information about the architectural requirements for this System instruction see 'Invalidation of TLB entries
from stage 2 translations' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Configuration
There are no configuration notes.

Attributes
TLBI IPAS2LE1 is a 64-bit System instruction.

Field descriptions
The TLBI IPAS2LE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TTL RES0 IPA[51:48] IPA[47:12]

IPA[47:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

When ARMv8.4-SecEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

TLBI IPAS2LE1, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

Page 1535

When ARMv8.4-SecEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

When ARMv8.2-LPA is implemented:

Extension to IPA[47:12]. See IPA[47:12] for more details.

Otherwise:

Reserved, RES0.

TLBI IPAS2LE1, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

Page 1536

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48 bits, the upper bits
of this field are RES0.

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form
the upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2LE1 instruction
Accesses to this instruction use the following encodings:

TLBI IPAS2LE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0100 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_IPAS2LE1(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_IPAS2LE1(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI IPAS2LE1, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

Page 1537

TLBI IPAS2LE1IS, TLB Invalidate by Intermediate
Physical Address, Stage 2, Last level, EL1, Inner

Shareable
The TLBI IPAS2LE1IS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

◦ SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

For more information about the architectural requirements for this System instruction see 'Invalidation of TLB entries
from stage 2 translations' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Configuration
There are no configuration notes.

Attributes
TLBI IPAS2LE1IS is a 64-bit System instruction.

Field descriptions
The TLBI IPAS2LE1IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TTL RES0 IPA[51:48] IPA[47:12]

IPA[47:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

When ARMv8.4-SecEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

TLBI IPAS2LE1IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable

Page 1538

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When ARMv8.4-SecEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

When ARMv8.2-LPA is implemented:

Extension to IPA[47:12]. See IPA[47:12] for more details.

TLBI IPAS2LE1IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable

Page 1539

Otherwise:

Reserved, RES0.

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48 bits, the upper bits
of this field are RES0.

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form
the upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2LE1IS instruction
Accesses to this instruction use the following encodings:

TLBI IPAS2LE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0000 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_IPAS2LE1IS(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_IPAS2LE1IS(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI IPAS2LE1IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable

Page 1540

TLBI IPAS2LE1OS, TLB Invalidate by Intermediate
Physical Address, Stage 2, Last level, EL1, Outer

Shareable
The TLBI IPAS2LE1OS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

◦ SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

For more information about the architectural requirements for this System instruction see 'Invalidation of TLB entries
from stage 2 translations' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI IPAS2LE1OS
are UNDEFINED.

Attributes
TLBI IPAS2LE1OS is a 64-bit System instruction.

Field descriptions
The TLBI IPAS2LE1OS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TTL RES0 IPA[51:48] IPA[47:12]

IPA[47:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

When ARMv8.4-SecEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

TLBI IPAS2LE1OS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable

Page 1541

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When ARMv8.4-SecEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

Extension to IPA[47:12]. See IPA[47:12] for more details.

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48 bits, the upper bits
of this field are RES0.

TLBI IPAS2LE1OS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable

Page 1542

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form
the upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2LE1OS instruction
Accesses to this instruction use the following encodings:

TLBI IPAS2LE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0100 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_IPAS2LE1OS(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_IPAS2LE1OS(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI IPAS2LE1OS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable

Page 1543

TLBI RIPAS2E1, TLB Range Invalidate by Intermediate
Physical Address, Stage 2, EL1

The TLBI RIPAS2E1 characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

◦ SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction see 'Invalidation of TLB entries
from stage 2 translations' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RIPAS2E1 are
UNDEFINED.

Attributes
TLBI RIPAS2E1 is a 64-bit System instruction.

TLBI RIPAS2E1, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 1544

Field descriptions
The TLBI RIPAS2E1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

When ARMv8.4-SecEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When ARMv8.4-SecEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TLBI RIPAS2E1, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 1545

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved.
Hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2E1 instruction
Accesses to this instruction use the following encodings:

TLBI RIPAS2E1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0100 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RIPAS2E1(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_RIPAS2E1(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RIPAS2E1, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 1546

TLBI RIPAS2E1IS, TLB Range Invalidate by
Intermediate Physical Address, Stage 2, EL1, Inner

Shareable
The TLBI RIPAS2E1IS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

◦ SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction see 'Invalidation of TLB entries
from stage 2 translations' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RIPAS2E1IS
are UNDEFINED.

Attributes
TLBI RIPAS2E1IS is a 64-bit System instruction.

TLBI RIPAS2E1IS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable

Page 1547

Field descriptions
The TLBI RIPAS2E1IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

When ARMv8.4-SecEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When ARMv8.4-SecEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TLBI RIPAS2E1IS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable

Page 1548

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved.
Hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2E1IS instruction
Accesses to this instruction use the following encodings:

TLBI RIPAS2E1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RIPAS2E1IS(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_RIPAS2E1IS(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RIPAS2E1IS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable

Page 1549

TLBI RIPAS2E1OS, TLB Range Invalidate by
Intermediate Physical Address, Stage 2, EL1, Outer

Shareable
The TLBI RIPAS2E1OS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

◦ SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction see 'Invalidation of TLB entries
from stage 2 translations' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RIPAS2E1OS
are UNDEFINED.

Attributes
TLBI RIPAS2E1OS is a 64-bit System instruction.

TLBI RIPAS2E1OS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable

Page 1550

Field descriptions
The TLBI RIPAS2E1OS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When ARMv8.4-SecEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved.
Hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

TLBI RIPAS2E1OS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable

Page 1551

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2E1OS instruction
Accesses to this instruction use the following encodings:

TLBI RIPAS2E1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0100 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RIPAS2E1OS(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_RIPAS2E1OS(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RIPAS2E1OS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable

Page 1552

TLBI RIPAS2LE1, TLB Range Invalidate by
Intermediate Physical Address, Stage 2, Last level,

EL1
The TLBI RIPAS2LE1 characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

◦ SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation only applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction see 'Invalidation of TLB entries
from stage 2 translations' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RIPAS2LE1
are UNDEFINED.

Attributes
TLBI RIPAS2LE1 is a 64-bit System instruction.

TLBI RIPAS2LE1, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

Page 1553

Field descriptions
The TLBI RIPAS2LE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

When ARMv8.4-SecEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When ARMv8.4-SecEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TLBI RIPAS2LE1, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

Page 1554

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved.
Hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2LE1 instruction
Accesses to this instruction use the following encodings:

TLBI RIPAS2LE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0100 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RIPAS2LE1(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_RIPAS2LE1(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RIPAS2LE1, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

Page 1555

TLBI RIPAS2LE1IS, TLB Range Invalidate by
Intermediate Physical Address, Stage 2, Last level,

EL1, Inner Shareable
The TLBI RIPAS2LE1IS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

◦ SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction see 'Invalidation of TLB entries
from stage 2 translations' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RIPAS2LE1IS
are UNDEFINED.

Attributes
TLBI RIPAS2LE1IS is a 64-bit System instruction.

TLBI RIPAS2LE1IS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable

Page 1556

Field descriptions
The TLBI RIPAS2LE1IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

When ARMv8.4-SecEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When ARMv8.4-SecEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TLBI RIPAS2LE1IS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable

Page 1557

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved.
Hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2LE1IS instruction
Accesses to this instruction use the following encodings:

TLBI RIPAS2LE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0000 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RIPAS2LE1IS(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_RIPAS2LE1IS(X[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RIPAS2LE1IS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable

Page 1558

TLBI RIPAS2LE1OS, TLB Range Invalidate by
Intermediate Physical Address, Stage 2, Last level,

EL1, Outer Shareable
The TLBI RIPAS2LE1OS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

◦ SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

TLBI RIPAS2LE1OS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable

Page 1559

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction see 'Invalidation of TLB entries
from stage 2 translations' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RIPAS2LE1OS
are UNDEFINED.

Attributes
TLBI RIPAS2LE1OS is a 64-bit System instruction.

Field descriptions
The TLBI RIPAS2LE1OS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

When ARMv8.4-SecEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When ARMv8.4-SecEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

TLBI RIPAS2LE1OS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable

Page 1560

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved.
Hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2LE1OS instruction
Accesses to this instruction use the following encodings:

TLBI RIPAS2LE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0100 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RIPAS2LE1OS(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_RIPAS2LE1OS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RIPAS2LE1OS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable

Page 1561

TLBI RVAAE1, TLB Range Invalidate by VA, All ASID,
EL1

The TLBI RVAAE1 characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both:

• Global entries.
• Non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVAAE1 are
UNDEFINED.

Attributes
TLBI RVAAE1 is a 64-bit System instruction.

TLBI RVAAE1, TLB Range Invalidate by VA, All ASID, EL1

Page 1562

Field descriptions
The TLBI RVAAE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

TLBI RVAAE1, TLB Range Invalidate by VA, All ASID, EL1

Page 1563

Executing the TLBI RVAAE1 instruction
Accesses to this instruction use the following encodings:

TLBI RVAAE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0110 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIRVAAE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
TLBI_RVAAE1IS(X[t]);

else
TLBI_RVAAE1(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_RVAAE1(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_RVAAE1(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVAAE1, TLB Range Invalidate by VA, All ASID, EL1

Page 1564

TLBI RVAAE1IS, TLB Range Invalidate by VA, All ASID,
EL1, Inner Shareable

The TLBI RVAAE1IS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both:

• Global entries.
• Non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

TLBI RVAAE1IS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

Page 1565

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVAAE1IS are
UNDEFINED.

Attributes
TLBI RVAAE1IS is a 64-bit System instruction.

Field descriptions
The TLBI RVAAE1IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

TLBI RVAAE1IS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

Page 1566

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAAE1IS instruction
Accesses to this instruction use the following encodings:

TLBI RVAAE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0010 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIRVAAE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_RVAAE1IS(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_RVAAE1IS(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_RVAAE1IS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVAAE1IS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

Page 1567

TLBI RVAAE1OS, TLB Range Invalidate by VA, All ASID,
EL1, Outer Shareable

The TLBI RVAAE1OS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both:

• Global entries.
• Non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

TLBI RVAAE1OS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

Page 1568

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVAAE1OS
are UNDEFINED.

Attributes
TLBI RVAAE1OS is a 64-bit System instruction.

Field descriptions
The TLBI RVAAE1OS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

TLBI RVAAE1OS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

Page 1569

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAAE1OS instruction
Accesses to this instruction use the following encodings:

TLBI RVAAE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0101 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIRVAAE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_RVAAE1OS(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_RVAAE1OS(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_RVAAE1OS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVAAE1OS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

Page 1570

TLBI RVAALE1, TLB Range Invalidate by VA, All ASID,
Last level, EL1

The TLBI RVAALE1 characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both:

• Global entries.
• Non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVAALE1 are
UNDEFINED.

Attributes
TLBI RVAALE1 is a 64-bit System instruction.

TLBI RVAALE1, TLB Range Invalidate by VA, All ASID, Last level, EL1

Page 1571

Field descriptions
The TLBI RVAALE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

TLBI RVAALE1, TLB Range Invalidate by VA, All ASID, Last level, EL1

Page 1572

Executing the TLBI RVAALE1 instruction
Accesses to this instruction use the following encodings:

TLBI RVAALE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0110 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIRVAALE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
TLBI_RVAAE1IS(X[t]);

else
TLBI_RVAALE1(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_RVAALE1(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_RVAALE1(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVAALE1, TLB Range Invalidate by VA, All ASID, Last level, EL1

Page 1573

TLBI RVAALE1IS, TLB Range Invalidate by VA, All ASID,
Last Level, EL1, Inner Shareable

The TLBI RVAALE1IS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both:

• Global entries.
• Non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

TLBI RVAALE1IS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 1574

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVAALE1IS
are UNDEFINED.

Attributes
TLBI RVAALE1IS is a 64-bit System instruction.

Field descriptions
The TLBI RVAALE1IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

TLBI RVAALE1IS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 1575

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAALE1IS instruction
Accesses to this instruction use the following encodings:

TLBI RVAALE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0010 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIRVAALE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_RVAALE1IS(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_RVAALE1IS(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_RVAALE1IS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVAALE1IS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 1576

TLBI RVAALE1OS, TLB Range Invalidate by VA, All
ASID, Last Level, EL1, Outer Shareable

The TLBI RVAALE1OS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both:

• Global entries.
• Non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

TLBI RVAALE1OS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 1577

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVAALE1OS
are UNDEFINED.

Attributes
TLBI RVAALE1OS is a 64-bit System instruction.

Field descriptions
The TLBI RVAALE1OS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

TLBI RVAALE1OS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 1578

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAALE1OS instruction
Accesses to this instruction use the following encodings:

TLBI RVAALE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0101 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIRVAALE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_RVAALE1OS(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_RVAALE1OS(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_RVAALE1OS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVAALE1OS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 1579

TLBI RVAE1, TLB Range Invalidate by VA, EL1
The TLBI RVAE1 characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVAE1 are
UNDEFINED.

Attributes
TLBI RVAE1 is a 64-bit System instruction.

TLBI RVAE1, TLB Range Invalidate by VA, EL1

Page 1580

Field descriptions
The TLBI RVAE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

TLBI RVAE1, TLB Range Invalidate by VA, EL1

Page 1581

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE1 instruction
Accesses to this instruction use the following encodings:

TLBI RVAE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0110 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIRVAE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
TLBI_RVAE1IS(X[t]);

else
TLBI_RVAE1(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_RVAE1(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_RVAE1(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVAE1, TLB Range Invalidate by VA, EL1

Page 1582

TLBI RVAE1IS, TLB Range Invalidate by VA, EL1, Inner
Shareable

The TLBI RVAE1IS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

TLBI RVAE1IS, TLB Range Invalidate by VA, EL1, Inner Shareable

Page 1583

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVAE1IS are
UNDEFINED.

Attributes
TLBI RVAE1IS is a 64-bit System instruction.

Field descriptions
The TLBI RVAE1IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TLBI RVAE1IS, TLB Range Invalidate by VA, EL1, Inner Shareable

Page 1584

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE1IS instruction
Accesses to this instruction use the following encodings:

TLBI RVAE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIRVAE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_RVAE1IS(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_RVAE1IS(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_RVAE1IS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVAE1IS, TLB Range Invalidate by VA, EL1, Inner Shareable

Page 1585

TLBI RVAE1OS, TLB Range Invalidate by VA, EL1,
Outer Shareable

The TLBI RVAE1OS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

TLBI RVAE1OS, TLB Range Invalidate by VA, EL1, Outer Shareable

Page 1586

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVAE1OS are
UNDEFINED.

Attributes
TLBI RVAE1OS is a 64-bit System instruction.

Field descriptions
The TLBI RVAE1OS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TLBI RVAE1OS, TLB Range Invalidate by VA, EL1, Outer Shareable

Page 1587

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE1OS instruction
Accesses to this instruction use the following encodings:

TLBI RVAE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0101 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIRVAE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_RVAE1OS(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_RVAE1OS(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_RVAE1OS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVAE1OS, TLB Range Invalidate by VA, EL1, Outer Shareable

Page 1588

TLBI RVAE2, TLB Range Invalidate by VA, EL2
The TLBI RVAE2 characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA in the specified range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2^(5*SCALE +1) * Translation_Granule_Size)], using the EL2
or EL2&0 translation regime.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is from a level of the translation table walk above the final level and matches the
specified ASID.

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk and matches the
specified ASID.

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVAE2 are
UNDEFINED.

Attributes
TLBI RVAE2 is a 64-bit System instruction.

Field descriptions
The TLBI RVAE2 input value bit assignments are:

TLBI RVAE2, TLB Range Invalidate by VA, EL2

Page 1589

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

TLBI RVAE2, TLB Range Invalidate by VA, EL2

Page 1590

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE2 instruction
Accesses to this instruction use the following encodings:

TLBI RVAE2{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0110 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RVAE2(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
TLBI_RVAE2(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVAE2, TLB Range Invalidate by VA, EL2

Page 1591

TLBI RVAE2IS, TLB Range Invalidate by VA, EL2, Inner
Shareable

The TLBI RVAE2IS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA in the specified range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2^(5*SCALE +1) * Translation_Granule_Size)], using the EL2
or EL2&0 translation regime.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is from a level of the translation table walk above the final level and matches the
specified ASID.

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk and matches the
specified ASID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVAE2IS are
UNDEFINED.

Attributes
TLBI RVAE2IS is a 64-bit System instruction.

Field descriptions
The TLBI RVAE2IS input value bit assignments are:

TLBI RVAE2IS, TLB Range Invalidate by VA, EL2, Inner Shareable

Page 1592

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

TLBI RVAE2IS, TLB Range Invalidate by VA, EL2, Inner Shareable

Page 1593

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE2IS instruction
Accesses to this instruction use the following encodings:

TLBI RVAE2IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RVAE2IS(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
TLBI_RVAE2IS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVAE2IS, TLB Range Invalidate by VA, EL2, Inner Shareable

Page 1594

TLBI RVAE2OS, TLB Range Invalidate by VA, EL2,
Outer Shareable

The TLBI RVAE2OS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA in the specified range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2^(5*SCALE +1) * Translation_Granule_Size)], using the EL2
or EL2&0 translation regime.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is from a level of the translation table walk above the final level and matches the
specified ASID.

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk and matches the
specified ASID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVAE2OS are
UNDEFINED.

Attributes
TLBI RVAE2OS is a 64-bit System instruction.

Field descriptions
The TLBI RVAE2OS input value bit assignments are:

TLBI RVAE2OS, TLB Range Invalidate by VA, EL2, Outer Shareable

Page 1595

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

TLBI RVAE2OS, TLB Range Invalidate by VA, EL2, Outer Shareable

Page 1596

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE2OS instruction
Accesses to this instruction use the following encodings:

TLBI RVAE2OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0101 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RVAE2OS(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
TLBI_RVAE2OS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVAE2OS, TLB Range Invalidate by VA, EL2, Outer Shareable

Page 1597

TLBI RVAE3, TLB Range Invalidate by VA, EL3
The TLBI RVAE3 characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVAE3 are
UNDEFINED.

Attributes
TLBI RVAE3 is a 64-bit System instruction.

Field descriptions
The TLBI RVAE3 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TLBI RVAE3, TLB Range Invalidate by VA, EL3

Page 1598

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE3 instruction
Accesses to this instruction use the following encodings:

TLBI RVAE3{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0110 0b001

TLBI RVAE3, TLB Range Invalidate by VA, EL3

Page 1599

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_RVAE3(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVAE3, TLB Range Invalidate by VA, EL3

Page 1600

TLBI RVAE3IS, TLB Range Invalidate by VA, EL3, Inner
Shareable

The TLBI RVAE3IS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVAE3IS are
UNDEFINED.

Attributes
TLBI RVAE3IS is a 64-bit System instruction.

Field descriptions
The TLBI RVAE3IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TLBI RVAE3IS, TLB Range Invalidate by VA, EL3, Inner Shareable

Page 1601

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE3IS instruction
Accesses to this instruction use the following encodings:

TLBI RVAE3IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0010 0b001

TLBI RVAE3IS, TLB Range Invalidate by VA, EL3, Inner Shareable

Page 1602

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_RVAE3IS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVAE3IS, TLB Range Invalidate by VA, EL3, Inner Shareable

Page 1603

TLBI RVAE3OS, TLB Range Invalidate by VA, EL3,
Outer Shareable

The TLBI RVAE3OS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVAE3OS are
UNDEFINED.

Attributes
TLBI RVAE3OS is a 64-bit System instruction.

Field descriptions
The TLBI RVAE3OS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TLBI RVAE3OS, TLB Range Invalidate by VA, EL3, Outer Shareable

Page 1604

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE3OS instruction
Accesses to this instruction use the following encodings:

TLBI RVAE3OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0101 0b001

TLBI RVAE3OS, TLB Range Invalidate by VA, EL3, Outer Shareable

Page 1605

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_RVAE3OS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVAE3OS, TLB Range Invalidate by VA, EL3, Outer Shareable

Page 1606

TLBI RVALE1, TLB Range Invalidate by VA, Last level,
EL1

The TLBI RVALE1 characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction see 'Invalidation of TLB entries
from stage 2 translations' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVALE1 are
UNDEFINED.

Attributes
TLBI RVALE1 is a 64-bit System instruction.

TLBI RVALE1, TLB Range Invalidate by VA, Last level, EL1

Page 1607

Field descriptions
The TLBI RVALE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

TLBI RVALE1, TLB Range Invalidate by VA, Last level, EL1

Page 1608

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE1 instruction
Accesses to this instruction use the following encodings:

TLBI RVALE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0110 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIRVALE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
TLBI_RVALE1IS(X[t]);

else
TLBI_RVALE1(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_RVALE1(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_RVALE1(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVALE1, TLB Range Invalidate by VA, Last level, EL1

Page 1609

TLBI RVALE1IS, TLB Range Invalidate by VA, Last
level, EL1, Inner Shareable

The TLBI RVALE1IS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

TLBI RVALE1IS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

Page 1610

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVALE1IS are
UNDEFINED.

Attributes
TLBI RVALE1IS is a 64-bit System instruction.

Field descriptions
The TLBI RVALE1IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TLBI RVALE1IS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

Page 1611

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE1IS instruction
Accesses to this instruction use the following encodings:

TLBI RVALE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0010 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIRVALE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_RVALE1IS(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_RVALE1IS(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_RVALE1IS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVALE1IS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

Page 1612

TLBI RVALE1OS, TLB Range Invalidate by VA, Last
level, EL1, Outer Shareable

The TLBI RVALE1OS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

TLBI RVALE1OS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

Page 1613

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVALE1OS
are UNDEFINED.

Attributes
TLBI RVALE1OS is a 64-bit System instruction.

Field descriptions
The TLBI RVALE1OS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TLBI RVALE1OS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

Page 1614

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE1OS instruction
Accesses to this instruction use the following encodings:

TLBI RVALE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0101 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIRVALE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_RVALE1OS(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_RVALE1OS(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_RVALE1OS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVALE1OS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

Page 1615

TLBI RVALE2, TLB Range Invalidate by VA, Last level,
EL2

The TLBI RVALE2 characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA in the specified range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2^(5*SCALE +1) * Translation_Granule_Size)] using the EL2
or EL2&0 translation regime.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is a global entry from the final level of translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk and matches the
specified ASID.

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVALE2 are
UNDEFINED.

Attributes
TLBI RVALE2 is a 64-bit System instruction.

Field descriptions
The TLBI RVALE2 input value bit assignments are:

TLBI RVALE2, TLB Range Invalidate by VA, Last level, EL2

Page 1616

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

TLBI RVALE2, TLB Range Invalidate by VA, Last level, EL2

Page 1617

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE2 instruction
Accesses to this instruction use the following encodings:

TLBI RVALE2{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0110 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RVALE2(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
TLBI_RVALE2(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVALE2, TLB Range Invalidate by VA, Last level, EL2

Page 1618

TLBI RVALE2IS, TLB Range Invalidate by VA, Last
level, EL2, Inner Shareable

The TLBI RVALE2IS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA in the specified range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2^(5*SCALE +1) * Translation_Granule_Size)] using the EL2
or EL2&0 translation regime.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is a global entry from the final level of translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk and matches the
specified ASID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVALE2IS are
UNDEFINED.

Attributes
TLBI RVALE2IS is a 64-bit System instruction.

Field descriptions
The TLBI RVALE2IS input value bit assignments are:

TLBI RVALE2IS, TLB Range Invalidate by VA, Last level, EL2, Inner Shareable

Page 1619

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

TLBI RVALE2IS, TLB Range Invalidate by VA, Last level, EL2, Inner Shareable

Page 1620

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE2IS instruction
Accesses to this instruction use the following encodings:

TLBI RVALE2IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0010 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RVALE2IS(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
TLBI_RVALE2IS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVALE2IS, TLB Range Invalidate by VA, Last level, EL2, Inner Shareable

Page 1621

TLBI RVALE2OS, TLB Range Invalidate by VA, Last
level, EL2, Outer Shareable

The TLBI RVALE2OS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA in the specified range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2^(5*SCALE +1) * Translation_Granule_Size)] using the EL2
or EL2&0 translation regime.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is a global entry from the final level of translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk and matches the
specified ASID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVALE2OS
are UNDEFINED.

Attributes
TLBI RVALE2OS is a 64-bit System instruction.

Field descriptions
The TLBI RVALE2OS input value bit assignments are:

TLBI RVALE2OS, TLB Range Invalidate by VA, Last level, EL2, Outer Shareable

Page 1622

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

TLBI RVALE2OS, TLB Range Invalidate by VA, Last level, EL2, Outer Shareable

Page 1623

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE2OS instruction
Accesses to this instruction use the following encodings:

TLBI RVALE2OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0101 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RVALE2OS(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
TLBI_RVALE2OS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVALE2OS, TLB Range Invalidate by VA, Last level, EL2, Outer Shareable

Page 1624

TLBI RVALE3, TLB Range Invalidate by VA, Last level,
EL3

The TLBI RVALE3 characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVALE3 are
UNDEFINED.

Attributes
TLBI RVALE3 is a 64-bit System instruction.

Field descriptions
The TLBI RVALE3 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TLBI RVALE3, TLB Range Invalidate by VA, Last level, EL3

Page 1625

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE3 instruction
Accesses to this instruction use the following encodings:

TLBI RVALE3{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0110 0b101

TLBI RVALE3, TLB Range Invalidate by VA, Last level, EL3

Page 1626

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_RVALE3(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVALE3, TLB Range Invalidate by VA, Last level, EL3

Page 1627

TLBI RVALE3IS, TLB Range Invalidate by VA, Last
level, EL3, Inner Shareable

The TLBI RVALE3IS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVALE3IS are
UNDEFINED.

Attributes
TLBI RVALE3IS is a 64-bit System instruction.

Field descriptions
The TLBI RVALE3IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TLBI RVALE3IS, TLB Range Invalidate by VA, Last level, EL3, Inner Shareable

Page 1628

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE3IS instruction
Accesses to this instruction use the following encodings:

TLBI RVALE3IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0010 0b101

TLBI RVALE3IS, TLB Range Invalidate by VA, Last level, EL3, Inner Shareable

Page 1629

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_RVALE3IS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVALE3IS, TLB Range Invalidate by VA, Last level, EL3, Inner Shareable

Page 1630

TLBI RVALE3OS, TLB Range Invalidate by VA, Last
level, EL3, Outer Shareable

The TLBI RVALE3OS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI RVALE3OS
are UNDEFINED.

Attributes
TLBI RVALE3OS is a 64-bit System instruction.

Field descriptions
The TLBI RVALE3OS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TLBI RVALE3OS, TLB Range Invalidate by VA, Last level, EL3, Outer Shareable

Page 1631

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to

invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and
hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE3OS instruction
Accesses to this instruction use the following encodings:

TLBI RVALE3OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0101 0b101

TLBI RVALE3OS, TLB Range Invalidate by VA, Last level, EL3, Outer Shareable

Page 1632

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_RVALE3OS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI RVALE3OS, TLB Range Invalidate by VA, Last level, EL3, Outer Shareable

Page 1633

TLBI VAAE1, TLB Invalidate by VA, All ASID, EL1
The TLBI VAAE1 characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries, and non-global entries with any ASID.

Configuration
There are no configuration notes.

Attributes
TLBI VAAE1 is a 64-bit System instruction.

Field descriptions
The TLBI VAAE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TLBI VAAE1, TLB Invalidate by VA, All ASID, EL1

Page 1634

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAAE1 instruction
Accesses to this instruction use the following encodings:

TLBI VAAE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0111 0b011

TLBI VAAE1, TLB Invalidate by VA, All ASID, EL1

Page 1635

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIVAAE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
TLBI_VAAE1IS(X[t]);

else
TLBI_VAAE1(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_VAAE1(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_VAAE1(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAAE1, TLB Invalidate by VA, All ASID, EL1

Page 1636

TLBI VAAE1IS, TLB Invalidate by VA, All ASID, EL1,
Inner Shareable

The TLBI VAAE1IS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the
Secure EL1&0 translation regime and is defined to pass a VMID argument, or
would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries, and non-global entries with any ASID.

Configuration
There are no configuration notes.

Attributes
TLBI VAAE1IS is a 64-bit System instruction.

Field descriptions
The TLBI VAAE1IS input value bit assignments are:

TLBI VAAE1IS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable

Page 1637

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

TLBI VAAE1IS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable

Page 1638

Executing the TLBI VAAE1IS instruction
Accesses to this instruction use the following encodings:

TLBI VAAE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0011 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIVAAE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VAAE1IS(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_VAAE1IS(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_VAAE1IS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAAE1IS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable

Page 1639

TLBI VAAE1OS, TLB Invalidate by VA, All ASID, EL1,
Outer Shareable

The TLBI VAAE1OS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries, and non-global entries with any ASID.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI VAAE1OS are
UNDEFINED.

Attributes
TLBI VAAE1OS is a 64-bit System instruction.

Field descriptions
The TLBI VAAE1OS input value bit assignments are:

TLBI VAAE1OS, TLB Invalidate by VA, All ASID, EL1, Outer Shareable

Page 1640

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

TLBI VAAE1OS, TLB Invalidate by VA, All ASID, EL1, Outer Shareable

Page 1641

Executing the TLBI VAAE1OS instruction
Accesses to this instruction use the following encodings:

TLBI VAAE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0001 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIVAAE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VAAE1OS(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_VAAE1OS(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_VAAE1OS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAAE1OS, TLB Invalidate by VA, All ASID, EL1, Outer Shareable

Page 1642

TLBI VAALE1, TLB Invalidate by VA, All ASID, Last
level, EL1

The TLBI VAALE1 characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries, and non-global entries with any ASID.

Configuration
There are no configuration notes.

Attributes
TLBI VAALE1 is a 64-bit System instruction.

Field descriptions
The TLBI VAALE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TLBI VAALE1, TLB Invalidate by VA, All ASID, Last level, EL1

Page 1643

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAALE1 instruction
Accesses to this instruction use the following encodings:

TLBI VAALE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0111 0b111

TLBI VAALE1, TLB Invalidate by VA, All ASID, Last level, EL1

Page 1644

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIVAALE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
TLBI_VAALE1IS(X[t]);

else
TLBI_VAALE1(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_VAALE1(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_VAALE1(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAALE1, TLB Invalidate by VA, All ASID, Last level, EL1

Page 1645

TLBI VAALE1IS, TLB Invalidate by VA, All ASID, Last
Level, EL1, Inner Shareable

The TLBI VAALE1IS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the
Secure EL1&0 translation regime and is defined to pass a VMID argument, or
would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries, and non-global entries with any ASID.

Configuration
There are no configuration notes.

Attributes
TLBI VAALE1IS is a 64-bit System instruction.

Field descriptions
The TLBI VAALE1IS input value bit assignments are:

TLBI VAALE1IS, TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 1646

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

TLBI VAALE1IS, TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 1647

Executing the TLBI VAALE1IS instruction
Accesses to this instruction use the following encodings:

TLBI VAALE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0011 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIVAALE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VAALE1IS(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_VAALE1IS(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_VAALE1IS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAALE1IS, TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 1648

TLBI VAALE1OS, TLB Invalidate by VA, All ASID, Last
Level, EL1, Outer Shareable

The TLBI VAALE1OS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries, and non-global entries with any ASID.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI VAALE1OS
are UNDEFINED.

Attributes
TLBI VAALE1OS is a 64-bit System instruction.

Field descriptions
The TLBI VAALE1OS input value bit assignments are:

TLBI VAALE1OS, TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 1649

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

TLBI VAALE1OS, TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 1650

Executing the TLBI VAALE1OS instruction
Accesses to this instruction use the following encodings:

TLBI VAALE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0001 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIVAALE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VAALE1OS(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_VAALE1OS(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_VAALE1OS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAALE1OS, TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 1651

TLBI VAE1, TLB Invalidate by VA, EL1
The TLBI VAE1 characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

The invalidation applies to the PE that executes this System instruction.

Configuration
There are no configuration notes.

Attributes
TLBI VAE1 is a 64-bit System instruction.

Field descriptions
The TLBI VAE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

TTL, bits [47:44]

TLBI VAE1, TLB Invalidate by VA, EL1

Page 1652

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE1 instruction
Accesses to this instruction use the following encodings:

TLBI VAE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0111 0b001

TLBI VAE1, TLB Invalidate by VA, EL1

Page 1653

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIVAE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
TLBI_VAE1IS(X[t]);

else
TLBI_VAE1(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_VAE1(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_VAE1(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAE1, TLB Invalidate by VA, EL1

Page 1654

TLBI VAE1IS, TLB Invalidate by VA, EL1, Inner
Shareable

The TLBI VAE1IS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the
Secure EL1&0 translation regime and is defined to pass a VMID argument, or
would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Configuration
There are no configuration notes.

Attributes
TLBI VAE1IS is a 64-bit System instruction.

Field descriptions
The TLBI VAE1IS input value bit assignments are:

TLBI VAE1IS, TLB Invalidate by VA, EL1, Inner Shareable

Page 1655

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

TLBI VAE1IS, TLB Invalidate by VA, EL1, Inner Shareable

Page 1656

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE1IS instruction
Accesses to this instruction use the following encodings:

TLBI VAE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIVAE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VAE1IS(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_VAE1IS(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_VAE1IS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAE1IS, TLB Invalidate by VA, EL1, Inner Shareable

Page 1657

TLBI VAE1OS, TLB Invalidate by VA, EL1, Outer
Shareable

The TLBI VAE1OS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI VAE1OS are
UNDEFINED.

Attributes
TLBI VAE1OS is a 64-bit System instruction.

Field descriptions
The TLBI VAE1OS input value bit assignments are:

TLBI VAE1OS, TLB Invalidate by VA, EL1, Outer Shareable

Page 1658

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

TLBI VAE1OS, TLB Invalidate by VA, EL1, Outer Shareable

Page 1659

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE1OS instruction
Accesses to this instruction use the following encodings:

TLBI VAE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIVAE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VAE1OS(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_VAE1OS(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_VAE1OS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAE1OS, TLB Invalidate by VA, EL1, Outer Shareable

Page 1660

TLBI VAE2, TLB Invalidate by VA, EL2
The TLBI VAE2 characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be required to translate the specified VA using the EL2 or the EL2&0 translation regime.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1 one of the following applies:

◦ The entry is from a level of the translation table walk above the final level and matches the
specified ASID.

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk and matches the
specified ASID.

The invalidation applies to the PE that executes this System instruction.

Configuration
There are no configuration notes.

Attributes
TLBI VAE2 is a 64-bit System instruction.

Field descriptions
The TLBI VAE2 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

TLBI VAE2, TLB Invalidate by VA, EL2

Page 1661

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE2 instruction
Accesses to this instruction use the following encodings:

TLBI VAE2{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0111 0b001

TLBI VAE2, TLB Invalidate by VA, EL2

Page 1662

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_VAE2(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
TLBI_VAE2(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAE2, TLB Invalidate by VA, EL2

Page 1663

TLBI VAE2IS, TLB Invalidate by VA, EL2, Inner
Shareable

The TLBI VAE2IS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be required to translate the specified VA using the EL2 or the EL2&0 translation regime.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1 one of the following applies:

◦ The entry is from a level of the translation table walk above the final level and matches the
specified ASID.

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk and matches the
specified ASID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Configuration
There are no configuration notes.

Attributes
TLBI VAE2IS is a 64-bit System instruction.

Field descriptions
The TLBI VAE2IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

TLBI VAE2IS, TLB Invalidate by VA, EL2, Inner Shareable

Page 1664

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE2IS instruction
Accesses to this instruction use the following encodings:

TLBI VAE2IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0011 0b001

TLBI VAE2IS, TLB Invalidate by VA, EL2, Inner Shareable

Page 1665

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_VAE2IS(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
TLBI_VAE2IS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAE2IS, TLB Invalidate by VA, EL2, Inner Shareable

Page 1666

TLBI VAE2OS, TLB Invalidate by VA, EL2, Outer
Shareable

The TLBI VAE2OS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be required to translate the specified VA using the EL2 or the EL2&0 translation regime.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1 one of the following applies:

◦ The entry is from a level of the translation table walk above the final level and matches the
specified ASID.

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk and matches the
specified ASID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI VAE2OS are
UNDEFINED.

Attributes
TLBI VAE2OS is a 64-bit System instruction.

Field descriptions
The TLBI VAE2OS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

TLBI VAE2OS, TLB Invalidate by VA, EL2, Outer Shareable

Page 1667

Otherwise:

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE2OS instruction
Accesses to this instruction use the following encodings:

TLBI VAE2OS, TLB Invalidate by VA, EL2, Outer Shareable

Page 1668

TLBI VAE2OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_VAE2OS(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
TLBI_VAE2OS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAE2OS, TLB Invalidate by VA, EL2, Outer Shareable

Page 1669

TLBI VAE3, TLB Invalidate by VA, EL3
The TLBI VAE3 characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to the PE that executes this System instruction.

Configuration
There are no configuration notes.

Attributes
TLBI VAE3 is a 64-bit System instruction.

Field descriptions
The TLBI VAE3 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TLBI VAE3, TLB Invalidate by VA, EL3

Page 1670

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE3 instruction
Accesses to this instruction use the following encodings:

TLBI VAE3{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0111 0b001

TLBI VAE3, TLB Invalidate by VA, EL3

Page 1671

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_VAE3(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAE3, TLB Invalidate by VA, EL3

Page 1672

TLBI VAE3IS, TLB Invalidate by VA, EL3, Inner
Shareable

The TLBI VAE3IS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Configuration
There are no configuration notes.

Attributes
TLBI VAE3IS is a 64-bit System instruction.

Field descriptions
The TLBI VAE3IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TLBI VAE3IS, TLB Invalidate by VA, EL3, Inner Shareable

Page 1673

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE3IS instruction
Accesses to this instruction use the following encodings:

TLBI VAE3IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0011 0b001

TLBI VAE3IS, TLB Invalidate by VA, EL3, Inner Shareable

Page 1674

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_VAE3IS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAE3IS, TLB Invalidate by VA, EL3, Inner Shareable

Page 1675

TLBI VAE3OS, TLB Invalidate by VA, EL3, Outer
Shareable

The TLBI VAE3OS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI VAE3OS are
UNDEFINED.

Attributes
TLBI VAE3OS is a 64-bit System instruction.

Field descriptions
The TLBI VAE3OS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TLBI VAE3OS, TLB Invalidate by VA, EL3, Outer Shareable

Page 1676

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE3OS instruction
Accesses to this instruction use the following encodings:

TLBI VAE3OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0001 0b001

TLBI VAE3OS, TLB Invalidate by VA, EL3, Outer Shareable

Page 1677

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_VAE3OS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAE3OS, TLB Invalidate by VA, EL3, Outer Shareable

Page 1678

TLBI VALE1, TLB Invalidate by VA, Last level, EL1
The TLBI VALE1 characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

The invalidation applies to the PE that executes this System instruction.

Configuration
There are no configuration notes.

Attributes
TLBI VALE1 is a 64-bit System instruction.

Field descriptions
The TLBI VALE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

TLBI VALE1, TLB Invalidate by VA, Last level, EL1

Page 1679

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE1 instruction
Accesses to this instruction use the following encodings:

TLBI VALE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0111 0b101

TLBI VALE1, TLB Invalidate by VA, Last level, EL1

Page 1680

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIVALE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
TLBI_VALE1IS(X[t]);

else
TLBI_VAAE1(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_VAAE1(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_VAAE1(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VALE1, TLB Invalidate by VA, Last level, EL1

Page 1681

TLBI VALE1IS, TLB Invalidate by VA, Last level, EL1,
Inner Shareable

The TLBI VALE1IS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the
Secure EL1&0 translation regime and is defined to pass a VMID argument, or
would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Configuration
There are no configuration notes.

Attributes
TLBI VALE1IS is a 64-bit System instruction.

Field descriptions
The TLBI VALE1IS input value bit assignments are:

TLBI VALE1IS, TLB Invalidate by VA, Last level, EL1, Inner Shareable

Page 1682

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

TLBI VALE1IS, TLB Invalidate by VA, Last level, EL1, Inner Shareable

Page 1683

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE1IS instruction
Accesses to this instruction use the following encodings:

TLBI VALE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0011 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIVALE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VALE1IS(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_VALE1IS(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_VALE1IS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VALE1IS, TLB Invalidate by VA, Last level, EL1, Inner Shareable

Page 1684

TLBI VALE1OS, TLB Invalidate by VA, Last level, EL1,
Outer Shareable

The TLBI VALE1OS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI VALE1OS are
UNDEFINED.

Attributes
TLBI VALE1OS is a 64-bit System instruction.

Field descriptions
The TLBI VALE1OS input value bit assignments are:

TLBI VALE1OS, TLB Invalidate by VA, Last level, EL1, Outer Shareable

Page 1685

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

TLBI VALE1OS, TLB Invalidate by VA, Last level, EL1, Outer Shareable

Page 1686

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE1OS instruction
Accesses to this instruction use the following encodings:

TLBI VALE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0001 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIVALE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VALE1OS(X[t]);

elsif PSTATE.EL == EL2 then
TLBI_VALE1OS(X[t]);

elsif PSTATE.EL == EL3 then
TLBI_VALE1OS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VALE1OS, TLB Invalidate by VA, Last level, EL1, Outer Shareable

Page 1687

TLBI VALE2, TLB Invalidate by VA, Last level, EL2
The TLBI VALE2 characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA using the EL2 or EL2&0 translation regime.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of translation table walk that matches the
specified ASID.

The invalidation applies to the PE that executes this System instruction.

Configuration
There are no configuration notes.

Attributes
TLBI VALE2 is a 64-bit System instruction.

Field descriptions
The TLBI VALE2 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

Otherwise:

Reserved, RES0.

TTL, bits [47:44]

TLBI VALE2, TLB Invalidate by VA, Last level, EL2

Page 1688

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE2 instruction
Accesses to this instruction use the following encodings:

TLBI VALE2{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0111 0b101

TLBI VALE2, TLB Invalidate by VA, Last level, EL2

Page 1689

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_VALE2(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
TLBI_VALE2(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VALE2, TLB Invalidate by VA, Last level, EL2

Page 1690

TLBI VALE2IS, TLB Invalidate by VA, Last level, EL2,
Inner Shareable

The TLBI VALE2IS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA using the EL2 or EL2&0 translation regime.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of translation table walk that matches the
specified ASID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Configuration
There are no configuration notes.

Attributes
TLBI VALE2IS is a 64-bit System instruction.

Field descriptions
The TLBI VALE2IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

TLBI VALE2IS, TLB Invalidate by VA, Last level, EL2, Inner Shareable

Page 1691

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE2IS instruction
Accesses to this instruction use the following encodings:

TLBI VALE2IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0011 0b101

TLBI VALE2IS, TLB Invalidate by VA, Last level, EL2, Inner Shareable

Page 1692

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_VALE2IS(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
TLBI_VALE2IS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VALE2IS, TLB Invalidate by VA, Last level, EL2, Inner Shareable

Page 1693

TLBI VALE2OS, TLB Invalidate by VA, Last level, EL2,
Outer Shareable

The TLBI VALE2OS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA using the EL2 or EL2&0 translation regime.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of translation table walk that matches the
specified ASID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI VALE2OS are
UNDEFINED.

Attributes
TLBI VALE2OS is a 64-bit System instruction.

Field descriptions
The TLBI VALE2OS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the
upper bits are RES0.

TLBI VALE2OS, TLB Invalidate by VA, Last level, EL2, Outer Shareable

Page 1694

Otherwise:

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE2OS instruction
Accesses to this instruction use the following encodings:

TLBI VALE2OS, TLB Invalidate by VA, Last level, EL2, Outer Shareable

Page 1695

TLBI VALE2OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0001 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_VALE2OS(X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
TLBI_VALE2OS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VALE2OS, TLB Invalidate by VA, Last level, EL2, Outer Shareable

Page 1696

TLBI VALE3, TLB Invalidate by VA, Last level, EL3
The TLBI VALE3 characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to the PE that executes this System instruction.

Configuration
There are no configuration notes.

Attributes
TLBI VALE3 is a 64-bit System instruction.

Field descriptions
The TLBI VALE3 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TLBI VALE3, TLB Invalidate by VA, Last level, EL3

Page 1697

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE3 instruction
Accesses to this instruction use the following encodings:

TLBI VALE3{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0111 0b101

TLBI VALE3, TLB Invalidate by VA, Last level, EL3

Page 1698

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_VALE3(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VALE3, TLB Invalidate by VA, Last level, EL3

Page 1699

TLBI VALE3IS, TLB Invalidate by VA, Last level, EL3,
Inner Shareable

The TLBI VALE3IS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Configuration
There are no configuration notes.

Attributes
TLBI VALE3IS is a 64-bit System instruction.

Field descriptions
The TLBI VALE3IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TLBI VALE3IS, TLB Invalidate by VA, Last level, EL3, Inner Shareable

Page 1700

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE3IS instruction
Accesses to this instruction use the following encodings:

TLBI VALE3IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0011 0b101

TLBI VALE3IS, TLB Invalidate by VA, Last level, EL3, Inner Shareable

Page 1701

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_VALE3IS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VALE3IS, TLB Invalidate by VA, Last level, EL3, Inner Shareable

Page 1702

TLBI VALE3OS, TLB Invalidate by VA, Last level, EL3,
Outer Shareable

The TLBI VALE3OS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI VALE3OS are
UNDEFINED.

Attributes
TLBI VALE3OS is a 64-bit System instruction.

Field descriptions
The TLBI VALE3OS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When ARMv8.4-TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TLBI VALE3OS, TLB Invalidate by VA, Last level, EL3, Outer Shareable

Page 1703

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE3OS instruction
Accesses to this instruction use the following encodings:

TLBI VALE3OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0001 0b101

TLBI VALE3OS, TLB Invalidate by VA, Last level, EL3, Outer Shareable

Page 1704

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_VALE3OS(X[t]);

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VALE3OS, TLB Invalidate by VA, Last level, EL3, Outer Shareable

Page 1705

TLBI VMALLE1, TLB Invalidate by VMID, All at stage 1,
EL1

The TLBI VMALLE1 characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global
entries, and non-global entries with any ASID.

Configuration
There are no configuration notes.

Attributes
TLBI VMALLE1 is a 64-bit System instruction.

Field descriptions
TLBI VMALLE1 ignores the value in the register specified by the instruction encoding. Software does not have to write
a value to the register before issuing this instruction.

Executing the TLBI VMALLE1 instruction
Accesses to this instruction use the following encodings:

TLBI VMALLE1{, <Xt>}

op0 op1 CRn CRm op2 Rt
0b01 0b000 0b1000 0b0111 0b000 0b11111

TLBI VMALLE1, TLB Invalidate by VMID, All at stage 1, EL1

Page 1706

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIVMALLE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
TLBI_VMALLE1IS();

else
TLBI_VMALLE1();

elsif PSTATE.EL == EL2 then
TLBI_VMALLE1();

elsif PSTATE.EL == EL3 then
TLBI_VMALLE1();

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VMALLE1, TLB Invalidate by VMID, All at stage 1, EL1

Page 1707

TLBI VMALLE1IS, TLB Invalidate by VMID, All at stage
1, EL1, Inner Shareable

The TLBI VMALLE1IS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the
Secure EL1&0 translation regime and is defined to pass a VMID argument, or
would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

For the EL1&0 translation regimes, the invalidation applies to both global
entries, and non-global entries with any ASID.

Configuration
There are no configuration notes.

Attributes
TLBI VMALLE1IS is a 64-bit System instruction.

Field descriptions
TLBI VMALLE1IS ignores the value in the register specified by the instruction encoding. Software does not have to
write a value to the register before issuing this instruction.

TLBI VMALLE1IS, TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable

Page 1708

Executing the TLBI VMALLE1IS instruction
Accesses to this instruction use the following encodings:

TLBI VMALLE1IS{, <Xt>}

op0 op1 CRn CRm op2 Rt
0b01 0b000 0b1000 0b0011 0b000 0b11111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIVMALLE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VMALLE1IS();

elsif PSTATE.EL == EL2 then
TLBI_VMALLE1IS();

elsif PSTATE.EL == EL3 then
TLBI_VMALLE1IS();

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VMALLE1IS, TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable

Page 1709

TLBI VMALLE1OS, TLB Invalidate by VMID, All at stage
1, EL1, Outer Shareable

The TLBI VMALLE1OS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

For the EL1&0 translation regimes, the invalidation applies to both global
entries, and non-global entries with any ASID.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI VMALLE1OS
are UNDEFINED.

Attributes
TLBI VMALLE1OS is a 64-bit System instruction.

Field descriptions
TLBI VMALLE1OS ignores the value in the register specified by the instruction encoding. Software does not have to
write a value to the register before issuing this instruction.

TLBI VMALLE1OS, TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable

Page 1710

Executing the TLBI VMALLE1OS instruction
Accesses to this instruction use the following encodings:

TLBI VMALLE1OS{, <Xt>}

op0 op1 CRn CRm op2 Rt
0b01 0b000 0b1000 0b0001 0b000 0b11111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.TLBIVMALLE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VMALLE1OS();

elsif PSTATE.EL == EL2 then
TLBI_VMALLE1OS();

elsif PSTATE.EL == EL3 then
TLBI_VMALLE1OS();

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VMALLE1OS, TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable

Page 1711

TLBI VMALLS12E1, TLB Invalidate by VMID, All at
Stage 1 and 2, EL1

The TLBI VMALLS12E1 characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.

• If SCR_EL3.NS is 0, then

◦ The entry would be required to translate an address using the Secure EL1&0 translation regime.

◦ If ARMv8.4-SecEL2 is implemented and enabled, the entry would be used with the current VMID.

• If SCR_EL3.NS is 1, then:

◦ The entry would be required to translate an address using the Non-secure EL1&0 translation
regime.

◦ If Non-secure EL2 is implemented, the entry would be used with the current VMID.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global
entries, and non-global entries with any ASID.

Configuration
There are no configuration notes.

Attributes
TLBI VMALLS12E1 is a 64-bit System instruction.

Field descriptions
TLBI VMALLS12E1 ignores the value in the register specified by the instruction encoding. Software does not have to
write a value to the register before issuing this instruction.

Executing the TLBI VMALLS12E1 instruction
Accesses to this instruction use the following encodings:

TLBI VMALLS12E1{, <Xt>}

op0 op1 CRn CRm op2 Rt
0b01 0b100 0b1000 0b0111 0b110 0b11111

TLBI VMALLS12E1, TLB Invalidate by VMID, All at Stage 1 and 2, EL1

Page 1712

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_VMALLS12E1();
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
TLBI_VMALLE1();

else
TLBI_VMALLS12E1();

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VMALLS12E1, TLB Invalidate by VMID, All at Stage 1 and 2, EL1

Page 1713

TLBI VMALLS12E1IS, TLB Invalidate by VMID, All at
Stage 1 and 2, EL1, Inner Shareable

The TLBI VMALLS12E1IS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.

• If SCR_EL3.NS is 0, then

◦ The entry would be required to translate an address using the Secure EL1&0 translation regime.

◦ If ARMv8.4-SecEL2 is implemented and enabled, the entry would be used with the current VMID.

• If SCR_EL3.NS is 1, then:

◦ The entry would be required to translate an address using the Non-secure EL1&0 translation
regime.

◦ If Non-secure EL2 is implemented, the entry would be used with the current VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the
Secure EL1&0 translation regime and is defined to pass a VMID argument, or
would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

For the EL1&0 translation regimes, the invalidation applies to both global
entries, and non-global entries with any ASID.

Configuration
There are no configuration notes.

Attributes
TLBI VMALLS12E1IS is a 64-bit System instruction.

Field descriptions
TLBI VMALLS12E1IS ignores the value in the register specified by the instruction encoding. Software does not have to
write a value to the register before issuing this instruction.

TLBI VMALLS12E1IS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable

Page 1714

Executing the TLBI VMALLS12E1IS instruction
Accesses to this instruction use the following encodings:

TLBI VMALLS12E1IS{, <Xt>}

op0 op1 CRn CRm op2 Rt
0b01 0b100 0b1000 0b0011 0b110 0b11111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_VMALLS12E1IS();
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
TLBI_VMALLE1IS();

else
TLBI_VMALLS12E1IS();

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VMALLS12E1IS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable

Page 1715

TLBI VMALLS12E1OS, TLB Invalidate by VMID, All at
Stage 1 and 2, EL1, Outer Shareable

The TLBI VMALLS12E1OS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.

• If SCR_EL3.NS is 0, then

◦ The entry would be required to translate an address using the Secure EL1&0 translation regime.

◦ If ARMv8.4-SecEL2 is implemented and enabled, the entry would be used with the current VMID.

• If SCR_EL3.NS is 1, then:

◦ The entry would be required to translate an address using the Non-secure EL1&0 translation
regime.

◦ If Non-secure EL2 is implemented, the entry would be used with the current VMID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

For the EL1&0 translation regimes, the invalidation applies to both global
entries, and non-global entries with any ASID.

Configuration
This instruction is present only when ARMv8.4-TLBI is implemented. Otherwise, direct accesses to TLBI
VMALLS12E1OS are UNDEFINED.

Attributes
TLBI VMALLS12E1OS is a 64-bit System instruction.

Field descriptions
TLBI VMALLS12E1OS ignores the value in the register specified by the instruction encoding. Software does not have
to write a value to the register before issuing this instruction.

TLBI VMALLS12E1OS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Outer Shareable

Page 1716

Executing the TLBI VMALLS12E1OS instruction
Accesses to this instruction use the following encodings:

TLBI VMALLS12E1OS{, <Xt>}

op0 op1 CRn CRm op2 Rt
0b01 0b100 0b1000 0b0001 0b110 0b11111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_VMALLS12E1OS();
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
TLBI_VMALLE1OS();

else
TLBI_VMALLS12E1OS();

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VMALLS12E1OS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Outer Shareable

Page 1717

TPIDR_EL0, EL0 Read/Write Software Thread ID
Register

The TPIDR_EL0 characteristics are:

Purpose
Provides a location where software executing at EL0 can store thread identifying information, for OS management
purposes.

The PE makes no use of this register.

Configuration
AArch64 System register TPIDR_EL0 bits [31:0] are architecturally mapped to AArch32 System register
TPIDRURW[31:0] .

Attributes
TPIDR_EL0 is a 64-bit register.

Field descriptions
The TPIDR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Thread ID
Thread ID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

This field resets to an architecturally UNKNOWN value.

Accessing the TPIDR_EL0
Accesses to this register use the following encodings:

MRS <Xt>, TPIDR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0000 0b010

TPIDR_EL0, EL0 Read/Write Software Thread ID Register

Page 1718

if PSTATE.EL == EL0 then
if EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TPIDR_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return TPIDR_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.TPIDR_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return TPIDR_EL0;

elsif PSTATE.EL == EL2 then
return TPIDR_EL0;

elsif PSTATE.EL == EL3 then
return TPIDR_EL0;

MSR TPIDR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0000 0b010

if PSTATE.EL == EL0 then
if EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TPIDR_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TPIDR_EL0 = X[t];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.TPIDR_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TPIDR_EL0 = X[t];

elsif PSTATE.EL == EL2 then
TPIDR_EL0 = X[t];

elsif PSTATE.EL == EL3 then
TPIDR_EL0 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TPIDR_EL0, EL0 Read/Write Software Thread ID Register

Page 1719

TPIDR_EL1, EL1 Software Thread ID Register
The TPIDR_EL1 characteristics are:

Purpose
Provides a location where software executing at EL1 can store thread identifying information, for OS management
purposes.

The PE makes no use of this register.

Configuration
AArch64 System register TPIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
TPIDRPRW[31:0] .

Attributes
TPIDR_EL1 is a 64-bit register.

Field descriptions
The TPIDR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Thread ID
Thread ID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

This field resets to an architecturally UNKNOWN value.

Accessing the TPIDR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, TPIDR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1101 0b0000 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.TPIDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return TPIDR_EL1;

elsif PSTATE.EL == EL2 then
return TPIDR_EL1;

elsif PSTATE.EL == EL3 then
return TPIDR_EL1;

TPIDR_EL1, EL1 Software Thread ID Register

Page 1720

MSR TPIDR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1101 0b0000 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.TPIDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TPIDR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
TPIDR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
TPIDR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TPIDR_EL1, EL1 Software Thread ID Register

Page 1721

TPIDR_EL2, EL2 Software Thread ID Register
The TPIDR_EL2 characteristics are:

Purpose
Provides a location where software executing at EL2 can store thread identifying information, for OS management
purposes.

The PE makes no use of this register.

Configuration
AArch64 System register TPIDR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HTPIDR[31:0]
.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
TPIDR_EL2 is a 64-bit register.

Field descriptions
The TPIDR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Thread ID
Thread ID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

This field resets to an architecturally UNKNOWN value.

Accessing the TPIDR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, TPIDR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1101 0b0000 0b010

TPIDR_EL2, EL2 Software Thread ID Register

Page 1722

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x090];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return TPIDR_EL2;
elsif PSTATE.EL == EL3 then

return TPIDR_EL2;

MSR TPIDR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1101 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x090] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TPIDR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

TPIDR_EL2 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TPIDR_EL2, EL2 Software Thread ID Register

Page 1723

TPIDR_EL3, EL3 Software Thread ID Register
The TPIDR_EL3 characteristics are:

Purpose
Provides a location where software executing at EL3 can store thread identifying information, for OS management
purposes.

The PE makes no use of this register.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to TPIDR_EL3 are UNDEFINED.

Attributes
TPIDR_EL3 is a 64-bit register.

Field descriptions
The TPIDR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Thread ID
Thread ID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

This field resets to an architecturally UNKNOWN value.

Accessing the TPIDR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, TPIDR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b1101 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return TPIDR_EL3;

TPIDR_EL3, EL3 Software Thread ID Register

Page 1724

MSR TPIDR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b1101 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TPIDR_EL3 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TPIDR_EL3, EL3 Software Thread ID Register

Page 1725

TPIDRRO_EL0, EL0 Read-Only Software Thread ID
Register

The TPIDRRO_EL0 characteristics are:

Purpose
Provides a location where software executing at EL1 or higher can store thread identifying information that is visible
to software executing at EL0, for OS management purposes.

The PE makes no use of this register.

Configuration
AArch64 System register TPIDRRO_EL0 bits [31:0] are architecturally mapped to AArch32 System register
TPIDRURO[31:0] .

Attributes
TPIDRRO_EL0 is a 64-bit register.

Field descriptions
The TPIDRRO_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Thread ID
Thread ID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

Accessing the TPIDRRO_EL0
Accesses to this register use the following encodings:

MRS <Xt>, TPIDRRO_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0000 0b011

TPIDRRO_EL0, EL0 Read-Only Software Thread ID Register

Page 1726

if PSTATE.EL == EL0 then
if EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TPIDRRO_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return TPIDRRO_EL0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.TPIDRRO_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return TPIDRRO_EL0;

elsif PSTATE.EL == EL2 then
return TPIDRRO_EL0;

elsif PSTATE.EL == EL3 then
return TPIDRRO_EL0;

MSR TPIDRRO_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0000 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.TPIDRRO_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TPIDRRO_EL0 = X[t];

elsif PSTATE.EL == EL2 then
TPIDRRO_EL0 = X[t];

elsif PSTATE.EL == EL3 then
TPIDRRO_EL0 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TPIDRRO_EL0, EL0 Read-Only Software Thread ID Register

Page 1727

TRBBASER_EL1, Trace Buffer Base Address Register
The TRBBASER_EL1 characteristics are:

Purpose
Defines the base address for the trace buffer.

Configuration
This register is present only when TRBE is implemented. Otherwise, direct accesses to TRBBASER_EL1 are
UNDEFINED.

Attributes
TRBBASER_EL1 is a 64-bit register.

Field descriptions
The TRBBASER_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
BASE

BASE RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BASE, bits [63:12]

Trace Buffer Base pointer address. (TRBBASER_EL1.BASE << 12) is the address of the first byte in the trace buffer.
Bits [11:0] of the Base pointer address are always zero. If the smallest implemented translation granule is not 4KB,
then TRBBASER_EL1[N-1:12] are RES0, where N is the IMPLEMENTATION DEFINED value Log2(smallest implemented
translation granule).

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Bits [11:0]

Reserved, RES0.

Accessing the TRBBASER_EL1
The PE might ignore a direct write to TRBBASER_EL1 if TRBLIMITR_EL1.E == 0b1.

Accesses to this register use the following encodings:

MRS <Xt>, TRBBASER_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1011 0b010

TRBBASER_EL1, Trace Buffer Base Address Register

Page 1728

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRBBASER_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2TB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRBBASER_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRBBASER_EL1;
elsif PSTATE.EL == EL3 then

return TRBBASER_EL1;

MSR TRBBASER_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRBBASER_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2TB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRBBASER_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRBBASER_EL1 = X[t];
elsif PSTATE.EL == EL3 then

TRBBASER_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRBBASER_EL1, Trace Buffer Base Address Register

Page 1729

TRBIDR_EL1, Trace Buffer ID Register
The TRBIDR_EL1 characteristics are:

Purpose
Describes constraints on using the Trace Buffer Extension to software, including whether the Trace Buffer Extension
can be programmed at the current Exception level.

Configuration
This register is present only when TRBE is implemented. Otherwise, direct accesses to TRBIDR_EL1 are UNDEFINED.

Attributes
TRBIDR_EL1 is a 64-bit register.

Field descriptions
The TRBIDR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 F P Align
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:6]

Reserved, RES0.

F, bit [5]

Flag Updates. Defines whether the address translation performed by the Trace Buffer Extension manages the Access
Flag and dirty state.

F Meaning
0b0 Trace buffer address translation does not manage the Access flag

and dirty state in translation tables.
0b1 Trace buffer address translation manages the Access Flag and

dirty state in the same way as the MMU on this PE.

P, bit [4]

Programming not allowed. The trace buffer is owned by a higher Exception level or by the other Security state.

P Meaning
0b0 The owning Exception level is the current Exception level or a

lower Exception level, and the owning Security state is the current
Security state.

0b1 The owning Exception level is a higher Exception level, or the
owning Security state is not the current Security state.

The value read from this field depends on the current Exception level and the values of MDCR_EL3.NSTB and
MDCR_EL2.E2TB:

• If EL3 is implemented and either MDCR_EL3.NSTB == 0b00 or MDCR_EL3.NSTB == 0b01, meaning the
owning Security state is Secure state, this bit reads as one from:

◦ Non-secure EL2.

TRBIDR_EL1, Trace Buffer ID Register

Page 1730

◦ Non-secure EL1.
◦ If Secure EL2 is implemented and enabled, and MDCR_EL2.E2TB == 0b00, Secure EL1.

• If EL3 is implemented and either MDCR_EL3.NSTB == 0b10 or MDCR_EL3.NSTB == 0b11, meaning the
owning Security state is Non-secure state, this bit reads as one from:

◦ Secure EL1.
◦ If Secure EL2 is implemented, Secure EL2.
◦ If EL2 is implemented and MDCR_EL2.E2TB == 0b00, Non-secure EL1.

• If EL3 is not implemented, EL2 is implemented, and MDCR_EL2.E2TB == 0b00, this bit reads as one from
EL1.

• Otherwise, this bit reads as zero.

Align, bits [3:0]

Defines the minimum alignment constraint for writes to TRBPTR_EL1 and TRBTRG_EL1.

Align Meaning
0b0000 Byte.
0b0001 Halfword.
0b0010 Word.
0b0011 Doubleword.
0b0100 16 bytes.
0b0101 32 bytes.
0b0110 64 bytes.
0b0111 128 bytes.
0b1000 256 bytes.
0b1001 512 bytes.
0b1010 1KB.
0b1011 2KB.

All other values are reserved.

Accessing the TRBIDR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, TRBIDR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1011 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRBIDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return TRBIDR_EL1;

elsif PSTATE.EL == EL2 then
return TRBIDR_EL1;

elsif PSTATE.EL == EL3 then
return TRBIDR_EL1;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRBIDR_EL1, Trace Buffer ID Register

Page 1731

TRBLIMITR_EL1, Trace Buffer Limit Address Register
The TRBLIMITR_EL1 characteristics are:

Purpose
Defines the top address for the trace buffer, and controls the trace buffer modes and enable.

Configuration
This register is present only when TRBE is implemented. Otherwise, direct accesses to TRBLIMITR_EL1 are
UNDEFINED.

Attributes
TRBLIMITR_EL1 is a 64-bit register.

Field descriptions
The TRBLIMITR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
LIMIT

LIMIT RES0 nVM TM FM E
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LIMIT, bits [63:12]

Trace Buffer Limit pointer address. (TRBLIMITR_EL1.LIMIT << 12) is the address of the last byte in the trace buffer
plus one. Bits [11:0] of the Limit pointer address are always zero. If the smallest implemented translation granule is
not 4KB, then TRBLIMITR_EL1[N-1:12] are RES0, where N is the IMPLEMENTATION DEFINED value Log2(smallest
implemented translation granule).

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Bits [11:6]

Reserved, RES0.

nVM, bit [5]

Address mode.

nVM Meaning
0b0 The trace buffer pointers are virtual addresses.
0b1 The trace buffer pointers are:

• Physical address in the owning security state if the owning
translation regime has no stage 2 translation.

• Intermediate physical addresses in the owning security
state if the owning translation regime has stage 2
translations.

The following resets apply:

TRBLIMITR_EL1, Trace Buffer Limit Address Register

Page 1732

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

TM, bits [4:3]

Trigger mode.

TM Meaning
0b00 Stop on trigger. Flush then stop collection and raise maintenance

interrupt on Trigger Event.
0b01 IRQ on trigger. Continue collection and raise maintenance

interrupt on Trigger Event.
0b11 Ignore trigger. Continue collection and do not raise maintenance

interrupt on Trigger Event.

All other values are reserved.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

FM, bits [2:1]

Trace buffer mode.

FM Meaning
0b00 Fill mode. Stop collection and raise maintenance interrupt on

current write pointer wrap.
0b01 Wrap mode. Continue collection and raise maintenance interrupt

on current write pointer wrap.
0b11 Circular Buffer mode. Continue collection and do not raise

maintenance interrupt on current write pointer wrap.

All other values are reserved.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

E, bit [0]

Trace Buffer Extension enable.

E Meaning
0b0 Trace Buffer Extension disabled.
0b1 Trace Buffer Extension enabled by this control.

Regardless of the value of this bit, the Trace Buffer Extension is disabled when SelfHostedTraceEnabled() == FALSE.
All output is discarded by the Trace Buffer Extension when it is disabled.

This field resets to 0.

Accessing the TRBLIMITR_EL1
The PE might ignore a direct write to TRBLIMITR_EL1, other than a direct write that modifies TRBLIMITR_EL1.E, if
TRBLIMITR_EL1.E == 0b1.

Accesses to this register use the following encodings:

TRBLIMITR_EL1, Trace Buffer Limit Address Register

Page 1733

MRS <Xt>, TRBLIMITR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRBLIMITR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2TB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRBLIMITR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRBLIMITR_EL1;
elsif PSTATE.EL == EL3 then

return TRBLIMITR_EL1;

MSR TRBLIMITR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRBLIMITR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2TB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRBLIMITR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRBLIMITR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

TRBLIMITR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRBLIMITR_EL1, Trace Buffer Limit Address Register

Page 1734

TRBMAR_EL1, Trace Buffer Memory Attribute Register
The TRBMAR_EL1 characteristics are:

Purpose
Controls Trace Buffer Extension accesses to memory.

If the trace buffer pointers specify virtual addresses, the address properties are defined by the translation tables and
this register is ignored.

Configuration
This register is present only when TRBE is implemented. Otherwise, direct accesses to TRBMAR_EL1 are UNDEFINED.

Attributes
TRBMAR_EL1 is a 64-bit register.

Field descriptions
The TRBMAR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 SH Attr[7:4] Attr[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:10]

Reserved, RES0.

SH, bits [9:8]

Trace buffer shareability domain. Defines the shareability domain for Normal memory used by the trace buffer.

SH Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

All other values are reserved.

This field is ignored when TRBMAR_EL1.Attr specifies any of the following memory types:

• Any Device memory type.
• Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always treated as Outer
Shareable.

This field resets to an architecturally UNKNOWN value.

Attr[7:4], bits [7:4]

Trace buffer memory type and attributes. Defines the memory type and, for Normal memory, the Outer cacheability
attributes, for memory addressed by the trace buffer.

TRBMAR_EL1, Trace Buffer Memory Attribute Register

Page 1735

Attr[7:4] Meaning
0b0000 Device memory. The Device memory type is defined by

TRBMAR_EL1.Attr[3:0].
0b0001 Normal memory, Outer Write-Through Transient, Write

allocate.
0b0010 Normal memory, Outer Write-Through Transient, Read

allocate.
0b0011 Normal memory, Outer Write-Through Transient, Read and

Write allocate.
0b0100 Normal memory, Outer Non-cacheable.
0b0101 Normal memory, Outer Write-Back Transient, Write allocate.
0b0110 Normal memory, Outer Write-Back Transient, Read allocate.
0b0111 Normal memory, Outer Write-Back Transient, Read and

Write allocate.
0b1000 Normal memory, Outer Write-Through Non-transient, No

allocate.
0b1001 Normal memory, Outer Write-Through Non-transient, Write

allocate.
0b1010 Normal memory, Outer Write-Through Non-transient, Read

allocate.
0b1011 Normal memory, Outer Write-Through Non-transient, Read

and Write allocate.
0b1100 Normal memory, Outer Write-Back Non-transient, No

allocate.
0b1101 Normal memory, Outer Write-Back Non-transient, Write

allocate.
0b1110 Normal memory, Outer Write-Back Non-transient, Read

allocate.
0b1111 When ARMv8.5-MemTag is not implemented or

TRBMAR_EL1.Attr[3:0] != 0b0000:
• Normal memory, Outer Write-Back Non-transient, Read

and Write allocate.
When ARMv8.5-MemTag is implemented and
TRBMAR_EL1.Attr[3:0] == 0b0000:

• Tagged Normal memory, Outer Write-Back Non-
transient, Read and Write allocate.

This field resets to an architecturally UNKNOWN value.

Attr[3:0], bits [3:0]

When TRBMAR_EL1.Attr[7:4] == 0b0000:

Trace buffer memory attributes. Defines the Device memory attributes for memory addressed by the trace buffer.

Attr[3:0] Meaning
0b0000 Device-nGnRnE memory.
0b0100 Device-nGnRE memory.
0b1000 Device-nGRE memory.
0b1100 Device-GRE memory.

All other values are reserved.

This field resets to an architecturally UNKNOWN value.

When TRBMAR_EL1.Attr[7:4] != 0b0000:

Trace buffer memory attributes. Defines the Inner cacheability attributes for memory addressed by the trace buffer.

TRBMAR_EL1, Trace Buffer Memory Attribute Register

Page 1736

Attr[3:0] Meaning Applies when
0b0000 Tagged Normal memory,

Inner Write-Back Non-
transient, Read and Write
allocate.

When ARMv8.5-MemTag is
implemented and
TRBMAR_EL1.Attr[7:4] ==
0b1111

0b0001 Normal memory, Inner
Write-Through Transient,
Write allocate.

0b0010 Normal memory, Inner
Write-Through Transient,
Read allocate.

0b0011 Normal memory, Inner
Write-Through Transient,
Read and Write allocate.

0b0100 Normal memory, Inner Non-
cacheable.

0b0101 Normal memory, Inner
Write-Back Transient, Write
allocate.

0b0110 Normal memory, Inner
Write-Back Transient, Read
allocate.

0b0111 Normal memory, Inner
Write-Back Transient, Read
and Write allocate.

0b1000 Normal memory, Inner
Write-Through Non-
transient, No allocate.

0b1001 Normal memory, Inner
Write-Through Non-
transient, Write allocate.

0b1010 Normal memory, Inner
Write-Through Non-
transient, Read allocate.

0b1011 Normal memory, Inner
Write-Through Non-
transient, Read and Write
allocate.

0b1100 Normal memory, Inner
Write-Back Non-transient,
No allocate.

0b1101 Normal memory, Inner
Write-Back Non-transient,
Write allocate.

0b1110 Normal memory, Inner
Write-Back Non-transient,
Read allocate.

0b1111 Normal memory, Inner
Write-Back Non-transient,
Read and Write allocate.

All other values are reserved.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TRBMAR_EL1
The PE might ignore a direct write to TRBMAR_EL1 if TRBLIMITR_EL1.E == 0b1.

Accesses to this register use the following encodings:

TRBMAR_EL1, Trace Buffer Memory Attribute Register

Page 1737

MRS <Xt>, TRBMAR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1011 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRBMAR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2TB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRBMAR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRBMAR_EL1;
elsif PSTATE.EL == EL3 then

return TRBMAR_EL1;

MSR TRBMAR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1011 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRBMAR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2TB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRBMAR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRBMAR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

TRBMAR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRBMAR_EL1, Trace Buffer Memory Attribute Register

Page 1738

TRBPTR_EL1, Trace Buffer Write Pointer Register
The TRBPTR_EL1 characteristics are:

Purpose
Defines the current write pointer for the trace buffer.

Configuration
This register is present only when TRBE is implemented. Otherwise, direct accesses to TRBPTR_EL1 are UNDEFINED.

Attributes
TRBPTR_EL1 is a 64-bit register.

Field descriptions
The TRBPTR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
PTR
PTR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PTR, bits [63:0]

Trace Buffer current write pointer address.

Defines the virtual address of the next entry to be written to the trace buffer.

The architecture places restrictions on the values that software can write to the pointer.

Note

As a result of the restrictions an implementation might treat some of PTR[M:0]
as RES0, where M is defined by TRBIDR_EL1.Align.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Accessing the TRBPTR_EL1
The PE might ignore a direct write to TRBPTR_EL1 if TRBLIMITR_EL1.E == 0b1.

Accesses to this register use the following encodings:

MRS <Xt>, TRBPTR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1011 0b001

TRBPTR_EL1, Trace Buffer Write Pointer Register

Page 1739

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRBPTR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2TB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRBPTR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRBPTR_EL1;
elsif PSTATE.EL == EL3 then

return TRBPTR_EL1;

MSR TRBPTR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRBPTR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2TB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRBPTR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRBPTR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

TRBPTR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRBPTR_EL1, Trace Buffer Write Pointer Register

Page 1740

TRBSR_EL1, Trace Buffer Status/syndrome Register
The TRBSR_EL1 characteristics are:

Purpose
Provides syndrome information to software for a trace buffer management event.

Configuration
This register is present only when TRBE is implemented. Otherwise, direct accesses to TRBSR_EL1 are UNDEFINED.

Attributes
TRBSR_EL1 is a 64-bit register.

Field descriptions
The TRBSR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

EC RES0 IRQTRGWRAPRES0EA S RES0 MSS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

EC, bits [31:26]

Event class. Top-level description of the cause of the trace buffer management event.

EC Meaning MSS
0b100100 Stage 1 Data Abort on write to trace

buffer.
MSS encoding for
stage 1 or stage 2
Data Aborts on
write to trace
buffer

0b100101 Stage 2 Data Abort on write to trace
buffer.

MSS encoding for
stage 1 or stage 2
Data Aborts on
write to trace
buffer

0b000000 Other trace buffer management event.
All trace buffer management events
other than those described by the
other defined Event class codes.

MSS encoding for
other trace buffer
management
events

All other values are reserved.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 1741

Bits [25:23]

Reserved, RES0.

IRQ, bit [22]

Maintenance interrupt status.

IRQ Meaning
0b0 Maintenance interrupt is not asserted.
0b1 Maintenance interrupt is asserted.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

TRG, bit [21]

Triggered.

TRG Meaning
0b0 No Detected Trigger has been observed since this bit was last

cleared to zero.
0b1 A Detected Trigger has been observed since this bit was last

cleared to zero.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

WRAP, bit [20]

Wrapped.

WRAP Meaning
0b0 The current write pointer has not wrapped since this bit was

last cleared to zero.
0b1 The current write pointer has wrapped since this bit was last

cleared to zero.

For each byte of trace the Trace Buffer Extension Accepts and writes to the trace buffer at the address in the current
write pointer, if the current write pointer is equal to the Limit pointer minus one, the current write pointer is wrapped
by setting it to the Base pointer, and this bit is set to 0b1.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Bit [19]

Reserved, RES0.

EA, bit [18]

External Abort.

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 1742

EA Meaning
0b0 An External Abort has not been asserted.
0b1 An External Abort has been asserted and detected by the Trace

Buffer Extension.

This bit is RES0 if the PE never sets this bit as the result of an External Abort.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

S, bit [17]

Stopped.

S Meaning
0b0 Collection has not been stopped.
0b1 Collection is stopped.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Bit [16]

Reserved, RES0.

MSS, bits [15:0]

Management Event Specific Syndrome. Contains syndrome specific to the management event.

The syndrome contents for each management event are described in the following sections.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

MSS encoding for other trace buffer management events

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BSC

Bits [15:6]

Reserved, RES0.

BSC, bits [5:0]

Trace buffer status code.

BSC Meaning
0b000000 Collection not stopped.
0b000001 Trace buffer filled. Collection stopped because the

current write pointer wrapped to the base pointer and
the trace buffer mode is Fill mode.

0b000010 Trigger Event. Collection stopped because of a Trigger
Event. See TRBTRG_EL1 for more information.

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 1743

All other values are reserved.

MSS encoding for stage 1 or stage 2 Data Aborts on write to trace buffer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 FSC

Bits [15:6]

Reserved, RES0.

FSC, bits [5:0]

Fault status code.

FSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation table
base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not

on translation table walk or
hardware update of translation
table.

0b010001 Asynchronous External abort.
0b010100 Synchronous External abort, on

translation table walk or hardware
update of translation table, level 0.

0b010101 Synchronous External abort, on
translation table walk or hardware
update of translation table, level 1.

0b010110 Synchronous External abort, on
translation table walk or hardware
update of translation table, level 2.

0b010111 Synchronous External abort, on
translation table walk or hardware
update of translation table, level 3.

0b100001 Alignment fault.
0b110000 TLB conflict abort.
0b110001 Unsupported atomic hardware

update fault.
When
ARMv8.1-TTHM
is implemented

All other values are reserved.

Accessing the TRBSR_EL1
The PE might ignore a direct write to TRBSR_EL1 if TRBLIMITR_EL1.E == 0b1.

Accesses to this register use the following encodings:

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 1744

MRS <Xt>, TRBSR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1011 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRBSR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2TB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRBSR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRBSR_EL1;
elsif PSTATE.EL == EL3 then

return TRBSR_EL1;

MSR TRBSR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1011 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRBSR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2TB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRBSR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRBSR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

TRBSR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 1745

TRBTRG_EL1, Trace Buffer Trigger Counter Register
The TRBTRG_EL1 characteristics are:

Purpose
Specifies the number of bytes of trace to capture following a Detected Trigger before a Trigger Event.

Configuration
This register is present only when TRBE is implemented. Otherwise, direct accesses to TRBTRG_EL1 are UNDEFINED.

Attributes
TRBTRG_EL1 is a 64-bit register.

Field descriptions
The TRBTRG_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0
TRG

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TRG, bits [31:0]

Trigger count.

Specifies the number of bytes of trace to capture following a Detected Trigger before a Trigger Event.

TRBTRG_EL1 decrements by 1 for every byte of trace written to the trace buffer when all of the following are true:

• TRBTRG_EL1 is nonzero.
• TRBSR_EL1.TRG is set to 0b1.

The architecture places restrictions on the values that software can write to the counter.

Note

As a result of the restrictions an implementation might treat some of
TRG[M:0] as RES0, where M is defined by TRBIDR_EL1.Align.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Accessing the TRBTRG_EL1
The PE might ignore a direct write to TRBTRG_EL1 if TRBLIMITR_EL1.E == 0b1.

TRBTRG_EL1, Trace Buffer Trigger Counter Register

Page 1746

Accesses to this register use the following encodings:

MRS <Xt>, TRBTRG_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1011 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRBTRG_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2TB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRBTRG_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRBTRG_EL1;
elsif PSTATE.EL == EL3 then

return TRBTRG_EL1;

MSR TRBTRG_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1011 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRBTRG_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2TB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRBTRG_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSTB != '01' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSTB != '11' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRBTRG_EL1 = X[t];
elsif PSTATE.EL == EL3 then

TRBTRG_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

TRBTRG_EL1, Trace Buffer Trigger Counter Register

Page 1747

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRBTRG_EL1, Trace Buffer Trigger Counter Register

Page 1748

TRCACATR<n>, Address Comparator Access Type
Register <n>, n = 0 - 15

The TRCACATR<n> characteristics are:

Purpose
Defines the type of access for the corresponding TRCACVR<n> Register. This register configures the context type,
Exception levels, alignment, masking that is applied by the Address Comparator, and how the Address Comparator
behaves when it is one half of an Address Range Comparator.

Configuration
AArch64 System register TRCACATR<n> bits [63:0] are architecturally mapped to External register
TRCACATR<n>[63:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMACPAIRS * 2 > n. Otherwise, direct
accesses to TRCACATR<n> are UNDEFINED.

Attributes
TRCACATR<n> is a 64-bit register.

Field descriptions
The TRCACATR<n> bit assignments are:

6362616059585756555453525150494847 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 EXLEVEL_NS_EL2EXLEVEL_NS_EL1EXLEVEL_NS_EL0EXLEVEL_S_EL3EXLEVEL_S_EL2EXLEVEL_S_EL1EXLEVEL_S_EL0RES0CONTEXTCONTEXTTYPERES0
3130292827262524232221201918171615 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:15]

Reserved, RES0.

EXLEVEL_NS_EL2, bit [14]

When Non-secure EL2 is implemented:

Non-secure EL2 address comparison control. Controls whether a comparison can occur at EL2 in Non-secure state.

EXLEVEL_NS_EL2 Meaning
0b0 The Address Comparator performs comparisons in

Non-secure EL2.
0b1 The Address Comparator does not perform

comparisons in Non-secure EL2.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCACATR<n>, Address Comparator Access Type Register <n>, n = 0 - 15

Page 1749

EXLEVEL_NS_EL1, bit [13]

When Non-secure EL1 is implemented:

Non-secure EL1 address comparison control. Controls whether a comparison can occur at EL1 in Non-secure state.

EXLEVEL_NS_EL1 Meaning
0b0 The Address Comparator performs comparisons in

Non-secure EL1.
0b1 The Address Comparator does not perform

comparisons in Non-secure EL1.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_NS_EL0, bit [12]

When Non-secure EL0 is implemented:

Non-secure EL0 address comparison control. Controls whether a comparison can occur at EL0 in Non-secure state.

EXLEVEL_NS_EL0 Meaning
0b0 The Address Comparator performs comparisons in

Non-secure EL0.
0b1 The Address Comparator does not perform

comparisons in Non-secure EL0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL3, bit [11]

When EL3 is implemented:

Secure EL3 address comparison control. Controls whether a comparison can occur at EL3 in Secure state.

EXLEVEL_S_EL3 Meaning
0b0 The Address Comparator performs comparisons in

Secure EL3.
0b1 The Address Comparator does not perform

comparisons in Secure EL3.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL2, bit [10]

When EL2 is implemented and ARMv8.4-SecEL2 is implemented:

Secure EL2 address comparison control. Controls whether a comparison can occur at EL2 in Secure state.

TRCACATR<n>, Address Comparator Access Type Register <n>, n = 0 - 15

Page 1750

EXLEVEL_S_EL2 Meaning
0b0 The Address Comparator performs comparisons in

Secure EL2.
0b1 The Address Comparator does not perform

comparisons in Secure EL2.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL1, bit [9]

When Secure EL1 is implemented:

Secure EL1 address comparison control. Controls whether a comparison can occur at EL1 in Secure state.

EXLEVEL_S_EL1 Meaning
0b0 The Address Comparator performs comparisons in

Secure EL1.
0b1 The Address Comparator does not perform

comparisons in Secure EL1.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL0, bit [8]

When Secure EL0 is implemented:

Secure EL0 address comparison control. Controls whether a comparison can occur at EL0 in Secure state.

EXLEVEL_S_EL0 Meaning
0b0 The Address Comparator performs comparisons in

Secure EL0.
0b1 The Address Comparator does not perform

comparisons in Secure EL0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [7]

Reserved, RES0.

CONTEXT, bits [6:4]

Selects a Context Identifier Comparator or Virtual Context Identifier Comparator:

TRCACATR<n>, Address Comparator Access Type Register <n>, n = 0 - 15

Page 1751

CONTEXT Meaning
0b000 Comparator 0.
0b001 Comparator 1.
0b010 Comparator 2.
0b011 Comparator 3.
0b100 Comparator 4.
0b101 Comparator 5.
0b110 Comparator 6.
0b111 Comparator 7.

The width of this field is dependent on the maximum number of Context Identifier Comparators or Virtual Context
Identifier Comparators implemented. Unimplemented bits are RES0.

If TRCIDR4.NUMCIDC == 0b0000 and TRCIDR4.NUMVMIDC == 0b0000, then this field is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

CONTEXTTYPE, bits [3:2]

Controls whether the Address Comparator is dependent on a Context Identifier Comparator, a Virtual Context
Identifier Comparator, or both comparisons:

CONTEXTTYPE Meaning
0b00 The Address Comparator is not dependent on the

Context Identifier Comparators or Virtual Context
Identifier Comparators.

0b01 The Address Comparator is dependent on the Context
Identifier Comparator that the CONTEXT field
specifies. If both the Context Identifier Comparator
and the address comparison match, the Address
Comparator signals a match.

0b10 The Address Comparator is dependent on the Virtual
Context Identifier Comparator that the CONTEXT
field specifies. If both the Virtual Context Identifier
Comparator and the address comparison match, the
Address Comparator signals a match.

0b11 The Address Comparator is dependent on the Context
Identifier Comparator and Virtual Context Identifier
Comparator that the CONTEXT field specifies. If the
Context Identifier Comparator, the Virtual Context
Identifier Comparator and address comparison all
match, the Address Comparator signals a match.

If TRCIDR4.NUMCIDC == 0b0000, then bit [2] is RES0.

If TRCIDR4.NUMVMIDC == 0b0000, then bit [3] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

Accessing the TRCACATR<n>
Must be programmed if any of the following are true:

• TRCBBCTLR.RANGE[n/2] == 0b1.
• TRCRSCTLR<a>.GROUP == 0b0100 and TRCRSCTLR<a>.SAC[n] == 0b1.
• TRCRSCTLR<a>.GROUP == 0b0101 and TRCRSCTLR<a>.ARC[n/2] == 0b1.
• TRCVIIECTLR.EXCLUDE[n/2] == 0b1.
• TRCVIIECTLR.INCLUDE[n/2] == 0b1.
• TRCVISSCTLR.START[n] == 0b1.
• TRCVISSCTLR.STOP[n] == 0b1.
• TRCSSCCR<>.ARC[n/2] == 0b1.
• TRCSSCCR<>.SAC[n] == 0b1.
• TRCQCTLR.RANGE[n/2] == 0b1.

TRCACATR<n>, Address Comparator Access Type Register <n>, n = 0 - 15

Page 1752

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCACATR<n>

op0 op1 CRn CRm op2
0b10 0b001 0b0010 n[2:0]:0b0 0b01:n[3]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCACATR[UInt(op2<0>:CRm<3:1>)];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCACATR[UInt(op2<0>:CRm<3:1>)];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCACATR[UInt(op2<0>:CRm<3:1>)];

MSR TRCACATR<n>, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0010 n[2:0]:0b0 0b01:n[3]

TRCACATR<n>, Address Comparator Access Type Register <n>, n = 0 - 15

Page 1753

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCACATR[UInt(op2<0>:CRm<3:1>)] = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCACATR[UInt(op2<0>:CRm<3:1>)] = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCACATR[UInt(op2<0>:CRm<3:1>)] = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCACATR<n>, Address Comparator Access Type Register <n>, n = 0 - 15

Page 1754

TRCACVR<n>, Address Comparator Value Register
<n>, n = 0 - 15

The TRCACVR<n> characteristics are:

Purpose
Contains the address value.

Configuration
AArch64 System register TRCACVR<n> bits [63:0] are architecturally mapped to External register
TRCACVR<n>[63:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMACPAIRS * 2 > n. Otherwise, direct
accesses to TRCACVR<n> are UNDEFINED.

Attributes
TRCACVR<n> is a 64-bit register.

Field descriptions
The TRCACVR<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ADDRESS
ADDRESS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDRESS, bits [63:0]

Address Value.

The Address Comparators can support implementations that use multiple address widths. When the trace unit
compares the ADDRESS field with an address that has a width less than this field, then the address must be zero-
extended to the ADDRESS field width. The trace unit then compares all implemented bits. For example, in a system
that supports both 32-bit and 64-bit addresses, when the PE is in AArch32 state the comparator must zero-extend the
32-bit address and compare against the full 64 bits that are stored in the TRCACVR<n>. This requires that the trace
analyzer always programs all implemented bits of the TRCACVR<n>.

The result of writing a value other than all zeros or all ones to ADDRESS at bits[63:P] is an UNKNOWN value, where P is
defined as the virtual address size supported by the PE.

The result of writing a value of all zeros or all ones to ADDRESS at bits[63:P] is the written value, and a read of the
register returns the written value.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCACVR<n>
Must be programmed if any of the following are true:

• TRCBBCTLR.RANGE[n/2] == 0b1.
• TRCRSCTLR<a>.GROUP == 0b0100 and TRCRSCTLR<a>.SAC[n] == 0b1.
• TRCRSCTLR<a>.GROUP == 0b0101 and TRCRSCTLR<a>.ARC[n/2] == 0b1.
• TRCVIIECTLR.EXCLUDE[n/2] == 0b1.
• TRCVIIECTLR.INCLUDE[n/2] == 0b1.

TRCACVR<n>, Address Comparator Value Register <n>, n = 0 - 15

Page 1755

• TRCVISSCTLR.START[n] == 0b1.
• TRCVISSCTLR.STOP[n] == 0b1.
• TRCSSCCR<>.ARC[n/2] == 0b1.
• TRCSSCCR<>.SAC[n] == 0b1.
• TRCQCTLR.RANGE[n/2] == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCACVR<n>

op0 op1 CRn CRm op2
0b10 0b001 0b0010 n[2:0]:0b0 0b00:n[3]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCACVR[UInt(op2<0>:CRm<3:1>)];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCACVR[UInt(op2<0>:CRm<3:1>)];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCACVR[UInt(op2<0>:CRm<3:1>)];

MSR TRCACVR<n>, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0010 n[2:0]:0b0 0b00:n[3]

TRCACVR<n>, Address Comparator Value Register <n>, n = 0 - 15

Page 1756

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCACVR[UInt(op2<0>:CRm<3:1>)] = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCACVR[UInt(op2<0>:CRm<3:1>)] = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCACVR[UInt(op2<0>:CRm<3:1>)] = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCACVR<n>, Address Comparator Value Register <n>, n = 0 - 15

Page 1757

TRCAUTHSTATUS, Authentication Status Register
The TRCAUTHSTATUS characteristics are:

Purpose
Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for debug.

For additional information see the CoreSight Architecture Specification.

Configuration
AArch64 System register TRCAUTHSTATUS bits [31:0] are architecturally mapped to External register
TRCAUTHSTATUS[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCAUTHSTATUS are
UNDEFINED.

Attributes
TRCAUTHSTATUS is a 64-bit register.

Field descriptions
The TRCAUTHSTATUS bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 SNID SID NSNID NSID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:8]

Reserved, RES0.

SNID, bits [7:6]

Secure Non-invasive Debug. Indicates whether Secure non-invasive debug features are implemented and enabled.

SNID Meaning
0b00 Secure non-invasive debug features not implemented.
0b10 Implemented and disabled.
0b11 Implemented and enabled.

All other values are reserved.

When EL3 is implemented, this field takes the value 0b10 or 0b11 depending whether Secure non-invasive debug is
enabled.

When EL3 is not implemented and the PE is Non-secure, this field reads as 0b00.

When EL3 is not implemented and the PE is Secure, this field takes the value 0b10 or 0b11 depending whether Secure
non-invasive debug is enabled.

SID, bits [5:4]

Secure Invasive Debug. Indicates whether Secure invasive debug features are implemented and enabled.

TRCAUTHSTATUS, Authentication Status Register

Page 1758

SID Meaning
0b00 Secure invasive debug features not implemented.
0b10 Implemented and disabled.
0b11 Implemented and enabled.

All other values are reserved.

This field reads as 0b00.

NSNID, bits [3:2]

Non-secure Non-invasive Debug. Indicates whether Non-secure non-invasive debug features are implemented and
enabled.

NSNID Meaning
0b00 Non-secure non-invasive debug features not implemented.
0b10 Implemented and disabled.
0b11 Implemented and enabled.

All other values are reserved.

When EL3 is implemented, this field reads as 0b11.

When EL3 is not implemented and the PE is Non-secure, this field reads as 0b11.

When EL3 is not implemented and the PE is Secure, this field reads as 0b00.

NSID, bits [1:0]

Non-secure Invasive Debug. Indicates whether Non-secure invasive debug features are implemented and enabled.

NSID Meaning
0b00 Non-secure invasive debug features not implemented.
0b10 Implemented and disabled.
0b11 Implemented and enabled.

All other values are reserved.

This field reads as 0b00.

Accessing the TRCAUTHSTATUS
For implementations that support multiple access mechanisms, different access mechanisms can return different
values for reads of TRCAUTHSTATUS if the authentication signals have changed and that change has not yet been
synchronized by a Context synchronization event. This scenario can happen if, for example, the external debugger
view is implemented separately from the system instruction view to allow for separate power domains, and so
observes changes on the signals differently.

Accesses to this register use the following encodings:

MRS <Xt>, TRCAUTHSTATUS

op0 op1 CRn CRm op2
0b10 0b001 0b0111 0b1110 0b110

TRCAUTHSTATUS, Authentication Status Register

Page 1759

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCAUTHSTATUS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCAUTHSTATUS;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCAUTHSTATUS;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCAUTHSTATUS;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCAUTHSTATUS, Authentication Status Register

Page 1760

TRCAUXCTLR, Auxillary Control Register
The TRCAUXCTLR characteristics are:

Purpose
The function of this register is IMPLEMENTATION DEFINED.

Configuration
AArch64 System register TRCAUXCTLR bits [31:0] are architecturally mapped to External register
TRCAUXCTLR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCAUXCTLR are UNDEFINED.

Attributes
TRCAUXCTLR is a 64-bit register.

Field descriptions
The TRCAUXCTLR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

IMPLEMENTATION DEFINED
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

IMPLEMENTATION_DEFINED.

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION DEFINED behavior.

On a Trace unit reset, this field resets to 0.

Accessing the TRCAUXCTLR
If this register is set to nonzero then it might cause the behavior of a trace unit to contradict this architecture
specification. See the documentation of the specific implementation for information about the IMPLEMENTATION DEFINED
support for this register.

Accesses to this register use the following encodings:

MRS <Xt>, TRCAUXCTLR

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0110 0b000

TRCAUXCTLR, Auxillary Control Register

Page 1761

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCAUXCTLR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCAUXCTLR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCAUXCTLR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCAUXCTLR;

MSR TRCAUXCTLR, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRCAUXCTLR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCAUXCTLR = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCAUXCTLR = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCAUXCTLR = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCAUXCTLR, Auxillary Control Register

Page 1762

TRCBBCTLR, Branch Broadcast Control Register
The TRCBBCTLR characteristics are:

Purpose
Controls the regions in the memory map where branch broadcasting is active.

Configuration
AArch64 System register TRCBBCTLR bits [31:0] are architecturally mapped to External register TRCBBCTLR[31:0] .

This register is present only when ETE is implemented, TRCIDR0.TRCBB == 0b1 and TRCIDR4.NUMACPAIRS >
0b0000. Otherwise, direct accesses to TRCBBCTLR are UNDEFINED.

Attributes
TRCBBCTLR is a 64-bit register.

Field descriptions
The TRCBBCTLR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 MODE RANGE<m>, bit [m]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:9]

Reserved, RES0.

MODE, bit [8]

Mode.

MODE Meaning
0b0 Exclude Mode.

Branch broadcasting is not active for instructions in the
address ranges defined by RANGE.
If RANGE == 0x00 then branch broadcasting is active for all
instructions.

0b1 Include Mode.
Branch broadcasting is active for instructions in the address
ranges defined by RANGE.
If RANGE == 0x00 then the behavior of the trace unit is
CONSTRAINED UNPREDICTABLE. That is, the trace unit might or
might not consider any instructions to be in a branch
broadcasting region.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RANGE<m>, bit [m], for m = 0 to 7

Address range field.

Selects which Address Range Comparators are in use with branch broadcasting.

TRCBBCTLR, Branch Broadcast Control Register

Page 1763

RANGE<m> Meaning
0b0 The address range that Address Range Comparator m

defines, is not selected.
0b1 The address range that Address Range Comparator m

defines, is selected.

This bit is RES0 if m >= TRCIDR4.NUMACPAIRS.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCBBCTLR
Must be programmed if TRCCONFIGR.BB == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCBBCTLR

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1111 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCBBCTLR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCBBCTLR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCBBCTLR;

MSR TRCBBCTLR, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1111 0b000

TRCBBCTLR, Branch Broadcast Control Register

Page 1764

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCBBCTLR = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCBBCTLR = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCBBCTLR = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCBBCTLR, Branch Broadcast Control Register

Page 1765

TRCCCCTLR, Cycle Count Control Register
The TRCCCCTLR characteristics are:

Purpose
Set the threshold value for cycle counting.

Configuration
AArch64 System register TRCCCCTLR bits [31:0] are architecturally mapped to External register TRCCCCTLR[31:0] .

This register is present only when ETE is implemented and TRCIDR0.TRCCCI == 0b1. Otherwise, direct accesses to
TRCCCCTLR are UNDEFINED.

Attributes
TRCCCCTLR is a 64-bit register.

Field descriptions
The TRCCCCTLR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 THRESHOLD
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:12]

Reserved, RES0.

THRESHOLD, bits [11:0]

Sets the threshold value for instruction trace cycle counting.

The minimum threshold value that can be programmed into THRESHOLD is given in TRCIDR3.CCITMIN. If the
THRESHOLD value is smaller than the value in TRCIDR3.CCITMIN then the behavior is CONSTRAINED UNPREDICTABLE.
That is, cycle counts might or might not be included in the trace and the cycle count threshold is not known.

Writing a value of zero when TRCCONFIGR.CCI is set to enable instruction trace cycle counting, results in
CONSTRAINED UNPREDICTABLE behavior. That is, cycle counts might or might not be included in the trace and the cycle
count threshold is not known.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCCCCTLR
Must be programmed if TRCCONFIGR.CCI == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCCCCTLR

op0 op1 CRn CRm op2

TRCCCCTLR, Cycle Count Control Register

Page 1766

0b10 0b001 0b0000 0b1110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCCCTLR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCCCCTLR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCCCTLR;

MSR TRCCCCTLR, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCCCTLR = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCCCCTLR = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCCCTLR = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

TRCCCCTLR, Cycle Count Control Register

Page 1767

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCCCTLR, Cycle Count Control Register

Page 1768

TRCCIDCCTLR0, Context Identifier Comparator Control
Register 0

The TRCCIDCCTLR0 characteristics are:

Purpose
Contains Context identifier mask values for the TRCCIDCVR<n> registers, for n = 0 to 3.

Configuration
AArch64 System register TRCCIDCCTLR0 bits [31:0] are architecturally mapped to External register
TRCCIDCCTLR0[31:0] .

This register is present only when ETE is implemented, TRCIDR4.NUMCIDC > 0x0 and TRCIDR2.CIDSIZE > 0b00000.
Otherwise, direct accesses to TRCCIDCCTLR0 are UNDEFINED.

Attributes
TRCCIDCCTLR0 is a 64-bit register.

Field descriptions
The TRCCIDCCTLR0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

COMP3<m>, bit [m+24] COMP2<m>, bit [m+16] COMP1<m>, bit [m+8] COMP0<m>, bit [m]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

COMP3<m>, bit [m+24], for m = 0 to 7

When TRCIDR4.NUMCIDC > 3:

TRCCIDCVR3 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR3. Each bit in this field
corresponds to a byte in TRCCIDCVR3.

COMP3<m> Meaning
0b0 The trace unit includes TRCCIDCVR3[(m×8+7):(m×8)]

when it performs the Context identifier comparison.
0b1 The trace unit ignores TRCCIDCVR3[(m×8+7):(m×8)]

when it performs the Context identifier comparison.

This bit is RES0 if m >= TRCIDR2.CIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP2<m>, bit [m+16], for m = 0 to 7

TRCCIDCCTLR0, Context Identifier Comparator Control Register 0

Page 1769

When TRCIDR4.NUMCIDC > 2:

TRCCIDCVR2 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR2. Each bit in this field
corresponds to a byte in TRCCIDCVR2.

COMP2<m> Meaning
0b0 The trace unit includes TRCCIDCVR2[(m×8+7):(m×8)]

when it performs the Context identifier comparison.
0b1 The trace unit ignores TRCCIDCVR2[(m×8+7):(m×8)]

when it performs the Context identifier comparison.

This bit is RES0 if m >= TRCIDR2.CIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP1<m>, bit [m+8], for m = 0 to 7

When TRCIDR4.NUMCIDC > 1:

TRCCIDCVR1 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR1. Each bit in this field
corresponds to a byte in TRCCIDCVR1.

COMP1<m> Meaning
0b0 The trace unit includes TRCCIDCVR1[(m×8+7):(m×8)]

when it performs the Context identifier comparison.
0b1 The trace unit ignores TRCCIDCVR1[(m×8+7):(m×8)]

when it performs the Context identifier comparison.

This bit is RES0 if m >= TRCIDR2.CIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP0<m>, bit [m], for m = 0 to 7

When TRCIDR4.NUMCIDC > 0:

TRCCIDCVR0 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR0. Each bit in this field
corresponds to a byte in TRCCIDCVR0.

COMP0<m> Meaning
0b0 The trace unit includes TRCCIDCVR0[(m×8+7):(m×8)]

when it performs the Context identifier comparison.
0b1 The trace unit ignores TRCCIDCVR0[(m×8+7):(m×8)]

when it performs the Context identifier comparison.

This bit is RES0 if m >= TRCIDR2.CIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCCIDCCTLR0, Context Identifier Comparator Control Register 0

Page 1770

Accessing the TRCCIDCCTLR0
If software uses the TRCCIDCVR<n> registers, for n = 0 to 3, then it must program this register.

If software sets a mask bit to 0b1 then it must program the relevant byte in TRCCIDCVR<n> to 0x00.

If any bit is 0b1 and the relevant byte in TRCCIDCVR<n> is not 0x00, the behavior of the Context Identifier
Comparator is CONSTRAINED UNPREDICTABLE. In this scenario the comparator might match unexpectedly or might not
match.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCCIDCCTLR0

op0 op1 CRn CRm op2
0b10 0b001 0b0011 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCIDCCTLR0;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCCIDCCTLR0;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCIDCCTLR0;

MSR TRCCIDCCTLR0, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0011 0b0000 0b010

TRCCIDCCTLR0, Context Identifier Comparator Control Register 0

Page 1771

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCIDCCTLR0 = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCCIDCCTLR0 = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCIDCCTLR0 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCIDCCTLR0, Context Identifier Comparator Control Register 0

Page 1772

TRCCIDCCTLR1, Context Identifier Comparator Control
Register 1

The TRCCIDCCTLR1 characteristics are:

Purpose
Contains Context identifier mask values for the TRCCIDCVR<n> registers, for n = 4 to 7.

Configuration
AArch64 System register TRCCIDCCTLR1 bits [31:0] are architecturally mapped to External register
TRCCIDCCTLR1[31:0] .

This register is present only when ETE is implemented, TRCIDR4.NUMCIDC > 0x4 and TRCIDR2.CIDSIZE > 0b00000.
Otherwise, direct accesses to TRCCIDCCTLR1 are UNDEFINED.

Attributes
TRCCIDCCTLR1 is a 64-bit register.

Field descriptions
The TRCCIDCCTLR1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

COMP7<m>, bit [m+24] COMP6<m>, bit [m+16] COMP5<m>, bit [m+8] COMP4<m>, bit [m]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

COMP7<m>, bit [m+24], for m = 0 to 7

When TRCIDR4.NUMCIDC > 7:

TRCCIDCVR7 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR7. Each bit in this field
corresponds to a byte in TRCCIDCVR7.

COMP7<m> Meaning
0b0 The trace unit includes TRCCIDCVR7[(m×8+7):(m×8)]

when it performs the Context identifier comparison.
0b1 The trace unit ignores TRCCIDCVR7[(m×8+7):(m×8)]

when it performs the Context identifier comparison.

This bit is RES0 if m >= TRCIDR2.CIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP6<m>, bit [m+16], for m = 0 to 7

TRCCIDCCTLR1, Context Identifier Comparator Control Register 1

Page 1773

When TRCIDR4.NUMCIDC > 6:

TRCCIDCVR6 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR6. Each bit in this field
corresponds to a byte in TRCCIDCVR6.

COMP6<m> Meaning
0b0 The trace unit includes TRCCIDCVR6[(m×8+7):(m×8)]

when it performs the Context identifier comparison.
0b1 The trace unit ignores TRCCIDCVR6[(m×8+7):(m×8)]

when it performs the Context identifier comparison.

This bit is RES0 if m >= TRCIDR2.CIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP5<m>, bit [m+8], for m = 0 to 7

When TRCIDR4.NUMCIDC > 5:

TRCCIDCVR5 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR5. Each bit in this field
corresponds to a byte in TRCCIDCVR5.

COMP5<m> Meaning
0b0 The trace unit includes TRCCIDCVR5[(m×8+7):(m×8)]

when it performs the Context identifier comparison.
0b1 The trace unit ignores TRCCIDCVR5[(m×8+7):(m×8)]

when it performs the Context identifier comparison.

This bit is RES0 if m >= TRCIDR2.CIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP4<m>, bit [m], for m = 0 to 7

When TRCIDR4.NUMCIDC > 4:

TRCCIDCVR4 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR4. Each bit in this field
corresponds to a byte in TRCCIDCVR4.

COMP4<m> Meaning
0b0 The trace unit includes TRCCIDCVR4[(m×8+7):(m×8)]

when it performs the Context identifier comparison.
0b1 The trace unit ignores TRCCIDCVR4[(m×8+7):(m×8)]

when it performs the Context identifier comparison.

This bit is RES0 if m >= TRCIDR2.CIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCCIDCCTLR1, Context Identifier Comparator Control Register 1

Page 1774

Accessing the TRCCIDCCTLR1
If software uses the TRCCIDCVR<n> registers, for n = 4 to 7, then it must program this register.

If software sets a mask bit to 0b1 then it must program the relevant byte in TRCCIDCVR<n> to 0x00.

If any bit is 0b1 and the relevant byte in TRCCIDCVR<n> is not 0x00, the behavior of the Context Identifier
Comparator is CONSTRAINED UNPREDICTABLE. In this scenario the comparator might match unexpectedly or might not
match.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCCIDCCTLR1

op0 op1 CRn CRm op2
0b10 0b001 0b0011 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCIDCCTLR1;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCCIDCCTLR1;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCIDCCTLR1;

MSR TRCCIDCCTLR1, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0011 0b0001 0b010

TRCCIDCCTLR1, Context Identifier Comparator Control Register 1

Page 1775

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCIDCCTLR1 = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCCIDCCTLR1 = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCIDCCTLR1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCIDCCTLR1, Context Identifier Comparator Control Register 1

Page 1776

TRCCIDCVR<n>, Context Identifier Comparator Value
Registers <n>, n = 0 - 7

The TRCCIDCVR<n> characteristics are:

Purpose
Contains a Context identifier value.

Configuration
AArch64 System register TRCCIDCVR<n> bits [63:0] are architecturally mapped to External register
TRCCIDCVR<n>[63:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMCIDC > n. Otherwise, direct accesses to
TRCCIDCVR<n> are UNDEFINED.

Attributes
TRCCIDCVR<n> is a 64-bit register.

Field descriptions
The TRCCIDCVR<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
VALUE
VALUE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VALUE, bits [63:0]

Context identifier value. The width of this field is indicated by TRCIDR2.CIDSIZE. Unimplemented bits are RES0. After
a PE Reset, the trace unit assumes that the Context identifier is zero until the PE updates the Context identifier.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCCIDCVR<n>
Must be programmed if any of the following are true:

• TRCRSCTLR<a>.GROUP == 0b0110 and TRCRSCTLR<a>.CID[n] == 0b1.
• TRCACATR<a>.CONTEXTTYPE == 0b01 or 0b11 and TRCACATR<a>.CONTEXT == n.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCCIDCVR<n>

op0 op1 CRn CRm op2
0b10 0b001 0b0011 n[2:0]:0b0 0b000

TRCCIDCVR<n>, Context Identifier Comparator Value Registers <n>, n = 0 - 7

Page 1777

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCIDCVR[UInt(CRm<3:1>)];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCCIDCVR[UInt(CRm<3:1>)];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCIDCVR[UInt(CRm<3:1>)];

MSR TRCCIDCVR<n>, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0011 n[2:0]:0b0 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCIDCVR[UInt(CRm<3:1>)] = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCCIDCVR[UInt(CRm<3:1>)] = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCIDCVR[UInt(CRm<3:1>)] = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCIDCVR<n>, Context Identifier Comparator Value Registers <n>, n = 0 - 7

Page 1778

TRCCLAIMCLR, Claim Tag Clear Register
The TRCCLAIMCLR characteristics are:

Purpose
In conjunction with TRCCLAIMSET, provides Claim Tag bits that can be separately set and cleared to indicate whether
functionality is in use by a debug agent.

For additional information see the CoreSight Architecture Specification.

Configuration
AArch64 System register TRCCLAIMCLR bits [31:0] are architecturally mapped to External register
TRCCLAIMCLR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCCLAIMCLR are UNDEFINED.

Attributes
TRCCLAIMCLR is a 64-bit register.

Field descriptions
The TRCCLAIMCLR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

CLR<m>, bit [m]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

CLR<m>, bit [m], for m = 0 to 31

Claim Tag Clear. Indicates the current status of the Claim Tag bit m, and is used to clear Claim Tag bit m to 0b0.

CLR<m> Meaning
0b0 On a read: Claim Tag bit m is not set.

On a write: Ignored.
0b1 On a read: Claim Tag bit m is set.

On a write: Clear Claim tag bit m to 0b0.

The number of Claim Tag bits implemented is indicated in TRCCLAIMSET.

On a Trace unit reset, this field resets to 0.

Accessing the TRCCLAIMCLR
Accesses to this register use the following encodings:

MRS <Xt>, TRCCLAIMCLR

op0 op1 CRn CRm op2

TRCCLAIMCLR, Claim Tag Clear Register

Page 1779

0b10 0b001 0b0111 0b1001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCCLAIM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCLAIMCLR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCCLAIMCLR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCLAIMCLR;

MSR TRCCLAIMCLR, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0111 0b1001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRCCLAIM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCLAIMCLR = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCCLAIMCLR = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCLAIMCLR = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

TRCCLAIMCLR, Claim Tag Clear Register

Page 1780

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCLAIMCLR, Claim Tag Clear Register

Page 1781

TRCCLAIMSET, Claim Tag Set Register
The TRCCLAIMSET characteristics are:

Purpose
In conjunction with TRCCLAIMCLR, provides Claim Tag bits that can be separately set and cleared to indicate whether
functionality is in use by a debug agent.

For additional information see the CoreSight Architecture Specification.

Configuration
AArch64 System register TRCCLAIMSET bits [31:0] are architecturally mapped to External register
TRCCLAIMSET[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCCLAIMSET are UNDEFINED.

The number of claim tag bits implemented is IMPLEMENTATION DEFINED. Arm recommends that implementations support
a minimum of four claim tag bits, that is, SET[3:0] reads as 0b1111.

Attributes
TRCCLAIMSET is a 64-bit register.

Field descriptions
The TRCCLAIMSET bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

SET<m>, bit [m]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

SET<m>, bit [m], for m = 0 to 31

Claim Tag Set. Indicates whether Claim Tag bit m is implemented, and is used to set Claim Tag bit m to 0b1.

SET<m> Meaning
0b0 On a read: Claim Tag bit m is not implemented.

On a write: Ignored.
0b1 On a read: Claim Tag bit m is implemented.

On a write: Set Claim Tag bit m to 0b1.

Accessing the TRCCLAIMSET
Accesses to this register use the following encodings:

MRS <Xt>, TRCCLAIMSET

op0 op1 CRn CRm op2
0b10 0b001 0b0111 0b1000 0b110

TRCCLAIMSET, Claim Tag Set Register

Page 1782

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCCLAIM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCLAIMSET;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCCLAIMSET;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCLAIMSET;

MSR TRCCLAIMSET, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0111 0b1000 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRCCLAIM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCLAIMSET = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCCLAIMSET = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCLAIMSET = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCLAIMSET, Claim Tag Set Register

Page 1783

TRCCNTCTLR<n>, Counter Control Register <n>, n =
0 - 3

The TRCCNTCTLR<n> characteristics are:

Purpose
Controls the operation of Counter <n>.

Configuration
AArch64 System register TRCCNTCTLR<n> bits [31:0] are architecturally mapped to External register
TRCCNTCTLR<n>[31:0] .

This register is present only when ETE is implemented and TRCIDR5.NUMCNTR > n. Otherwise, direct accesses to
TRCCNTCTLR<n> are UNDEFINED.

Attributes
TRCCNTCTLR<n> is a 64-bit register.

Field descriptions
The TRCCNTCTLR<n> bit assignments are:

6362616059585756555453525150 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 CNTCHAINRLDSELFRLDEVENT_TYPERES0RLDEVENT_SELCNTEVENT_TYPERES0CNTEVENT_SEL
3130292827262524232221201918 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:18]

Reserved, RES0.

CNTCHAIN, bit [17]

For TRCCNTCTLR3 and TRCCNTCTLR1, this bit controls whether the Counter decrements when a reload event occurs
for Counter <n-1>.

CNTCHAIN Meaning
0b0 The Counter does not decrement when a reload event for

Counter <n-1> occurs.
0b1 Counter <n> decrements when a reload event for

Counter <n-1> occurs. This concatenates Counter <n>
and Counter <n-1>, to provide a larger count value.

CNTCHAIN is not implemented for TRCCNTCTLR0 and TRCCNTCTLR2.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RLDSELF, bit [16]

Controls whether a reload event occurs for the Counter, when the Counter reaches zero.

TRCCNTCTLR<n>, Counter Control Register <n>, n = 0 - 3

Page 1784

RLDSELF Meaning
0b0 Normal mode.

The Counter is in Normal mode.
0b1 Self-reload mode.

The Counter is in Self-reload mode.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RLDEVENT_TYPE, bit [15]

Chooses the type of Resource Selector.

Selects an event, that when it occurs causes a reload event for Counter <n>.

RLDEVENT_TYPE Meaning
0b0 A single Resource Selector.

TRCCNTCTLR<n>.RLDEVENT.SEL[4:0] selects the
single Resource Selector, from 0-31, used to
activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCCNTCTLR<n>.RLDEVENT.SEL[3:0] selects the
Resource Selector pair, from 0-15, that has a
Boolean function that is applied to it whose output
is used to activate the resource event.
TRCCNTCTLR<n>.RLDEVENT.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [14:13]

Reserved, RES0.

RLDEVENT_SEL, bits [12:8]

Defines the selected Resource Selector or pair of Resource Selectors. TRCCNTCTLR<n>.RLDEVENT.TYPE controls
whether TRCCNTCTLR<n>.RLDEVENT.SEL is the index of a single Resource Selector, or the index of a pair of
Resource Selectors.

Selects an event, that when it occurs causes a reload event for Counter <n>.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

CNTEVENT_TYPE, bit [7]

Chooses the type of Resource Selector.

Selects an event, that when it occurs causes Counter <n> to decrement.

CNTEVENT_TYPE Meaning
0b0 A single Resource Selector.

TRCCNTCTLR<n>.CNTEVENT.SEL[4:0] selects
the single Resource Selector, from 0-31, used to
activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCCNTCTLR<n>.CNTEVENT.SEL[3:0] selects
the Resource Selector pair, from 0-15, that has a
Boolean function that is applied to it whose output
is used to activate the resource event.
TRCCNTCTLR<n>.CNTEVENT.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

TRCCNTCTLR<n>, Counter Control Register <n>, n = 0 - 3

Page 1785

Bits [6:5]

Reserved, RES0.

CNTEVENT_SEL, bits [4:0]

Defines the selected Resource Selector or pair of Resource Selectors. TRCCNTCTLR<n>.CNTEVENT.TYPE controls
whether TRCCNTCTLR<n>.CNTEVENT.SEL is the index of a single Resource Selector, or the index of a pair of
Resource Selectors.

Selects an event, that when it occurs causes Counter <n> to decrement.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCCNTCTLR<n>
Must be programmed if TRCRSCTLR<a>.GROUP == 0b0010 and TRCRSCTLR<a>.COUNTERS[n] == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCCNTCTLR<n>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b01:n[1:0] 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCNTCTLR[UInt(CRm<1:0>)];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCCNTCTLR[UInt(CRm<1:0>)];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCNTCTLR[UInt(CRm<1:0>)];

MSR TRCCNTCTLR<n>, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b01:n[1:0] 0b101

TRCCNTCTLR<n>, Counter Control Register <n>, n = 0 - 3

Page 1786

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCNTCTLR[UInt(CRm<1:0>)] = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCCNTCTLR[UInt(CRm<1:0>)] = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCNTCTLR[UInt(CRm<1:0>)] = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCNTCTLR<n>, Counter Control Register <n>, n = 0 - 3

Page 1787

TRCCNTRLDVR<n>, Counter Reload Value Register
<n>, n = 0 - 3

The TRCCNTRLDVR<n> characteristics are:

Purpose
This sets or returns the reload count value for Counter <n>.

Configuration
AArch64 System register TRCCNTRLDVR<n> bits [31:0] are architecturally mapped to External register
TRCCNTRLDVR<n>[31:0] .

This register is present only when ETE is implemented and TRCIDR5.NUMCNTR > n. Otherwise, direct accesses to
TRCCNTRLDVR<n> are UNDEFINED.

Attributes
TRCCNTRLDVR<n> is a 64-bit register.

Field descriptions
The TRCCNTRLDVR<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 VALUE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

VALUE, bits [15:0]

Contains the reload value for Counter <n>. When a reload event occurs for Counter <n> then the trace unit copies
the VALUE<n> field into Counter <n>.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCCNTRLDVR<n>
Must be programmed if TRCRSCTLR<a>.GROUP == 0b0010 and TRCRSCTLR<a>.COUNTERS[n] == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCCNTRLDVR<n>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b00:n[1:0] 0b101

TRCCNTRLDVR<n>, Counter Reload Value Register <n>, n = 0 - 3

Page 1788

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCNTRLDVR[UInt(CRm<1:0>)];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCCNTRLDVR[UInt(CRm<1:0>)];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCNTRLDVR[UInt(CRm<1:0>)];

MSR TRCCNTRLDVR<n>, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b00:n[1:0] 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCNTRLDVR[UInt(CRm<1:0>)] = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCCNTRLDVR[UInt(CRm<1:0>)] = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCNTRLDVR[UInt(CRm<1:0>)] = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCNTRLDVR<n>, Counter Reload Value Register <n>, n = 0 - 3

Page 1789

TRCCNTVR<n>, Counter Value Register <n>, n = 0 - 3
The TRCCNTVR<n> characteristics are:

Purpose
This sets or returns the value of Counter <n>.

Configuration
AArch64 System register TRCCNTVR<n> bits [31:0] are architecturally mapped to External register
TRCCNTVR<n>[31:0] .

This register is present only when ETE is implemented and TRCIDR5.NUMCNTR > n. Otherwise, direct accesses to
TRCCNTVR<n> are UNDEFINED.

Attributes
TRCCNTVR<n> is a 64-bit register.

Field descriptions
The TRCCNTVR<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 VALUE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

VALUE, bits [15:0]

Contains the count value of Counter.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCCNTVR<n>
Must be programmed if TRCRSCTLR<a>.GROUP == 0b0010 and TRCRSCTLR<a>.COUNTERS[n] == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

Accesses to this register use the following encodings:

MRS <Xt>, TRCCNTVR<n>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b10:n[1:0] 0b101

TRCCNTVR<n>, Counter Value Register <n>, n = 0 - 3

Page 1790

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCCNTVRn == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCNTVR[UInt(CRm<1:0>)];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCCNTVR[UInt(CRm<1:0>)];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCNTVR[UInt(CRm<1:0>)];

MSR TRCCNTVR<n>, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b10:n[1:0] 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRCCNTVRn == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCNTVR[UInt(CRm<1:0>)] = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCCNTVR[UInt(CRm<1:0>)] = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCNTVR[UInt(CRm<1:0>)] = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCNTVR<n>, Counter Value Register <n>, n = 0 - 3

Page 1791

TRCCONFIGR, Trace Configuration Register
The TRCCONFIGR characteristics are:

Purpose
Controls the tracing options.

Configuration
AArch64 System register TRCCONFIGR bits [31:0] are architecturally mapped to External register
TRCCONFIGR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCCONFIGR are UNDEFINED.

Attributes
TRCCONFIGR is a 64-bit register.

Field descriptions
The TRCCONFIGR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 RES0 QE RS TS RES0 VMIDCIDRES0CCIBB RES0 RES1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

Bit [15]

When TRCIDR2.VMIDOPT == 0b00:

Reserved, RES0.

Virtual context identifier selection control.

VTTBR_EL2.VMID is used as the Virtual context identifier.

When TRCIDR2.VMIDOPT == 0b10:

Reserved, RES1.

Virtual context identifier selection control.

CONTEXTIDR_EL2.PROCID is used as the Virtual context identifier.

When TRCIDR2.VMIDOPT == 0b01:

Virtual context identifier selection control.

TRCCONFIGR, Trace Configuration Register

Page 1792

VMIDOPT Meaning
0b0 VTTBR_EL2.VMID is used as the Virtual context identifier.
0b1 CONTEXTIDR_EL2.PROCID is used as the Virtual context

identifier.

Otherwise:

Reserved, RES0.

QE, bits [14:13]

When TRCIDR0.QSUPP == 0b01:

Q element generation control.

QE Meaning
0b00 Q elements are disabled.
0b01 Q elements with instruction counts are enabled.

Q elements without instruction counts are disabled.

All other values are reserved.

When TRCIDR0.QSUPP == 0b10:

Q element generation control.

QE Meaning
0b00 Q elements are disabled.
0b11 Q elements with instruction counts are enabled.

Q elements without instruction counts are enabled.

All other values are reserved.

When TRCIDR0.QSUPP == 0b11:

Q element generation control.

QE Meaning
0b00 Q elements are disabled.
0b01 Q elements with instruction counts are enabled.

Q elements without instruction counts are disabled.
0b11 Q elements with instruction counts are enabled.

Q elements without instruction counts are enabled.

All other values are reserved.

Otherwise:

Reserved, RES0.

RS, bit [12]

When TRCIDR0.RETSTACK == 0b1:

Return stack control.

RS Meaning
0b0 Return stack is disabled.
0b1 Return stack is enabled.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

TRCCONFIGR, Trace Configuration Register

Page 1793

Otherwise:

Reserved, RES0.

TS, bit [11]

When TRCIDR0.TSSIZE != 0b00000:

Global timestamp tracing control.

TS Meaning
0b0 Global timestamp tracing is disabled.
0b1 Global timestamp tracing is enabled.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [10:8]

Reserved, RES0.

VMID, bit [7]

When TRCIDR2.VMIDSIZE != 0b00000:

Virtual context identifier tracing control.

VMID Meaning
0b0 Virtual context identifier tracing is disabled.
0b1 Virtual context identifier tracing is enabled.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CID, bit [6]

When TRCIDR2.CIDSIZE != 0b00000:

Context identifier tracing control.

CID Meaning
0b0 Context identifier tracing is disabled.
0b1 Context identifier tracing is enabled.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [5]

Reserved, RES0.

TRCCONFIGR, Trace Configuration Register

Page 1794

CCI, bit [4]

When TRCIDR0.TRCCCI == 0b1:

Cycle counting instruction tracing control.

CCI Meaning
0b0 Cycle counting instruction tracing is disabled.
0b1 Cycle counting instruction tracing is enabled.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BB, bit [3]

When TRCIDR0.TRCBB == 0b1:

Branch broadcasting control.

BB Meaning
0b0 Branch broadcasting is disabled.
0b1 Branch broadcasting is enabled.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [2:1]

Reserved, RES0.

Bit [0]

Reserved, RES1.

Accessing the TRCCONFIGR
Must always be programmed.

TRCCONFIGR.QE must be set to 0b00 if TRCCONFIGR.BB is not 0b0.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCCONFIGR

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0100 0b000

TRCCONFIGR, Trace Configuration Register

Page 1795

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCONFIGR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCCONFIGR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCCONFIGR;

MSR TRCCONFIGR, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCONFIGR = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCCONFIGR = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCCONFIGR = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCONFIGR, Trace Configuration Register

Page 1796

TRCDEVARCH, Device Architecture Register
The TRCDEVARCH characteristics are:

Purpose
Provides discovery information for the component.

For additional information see the CoreSight Architecture Specification.

Configuration
AArch64 System register TRCDEVARCH bits [31:0] are architecturally mapped to External register
TRCDEVARCH[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCDEVARCH are UNDEFINED.

Attributes
TRCDEVARCH is a 64-bit register.

Field descriptions
The TRCDEVARCH bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

ARCHITECT PRESENT REVISION ARCHVER ARCHPART
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

ARCHITECT, bits [31:21]

Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106 bank ID,
minus 1) and bits [27:21] are the JEP106 ID code.

ARCHITECT Meaning
0b01000111011 JEP106 continuation code 0x4, ID code 0x3B. Arm

Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

PRESENT, bit [20]

DEVARCH Present. Defines that the DEVARCH register is present.

PRESENT Meaning
0b0 Device Architecture information not present.
0b1 Device Architecture information present.

This bit reads as 0b1.

TRCDEVARCH, Device Architecture Register

Page 1797

REVISION, bits [19:16]

Revision. Defines the architecture revision of the component.

REVISION Meaning
0b0000 ETE Version 1.0.

All other values are reserved.

ARCHVER, bits [15:12]

Architecture Version. Defines the architecture version of the component.

ARCHVER Meaning
0b0101 ETE Version 1.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is ARCHID[15:12].

This field reads as 0x5.

ARCHPART, bits [11:0]

Architecture Part. Defines the architecture of the component.

ARCHPART Meaning
0xA13 Arm PE trace architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is ARCHID[11:0].

This field reads as 0xA13.

Accessing the TRCDEVARCH
Accesses to this register use the following encodings:

MRS <Xt>, TRCDEVARCH

op0 op1 CRn CRm op2
0b10 0b001 0b0111 0b1111 0b110

TRCDEVARCH, Device Architecture Register

Page 1798

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCID == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCDEVARCH;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCDEVARCH;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCDEVARCH;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCDEVARCH, Device Architecture Register

Page 1799

TRCDEVID, Device Configuration Register
The TRCDEVID characteristics are:

Purpose
Provides discovery information for the component.

For additional information see the CoreSight Architecture Specification.

Configuration
AArch64 System register TRCDEVID bits [31:0] are architecturally mapped to External register TRCDEVID[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCDEVID are UNDEFINED.

Attributes
TRCDEVID is a 64-bit register.

Field descriptions
The TRCDEVID bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0
RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, RES0.

Accessing the TRCDEVID
Accesses to this register use the following encodings:

MRS <Xt>, TRCDEVID

op0 op1 CRn CRm op2
0b10 0b001 0b0111 0b0010 0b111

TRCDEVID, Device Configuration Register

Page 1800

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCID == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCDEVID;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCDEVID;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCDEVID;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCDEVID, Device Configuration Register

Page 1801

TRCEVENTCTL0R, Event Control 0 Register
The TRCEVENTCTL0R characteristics are:

Purpose
Controls the generation of ETEEvents.

Configuration
AArch64 System register TRCEVENTCTL0R bits [31:0] are architecturally mapped to External register
TRCEVENTCTL0R[31:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMRSPAIR != 0b0000. Otherwise, direct
accesses to TRCEVENTCTL0R are UNDEFINED.

Attributes
TRCEVENTCTL0R is a 64-bit register.

Field descriptions
The TRCEVENTCTL0R bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

EVENT3_TYPERES0EVENT3_SELEVENT2_TYPERES0EVENT2_SELEVENT1_TYPERES0EVENT1_SELEVENT0_TYPERES0EVENT0_SEL
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

EVENT3_TYPE, bit [31]

When TRCIDR4.NUMRSPAIR != 0b0000 and TRCIDR0.NUMEVENT >= 0b11:

Chooses the type of Resource Selector.

EVENT3_TYPE Meaning
0b0 A single Resource Selector.

TRCEVENTCTL0R.EVENT3.SEL[4:0] selects the single
Resource Selector, from 0-31, used to activate the
resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCEVENTCTL0R.EVENT3.SEL[3:0] selects the
Resource Selector pair, from 0-15, that has a Boolean
function that is applied to it whose output is used to
activate the resource event.
TRCEVENTCTL0R.EVENT3.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCEVENTCTL0R, Event Control 0 Register

Page 1802

Bits [30:29]

Reserved, RES0.

EVENT3_SEL, bits [28:24]

When TRCIDR4.NUMRSPAIR != 0b0000 and TRCIDR0.NUMEVENT >= 0b11:

Defines the selected Resource Selector or pair of Resource Selectors. TRCEVENTCTL0R.EVENT3.TYPE controls
whether TRCEVENTCTL0R.EVENT3.SEL is the index of a single Resource Selector, or the index of a pair of Resource
Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

When any of the selected resource events occurs and TRCEVENTCTL1R.INSTEN[3] == 0b1, then Event element 3 is
generated in the instruction trace element stream.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EVENT2_TYPE, bit [23]

When TRCIDR4.NUMRSPAIR != 0b0000 and TRCIDR0.NUMEVENT >= 0b10:

Chooses the type of Resource Selector.

EVENT2_TYPE Meaning
0b0 A single Resource Selector.

TRCEVENTCTL0R.EVENT2.SEL[4:0] selects the single
Resource Selector, from 0-31, used to activate the
resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCEVENTCTL0R.EVENT2.SEL[3:0] selects the
Resource Selector pair, from 0-15, that has a Boolean
function that is applied to it whose output is used to
activate the resource event.
TRCEVENTCTL0R.EVENT2.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [22:21]

Reserved, RES0.

EVENT2_SEL, bits [20:16]

When TRCIDR4.NUMRSPAIR != 0b0000 and TRCIDR0.NUMEVENT >= 0b10:

Defines the selected Resource Selector or pair of Resource Selectors. TRCEVENTCTL0R.EVENT2.TYPE controls
whether TRCEVENTCTL0R.EVENT2.SEL is the index of a single Resource Selector, or the index of a pair of Resource
Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

TRCEVENTCTL0R, Event Control 0 Register

Page 1803

When any of the selected resource events occurs and TRCEVENTCTL1R.INSTEN[2] == 0b1, then Event element 2 is
generated in the instruction trace element stream.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EVENT1_TYPE, bit [15]

When TRCIDR4.NUMRSPAIR != 0b0000 and TRCIDR0.NUMEVENT >= 0b01:

Chooses the type of Resource Selector.

EVENT1_TYPE Meaning
0b0 A single Resource Selector.

TRCEVENTCTL0R.EVENT1.SEL[4:0] selects the single
Resource Selector, from 0-31, used to activate the
resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCEVENTCTL0R.EVENT1.SEL[3:0] selects the
Resource Selector pair, from 0-15, that has a Boolean
function that is applied to it whose output is used to
activate the resource event.
TRCEVENTCTL0R.EVENT1.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [14:13]

Reserved, RES0.

EVENT1_SEL, bits [12:8]

When TRCIDR4.NUMRSPAIR != 0b0000 and TRCIDR0.NUMEVENT >= 0b01:

Defines the selected Resource Selector or pair of Resource Selectors. TRCEVENTCTL0R.EVENT1.TYPE controls
whether TRCEVENTCTL0R.EVENT1.SEL is the index of a single Resource Selector, or the index of a pair of Resource
Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

When any of the selected resource events occurs and TRCEVENTCTL1R.INSTEN[1] == 0b1, then Event element 1 is
generated in the instruction trace element stream.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EVENT0_TYPE, bit [7]

When TRCIDR4.NUMRSPAIR != 0b0000 and TRCIDR0.NUMEVENT >= 0b00:

Chooses the type of Resource Selector.

TRCEVENTCTL0R, Event Control 0 Register

Page 1804

EVENT0_TYPE Meaning
0b0 A single Resource Selector.

TRCEVENTCTL0R.EVENT0.SEL[4:0] selects the single
Resource Selector, from 0-31, used to activate the
resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCEVENTCTL0R.EVENT0.SEL[3:0] selects the
Resource Selector pair, from 0-15, that has a Boolean
function that is applied to it whose output is used to
activate the resource event.
TRCEVENTCTL0R.EVENT0.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [6:5]

Reserved, RES0.

EVENT0_SEL, bits [4:0]

When TRCIDR4.NUMRSPAIR != 0b0000 and TRCIDR0.NUMEVENT >= 0b00:

Defines the selected Resource Selector or pair of Resource Selectors. TRCEVENTCTL0R.EVENT0.TYPE controls
whether TRCEVENTCTL0R.EVENT0.SEL is the index of a single Resource Selector, or the index of a pair of Resource
Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

When any of the selected resource events occurs and TRCEVENTCTL1R.INSTEN[0] == 0b1, then Event element 0 is
generated in the instruction trace element stream.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TRCEVENTCTL0R
Must be programmed if implemented.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCEVENTCTL0R

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1000 0b000

TRCEVENTCTL0R, Event Control 0 Register

Page 1805

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCEVENTCTL0R;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCEVENTCTL0R;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCEVENTCTL0R;

MSR TRCEVENTCTL0R, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCEVENTCTL0R = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCEVENTCTL0R = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCEVENTCTL0R = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCEVENTCTL0R, Event Control 0 Register

Page 1806

TRCEVENTCTL1R, Event Control 1 Register
The TRCEVENTCTL1R characteristics are:

Purpose
Controls the behavior of the ETEEvents that TRCEVENTCTL0R selects.

Configuration
AArch64 System register TRCEVENTCTL1R bits [31:0] are architecturally mapped to External register
TRCEVENTCTL1R[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCEVENTCTL1R are
UNDEFINED.

Attributes
TRCEVENTCTL1R is a 64-bit register.

Field descriptions
The TRCEVENTCTL1R bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 LPOVERRIDEATB RES0 INSTEN<m>,
bit [m]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:13]

Reserved, RES0.

LPOVERRIDE, bit [12]

When TRCIDR5.LPOVERRIDE == 0b1:

Low-power Override Mode select.

LPOVERRIDE Meaning
0b0 Trace unit Low-power Override Mode is not enabled.

That is, the trace unit is permitted to enter low-power
state.

0b1 Trace unit Low-power Override Mode is enabled. That
is, entry to a low-power state does not affect the trace
unit resources or trace generation.

Otherwise:

Reserved, RES0.

ATB, bit [11]

When TRCIDR5.ATBTRIG == 0b1:

AMBA Trace Bus (ATB) trigger enable.

TRCEVENTCTL1R, Event Control 1 Register

Page 1807

If a CoreSight ATB interface is implemented then when ETEEvent 0 occurs the trace unit sets:

• ATID == 0x7D.
• ATDATA to the value of TRCTRACEIDR.

If the width of ATDATA is greater than the width of TRCTRACEIDR.TRACEID then the trace unit zeros the upper
ATDATA bits.

If ETEEvent 0 is programmed to occur based on program execution, such as an Address Comparator, the ATB trigger
might not be inserted into the ATB stream at the same time as any trace generated by that program execution is
output by the trace unit. Typically, the generated trace might be buffered in a trace unit which means that the ATB
trigger would be output before the associated trace is output.

If ETEEvent 0 is asserted multiple times in close succession, the trace unit is required to generate an ATB trigger for
the first assertion, but might ignore one or more of the subsequent assertions. Arm recommends that the window in
which ETEEvent 0 is ignored is limited only by the time taken to output an ATB trigger.

ATB Meaning
0b0 ATB trigger is disabled.
0b1 ATB trigger is enabled.

Otherwise:

Reserved, RES0.

Bits [10:4]

Reserved, RES0.

INSTEN<m>, bit [m], for m = 0 to 3

Event element control.

INSTEN<m> Meaning
0b0 The trace unit does not generate an Event element m.
0b1 The trace unit generates an Event element m.

This bit is RES0 if m >= the number indicated by TRCIDR0.NUMEVENT.

Accessing the TRCEVENTCTL1R
Must be programmed.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCEVENTCTL1R

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1001 0b000

TRCEVENTCTL1R, Event Control 1 Register

Page 1808

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCEVENTCTL1R;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCEVENTCTL1R;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCEVENTCTL1R;

MSR TRCEVENTCTL1R, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCEVENTCTL1R = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCEVENTCTL1R = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCEVENTCTL1R = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCEVENTCTL1R, Event Control 1 Register

Page 1809

TRCEXTINSELR<n>, External Input Select Register
<n>, n = 0 - 3

The TRCEXTINSELR<n> characteristics are:

Purpose
Use this to set, or read, which External Inputs are resources to the trace unit.

Configuration
AArch64 System register TRCEXTINSELR<n> bits [31:0] are architecturally mapped to External register
TRCEXTINSELR<n>[31:0] .

This register is present only when ETE is implemented and TRCIDR5.NUMEXTINSEL > n. Otherwise, direct accesses
to TRCEXTINSELR<n> are UNDEFINED.

Attributes
TRCEXTINSELR<n> is a 64-bit register.

Field descriptions
The TRCEXTINSELR<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 evtCount
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

evtCount, bits [15:0]

PMU event to select.

The event number as defined by the Arm ARM.

Software must program this field with a PMU event that is supported by the PE being programmed.

There are three ranges of PMU event numbers:

• PMU event numbers in the range 0x0000 to 0x003F are common architectural and microarchitectural events.
• PMU event numbers in the range 0x0040 to 0x00BF are Arm recommended common architectural and

microarchitectural PMU events.
• PMU event numbers in the range 0x00C0 to 0x03FF are IMPLEMENTATION DEFINED PMU events.

If evtCount is programmed to a PMU event that is reserved or not supported by the PE, the behavior depends on the
PMU event type:

• For the range 0x0000 to 0x003F, then the PMU event is not active, and the value returned by a direct or
external read of the evtCount field is the value written to the field.

• For IMPLEMENTATION DEFINED PMU events, it is UNPREDICTABLE what PMU event, if any, is counted, and the
value returned by a direct or external read of the evtCount field is UNKNOWN.

UNPREDICTABLE means the PMU event must not expose privileged information.

TRCEXTINSELR<n>, External Input Select Register <n>, n = 0 - 3

Page 1810

Arm recommends that the behavior across a family of implementations is defined such that if a given implementation
does not include a PMU event from a set of common IMPLEMENTATION DEFINED PMU events, then no PMU event is
counted and the value read back on evtCount is the value written.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCEXTINSELR<n>
Must be programmed if any of the following is true: TRCRSCTLR<a>.GROUP == 0b0000 and
TRCRSCTLR<a>.EXTIN[n] == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCEXTINSELR<n>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b10:n[1:0] 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCEXTINSELR[UInt(CRm<1:0>)];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCEXTINSELR[UInt(CRm<1:0>)];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCEXTINSELR[UInt(CRm<1:0>)];

MSR TRCEXTINSELR<n>, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b10:n[1:0] 0b100

TRCEXTINSELR<n>, External Input Select Register <n>, n = 0 - 3

Page 1811

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCEXTINSELR[UInt(CRm<1:0>)] = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCEXTINSELR[UInt(CRm<1:0>)] = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCEXTINSELR[UInt(CRm<1:0>)] = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCEXTINSELR<n>, External Input Select Register <n>, n = 0 - 3

Page 1812

TRCIDR0, ID Register 0
The TRCIDR0 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
AArch64 System register TRCIDR0 bits [31:0] are architecturally mapped to External register TRCIDR0[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR0 are UNDEFINED.

Attributes
TRCIDR0 is a 64-bit register.

Field descriptions
The TRCIDR0 bit assignments are:

63 62 61 6059585756555453525150 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0COMMTRANSCOMMOPT TSSIZE RES0 TRCEXDATAQSUPPQFILTCONDTYPENUMEVENTRETSTACKRES0TRCCCITRCCONDTRCBBTRCDATAINSTP0RES1
31 30 29 2827262524232221201918 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:31]

Reserved, RES0.

COMMTRANS, bit [30]

Transaction Start element behavior.

COMMTRANS Meaning
0b0 Transaction Start elements are P0 elements.
0b1 Transaction Start elements are not P0 elements.

COMMOPT, bit [29]

Indicates the contents and encodings of Cycle count packets.

COMMOPT Meaning
0b0 Commit mode 0.
0b1 Commit mode 1.

The Commit mode defines the contents and encodings of Cycle Count packets, in particular how Commit elements are
indicated by these packets. See the descriptions of these packets for more details.

This bit reads-as-one if TRCIDR0.TRCCCI == 0b1 and TRCIDR8.MAXSPEC == 0x0. This bit reads-as-zero if
TRCIDR0.TRCCCI == 0b0.

TSSIZE, bits [28:24]

Indicates that the trace unit implements Global timestamping and the size of the timestamp value.

TRCIDR0, ID Register 0

Page 1813

TSSIZE Meaning
0b00000 Global timestamping not implemented.
0b01000 Global timestamping implemented with a 64-bit timestamp

value.

All other values are reserved.

This field reads as 0b01000.

Bits [23:18]

Reserved, RES0.

TRCEXDATA, bit [17]

When TRCIDR0.TRCDATA != 0b00:

Indicates if the trace unit implements tracing of data transfers for exceptions and exception returns. Data tracing is
not implemented in ETE and this field is reserved for other trace architectures. Allocated in other trace architectures.

TRCEXDATA Meaning
0b0 Tracing of data transfers for exceptions and exception

returns not implemented.
0b1 Tracing of data transfers for exceptions and exception

returns implemented.

Otherwise:

Reserved, RES0.

QSUPP, bits [16:15]

Indicates that the trace unit implements Q element support.

QSUPP Meaning
0b00 Q element support is not implemented.
0b01 Q element support is implemented, and only supports Q

elements with instruction counts.
0b10 Q element support is implemented, and only supports Q

elements without instruction counts.
0b11 Q element support is implemented, and supports:

• Q elements with instruction counts.
• Q elements without instruction counts.

QFILT, bit [14]

Indicates if the trace unit implements Q element filtering.

QFILT Meaning
0b0 Q element filtering is not implemented.
0b1 Q element filtering is implemented.

If TRCIDR0.QSUPP == 0b00 then this field is 0b0.

CONDTYPE, bits [13:12]

When TRCIDR0.TRCCOND == 0b1:

Indicates how conditional instructions are traced. Conditional instruction tracing is not implemented in ETE and this
field is reserved for other trace architectures. Allocated in other trace architectures.

TRCIDR0, ID Register 0

Page 1814

CONDTYPE Meaning
0b00 Conditional instructions are traced with an indication of

whether they pass or fail their condition code check.
0b01 Conditional instructions are traced with an indication of

the APSR condition flags.

All other values are reserved.

Otherwise:

Reserved, RES0.

NUMEVENT, bits [11:10]

When TRCIDR4.NUMRSPAIR == 0b0000:

Indicates the number of ETEEvents implemented.

NUMEVENT Meaning
0b00 The trace unit supports 0 ETEEvents.

All other values are reserved.

When TRCIDR4.NUMRSPAIR != 0b0000:

Indicates the number of ETEEvents implemented.

NUMEVENT Meaning
0b00 The trace unit supports 1 ETEEvent.
0b01 The trace unit supports 2 ETEEvents.
0b10 The trace unit supports 3 ETEEvents.
0b11 The trace unit supports 4 ETEEvents.

Otherwise:

Reserved, RES0.

RETSTACK, bit [9]

Indicates if the trace unit supports the return stack.

RETSTACK Meaning
0b0 Return stack not implemented.
0b1 Return stack implemented.

Bit [8]

Reserved, RES0.

TRCCCI, bit [7]

Indicates if the trace unit implements cycle counting.

TRCCCI Meaning
0b0 Cycle counting not implemented.
0b1 Cycle counting implemented.

This bit reads as 0b1.

TRCIDR0, ID Register 0

Page 1815

TRCCOND, bit [6]

Indicates if the trace unit implements conditional instruction tracing. Conditional instruction tracing is not
implemented in ETE and this field is reserved for other trace architectures.

TRCCOND Meaning
0b0 Conditional instruction tracing not implemented.
0b1 Conditional instruction tracing implemented.

This bit reads as 0b0.

TRCBB, bit [5]

Indicates if the trace unit implements branch broadcasting.

TRCBB Meaning
0b0 Branch broadcasting not implemented.
0b1 Branch broadcasting implemented.

This bit reads as 0b1.

TRCDATA, bits [4:3]

Indicates if the trace unit implements data tracing. Data tracing is not implemented in ETE and this field is reserved
for other trace architectures.

TRCDATA Meaning
0b00 Data tracing not implemented.
0b11 Data tracing implemented.

All other values are reserved.

This field reads as 0b00.

INSTP0, bits [2:1]

Indicates if load and store instructions are P0 instructions. Load and store instructions as P0 instructions is not
implemented in ETE and this field is reserved for other trace architectures.

INSTP0 Meaning
0b00 Load and store instructions are not P0 instructions.
0b11 Load and store instructions are P0 instructions.

All other values are reserved.

This field reads as 0b00.

Bit [0]

Reserved, RES1.

Accessing the TRCIDR0
Accesses to this register use the following encodings:

MRS <Xt>, TRCIDR0

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1000 0b111

TRCIDR0, ID Register 0

Page 1816

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCID == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR0;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCIDR0;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR0;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR0, ID Register 0

Page 1817

TRCIDR1, ID Register 1
The TRCIDR1 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
AArch64 System register TRCIDR1 bits [31:0] are architecturally mapped to External register TRCIDR1[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR1 are UNDEFINED.

Attributes
TRCIDR1 is a 64-bit register.

Field descriptions
The TRCIDR1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

DESIGNER RES0 RES1 TRCARCHMAJTRCARCHMIN REVISION
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

DESIGNER, bits [31:24]

Indicates which company designed the trace unit. The permitted values of this field are the same as
MIDR_EL1.Implementer.

Bits [23:16]

Reserved, RES0.

Bits [15:12]

Reserved, RES1.

TRCARCHMAJ, bits [11:8]

Major architecture version.

TRCARCHMAJ Meaning
0b1111 If both TRCARCHMAJ and TRCARCHMIN == 0xF then

refer to TRCDEVARCH.

All other values are reserved.

This field reads as 0b1111.

TRCIDR1, ID Register 1

Page 1818

TRCARCHMIN, bits [7:4]

Minor architecture version.

TRCARCHMIN Meaning
0b1111 If both TRCARCHMAJ and TRCARCHMIN == 0xF then

refer to TRCDEVARCH.

All other values are reserved.

This field reads as 0b1111.

REVISION, bits [3:0]

Implementation revision.

Returns an IMPLEMENTATION DEFINED value that identifies the revision of:

• The trace registers.
• The OS Lock registers.

Arm recommends that the initial implementation sets REVISION == 0x0 and the field then increments for any
subsequent implementations. However, it is acceptable to omit some values or use another scheme to identify the
revision number.

Arm recommends that TRCPIDR2.REVISION == TRCIDR1.REVISION. However, in situations where it is difficult to
align these fields, such as with a metal layer fix then it is acceptable to change the REVISION fields independently.

Accessing the TRCIDR1
Accesses to this register use the following encodings:

MRS <Xt>, TRCIDR1

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1001 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCID == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR1;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCIDR1;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR1;

TRCIDR1, ID Register 1

Page 1819

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR1, ID Register 1

Page 1820

TRCIDR10, ID Register 10
The TRCIDR10 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
AArch64 System register TRCIDR10 bits [31:0] are architecturally mapped to External register TRCIDR10[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR10 are UNDEFINED.

Attributes
TRCIDR10 is a 64-bit register.

Field descriptions
The TRCIDR10 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

NUMP1KEY
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

NUMP1KEY, bits [31:0]

When TRCIDR0.TRCDATA != 0b00:

Indicates the number of P1 right-hand keys. Data tracing is not implemented in ETE and this field is reserved for other
trace architectures. Allocated in other trace architectures.

Otherwise:

Reserved, RES0.

Accessing the TRCIDR10
Accesses to this register use the following encodings:

MRS <Xt>, TRCIDR10

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0010 0b110

TRCIDR10, ID Register 10

Page 1821

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCID == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR10;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCIDR10;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR10;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR10, ID Register 10

Page 1822

TRCIDR11, ID Register 11
The TRCIDR11 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
AArch64 System register TRCIDR11 bits [31:0] are architecturally mapped to External register TRCIDR11[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR11 are UNDEFINED.

Attributes
TRCIDR11 is a 64-bit register.

Field descriptions
The TRCIDR11 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

NUMP1SPC
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

NUMP1SPC, bits [31:0]

When TRCIDR0.TRCDATA != 0b00:

Indicates the number of special P1 right-hand keys. Data tracing is not implemented in ETE and this field is reserved
for other trace architectures. Allocated in other trace architectures.

Otherwise:

Reserved, RES0.

Accessing the TRCIDR11
Accesses to this register use the following encodings:

MRS <Xt>, TRCIDR11

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0011 0b110

TRCIDR11, ID Register 11

Page 1823

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCID == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR11;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCIDR11;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR11;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR11, ID Register 11

Page 1824

TRCIDR12, ID Register 12
The TRCIDR12 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
AArch64 System register TRCIDR12 bits [31:0] are architecturally mapped to External register TRCIDR12[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR12 are UNDEFINED.

Attributes
TRCIDR12 is a 64-bit register.

Field descriptions
The TRCIDR12 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

NUMCONDKEY
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

NUMCONDKEY, bits [31:0]

When TRCIDR0.TRCCOND == 0b1:

Indicates the number of conditional instruction right-hand keys. Conditional instruction tracing is not implemented in
ETE and this field is reserved for other trace architectures. Allocated in other trace architectures.

Otherwise:

Reserved, RES0.

Accessing the TRCIDR12
Accesses to this register use the following encodings:

MRS <Xt>, TRCIDR12

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0100 0b110

TRCIDR12, ID Register 12

Page 1825

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCID == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR12;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCIDR12;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR12;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR12, ID Register 12

Page 1826

TRCIDR13, ID Register 13
The TRCIDR13 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
AArch64 System register TRCIDR13 bits [31:0] are architecturally mapped to External register TRCIDR13[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR13 are UNDEFINED.

Attributes
TRCIDR13 is a 64-bit register.

Field descriptions
The TRCIDR13 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

NUMCONDSPC
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

NUMCONDSPC, bits [31:0]

When TRCIDR0.TRCCOND == 0b1:

Indicates the number of special conditional instruction right-hand keys. Conditional instruction tracing is not
implemented in ETE and this field is reserved for other trace architectures. Allocated in other trace architectures.

Otherwise:

Reserved, RES0.

Accessing the TRCIDR13
Accesses to this register use the following encodings:

MRS <Xt>, TRCIDR13

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0101 0b110

TRCIDR13, ID Register 13

Page 1827

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCID == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR13;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCIDR13;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR13;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR13, ID Register 13

Page 1828

TRCIDR2, ID Register 2
The TRCIDR2 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
AArch64 System register TRCIDR2 bits [31:0] are architecturally mapped to External register TRCIDR2[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR2 are UNDEFINED.

Attributes
TRCIDR2 is a 64-bit register.

Field descriptions
The TRCIDR2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

WFXMODEVMIDOPT CCSIZE DVSIZE DASIZE VMIDSIZE CIDSIZE IASIZE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

WFXMODE, bit [31]

Indicates whether WFI and WFE instructions are classified as P0 instructions:

WFXMODE Meaning
0b0 WFI and WFE instructions are not classified as P0

instructions.
0b1 WFI and WFE instructions are classified as P0

instructions.

VMIDOPT, bits [30:29]

Indicates the options for Virtual context identifier selection.

VMIDOPT Meaning
0b00 Virtual context identifier selection not supported.

TRCCONFIGR.VMIDOPT is RES0.
0b01 Virtual context identifier selection supported.

TRCCONFIGR.VMIDOPT is implemented.
0b10 Virtual context identifier selection not supported.

TRCCONFIGR.VMIDOPT is RES1.

All other values are reserved.

If TRCIDR2.VMIDSIZE == 0b00000 then this field is 0b00.

If TRCIDR2.VMIDSIZE != 0b00000 then this field is 0b10.

TRCIDR2, ID Register 2

Page 1829

CCSIZE, bits [28:25]

When TRCIDR0.TRCCCI == 0b1:

Indicates the size of the cycle counter.

CCSIZE Meaning
0b0000 The cycle counter is 12 bits in length.
0b0001 The cycle counter is 13 bits in length.
0b0010 The cycle counter is 14 bits in length.
0b0011 The cycle counter is 15 bits in length.
0b0100 The cycle counter is 16 bits in length.
0b0101 The cycle counter is 17 bits in length.
0b0110 The cycle counter is 18 bits in length.
0b0111 The cycle counter is 19 bits in length.
0b1000 The cycle counter is 20 bits in length.

All other values are reserved.

Otherwise:

Reserved, RES0.

DVSIZE, bits [24:20]

When TRCIDR0.TRCDATA != 0b00:

Indicates the data value size in bytes. Data tracing is not implemented in ETE and this field is reserved for other trace
architectures. Allocated in other trace architectures.

DVSIZE Meaning
0b00000 Data value tracing not implemented.
0b00100 Data value tracing has a maximum of 32-bit data values.
0b01000 Data value tracing has a maximum of 64-bit data values.

All other values are reserved.

Otherwise:

Reserved, RES0.

DASIZE, bits [19:15]

When TRCIDR0.TRCDATA != 0b00:

Indicates the data address size in bytes. Data tracing is not implemented in ETE and this field is reserved for other
trace architectures. Allocated in other trace architectures.

DASIZE Meaning
0b00000 Data address tracing not implemented.
0b00100 Data address tracing has a maximum of 32-bit data addresses.
0b01000 Data address tracing has a maximum of 64-bit data addresses.

All other values are reserved.

Otherwise:

Reserved, RES0.

VMIDSIZE, bits [14:10]

Indicates the trace unit Virtual context identifier size.

TRCIDR2, ID Register 2

Page 1830

VMIDSIZE Meaning
0b00000 Virtual context identifier tracing is not supported.
0b00001 8-bit Virtual context identifier size.
0b00010 16-bit Virtual context identifier size.
0b00100 32-bit Virtual context identifier size.

All other values are reserved.

If the PE does not implement EL2 then this field is 0b00000.

If the PE implements EL2 then this field is 0b00100.

CIDSIZE, bits [9:5]

Indicates the Context identifier size.

CIDSIZE Meaning
0b00000 Context identifier tracing is not supported.
0b00100 32-bit Context identifier size.

All other values are reserved.

This field reads as 0b00100.

IASIZE, bits [4:0]

Virtual instruction address size.

IASIZE Meaning
0b00100 Maximum of 32-bit instruction address size.
0b01000 Maximum of 64-bit instruction address size.

All other values are reserved.

This field reads as 0b01000.

Accessing the TRCIDR2
Accesses to this register use the following encodings:

MRS <Xt>, TRCIDR2

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1010 0b111

TRCIDR2, ID Register 2

Page 1831

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCID == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR2;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCIDR2;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR2;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR2, ID Register 2

Page 1832

TRCIDR3, ID Register 3
The TRCIDR3 characteristics are:

Purpose
Returns the base architecture of the trace unit.

Configuration
AArch64 System register TRCIDR3 bits [31:0] are architecturally mapped to External register TRCIDR3[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR3 are UNDEFINED.

Attributes
TRCIDR3 is a 64-bit register.

Field descriptions
The TRCIDR3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 434241403938373635343332
RES0

NOOVERFLOWNUMPROC[2:0]SYSSTALLSTALLCTLSYNCPRTRCERRRES0EXLEVEL_NS_EL2EXLEVEL_NS_EL1EXLEVEL_NS_EL0EXLEVEL_S_EL3EXLEVEL_S_EL2EXLEVEL_S_EL1EXLEVEL_S_EL0RES0NUMPROC[4:3] CCITMIN
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

NOOVERFLOW, bit [31]

Indicates if overflow prevention is implemented.

NOOVERFLOW Meaning
0b0 Overflow prevention is not implemented.
0b1 Overflow prevention is implemented.

NUMPROC[2:0], bits [30:28]

This field is bits[2:0] of NUMPROC[4:0].

Indicates the number of PEs available for tracing.

NUMPROC Meaning
0b00000 The trace unit can trace one PE.

This field reads as 0b00000.

The NUMPROC field is split as follows:

• NUMPROC[2:0] is TRCIDR3[30:28].
• NUMPROC[4:3] is TRCIDR3[13:12].

TRCIDR3, ID Register 3

Page 1833

SYSSTALL, bit [27]

Indicates if stalling of the PE is permitted.

SYSSTALL Meaning
0b0 Stalling of the PE is not permitted.
0b1 Stalling of the PE is permitted.

The value of this field might be dynamic and change based on system conditions.

If TRCIDR3.STALLCTL == 0b0 then this field is 0b0.

STALLCTL, bit [26]

Indicates if trace unit implements stalling of the PE.

STALLCTL Meaning
0b0 Stalling of the PE is not implemented.
0b1 Stalling of the PE is implemented.

SYNCPR, bit [25]

Indicates if an implementation has a fixed synchronization period.

SYNCPR Meaning
0b0 TRCSYNCPR is read-write so software can change the

synchronization period.
0b1 TRCSYNCPR is read-only so the synchronization period is

fixed.

This bit reads as 0b0.

TRCERR, bit [24]

Indicates forced tracing of System Error exceptions is implemented.

TRCERR Meaning
0b0 Forced tracing of System Error exceptions is not

implemented.
0b1 Forced tracing of System Error exceptions is implemented.

This bit reads as 0b1.

Bit [23]

Reserved, RES0.

EXLEVEL_NS_EL2, bit [22]

Indicates if Non-secure EL2 implemented.

EXLEVEL_NS_EL2 Meaning
0b0 Non-secure EL2 is not implemented.
0b1 Non-secure EL2 is implemented.

EXLEVEL_NS_EL1, bit [21]

Indicates if Non-secure EL1 implemented.

EXLEVEL_NS_EL1 Meaning
0b0 Non-secure EL1 is not implemented.
0b1 Non-secure EL1 is implemented.

TRCIDR3, ID Register 3

Page 1834

EXLEVEL_NS_EL0, bit [20]

Indicates if Non-secure EL0 implemented.

EXLEVEL_NS_EL0 Meaning
0b0 Non-secure EL0 is not implemented.
0b1 Non-secure EL0 is implemented.

EXLEVEL_S_EL3, bit [19]

Indicates if Secure EL3 implemented.

EXLEVEL_S_EL3 Meaning
0b0 Secure EL3 is not implemented.
0b1 Secure EL3 is implemented.

EXLEVEL_S_EL2, bit [18]

Indicates if Secure EL2 implemented.

EXLEVEL_S_EL2 Meaning
0b0 Secure EL2 is not implemented.
0b1 Secure EL2 is implemented.

EXLEVEL_S_EL1, bit [17]

Indicates if Secure EL1 implemented.

EXLEVEL_S_EL1 Meaning
0b0 Secure EL1 is not implemented.
0b1 Secure EL1 is implemented.

EXLEVEL_S_EL0, bit [16]

Indicates if Secure EL0 implemented.

EXLEVEL_S_EL0 Meaning
0b0 Secure EL0 is not implemented.
0b1 Secure EL0 is implemented.

Bits [15:14]

Reserved, RES0.

NUMPROC[4:3], bits [13:12]

This field is bits[4:3] of NUMPROC[4:0].

See NUMPROC[2:0] for the field description.

CCITMIN, bits [11:0]

Indicates the minimum value that can be programmed in TRCCCCTLR.THRESHOLD.

If TRCIDR0.TRCCCI == 0b1 then the minimum value of this field is 0x001.

If TRCIDR0.TRCCCI == 0b0 then this field is zero.

Accessing the TRCIDR3
Accesses to this register use the following encodings:

TRCIDR3, ID Register 3

Page 1835

MRS <Xt>, TRCIDR3

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1011 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCID == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR3;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCIDR3;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR3;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR3, ID Register 3

Page 1836

TRCIDR4, ID Register 4
The TRCIDR4 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
AArch64 System register TRCIDR4 bits [31:0] are architecturally mapped to External register TRCIDR4[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR4 are UNDEFINED.

Attributes
TRCIDR4 is a 64-bit register.

Field descriptions
The TRCIDR4 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

NUMVMIDC NUMCIDC NUMSSCC NUMRSPAIR NUMPC RES0 SUPPDAC NUMDVC NUMACPAIRS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

NUMVMIDC, bits [31:28]

Indicates the number of Virtual Context Identifier Comparators that are available for tracing.

NUMVMIDC Meaning
0b0000 No Virtual Context Identifier Comparators are available.
0b0001 The implementation has one Virtual Context Identifier

Comparator.
0b0010 The implementation has two Virtual Context Identifier

Comparators.
0b0011 The implementation has three Virtual Context Identifier

Comparators.
0b0100 The implementation has four Virtual Context Identifier

Comparators.
0b0101 The implementation has five Virtual Context Identifier

Comparators.
0b0110 The implementation has six Virtual Context Identifier

Comparators.
0b0111 The implementation has seven Virtual Context Identifier

Comparators.
0b1000 The implementation has eight Virtual Context Identifier

Comparators.

All other values are reserved.

TRCIDR4, ID Register 4

Page 1837

NUMCIDC, bits [27:24]

Indicates the number of Context Identifier Comparators that are available for tracing.

NUMCIDC Meaning
0b0000 No Context Identifier Comparators are available.
0b0001 The implementation has one Context Identifier

Comparator.
0b0010 The implementation has two Context Identifier

Comparators.
0b0011 The implementation has three Context Identifier

Comparators.
0b0100 The implementation has four Context Identifier

Comparators.
0b0101 The implementation has five Context Identifier

Comparators.
0b0110 The implementation has six Context Identifier

Comparators.
0b0111 The implementation has seven Context Identifier

Comparators.
0b1000 The implementation has eight Context Identifier

Comparators.

All other values are reserved.

NUMSSCC, bits [23:20]

Indicates the number of Single-shot Comparator Controls that are available for tracing.

NUMSSCC Meaning
0b0000 No Single-shot Comparator Controls are available.
0b0001 The implementation has one Single-shot Comparator

Control.
0b0010 The implementation has two Single-shot Comparator

Controls.
0b0011 The implementation has three Single-shot Comparator

Controls.
0b0100 The implementation has four Single-shot Comparator

Controls.
0b0101 The implementation has five Single-shot Comparator

Controls.
0b0110 The implementation has six Single-shot Comparator

Controls.
0b0111 The implementation has seven Single-shot Comparator

Controls.
0b1000 The implementation has eight Single-shot Comparator

Controls.

All other values are reserved.

NUMRSPAIR, bits [19:16]

Indicates the number of resource selector pairs that are available for tracing.

TRCIDR4, ID Register 4

Page 1838

NUMRSPAIR Meaning
0b0000 The implementation has zero resource selectors.
0b0001 The implementation has two resource selector pairs.
0b0010 The implementation has three resource selector pairs.
0b0011 The implementation has four resource selector pairs.
0b0100 The implementation has five resource selector pairs.
0b0101 The implementation has six resource selector pairs.
0b0110 The implementation has seven resource selector pairs.
0b0111 The implementation has eight resource selector pairs.
0b1000 The implementation has nine resource selector pairs.
0b1001 The implementation has ten resource selector pairs.
0b1010 The implementation has eleven resource selector pairs.
0b1011 The implementation has twelve resource selector pairs.
0b1100 The implementation has thirteen resource selector

pairs.
0b1101 The implementation has fourteen resource selector

pairs.
0b1110 The implementation has fifteen resource selector pairs.
0b1111 The implementation has sixteen resource selector pairs.

All other values are reserved.

NUMPC, bits [15:12]

Indicates the number of PE Comparator Inputs that are available for tracing.

NUMPC Meaning
0b0000 No PE Comparator Inputs are available.
0b0001 The implementation has one PE Comparator Input.
0b0010 The implementation has two PE Comparator Inputs.
0b0011 The implementation has three PE Comparator Inputs.
0b0100 The implementation has four PE Comparator Inputs.
0b0101 The implementation has five PE Comparator Inputs.
0b0110 The implementation has six PE Comparator Inputs.
0b0111 The implementation has seven PE Comparator Inputs.
0b1000 The implementation has eight PE Comparator Inputs.

All other values are reserved.

Bits [11:9]

Reserved, RES0.

SUPPDAC, bit [8]

When TRCIDR4.NUMACPAIRS != 0b0000:

Indicates whether data address comparisons are implemented. Data address comparisons are not implemented in ETE
and are reserved for other trace architectures. Allocated in other trace architectures.

SUPPDAC Meaning
0b0 Data address comparisons not implemented.
0b1 Data address comparisons implemented.

This bit reads as 0b0.

Otherwise:

Reserved, RES0.

NUMDVC, bits [7:4]

Indicates the number of data value comparators. Data value comparators are not implemented in ETE and are
reserved for other trace architectures. Allocated in other trace architectures.

TRCIDR4, ID Register 4

Page 1839

NUMDVC Meaning
0b0000 No data value comparators implemented.
0b0001 One data value comparator implemented.
0b0010 Two data value comparators implemented.
0b0011 Three data value comparators implemented.
0b0100 Four data value comparators implemented.
0b0101 Five data value comparators implemented.
0b0110 Six data value comparators implemented.
0b0111 Seven data value comparators implemented.
0b1000 Eight data value comparators implemented.

All other values are reserved.

This field reads as 0b0000.

NUMACPAIRS, bits [3:0]

Indicates the number of Address Comparator pairs that are available for tracing.

NUMACPAIRS Meaning
0b0000 No Address Comparator pairs are available.
0b0001 The implementation has one Address Comparator pair.
0b0010 The implementation has two Address Comparator

pairs.
0b0011 The implementation has three Address Comparator

pairs.
0b0100 The implementation has four Address Comparator

pairs.
0b0101 The implementation has five Address Comparator

pairs.
0b0110 The implementation has six Address Comparator pairs.
0b0111 The implementation has seven Address Comparator

pairs.
0b1000 The implementation has eight Address Comparator

pairs.

All other values are reserved.

Accessing the TRCIDR4
Accesses to this register use the following encodings:

MRS <Xt>, TRCIDR4

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1100 0b111

TRCIDR4, ID Register 4

Page 1840

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCID == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR4;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCIDR4;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR4;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR4, ID Register 4

Page 1841

TRCIDR5, ID Register 5
The TRCIDR5 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
AArch64 System register TRCIDR5 bits [31:0] are architecturally mapped to External register TRCIDR5[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR5 are UNDEFINED.

Attributes
TRCIDR5 is a 64-bit register.

Field descriptions
The TRCIDR5 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53525150494847464544 43 42 41 403938373635343332
RES0

RES0NUMCNTRNUMSEQSTATERES0LPOVERRIDEATBTRIGTRACEIDSIZE RES0 NUMEXTINSEL NUMEXTIN
31 30 29 28 27 26 25 24 23 22 21201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:31]

Reserved, RES0.

NUMCNTR, bits [30:28]

Indicates the number of Counters that are available for tracing.

NUMCNTR Meaning
0b000 No Counters are available.
0b001 One Counter implemented.
0b010 Two Counters implemented.
0b011 Three Counters implemented.
0b100 Four Counters implemented.

All other values are reserved.

If TRCIDR4.NUMRSPAIR == 0b0000 then this field is 0b000.

NUMSEQSTATE, bits [27:25]

Indicates if the Sequencer is implemented and the number of Sequencer states that are implemented.

NUMSEQSTATE Meaning
0b000 The Sequencer is not implemented.
0b100 Four Sequencer states are implemented.

All other values are reserved.

If TRCIDR4.NUMRSPAIR == 0b0000 then this field is 0b000.

TRCIDR5, ID Register 5

Page 1842

Bit [24]

Reserved, RES0.

LPOVERRIDE, bit [23]

Indicates support for Low-power Override Mode.

LPOVERRIDE Meaning
0b0 The trace unit does not support Low-power Override

Mode.
0b1 The trace unit supports Low-power Override Mode.

ATBTRIG, bit [22]

Indicates if the implementation can support ATB triggers.

ATBTRIG Meaning
0b0 The implementation does not support ATB triggers.
0b1 The implementation supports ATB triggers.

If TRCIDR4.NUMRSPAIR == 0b0000 then this field is 0b0.

TRACEIDSIZE, bits [21:16]

Indicates the trace ID width.

TRACEIDSIZE Meaning
0b000000 The external trace interface is not implemented.
0b000111 The implementation supports a 7-bit trace ID.

All other values are reserved.

Note that AMBA ATB requires a 7-bit trace ID width.

Bits [15:12]

Reserved, RES0.

NUMEXTINSEL, bits [11:9]

Indicates how many External Input Selector resources are implemented.

NUMEXTINSEL Meaning
0b000 No External Input Selector resources are available.
0b001 1 External Input Selector resource is available.
0b010 2 External Input Selector resources are available.
0b011 3 External Input Selector resources are available.
0b100 4 External Input Selector resources are available.

All other values are reserved.

NUMEXTIN, bits [8:0]

Indicates how many External Inputs are implemented.

NUMEXTIN Meaning
0b111111111 Unified PMU event selection.

All other values are reserved.

TRCIDR5, ID Register 5

Page 1843

Accessing the TRCIDR5
Accesses to this register use the following encodings:

MRS <Xt>, TRCIDR5

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1101 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCID == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR5;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCIDR5;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR5;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR5, ID Register 5

Page 1844

TRCIDR6, ID Register 6
The TRCIDR6 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
AArch64 System register TRCIDR6 bits [31:0] are architecturally mapped to External register TRCIDR6[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR6 are UNDEFINED.

Attributes
TRCIDR6 is a 64-bit register.

Field descriptions
The TRCIDR6 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0
RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, RES0.

Accessing the TRCIDR6
Accesses to this register use the following encodings:

MRS <Xt>, TRCIDR6

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1110 0b111

TRCIDR6, ID Register 6

Page 1845

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCID == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR6;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCIDR6;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR6;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR6, ID Register 6

Page 1846

TRCIDR7, ID Register 7
The TRCIDR7 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
AArch64 System register TRCIDR7 bits [31:0] are architecturally mapped to External register TRCIDR7[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR7 are UNDEFINED.

Attributes
TRCIDR7 is a 64-bit register.

Field descriptions
The TRCIDR7 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0
RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, RES0.

Accessing the TRCIDR7
Accesses to this register use the following encodings:

MRS <Xt>, TRCIDR7

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1111 0b111

TRCIDR7, ID Register 7

Page 1847

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCID == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR7;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCIDR7;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR7;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR7, ID Register 7

Page 1848

TRCIDR8, ID Register 8
The TRCIDR8 characteristics are:

Purpose
Returns the maximum speculation depth of the instruction trace element stream.

Configuration
AArch64 System register TRCIDR8 bits [31:0] are architecturally mapped to External register TRCIDR8[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR8 are UNDEFINED.

Attributes
TRCIDR8 is a 64-bit register.

Field descriptions
The TRCIDR8 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

MAXSPEC
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

MAXSPEC, bits [31:0]

Indicates the maximum speculation depth of the instruction trace element stream. This is the maximum number of P0
elements in the trace element stream that can be speculative at any time.

Accessing the TRCIDR8
Accesses to this register use the following encodings:

MRS <Xt>, TRCIDR8

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0000 0b110

TRCIDR8, ID Register 8

Page 1849

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCID == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR8;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCIDR8;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR8;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR8, ID Register 8

Page 1850

TRCIDR9, ID Register 9
The TRCIDR9 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
AArch64 System register TRCIDR9 bits [31:0] are architecturally mapped to External register TRCIDR9[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR9 are UNDEFINED.

Attributes
TRCIDR9 is a 64-bit register.

Field descriptions
The TRCIDR9 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

NUMP0KEY
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

NUMP0KEY, bits [31:0]

When TRCIDR0.TRCDATA != 0b00:

Indicates the number of P0 right-hand keys. Data tracing is not implemented in ETE and this field is reserved for other
trace architectures. Allocated in other trace architectures.

Otherwise:

Reserved, RES0.

Accessing the TRCIDR9
Accesses to this register use the following encodings:

MRS <Xt>, TRCIDR9

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0001 0b110

TRCIDR9, ID Register 9

Page 1851

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCID == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR9;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCIDR9;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIDR9;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR9, ID Register 9

Page 1852

TRCIMSPEC0, IMP DEF Register 0
The TRCIMSPEC0 characteristics are:

Purpose
TRCIMSPEC0 shows the presence of any IMPLEMENTATION DEFINED features, and provides an interface to enable the
features that are provided.

Configuration
AArch64 System register TRCIMSPEC0 bits [31:0] are architecturally mapped to External register TRCIMSPEC0[31:0]
.

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIMSPEC0 are UNDEFINED.

Attributes
TRCIMSPEC0 is a 64-bit register.

Field descriptions
The TRCIMSPEC0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 EN SUPPORT
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:8]

Reserved, RES0.

EN, bits [7:4]

When TRCIMSPEC0.SUPPORT != 0b0000:

Enable. Controls whether the IMPLEMENTATION DEFINED features are enabled.

EN Meaning
0b0000 The IMPLEMENTATION DEFINED features are not enabled. The

trace unit must behave as if the IMPLEMENTATION DEFINED
features are not supported.

0b0001 The trace unit behavior is IMPLEMENTATION DEFINED.
0b0010 The trace unit behavior is IMPLEMENTATION DEFINED.
0b0011 The trace unit behavior is IMPLEMENTATION DEFINED.
0b0100 The trace unit behavior is IMPLEMENTATION DEFINED.
0b0101 The trace unit behavior is IMPLEMENTATION DEFINED.
0b0110 The trace unit behavior is IMPLEMENTATION DEFINED.
0b0111 The trace unit behavior is IMPLEMENTATION DEFINED.
0b1000 The trace unit behavior is IMPLEMENTATION DEFINED.
0b1001 The trace unit behavior is IMPLEMENTATION DEFINED.
0b1010 The trace unit behavior is IMPLEMENTATION DEFINED.
0b1011 The trace unit behavior is IMPLEMENTATION DEFINED.
0b1100 The trace unit behavior is IMPLEMENTATION DEFINED.
0b1101 The trace unit behavior is IMPLEMENTATION DEFINED.
0b1110 The trace unit behavior is IMPLEMENTATION DEFINED.
0b1111 The trace unit behavior is IMPLEMENTATION DEFINED.

TRCIMSPEC0, IMP DEF Register 0

Page 1853

On a Trace unit reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SUPPORT, bits [3:0]

Indicates whether the implementation supports IMPLEMENTATION DEFINED features.

SUPPORT Meaning
0b0000 No IMPLEMENTATION DEFINED features are supported.
0b0001 IMPLEMENTATION DEFINED features are supported.
0b0010 IMPLEMENTATION DEFINED features are supported.
0b0011 IMPLEMENTATION DEFINED features are supported.
0b0100 IMPLEMENTATION DEFINED features are supported.
0b0101 IMPLEMENTATION DEFINED features are supported.
0b0110 IMPLEMENTATION DEFINED features are supported.
0b0111 IMPLEMENTATION DEFINED features are supported.
0b1000 IMPLEMENTATION DEFINED features are supported.
0b1001 IMPLEMENTATION DEFINED features are supported.
0b1010 IMPLEMENTATION DEFINED features are supported.
0b1011 IMPLEMENTATION DEFINED features are supported.
0b1100 IMPLEMENTATION DEFINED features are supported.
0b1101 IMPLEMENTATION DEFINED features are supported.
0b1110 IMPLEMENTATION DEFINED features are supported.
0b1111 IMPLEMENTATION DEFINED features are supported.

Use of nonzero values requires written permission from Arm.

Access to this field is RO.

Accessing the TRCIMSPEC0
Accesses to this register use the following encodings:

MRS <Xt>, TRCIMSPEC0

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0000 0b111

TRCIMSPEC0, IMP DEF Register 0

Page 1854

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCIMSPECn == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIMSPEC0;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCIMSPEC0;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIMSPEC0;

MSR TRCIMSPEC0, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0000 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRCIMSPECn == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCIMSPEC0 = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCIMSPEC0 = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCIMSPEC0 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIMSPEC0, IMP DEF Register 0

Page 1855

TRCIMSPEC<n>, IMP DEF Register <n>, n = 1 - 7
The TRCIMSPEC<n> characteristics are:

Purpose
These registers might return information that is specific to an implementation, or enable features specific to an
implementation to be programmed. The product Technical Reference Manual describes these registers.

Configuration
AArch64 System register TRCIMSPEC<n> bits [31:0] are architecturally mapped to External register
TRCIMSPEC<n>[31:0] .

This register is present only when the trace unit implements this OPTIONAL register and ETE is implemented.
Otherwise, direct accesses to TRCIMSPEC<n> are UNDEFINED.

Attributes
TRCIMSPEC<n> is a 64-bit register.

Field descriptions
The TRCIMSPEC<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

IMPLEMENTATION DEFINED
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

IMPLEMENTATION_DEFINED.

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION DEFINED behavior.

Accessing the TRCIMSPEC<n>
Accesses to this register use the following encodings:

MRS <Xt>, TRCIMSPEC<n>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0:n[2:0] 0b111

TRCIMSPEC<n>, IMP DEF Register <n>, n = 1 - 7

Page 1856

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCIMSPECn == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIMSPEC[UInt(CRm<2:0>)];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCIMSPEC[UInt(CRm<2:0>)];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCIMSPEC[UInt(CRm<2:0>)];

MSR TRCIMSPEC<n>, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0:n[2:0] 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRCIMSPECn == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCIMSPEC[UInt(CRm<2:0>)] = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCIMSPEC[UInt(CRm<2:0>)] = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCIMSPEC[UInt(CRm<2:0>)] = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIMSPEC<n>, IMP DEF Register <n>, n = 1 - 7

Page 1857

TRCOSLSR, Trace OS Lock Status Register
The TRCOSLSR characteristics are:

Purpose
Returns the status of the Trace OS Lock.

Configuration
AArch64 System register TRCOSLSR bits [31:0] are architecturally mapped to External register TRCOSLSR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCOSLSR are UNDEFINED.

Attributes
TRCOSLSR is a 64-bit register.

Field descriptions
The TRCOSLSR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 OSLM[2:1]RES0OSLKOSLM[0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:5]

Reserved, RES0.

OSLM[2:1], bits [4:3]

This field is bits[2:1] of OSLM[2:0].

OS Lock model.

OSLM Meaning
0b000 Trace OS Lock is not implemented.
0b010 Trace OS Lock is implemented.
0b100 Trace OS Lock is not implemented, and the trace unit is

controlled by the PE OS Lock.

All other values are reserved.

This field reads as 0b100.

The OSLM field is split as follows:

• OSLM[2:1] is TRCOSLSR[4:3].
• OSLM[0] is TRCOSLSR[0].

Bit [2]

Reserved, RES0.

TRCOSLSR, Trace OS Lock Status Register

Page 1858

OSLK, bit [1]

OS Lock status.

OSLK Meaning
0b0 The OS Lock is unlocked.
0b1 The OS Lock is locked.

Note that this field indicates the state of the PE OS Lock.

OSLM[0], bit [0]

This field is bit[0] of OSLM[2:0].

See OSLM[2:1] for the field description.

Accessing the TRCOSLSR
Accesses to this register use the following encodings:

MRS <Xt>, TRCOSLSR

op0 op1 CRn CRm op2
0b10 0b001 0b0001 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCOSLSR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCOSLSR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCOSLSR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCOSLSR;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCOSLSR, Trace OS Lock Status Register

Page 1859

TRCPRGCTLR, Programming Control Register
The TRCPRGCTLR characteristics are:

Purpose
Enables the trace unit.

Configuration
AArch64 System register TRCPRGCTLR bits [31:0] are architecturally mapped to External register
TRCPRGCTLR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCPRGCTLR are UNDEFINED.

Attributes
TRCPRGCTLR is a 64-bit register.

Field descriptions
The TRCPRGCTLR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 EN
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:1]

Reserved, RES0.

EN, bit [0]

Trace unit enable.

EN Meaning
0b0 The trace unit is disabled.
0b1 The trace unit is enabled.

On a Trace unit reset, this field resets to 0.

Accessing the TRCPRGCTLR
Must be programmed.

Accesses to this register use the following encodings:

MRS <Xt>, TRCPRGCTLR

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0001 0b000

TRCPRGCTLR, Programming Control Register

Page 1860

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCPRGCTLR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCPRGCTLR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCPRGCTLR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCPRGCTLR;

MSR TRCPRGCTLR, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRCPRGCTLR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCPRGCTLR = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCPRGCTLR = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCPRGCTLR = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCPRGCTLR, Programming Control Register

Page 1861

TRCQCTLR, Q Element Control Register
The TRCQCTLR characteristics are:

Purpose
Controls when Q elements are enabled.

Configuration
AArch64 System register TRCQCTLR bits [31:0] are architecturally mapped to External register TRCQCTLR[31:0] .

This register is present only when ETE is implemented and TRCIDR0.QFILT == 0b1. Otherwise, direct accesses to
TRCQCTLR are UNDEFINED.

Attributes
TRCQCTLR is a 64-bit register.

Field descriptions
The TRCQCTLR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 MODE RANGE<m>, bit [m]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:9]

Reserved, RES0.

MODE, bit [8]

Selects whether the Address Range Comparators selected by the RANGE field indicate address ranges where the trace
unit is permitted to generate Q elements or address ranges where the trace unit is not permitted to generate Q
elements:

MODE Meaning
0b0 Exclude mode.

The Address Range Comparators selected by the RANGE field
indicate address ranges where the trace unit must not generate
Q elements. If no ranges are selected, Q elements are
permitted across the entire memory map.

0b1 Include Mode.
The Address Range Comparators selected by the RANGE field
indicate address ranges where the trace unit can generate Q
elements. If all the implemented bits in RANGE are set to 0b0
then Q elements are disabled.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RANGE<m>, bit [m], for m = 0 to 7

Specifies the Address Range Comparators to be used for controlling Q elements.

TRCQCTLR, Q Element Control Register

Page 1862

RANGE<m> Meaning
0b0 The address range that Address Range Comparator m

defines, is not selected.
0b1 The address range that Address Range Comparator m

defines, is selected.

This bit is RES0 if m >= TRCIDR4.NUMACPAIRS.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCQCTLR
Must be programmed if TRCCONFIGR.QE != 0b00.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCQCTLR

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCQCTLR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCQCTLR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCQCTLR;

MSR TRCQCTLR, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0001 0b001

TRCQCTLR, Q Element Control Register

Page 1863

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCQCTLR = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCQCTLR = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCQCTLR = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCQCTLR, Q Element Control Register

Page 1864

TRCRSCTLR<n>, Resource Selection Control Register
<n>, n = 2 - 31

The TRCRSCTLR<n> characteristics are:

Purpose
Controls the selection of the resources in the trace unit.

Configuration
AArch64 System register TRCRSCTLR<n> bits [31:0] are architecturally mapped to External register
TRCRSCTLR<n>[31:0] .

This register is present only when ETE is implemented and ((AArch64-TRCIDR4.NUMRSPAIR + 1) * 2) > n.
Otherwise, direct accesses to TRCRSCTLR<n> are UNDEFINED.

Resource selector 0 always returns FALSE.

Resource selector 1 always returns TRUE.

Resource selectors are implemented in pairs. Each odd numbered resource selector is part of a pair with the even
numbered resource selector that is numbered as one less than it. For example, resource selectors 2 and 3 form a pair.

Attributes
TRCRSCTLR<n> is a 64-bit register.

Field descriptions
The TRCRSCTLR<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 PAIRINVINV GROUP SELECT
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:22]

Reserved, RES0.

PAIRINV, bit [21]

For TRCRSCTLR<n>, where n is even, controls whether the combined result from a resource selector pair is inverted.

PAIRINV Meaning
0b0 Do not invert the combined output of the 2 resource

selectors.
0b1 Invert the combined output of the 2 resource selectors.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

INV, bit [20]

Controls whether the resource, that GROUP and SELECT selects, is inverted.

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 1865

INV Meaning
0b0 Do not invert the output of this selector.
0b1 Invert the output of this selector.

If:

• A is the register TRCRSCTLR<m> where m is even.
• B is the register TRCRSCTLR<m+1>.

Then the combined output of the 2 resource selectors A and B depends on the value of (A.PAIRINV, A.INV, B.INV) as
follows:

• 0b000 -> A and B.
• 0b001 -> RESERVED.
• 0b010 -> not(A) and B.
• 0b011 -> not(A) and not(B).
• 0b100 -> not(A) or not(B).
• 0b101 -> not(A) or B.
• 0b110 -> RESERVED.
• 0b111 -> A or B.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

GROUP, bits [19:16]

Selects a group of resources.

GROUP Meaning SELECT
0b0000 External Input

Selectors.
SELECT encoding for External
Input Selectors

0b0001 PE Comparator
Inputs.

SELECT encoding for PE
Comparator Inputs

0b0010 Counters and
Sequencer.

SELECT encoding for Counters and
Sequencer

0b0011 Single-shot
Comparator Controls.

SELECT encoding for Single-shot
Comparator Controls

0b0100 Single Address
Comparators.

SELECT encoding for Single
Address Comparators

0b0101 Address Range
Comparators.

SELECT encoding for Address
Range Comparators

0b0110 Context Identifier
Comparators.

SELECT encoding for Context
Identifier Comparators

0b0111 Virtual Context
Identifier
Comparators.

SELECT encoding for Virtual
Context Identifier Comparators

All other values are reserved.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT, bits [15:0]

Resource Specific Controls. Contains the controls specific to the resource group selected by GROUP, described in the
following sections.

SELECT encoding for External Input Selectors

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 EXTIN<m>, bit [m]

Bits [15:4]

Reserved, RES0.

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 1866

EXTIN<m>, bit [m], for m = 0 to 3

Selects one or more External Inputs.

EXTIN<m> Meaning
0b0 Ignore EXTIN m.
0b1 Select EXTIN m.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for PE Comparator Inputs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PECOMP<m>, bit [m]

Bits [15:8]

Reserved, RES0.

PECOMP<m>, bit [m], for m = 0 to 7

Selects one or more PE Comparator Inputs.

PECOMP<m> Meaning
0b0 Ignore PE Comparator Input m.
0b1 Select PE Comparator Input m.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Counters and Sequencer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 SEQUENCER<m>, bit
[m+4]

COUNTERS<m>, bit
[m]

Bits [15:8]

Reserved, RES0.

SEQUENCER<m>, bit [m+4], for m = 0 to 3

Sequencer states.

SEQUENCER<m> Meaning
0b0 Ignore Sequencer state m.
0b1 Select Sequencer state m.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

COUNTERS<m>, bit [m], for m = 0 to 3

Counters resources at zero.

COUNTERS<m> Meaning
0b0 Ignore Counter m.
0b1 Select Counter m is zero.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Single-shot Comparator Controls

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 1867

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SINGLE_SHOT<m>, bit [m]

Bits [15:8]

Reserved, RES0.

SINGLE_SHOT<m>, bit [m], for m = 0 to 7

Selects one or more Single-shot Comparator Controls.

SINGLE_SHOT<m> Meaning
0b0 Ignore Single-shot Comparator Control m.
0b1 Select Single-shot Comparator Control m.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Single Address Comparators

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SAC<m>, bit [m]

SAC<m>, bit [m], for m = 0 to 15

Selects one or more Single Address Comparators.

SAC<m> Meaning
0b0 Ignore Single Address Comparator m.
0b1 Select Single Address Comparator m.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Address Range Comparators

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ARC<m>, bit [m]

Bits [15:8]

Reserved, RES0.

ARC<m>, bit [m], for m = 0 to 7

Selects one or more Address Range Comparators.

ARC<m> Meaning
0b0 Ignore Address Range Comparator m.
0b1 Select Address Range Comparator m.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Context Identifier Comparators

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CID<m>, bit [m]

Bits [15:8]

Reserved, RES0.

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 1868

CID<m>, bit [m], for m = 0 to 7

Selects one or more Context Identifier Comparators.

CID<m> Meaning
0b0 Ignore Context Identifier Comparator m.
0b1 Select Context Identifier Comparator m.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Virtual Context Identifier Comparators

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 VMID<m>, bit [m]

Bits [15:8]

Reserved, RES0.

VMID<m>, bit [m], for m = 0 to 7

Selects one or more Virtual Context Identifier Comparators.

VMID<m> Meaning
0b0 Ignore Virtual Context Identifier Comparator m.
0b1 Select Virtual Context Identifier Comparator m.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCRSCTLR<n>
Must be programmed if any of the following are true:

• TRCCNTCTLR<a>.RLDEVENT.TYPE == 0b0 and TRCCNTCTLR<a>.RLDEVENT.SEL == n.
• TRCCNTCTLR<a>.RLDEVENT.TYPE == 0b1 and TRCCNTCTLR<a>.RLDEVENT.SEL == n/2.
• TRCCNTCTLR<a>.CNTEVENT.TYPE == 0b0 and TRCCNTCTLR<a>.CNTEVENT.SEL == n.
• TRCCNTCTLR<a>.CNTEVENT.TYPE == 0b1 and TRCCNTCTLR<a>.CNTEVENT.SEL == n/2.
• TRCEVENTCTL0R.EVENT0.TYPE == 0b0 and TRCEVENTCTL0R.EVENT0.SEL == n.
• TRCEVENTCTL0R.EVENT0.TYPE == 0b1 and TRCEVENTCTL0R.EVENT0.SEL == n/2.
• TRCEVENTCTL0R.EVENT1.TYPE == 0b0 and TRCEVENTCTL0R.EVENT1.SEL == n.
• TRCEVENTCTL0R.EVENT1.TYPE == 0b1 and TRCEVENTCTL0R.EVENT1.SEL == n/2.
• TRCEVENTCTL0R.EVENT2.TYPE == 0b0 and TRCEVENTCTL0R.EVENT2.SEL == n.
• TRCEVENTCTL0R.EVENT2.TYPE == 0b1 and TRCEVENTCTL0R.EVENT2.SEL == n/2.
• TRCEVENTCTL0R.EVENT3.TYPE == 0b0 and TRCEVENTCTL0R.EVENT3.SEL == n.
• TRCEVENTCTL0R.EVENT3.TYPE == 0b1 and TRCEVENTCTL0R.EVENT3.SEL == n/2.
• TRCSEQEVR<a>.B.TYPE == 0b0 and TRCSEQEVR<a>.B.SEL = n.
• TRCSEQEVR<a>.B.TYPE == 0b1 and TRCSEQEVR<a>.B.SEL = n/2.
• TRCSEQEVR<a>.F.TYPE == 0b0 and TRCSEQEVR<a>.F.SEL = n.
• TRCSEQEVR<a>.F.TYPE == 0b1 and TRCSEQEVR<a>.F.SEL = n/2.
• TRCSEQRSTEVR.RST.TYPE == 0b0 and TRCSEQRSTEVR.RST.SEL == n.
• TRCSEQRSTEVR.RST.TYPE == 0b1 and TRCSEQRSTEVR.RST.SEL == n/2.
• TRCTSCTLR.EVENT.TYPE == 0b0 and TRCTSCTLR.EVENT.SEL == n.
• TRCTSCTLR.EVENT.TYPE == 0b1 and TRCTSCTLR.EVENT.SEL == n/2.
• TRCVICTLR.EVENT.TYPE == 0b0 and TRCVICTLR.EVENT.SEL == n.
• TRCVICTLR.EVENT.TYPE == 0b1 and TRCVICTLR.EVENT.SEL == n/2.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCRSCTLR<n>

op0 op1 CRn CRm op2

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 1869

0b10 0b001 0b0001 n[3:0] 0b00:n[4]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCRSCTLR[UInt(op2<0>:CRm<3:0>)];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCRSCTLR[UInt(op2<0>:CRm<3:0>)];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCRSCTLR[UInt(op2<0>:CRm<3:0>)];

MSR TRCRSCTLR<n>, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0001 n[3:0] 0b00:n[4]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCRSCTLR[UInt(op2<0>:CRm<3:0>)] = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCRSCTLR[UInt(op2<0>:CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCRSCTLR[UInt(op2<0>:CRm<3:0>)] = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 1870

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 1871

TRCRSR, Resources Status Register
The TRCRSR characteristics are:

Purpose
Use this to set, or read, the status of the resources.

Configuration
AArch64 System register TRCRSR bits [31:0] are architecturally mapped to External register TRCRSR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCRSR are UNDEFINED.

Attributes
TRCRSR is a 64-bit register.

Field descriptions
The TRCRSR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 TA EVENT<m>,
bit [m+8] RES0 EXTIN<m>,

bit [m]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:13]

Reserved, RES0.

TA, bit [12]

Tracing active.

TA Meaning
0b0 Tracing is not active.
0b1 Tracing is active.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

EVENT<m>, bit [m+8], for m = 0 to 3

Untraced status of ETEEvents.

EVENT<m> Meaning
0b0 An ETEEvent[n] has not occurred.
0b1 An ETEEvent[n] has occurred while the resources were

in the Paused state.

This bit is RES0 if TRCIDR4.NUMRSPAIR == 0b0 || m > TRCIDR0.NUMEVENT.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

TRCRSR, Resources Status Register

Page 1872

Bits [7:4]

Reserved, RES0.

EXTIN<m>, bit [m], for m = 0 to 3

The sticky status of the External Input Selectors.

EXTIN<m> Meaning
0b0 An event selected by External Input Selector[n] has not

occurred.
0b1 At least one event selected by External Input Selector[n]

has occurred while the resources were in the Paused
state.

This bit is RES0 if m >= TRCIDR5.NUMEXTINSEL.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCRSR
Must always be programmed.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

Accesses to this register use the following encodings:

MRS <Xt>, TRCRSR

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCRSR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCRSR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCRSR;

TRCRSR, Resources Status Register

Page 1873

MSR TRCRSR, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCRSR = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCRSR = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCRSR = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCRSR, Resources Status Register

Page 1874

TRCSEQEVR<n>, Sequencer State Transition Control
Register <n>, n = 0 - 2

The TRCSEQEVR<n> characteristics are:

Purpose
Moves the Sequencer state:

• Backwards, from state n+1 to state n when a programmed resource event occurs.
• Forwards, from state n to state n+1 when a programmed resource event occurs.

Configuration
AArch64 System register TRCSEQEVR<n> bits [31:0] are architecturally mapped to External register
TRCSEQEVR<n>[31:0] .

This register is present only when ETE is implemented and TRCIDR5.NUMSEQSTATE != 0b000. Otherwise, direct
accesses to TRCSEQEVR<n> are UNDEFINED.

Attributes
TRCSEQEVR<n> is a 64-bit register.

Field descriptions
The TRCSEQEVR<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 B_TYPE RES0 B_SEL F_TYPE RES0 F_SEL
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

B_TYPE, bit [15]

Chooses the type of Resource Selector.

Backward field. Defines whether the backward resource event is a single Resource Selector or a Resource Selector
pair. When the resource event occurs then the Sequencer state moves from state n+1 to state n. For example, if
TRCSEQEVR2.B.SEL == 0x14 then when event 0x14 occurs, the Sequencer moves from state 3 to state 2.

B_TYPE Meaning
0b0 A single Resource Selector.

TRCSEQEVR<n>.B.SEL[4:0] selects the single Resource
Selector, from 0-31, used to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCSEQEVR<n>.B.SEL[3:0] selects the Resource Selector
pair, from 0-15, that has a Boolean function that is applied to
it whose output is used to activate the resource event.
TRCSEQEVR<n>.B.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

TRCSEQEVR<n>, Sequencer State Transition Control Register <n>, n = 0 - 2

Page 1875

Bits [14:13]

Reserved, RES0.

B_SEL, bits [12:8]

Defines the selected Resource Selector or pair of Resource Selectors. TRCSEQEVR<n>.B.TYPE controls whether
TRCSEQEVR<n>.B.SEL is the index of a single Resource Selector, or the index of a pair of Resource Selectors.

Backward field. Selects the single Resource Selector or Resource Selector pair.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

F_TYPE, bit [7]

Chooses the type of Resource Selector.

Backward field. Defines whether the forward resource event is a single Resource Selector or a Resource Selector pair.
When the resource event occurs then the Sequencer state moves from state n to state n+1. For example, if
TRCSEQEVR1.F.SEL == 0x12 then when event 0x12 occurs, the Sequencer moves from state 1 to state 2.

F_TYPE Meaning
0b0 A single Resource Selector.

TRCSEQEVR<n>.F.SEL[4:0] selects the single Resource
Selector, from 0-31, used to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCSEQEVR<n>.F.SEL[3:0] selects the Resource Selector
pair, from 0-15, that has a Boolean function that is applied to
it whose output is used to activate the resource event.
TRCSEQEVR<n>.F.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

F_SEL, bits [4:0]

Defines the selected Resource Selector or pair of Resource Selectors. TRCSEQEVR<n>.F.TYPE controls whether
TRCSEQEVR<n>.F.SEL is the index of a single Resource Selector, or the index of a pair of Resource Selectors.

Forward field. Selects the single Resource Selector or Resource Selector pair.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCSEQEVR<n>
Must be programmed if TRCRSCTLR<a>.GROUP == 0b0010 and TRCRSCTLR<a>.SEQUENCER != 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCSEQEVR<n>

op0 op1 CRn CRm op2

TRCSEQEVR<n>, Sequencer State Transition Control Register <n>, n = 0 - 2

Page 1876

0b10 0b001 0b0000 0b00:n[1:0] 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCSEQEVR[UInt(CRm<1:0>)];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCSEQEVR[UInt(CRm<1:0>)];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCSEQEVR[UInt(CRm<1:0>)];

MSR TRCSEQEVR<n>, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b00:n[1:0] 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCSEQEVR[UInt(CRm<1:0>)] = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCSEQEVR[UInt(CRm<1:0>)] = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCSEQEVR[UInt(CRm<1:0>)] = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

TRCSEQEVR<n>, Sequencer State Transition Control Register <n>, n = 0 - 2

Page 1877

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCSEQEVR<n>, Sequencer State Transition Control Register <n>, n = 0 - 2

Page 1878

TRCSEQRSTEVR, Sequencer Reset Control Register
The TRCSEQRSTEVR characteristics are:

Purpose
Moves the Sequencer to state 0 when a programmed resource event occurs.

Configuration
AArch64 System register TRCSEQRSTEVR bits [31:0] are architecturally mapped to External register
TRCSEQRSTEVR[31:0] .

This register is present only when ETE is implemented and TRCIDR5.NUMSEQSTATE != 0b000. Otherwise, direct
accesses to TRCSEQRSTEVR are UNDEFINED.

Attributes
TRCSEQRSTEVR is a 64-bit register.

Field descriptions
The TRCSEQRSTEVR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 RST_TYPE RES0 RST_SEL
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:8]

Reserved, RES0.

RST_TYPE, bit [7]

Chooses the type of Resource Selector.

RST_TYPE Meaning
0b0 A single Resource Selector.

TRCSEQRSTEVR.RST.SEL[4:0] selects the single Resource
Selector, from 0-31, used to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCSEQRSTEVR.RST.SEL[3:0] selects the Resource
Selector pair, from 0-15, that has a Boolean function that is
applied to it whose output is used to activate the resource
event. TRCSEQRSTEVR.RST.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

RST_SEL, bits [4:0]

Defines the selected Resource Selector or pair of Resource Selectors. TRCSEQRSTEVR.RST.TYPE controls whether
TRCSEQRSTEVR.RST.SEL is the index of a single Resource Selector, or the index of a pair of Resource Selectors.

TRCSEQRSTEVR, Sequencer Reset Control Register

Page 1879

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCSEQRSTEVR
Must be programmed if TRCRSCTLR<a>.GROUP == 0b0010 and TRCRSCTLR<a>.SEQUENCER != 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCSEQRSTEVR

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0110 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCSEQRSTEVR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCSEQRSTEVR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCSEQRSTEVR;

MSR TRCSEQRSTEVR, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0110 0b100

TRCSEQRSTEVR, Sequencer Reset Control Register

Page 1880

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCSEQRSTEVR = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCSEQRSTEVR = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCSEQRSTEVR = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCSEQRSTEVR, Sequencer Reset Control Register

Page 1881

TRCSEQSTR, Sequencer State Register
The TRCSEQSTR characteristics are:

Purpose
Use this to set, or read, the Sequencer state.

Configuration
AArch64 System register TRCSEQSTR bits [31:0] are architecturally mapped to External register TRCSEQSTR[31:0] .

This register is present only when ETE is implemented and TRCIDR5.NUMSEQSTATE != 0b000. Otherwise, direct
accesses to TRCSEQSTR are UNDEFINED.

Attributes
TRCSEQSTR is a 64-bit register.

Field descriptions
The TRCSEQSTR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 STATE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

STATE, bits [1:0]

Set or returns the state of the Sequencer.

STATE Meaning
0b00 State 0.
0b01 State 1.
0b10 State 2.
0b11 State 3.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCSEQSTR
Must be programmed if TRCRSCTLR<a>.GROUP == 0b0010 and TRCRSCTLR<a>.SEQUENCER != 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

Accesses to this register use the following encodings:

TRCSEQSTR, Sequencer State Register

Page 1882

MRS <Xt>, TRCSEQSTR

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0111 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCSEQSTR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCSEQSTR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCSEQSTR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCSEQSTR;

MSR TRCSEQSTR, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0111 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRCSEQSTR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCSEQSTR = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCSEQSTR = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCSEQSTR = X[t];

TRCSEQSTR, Sequencer State Register

Page 1883

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCSEQSTR, Sequencer State Register

Page 1884

TRCSSCCR<n>, Single-shot Comparator Control
Register <n>, n = 0 - 7

The TRCSSCCR<n> characteristics are:

Purpose
Controls the corresponding Single-shot Comparator Control resource.

Configuration
AArch64 System register TRCSSCCR<n> bits [31:0] are architecturally mapped to External register
TRCSSCCR<n>[31:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMSSCC > n. Otherwise, direct accesses to
TRCSSCCR<n> are UNDEFINED.

Attributes
TRCSSCCR<n> is a 64-bit register.

Field descriptions
The TRCSSCCR<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 RST ARC<m>, bit [m+16] SAC<m>, bit [m]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:25]

Reserved, RES0.

RST, bit [24]

Selects the Single-shot Comparator Control mode.

RST Meaning
0b0 The Single-shot Comparator Control is in single-shot mode.
0b1 The Single-shot Comparator Control is in multi-shot mode.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

ARC<m>, bit [m+16], for m = 0 to 7

Selects one or more Address Range Comparators for Single-shot control.

ARC<m> Meaning
0b0 The Address Range Comparator m, is not selected for

Single-shot control.
0b1 The Address Range Comparator m, is selected for Single-

shot control.

This bit is RES0 if m >= TRCIDR4.NUMACPAIRS.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

TRCSSCCR<n>, Single-shot Comparator Control Register <n>, n = 0 - 7

Page 1885

SAC<m>, bit [m], for m = 0 to 15

Selects one or more Single Address Comparators for Single-shot control.

SAC<m> Meaning
0b0 The Single Address Comparator m, is not selected for Single-

shot control.
0b1 The Single Address Comparator m, is selected for Single-

shot control.

This bit is RES0 if m >= 2 × TRCIDR4.NUMACPAIRS.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCSSCCR<n>
Must be programmed if any TRCRSCTLR<a>.GROUP == 0b0011 and TRCRSCTLR<a>.SINGLE_SHOT[n] == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCSSCCR<n>

op0 op1 CRn CRm op2
0b10 0b001 0b0001 0b0:n[2:0] 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCSSCCR[UInt(CRm<2:0>)];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCSSCCR[UInt(CRm<2:0>)];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCSSCCR[UInt(CRm<2:0>)];

MSR TRCSSCCR<n>, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0001 0b0:n[2:0] 0b010

TRCSSCCR<n>, Single-shot Comparator Control Register <n>, n = 0 - 7

Page 1886

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCSSCCR[UInt(CRm<2:0>)] = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCSSCCR[UInt(CRm<2:0>)] = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCSSCCR[UInt(CRm<2:0>)] = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCSSCCR<n>, Single-shot Comparator Control Register <n>, n = 0 - 7

Page 1887

TRCSSCSR<n>, Single-shot Comparator Control
Status Register <n>, n = 0 - 7

The TRCSSCSR<n> characteristics are:

Purpose
Returns the status of the corresponding Single-shot Comparator Control.

Configuration
AArch64 System register TRCSSCSR<n> bits [31:0] are architecturally mapped to External register
TRCSSCSR<n>[31:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMSSCC > n. Otherwise, direct accesses to
TRCSSCSR<n> are UNDEFINED.

Attributes
TRCSSCSR<n> is a 64-bit register.

Field descriptions
The TRCSSCSR<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

STATUSPENDING RES0 PCDVDAINST
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

STATUS, bit [31]

Single-shot Comparator Control status. Indicates if any of the comparators selected by this Single-shot Comparator
control have matched. The selected comparators are defined by TRCSSCCR<n>.ARC, TRCSSCCR<n>.SAC, and
TRCSSPCICR<n>.PC.

STATUS Meaning
0b0 No match has occurred. When the first match occurs, this

field takes a value of 0b1. It remains at 0b1 until explicitly
modified by a write to this register.

0b1 One or more matches has occurred. If TRCSSCCR<n>.RST
== 0b0 then:

• There is only one match and no more matches are
possible.

• Software must reset this bit to 0b0 to re-enable the
Single-shot Comparator Control.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

PENDING, bit [30]

Single-shot pending status. The Single-shot Comparator Control fired while the resources were in the Paused state.

TRCSSCSR<n>, Single-shot Comparator Control Status Register <n>, n = 0 - 7

Page 1888

PENDING Meaning
0b0 No match has occurred.
0b1 One or more matches has occurred.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [29:4]

Reserved, RES0.

PC, bit [3]

PE Comparator Input support. Indicates if the Single-shot Comparator Control supports PE Comparator Inputs.

PC Meaning
0b0 This Single-shot Comparator Control does not support PE

Comparator Inputs. Selecting any PE Comparator Inputs using the
associated TRCSSPCICR<n> results in CONSTRAINED
UNPREDICTABLE behavior of the Single-shot Comparator Control
resource. The Single-shot Comparator Control might match
unexpectedly or might not match.

0b1 This Single-shot Comparator Control supports PE Comparator
Inputs.

Access to this field is RO.

DV, bit [2]

Data value comparator support. Data value comparisons are not implemented in ETE and are reserved for other trace
architectures. Allocated in other trace architectures.

DV Meaning
0b0 This Single-shot Comparator Control does not support data value

comparisons.
0b1 This Single-shot Comparator Control supports data value

comparisons.

This bit reads as 0b0.

Access to this field is RO.

DA, bit [1]

Data Address Comparator support. Data address comparisons are not implemented in ETE and are reserved for other
trace architectures. Allocated in other trace architectures.

DA Meaning
0b0 This Single-shot Comparator Control does not support data

address comparisons.
0b1 This Single-shot Comparator Control supports data address

comparisons.

This bit reads as 0b0.

Access to this field is RO.

INST, bit [0]

Instruction Address Comparator support. Indicates if the Single-shot Comparator Control supports instruction address
comparisons.

TRCSSCSR<n>, Single-shot Comparator Control Status Register <n>, n = 0 - 7

Page 1889

INST Meaning
0b0 This Single-shot Comparator Control does not support

instruction address comparisons.
0b1 This Single-shot Comparator Control supports instruction

address comparisons.

This bit reads as 0b1.

Access to this field is RO.

Accessing the TRCSSCSR<n>
Must be programmed if TRCRSCTLR<a>.GROUP == 0b0011 and TRCRSCTLR<a>.SINGLE_SHOT[n] == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

Accesses to this register use the following encodings:

MRS <Xt>, TRCSSCSR<n>

op0 op1 CRn CRm op2
0b10 0b001 0b0001 0b1:n[2:0] 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCSSCSRn == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCSSCSR[UInt(CRm<2:0>)];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCSSCSR[UInt(CRm<2:0>)];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCSSCSR[UInt(CRm<2:0>)];

MSR TRCSSCSR<n>, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0001 0b1:n[2:0] 0b010

TRCSSCSR<n>, Single-shot Comparator Control Status Register <n>, n = 0 - 7

Page 1890

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRCSSCSRn == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCSSCSR[UInt(CRm<2:0>)] = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCSSCSR[UInt(CRm<2:0>)] = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCSSCSR[UInt(CRm<2:0>)] = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCSSCSR<n>, Single-shot Comparator Control Status Register <n>, n = 0 - 7

Page 1891

TRCSSPCICR<n>, Single-shot Processing Element
Comparator Input Control Register <n>, n = 0 - 7

The TRCSSPCICR<n> characteristics are:

Purpose
Returns the status of the corresponding Single-shot Comparator Control.

Configuration
AArch64 System register TRCSSPCICR<n> bits [31:0] are architecturally mapped to External register
TRCSSPCICR<n>[31:0] .

This register is present only when ETE is implemented, TRCIDR4.NUMSSCC > n, TRCIDR4.NUMPC > 0b0000 and
TRCSSCSR<n>.PC == 0b1. Otherwise, direct accesses to TRCSSPCICR<n> are UNDEFINED.

Attributes
TRCSSPCICR<n> is a 64-bit register.

Field descriptions
The TRCSSPCICR<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 PC<m>, bit [m]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:8]

Reserved, RES0.

PC<m>, bit [m], for m = 0 to 7

Selects one or more PE Comparator Inputs for Single-shot control.

PC<m> Meaning
0b0 The single PE Comparator Input m, is not selected as for

Single-shot control.
0b1 The single PE Comparator Input m, is selected as for Single-

shot control.

This bit is RES0 if m >= TRCIDR4.NUMPC.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCSSPCICR<n>
Must be programmed if implemented and any TRCRSCTLR<a>.GROUP == 0b0011 and
TRCRSCTLR<a>.SINGLE_SHOT[n] == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

TRCSSPCICR<n>, Single-shot Processing Element Comparator Input Control Register <n>, n = 0 - 7

Page 1892

Accesses to this register use the following encodings:

MRS <Xt>, TRCSSPCICR<n>

op0 op1 CRn CRm op2
0b10 0b001 0b0001 0b0:n[2:0] 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCSSPCICR[UInt(CRm<2:0>)];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCSSPCICR[UInt(CRm<2:0>)];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCSSPCICR[UInt(CRm<2:0>)];

MSR TRCSSPCICR<n>, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0001 0b0:n[2:0] 0b011

TRCSSPCICR<n>, Single-shot Processing Element Comparator Input Control Register <n>, n = 0 - 7

Page 1893

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCSSPCICR[UInt(CRm<2:0>)] = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCSSPCICR[UInt(CRm<2:0>)] = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCSSPCICR[UInt(CRm<2:0>)] = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCSSPCICR<n>, Single-shot Processing Element Comparator Input Control Register <n>, n = 0 - 7

Page 1894

TRCSTALLCTLR, Stall Control Register
The TRCSTALLCTLR characteristics are:

Purpose
Enables trace unit functionality that prevents trace unit buffer overflows.

Configuration
AArch64 System register TRCSTALLCTLR bits [31:0] are architecturally mapped to External register
TRCSTALLCTLR[31:0] .

This register is present only when ETE is implemented and TRCIDR3.STALLCTL == 0b1. Otherwise, direct accesses to
TRCSTALLCTLR are UNDEFINED.

Attributes
TRCSTALLCTLR is a 64-bit register.

Field descriptions
The TRCSTALLCTLR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 NOOVERFLOW RES0 ISTALL RES0 LEVEL
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:14]

Reserved, RES0.

NOOVERFLOW, bit [13]

When TRCIDR3.NOOVERFLOW == 0b1:

Trace overflow prevention.

NOOVERFLOW Meaning
0b0 Trace unit buffer overflow prevention is disabled.
0b1 Trace unit buffer overflow prevention is enabled.

Note that enabling this feature might cause a significant performance impact.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [12:9]

Reserved, RES0.

TRCSTALLCTLR, Stall Control Register

Page 1895

ISTALL, bit [8]

Instruction stall control. Controls if a trace unit can stall the PE when the trace buffer space is less than LEVEL.

ISTALL Meaning
0b0 The trace unit must not stall the PE.
0b1 The trace unit can stall the PE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [7:4]

Reserved, RES0.

LEVEL, bits [3:0]

Threshold level field. The field can support 16 monotonic levels from 0b0000 to 0b1111.

LEVEL Meaning
0b0000 Minimal invasion.

This setting has a greater risk of a trace unit buffer overflow.
0b1111 Maximum invasion.

Reduced risk of a trace unit buffer overflow.

Note that for some implementations, invasion might occur at the minimal invasion level.

It is IMPLEMENTATION DEFINED whether some of the least significant bits are supported. Arm recommends that bits[3:2]
are supported.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCSTALLCTLR
Must be programmed if implemented.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCSTALLCTLR

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1011 0b000

TRCSTALLCTLR, Stall Control Register

Page 1896

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCSTALLCTLR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCSTALLCTLR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCSTALLCTLR;

MSR TRCSTALLCTLR, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCSTALLCTLR = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCSTALLCTLR = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCSTALLCTLR = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCSTALLCTLR, Stall Control Register

Page 1897

TRCSTATR, Trace Status Register
The TRCSTATR characteristics are:

Purpose
Returns the trace unit status.

Configuration
AArch64 System register TRCSTATR bits [31:0] are architecturally mapped to External register TRCSTATR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCSTATR are UNDEFINED.

Attributes
TRCSTATR is a 64-bit register.

Field descriptions
The TRCSTATR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 PMSTABLEIDLE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

PMSTABLE, bit [1]

Programmers' model stable.

PMSTABLE Meaning
0b0 The programmers' model is not stable.
0b1 The programmers' model is stable.

This bit is UNKNOWN while the trace unit is enabled.

IDLE, bit [0]

Idle status.

IDLE Meaning
0b0 The trace unit is not idle.
0b1 The trace unit is idle.

Accessing the TRCSTATR
Accesses to this register use the following encodings:

TRCSTATR, Trace Status Register

Page 1898

MRS <Xt>, TRCSTATR

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCSTATR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCSTATR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCSTATR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCSTATR;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCSTATR, Trace Status Register

Page 1899

TRCSYNCPR, Synchronization Period Register
The TRCSYNCPR characteristics are:

Purpose
Controls how often trace protocol synchronization requests occur.

Configuration
AArch64 System register TRCSYNCPR bits [31:0] are architecturally mapped to External register TRCSYNCPR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCSYNCPR are UNDEFINED.

Attributes
TRCSYNCPR is a 64-bit register.

Field descriptions
The TRCSYNCPR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 PERIOD
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:5]

Reserved, RES0.

PERIOD, bits [4:0]

Defines the number of bytes of trace between each periodic trace protocol synchronization request.

TRCSYNCPR, Synchronization Period Register

Page 1900

PERIOD Meaning
0b00000 Trace protocol synchronization is disabled.
0b01000 Trace protocol synchronization request occurs after 28 bytes

of trace.
0b01001 Trace protocol synchronization request occurs after 29 bytes

of trace.
0b01010 Trace protocol synchronization request occurs after 210 bytes

of trace.
0b01011 Trace protocol synchronization request occurs after 211 bytes

of trace.
0b01100 Trace protocol synchronization request occurs after 212 bytes

of trace.
0b01101 Trace protocol synchronization request occurs after 213 bytes

of trace.
0b01110 Trace protocol synchronization request occurs after 214 bytes

of trace.
0b01111 Trace protocol synchronization request occurs after 215 bytes

of trace.
0b10000 Trace protocol synchronization request occurs after 216 bytes

of trace.
0b10001 Trace protocol synchronization request occurs after 217 bytes

of trace.
0b10010 Trace protocol synchronization request occurs after 218 bytes

of trace.
0b10011 Trace protocol synchronization request occurs after 219 bytes

of trace.
0b10100 Trace protocol synchronization request occurs after 220 bytes

of trace.

Other values are reserved. If a reserved value is programmed into PERIOD, then the behavior of the synchronization
period counter is CONSTRAINED UNPREDICTABLE and one of the following behaviors occurs:

• No trace protocol synchronization requests are generated by this counter.
• Trace protocol synchronization requests occur at the specified period.
• Trace protocol synchronization requests occur at some other UNKNOWN period which can vary.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCSYNCPR
Must be programmed if TRCIDR3.SYNCPR == 0b0.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCSYNCPR

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1101 0b000

TRCSYNCPR, Synchronization Period Register

Page 1901

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCSYNCPR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCSYNCPR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCSYNCPR;

MSR TRCSYNCPR, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1101 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCSYNCPR = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCSYNCPR = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCSYNCPR = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCSYNCPR, Synchronization Period Register

Page 1902

TRCTRACEIDR, Trace ID Register
The TRCTRACEIDR characteristics are:

Purpose
Sets the trace ID for instruction trace.

Configuration
AArch64 System register TRCTRACEIDR bits [31:0] are architecturally mapped to External register
TRCTRACEIDR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCTRACEIDR are UNDEFINED.

Attributes
TRCTRACEIDR is a 64-bit register.

Field descriptions
The TRCTRACEIDR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 TRACEID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:7]

Reserved, RES0.

TRACEID, bits [6:0]

Trace ID field. Sets the trace ID value for instruction trace. The width of the field is indicated by the value of
TRCIDR5.TRACEIDSIZE. Unimplemented bits are RES0.

If an implementation supports AMBA ATB, then:

• The width of the field is 7 bits.
• Writing a reserved trace ID value does not affect behavior of the trace unit but it might cause UNPREDICTABLE

behavior of the trace capture infrastructure.

See the AMBA ATB Protocol Specification for information about which ATID values are reserved.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCTRACEIDR
Must be programmed if implemented.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

TRCTRACEIDR, Trace ID Register

Page 1903

MRS <Xt>, TRCTRACEIDR

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCTRACEIDR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCTRACEIDR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCTRACEIDR;

MSR TRCTRACEIDR, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCTRACEIDR = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCTRACEIDR = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCTRACEIDR = X[t];

TRCTRACEIDR, Trace ID Register

Page 1904

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCTRACEIDR, Trace ID Register

Page 1905

TRCTSCTLR, Timestamp Control Register
The TRCTSCTLR characteristics are:

Purpose
Controls the insertion of global timestamps in the trace stream.

Configuration
AArch64 System register TRCTSCTLR bits [31:0] are architecturally mapped to External register TRCTSCTLR[31:0] .

This register is present only when ETE is implemented and TRCIDR0.TSSIZE != 0b00000. Otherwise, direct accesses
to TRCTSCTLR are UNDEFINED.

Attributes
TRCTSCTLR is a 64-bit register.

Field descriptions
The TRCTSCTLR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 EVENT_TYPE RES0 EVENT_SEL
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:8]

Reserved, RES0.

EVENT_TYPE, bit [7]

When TRCIDR4.NUMRSPAIR != 0b0000:

Chooses the type of Resource Selector.

EVENT_TYPE Meaning
0b0 A single Resource Selector.

TRCTSCTLR.EVENT.SEL[4:0] selects the single
Resource Selector, from 0-31, used to activate the
resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCTSCTLR.EVENT.SEL[3:0] selects the Resource
Selector pair, from 0-15, that has a Boolean function
that is applied to it whose output is used to activate the
resource event. TRCTSCTLR.EVENT.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCTSCTLR, Timestamp Control Register

Page 1906

Bits [6:5]

Reserved, RES0.

EVENT_SEL, bits [4:0]

When TRCIDR4.NUMRSPAIR != 0b0000:

Defines the selected Resource Selector or pair of Resource Selectors. TRCTSCTLR.EVENT.TYPE controls whether
TRCTSCTLR.EVENT.SEL is the index of a single Resource Selector, or the index of a pair of Resource Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TRCTSCTLR
Must be programmed if TRCCONFIGR.TS == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCTSCTLR

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCTSCTLR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCTSCTLR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCTSCTLR;

TRCTSCTLR, Timestamp Control Register

Page 1907

MSR TRCTSCTLR, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b1100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCTSCTLR = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCTSCTLR = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCTSCTLR = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCTSCTLR, Timestamp Control Register

Page 1908

TRCVICTLR, ViewInst Main Control Register
The TRCVICTLR characteristics are:

Purpose
Controls instruction trace filtering.

Configuration
AArch64 System register TRCVICTLR bits [31:0] are architecturally mapped to External register TRCVICTLR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCVICTLR are UNDEFINED.

Attributes
TRCVICTLR is a 64-bit register.

Field descriptions
The TRCVICTLR bit assignments are:

636261605958575655 54 53 52 51 50 49 48 47464544 43 42 41 40 39 38 37 3635343332
RES0

RES0 EXLEVEL_NS_EL2EXLEVEL_NS_EL1EXLEVEL_NS_EL0EXLEVEL_S_EL3EXLEVEL_S_EL2EXLEVEL_S_EL1EXLEVEL_S_EL0 RES0 TRCERRTRCRESETSSSTATUSRES0EVENT_TYPERES0EVENT_SEL
313029282726252423 22 21 20 19 18 17 16 15141312 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:23]

Reserved, RES0.

EXLEVEL_NS_EL2, bit [22]

When Non-secure EL2 is implemented:

Filter instruction trace for EL2 in Non-secure state.

EXLEVEL_NS_EL2 Meaning
0b0 The trace unit generates instruction trace for EL2

in Non-secure state.
0b1 The trace unit does not generate instruction trace

for EL2 in Non-secure state.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_NS_EL1, bit [21]

When Non-secure EL1 is implemented:

Filter instruction trace for EL1 in Non-secure state.

TRCVICTLR, ViewInst Main Control Register

Page 1909

EXLEVEL_NS_EL1 Meaning
0b0 The trace unit generates instruction trace for EL1

in Non-secure state.
0b1 The trace unit does not generate instruction trace

for EL1 in Non-secure state.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_NS_EL0, bit [20]

When Non-secure EL0 is implemented:

Filter instruction trace for EL0 in Non-secure state.

EXLEVEL_NS_EL0 Meaning
0b0 The trace unit generates instruction trace for EL0

in Non-secure state.
0b1 The trace unit does not generate instruction trace

for EL0 in Non-secure state.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL3, bit [19]

When EL3 is implemented:

Filter instruction trace for EL3 in Secure state.

EXLEVEL_S_EL3 Meaning
0b0 The trace unit generates instruction trace for EL3 in

Secure state.
0b1 The trace unit does not generate instruction trace

for EL3 in Secure state.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL2, bit [18]

When EL2 is implemented and ARMv8.4-SecEL2 is implemented:

Filter instruction trace for EL2 in Secure state.

EXLEVEL_S_EL2 Meaning
0b0 The trace unit generates instruction trace for EL2 in

Secure state.
0b1 The trace unit does not generate instruction trace

for EL2 in Secure state.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

TRCVICTLR, ViewInst Main Control Register

Page 1910

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL1, bit [17]

When Secure EL1 is implemented:

Filter instruction trace for EL1 in Secure state.

EXLEVEL_S_EL1 Meaning
0b0 The trace unit generates instruction trace for EL1 in

Secure state.
0b1 The trace unit does not generate instruction trace

for EL1 in Secure state.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL0, bit [16]

When Secure EL0 is implemented:

Filter instruction trace for EL0 in Secure state.

EXLEVEL_S_EL0 Meaning
0b0 The trace unit generates instruction trace for EL0 in

Secure state.
0b1 The trace unit does not generate instruction trace

for EL0 in Secure state.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [15:12]

Reserved, RES0.

TRCERR, bit [11]

When TRCIDR3.TRCERR == 0b1:

Controls the forced tracing of System Error exceptions.

TRCERR Meaning
0b0 Forced tracing of System Error exceptions is disabled.
0b1 Forced tracing of System Error exceptions is enabled.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCVICTLR, ViewInst Main Control Register

Page 1911

TRCRESET, bit [10]

Controls the forced tracing of PE Resets.

TRCRESET Meaning
0b0 Forced tracing of PE Resets is disabled.
0b1 Forced tracing of PE Resets is enabled.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SSSTATUS, bit [9]

ViewInst start/stop function status.

SSSTATUS Meaning
0b0 Stopped State.

The ViewInst start/stop function is in the stopped state.
0b1 Started State.

The ViewInst start/stop function is in the started state.

Before software enables the trace unit, it must write to this bit to set the initial state of the ViewInst start/stop
function. If the ViewInst start/stop function is not used then set this bit to 0b1. Arm recommends that the value of this
bit is set before each trace session begins.

If the trace unit becomes disabled while a start point or stop point is still speculative, then the value of
TRCVICTLR.SSSTATUS is UNKNOWN and might represent the result of a speculative start point or stop point.

If software which is running on the PE being traced disables the trace unit, either by clearing TRCPRGCTLR.EN or
locking the OS Lock, Arm recommends that a DSB and an ISB instruction are executed before disabling the trace unit
to prevent any start points or stop points being speculative at the point of disabling the trace unit. This procedure
assumes that all start points or stop points occur before the barrier instructions are executed. The procedure does not
guarantee that there are no speculative start points or stop points when disabling, although it helps minimize the
probability.

This bit is RES1 if TRCIDR4.NUMACPAIRS == 0b0000 and TRCIDR4.NUMPC == 0b0000.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

EVENT_TYPE, bit [7]

When TRCIDR4.NUMRSPAIR != 0b0000:

Chooses the type of Resource Selector.

EVENT_TYPE Meaning
0b0 A single Resource Selector.

TRCVICTLR.EVENT.SEL[4:0] selects the single
Resource Selector, from 0-31, used to activate the
resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCVICTLR.EVENT.SEL[3:0] selects the Resource
Selector pair, from 0-15, that has a Boolean function
that is applied to it whose output is used to activate the
resource event. TRCVICTLR.EVENT.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCVICTLR, ViewInst Main Control Register

Page 1912

Bits [6:5]

Reserved, RES0.

EVENT_SEL, bits [4:0]

When TRCIDR4.NUMRSPAIR != 0b0000:

Defines the selected Resource Selector or pair of Resource Selectors. TRCVICTLR.EVENT.TYPE controls whether
TRCVICTLR.EVENT.SEL is the index of a single Resource Selector, or the index of a pair of Resource Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

When TRCIDR4.NUMRSPAIR == 0b0000:

This field is reserved:

• Bits [4:1] are RES0.
• Bit [0] is RES1.

Otherwise:

Reserved, RES0.

Accessing the TRCVICTLR
Must be programmed.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

Accesses to this register use the following encodings:

MRS <Xt>, TRCVICTLR

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0000 0b010

TRCVICTLR, ViewInst Main Control Register

Page 1913

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRCVICTLR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCVICTLR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCVICTLR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCVICTLR;

MSR TRCVICTLR, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRCVICTLR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCVICTLR = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCVICTLR = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCVICTLR = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCVICTLR, ViewInst Main Control Register

Page 1914

TRCVIIECTLR, ViewInst Include/Exclude Control
Register

The TRCVIIECTLR characteristics are:

Purpose
Use this to select, or read, the Address Range Comparators for the ViewInst include/exclude function.

Configuration
AArch64 System register TRCVIIECTLR bits [31:0] are architecturally mapped to External register
TRCVIIECTLR[31:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMACPAIRS > 0b0000. Otherwise, direct
accesses to TRCVIIECTLR are UNDEFINED.

Attributes
TRCVIIECTLR is a 64-bit register.

Field descriptions
The TRCVIIECTLR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 EXCLUDE<m>, bit
[m+16] RES0 INCLUDE<m>, bit [m]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

EXCLUDE<m>, bit [m+16], for m = 0 to 7

Selects which Address Range Comparators are in use with the ViewInst exclude function.

Each bit represents an Address Range Comparator, so bit[m] controls the selection of Address Range Comparator m.

EXCLUDE<m> Meaning
0b0 The address range that Address Range Comparator m

defines, is not selected for the ViewInst exclude
function.

0b1 The address range that Address Range Comparator m
defines, is selected for the ViewInst exclude function.

This bit is RES0 if m >= TRCIDR4.NUMACPAIRS.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [15:8]

Reserved, RES0.

TRCVIIECTLR, ViewInst Include/Exclude Control Register

Page 1915

INCLUDE<m>, bit [m], for m = 0 to 7

Selects which Address Range Comparators are in use with the ViewInst include function.

Each bit represents an Address Range Comparator, so bit[m] controls the selection of Address Range Comparator m.

Selecting no comparators for the ViewInst include function indicates that all instructions are included by default.

The ViewInst exclude function then indicates which ranges are excluded.

INCLUDE<m> Meaning
0b0 The address range that Address Range Comparator m

defines, is not selected for the ViewInst include
function.

0b1 The address range that Address Range Comparator m
defines, is selected for the ViewInst include function.

This bit is RES0 if m >= TRCIDR4.NUMACPAIRS.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCVIIECTLR
Must be programmed if TRCIDR4.NUMACPAIRS > 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCVIIECTLR

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCVIIECTLR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCVIIECTLR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCVIIECTLR;

MSR TRCVIIECTLR, <Xt>

op0 op1 CRn CRm op2

TRCVIIECTLR, ViewInst Include/Exclude Control Register

Page 1916

0b10 0b001 0b0000 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCVIIECTLR = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCVIIECTLR = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCVIIECTLR = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCVIIECTLR, ViewInst Include/Exclude Control Register

Page 1917

TRCVIPCSSCTLR, ViewInst Start/Stop PE Comparator
Control Register

The TRCVIPCSSCTLR characteristics are:

Purpose
Use this to select, or read, which PE Comparator Inputs can control the ViewInst start/stop function.

Configuration
AArch64 System register TRCVIPCSSCTLR bits [31:0] are architecturally mapped to External register
TRCVIPCSSCTLR[31:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMPC > 0b0000. Otherwise, direct accesses to
TRCVIPCSSCTLR are UNDEFINED.

Attributes
TRCVIPCSSCTLR is a 64-bit register.

Field descriptions
The TRCVIPCSSCTLR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 STOP<m>, bit [m+16] RES0 START<m>, bit [m]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

STOP<m>, bit [m+16], for m = 0 to 7

Selects which PE Comparator Inputs are in use with ViewInst start/stop function, for the purpose of stopping trace.

STOP<m> Meaning
0b0 The PE Comparator Input m, is not selected as a stop

resource.
0b1 The PE Comparator Input m, is selected as a stop resource.

This bit is RES0 if m >= TRCIDR4.NUMPC.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [15:8]

Reserved, RES0.

START<m>, bit [m], for m = 0 to 7

Selects which PE Comparator Inputs are in use with ViewInst start/stop function, for the purpose of starting trace.

TRCVIPCSSCTLR, ViewInst Start/Stop PE Comparator Control Register

Page 1918

START<m> Meaning
0b0 The PE Comparator Input m, is not selected as a start

resource.
0b1 The PE Comparator Input m, is selected as a start

resource.

This bit is RES0 if m >= TRCIDR4.NUMPC.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCVIPCSSCTLR
Must be programmed if TRCIDR4.NUMPC != 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCVIPCSSCTLR

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCVIPCSSCTLR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCVIPCSSCTLR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCVIPCSSCTLR;

MSR TRCVIPCSSCTLR, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0011 0b010

TRCVIPCSSCTLR, ViewInst Start/Stop PE Comparator Control Register

Page 1919

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCVIPCSSCTLR = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCVIPCSSCTLR = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCVIPCSSCTLR = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCVIPCSSCTLR, ViewInst Start/Stop PE Comparator Control Register

Page 1920

TRCVISSCTLR, ViewInst Start/Stop Control Register
The TRCVISSCTLR characteristics are:

Purpose
Use this to select, or read, the Single Address Comparators for the ViewInst start/stop function.

Configuration
AArch64 System register TRCVISSCTLR bits [31:0] are architecturally mapped to External register
TRCVISSCTLR[31:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMACPAIRS > 0b0000. Otherwise, direct
accesses to TRCVISSCTLR are UNDEFINED.

Attributes
TRCVISSCTLR is a 64-bit register.

Field descriptions
The TRCVISSCTLR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

STOP<m>, bit [m+16] START<m>, bit [m]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

STOP<m>, bit [m+16], for m = 0 to 15

Selects which Single Address Comparators are in use with ViewInst start/stop function, for the purpose of stopping
trace.

STOP<m> Meaning
0b0 The Single Address Comparator m, is not selected as a stop

resource.
0b1 The Single Address Comparator m, is selected as a stop

resource.

This bit is RES0 if m >= 2 × TRCIDR4.NUMACPAIRS.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

START<m>, bit [m], for m = 0 to 15

Selects which Single Address Comparators are in use with ViewInst start/stop function, for the purpose of starting
trace.

START<m> Meaning
0b0 The Single Address Comparator m, is not selected as a

start resource.
0b1 The Single Address Comparator m, is selected as a start

resource.

TRCVISSCTLR, ViewInst Start/Stop Control Register

Page 1921

This bit is RES0 if m >= 2 × TRCIDR4.NUMACPAIRS.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCVISSCTLR
Must be programmed if TRCIDR4.NUMACPAIRS > 0b0000.

For any 2 comparators selected for the ViewInst start/stop function, the comparator containing the lower address must
be a lower numbered comparator.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCVISSCTLR

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCVISSCTLR;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCVISSCTLR;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCVISSCTLR;

MSR TRCVISSCTLR, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0000 0b0010 0b010

TRCVISSCTLR, ViewInst Start/Stop Control Register

Page 1922

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCVISSCTLR = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCVISSCTLR = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCVISSCTLR = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCVISSCTLR, ViewInst Start/Stop Control Register

Page 1923

TRCVMIDCCTLR0, Virtual Context Identifier
Comparator Control Register 0

The TRCVMIDCCTLR0 characteristics are:

Purpose
Virtual Context Identifier Comparator mask values for the TRCVMIDCVR<n> registers, where n=0-3.

Configuration
AArch64 System register TRCVMIDCCTLR0 bits [31:0] are architecturally mapped to External register
TRCVMIDCCTLR0[31:0] .

This register is present only when ETE is implemented, TRCIDR4.NUMVMIDC > 0x0 and TRCIDR2.VMIDSIZE >
0b00000. Otherwise, direct accesses to TRCVMIDCCTLR0 are UNDEFINED.

Attributes
TRCVMIDCCTLR0 is a 64-bit register.

Field descriptions
The TRCVMIDCCTLR0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

COMP3<m>, bit [m+24] COMP2<m>, bit [m+16] COMP1<m>, bit [m+8] COMP0<m>, bit [m]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

COMP3<m>, bit [m+24], for m = 0 to 7

When TRCIDR4.NUMVMIDC > 3:

TRCVMIDCVR3 mask control. Specifies the mask value that the trace unit applies to TRCVMIDCVR3. Each bit in this
field corresponds to a byte in TRCVMIDCVR3.

COMP3<m> Meaning
0b0 The trace unit includes TRCVMIDCVR3[(m×8+7):(m×8)]

when it performs the Virtual context identifier
comparison.

0b1 The trace unit ignores TRCVMIDCVR3[(m×8+7):(m×8)]
when it performs the Virtual context identifier
comparison.

This bit is RES0 if m >= TRCIDR2.VMIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCVMIDCCTLR0, Virtual Context Identifier Comparator Control Register 0

Page 1924

COMP2<m>, bit [m+16], for m = 0 to 7

When TRCIDR4.NUMVMIDC > 2:

TRCVMIDCVR2 mask control. Specifies the mask value that the trace unit applies to TRCVMIDCVR2. Each bit in this
field corresponds to a byte in TRCVMIDCVR2.

COMP2<m> Meaning
0b0 The trace unit includes TRCVMIDCVR2[(m×8+7):(m×8)]

when it performs the Virtual context identifier
comparison.

0b1 The trace unit ignores TRCVMIDCVR2[(m×8+7):(m×8)]
when it performs the Virtual context identifier
comparison.

This bit is RES0 if m >= TRCIDR2.VMIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP1<m>, bit [m+8], for m = 0 to 7

When TRCIDR4.NUMVMIDC > 1:

TRCVMIDCVR1 mask control. Specifies the mask value that the trace unit applies to TRCVMIDCVR1. Each bit in this
field corresponds to a byte in TRCVMIDCVR1.

COMP1<m> Meaning
0b0 The trace unit includes TRCVMIDCVR1[(m×8+7):(m×8)]

when it performs the Virtual context identifier
comparison.

0b1 The trace unit ignores TRCVMIDCVR1[(m×8+7):(m×8)]
when it performs the Virtual context identifier
comparison.

This bit is RES0 if m >= TRCIDR2.VMIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP0<m>, bit [m], for m = 0 to 7

When TRCIDR4.NUMVMIDC > 0:

TRCVMIDCVR0 mask control. Specifies the mask value that the trace unit applies to TRCVMIDCVR0. Each bit in this
field corresponds to a byte in TRCVMIDCVR0.

COMP0<m> Meaning
0b0 The trace unit includes TRCVMIDCVR0[(m×8+7):(m×8)]

when it performs the Virtual context identifier
comparison.

0b1 The trace unit ignores TRCVMIDCVR0[(m×8+7):(m×8)]
when it performs the Virtual context identifier
comparison.

This bit is RES0 if m >= TRCIDR2.VMIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

TRCVMIDCCTLR0, Virtual Context Identifier Comparator Control Register 0

Page 1925

Otherwise:

Reserved, RES0.

Accessing the TRCVMIDCCTLR0
If software uses the TRCVMIDCVR<n> registers, where n=0-3, then it must program this register.

If software sets a mask bit to 0b1 then it must program the relevant byte in TRCVMIDCVR<n> to 0x00.

If any bit is 0b1 and the relevant byte in TRCVMIDCVR<n> is not 0x00, the behavior of the Virtual Context Identifier
Comparator is CONSTRAINED UNPREDICTABLE. In this scenario the comparator might match unexpectedly or might not
match.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCVMIDCCTLR0

op0 op1 CRn CRm op2
0b10 0b001 0b0011 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCVMIDCCTLR0;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCVMIDCCTLR0;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCVMIDCCTLR0;

MSR TRCVMIDCCTLR0, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0011 0b0010 0b010

TRCVMIDCCTLR0, Virtual Context Identifier Comparator Control Register 0

Page 1926

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCVMIDCCTLR0 = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCVMIDCCTLR0 = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCVMIDCCTLR0 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCVMIDCCTLR0, Virtual Context Identifier Comparator Control Register 0

Page 1927

TRCVMIDCCTLR1, Virtual Context Identifier
Comparator Control Register 1

The TRCVMIDCCTLR1 characteristics are:

Purpose
Virtual Context Identifier Comparator mask values for the TRCVMIDCVR<n> registers, where n=4-7.

Configuration
AArch64 System register TRCVMIDCCTLR1 bits [31:0] are architecturally mapped to External register
TRCVMIDCCTLR1[31:0] .

This register is present only when ETE is implemented, TRCIDR4.NUMVMIDC > 0x4 and TRCIDR2.VMIDSIZE >
0b00000. Otherwise, direct accesses to TRCVMIDCCTLR1 are UNDEFINED.

Attributes
TRCVMIDCCTLR1 is a 64-bit register.

Field descriptions
The TRCVMIDCCTLR1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

COMP7<m>, bit [m+24] COMP6<m>, bit [m+16] COMP5<m>, bit [m+8] COMP4<m>, bit [m]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

COMP7<m>, bit [m+24], for m = 0 to 7

When TRCIDR4.NUMVMIDC > 7:

TRCVMIDCVR7 mask control. Specifies the mask value that the trace unit applies to TRCVMIDCVR7. Each bit in this
field corresponds to a byte in TRCVMIDCVR7.

COMP7<m> Meaning
0b0 The trace unit includes TRCVMIDCVR7[(m×8+7):(m×8)]

when it performs the Virtual context identifier
comparison.

0b1 The trace unit ignores TRCVMIDCVR7[(m×8+7):(m×8)]
when it performs the Virtual context identifier
comparison.

This bit is RES0 if m >= TRCIDR2.VMIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCVMIDCCTLR1, Virtual Context Identifier Comparator Control Register 1

Page 1928

COMP6<m>, bit [m+16], for m = 0 to 7

When TRCIDR4.NUMVMIDC > 6:

TRCVMIDCVR6 mask control. Specifies the mask value that the trace unit applies to TRCVMIDCVR6. Each bit in this
field corresponds to a byte in TRCVMIDCVR6.

COMP6<m> Meaning
0b0 The trace unit includes TRCVMIDCVR6[(m×8+7):(m×8)]

when it performs the Virtual context identifier
comparison.

0b1 The trace unit ignores TRCVMIDCVR6[(m×8+7):(m×8)]
when it performs the Virtual context identifier
comparison.

This bit is RES0 if m >= TRCIDR2.VMIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP5<m>, bit [m+8], for m = 0 to 7

When TRCIDR4.NUMVMIDC > 5:

TRCVMIDCVR5 mask control. Specifies the mask value that the trace unit applies to TRCVMIDCVR5. Each bit in this
field corresponds to a byte in TRCVMIDCVR5.

COMP5<m> Meaning
0b0 The trace unit includes TRCVMIDCVR5[(m×8+7):(m×8)]

when it performs the Virtual context identifier
comparison.

0b1 The trace unit ignores TRCVMIDCVR5[(m×8+7):(m×8)]
when it performs the Virtual context identifier
comparison.

This bit is RES0 if m >= TRCIDR2.VMIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP4<m>, bit [m], for m = 0 to 7

When TRCIDR4.NUMVMIDC > 4:

TRCVMIDCVR4 mask control. Specifies the mask value that the trace unit applies to TRCVMIDCVR4. Each bit in this
field corresponds to a byte in TRCVMIDCVR4.

COMP4<m> Meaning
0b0 The trace unit includes TRCVMIDCVR4[(m×8+7):(m×8)]

when it performs the Virtual context identifier
comparison.

0b1 The trace unit ignores TRCVMIDCVR4[(m×8+7):(m×8)]
when it performs the Virtual context identifier
comparison.

This bit is RES0 if m >= TRCIDR2.VMIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

TRCVMIDCCTLR1, Virtual Context Identifier Comparator Control Register 1

Page 1929

Otherwise:

Reserved, RES0.

Accessing the TRCVMIDCCTLR1
If software uses the TRCVMIDCVR<n> registers, where n=4-7, then it must program this register.

If software sets a mask bit to 0b1 then it must program the relevant byte in TRCVMIDCVR<n> to 0x00.

If any bit is 0b1 and the relevant byte in TRCVMIDCVR<n> is not 0x00, the behavior of the Virtual Context Identifier
Comparator is CONSTRAINED UNPREDICTABLE. In this scenario the comparator might match unexpectedly or might not
match.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings:

MRS <Xt>, TRCVMIDCCTLR1

op0 op1 CRn CRm op2
0b10 0b001 0b0011 0b0011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCVMIDCCTLR1;

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCVMIDCCTLR1;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCVMIDCCTLR1;

MSR TRCVMIDCCTLR1, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0011 0b0011 0b010

TRCVMIDCCTLR1, Virtual Context Identifier Comparator Control Register 1

Page 1930

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCVMIDCCTLR1 = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCVMIDCCTLR1 = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCVMIDCCTLR1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCVMIDCCTLR1, Virtual Context Identifier Comparator Control Register 1

Page 1931

TRCVMIDCVR<n>, Virtual Context Identifier
Comparator Value Register <n>, n = 0 - 7

The TRCVMIDCVR<n> characteristics are:

Purpose
Contains the Virtual Context Identifier Comparator value.

Configuration
AArch64 System register TRCVMIDCVR<n> bits [63:0] are architecturally mapped to External register
TRCVMIDCVR<n>[63:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMVMIDC > n. Otherwise, direct accesses to
TRCVMIDCVR<n> are UNDEFINED.

Attributes
TRCVMIDCVR<n> is a 64-bit register.

Field descriptions
The TRCVMIDCVR<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
VALUE
VALUE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VALUE, bits [63:0]

Virtual context identifier value. The width of this field is indicated by TRCIDR2.VMIDSIZE. Unimplemented bits are
RES0. After a PE Reset, the trace unit assumes that the Virtual context identifier is zero until the PE updates the
Virtual context identifier .

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCVMIDCVR<n>
Must be programmed if any of the following are true:

• TRCRSCTLR<a>.GROUP == 0b0111 and TRCRSCTLR<a>.VMID[n] == 0b1.
• TRCACATR<a>.CONTEXTTYPE == 0b10 or 0b11 and TRCACATR<a>.CONTEXT == n.

Accesses to this register use the following encodings:

MRS <Xt>, TRCVMIDCVR<n>

op0 op1 CRn CRm op2
0b10 0b001 0b0011 n[2:0]:0b0 0b001

TRCVMIDCVR<n>, Virtual Context Identifier Comparator Value Register <n>, n = 0 - 7

Page 1932

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCVMIDCVR[UInt(CRm<3:1>)];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRCVMIDCVR[UInt(CRm<3:1>)];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRCVMIDCVR[UInt(CRm<3:1>)];

MSR TRCVMIDCVR<n>, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b0011 n[2:0]:0b0 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.TTA == '1' then

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCVMIDCVR[UInt(CRm<3:1>)] = X[t];

elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TTA == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRCVMIDCVR[UInt(CRm<3:1>)] = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.TTA == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRCVMIDCVR[UInt(CRm<3:1>)] = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCVMIDCVR<n>, Virtual Context Identifier Comparator Value Register <n>, n = 0 - 7

Page 1933

TRFCR_EL1, Trace Filter Control Register (EL1)
The TRFCR_EL1 characteristics are:

Purpose
Provides EL1 controls for Trace.

Configuration
AArch64 System register TRFCR_EL1 bits [31:0] are architecturally mapped to AArch32 System register TRFCR[31:0]
.

This register is present only when ARMv8.4-Trace is implemented. Otherwise, direct accesses to TRFCR_EL1 are
UNDEFINED.

Attributes
TRFCR_EL1 is a 64-bit register.

Field descriptions
The TRFCR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 TS RES0 E1TREE0TRE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:7]

Reserved, RES0.

TS, bits [6:5]

Timestamp Control

TS Meaning Applies
when

0b01 Virtual timestamp. The traced timestamp is the
physical counter value, minus the value of
CNTVOFF_EL2.

0b10 Guest Physical timestamp. The traced
timestamp is the physical counter value, minus
the value of CNTPOFF_EL2.

When
ARMv8.6-ECV
is
implemented

0b11 Physical timestamp. The traced timestamp is
the physical counter value.

All other values are reserved

This field is ignored if any of the following are true:

• SelfHostedTraceEnabled() == FALSE.
• EL2 is implemented and TRFCR_EL2.TS != 0b00.

If ARMv8.6-ECV is implemented, and EL2 is implemented and enabled in the current Security state, the physical
counter uses a fixed physical offset of zero if any of the following are true:

TRFCR_EL1, Trace Filter Control Register (EL1)

Page 1934

• CNTHCTL_EL2.ECV is 0.
• SCR_EL3.ECVEn is 0.
• HCR_EL2.{E2H, TGE} is {1, 1}.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [4:2]

Reserved, RES0.

E1TRE, bit [1]

EL1 Trace Enable.

E1TRE Meaning
0b0 Trace is prohibited at EL1.
0b1 Trace is allowed at EL1.

This field is ignored if SelfHostedTraceEnabled() == FALSE.

On a Warm reset, this field resets to 0.

E0TRE, bit [0]

EL0 Trace Enable.

E0TRE Meaning
0b0 Trace is prohibited at EL0.
0b1 Trace is allowed at EL0.

This field is ignored if any of the following are true:

• SelfHostedTraceEnabled() == FALSE.
• EL2 is implemented and enabled in the current Security state and HCR_EL2.TGE == 1.

On a Warm reset, this field resets to 0.

Accessing the TRFCR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, TRFCR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b001

TRFCR_EL1, Trace Filter Control Register (EL1)

Page 1935

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TTRF == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x880];
else

return TRFCR_EL1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HCR_EL2.E2H == '1' then
return TRFCR_EL2;

else
return TRFCR_EL1;

elsif PSTATE.EL == EL3 then
return TRFCR_EL1;

MSR TRFCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRFCR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TTRF == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x880] = X[t];

else
TRFCR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

TRFCR_EL2 = X[t];
else

TRFCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

TRFCR_EL1 = X[t];

MRS <Xt>, TRFCR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0010 0b001

TRFCR_EL1, Trace Filter Control Register (EL1)

Page 1936

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x880];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRFCR_EL1;
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
return TRFCR_EL1;

else
UNDEFINED;

MSR TRFCR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x880] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRFCR_EL1 = X[t];
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
TRFCR_EL1 = X[t];

else
UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRFCR_EL1, Trace Filter Control Register (EL1)

Page 1937

TRFCR_EL2, Trace Filter Control Register (EL2)
The TRFCR_EL2 characteristics are:

Purpose
Provides EL2 controls for Trace.

Configuration
AArch64 System register TRFCR_EL2 bits [31:0] are architecturally mapped to AArch32 System register
HTRFCR[31:0] .

This register is present only when ARMv8.4-Trace is implemented. Otherwise, direct accesses to TRFCR_EL2 are
UNDEFINED.

Attributes
TRFCR_EL2 is a 64-bit register.

Field descriptions
The TRFCR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 TS RES0CXRES0E2TREE0HTRE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:7]

Reserved, RES0.

TS, bits [6:5]

Timestamp Control. Controls which timebase is used for trace timestamps.

TS Meaning Applies
when

0b00 Timestamp controlled by TRFCR_EL1.TS or
TRFCR.TS.

0b01 Virtual timestamp. The traced timestamp is the
physical counter value, minus the value of
CNTVOFF_EL2.

0b10 Guest Physical timestamp. The traced
timestamp is the physical counter value, minus
the value of CNTPOFF_EL2.

When
ARMv8.6-ECV
is
implemented

0b11 Physical timestamp. The traced timestamp is
the physical counter value.

All other values are reserved.

This field is ignored if SelfHostedTraceEnabled() == FALSE.

If ARMv8.6-ECV is implemented, and EL2 is implemented and enabled in the current Security state, the physical
counter uses a fixed physical offset of zero if any of the following are true:

• CNTHCTL_EL2.ECV is 0.

TRFCR_EL2, Trace Filter Control Register (EL2)

Page 1938

• SCR_EL3.ECVEn is 0.
• HCR_EL2.{E2H, TGE} is {1, 1}.

On a Warm reset, this field resets to 0.

Bit [4]

Reserved, RES0.

CX, bit [3]

CONTEXTIDR_EL2 and VMID trace enable.

CX Meaning
0b0 CONTEXTIDR_EL2 and VMID trace prohibited.
0b1 CONTEXTIDR_EL2 and VMID trace allowed.

This field is ignored if SelfHostedTraceEnabled() == FALSE.

On a Warm reset, this field resets to 0.

Bit [2]

Reserved, RES0.

E2TRE, bit [1]

EL2 Trace Enable.

E2TRE Meaning
0b0 Trace is prohibited at EL2.
0b1 Trace is allowed at EL2.

This field is ignored if SelfHostedTraceEnabled() == FALSE.

On a Warm reset, this field resets to 0.

E0HTRE, bit [0]

EL0 Trace Enable.

E0HTRE Meaning
0b0 Trace is prohibited at EL0 when HCR_EL2.TGE == 1.
0b1 Trace is allowed at EL0 when HCR_EL2.TGE == 1.

This field is ignored if any of the following are true:

• SelfHostedTraceEnabled() == FALSE.
• EL2 is disabled in the current security state.
• HCR_EL2.TGE == 0.

On a Warm reset, this field resets to 0.

Accessing the TRFCR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, TRFCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0010 0b001

TRFCR_EL2, Trace Filter Control Register (EL2)

Page 1939

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRFCR_EL2;

elsif PSTATE.EL == EL3 then
return TRFCR_EL2;

MSR TRFCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRFCR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
TRFCR_EL2 = X[t];

MRS <Xt>, TRFCR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TTRF == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x880];
else

return TRFCR_EL1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HCR_EL2.E2H == '1' then
return TRFCR_EL2;

else
return TRFCR_EL1;

elsif PSTATE.EL == EL3 then
return TRFCR_EL1;

TRFCR_EL2, Trace Filter Control Register (EL2)

Page 1940

MSR TRFCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.TRFCR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TTRF == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x880] = X[t];

else
TRFCR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

TRFCR_EL2 = X[t];
else

TRFCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

TRFCR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRFCR_EL2, Trace Filter Control Register (EL2)

Page 1941

TTBR0_EL1, Translation Table Base Register 0 (EL1)
The TTBR0_EL1 characteristics are:

Purpose
Holds the base address of the translation table for the initial lookup for stage 1 of the translation of an address from
the lower VA range in the EL1&0 translation regime, and other information for this translation regime.

Configuration
AArch64 System register TTBR0_EL1 bits [63:0] are architecturally mapped to AArch32 System register TTBR0[63:0] .

Attributes
TTBR0_EL1 is a 64-bit register.

Field descriptions
The TTBR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID BADDR

BADDR CnP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL1.A1 field selects either TTBR0_EL1.ASID or
TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

This field resets to an architecturally UNKNOWN value.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x], bits[47:1].

Note
• Translation table base addresses of 52 bits, A[51:x], are supported only

in an implementation that includes ARMv8.2-LPA and is using the 64KB
translation granule.

• A translation table must be aligned to the size of the table, except that
when using a translation table base address larger than 48 bits the
minimum alignment of a table containing fewer than eight entries is 64
bytes.

In an implementation that includes ARMv8.2-LPA, if the value of TCR_EL1.IPS is 0b110, then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is determined as
follows:

◦ If x >= 6 then z=x.
◦ Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.

TTBR0_EL1, Translation Table Base Register 0 (EL1)

Page 1942

• In an implementation that includes ARMv8.2-TTCNP bit[0] of the stage 1 translation table base address is
zero.

Note
• In an implementation that includes ARMv8.2-LPA a TCR_EL1.IPS value

of 0b110, that selects an IPA size of 52 bits, is permitted only when using
the 64KB translation granule.

• When the value of ID_AA64MMFR0_EL1.PARange indicates that the
implementation does not support a 52 bit PA size, if a translation table
lookup uses this register with the 64KB translation granule when the
value of TCR_EL1.IPS is 0b110 and the value of register bits[5:2] is
nonzero, an Address size fault is generated.

If the Effective value of TCR_EL1.IPS is not 0b110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs, then bits[51:48] of the translation table base addresses

used in this stage of translation are 0b0000.

Note

This definition applies:

• To an implementation that includes ARMv8.2-LPA and is using a
translation granule smaller than 64KB.

• To any implementation that does not include ARMv8.2-LPA.

If any TTBR0_EL1[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed using
TTBR0_EL1, then the translation table base address might be misaligned, with effects that are CONSTRAINED
UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from
the corresponding register bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in
those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of
TCR_EL1.T0SZ, the stage of translation, and the translation granule size.

This field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When ARMv8.2-TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TTBR0_EL1 is a member of a common
set that can be used by every PE in the Inner Shareable domain for which the value of TTBR0_EL1.CnP is 1.

CnP Meaning
0b0 The translation table entries pointed to by TTBR0_EL1, for the

current translation regime and ASID, are permitted to differ from
corresponding entries for TTBR0_EL1 for other PEs in the Inner
Shareable domain. This is not affected by:

• The value of TTBR0_EL1.CnP on those other PEs.
• The value of the current ASID.
• If EL2 is implemented and enabled in the current Security

state, the value of the current VMID.
0b1 The translation table entries pointed to by TTBR0_EL1 are the

same as the translation table entries for every other PE in the
Inner Shareable domain for which the value of TTBR0_EL1.CnP is
1 and all of the following apply:

• The translation table entries are pointed to by TTBR0_EL1.
• The translation tables relate to the same translation regime.
• The ASID is the same as the current ASID.
• If EL2 is implemented and enabled in the current Security

state, the value of the current VMID.

This field is permitted to be cached in a TLB.

TTBR0_EL1, Translation Table Base Register 0 (EL1)

Page 1943

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry, that entry can only
be shared between different PEs if the value of the CnP bit is 1 for both stage 1 and stage 2.

Note

If the value of the TTBR0_EL1.CnP bit is 1 on multiple PEs in the same Inner
Shareable domain and those TTBR0_EL1s do not point to the same translation
table entries when the other conditions specified for the case when the value
of CnP is 1 apply, then the results of translations are CONSTRAINED
UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE behaviors due to
caching of control or data values' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TTBR0_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TTBR0_EL1 or
TTBR0_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, TTBR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.TTBR0_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x200];

else
return TTBR0_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return TTBR0_EL2;
else

return TTBR0_EL1;
elsif PSTATE.EL == EL3 then

return TTBR0_EL1;

MSR TTBR0_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b000

TTBR0_EL1, Translation Table Base Register 0 (EL1)

Page 1944

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.TTBR0_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x200] = X[t];

else
TTBR0_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

TTBR0_EL2 = X[t];
else

TTBR0_EL1 = X[t];
elsif PSTATE.EL == EL3 then

TTBR0_EL1 = X[t];

MRS <Xt>, TTBR0_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0010 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x200];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return TTBR0_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return TTBR0_EL1;
else

UNDEFINED;

MSR TTBR0_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0010 0b0000 0b000

TTBR0_EL1, Translation Table Base Register 0 (EL1)

Page 1945

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x200] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TTBR0_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

TTBR0_EL1 = X[t];
else

UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TTBR0_EL1, Translation Table Base Register 0 (EL1)

Page 1946

TTBR0_EL2, Translation Table Base Register 0 (EL2)
The TTBR0_EL2 characteristics are:

Purpose
When HCR_EL2.E2H is 0, holds the base address of the translation table for the initial lookup for stage 1 of an address
translation in the EL2 translation regime, and other information for this translation regime.

When HCR_EL2.E2H is 1, holds the base address of the translation table for the initial lookup for stage 1 of the
translation of an address from the lower VA range in the EL2&0 translation regime, and other information for this
translation regime.

Configuration
AArch64 System register TTBR0_EL2 bits [47:1] are architecturally mapped to AArch32 System register HTTBR[47:1]
.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
TTBR0_EL2 is a 64-bit register.

Field descriptions
The TTBR0_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID BADDR

BADDR CnP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

When ARMv8.1-VHE is implemented:

When HCR_EL2.E2H is 0, this field is RES0.

When HCR_EL2.E2H is 1, it holds an ASID for the translation table base address. The TCR_EL2.A1 field selects either
TTBR0_EL2.ASID or TTBR1_EL2.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x], bits[47:1].

Note

TTBR0_EL2, Translation Table Base Register 0 (EL2)

Page 1947

• Translation table base addresses of 52 bits, A[51:x], are supported only
in an implementation that includes ARMv8.2-LPA and is using the 64KB
translation granule.

• A translation table must be aligned to the size of the table, except that
when using a translation table base address larger than 48 bits the
minimum alignment of a table containing fewer than eight entries is 64
bytes.

In an implementation that includes ARMv8.2-LPA, if the value of TCR_EL2.{I}PS is 0b110, then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is determined as
follows:

◦ If x >= 6 then z=x.
◦ Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.
• In an implementation that includes ARMv8.2-TTCNP bit[0] of the stage 1 translation table base address is

zero.

Note

In an implementation that includes ARMv8.2-LPA:

• A TCR_EL2.{I}PS value of 0b110, that selects an OA size of 52 bits, is
permitted only when using the 64KB translation granule.

• The OA size is specified by:
◦ The value of TCR_EL2.PS when the value of HCR_EL2.E2H is 0.
◦ The value of TCR_EL2.IPS when the value of HCR_EL2.E2H is 1.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the
implementation does not support a 52 bit PA size, if a translation table lookup
uses this register with the 64KB translation granule when the value of
TCR_EL2.{I}PS is 0b110 and the value of register bits[5:2] is nonzero, an
Address size fault is generated.

If the Effective value of TCR_EL2.{I}PS is not 0b110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs, then bits[51:48] of the translation table base addresses

used in this stage of translation are 0b0000.

Note

This definition applies:

• To an implementation that includes ARMv8.2-LPA and is using a
translation granule smaller than 64KB.

• To any implementation that does not include ARMv8.2-LPA.

If any TTBR0_EL2[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed using
TTBR0_EL2, then the translation table base address might be misaligned, with effects that are CONSTRAINED
UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from
the corresponding register bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in
those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of
TCR_EL2.T0SZ, the stage of translation, and the translation granule size.

This field resets to an architecturally UNKNOWN value.

TTBR0_EL2, Translation Table Base Register 0 (EL2)

Page 1948

CnP, bit [0]

When ARMv8.2-TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TTBR0_EL2 is a member of a common
set that can be used by every PE in the Inner Shareable domain for which the value of TTBR0_EL2.CnP is 1.

CnP Meaning
0b0 The translation table entries pointed to by TTBR0_EL2 for the

current translation regime, and ASID if applicable, are permitted
to differ from corresponding entries for TTBR0_EL2 for other PEs
in the Inner Shareable domain. This is not affected by:

• The value of TTBR0_EL2.CnP on those other PEs.
• When the current translation regime is the EL2&0 regime,

the value of the current ASID.
0b1 The translation table entries pointed to by TTBR0_EL2 are the

same as the translation table entries for every other PE in the
Inner Shareable domain for which the value of TTBR0_EL2.CnP is
1 and all of the following apply:

• The translation table entries are pointed to by TTBR0_EL2.
• The translation tables relate to the same translation

regime.
• If that translation regime is the EL2&0 regime, the ASID is

the same as the current ASID.

This field is permitted to be cached in a TLB.

Note

If the value of the TTBR0_EL2.CnP bit is 1 on multiple PEs in the same Inner
Shareable domain and those TTBR0_EL2s do not point to the same translation
table entries when the other conditions specified for the case when the value
of CnP is 1 apply, then the results of translations are CONSTRAINED
UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE behaviors due to
caching of control or data values' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TTBR0_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TTBR0_EL2 or
TTBR0_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, TTBR0_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0000 0b000

TTBR0_EL2, Translation Table Base Register 0 (EL2)

Page 1949

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return TTBR0_EL2;
elsif PSTATE.EL == EL3 then

return TTBR0_EL2;

MSR TTBR0_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TTBR0_EL2 = X[t];
elsif PSTATE.EL == EL3 then

TTBR0_EL2 = X[t];

MRS <Xt>, TTBR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.TTBR0_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x200];

else
return TTBR0_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return TTBR0_EL2;
else

return TTBR0_EL1;
elsif PSTATE.EL == EL3 then

return TTBR0_EL1;

MSR TTBR0_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b000

TTBR0_EL2, Translation Table Base Register 0 (EL2)

Page 1950

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.TTBR0_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x200] = X[t];

else
TTBR0_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

TTBR0_EL2 = X[t];
else

TTBR0_EL1 = X[t];
elsif PSTATE.EL == EL3 then

TTBR0_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TTBR0_EL2, Translation Table Base Register 0 (EL2)

Page 1951

TTBR0_EL3, Translation Table Base Register 0 (EL3)
The TTBR0_EL3 characteristics are:

Purpose
Holds the base address of the translation table for the initial lookup for stage 1 of an address translation in the EL3
translation regime, and other information for this translation regime.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to TTBR0_EL3 are UNDEFINED.

Attributes
TTBR0_EL3 is a 64-bit register.

Field descriptions
The TTBR0_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 BADDR

BADDR CnP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x].

Note
• Translation table base addresses of 52 bits, A[51:x], are supported only

in an implementation that includes ARMv8.2-LPA and is using the 64KB
translation granule.

• A translation table must be aligned to the size of the table, except that
when using translation table base address larger than 48 bits the
minimum alignment of a table containing fewer than eight entries is 64
bytes.

In an implementation that includes ARMv8.2-LPA, if the value of TCR_EL3.PS is 0b110 then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is determined as
follows:

◦ If x >= 6 then z=x.
◦ Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.
• In an implementation that includes ARMv8.2-TTCNP bit[0] of the stage 1 translation table base address is

zero.

Note

TTBR0_EL3, Translation Table Base Register 0 (EL3)

Page 1952

• In an implementation that includes ARMv8.2-LPA a TCR_EL3.PS value of
0b110, that selects a PA size of 52 bits, is permitted only when using the
64KB translation granule.

• When the value of ID_AA64MMFR0_EL1.PARange indicates that the
implementation does not support a 52 bit PA size, if a translation table
lookup uses this register with the 64KB translation granule when the
value of TCR_EL3.PS is 0b110 and the value of register bits[5:2] is
nonzero, an Address size fault is generated.

If the Effective value of TCR_EL3.PS is not 0b110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs, then bits[51:48] of the translation table base addresses

used in this stage of translation are 0b0000.

Note

This definition applies:

• To an implementation that includes ARMv8.2-LPA and is using a
translation granule smaller than 64KB.

• To any implementation that does not include ARMv8.2-LPA.

If any TTBR0_EL3[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed using
TTBR0_EL3, then the translation table base address might be misaligned, with effects that are CONSTRAINED
UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from
the corresponding register bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in
those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of
TCR_EL3.T0SZ, the stage of translation, and the translation granule size.

This field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When ARMv8.2-TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TTBR0_EL3 is a member of a common
set that can be used by every PE in the Inner Shareable domain for which the value of TTBR0_EL3.CnP is 1.

CnP Meaning
0b0 The translation table entries pointed to by TTBR0_EL3, for the

current translation regime, are permitted to differ from
corresponding entries for TTBR0_EL3 for other PEs in the Inner
Shareable domain. This is not affected by the value of
TTBR0_EL3.CnP on those other PEs.

0b1 The translation table entries pointed to by TTBR0_EL3 are the
same as the translation table entries for every other PE in the
Inner Shareable domain for which the value of TTBR0_EL3.CnP is
1 and the translation table entries are pointed to by TTBR0_EL3.

This field is permitted to be cached in a TLB.

Note

If the value of the TTBR0_EL3.CnP bit is 1 on multiple PEs in the same Inner
Shareable domain and those TTBR0_EL3s do not point to the same translation
table entries the results of translations using TTBR0_EL3 are CONSTRAINED
UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE behaviors due to
caching of control or data values' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

TTBR0_EL3, Translation Table Base Register 0 (EL3)

Page 1953

Otherwise:

Reserved, RES0.

Accessing the TTBR0_EL3
Accesses to this register use the following encodings:

MRS <Xt>, TTBR0_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0010 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return TTBR0_EL3;

MSR TTBR0_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0010 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TTBR0_EL3 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TTBR0_EL3, Translation Table Base Register 0 (EL3)

Page 1954

TTBR1_EL1, Translation Table Base Register 1 (EL1)
The TTBR1_EL1 characteristics are:

Purpose
Holds the base address of the translation table for the initial lookup for stage 1 of the translation of an address from
the higher VA range in the EL1&0 stage 1 translation regime, and other information for this translation regime.

Configuration
AArch64 System register TTBR1_EL1 bits [63:0] are architecturally mapped to AArch32 System register TTBR1[63:0] .

Attributes
TTBR1_EL1 is a 64-bit register.

Field descriptions
The TTBR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID BADDR

BADDR CnP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL1.A1 field selects either TTBR0_EL1.ASID or
TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

This field resets to an architecturally UNKNOWN value.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x], bits[47:1].

Note
• Translation table base addresses of 52 bits, A[51:x], are supported only

in an implementation that includes ARMv8.2-LPA and is using the 64KB
translation granule.

• A translation table must be aligned to the size of the table, except that
when using a translation table base address larger than 48 bits the
minimum alignment of a table containing fewer than eight entries is 64
bytes.

In an implementation that includes ARMv8.2-LPA, if the value of TCR_EL1.IPS is 0b110, then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is determined as
follows:

◦ If x >= 6 then z=x.
◦ Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.

TTBR1_EL1, Translation Table Base Register 1 (EL1)

Page 1955

• In an implementation that includes ARMv8.2-TTCNP bit[0] of the stage 1 translation table base address is
zero.

Note
• In an implementation that includes ARMv8.2-LPA a TCR_EL1.IPS value

of 0b110, that selects an IPA size of 52 bits, is permitted only when using
the 64KB translation granule.

• When the value of ID_AA64MMFR0_EL1.PARange indicates that the
implementation does not support a 52 bit PA size, if a translation table
lookup uses this register with the 64KB translation granule when the
value of TCR_EL1.IPS is 0b110 and the value of register bits[5:2] is
nonzero, an Address size fault is generated.

If the Effective value of TCR_EL1.IPS is not 0b110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs, then bits[51:48] of the translation table base addresses

used in this stage of translation are 0b0000.

Note

This definition applies:

• To an implementation that includes ARMv8.2-LPA and is using a
translation granule smaller than 64KB.

• To any implementation that does not include ARMv8.2-LPA.

If any TTBR1_EL1[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed using
TTBR1_EL1, then the translation table base address might be misaligned, with effects that are CONSTRAINED
UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from
the corresponding register bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in
those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of
TCR_EL1.T1SZ, the stage of translation, and the translation granule size.

This field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When ARMv8.2-TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TBR1_EL1 is a member of a common
set that can be used by every PE in the Inner Shareable domain for which the value of TTBR1_EL1.CnP is 1.

CnP Meaning
0b0 The translation table entries pointed to by TTBR1_EL1, for the

current translation regime and ASID, are permitted to differ from
corresponding entries for TTBR1_EL1 for other PEs in the Inner
Shareable domain. This is not affected by:

• The value of TTBR1_EL1.CnP on those other PEs.
• The value of the current ASID.
• If EL2 is implemented and enabled in the current Security

state, the value of the current VMID.
0b1 The translation table entries pointed to by TTBR1_EL1 are the

same as the translation table entries for every other PE in the
Inner Shareable domain for which the value of TTBR1_EL1.CnP is
1 and all of the following apply:

• The translation table entries are pointed to by TTBR1_EL1.
• The translation tables relate to the same translation

regime.
• The ASID is the same as the current ASID.
• If EL2 is implemented and enabled in the current Security

state, the value of the current VMID.

This field is permitted to be cached in a TLB.

TTBR1_EL1, Translation Table Base Register 1 (EL1)

Page 1956

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry, that entry can only
be shared between different PEs if the value of the CnP bit is 1 for both stage 1 and stage 2.

Note

If the value of the TTBR1_EL1.CnP bit is 1 on multiple PEs in the same Inner
Shareable domain and those TTBR1_EL1s do not point to the same translation
table entries when the other conditions specified for the case when the value
of CnP is 1 apply, then the results of translations are CONSTRAINED
UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE behaviors due to
caching of control or data values' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TTBR1_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TTBR1_EL1 or
TTBR1_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, TTBR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.TTBR1_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x210];

else
return TTBR1_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return TTBR1_EL2;
else

return TTBR1_EL1;
elsif PSTATE.EL == EL3 then

return TTBR1_EL1;

MSR TTBR1_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b001

TTBR1_EL1, Translation Table Base Register 1 (EL1)

Page 1957

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.TTBR1_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x210] = X[t];

else
TTBR1_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

TTBR1_EL2 = X[t];
else

TTBR1_EL1 = X[t];
elsif PSTATE.EL == EL3 then

TTBR1_EL1 = X[t];

MRS <Xt>, TTBR1_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0010 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x210];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return TTBR1_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return TTBR1_EL1;
else

UNDEFINED;

MSR TTBR1_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0010 0b0000 0b001

TTBR1_EL1, Translation Table Base Register 1 (EL1)

Page 1958

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x210] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TTBR1_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

TTBR1_EL1 = X[t];
else

UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TTBR1_EL1, Translation Table Base Register 1 (EL1)

Page 1959

TTBR1_EL2, Translation Table Base Register 1 (EL2)
The TTBR1_EL2 characteristics are:

Purpose
When HCR_EL2.E2H is 1, holds the base address of the translation table for the initial lookup for stage 1 of the
translation of an address from the higher VA range in the EL2&0 translation regime, and other information for this
translation regime.

Note

When HCR_EL2.E2H is 0, the contents of this register are ignored by the PE,
except for a direct read or write of the register.

Configuration
This register is present only when ARMv8.1-VHE is implemented. Otherwise, direct accesses to TTBR1_EL2 are
UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
TTBR1_EL2 is a 64-bit register.

Field descriptions
The TTBR1_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID BADDR

BADDR CnP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL2.A1 field selects either TTBR0_EL2.ASID or
TTBR1_EL2.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

This field resets to an architecturally UNKNOWN value.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x], bits[47:1].

Note
• Translation table base addresses of 52 bits, A[51:x], are supported only

in an implementation that includes ARMv8.2-LPA and is using the 64KB
translation granule.

• A translation table must be aligned to the size of the table, except that
when using a translation table base address larger than 48 bits the
minimum alignment of a table containing fewer than eight entries is 64
bytes.

TTBR1_EL2, Translation Table Base Register 1 (EL2)

Page 1960

In an implementation that includes ARMv8.2-LPA, if the value of TCR_EL2.{I}PS is 0b110, then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is determined as
follows:

◦ If x >= 6 then z=x.
◦ Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.
• In an implementation that includes ARMv8.2-TTCNP bit[0] of the stage 1 translation table base address is

zero.

Note
• In an implementation that includes ARMv8.2-LPA a TCR_EL2.IPS value

of 0b110, that selects an OA size of 52 bits, is permitted only when using
the 64KB translation granule.

• When the value of ID_AA64MMFR0_EL1.PARange indicates that the
implementation does not support a 52 bit PA size, if a translation table
lookup uses this register with the 64KB translation granule when the
value of TCR_EL2.IPS is 0b110 and the value of register bits[5:2] is
nonzero, an Address size fault is generated.

If the Effective value of TCR_EL2.IPS is not 0b110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs, then bits[51:48] of the translation table base addresses

used in this stage of translation are 0b0000.

Note

This definition applies:

• To an implementation that includes ARMv8.2-LPA and is using a
translation granule smaller than 64KB.

• To any implementation that does not include ARMv8.2-LPA.

If any TTBR1_EL2[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed using
TTBR1_EL2, then the translation table base address might be misaligned, with effects that are CONSTRAINED
UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from
the corresponding register bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in
those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of
TCR_EL2.T1SZ, the stage of translation, and the translation granule size.

This field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When ARMv8.2-TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TBR1_EL2 is a member of a common
set that can be used by every PE in the Inner Shareable domain for which the value of TTBR1_EL2.CnP is 1.

TTBR1_EL2, Translation Table Base Register 1 (EL2)

Page 1961

CnP Meaning
0b0 The translation table entries pointed to by TTBR1_EL2 for the

current ASID are permitted to differ from corresponding entries
for TTBR1_EL2 for other PEs in the Inner Shareable domain. This
is not affected by:

• The value of TTBR1_EL2.CnP on those other PEs.
• The value of the current ASID.

0b1 The translation table entries pointed to by TTBR1_EL2 are the
same as the translation table entries for every other PE in the
Inner Shareable domain for which the value of TTBR1_EL2.CnP is
1 and all of the following apply:

• The translation table entries are pointed to by TTBR1_EL2.
• The ASID is the same as the current ASID.

This field is permitted to be cached in a TLB.

Note
• TTBR1_EL2 is accessible only when the value of HCR_EL2.E2H is 1,

meaning the current translation regime is the EL2&0 regime.
• If the value of the TTBR1_EL2.CnP bit is 1 on multiple PEs in the same

Inner Shareable domain and those TTBR1_EL2s do not point to the same
translation table entries when the other conditions specified for the case
when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE
behaviors due to caching of control or data values' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture
profile.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TTBR1_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TTBR1_EL2 or
TTBR1_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, TTBR1_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return TTBR1_EL2;
elsif PSTATE.EL == EL3 then

return TTBR1_EL2;

MSR TTBR1_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0000 0b001

TTBR1_EL2, Translation Table Base Register 1 (EL2)

Page 1962

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TTBR1_EL2 = X[t];
elsif PSTATE.EL == EL3 then

TTBR1_EL2 = X[t];

MRS <Xt>, TTBR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.TTBR1_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x210];

else
return TTBR1_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return TTBR1_EL2;
else

return TTBR1_EL1;
elsif PSTATE.EL == EL3 then

return TTBR1_EL1;

MSR TTBR1_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.TTBR1_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x210] = X[t];

else
TTBR1_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

TTBR1_EL2 = X[t];
else

TTBR1_EL1 = X[t];
elsif PSTATE.EL == EL3 then

TTBR1_EL1 = X[t];

TTBR1_EL2, Translation Table Base Register 1 (EL2)

Page 1963

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TTBR1_EL2, Translation Table Base Register 1 (EL2)

Page 1964

UAO, User Access Override
The UAO characteristics are:

Purpose
Allows access to the User Access Override bit.

Configuration
This register is present only when ARMv8.2-UAO is implemented. Otherwise, direct accesses to UAO are UNDEFINED.

Attributes
UAO is a 64-bit register.

Field descriptions
The UAO bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 UAO RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

UAO, bit [23]

User Access Override.

UAO Meaning
0b0 The behavior of LDTR* and STTR* instructions is as defined in

the base Armv8 architecture.
0b1 When executed at EL1, or at EL2 with HCR_EL2.{E2H, TGE} ==

{1, 1}, LDTR* and STTR* instructions behave as the equivalent
LDR* and STR* instructions.

When executed at EL3, or at EL2 with HCR_EL2.E2H == 0 or HCR_EL2.TGE == 0, the LDTR* and STTR* instructions
behave as the equivalent LDR* and STR* instructions, regardless of the setting of the PSTATE.UAO bit.

Bits [22:0]

Reserved, RES0.

Accessing the UAO
For details on the operation of the MSR (immediate) accessor, see MSR (immediate)in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile.

Accesses to this register use the following encodings:

UAO, User Access Override

Page 1965

MRS <Xt>, UAO

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0010 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
return Zeros(40):PSTATE.UAO:Zeros(23);

elsif PSTATE.EL == EL2 then
return Zeros(40):PSTATE.UAO:Zeros(23);

elsif PSTATE.EL == EL3 then
return Zeros(40):PSTATE.UAO:Zeros(23);

MSR UAO, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0010 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
PSTATE.UAO = X[t]<23>;

elsif PSTATE.EL == EL2 then
PSTATE.UAO = X[t]<23>;

elsif PSTATE.EL == EL3 then
PSTATE.UAO = X[t]<23>;

MSR UAO, #<imm>

op0 op1 CRn op2
0b00 0b000 0b0100 0b011

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UAO, User Access Override

Page 1966

VBAR_EL1, Vector Base Address Register (EL1)
The VBAR_EL1 characteristics are:

Purpose
Holds the vector base address for any exception that is taken to EL1.

Configuration
AArch64 System register VBAR_EL1 bits [31:0] are architecturally mapped to AArch32 System register VBAR[31:0] .

Attributes
VBAR_EL1 is a 64-bit register.

Field descriptions
The VBAR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Vector Base Address

Vector Base Address RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL1.

If the implementation does not support ARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL1 must be the same or else the use of the vector
address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:48] of VBAR_EL1 must be the same or else the use of the
vector address will result in a recursive exception.

If the implementation supports ARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL1 must be the same or else the use of the vector
address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL1 must be the same or else the use of the
vector address will result in a recursive exception.

This field resets to an architecturally UNKNOWN value.

Bits [10:0]

Reserved, RES0.

Accessing the VBAR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic VBAR_EL1 or
VBAR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

VBAR_EL1, Vector Base Address Register (EL1)

Page 1967

MRS <Xt>, VBAR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.VBAR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x250];

else
return VBAR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return VBAR_EL2;
else

return VBAR_EL1;
elsif PSTATE.EL == EL3 then

return VBAR_EL1;

MSR VBAR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.VBAR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x250] = X[t];

else
VBAR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

VBAR_EL2 = X[t];
else

VBAR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

VBAR_EL1 = X[t];

MRS <Xt>, VBAR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b1100 0b0000 0b000

VBAR_EL1, Vector Base Address Register (EL1)

Page 1968

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x250];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return VBAR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return VBAR_EL1;
else

UNDEFINED;

MSR VBAR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x250] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
VBAR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

VBAR_EL1 = X[t];
else

UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VBAR_EL1, Vector Base Address Register (EL1)

Page 1969

VBAR_EL2, Vector Base Address Register (EL2)
The VBAR_EL2 characteristics are:

Purpose
Holds the vector base address for any exception that is taken to EL2.

Configuration
AArch64 System register VBAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HVBAR[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VBAR_EL2 is a 64-bit register.

Field descriptions
The VBAR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Vector Base Address

Vector Base Address RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL2.

If the implementation does not support ARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL2 must be 0 or else the use of the vector address
will result in a recursive exception.

• If tagged addresses are not being used, bits [63:48] of VBAR_EL2 must be 0 or else the use of the vector
address will result in a recursive exception.

If the implementation supports ARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL2 must be the same or else the use of the vector
address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL2 must be the same or else the use of the
vector address will result in a recursive exception.

This field resets to an architecturally UNKNOWN value.

Bits [10:0]

Reserved, RES0.

Accessing the VBAR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic VBAR_EL2 or
VBAR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

VBAR_EL2, Vector Base Address Register (EL2)

Page 1970

Accesses to this register use the following encodings:

MRS <Xt>, VBAR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VBAR_EL2;
elsif PSTATE.EL == EL3 then

return VBAR_EL2;

MSR VBAR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VBAR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

VBAR_EL2 = X[t];

MRS <Xt>, VBAR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.VBAR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x250];

else
return VBAR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return VBAR_EL2;
else

return VBAR_EL1;
elsif PSTATE.EL == EL3 then

return VBAR_EL1;

VBAR_EL2, Vector Base Address Register (EL2)

Page 1971

MSR VBAR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.VBAR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x250] = X[t];

else
VBAR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

VBAR_EL2 = X[t];
else

VBAR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

VBAR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VBAR_EL2, Vector Base Address Register (EL2)

Page 1972

VBAR_EL3, Vector Base Address Register (EL3)
The VBAR_EL3 characteristics are:

Purpose
Holds the vector base address for any exception that is taken to EL3.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to VBAR_EL3 are UNDEFINED.

Attributes
VBAR_EL3 is a 64-bit register.

Field descriptions
The VBAR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Vector Base Address

Vector Base Address RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL3.

If the implementation does not support ARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL3 must be 0 or else the use of the vector address
will result in a recursive exception.

• If tagged addresses are not being used, bits [63:48] of VBAR_EL3 must be 0 or else the use of the vector
address will result in a recursive exception.

If the implementation supports ARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL3 must be the same or else the use of the vector
address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL3 must be the same or else the use of the
vector address will result in a recursive exception.

This field resets to an architecturally UNKNOWN value.

Bits [10:0]

Reserved, RES0.

Accessing the VBAR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, VBAR_EL3

op0 op1 CRn CRm op2

VBAR_EL3, Vector Base Address Register (EL3)

Page 1973

0b11 0b110 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return VBAR_EL3;

MSR VBAR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
VBAR_EL3 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VBAR_EL3, Vector Base Address Register (EL3)

Page 1974

VDISR_EL2, Virtual Deferred Interrupt Status Register
The VDISR_EL2 characteristics are:

Purpose
Records that a virtual SError interrupt has been consumed by an ESB instruction executed at EL1.

An indirect write to VDISR_EL2 made by an ESB instruction does not require an explicit synchronization operation for
the value written to be observed by a direct read of DISR_EL1 or DISR occurring in program order after the ESB
instruction.

Configuration
AArch64 System register VDISR_EL2 bits [31:0] are architecturally mapped to AArch32 System register VDISR[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to VDISR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VDISR_EL2 is a 64-bit register.

Field descriptions
The VDISR_EL2 bit assignments are:

When EL1 is using AArch64:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

A RES0 IDS ISS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError interrupt.

This field resets to an architecturally UNKNOWN value.

Bits [30:25]

Reserved, RES0.

IDS, bit [24]

The value copied from VSESR_EL2.IDS.

This field resets to an architecturally UNKNOWN value.

VDISR_EL2, Virtual Deferred Interrupt Status Register

Page 1975

ISS, bits [23:0]

The value copied from VSESR_EL2.ISS.

This field resets to an architecturally UNKNOWN value.

When EL1 is using AArch32 and VDISR_EL2.LPAE == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

A RES0 AET RES0ExTRES0FS[4]LPAE RES0 FS[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError interrupt.

This field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

The value copied from VSESR_EL2.AET.

This field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

The value copied from VSESR_EL2.ExT.

This field resets to an architecturally UNKNOWN value.

Bit [11]

Reserved, RES0.

FS[4], bit [10]

This field is bit[4] of FS[4:0].

Fault status code. Set to 0b10110 when an ESB instruction defers a virtual SError interrupt.

FS Meaning
0b10110 Asynchronous SError interrupt.

All other values are reserved.

The FS field is split as follows:

• FS[4] is VDISR_EL2[10].

VDISR_EL2, Virtual Deferred Interrupt Status Register

Page 1976

• FS[3:0] is VDISR_EL2[3:0].

This field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

Format.

Set to TTBCR.EAE when an ESB instruction defers a virtual SError interrupt.

LPAE Meaning
0b0 Using the Short-descriptor translation table format.

This field resets to an architecturally UNKNOWN value.

Bits [8:4]

Reserved, RES0.

FS[3:0], bits [3:0]

This field is bits[3:0] of FS[4:0].

See FS[4] for the field description.

When EL1 is using AArch32 and VDISR_EL2.LPAE == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

A RES0 AET RES0ExT RES0 LPAE RES0 STATUS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError interrupt.

This field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

The value copied from VSESR_EL2.AET.

This field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

The value copied from VSESR_EL2.ExT.

VDISR_EL2, Virtual Deferred Interrupt Status Register

Page 1977

This field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

LPAE, bit [9]

Format.

Set to TTBCR.EAE when an ESB instruction defers a virtual SError interrupt.

LPAE Meaning
0b1 Using the Long-descriptor translation table format.

This field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status code. Set to 0b010001 when an ESB instruction defers a virtual SError interrupt.

STATUS Meaning
0b010001 Asynchronous SError interrupt.

All other values are reserved.

This field resets to an architecturally UNKNOWN value.

Accessing the VDISR_EL2
An indirect write to VDISR_EL2 made by an ESB instruction does not require an explicit synchronization operation for
the value that is written to be observed by a direct read of DISR_EL1 or DISR occurring in program order after the ESB
instruction.

Accesses to this register use the following encodings:

MRS <Xt>, VDISR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x500];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VDISR_EL2;
elsif PSTATE.EL == EL3 then

return VDISR_EL2;

VDISR_EL2, Virtual Deferred Interrupt Status Register

Page 1978

MSR VDISR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x500] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VDISR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

VDISR_EL2 = X[t];

MRS <Xt>, DISR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AMO == '1' then

return VDISR_EL2;
else

return DISR_EL1;
elsif PSTATE.EL == EL2 then

return DISR_EL1;
elsif PSTATE.EL == EL3 then

return DISR_EL1;

MSR DISR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AMO == '1' then

VDISR_EL2 = X[t];
else

DISR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

DISR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

DISR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VDISR_EL2, Virtual Deferred Interrupt Status Register

Page 1979

VMPIDR_EL2, Virtualization Multiprocessor ID Register
The VMPIDR_EL2 characteristics are:

Purpose
Holds the value of the Virtualization Multiprocessor ID. This is the value returned by EL1 reads of MPIDR_EL1.

Configuration
AArch64 System register VMPIDR_EL2 bits [31:0] are architecturally mapped to AArch32 System register
VMPIDR[31:0] .

If EL2 is not implemented, reads of this register return the value of the MPIDR_EL1 and writes to the register are
ignored.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VMPIDR_EL2 is a 64-bit register.

Field descriptions
The VMPIDR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 Aff3

RES1 U RES0 MT Aff2 Aff1 Aff0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

Affinity level 3. See the description of VMPIDR_EL2.Aff0 for more information.

Aff3 is not supported in AArch32 state.

This field resets to an architecturally UNKNOWN value.

Bit [31]

Reserved, RES1.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system.

U Meaning
0b0 Processor is part of a multiprocessor system.
0b1 Processor is part of a uniprocessor system.

This field resets to an architecturally UNKNOWN value.

VMPIDR_EL2, Virtualization Multiprocessor ID Register

Page 1980

Bits [29:25]

Reserved, RES0.

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading type
approach. See the description of VMPIDR_EL2.Aff0 for more information about affinity levels.

MT Meaning
0b0 Performance of PEs at the lowest affinity level is largely

independent.
0b1 Performance of PEs at the lowest affinity level is very

interdependent.

This field resets to an architecturally UNKNOWN value.

Aff2, bits [23:16]

Affinity level 2. See the description of VMPIDR_EL2.Aff0 for more information.

This field resets to an architecturally UNKNOWN value.

Aff1, bits [15:8]

Affinity level 1. See the description of VMPIDR_EL2.Aff0 for more information.

This field resets to an architecturally UNKNOWN value.

Aff0, bits [7:0]

Affinity level 0. This is the affinity level that is most significant for determining PE behavior. Higher affinity levels are
increasingly less significant in determining PE behavior. The assigned value of the MPIDR.{Aff2, Aff1, Aff0} or
MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set of fields of each PE must be unique within the system as a whole.

This field resets to an architecturally UNKNOWN value.

Accessing the VMPIDR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, VMPIDR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0000 0b0000 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x050];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VMPIDR_EL2;
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
return MPIDR_EL1;

else
return VMPIDR_EL2;

VMPIDR_EL2, Virtualization Multiprocessor ID Register

Page 1981

MSR VMPIDR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0000 0b0000 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x050] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VMPIDR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
//no operation

else
VMPIDR_EL2 = X[t];

MRS <Xt>, MPIDR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0000 0b101

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.MPIDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) then
return VMPIDR_EL2;

else
return MPIDR_EL1;

elsif PSTATE.EL == EL2 then
return MPIDR_EL1;

elsif PSTATE.EL == EL3 then
return MPIDR_EL1;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMPIDR_EL2, Virtualization Multiprocessor ID Register

Page 1982

VNCR_EL2, Virtual Nested Control Register
The VNCR_EL2 characteristics are:

Purpose
When ARMv8.4-NV is implemented, holds the base address that is used to define the memory location that is accessed
by transformed reads and writes of System registers.

Configuration
This register is present only when ARMv8.4-NV is implemented. Otherwise, direct accesses to VNCR_EL2 are
UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VNCR_EL2 is a 64-bit register.

Field descriptions
The VNCR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RESS BADDR

BADDR RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESS, bits [63:53]

Reserved, Sign extended. If the bits marked as RESS do not all have the same value, then there is a CONSTRAINED
UNPREDICTABLE choice between:

• Generating an EL2 translation regime Translation abort on use of the VNCR_EL2 register.
• Bits[63:49] of VNCR_EL2 are treated as the same value as bit[48] for all purposes other than reading back the

register.
• Bits[63:49] of VNCR_EL2 are treated as the same value as bit[48] for all purposes.
• If the virtual address space for EL2 supports more than 48 bits, bits[63:53] of VNCR_EL2 are treated as the

same value as bit[52] for all purposes other than reading back the register.
• If the virtual address space for EL2 supports more than 48 bits, bits[63:53] of VNCR_EL2 are treated as the

same value as bit[52].

Where the EL2 translation regime has upper and lower address ranges, bit[52] is used to select between those
address ranges to determine if the address space supports more than 48 bits.

BADDR, bits [52:12]

Base Address. If the virtual address space for EL2 does not support more than 48 bits, then bits [52:49] are RESS.

When a register read/write is transformed to be a Load or Store, the address of the load/store is to
SignOffset(VNCR_EL2.BADDR:Offset<11:0>, 64).

This field resets to an architecturally UNKNOWN value.

Bits [11:0]

Reserved, RES0.

VNCR_EL2, Virtual Nested Control Register

Page 1983

Accessing the VNCR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, VNCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x0B0];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VNCR_EL2;
elsif PSTATE.EL == EL3 then

return VNCR_EL2;

MSR VNCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x0B0] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VNCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

VNCR_EL2 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VNCR_EL2, Virtual Nested Control Register

Page 1984

VPIDR_EL2, Virtualization Processor ID Register
The VPIDR_EL2 characteristics are:

Purpose
Holds the value of the Virtualization Processor ID. This is the value returned by EL1 reads of MIDR_EL1.

Configuration
AArch64 System register VPIDR_EL2 bits [31:0] are architecturally mapped to AArch32 System register VPIDR[31:0] .

If EL2 is not implemented, reads of this register return the value of the MIDR_EL1 and writes to the register are
ignored.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VPIDR_EL2 is a 64-bit register.

Field descriptions
The VPIDR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

Implementer Variant Architecture PartNum Revision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm. Assigned codes
include the following:

Hex
representation

ASCII
representation Implementer

0x41 A Arm Limited
0x42 B Broadcom Corporation
0x43 C Cavium Inc.
0x44 D Digital Equipment Corporation
0x49 I Infineon Technologies AG
0x4D M Motorola or Freescale

Semiconductor Inc.
0x4E N NVIDIA Corporation
0x50 P Applied Micro Circuits

Corporation
0x51 Q Qualcomm Inc.
0x56 V Marvell International Ltd.
0x69 i Intel Corporation

Arm can assign codes that are not published in this manual. All values not assigned by Arm are reserved and must not
be used.

This field resets to an architecturally UNKNOWN value.

VPIDR_EL2, Virtualization Processor ID Register

Page 1985

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product
variants, or major revisions of a product.

This field resets to an architecturally UNKNOWN value.

Architecture, bits [19:16]

The permitted values of this field are:

Architecture Meaning
0b0001 Armv4.
0b0010 Armv4T.
0b0011 Armv5 (obsolete).
0b0100 Armv5T.
0b0101 Armv5TE.
0b0110 Armv5TEJ.
0b0111 Armv6.
0b1111 Architectural features are individually identified in the

ID_* registers, see 'ID registers' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section K12.3.3.

All other values are reserved.

This field resets to an architecturally UNKNOWN value.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7, the variant and
architecture are encoded differently.

This field resets to an architecturally UNKNOWN value.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

This field resets to an architecturally UNKNOWN value.

Accessing the VPIDR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, VPIDR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0000 0b0000 0b000

VPIDR_EL2, Virtualization Processor ID Register

Page 1986

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x088];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VPIDR_EL2;
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
return MIDR_EL1;

else
return VPIDR_EL2;

MSR VPIDR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0000 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x088] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VPIDR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
//no operation

else
VPIDR_EL2 = X[t];

MRS <Xt>, MIDR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0000 0b000

VPIDR_EL2, Virtualization Processor ID Register

Page 1987

if PSTATE.EL == EL0 then
if IsFeatureImplemented("ARMv8.4-IDST") then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.MIDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && !ELUsingAArch32(EL2) then
return VPIDR_EL2;

else
return MIDR_EL1;

elsif PSTATE.EL == EL2 then
return MIDR_EL1;

elsif PSTATE.EL == EL3 then
return MIDR_EL1;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VPIDR_EL2, Virtualization Processor ID Register

Page 1988

VSESR_EL2, Virtual SError Exception Syndrome
Register

The VSESR_EL2 characteristics are:

Purpose
Provides the syndrome value reported to software on taking a virtual SError interrupt exception to EL1, or on
executing an ESB instruction at EL1.

When the virtual SError interrupt is taken to EL1 using AArch64, then the syndrome value is reported in ESR_EL1.

When the virtual SError interrupt is taken to EL1 using AArch32, then the syndrome value is reported in DFSR.{AET,
ExT} and the remainder of DFSR is set as defined by VMSAv8-32. For more information, see The AArch32 Virtual
Memory System Architecture.

When the virtual SError interrupt is deferred by an ESB instruction, then the syndrome value is written to VDISR_EL2.

Configuration
AArch64 System register VSESR_EL2 bits [31:0] are architecturally mapped to AArch32 System register VDFSR[31:0]
.

This register is present only when RAS is implemented. Otherwise, direct accesses to VSESR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VSESR_EL2 is a 64-bit register.

Field descriptions
The VSESR_EL2 bit assignments are:

When EL1 is using AArch32:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 AET RES0ExT RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

AET, bits [15:14]

When a virtual SError interrupt is taken to EL1 using AArch32, DFSR[15:4] is set to VSESR_EL2.AET.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR_EL2[15:4] is set to VSESR_EL2.AET.

This field resets to an architecturally UNKNOWN value.

VSESR_EL2, Virtual SError Exception Syndrome Register

Page 1989

Bit [13]

Reserved, RES0.

ExT, bit [12]

When a virtual SError interrupt is taken to EL1 using AArch32, DFSR[12] is set to VSESR_EL2.ExT.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR_EL2[12] is set to VSESR_EL2.ExT.

This field resets to an architecturally UNKNOWN value.

Bits [11:0]

Reserved, RES0.

When EL1 is using AArch64:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 IDS ISS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:25]

Reserved, RES0.

IDS, bit [24]

When a virtual SError interrupt is taken to EL1 using AArch64, ESR_EL1[24] is set to VSESR_EL2.IDS.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR_EL2[24] is set to VSESR_EL2.IDS.

This field resets to an architecturally UNKNOWN value.

ISS, bits [23:0]

When a virtual SError interrupt is taken to EL1 using AArch64, ESR_EL1[23:0] is set to VSESR_EL2.ISS.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR_EL2[23:0] is set to VSESR_EL2.ISS.

This field resets to an architecturally UNKNOWN value.

Accessing the VSESR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, VSESR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b011

VSESR_EL2, Virtual SError Exception Syndrome Register

Page 1990

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x508];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VSESR_EL2;
elsif PSTATE.EL == EL3 then

return VSESR_EL2;

MSR VSESR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x508] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VSESR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

VSESR_EL2 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSESR_EL2, Virtual SError Exception Syndrome Register

Page 1991

VSTCR_EL2, Virtualization Secure Translation Control
Register

The VSTCR_EL2 characteristics are:

Purpose
The control register for stage 2 of the Secure EL1&0 translation regime.

Configuration
This register is present only when ARMv8.4-SecEL2 is implemented. Otherwise, direct accesses to VSTCR_EL2 are
UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VSTCR_EL2 is a 64-bit register.

Field descriptions
The VSTCR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES1 SA SW RES0 TG0 RES0 SL0 T0SZ
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the bits in VSTCR_EL2 are permitted to be cached in a TLB.

Bits [63:32]

Reserved, RES0.

Bit [31]

Reserved, RES1.

SA, bit [30]

Secure stage 2 translation output address space.

SA Meaning
0b0 All stage 2 translations for the Secure IPA space access the Secure

PA space.
0b1 All stage 2 translations for the Secure IPA space access the Non-

secure PA space.

When the value of VSTCR_EL2.SW is 1, this bit behaves as 1 for all purposes other than reading back the value of the
bit.

This field resets to an architecturally UNKNOWN value.

VSTCR_EL2, Virtualization Secure Translation Control Register

Page 1992

SW, bit [29]

Secure stage 2 translation address space.

SW Meaning
0b0 All stage 2 translation table walks for the Secure IPA space are to

the Secure PA space.
0b1 All stage 2 translation table walks for the Secure IPA space are to

the Non-secure PA space.

This field resets to an architecturally UNKNOWN value.

Bits [28:16]

Reserved, RES0.

TG0, bits [15:14]

Secure stage 2 granule size for VSTTBR_EL2.

TG0 Meaning
0b00 4KB.
0b01 64KB.
0b10 16KB.

Other values are reserved.

If ARMv8.5-GTG is implemented, ID_AA64MMFR0_EL1.{TGran4_2, TGran16_2, TGran64_2} indicate which granule
sizes are supported for Level 2 translation.

If ARMv8.5-GTG is not implemented, ID_AA64MMFR0_EL1.{TGran4, TGran16, TGran64} indicate which granule sizes
are supported.

If the value is programmed to either a reserved value, or a size that has not been implemented, then for all purposes
other than read back from this register, the hardware will treat the field as if it has been programmed to an
IMPLEMENTATION DEFINED choice of the sizes that has been implemented.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to
the size chosen.

This field resets to an architecturally UNKNOWN value.

Bits [13:8]

Reserved, RES0.

SL0, bits [7:6]

When ARMv8.4-TTST is implemented:

Starting level of the Secure stage 2 translation lookup, controlled by VSTCR_EL2. The meaning of this field depends
on the value of VSTCR_EL2.TG0.

SL0 Meaning
0b00 If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 2. If

VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule),
start at level 3.

0b01 If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 1. If
VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule),
start at level 2.

0b10 If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 0. If
VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule),
start at level 1.

0b11 If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 3.

VSTCR_EL2, Virtualization Secure Translation Control Register

Page 1993

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not consistent with
the programming of VSTCR_EL2.T0SZ, then a stage 2 level 0 Translation fault is generated.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Starting level of the Secure stage 2 translation lookup, controlled by VSTCR_EL2. The meaning of this field depends
on the value of VSTCR_EL2.TG0.

SL0 Meaning
0b00 If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 2. If

VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule),
start at level 3.

0b01 If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 1. If
VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule),
start at level 2.

0b10 If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 0. If
VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule),
start at level 1.

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not consistent with
the programming of VSTCR_EL2.T0SZ, then a stage 2 level 0 Translation fault is generated.

This field resets to an architecturally UNKNOWN value.

T0SZ, bits [5:0]

The size offset of the memory region addressed by VSTTBR_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for this field depend on the level of translation table and the memory
translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

If this field is programmed to a value that is not consistent with the programming of SL0, then a stage 2 level 0
Translation fault is generated.

This field resets to an architecturally UNKNOWN value.

Accessing the VSTCR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, VSTCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0110 0b010

VSTCR_EL2, Virtualization Secure Translation Control Register

Page 1994

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x048];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
return VSTCR_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

return VSTCR_EL2;

MSR VSTCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0110 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x048] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
VSTCR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

VSTCR_EL2 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSTCR_EL2, Virtualization Secure Translation Control Register

Page 1995

VSTTBR_EL2, Virtualization Secure Translation Table
Base Register

The VSTTBR_EL2 characteristics are:

Purpose
The base register for stage 2 of the Secure EL1&0 translation regime. Holds the base address of the translation table
for the initial lookup for stage 2 of an address translation in the Secure EL1&0 translation regime, and other
information for this translation stage.

Configuration
This register is present only when ARMv8.4-SecEL2 is implemented. Otherwise, direct accesses to VSTTBR_EL2 are
UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VSTTBR_EL2 is a 64-bit register.

Field descriptions
The VSTTBR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 BADDR

BADDR CnP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the bits in VSTTBR_EL2 are permitted to be cached in a TLB.

Bits [63:48]

Reserved, RES0.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x].

Note
• Translation table base addresses of 52 bits, A[51:x], are supported only

in an implementation that includes ARMv8.2-LPA and is using the 64KB
translation granule.

• A translation table must be aligned to the size of the table, except that
when using a translation table base address larger than 48 bits the
minimum alignment of a table containing fewer than eight entries is 64
bytes.

If the value of VTCR_EL2.PS is 0b110, then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is determined as
follows:

◦ If x >= 6 then z=x.
◦ Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.

VSTTBR_EL2, Virtualization Secure Translation Table Base Register

Page 1996

• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.

Note

When the value of ID_AA64MMFR0_EL1.PARange indicates that the
implementation does not support a 52 bit PA size, if a translation table lookup
uses this register with the 64KB translation granule when the value of
VTCR_EL2.PS is 0b110 and the value of register bits[5:2] is nonzero, an
Address size fault is generated.

If the Effective value of VTCR_EL2.PS is not 0b110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs then bits[51:48] of the translation table base addresses

used in this stage of translation are 0b0000.

If any VSTTBR_EL2[47:1] bit that is defined as RES0 has the value 1 when a translation table walk is performed using
VSTTBR_EL2, then the translation table base address might be misaligned, with effects that are CONSTRAINED
UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from
the corresponding register bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in
those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of
VSTCR_EL2.T0SZ, the stage of translation, and the translation granule size.

This field resets to an architecturally UNKNOWN value.

CnP, bit [0]

Common not Private, for stage 2 of the Secure EL1&0 translation regime. In an implementation that includes
ARMv8.2-TTCNP, indicates whether each entry that is pointed to by VSTTBR_EL2 is a member of a common set that
can be used by every PE in the Inner Shareable domain for which the value of VSTTBR_EL2.CnP is 1.

CnP Meaning
0b0 The translation table entries pointed to by VSTTBR_EL2 are

permitted to differ from the entries for VSTTBR_EL2 for other PEs
in the Inner Shareable domain. This is not affected by the value of
the current VMID.

0b1 The translation table entries pointed to by VSTTBR_EL2 are the
same as the translation table entries for every other PE in the
Inner Shareable domain for which the value of VSTTBR_EL2.CnP
is 1 and the VMID is the same as the current VMID.

Note

If the value of VSTTBR_EL2.CnP bit is 1 on multiple PEs in the same Inner
Shareable domain and those VSTTBR_EL2s do not point to the same
translation table entries when using the current VMID, then the results of
translations using VSTTBR_EL2 are CONSTRAINED UNPREDICTABLE, see
CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values
on page K1-6254.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally
UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Accessing the VSTTBR_EL2
Accesses to this register use the following encodings:

VSTTBR_EL2, Virtualization Secure Translation Table Base Register

Page 1997

MRS <Xt>, VSTTBR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x030];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
return VSTTBR_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

return VSTTBR_EL2;

MSR VSTTBR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x030] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
VSTTBR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

VSTTBR_EL2 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSTTBR_EL2, Virtualization Secure Translation Table Base Register

Page 1998

VTCR_EL2, Virtualization Translation Control Register
The VTCR_EL2 characteristics are:

Purpose
The control register for stage 2 of the EL1&0 translation regime.

Configuration
AArch64 System register VTCR_EL2 bits [31:0] are architecturally mapped to AArch32 System register VTCR[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VTCR_EL2 is a 64-bit register.

Field descriptions
The VTCR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50494847464544 43 42 41 40 3938373635343332
RES0

RES1NSANSWHWU62HWU61HWU60HWU59RES0HDHARES0VS PS TG0SH0ORGN0IRGN0 SL0 T0SZ
31 30 29 28 27 26 25 24 23 22 21 20 19 18171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Any of the bits in VTCR_EL2 are permitted to be cached in a TLB.

Bits [63:32]

Reserved, RES0.

Bit [31]

Reserved, RES1.

NSA, bit [30]

When ARMv8.4-SecEL2 is implemented:

Non-secure stage 2 translation output address space.

NSA Meaning
0b0 All stage 2 translations for the Non-secure IPA space of the

Secure EL1&0 translation regime access the Secure PA space.
0b1 All stage 2 translations for the Non-secure IPA space of the

Secure EL1&0 translation regime access the Non-secure PA
space.

This bit behaves as 1 for all purposes other than reading back the value of the bit when one of the following is true:

• The PE is executing in Non-secure state.
• The value of VTCR_EL2.NSW is 1.
• The value of VSTCR_EL2.SA is 1.

This field resets to an architecturally UNKNOWN value.

VTCR_EL2, Virtualization Translation Control Register

Page 1999

Otherwise:

Reserved, RES0.

NSW, bit [29]

When ARMv8.4-SecEL2 is implemented:

Non-secure stage 2 translation table address space.

NSW Meaning
0b0 All stage 2 translation table walks for the Non-secure IPA space

of the Secure EL1&0 translation regime are to the Secure PA
space.

0b1 All stage 2 translation table walks for the Non-secure IPA space
of the Secure EL1&0 translation regime are to the Non-secure
PA space.

When the PE is executing in Non-secure state, this bit behaves as 1 for all purposes other than reading back the value
of the bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU62, bit [28]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 2 translation table Block or
Page entry.

HWU62 Meaning
0b0 Bit[62] of each stage 2 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[62] of each stage 2 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU61, bit [27]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 2 translation table Block or
Page entry.

HWU61 Meaning
0b0 Bit[61] of each stage 2 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[61] of each stage 2 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose.

This field resets to an architecturally UNKNOWN value.

VTCR_EL2, Virtualization Translation Control Register

Page 2000

Otherwise:

Reserved, RES0.

HWU60, bit [26]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 2 translation table Block or
Page entry.

HWU60 Meaning
0b0 Bit[60] of each stage 2 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[60] of each stage 2 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU59, bit [25]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 2 translation table Block or
Page entry.

HWU59 Meaning
0b0 Bit[59] of each stage 2 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[59] of each stage 2 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [24:23]

Reserved, RES0.

HD, bit [22]

When ARMv8.1-TTHM is implemented:

Hardware management of dirty state in stage 2 translations when EL2 is enabled in the current Security state.

HD Meaning
0b0 Stage 2 hardware management of dirty state disabled.
0b1 Stage 2 hardware management of dirty state enabled, only if the

VTCR_EL2.HA bit is also set to 1.

This field resets to an architecturally UNKNOWN value.

VTCR_EL2, Virtualization Translation Control Register

Page 2001

Otherwise:

Reserved, RES0.

HA, bit [21]

When ARMv8.1-TTHM is implemented:

Hardware Access flag update in Non-secure and Secure stage 2 translations when EL2 is enabled in the current
Security state.

HA Meaning
0b0 Stage 2 Access flag update disabled.
0b1 Stage 2 Access flag update enabled.

Otherwise:

Reserved, RES0.

Bit [20]

Reserved, RES0.

VS, bit [19]

When ARMv8.1-VMID16 is implemented:

VMID Size.

VS Meaning
0b0 8 bit - the upper 8 bits of VTTBR_EL2 and VSTTBR_EL2 are

ignored by the hardware, and treated as if they are all zeros, for
every purpose except when reading back the register.

0b1 16 bit - the upper 8 bits of VTTBR_EL2 and VSTTBR_EL2 are used
for allocation and matching in the TLB.

If the implementation only supports an 8-bit VMID, this field is RES0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PS, bits [18:16]

Physical address Size for the Second Stage of translation.

PS Meaning
0b000 32 bits, 4GB.
0b001 36 bits, 64GB.
0b010 40 bits, 1TB.
0b011 42 bits, 4TB.
0b100 44 bits, 16TB.
0b101 48 bits, 256TB.
0b110 52 bits, 4PB.

Other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not rely on this
property as the behavior of the reserved values might change in a future revision of the architecture.

VTCR_EL2, Virtualization Translation Control Register

Page 2002

The value 0b110 is permitted only if ARMv8.2-LPA is implemented and the translation granule size is 64KB.

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated as 0b110, then
bits[51:48] of every translation table base address for the stage of translation controlled by VTCR_EL2 are 0b0000.

This field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]

Granule size for the VTTBR_EL2.

TG0 Meaning
0b00 4KB.
0b01 64KB.
0b10 16KB.

Other values are reserved.

If ARMv8.5-GTG is implemented, ID_AA64MMFR0_EL1.{TGran4_2, TGran16_2, TGran64_2} indicate which granule
sizes are supported for Level 2 translation.

If ARMv8.5-GTG is not implemented, ID_AA64MMFR0_EL1.{TGran4, TGran16, TGran64} indicate which granule sizes
are supported.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will
treat the field as if it has been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been
implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to
the size chosen.

This field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using VTTBR_EL2 or VSTTBR_EL2.

SH0 Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED
UNPREDICTABLE, as described in 'Reserved values in AArch64 System registers and translation table entries' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section K1.2.2.

This field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using VTTBR_EL2 or VSTTBR_EL2.

ORGN0 Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using VTTBR_EL2 or VSTTBR_EL2.

VTCR_EL2, Virtualization Translation Control Register

Page 2003

IRGN0 Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate

Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No Write-

Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

SL0, bits [7:6]

When ARMv8.4-TTST is implemented:

Starting level of the Secure stage 2 translation lookup, controlled by VTCR_EL2. The meaning of this field depends on
the value of VTCR_EL2.TG0.

SL0 Meaning
0b00 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 2. If

VTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule),
start at level 3.

0b01 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 1. If
VTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule),
start at level 2.

0b10 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 0. If
VTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule),
start at level 1.

0b11 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 3.

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not consistent with
the programming of VTCR_EL2.T0SZ, then a stage 2 level 0 Translation fault is generated.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Starting level of the Secure stage 2 translation lookup, controlled by VTCR_EL2. The meaning of this field depends on
the value of VTCR_EL2.TG0.

SL0 Meaning
0b00 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 2. If

VTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule),
start at level 3.

0b01 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 1. If
VTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule),
start at level 2.

0b10 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 0. If
VTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule),
start at level 1.

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not consistent with
the programming of VTCR_EL2.T0SZ, then a stage 2 level 0 Translation fault is generated.

This field resets to an architecturally UNKNOWN value.

T0SZ, bits [5:0]

The size offset of the memory region addressed by VTTBR_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory
translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

If this field is programmed to a value that is not consistent with the programming of SL0 then a stage 2 level 0
Translation fault is generated.

This field resets to an architecturally UNKNOWN value.

VTCR_EL2, Virtualization Translation Control Register

Page 2004

Accessing the VTCR_EL2
Any of the bits in VTCR_EL2 are permitted to be cached in a TLB.

Accesses to this register use the following encodings:

MRS <Xt>, VTCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x040];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VTCR_EL2;
elsif PSTATE.EL == EL3 then

return VTCR_EL2;

MSR VTCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x040] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VTCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

VTCR_EL2 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VTCR_EL2, Virtualization Translation Control Register

Page 2005

VTTBR_EL2, Virtualization Translation Table Base
Register

The VTTBR_EL2 characteristics are:

Purpose
Holds the base address of the translation table for the initial lookup for stage 2 of an address translation in the EL1&0
translation regime, and other information for this translation regime.

Configuration
AArch64 System register VTTBR_EL2 bits [63:0] are architecturally mapped to AArch32 System register VTTBR[63:0]
.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VTTBR_EL2 is a 64-bit register.

Field descriptions
The VTTBR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
VMID[15:8] VMID[7:0] BADDR

BADDR CnP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VMID[15:8], bits [63:56]

When ARMv8.1-VMID16 is implemented and VTCR_EL2.VS == 1:

Extension to VMID[7:0]. See VTTBR_EL2.VMID[7:0] for more details.

If EL2 is using AArch32, or if the implementation has an 8-bit VMID, this field is RES0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [55:48]

The VMID for the translation table.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.
• The VTCR_EL2.VS is 0.
• ARMv8.1-VMID16 is not implemented.

This field resets to an architecturally UNKNOWN value.

VTTBR_EL2, Virtualization Translation Table Base Register

Page 2006

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x], bits[47:1].

Note
• Translation table base addresses of 52 bits, A[51:x], are supported only

in an implementation that includes ARMv8.2-LPA and is using the 64KB
translation granule.

• A translation table must be aligned to the size of the table, except that
when using a translation table base address larger than 48 bits the
minimum alignment of a table containing fewer than eight entries is 64
bytes.

In an implementation that includes ARMv8.2-LPA, if the value of VTCR_EL2.PS is 0b110, then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is determined as
follows:

◦ If x >= 6 then z=x.
◦ Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.
• In an implementation that includes ARMv8.2-TTCNP, bit[0] of the stage 1 translation table base address is

zero.

Note
• In an implementation that includes ARMv8.2-LPA a VTCR_EL2.PS value

of 0b110, that selects a PA size of 52 bits, is permitted only when using
the 64KB translation granule.

• When the value of ID_AA64MMFR0_EL1.PARange indicates that the
implementation does not support a 52 bit PA size, if a translation table
lookup uses this register with the 64KB translation granule when the
value of VTCR_EL2.PS is 0b110 and the value of register bits[5:2] is
nonzero, an Address size fault is generated.

If the Effective value of VTCR_EL2.PS is not 0b110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs then bits[51:48] of the translation table base addresses

used in this stage of translation are 0b0000.

Note

This definition applies:

• To an implementation that includes ARMv8.2-LPA and is using a
translation granule smaller than 64KB.

• To any implementation that does not include ARMv8.2-LPA.

If any VTTBR_EL2[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed using
VTTBR_EL2, then the translation table base address might be misaligned, with effects that are CONSTRAINED
UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from
the corresponding register bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in
those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of
VTCR_EL2.T0SZ, the stage of translation, and the translation granule size.

This field resets to an architecturally UNKNOWN value.

VTTBR_EL2, Virtualization Translation Table Base Register

Page 2007

CnP, bit [0]

When ARMv8.2-TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by VTTBR_EL2 is a member of a common
set that can be used by every PE in the Inner Shareable domain for which the value of VTTBR_EL2.CnP is 1.

CnP Meaning
0b0 The translation table entries pointed to by VTTBR_EL2 are

permitted to differ from the entries for VTTBR_EL2 for other PEs
in the Inner Shareable domain. This is not affected by the value of
the current VMID.

0b1 The translation table entries pointed to by VTTBR_EL2 are the
same as the translation table entries for every other PE in the
Inner Shareable domain for which the value of VTTBR_EL2.CnP is
1 and the VMID is the same as the current VMID.

This field is permitted to be cached in a TLB.

Note

If the value of VTTBR_EL2.CnP bit is 1 on multiple PEs in the same Inner
Shareable domain and those VTTBR_EL2s do not point to the same translation
table entries when using the current VMID then the results of translations
using VTTBR_EL2 are CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED
UNPREDICTABLE behaviors due to caching of control or data values' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture
profile.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the VTTBR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, VTTBR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x020];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VTTBR_EL2;
elsif PSTATE.EL == EL3 then

return VTTBR_EL2;

MSR VTTBR_EL2, <Xt>

op0 op1 CRn CRm op2

VTTBR_EL2, Virtualization Translation Table Base Register

Page 2008

0b11 0b100 0b0010 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x020] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VTTBR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

VTTBR_EL2 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VTTBR_EL2, Virtualization Translation Table Base Register

Page 2009

ZCR_EL1, SVE Control Register for EL1
The ZCR_EL1 characteristics are:

Purpose
The SVE Control Register for EL1 is used to control aspects of SVE visible at Exception levels EL1 and EL0.

Configuration
This register is present only when SVE is implemented. Otherwise, direct accesses to ZCR_EL1 are UNDEFINED.

When HCR_EL2.{E2H, TGE} == {1, 1} and EL2 is enabled in the current Security state, the fields in this register
have no effect on execution at EL0

Attributes
ZCR_EL1 is a 64-bit register.

Field descriptions
The ZCR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 RAZ/WI LEN
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Constrains the scalable vector register length for EL1 and EL0 to (LEN+1)x128 bits. For all purposes other than
returning the result of a direct read of ZCR_EL1 then this field behaves as if it is set to the minimum of the stored
value and the constrained length inherited from more privileged Exception levels in the current Security state,
rounded down to the nearest implemented vector length.

An indirect read of ZCR_EL1.LEN appears to occur in program order relative to a direct write of the same register,
without the need for explicit synchronization.

This field resets to an architecturally UNKNOWN value.

Accessing the ZCR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ZCR_EL1 or
ZCR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

ZCR_EL1, SVE Control Register for EL1

Page 2010

MRS <Xt>, ZCR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL1, 0x19);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x1E0];
else

return ZCR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EZ == '0' then
AArch64.SystemAccessTrap(EL3, 0x19);

elsif HCR_EL2.E2H == '1' then
return ZCR_EL2;

else
return ZCR_EL1;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

return ZCR_EL1;

MSR ZCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b000

ZCR_EL1, SVE Control Register for EL1

Page 2011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL1, 0x19);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x1E0] = X[t];
else

ZCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EZ == '0' then
AArch64.SystemAccessTrap(EL3, 0x19);

elsif HCR_EL2.E2H == '1' then
ZCR_EL2 = X[t];

else
ZCR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

ZCR_EL1 = X[t];

MRS <Xt>, ZCR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x1E0];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

return ZCR_EL1;
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

return ZCR_EL1;
else

UNDEFINED;

ZCR_EL1, SVE Control Register for EL1

Page 2012

MSR ZCR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x1E0] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

ZCR_EL1 = X[t];
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

ZCR_EL1 = X[t];
else

UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ZCR_EL1, SVE Control Register for EL1

Page 2013

ZCR_EL2, SVE Control Register for EL2
The ZCR_EL2 characteristics are:

Purpose
The SVE Control Register for EL2 is used to control aspects of SVE visible at Exception levels EL2, EL1, and EL0,
when EL2 is enabled in the current Security state.

Configuration
This register is present only when SVE is implemented. Otherwise, direct accesses to ZCR_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ZCR_EL2 is a 64-bit register.

Field descriptions
The ZCR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 RAZ/WI LEN
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Constrains the scalable vector register length for EL2, EL1, and EL0 to (LEN+1)x128 bits, when EL2 is enabled in the
current Security state. For all purposes other than returning the result of a direct read of ZCR_EL2 then this field
behaves as if it is set to the minimum of the stored value and the constrained length inherited from more privileged
Exception levels in the current Security state, rounded down to the nearest implemented vector length.

An indirect read of ZCR_EL2.LEN appears to occur in program order relative to a direct write of the same register,
without the need for explicit synchronization.

This field resets to an architecturally UNKNOWN value.

Accessing the ZCR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ZCR_EL2 or
ZCR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

ZCR_EL2, SVE Control Register for EL2

Page 2014

MRS <Xt>, ZCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EZ == '0' then
AArch64.SystemAccessTrap(EL3, 0x19);

else
return ZCR_EL2;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

return ZCR_EL2;

MSR ZCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EZ == '0' then
AArch64.SystemAccessTrap(EL3, 0x19);

else
ZCR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

ZCR_EL2 = X[t];

MRS <Xt>, ZCR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b000

ZCR_EL2, SVE Control Register for EL2

Page 2015

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL1, 0x19);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x1E0];
else

return ZCR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EZ == '0' then
AArch64.SystemAccessTrap(EL3, 0x19);

elsif HCR_EL2.E2H == '1' then
return ZCR_EL2;

else
return ZCR_EL1;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

return ZCR_EL1;

MSR ZCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b000

ZCR_EL2, SVE Control Register for EL2

Page 2016

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL1, 0x19);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x1E0] = X[t];
else

ZCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EZ == '0' then
AArch64.SystemAccessTrap(EL3, 0x19);

elsif HCR_EL2.E2H == '1' then
ZCR_EL2 = X[t];

else
ZCR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

ZCR_EL1 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ZCR_EL2, SVE Control Register for EL2

Page 2017

ZCR_EL3, SVE Control Register for EL3
The ZCR_EL3 characteristics are:

Purpose
The SVE Control Register for EL3 is used to control aspects of SVE visible at all Exception levels.

Configuration
This register is present only when SVE is implemented. Otherwise, direct accesses to ZCR_EL3 are UNDEFINED.

Attributes
ZCR_EL3 is a 64-bit register.

Field descriptions
The ZCR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 RAZ/WI LEN
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Constrains the scalable vector register length for all Exception levels to (LEN+1)x128 bits. For all purposes other than
returning the result of a direct read of ZCR_EL3 then this field behaves as if rounded down to the nearest
implemented vector length.

An indirect read of ZCR_EL3.LEN appears to occur in program order relative to a direct write of the same register,
without the need for explicit synchronization.

This field resets to an architecturally UNKNOWN value.

Accessing the ZCR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, ZCR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0010 0b000

ZCR_EL3, SVE Control Register for EL3

Page 2018

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

return ZCR_EL3;

MSR ZCR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

ZCR_EL3 = X[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ZCR_EL3, SVE Control Register for EL3

Page 2019

AArch32 System Registers
ACTLR: Auxiliary Control Register

ACTLR2: Auxiliary Control Register 2

ADFSR: Auxiliary Data Fault Status Register

AIDR: Auxiliary ID Register

AIFSR: Auxiliary Instruction Fault Status Register

AMAIR0: Auxiliary Memory Attribute Indirection Register 0

AMAIR1: Auxiliary Memory Attribute Indirection Register 1

AMCFGR: Activity Monitors Configuration Register

AMCGCR: Activity Monitors Counter Group Configuration Register

AMCNTENCLR0: Activity Monitors Count Enable Clear Register 0

AMCNTENCLR1: Activity Monitors Count Enable Clear Register 1

AMCNTENSET0: Activity Monitors Count Enable Set Register 0

AMCNTENSET1: Activity Monitors Count Enable Set Register 1

AMCR: Activity Monitors Control Register

AMEVCNTR0<n>: Activity Monitors Event Counter Registers 0

AMEVCNTR1<n>: Activity Monitors Event Counter Registers 1

AMEVTYPER0<n>: Activity Monitors Event Type Registers 0

AMEVTYPER1<n>: Activity Monitors Event Type Registers 1

AMUSERENR: Activity Monitors User Enable Register

APSR: Application Program Status Register

CCSIDR: Current Cache Size ID Register

CCSIDR2: Current Cache Size ID Register 2

CLIDR: Cache Level ID Register

CNTFRQ: Counter-timer Frequency register

CNTHCTL: Counter-timer Hyp Control register

CNTHPS_CTL: Counter-timer Secure Physical Timer Control Register (EL2)

CNTHPS_CVAL: Counter-timer Secure Physical Timer CompareValue Register (EL2)

CNTHPS_TVAL: Counter-timer Secure Physical Timer TimerValue Register (EL2)

CNTHP_CTL: Counter-timer Hyp Physical Timer Control register

CNTHP_CVAL: Counter-timer Hyp Physical CompareValue register

CNTHP_TVAL: Counter-timer Hyp Physical Timer TimerValue register

CNTHVS_CTL: Counter-timer Secure Virtual Timer Control Register (EL2)

CNTHVS_CVAL: Counter-timer Secure Virtual Timer CompareValue Register (EL2)

CNTHVS_TVAL: Counter-timer Secure Virtual Timer TimerValue Register (EL2)

AArch32 System Registers

Page 2020

CNTHV_CTL: Counter-timer Virtual Timer Control register (EL2)

CNTHV_CVAL: Counter-timer Virtual Timer CompareValue register (EL2)

CNTHV_TVAL: Counter-timer Virtual Timer TimerValue register (EL2)

CNTKCTL: Counter-timer Kernel Control register

CNTPCT: Counter-timer Physical Count register

CNTPCTSS: Counter-timer Self-Synchronized Physical Count register

CNTP_CTL: Counter-timer Physical Timer Control register

CNTP_CVAL: Counter-timer Physical Timer CompareValue register

CNTP_TVAL: Counter-timer Physical Timer TimerValue register

CNTVCT: Counter-timer Virtual Count register

CNTVCTSS: Counter-timer Self-Synchronized Virtual Count register

CNTVOFF: Counter-timer Virtual Offset register

CNTV_CTL: Counter-timer Virtual Timer Control register

CNTV_CVAL: Counter-timer Virtual Timer CompareValue register

CNTV_TVAL: Counter-timer Virtual Timer TimerValue register

CONTEXTIDR: Context ID Register

CPACR: Architectural Feature Access Control Register

CPSR: Current Program Status Register

CSSELR: Cache Size Selection Register

CTR: Cache Type Register

DACR: Domain Access Control Register

DBGAUTHSTATUS: Debug Authentication Status register

DBGBCR<n>: Debug Breakpoint Control Registers

DBGBVR<n>: Debug Breakpoint Value Registers

DBGBXVR<n>: Debug Breakpoint Extended Value Registers

DBGCLAIMCLR: Debug CLAIM Tag Clear register

DBGCLAIMSET: Debug CLAIM Tag Set register

DBGDCCINT: DCC Interrupt Enable Register

DBGDEVID: Debug Device ID register 0

DBGDEVID1: Debug Device ID register 1

DBGDEVID2: Debug Device ID register 2

DBGDIDR: Debug ID Register

DBGDRAR: Debug ROM Address Register

DBGDSAR: Debug Self Address Register

DBGDSCRext: Debug Status and Control Register, External View

DBGDSCRint: Debug Status and Control Register, Internal View

AArch32 System Registers

Page 2021

DBGDTRRXext: Debug OS Lock Data Transfer Register, Receive, External View

DBGDTRRXint: Debug Data Transfer Register, Receive

DBGDTRTXext: Debug OS Lock Data Transfer Register, Transmit

DBGDTRTXint: Debug Data Transfer Register, Transmit

DBGOSDLR: Debug OS Double Lock Register

DBGOSECCR: Debug OS Lock Exception Catch Control Register

DBGOSLAR: Debug OS Lock Access Register

DBGOSLSR: Debug OS Lock Status Register

DBGPRCR: Debug Power Control Register

DBGVCR: Debug Vector Catch Register

DBGWCR<n>: Debug Watchpoint Control Registers

DBGWFAR: Debug Watchpoint Fault Address Register

DBGWVR<n>: Debug Watchpoint Value Registers

DFAR: Data Fault Address Register

DFSR: Data Fault Status Register

DISR: Deferred Interrupt Status Register

DLR: Debug Link Register

DSPSR: Debug Saved Program Status Register

ELR_hyp: Exception Link Register (Hyp mode)

ERRIDR: Error Record ID Register

ERRSELR: Error Record Select Register

ERXADDR: Selected Error Record Address Register

ERXADDR2: Selected Error Record Address Register 2

ERXCTLR: Selected Error Record Control Register

ERXCTLR2: Selected Error Record Control Register 2

ERXFR: Selected Error Record Feature Register

ERXFR2: Selected Error Record Feature Register 2

ERXMISC0: Selected Error Record Miscellaneous Register 0

ERXMISC1: Selected Error Record Miscellaneous Register 1

ERXMISC2: Selected Error Record Miscellaneous Register 2

ERXMISC3: Selected Error Record Miscellaneous Register 3

ERXMISC4: Selected Error Record Miscellaneous Register 4

ERXMISC5: Selected Error Record Miscellaneous Register 5

ERXMISC6: Selected Error Record Miscellaneous Register 6

ERXMISC7: Selected Error Record Miscellaneous Register 7

ERXSTATUS: Selected Error Record Primary Status Register

AArch32 System Registers

Page 2022

FCSEIDR: FCSE Process ID register

FPEXC: Floating-Point Exception Control register

FPSCR: Floating-Point Status and Control Register

FPSID: Floating-Point System ID register

HACR: Hyp Auxiliary Configuration Register

HACTLR: Hyp Auxiliary Control Register

HACTLR2: Hyp Auxiliary Control Register 2

HADFSR: Hyp Auxiliary Data Fault Status Register

HAIFSR: Hyp Auxiliary Instruction Fault Status Register

HAMAIR0: Hyp Auxiliary Memory Attribute Indirection Register 0

HAMAIR1: Hyp Auxiliary Memory Attribute Indirection Register 1

HCPTR: Hyp Architectural Feature Trap Register

HCR: Hyp Configuration Register

HCR2: Hyp Configuration Register 2

HDCR: Hyp Debug Control Register

HDFAR: Hyp Data Fault Address Register

HIFAR: Hyp Instruction Fault Address Register

HMAIR0: Hyp Memory Attribute Indirection Register 0

HMAIR1: Hyp Memory Attribute Indirection Register 1

HPFAR: Hyp IPA Fault Address Register

HRMR: Hyp Reset Management Register

HSCTLR: Hyp System Control Register

HSR: Hyp Syndrome Register

HSTR: Hyp System Trap Register

HTCR: Hyp Translation Control Register

HTPIDR: Hyp Software Thread ID Register

HTRFCR: Hyp Trace Filter Control Register

HTTBR: Hyp Translation Table Base Register

HVBAR: Hyp Vector Base Address Register

ICC_AP0R<n>: Interrupt Controller Active Priorities Group 0 Registers

ICC_AP1R<n>: Interrupt Controller Active Priorities Group 1 Registers

ICC_ASGI1R: Interrupt Controller Alias Software Generated Interrupt Group 1 Register

ICC_BPR0: Interrupt Controller Binary Point Register 0

ICC_BPR1: Interrupt Controller Binary Point Register 1

ICC_CTLR: Interrupt Controller Control Register

ICC_DIR: Interrupt Controller Deactivate Interrupt Register

AArch32 System Registers

Page 2023

ICC_EOIR0: Interrupt Controller End Of Interrupt Register 0

ICC_EOIR1: Interrupt Controller End Of Interrupt Register 1

ICC_HPPIR0: Interrupt Controller Highest Priority Pending Interrupt Register 0

ICC_HPPIR1: Interrupt Controller Highest Priority Pending Interrupt Register 1

ICC_HSRE: Interrupt Controller Hyp System Register Enable register

ICC_IAR0: Interrupt Controller Interrupt Acknowledge Register 0

ICC_IAR1: Interrupt Controller Interrupt Acknowledge Register 1

ICC_IGRPEN0: Interrupt Controller Interrupt Group 0 Enable register

ICC_IGRPEN1: Interrupt Controller Interrupt Group 1 Enable register

ICC_MCTLR: Interrupt Controller Monitor Control Register

ICC_MGRPEN1: Interrupt Controller Monitor Interrupt Group 1 Enable register

ICC_MSRE: Interrupt Controller Monitor System Register Enable register

ICC_PMR: Interrupt Controller Interrupt Priority Mask Register

ICC_RPR: Interrupt Controller Running Priority Register

ICC_SGI0R: Interrupt Controller Software Generated Interrupt Group 0 Register

ICC_SGI1R: Interrupt Controller Software Generated Interrupt Group 1 Register

ICC_SRE: Interrupt Controller System Register Enable register

ICH_AP0R<n>: Interrupt Controller Hyp Active Priorities Group 0 Registers

ICH_AP1R<n>: Interrupt Controller Hyp Active Priorities Group 1 Registers

ICH_EISR: Interrupt Controller End of Interrupt Status Register

ICH_ELRSR: Interrupt Controller Empty List Register Status Register

ICH_HCR: Interrupt Controller Hyp Control Register

ICH_LR<n>: Interrupt Controller List Registers

ICH_LRC<n>: Interrupt Controller List Registers

ICH_MISR: Interrupt Controller Maintenance Interrupt State Register

ICH_VMCR: Interrupt Controller Virtual Machine Control Register

ICH_VTR: Interrupt Controller VGIC Type Register

ICV_AP0R<n>: Interrupt Controller Virtual Active Priorities Group 0 Registers

ICV_AP1R<n>: Interrupt Controller Virtual Active Priorities Group 1 Registers

ICV_BPR0: Interrupt Controller Virtual Binary Point Register 0

ICV_BPR1: Interrupt Controller Virtual Binary Point Register 1

ICV_CTLR: Interrupt Controller Virtual Control Register

ICV_DIR: Interrupt Controller Deactivate Virtual Interrupt Register

ICV_EOIR0: Interrupt Controller Virtual End Of Interrupt Register 0

ICV_EOIR1: Interrupt Controller Virtual End Of Interrupt Register 1

ICV_HPPIR0: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

AArch32 System Registers

Page 2024

ICV_HPPIR1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

ICV_IAR0: Interrupt Controller Virtual Interrupt Acknowledge Register 0

ICV_IAR1: Interrupt Controller Virtual Interrupt Acknowledge Register 1

ICV_IGRPEN0: Interrupt Controller Virtual Interrupt Group 0 Enable register

ICV_IGRPEN1: Interrupt Controller Virtual Interrupt Group 1 Enable register

ICV_PMR: Interrupt Controller Virtual Interrupt Priority Mask Register

ICV_RPR: Interrupt Controller Virtual Running Priority Register

ID_AFR0: Auxiliary Feature Register 0

ID_DFR0: Debug Feature Register 0

ID_DFR1: Debug Feature Register 1

ID_ISAR0: Instruction Set Attribute Register 0

ID_ISAR1: Instruction Set Attribute Register 1

ID_ISAR2: Instruction Set Attribute Register 2

ID_ISAR3: Instruction Set Attribute Register 3

ID_ISAR4: Instruction Set Attribute Register 4

ID_ISAR5: Instruction Set Attribute Register 5

ID_ISAR6: Instruction Set Attribute Register 6

ID_MMFR0: Memory Model Feature Register 0

ID_MMFR1: Memory Model Feature Register 1

ID_MMFR2: Memory Model Feature Register 2

ID_MMFR3: Memory Model Feature Register 3

ID_MMFR4: Memory Model Feature Register 4

ID_MMFR5: Memory Model Feature Register 5

ID_PFR0: Processor Feature Register 0

ID_PFR1: Processor Feature Register 1

ID_PFR2: Processor Feature Register 2

IFAR: Instruction Fault Address Register

IFSR: Instruction Fault Status Register

ISR: Interrupt Status Register

JIDR: Jazelle ID Register

JMCR: Jazelle Main Configuration Register

JOSCR: Jazelle OS Control Register

MAIR0: Memory Attribute Indirection Register 0

MAIR1: Memory Attribute Indirection Register 1

MIDR: Main ID Register

MPIDR: Multiprocessor Affinity Register

AArch32 System Registers

Page 2025

MVBAR: Monitor Vector Base Address Register

MVFR0: Media and VFP Feature Register 0

MVFR1: Media and VFP Feature Register 1

MVFR2: Media and VFP Feature Register 2

NMRR: Normal Memory Remap Register

NSACR: Non-Secure Access Control Register

PAR: Physical Address Register

PMCCFILTR: Performance Monitors Cycle Count Filter Register

PMCCNTR: Performance Monitors Cycle Count Register

PMCEID0: Performance Monitors Common Event Identification register 0

PMCEID1: Performance Monitors Common Event Identification register 1

PMCEID2: Performance Monitors Common Event Identification register 2

PMCEID3: Performance Monitors Common Event Identification register 3

PMCNTENCLR: Performance Monitors Count Enable Clear register

PMCNTENSET: Performance Monitors Count Enable Set register

PMCR: Performance Monitors Control Register

PMEVCNTR<n>: Performance Monitors Event Count Registers

PMEVTYPER<n>: Performance Monitors Event Type Registers

PMINTENCLR: Performance Monitors Interrupt Enable Clear register

PMINTENSET: Performance Monitors Interrupt Enable Set register

PMMIR: Performance Monitors Machine Identification Register

PMOVSR: Performance Monitors Overflow Flag Status Register

PMOVSSET: Performance Monitors Overflow Flag Status Set register

PMSELR: Performance Monitors Event Counter Selection Register

PMSWINC: Performance Monitors Software Increment register

PMUSERENR: Performance Monitors User Enable Register

PMXEVCNTR: Performance Monitors Selected Event Count Register

PMXEVTYPER: Performance Monitors Selected Event Type Register

PRRR: Primary Region Remap Register

REVIDR: Revision ID Register

RMR: Reset Management Register

RVBAR: Reset Vector Base Address Register

SCR: Secure Configuration Register

SCTLR: System Control Register

SDCR: Secure Debug Control Register

SDER: Secure Debug Enable Register

AArch32 System Registers

Page 2026

SPSR: Saved Program Status Register

SPSR_abt: Saved Program Status Register (Abort mode)

SPSR_fiq: Saved Program Status Register (FIQ mode)

SPSR_hyp: Saved Program Status Register (Hyp mode)

SPSR_irq: Saved Program Status Register (IRQ mode)

SPSR_mon: Saved Program Status Register (Monitor mode)

SPSR_svc: Saved Program Status Register (Supervisor mode)

SPSR_und: Saved Program Status Register (Undefined mode)

TCMTR: TCM Type Register

TLBTR: TLB Type Register

TPIDRPRW: PL1 Software Thread ID Register

TPIDRURO: PL0 Read-Only Software Thread ID Register

TPIDRURW: PL0 Read/Write Software Thread ID Register

TRFCR: Trace Filter Control Register

TTBCR: Translation Table Base Control Register

TTBCR2: Translation Table Base Control Register 2

TTBR0: Translation Table Base Register 0

TTBR1: Translation Table Base Register 1

VBAR: Vector Base Address Register

VDFSR: Virtual SError Exception Syndrome Register

VDISR: Virtual Deferred Interrupt Status Register

VMPIDR: Virtualization Multiprocessor ID Register

VPIDR: Virtualization Processor ID Register

VTCR: Virtualization Translation Control Register

VTTBR: Virtualization Translation Table Base Register

09/12/2019 19:23

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AArch32 System Registers

Page 2027

AArch32 System Instructions
ATS12NSOPR: Address Translate Stages 1 and 2 Non-secure Only PL1 Read

ATS12NSOPW: Address Translate Stages 1 and 2 Non-secure Only PL1 Write

ATS12NSOUR: Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read

ATS12NSOUW: Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write

ATS1CPR: Address Translate Stage 1 Current state PL1 Read

ATS1CPRP: Address Translate Stage 1 Current state PL1 Read PAN

ATS1CPW: Address Translate Stage 1 Current state PL1 Write

ATS1CPWP: Address Translate Stage 1 Current state PL1 Write PAN

ATS1CUR: Address Translate Stage 1 Current state Unprivileged Read

ATS1CUW: Address Translate Stage 1 Current state Unprivileged Write

ATS1HR: Address Translate Stage 1 Hyp mode Read

ATS1HW: Address Translate Stage 1 Hyp mode Write

BPIALL: Branch Predictor Invalidate All

BPIALLIS: Branch Predictor Invalidate All, Inner Shareable

BPIMVA: Branch Predictor Invalidate by VA

CFPRCTX: Control Flow Prediction Restriction by Context

CP15DMB: Data Memory Barrier System instruction

CP15DSB: Data Synchronization Barrier System instruction

CP15ISB: Instruction Synchronization Barrier System instruction

CPPRCTX: Cache Prefetch Prediction Restriction by Context

DCCIMVAC: Data Cache line Clean and Invalidate by VA to PoC

DCCISW: Data Cache line Clean and Invalidate by Set/Way

DCCMVAC: Data Cache line Clean by VA to PoC

DCCMVAU: Data Cache line Clean by VA to PoU

DCCSW: Data Cache line Clean by Set/Way

DCIMVAC: Data Cache line Invalidate by VA to PoC

DCISW: Data Cache line Invalidate by Set/Way

DTLBIALL: Data TLB Invalidate All

DTLBIASID: Data TLB Invalidate by ASID match

DTLBIMVA: Data TLB Invalidate by VA

DVPRCTX: Data Value Prediction Restriction by Context

ICIALLU: Instruction Cache Invalidate All to PoU

ICIALLUIS: Instruction Cache Invalidate All to PoU, Inner Shareable

ICIMVAU: Instruction Cache line Invalidate by VA to PoU

AArch32 System Instructions

Page 2028

ITLBIALL: Instruction TLB Invalidate All

ITLBIASID: Instruction TLB Invalidate by ASID match

ITLBIMVA: Instruction TLB Invalidate by VA

TLBIALL: TLB Invalidate All

TLBIALLH: TLB Invalidate All, Hyp mode

TLBIALLHIS: TLB Invalidate All, Hyp mode, Inner Shareable

TLBIALLIS: TLB Invalidate All, Inner Shareable

TLBIALLNSNH: TLB Invalidate All, Non-Secure Non-Hyp

TLBIALLNSNHIS: TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable

TLBIASID: TLB Invalidate by ASID match

TLBIASIDIS: TLB Invalidate by ASID match, Inner Shareable

TLBIIPAS2: TLB Invalidate by Intermediate Physical Address, Stage 2

TLBIIPAS2IS: TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable

TLBIIPAS2L: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level

TLBIIPAS2LIS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable

TLBIMVA: TLB Invalidate by VA

TLBIMVAA: TLB Invalidate by VA, All ASID

TLBIMVAAIS: TLB Invalidate by VA, All ASID, Inner Shareable

TLBIMVAAL: TLB Invalidate by VA, All ASID, Last level

TLBIMVAALIS: TLB Invalidate by VA, All ASID, Last level, Inner Shareable

TLBIMVAH: TLB Invalidate by VA, Hyp mode

TLBIMVAHIS: TLB Invalidate by VA, Hyp mode, Inner Shareable

TLBIMVAIS: TLB Invalidate by VA, Inner Shareable

TLBIMVAL: TLB Invalidate by VA, Last level

TLBIMVALH: TLB Invalidate by VA, Last level, Hyp mode

TLBIMVALHIS: TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable

TLBIMVALIS: TLB Invalidate by VA, Last level, Inner Shareable

09/12/2019 19:23

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AArch32 System Instructions

Page 2029

ACTLR, Auxiliary Control Register
The ACTLR characteristics are:

Purpose
Provides IMPLEMENTATION DEFINED configuration and control options for execution at EL1 and EL0.

Configuration
AArch32 System register ACTLR bits [31:0] are architecturally mapped to AArch64 System register ACTLR_EL1[31:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ACTLR
are UNKNOWN.

Some bits might define global configuration settings, and be common to the Secure and Non-secure instances of the
register.

Attributes
ACTLR is a 32-bit register.

Field descriptions
The ACTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the ACTLR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0000 0b001

ACTLR, Auxiliary Control Register

Page 2030

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TACR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TAC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return ACTLR_NS;
else

return ACTLR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return ACTLR_NS;

else
return ACTLR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return ACTLR_S;
else

return ACTLR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TACR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TAC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

ACTLR_NS = R[t];
else

ACTLR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
ACTLR_NS = R[t];

else
ACTLR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

ACTLR_S = R[t];
else

ACTLR_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ACTLR, Auxiliary Control Register

Page 2031

ACTLR2, Auxiliary Control Register 2
The ACTLR2 characteristics are:

Purpose
Provides additional space to the ACTLR register to hold IMPLEMENTATION DEFINED trap functionality for execution at
EL1 and EL0.

Configuration
AArch32 System register ACTLR2 bits [31:0] are architecturally mapped to AArch64 System register
ACTLR_EL1[63:32] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ACTLR2
are UNKNOWN.

In Armv8.0 and Armv8.1, it is IMPLEMENTATION DEFINED whether this register is implemented, or whether it causes
UNDEFINED exceptions when accessed. The implementation of this register can be detected by examining
ID_MMFR4.AC2.

From Armv8.2 this register must be implemented.

Attributes
ACTLR2 is a 32-bit register.

Field descriptions
The ACTLR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the ACTLR2
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0000 0b011

ACTLR2, Auxiliary Control Register 2

Page 2032

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TACR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TAC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return ACTLR2_NS;
else

return ACTLR2;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return ACTLR2_NS;

else
return ACTLR2;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return ACTLR2_S;
else

return ACTLR2_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0000 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TACR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TAC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

ACTLR2_NS = R[t];
else

ACTLR2 = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
ACTLR2_NS = R[t];

else
ACTLR2 = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

ACTLR2_S = R[t];
else

ACTLR2_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ACTLR2, Auxiliary Control Register 2

Page 2033

ADFSR, Auxiliary Data Fault Status Register
The ADFSR characteristics are:

Purpose
Provides additional IMPLEMENTATION DEFINED fault status information for Data Abort exceptions taken to EL1 modes,
and EL3 modes when EL3 is implemented and is using AArch32.

Configuration
AArch32 System register ADFSR bits [31:0] are architecturally mapped to AArch64 System register AFSR0_EL1[31:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ADFSR
are UNKNOWN.

Attributes
ADFSR is a 32-bit register.

Field descriptions
The ADFSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the ADFSR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0001 0b000

ADFSR, Auxiliary Data Fault Status Register

Page 2034

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return ADFSR_NS;
else

return ADFSR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return ADFSR_NS;

else
return ADFSR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return ADFSR_S;
else

return ADFSR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

ADFSR_NS = R[t];
else

ADFSR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
ADFSR_NS = R[t];

else
ADFSR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

ADFSR_S = R[t];
else

ADFSR_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADFSR, Auxiliary Data Fault Status Register

Page 2035

AIDR, Auxiliary ID Register
The AIDR characteristics are:

Purpose
Provides IMPLEMENTATION DEFINED identification information.

The value of this register must be used in conjunction with the value of MIDR.

Configuration
AArch32 System register AIDR bits [31:0] are architecturally mapped to AArch64 System register AIDR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to AIDR are
UNKNOWN.

Attributes
AIDR is a 32-bit register.

Field descriptions
The AIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AIDR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b001 0b0000 0b0000 0b111

AIDR, Auxiliary ID Register

Page 2036

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return AIDR;
elsif PSTATE.EL == EL2 then

return AIDR;
elsif PSTATE.EL == EL3 then

return AIDR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AIDR, Auxiliary ID Register

Page 2037

AIFSR, Auxiliary Instruction Fault Status Register
The AIFSR characteristics are:

Purpose
Provides additional IMPLEMENTATION DEFINED fault status information for Prefetch Abort exceptions taken to EL1
modes, and EL3 modes when EL3 is implemented and is using AArch32.

Configuration
AArch32 System register AIFSR bits [31:0] are architecturally mapped to AArch64 System register AFSR1_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to AIFSR
are UNKNOWN.

Attributes
AIFSR is a 32-bit register.

Field descriptions
The AIFSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the AIFSR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0001 0b001

AIFSR, Auxiliary Instruction Fault Status Register

Page 2038

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return AIFSR_NS;
else

return AIFSR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return AIFSR_NS;

else
return AIFSR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return AIFSR_S;
else

return AIFSR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

AIFSR_NS = R[t];
else

AIFSR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
AIFSR_NS = R[t];

else
AIFSR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

AIFSR_S = R[t];
else

AIFSR_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AIFSR, Auxiliary Instruction Fault Status Register

Page 2039

AMAIR0, Auxiliary Memory Attribute Indirection
Register 0

The AMAIR0 characteristics are:

Purpose
When using the Long-descriptor format translation tables for stage 1 translations, provides IMPLEMENTATION DEFINED
memory attributes for the memory regions specified by MAIR0.

Configuration
AArch32 System register AMAIR0 bits [31:0] are architecturally mapped to AArch64 System register
AMAIR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to AMAIR0
are UNKNOWN.

Attributes
AMAIR0 is a 32-bit register.

Field descriptions
The AMAIR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

This register is RES0 in the following cases:

• When an implementation does not provide any IMPLEMENTATION DEFINED memory attributes.
• When the Long-descriptor translation table format is not used.

If EL3 is implemented and is using AArch32:

• AMAIR0(S) gives the value for memory accesses from Secure state.
• AMAIR0(NS) gives the value for memory accesses from Non-secure states other than Hyp mode.

Any IMPLEMENTATION DEFINED memory attributes are additional qualifiers for the memory locations and must not
change the architected behavior specified by MAIR0 and MAIR1.

In a typical implementation, AMAIR0 and AMAIR1 split into eight one-byte fields, corresponding to the
MAIRn.Attr<n> fields, but the architecture does not require them to do so.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the AMAIR0
Accesses to this register use the following encodings:

AMAIR0, Auxiliary Memory Attribute Indirection Register 0

Page 2040

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return AMAIR0_NS;
else

return AMAIR0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return AMAIR0_NS;

else
return AMAIR0;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return AMAIR0_S;
else

return AMAIR0_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0011 0b000

AMAIR0, Auxiliary Memory Attribute Indirection Register 0

Page 2041

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

AMAIR0_NS = R[t];
else

AMAIR0 = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
AMAIR0_NS = R[t];

else
AMAIR0 = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if SCR.NS == '0' then
AMAIR0_S = R[t];

else
AMAIR0_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMAIR0, Auxiliary Memory Attribute Indirection Register 0

Page 2042

AMAIR1, Auxiliary Memory Attribute Indirection
Register 1

The AMAIR1 characteristics are:

Purpose
When using the Long-descriptor format translation tables for stage 1 translations, provides IMPLEMENTATION DEFINED
memory attributes for the memory regions specified by MAIR1.

Configuration
AArch32 System register AMAIR1 bits [31:0] are architecturally mapped to AArch64 System register
AMAIR_EL1[63:32] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to AMAIR1
are UNKNOWN.

When EL3 is using AArch32, write access to AMAIR1(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

Attributes
AMAIR1 is a 32-bit register.

Field descriptions
The AMAIR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

This register is RES0 in the following cases:

• When an implementation does not provide any IMPLEMENTATION DEFINED memory attributes.
• When the Long-descriptor translation table format is not used.

If EL3 is implemented and is using AArch32:

• AMAIR1(S) gives the value for memory accesses from Secure state.
• AMAIR1(NS) gives the value for memory accesses from Non-secure states other than Hyp mode.

Any IMPLEMENTATION DEFINED memory attributes are additional qualifiers for the memory locations and must not
change the architected behavior specified by MAIR0 and MAIR1.

In a typical implementation, AMAIR0 and AMAIR1 split into eight one-byte fields, corresponding to the
MAIRn.Attr<n> fields, but the architecture does not require them to do so.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the AMAIR1
Accesses to this register use the following encodings:

AMAIR1, Auxiliary Memory Attribute Indirection Register 1

Page 2043

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return AMAIR1_NS;
else

return AMAIR1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return AMAIR1_NS;

else
return AMAIR1;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return AMAIR1_S;
else

return AMAIR1_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0011 0b001

AMAIR1, Auxiliary Memory Attribute Indirection Register 1

Page 2044

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

AMAIR1_NS = R[t];
else

AMAIR1 = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
AMAIR1_NS = R[t];

else
AMAIR1 = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if SCR.NS == '0' then
AMAIR1_S = R[t];

else
AMAIR1_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMAIR1, Auxiliary Memory Attribute Indirection Register 1

Page 2045

AMCFGR, Activity Monitors Configuration Register
The AMCFGR characteristics are:

Purpose
Global configuration register for the activity monitors.

Provides information on supported features, the number of counter groups implemented, the total number of activity
monitor event counters implemented, and the size of the counters. AMCFGR is applicable to both the architected and
the auxiliary counter groups.

Configuration
AArch32 System register AMCFGR bits [31:0] are architecturally mapped to AArch64 System register
AMCFGR_EL0[31:0] .

AArch32 System register AMCFGR bits [31:0] are architecturally mapped to External register AMCFGR[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCFGR are UNDEFINED.

Attributes
AMCFGR is a 32-bit register.

Field descriptions
The AMCFGR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NCG RES0 HDBG RAZ SIZE N

NCG, bits [31:28]

Defines the number of counter groups.

The number of implemented counter groups is defined as [AMCFGR.NCG + 1].

If the number of implemented auxiliary activity monitor event counters is zero, this field has a value of 0b0000.
Otherwise, this field has a value of 0b0001.

Bits [27:25]

Reserved, RES0.

HDBG, bit [24]

Halt-on-debug supported.

From Armv8, this feature must be supported, and so this bit is 0b1.

HDBG Meaning
0b0 AMCR.HDBG is RES0.
0b1 AMCR.HDBG is read/write.

Bits [23:14]

Reserved, RAZ.

AMCFGR, Activity Monitors Configuration Register

Page 2046

SIZE, bits [13:8]

Defines the size of activity monitor event counters.

The size of the activity monitor event counters implemented by the Activity Monitors Extension is defined as
[AMCFGR.SIZE + 1].

From Armv8, the counters are 64-bit, and so this field is 0b111111.

Note

Software also uses this field to determine the spacing of counters in the
memory-map. From Armv8, the counters are at doubleword-aligned addresses.

N, bits [7:0]

Defines the number of activity monitor event counters.

The total number of counters implemented in all groups by the Activity Monitors Extension is defined as [AMCFGR.N
+ 1].

Accessing the AMCFGR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0010 0b001

AMCFGR, Activity Monitors Configuration Register

Page 2047

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return AMCFGR;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return AMCFGR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return AMCFGR;

elsif PSTATE.EL == EL3 then
return AMCFGR;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCFGR, Activity Monitors Configuration Register

Page 2048

AMCGCR, Activity Monitors Counter Group
Configuration Register

The AMCGCR characteristics are:

Purpose
Provides information on the number of activity monitor event counters implemented within each counter group.

Configuration
AArch32 System register AMCGCR bits [31:0] are architecturally mapped to AArch64 System register
AMCGCR_EL0[31:0] .

AArch32 System register AMCGCR bits [31:0] are architecturally mapped to External register AMCGCR[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCGCR are UNDEFINED.

Attributes
AMCGCR is a 32-bit register.

Field descriptions
The AMCGCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CG1NC CG0NC

Bits [31:16]

Reserved, RES0.

CG1NC, bits [15:8]

Counter Group 1 Number of Counters. The number of counters in the auxiliary counter group.

In AMUv1, the permitted range of values is 0 to 16.

CG0NC, bits [7:0]

Counter Group 0 Number of Counters. The number of counters in the architected counter group.

In AMUv1, the value of this field is 4.

Accessing the AMCGCR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0010 0b010

AMCGCR, Activity Monitors Counter Group Configuration Register

Page 2049

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return AMCGCR;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return AMCGCR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return AMCGCR;

elsif PSTATE.EL == EL3 then
return AMCGCR;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCGCR, Activity Monitors Counter Group Configuration Register

Page 2050

AMCNTENCLR0, Activity Monitors Count Enable Clear
Register 0

The AMCNTENCLR0 characteristics are:

Purpose
Disable control bits for the architected activity monitors event counters, AMEVCNTR0<n>.

Configuration
AArch32 System register AMCNTENCLR0 bits [31:0] are architecturally mapped to AArch64 System register
AMCNTENCLR0_EL0[31:0] .

AArch32 System register AMCNTENCLR0 bits [31:0] are architecturally mapped to External register
AMCNTENCLR0[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCNTENCLR0 are
UNDEFINED.

Attributes
AMCNTENCLR0 is a 32-bit register.

Field descriptions
The AMCNTENCLR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 P<n>, bit [n]

Bits [31:16]

Reserved, RES0.

P<n>, bit [n], for n = 0 to 15

Activity monitor event counter disable bit for AMEVCNTR0<n>.

Bits [31:16] are RES0. Bits [15:N] are RAZ/WI. N is the value in AMCGCR.CG0NC.

Possible values of each bit are:

P<n> Meaning
0b0 When read, means that AMEVCNTR0<n> is disabled. When

written, has no effect.
0b1 When read, means that AMEVCNTR0<n> is enabled. When

written, disables AMEVCNTR0<n>.

On a Cold reset, this field resets to 0.

Accessing the AMCNTENCLR0
Accesses to this register use the following encodings:

AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0

Page 2051

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0010 0b100

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return AMCNTENCLR0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return AMCNTENCLR0;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return AMCNTENCLR0;
elsif PSTATE.EL == EL3 then

return AMCNTENCLR0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0010 0b100

AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0

Page 2052

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif IsHighestEL(PSTATE.EL) then
AMCNTENCLR0 = R[t];

else
UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0

Page 2053

AMCNTENCLR1, Activity Monitors Count Enable Clear
Register 1

The AMCNTENCLR1 characteristics are:

Purpose
Disable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>.

Configuration
AArch32 System register AMCNTENCLR1 bits [31:0] are architecturally mapped to AArch64 System register
AMCNTENCLR1_EL0[31:0] .

AArch32 System register AMCNTENCLR1 bits [31:0] are architecturally mapped to External register
AMCNTENCLR1[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCNTENCLR1 are
UNDEFINED.

Attributes
AMCNTENCLR1 is a 32-bit register.

Field descriptions
The AMCNTENCLR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 P<n>, bit [n]

Bits [31:16]

Reserved, RES0.

P<n>, bit [n], for n = 0 to 15

Activity monitor event counter disable bit for AMEVCNTR1<n>.

Bits [31:16] are RES0. Bits [15:N] are RAZ/WI. N is the value in AMCGCR_EL0.CG1NC.

Possible values of each bit are:

P<n> Meaning
0b0 When read, means that AMEVCNTR1<n> is disabled. When

written, has no effect.
0b1 When read, means that AMEVCNTR1<n> is enabled. When

written, disables AMEVCNTR1<n>.

On a Cold reset, this field resets to 0.

Accessing the AMCNTENCLR1
If the number of auxiliary activity monitor event counters implemented is zero, reads and writes of AMCNTENCLR1
are UNDEFINED.

Note

AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1

Page 2054

The number of auxiliary activity monitor event counters implemented is zero
exactly when AMCFGR.NCG == 0b0000.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0011 0b000

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return AMCNTENCLR1;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return AMCNTENCLR1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return AMCNTENCLR1;
elsif PSTATE.EL == EL3 then

return AMCNTENCLR1;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1

Page 2055

0b1111 0b000 0b1101 0b0011 0b000

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif IsHighestEL(PSTATE.EL) then
AMCNTENCLR1 = R[t];

else
UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1

Page 2056

AMCNTENSET0, Activity Monitors Count Enable Set
Register 0

The AMCNTENSET0 characteristics are:

Purpose
Enable control bits for the architected activity monitors event counters, AMEVCNTR0<n>.

Configuration
AArch32 System register AMCNTENSET0 bits [31:0] are architecturally mapped to AArch64 System register
AMCNTENSET0_EL0[31:0] .

AArch32 System register AMCNTENSET0 bits [31:0] are architecturally mapped to External register
AMCNTENSET0[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCNTENSET0 are
UNDEFINED.

Attributes
AMCNTENSET0 is a 32-bit register.

Field descriptions
The AMCNTENSET0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 P<n>, bit [n]

Bits [31:16]

Reserved, RES0.

P<n>, bit [n], for n = 0 to 15

Activity monitor event counter enable bit for AMEVCNTR0<n>.

Bits [31:16] are RES0. Bits [15:N] are RAZ/WI. N is the value in AMCGCR.CG0NC.

Possible values of each bit are:

P<n> Meaning
0b0 When read, means that AMEVCNTR0<n> is disabled. When

written, has no effect.
0b1 When read, means that AMEVCNTR0<n> is enabled. When

written, enables AMEVCNTR0<n>.

On a Cold reset, this field resets to 0.

Accessing the AMCNTENSET0
Accesses to this register use the following encodings:

AMCNTENSET0, Activity Monitors Count Enable Set Register 0

Page 2057

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0010 0b101

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return AMCNTENSET0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return AMCNTENSET0;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return AMCNTENSET0;
elsif PSTATE.EL == EL3 then

return AMCNTENSET0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0010 0b101

AMCNTENSET0, Activity Monitors Count Enable Set Register 0

Page 2058

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif IsHighestEL(PSTATE.EL) then
AMCNTENSET0 = R[t];

else
UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCNTENSET0, Activity Monitors Count Enable Set Register 0

Page 2059

AMCNTENSET1, Activity Monitors Count Enable Set
Register 1

The AMCNTENSET1 characteristics are:

Purpose
Enable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>.

Configuration
AArch32 System register AMCNTENSET1 bits [31:0] are architecturally mapped to AArch64 System register
AMCNTENSET1_EL0[31:0] .

AArch32 System register AMCNTENSET1 bits [31:0] are architecturally mapped to External register
AMCNTENSET1[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCNTENSET1 are
UNDEFINED.

Attributes
AMCNTENSET1 is a 32-bit register.

Field descriptions
The AMCNTENSET1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 P<n>, bit [n]

Bits [31:16]

Reserved, RES0.

P<n>, bit [n], for n = 0 to 15

Activity monitor event counter enable bit for AMEVCNTR1<n>.

Bits [31:16] are RES0. Bits [15:N] are RAZ/WI. N is the value in AMCGCR.CG1NC.

Possible values of each bit are:

P<n> Meaning
0b0 When read, means that AMEVCNTR1<n> is disabled. When

written, has no effect.
0b1 When read, means that AMEVCNTR1<n> is enabled. When

written, enables AMEVCNTR1<n>.

On a Cold reset, this field resets to 0.

Accessing the AMCNTENSET1
If the number of auxiliary activity monitor event counters implemented is zero, reads and writes of AMCNTENSET1
are UNDEFINED.

Note

AMCNTENSET1, Activity Monitors Count Enable Set Register 1

Page 2060

The number of auxiliary activity monitor counters implemented is zero when
AMCFGR.NCG == 0b0000.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0011 0b001

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return AMCNTENSET1;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return AMCNTENSET1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return AMCNTENSET1;
elsif PSTATE.EL == EL3 then

return AMCNTENSET1;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

AMCNTENSET1, Activity Monitors Count Enable Set Register 1

Page 2061

0b1111 0b000 0b1101 0b0011 0b001

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif IsHighestEL(PSTATE.EL) then
AMCNTENSET1 = R[t];

else
UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCNTENSET1, Activity Monitors Count Enable Set Register 1

Page 2062

AMCR, Activity Monitors Control Register
The AMCR characteristics are:

Purpose
Global control register for the activity monitors implementation. AMCR is applicable to both the architected and the
auxiliary counter groups.

Configuration
AArch32 System register AMCR bits [31:0] are architecturally mapped to AArch64 System register AMCR_EL0[31:0] .

AArch32 System register AMCR bits [31:0] are architecturally mapped to External register AMCR[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCR are UNDEFINED.

Attributes
AMCR is a 32-bit register.

Field descriptions
The AMCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CG1RZ RES0 HDBG RES0

Bits [31:18]

Reserved, RES0.

CG1RZ, bit [17]

When ARMv8.6-AMU is implemented:

Counter Group 1 Read Zero.

CG1RZ Meaning
0b0 System register reads of AMEVCNTR1<n> return the event

count at all implemented and enabled Exception levels.
0b1 If the current Exception level is the highest implemented

Exception level, system register reads of AMEVCNTR1<n>
return the event count. Otherwise, reads of AMEVCNTR1<n>
return a zero value.

Note

Reads from the memory-mapped view are unaffected by this field.

Otherwise:

Reserved, RES0.

AMCR, Activity Monitors Control Register

Page 2063

Bits [16:11]

Reserved, RES0.

HDBG, bit [10]

This bit controls whether activity monitor counting is halted when the PE is halted in Debug state.

HDBG Meaning
0b0 Activity monitors do not halt counting when the PE is halted in

Debug state.
0b1 Activity monitors halt counting when the PE is halted in Debug

state.

Bits [9:0]

Reserved, RES0.

Accessing the AMCR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0010 0b000

AMCR, Activity Monitors Control Register

Page 2064

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return AMCR;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return AMCR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return AMCR;

elsif PSTATE.EL == EL3 then
return AMCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0010 0b000

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif IsHighestEL(PSTATE.EL) then
AMCR = R[t];

else
UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCR, Activity Monitors Control Register

Page 2065

AMEVCNTR0<n>, Activity Monitors Event Counter
Registers 0, n = 0 - 15

The AMEVCNTR0<n> characteristics are:

Purpose
Provides access to the architected activity monitor event counters.

Configuration
AArch32 System register AMEVCNTR0<n> bits [63:0] are architecturally mapped to AArch64 System register
AMEVCNTR0<n>_EL0[63:0] .

AArch32 System register AMEVCNTR0<n> bits [63:0] are architecturally mapped to External register
AMEVCNTR0<n>[63:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMEVCNTR0<n> are
UNDEFINED.

Attributes
AMEVCNTR0<n> is a 64-bit register.

Field descriptions
The AMEVCNTR0<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ACNT
ACNT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACNT, bits [63:0]

Architected activity monitor event counter n.

Value of architected activity monitor event counter n, where n is the number of this register and is a number from 0 to
15.

If ARMv8.6-AMU is implemented, HCR_EL2.AMVOFFEN is 1, SCR_EL3.AMVOFFEN is 1, HCR_EL2.{E2H, TGE} is not
{1,1}, and EL2 is using AArch64 and is implemented in the current Security state, access to these registers at EL0 or
EL1 return (PCount<63:0> - AMEVCNTVOFF0<n>_EL2<63:0>).

PCount is the physical count returned when AMEVCNTR0<n> is read from EL2 or EL3.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

On a Cold reset, this field resets to 0.

Accessing the AMEVCNTR0<n>
If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of
AMEVCNTR0<n> are UNDEFINED.

Note

AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 15

Page 2066

AMCGCR.CG0NC identifies the number of architected activity monitor event
counters.

Accesses to this register use the following encodings:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b000:n[3] 0b0:n[2:0]

if CRm == '0000' then
if PSTATE.EL == EL0 then

if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T0 ==
'1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then

AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3)

|| SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVCNTR0<n>_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x04);

else
return AMEVCNTR0[UInt(CRm<0>:opc1<2:0>)];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then

AArch32.TakeHypTrapException(0x04);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x04);
else

return AMEVCNTR0[UInt(CRm<0>:opc1<2:0>)];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x04);

else
return AMEVCNTR0[UInt(CRm<0>:opc1<2:0>)];

elsif PSTATE.EL == EL3 then
return AMEVCNTR0[UInt(CRm<0>:opc1<2:0>)];

else
UNDEFINED;

AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 15

Page 2067

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b000:n[3] 0b0:n[2:0]

if CRm == '0000' then
if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x04);
elsif IsHighestEL(PSTATE.EL) then

AMEVCNTR0[UInt(CRm<0>:opc1<2:0>)] = R[t2]:R[t];
else

UNDEFINED;
else

UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 15

Page 2068

AMEVCNTR1<n>, Activity Monitors Event Counter
Registers 1, n = 0 - 15

The AMEVCNTR1<n> characteristics are:

Purpose
Provides access to the auxiliary activity monitor event counters.

Configuration
AArch32 System register AMEVCNTR1<n> bits [63:0] are architecturally mapped to AArch64 System register
AMEVCNTR1<n>_EL0[63:0] .

AArch32 System register AMEVCNTR1<n> bits [63:0] are architecturally mapped to External register
AMEVCNTR1<n>[63:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMEVCNTR1<n> are
UNDEFINED.

Attributes
AMEVCNTR1<n> is a 64-bit register.

Field descriptions
The AMEVCNTR1<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ACNT
ACNT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACNT, bits [63:0]

Auxiliary activity monitor event counter n.

Value of auxiliary activity monitor event counter n, where n is the number of this register and is a number from 0 to
15.

If ARMv8.6-AMU is implemented, HCR_EL2.AMVOFFEN is 1, SCR_EL3.AMVOFFEN is 1, HCR_EL2.{E2H, TGE} is not
{1,1}, EL2 is using AArch64 and is implemented in the current Security state, and AMCR_EL0.CG1RZ is 0, reads to
these registers at EL0 or EL1 return (PCount<63:0> - AMEVCNTVOFF1<n>_EL2<63:0>).

PCount is the physical count returned when AMEVCNTR1<n> is read from EL2 or EL3.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

On a Cold reset, this field resets to 0.

Accessing the AMEVCNTR1<n>
If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of
AMEVCNTR1<n> are UNDEFINED.

Note

AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15

Page 2069

AMCGCR.CG1NC identifies the number of auxiliary activity monitor event
counters.

Accesses to this register use the following encodings:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b010:n[3] n[2:0]

AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15

Page 2070

if CRm == '0100' then
if PSTATE.EL == EL0 then

if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
AArch32.TakeHypTrapException(0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3)
|| SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVCNTR1<n>_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x04);
elsif !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then

Zeros();
elsif HighestELUsingAArch32() && AMCR.CG1RZ == '1' then

Zeros();
else

return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
AArch32.TakeHypTrapException(0x04);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x04);

elsif !IsHighestEL(PSTATE.EL) && !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then
Zeros();

elsif !IsHighestEL(PSTATE.EL) && HighestELUsingAArch32() && AMCR.CG1RZ == '1' then
Zeros();

else
return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x04);
elsif !IsHighestEL(PSTATE.EL) && !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then

Zeros();
elsif !IsHighestEL(PSTATE.EL) && HighestELUsingAArch32() && AMCR.CG1RZ == '1' then

Zeros();
else

return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
elsif PSTATE.EL == EL3 then

return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
elsif CRm == '0101' then

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x04);

elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T5 ==

'1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15

Page 2071

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
AArch32.TakeHypTrapException(0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
AArch32.TakeHypTrapException(0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3)
|| SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVCNTR1<n>_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x04);
elsif !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then

Zeros();
elsif HighestELUsingAArch32() && AMCR.CG1RZ == '1' then

Zeros();
else

return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
AArch32.TakeHypTrapException(0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
AArch32.TakeHypTrapException(0x04);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x04);

elsif !IsHighestEL(PSTATE.EL) && !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then
Zeros();

elsif !IsHighestEL(PSTATE.EL) && HighestELUsingAArch32() && AMCR.CG1RZ == '1' then
Zeros();

else
return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x04);
elsif !IsHighestEL(PSTATE.EL) && !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then

Zeros();
elsif !IsHighestEL(PSTATE.EL) && HighestELUsingAArch32() && AMCR.CG1RZ == '1' then

Zeros();
else

return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
elsif PSTATE.EL == EL3 then

return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
else

UNDEFINED;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b010:n[3] n[2:0]

AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15

Page 2072

if CRm == '0100' then
if IsHighestEL(PSTATE.EL) then

AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)] = R[t2]:R[t];
else

UNDEFINED;
elsif CRm == '0101' then

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
AArch32.TakeHypTrapException(0x04);

elsif IsHighestEL(PSTATE.EL) then
AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)] = R[t2]:R[t];

else
UNDEFINED;

else
UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15

Page 2073

AMEVTYPER0<n>, Activity Monitors Event Type
Registers 0, n = 0 - 15

The AMEVTYPER0<n> characteristics are:

Purpose
Provides information on the events that an architected activity monitor event counter AMEVCNTR0<n> counts.

Configuration
AArch32 System register AMEVTYPER0<n> bits [31:0] are architecturally mapped to AArch64 System register
AMEVTYPER0<n>_EL0[31:0] .

AArch32 System register AMEVTYPER0<n> bits [31:0] are architecturally mapped to External register
AMEVTYPER0<n>[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMEVTYPER0<n> are
UNDEFINED.

Attributes
AMEVTYPER0<n> is a 32-bit register.

Field descriptions
The AMEVTYPER0<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 evtCount

Bits [31:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the architected activity monitor event counter
AMEVCNTR0<n>. The value of this field is architecturally mandated for each architected counter.

The following table shows the mapping between required event numbers and the corresponding counters:

evtCount Meaning Applies when
0x0011 Processor frequency cycles When n == 0
0x4004 Constant frequency cycles When n == 1
0x0008 Instructions retired When n == 2
0x4005 Memory stall cycles When n == 3

Accessing the AMEVTYPER0<n>
If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of
AMEVTYPER0<n> are NDEFINED.

Note

AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 15

Page 2074

AMCGCR.CG0NC identifies the number of architected activity monitor event
counters.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b011:n[3] n[2:0]

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return AMEVTYPER0[UInt(CRm<0>:opc2<2:0>)];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return AMEVTYPER0[UInt(CRm<0>:opc2<2:0>)];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return AMEVTYPER0[UInt(CRm<0>:opc2<2:0>)];

elsif PSTATE.EL == EL3 then
return AMEVTYPER0[UInt(CRm<0>:opc2<2:0>)];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 15

Page 2075

AMEVTYPER1<n>, Activity Monitors Event Type
Registers 1, n = 0 - 15

The AMEVTYPER1<n> characteristics are:

Purpose
Provides information on the events that an auxiliary activity monitor event counter AMEVCNTR1<n> counts.

Configuration
AArch32 System register AMEVTYPER1<n> bits [31:0] are architecturally mapped to AArch64 System register
AMEVTYPER1<n>_EL0[31:0] .

AArch32 System register AMEVTYPER1<n> bits [31:0] are architecturally mapped to External register
AMEVTYPER1<n>[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMEVTYPER1<n> are
UNDEFINED.

Attributes
AMEVTYPER1<n> is a 32-bit register.

Field descriptions
The AMEVTYPER1<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 evtCount

Bits [31:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the auxiliary activity monitor event counter
AMEVCNTR1<n>.

It is IMPLEMENTATION DEFINED what values are supported by each counter.

If software writes a value to this field which is not supported by the corresponding counter AMEVCNTR1<n>, then:

• It is UNPREDICTABLE which event will be counted.
• The value read back is UNKNOWN.

The event counted by AMEVCNTR1<n> might be fixed at implementation. In this case, the field is read-only and
writes are UNDEFINED.

If the corresponding counter AMEVCNTR1<n> is enabled, writes to this register have UNPREDICTABLE results.

Accessing the AMEVTYPER1<n>
If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of
AMEVTYPER1<n> are UNDEFINED.

AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15

Page 2076

Note

AMCGCR.CG1NC identifies the number of auxiliary activity monitor event
counters.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b111:n[3] n[2:0]

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVTYPER1<n>_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return AMEVTYPER1[UInt(CRm<0>:opc2<2:0>)];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return AMEVTYPER1[UInt(CRm<0>:opc2<2:0>)];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return AMEVTYPER1[UInt(CRm<0>:opc2<2:0>)];
elsif PSTATE.EL == EL3 then

return AMEVTYPER1[UInt(CRm<0>:opc2<2:0>)];

AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15

Page 2077

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b111:n[3] n[2:0]

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif IsHighestEL(PSTATE.EL) then
AMEVTYPER1[UInt(CRm<0>:opc2<2:0>)] = R[t];

else
UNDEFINED;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15

Page 2078

AMUSERENR, Activity Monitors User Enable Register
The AMUSERENR characteristics are:

Purpose
Global user enable register for the activity monitors. Enables or disables EL0 access to the activity monitors.
AMUSERENR is applicable to both the architected and the auxiliary counter groups.

Configuration
AArch32 System register AMUSERENR bits [31:0] are architecturally mapped to AArch64 System register
AMUSERENR_EL0[31:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMUSERENR are UNDEFINED.

Attributes
AMUSERENR is a 32-bit register.

Field descriptions
The AMUSERENR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 EN

Bits [31:1]

Reserved, RES0.

EN, bit [0]

Traps EL0 accesses to the activity monitors registers to EL1.

EN Meaning
0b0 EL0 accesses to the activity monitors registers are trapped to EL1.
0b1 This control does not cause any instructions to be trapped.

Software can access all activity monitor registers at EL0.

Note
• AMUSERENR can always be read at EL0 and is not governed by this bit.

Accessing the AMUSERENR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0010 0b011

AMUSERENR, Activity Monitors User Enable Register

Page 2079

if PSTATE.EL == EL0 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return AMUSERENR;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return AMUSERENR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return AMUSERENR;

elsif PSTATE.EL == EL3 then
return AMUSERENR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0010 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

AMUSERENR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
AMUSERENR = R[t];

elsif PSTATE.EL == EL3 then
AMUSERENR = R[t];

AMUSERENR, Activity Monitors User Enable Register

Page 2080

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMUSERENR, Activity Monitors User Enable Register

Page 2081

APSR, Application Program Status Register
The APSR characteristics are:

Purpose
Hold program status and control information.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to APSR
are UNKNOWN.

Attributes
APSR is a 32-bit register.

Field descriptions
The APSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q RES0 GE RES0 RES1 RES0

N, bit [31]

Negative condition flag. Set to bit[31] of the result of the last flag-setting instruction. If the result is regarded as a
two's complement signed integer, then N is set to 1 if the result was negative, and N is set to 0 if the result was
positive or zero.

Z, bit [30]

Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0 otherwise. A result of
zero often indicates an equal result from a comparison.

C, bit [29]

Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for example an unsigned
overflow on an addition.

V, bit [28]

Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition, for example a
signed overflow on an addition.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

Bits [26:20]

Reserved, RES0.

APSR, Application Program Status Register

Page 2082

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

Bits [15:5]

Reserved, RES0.

Bit [4]

Reserved, RES1.

Bits [3:0]

Reserved, RES0.

It is permitted that, on a read of APSR:

• Bit[22] returns the value of PSTATE.PAN

• Bit[9] returns the value of PSTATE.E.

• Bits[8:6] return the value of PSTATE.{A, I, F}, the mask bits.

• Bit[4:0] returns the value of PSTATE.M[4:0]

Note

This is an exception to the general rule that an UNKNOWN field must not return
information that cannot be obtained, at the current Privilege level, by an
architected mechanism.

For more information see 'The Application Program State Register'.

Accessing the APSR
APSR can be read using the MRS instruction and written using the MSR (register) or MSR (immediate) instructions.

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

APSR, Application Program Status Register

Page 2083

ATS12NSOPR, Address Translate Stages 1 and 2 Non-
secure Only PL1 Read

The ATS12NSOPR characteristics are:

Purpose
Performs stage 1 and 2 address translations as defined for PL1 and the Non-secure state, with permissions as if
reading from the given virtual address.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ATS12NSOPR are UNKNOWN.

Attributes
ATS12NSOPR is a 32-bit System instruction.

Field descriptions
The ATS12NSOPR input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address of the stage 2
translation.

Executing the ATS12NSOPR instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1000 0b100

ATS12NSOPR, Address Translate Stages 1 and 2 Non-secure Only PL1 Read

Page 2084

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ATS12NSOPR(R[t]);
elsif PSTATE.EL == EL3 then

ATS12NSOPR(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS12NSOPR, Address Translate Stages 1 and 2 Non-secure Only PL1 Read

Page 2085

ATS12NSOPW, Address Translate Stages 1 and 2 Non-
secure Only PL1 Write

The ATS12NSOPW characteristics are:

Purpose
Performs stage 1 and 2 address translations as defined for PL1 and the Non-secure state, with permissions as if
writing to the given virtual address.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ATS12NSOPW are UNKNOWN.

Attributes
ATS12NSOPW is a 32-bit System instruction.

Field descriptions
The ATS12NSOPW input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address of the stage 2
translation.

Executing the ATS12NSOPW instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1000 0b101

ATS12NSOPW, Address Translate Stages 1 and 2 Non-secure Only PL1 Write

Page 2086

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ATS12NSOPW(R[t]);
elsif PSTATE.EL == EL3 then

ATS12NSOPW(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS12NSOPW, Address Translate Stages 1 and 2 Non-secure Only PL1 Write

Page 2087

ATS12NSOUR, Address Translate Stages 1 and 2 Non-
secure Only Unprivileged Read

The ATS12NSOUR characteristics are:

Purpose
Performs stage 1 and 2 address translations as defined for PL0 and the Non-secure state, with permissions as if
reading from the given virtual address.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ATS12NSOUR are UNKNOWN.

Attributes
ATS12NSOUR is a 32-bit System instruction.

Field descriptions
The ATS12NSOUR input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address of the stage 2
translation.

Executing the ATS12NSOUR instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1000 0b110

ATS12NSOUR, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read

Page 2088

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ATS12NSOUR(R[t]);
elsif PSTATE.EL == EL3 then

ATS12NSOUR(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS12NSOUR, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read

Page 2089

ATS12NSOUW, Address Translate Stages 1 and 2 Non-
secure Only Unprivileged Write

The ATS12NSOUW characteristics are:

Purpose
Performs stage 1 and 2 address translations as defined for PL0 and the Non-secure state, with permissions as if
writing to the given virtual address.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ATS12NSOUW are UNKNOWN.

Attributes
ATS12NSOUW is a 32-bit System instruction.

Field descriptions
The ATS12NSOUW input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address of the stage 2
translation.

Executing the ATS12NSOUW instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1000 0b111

ATS12NSOUW, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write

Page 2090

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ATS12NSOUW(R[t]);
elsif PSTATE.EL == EL3 then

ATS12NSOUW(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS12NSOUW, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write

Page 2091

ATS1CPR, Address Translate Stage 1 Current state
PL1 Read

The ATS1CPR characteristics are:

Purpose
Performs stage 1 address translation as defined for PL1 and the current Security state, with permissions as if reading
from the given virtual address.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ATS1CPR are UNKNOWN.

Attributes
ATS1CPR is a 32-bit System instruction.

Field descriptions
The ATS1CPR input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current Security state, the
resulting address is the IPA that is the output address of the stage 1 translation. Otherwise, the resulting address is a
PA.

Executing the ATS1CPR instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1000 0b000

ATS1CPR, Address Translate Stage 1 Current state PL1 Read

Page 2092

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
else

ATS1CPR(R[t]);
elsif PSTATE.EL == EL2 then

ATS1CPR(R[t]);
elsif PSTATE.EL == EL3 then

ATS1CPR(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS1CPR, Address Translate Stage 1 Current state PL1 Read

Page 2093

ATS1CPRP, Address Translate Stage 1 Current state
PL1 Read PAN

The ATS1CPRP characteristics are:

Purpose
Performs a stage 1 address translation at PL1 and in the current Security state, where the value of PSTATE.PAN
determines if a read from a location will generate a permission fault for a privileged access.

Configuration
This instruction is present only when AArch32 is supported at any Exception level and ARMv8.2-ATS1E1 is
implemented. Otherwise, direct accesses to ATS1CPRP are UNDEFINED.

Attributes
ATS1CPRP is a 32-bit System instruction.

Field descriptions
The ATS1CPRP input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current Security state, the
resulting address is the IPA that is the output address of the stage 1 translation. Otherwise, the resulting address is a
PA.

Executing the ATS1CPRP instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1001 0b000

ATS1CPRP, Address Translate Stage 1 Current state PL1 Read PAN

Page 2094

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
else

ATS1CPRP(R[t]);
elsif PSTATE.EL == EL2 then

ATS1CPRP(R[t]);
elsif PSTATE.EL == EL3 then

ATS1CPRP(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS1CPRP, Address Translate Stage 1 Current state PL1 Read PAN

Page 2095

ATS1CPW, Address Translate Stage 1 Current state
PL1 Write

The ATS1CPW characteristics are:

Purpose
Performs stage 1 address translation as defined for PL1 and the current Security state, with permissions as if writing
to the given virtual address.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ATS1CPW are UNKNOWN.

Attributes
ATS1CPW is a 32-bit System instruction.

Field descriptions
The ATS1CPW input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current Security state, the
resulting address is the IPA that is the output address of the stage 1 translation. Otherwise, the resulting address is a
PA.

Executing the ATS1CPW instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1000 0b001

ATS1CPW, Address Translate Stage 1 Current state PL1 Write

Page 2096

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
else

ATS1CPW(R[t]);
elsif PSTATE.EL == EL2 then

ATS1CPW(R[t]);
elsif PSTATE.EL == EL3 then

ATS1CPW(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS1CPW, Address Translate Stage 1 Current state PL1 Write

Page 2097

ATS1CPWP, Address Translate Stage 1 Current state
PL1 Write PAN

The ATS1CPWP characteristics are:

Purpose
When ARMv8.2-ATS1E1 is implemented, performs a stage 1 address translation at PL1 and in the current Security
state, where the value of PSTATE.PAN determines if a write to the location will generate a permission fault for a
privileged access.

Configuration
This instruction is present only when AArch32 is supported at any Exception level and ARMv8.2-ATS1E1 is
implemented. Otherwise, direct accesses to ATS1CPWP are UNDEFINED.

Attributes
ATS1CPWP is a 32-bit System instruction.

Field descriptions
The ATS1CPWP input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current Security state, the
resulting address is the IPA that is the output address of the stage 1 translation. Otherwise, the resulting address is a
PA.

Executing the ATS1CPWP instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1001 0b001

ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PAN

Page 2098

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
else

ATS1CPWP(R[t]);
elsif PSTATE.EL == EL2 then

ATS1CPWP(R[t]);
elsif PSTATE.EL == EL3 then

ATS1CPWP(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PAN

Page 2099

ATS1CUR, Address Translate Stage 1 Current state
Unprivileged Read

The ATS1CUR characteristics are:

Purpose
Performs stage 1 address translation as defined for PL0 and the current Security state, with permissions as if reading
from the given virtual address.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ATS1CUR are UNKNOWN.

Attributes
ATS1CUR is a 32-bit System instruction.

Field descriptions
The ATS1CUR input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current Security state, the
resulting address is the IPA that is the output address of the stage 1 translation. Otherwise, the resulting address is a
PA.

Executing the ATS1CUR instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1000 0b010

ATS1CUR, Address Translate Stage 1 Current state Unprivileged Read

Page 2100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
else

ATS1CUR(R[t]);
elsif PSTATE.EL == EL2 then

ATS1CUR(R[t]);
elsif PSTATE.EL == EL3 then

ATS1CUR(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS1CUR, Address Translate Stage 1 Current state Unprivileged Read

Page 2101

ATS1CUW, Address Translate Stage 1 Current state
Unprivileged Write

The ATS1CUW characteristics are:

Purpose
Performs stage 1 address translation as defined for PL0 and the current Security state, with permissions as if writing
to the given virtual address.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ATS1CUW are UNKNOWN.

Attributes
ATS1CUW is a 32-bit System instruction.

Field descriptions
The ATS1CUW input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current Security state, the
resulting address is the IPA that is the output address of the stage 1 translation. Otherwise, the resulting address is a
PA.

Executing the ATS1CUW instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1000 0b011

ATS1CUW, Address Translate Stage 1 Current state Unprivileged Write

Page 2102

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
else

ATS1CUW(R[t]);
elsif PSTATE.EL == EL2 then

ATS1CUW(R[t]);
elsif PSTATE.EL == EL3 then

ATS1CUW(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS1CUW, Address Translate Stage 1 Current state Unprivileged Write

Page 2103

ATS1HR, Address Translate Stage 1 Hyp mode Read
The ATS1HR characteristics are:

Purpose
Performs stage 1 address translation as defined for PL2 and the Non-secure state, with permissions as if reading from
the given virtual address.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ATS1HR are UNKNOWN.

Attributes
ATS1HR is a 32-bit System instruction.

Field descriptions
The ATS1HR input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address of the
translation.

Executing the ATS1HR instruction
If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED
UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0111 0b1000 0b000

ATS1HR, Address Translate Stage 1 Hyp mode Read

Page 2104

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
else

ATS1HR(R[t]);
elsif PSTATE.EL == EL2 then

ATS1HR(R[t]);
elsif PSTATE.EL == EL3 then

ATS1HR(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS1HR, Address Translate Stage 1 Hyp mode Read

Page 2105

ATS1HW, Address Translate Stage 1 Hyp mode Write
The ATS1HW characteristics are:

Purpose
Performs stage 1 address translation as defined for PL2 and the Non-secure state, with permissions as if writing to the
given virtual address.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ATS1HW are UNKNOWN.

Attributes
ATS1HW is a 32-bit System instruction.

Field descriptions
The ATS1HW input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address of the
translation.

Executing the ATS1HW instruction
If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED
UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0111 0b1000 0b001

ATS1HW, Address Translate Stage 1 Hyp mode Write

Page 2106

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
else

ATS1HW(R[t]);
elsif PSTATE.EL == EL2 then

ATS1HW(R[t]);
elsif PSTATE.EL == EL3 then

ATS1HW(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS1HW, Address Translate Stage 1 Hyp mode Write

Page 2107

BPIALL, Branch Predictor Invalidate All
The BPIALL characteristics are:

Purpose
Invalidate all entries from branch predictors.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
BPIALL are UNKNOWN.

In an implementation where the branch predictors are architecturally invisible, this instruction can execute as a NOP.

Attributes
BPIALL is a 32-bit System instruction.

Field descriptions
BPIALL ignores the value in the register specified by the instruction encoding. Software does not have to write a value
to the register before issuing this instruction.

Executing the BPIALL instruction
The PE ignores the value of <Rt>. Software does not have to write a value to this register before issuing this
instruction.

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a BPIALLIS.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0101 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then

BPIALLIS();
else

BPIALL();
elsif PSTATE.EL == EL2 then

BPIALL();
elsif PSTATE.EL == EL3 then

BPIALL();

BPIALL, Branch Predictor Invalidate All

Page 2108

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BPIALL, Branch Predictor Invalidate All

Page 2109

BPIALLIS, Branch Predictor Invalidate All, Inner
Shareable

The BPIALLIS characteristics are:

Purpose
Invalidate all entries from branch predictors Inner Shareable.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
BPIALLIS are UNKNOWN.

In an implementation where the branch predictors are architecturally invisible, this instruction can execute as a NOP.

Attributes
BPIALLIS is a 32-bit System instruction.

Field descriptions
BPIALLIS ignores the value in the register specified by the instruction encoding. Software does not have to write a
value to the register before issuing this instruction.

Executing the BPIALLIS instruction
The PE ignores the value of <Rt>. Software does not have to write a value to this register before issuing this
instruction.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
else

BPIALL();
elsif PSTATE.EL == EL2 then

BPIALL();
elsif PSTATE.EL == EL3 then

BPIALL();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BPIALLIS, Branch Predictor Invalidate All, Inner Shareable

Page 2110

BPIMVA, Branch Predictor Invalidate by VA
The BPIMVA characteristics are:

Purpose
Invalidate virtual address from branch predictors.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
BPIMVA are UNKNOWN.

In an implementation where the branch predictors are architecturally invisible, this instruction can execute as a NOP.

Attributes
BPIMVA is a 32-bit System instruction.

Field descriptions
The BPIMVA input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Virtual address to use

Bits [31:0]

Virtual address to use.

Executing the BPIMVA instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0101 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
else

BPIMVA(R[t]);
elsif PSTATE.EL == EL2 then

BPIMVA(R[t]);
elsif PSTATE.EL == EL3 then

BPIMVA(R[t]);

BPIMVA, Branch Predictor Invalidate by VA

Page 2111

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BPIMVA, Branch Predictor Invalidate by VA

Page 2112

CCSIDR, Current Cache Size ID Register
The CCSIDR characteristics are:

Purpose
Provides information about the architecture of the currently selected cache.

When ARMv8.3-CCIDX is implemented, this register is used in conjunction with CCSIDR2.

Configuration
AArch32 System register CCSIDR bits [31:0] are architecturally mapped to AArch64 System register
CCSIDR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CCSIDR
are UNKNOWN.

The implementation includes one CCSIDR for each cache that it can access. CSSELR and the Security state select
which Cache Size ID Register is accessible.

Attributes
CCSIDR is a 32-bit register.

Field descriptions
The CCSIDR bit assignments are:

When ARMv8.3-CCIDX is implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Associativity LineSize

Note

The parameters NumSets, Associativity, and LineSize in these registers define
the architecturally visible parameters that are required for the cache
maintenance by Set/Way instructions. They are not guaranteed to represent
the actual microarchitectural features of a design. You cannot make any
inference about the actual sizes of caches based on these parameters.

Bits [31:24]

Reserved, RES0.

Associativity, bits [23:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to be a
power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.

CCSIDR, Current Cache Size ID Register

Page 2113

For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

Otherwise:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
UNKNOWN NumSets Associativity LineSize

Note

The parameters NumSets, Associativity, and LineSize in these registers define
the architecturally visible parameters that are required for the cache
maintenance by Set/Way instructions. They are not guaranteed to represent
the actual microarchitectural features of a design. You cannot make any
inference about the actual sizes of caches based on these parameters.

Bits [31:28]

Reserved, UNKNOWN.

NumSets, bits [27:13]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have to
be a power of 2.

Associativity, bits [12:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to be a
power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.

For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

Accessing the CCSIDR
If CSSELR.Level is programmed to a cache level that is not implemented, then on a read of the CCSIDR the behavior is
CONSTRAINED UNPREDICTABLE, and can be one of the following:

• The CCSIDR read is treated as NOP.
• The CCSIDR read is UNDEFINED.
• The CCSIDR read returns an UNKNOWN value.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b001 0b0000 0b0000 0b000

CCSIDR, Current Cache Size ID Register

Page 2114

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return CCSIDR;
elsif PSTATE.EL == EL2 then

return CCSIDR;
elsif PSTATE.EL == EL3 then

return CCSIDR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCSIDR, Current Cache Size ID Register

Page 2115

CCSIDR2, Current Cache Size ID Register 2
The CCSIDR2 characteristics are:

Purpose
When ARMv8.3-CCIDX is implemented, in conjunction with CCSIDR, provides information about the architecture of
the currently selected cache.

When ARMv8.3-CCIDX is not implemented, this register is not implemented.

Configuration
AArch32 System register CCSIDR2 bits [31:0] are architecturally mapped to AArch64 System register
CCSIDR2_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level and ARMv8.3-CCIDX is implemented.
Otherwise, direct accesses to CCSIDR2 are UNDEFINED.

The implementation includes one CCSIDR2 for each cache that it can access. CSSELR and the Security state select
which Cache Size ID Register is accessible.

Attributes
CCSIDR2 is a 32-bit register.

Field descriptions
The CCSIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 NumSets

Bits [31:24]

Reserved, RES0.

NumSets, bits [23:0]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have to
be a power of 2.

Accessing the CCSIDR2
If CSSELR.Level is programmed to a cache level that is not implemented, then on a read of the CCSIDR2 the behavior
is CONSTRAINED UNPREDICTABLE, and can be one of the following:

• The CCSIDR2 read is treated as NOP.
• The CCSIDR2 read is UNDEFINED.
• The CCSIDR2 read returns an UNKNOWN value.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

CCSIDR2, Current Cache Size ID Register 2

Page 2116

0b1111 0b001 0b0000 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return CCSIDR2;
elsif PSTATE.EL == EL2 then

return CCSIDR2;
elsif PSTATE.EL == EL3 then

return CCSIDR2;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCSIDR2, Current Cache Size ID Register 2

Page 2117

CFPRCTX, Control Flow Prediction Restriction by
Context

The CFPRCTX characteristics are:

Purpose
Control Flow Prediction Restriction by Context applies to all Control Flow Prediction Resources that predict execution
based on information gathered within the target execution context or contexts.

When this instruction is complete and synchronized, control flow prediction does not permit later speculative
execution within the target execution context to be observable through side channels.

This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same
PE as executed the original restriction instruction, and a subsequent context synchronization event is required to
ensure that the effect of the completion of the instructions is synchronized to the current execution.

Note

This instruction does not require the invalidation of prediction structures so
long as the behavior described for completion of this instruction is met by the
implementation.

On some implementations the instruction is likely to take a significant number
of cycles to execute. This instruction is expected to be used very rarely, such
as on the roll-over of an ASID or VMID, but should not be used on every
context switch.

Configuration
This instruction is present only when AArch32 is supported at any Exception level and ARMv8.0-PredInv is
implemented. Otherwise, direct accesses to CFPRCTX are UNDEFINED.

Attributes
CFPRCTX is a 32-bit System instruction.

Field descriptions
The CFPRCTX input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 GVMIDNS EL VMID RES0 GASID ASID

Bits [31:28]

Reserved, RES0.

GVMID, bit [27]

Execution of this instruction applies to all VMIDs or a specified VMID.

GVMID Meaning
0b0 Applies to specified VMID for an EL0 or EL1 context. For all

other contexts this field is RES0.
0b1 Applies to all VMIDs for an EL0 or EL1 context. For all other

contexts this field is RES0.

CFPRCTX, Control Flow Prediction Restriction by Context

Page 2118

If the instruction is executed at EL0 or EL1, then this field has an Effective value of 0.

NS, bit [26]

Security State.

NS Meaning
0b0 Secure state.
0b1 Non-secure state.

If the instruction is executed in Non-secure state, this field has an Effective value of 1.

EL, bits [25:24]

Exception Level.

EL Meaning
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.

If the instruction is executed at an exception level lower than the specified level, this instruction is treated as a NOP.

VMID, bits [23:16]

Only applies when bit[27] is 0 and either of:

• an EL1 context.
• an EL0 context when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0) or EL2 is using AArch32 state.

Otherwise this field is RES0.

When the instruction is executed at EL1 then this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0 or ELUsingAArch32(EL2))
then this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1 and !ELUsingAArch32(EL2))
then this field is ignored.

Bits [15:9]

Reserved, RES0.

GASID, bit [8]

Execution of this instruction applies to all ASIDs or a specified ASID.

GASID Meaning
0b0 Applies to specified ASID for an EL0 context. For all other

contexts this field is RES0.
0b1 Applies to all ASID for an EL0 context. For all other contexts

this field is RES0.

If the instruction is executed at EL0, then this field is treated as 0.

ASID, bits [7:0]

Only applies for an EL0 context and when bit[8] is 0.

Otherwise this field is RES0.

When the instruction is executed at EL0 then this field is treated as the current ASID.

CFPRCTX, Control Flow Prediction Restriction by Context

Page 2119

Executing the CFPRCTX instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0011 0b100

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && SCTLR.EnRCTX == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX ==

'0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
CFPRCTX(R[t]);

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x03);
else

CFPRCTX(R[t]);
elsif PSTATE.EL == EL2 then

CFPRCTX(R[t]);
elsif PSTATE.EL == EL3 then

CFPRCTX(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CFPRCTX, Control Flow Prediction Restriction by Context

Page 2120

CLIDR, Cache Level ID Register
The CLIDR characteristics are:

Purpose
Identifies the type of cache, or caches, that are implemented at each level and can be managed using the architected
cache maintenance instructions that operate by set/way, up to a maximum of seven levels. Also identifies the Level of
Coherence (LoC) and Level of Unification (LoU) for the cache hierarchy.

Configuration
AArch32 System register CLIDR bits [31:0] are architecturally mapped to AArch64 System register CLIDR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CLIDR
are UNKNOWN.

Attributes
CLIDR is a 32-bit register.

Field descriptions
The CLIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ICB LoUU LoC LoUIS Ctype7 Ctype6 Ctype5 Ctype4 Ctype3 Ctype2 Ctype1

ICB, bits [31:30]

Inner cache boundary. This field indicates the boundary for caching Inner Cacheable memory regions.

The possible values are:

ICB Meaning
0b00 Not disclosed by this mechanism.
0b01 L1 cache is the highest Inner Cacheable level.
0b10 L2 cache is the highest Inner Cacheable level.
0b11 L3 cache is the highest Inner Cacheable level.

LoUU, bits [29:27]

Level of Unification Uniprocessor for the cache hierarchy.

LoC, bits [26:24]

Level of Coherence for the cache hierarchy.

LoUIS, bits [23:21]

Level of Unification Inner Shareable for the cache hierarchy.

CLIDR, Cache Level ID Register

Page 2121

Ctype<n>, bits [3(n-1)+2:3(n-1)], for n = 1 to 7

Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache
maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache
hierarchy. Possible values of each field are:

Ctype<n> Meaning
0b000 No cache.
0b001 Instruction cache only.
0b010 Data cache only.
0b011 Separate instruction and data caches.
0b100 Unified cache.

All other values are reserved.

If software reads the Cache Type fields from Ctype1 upwards, once it has seen a value of 000, no caches that can be
managed using the architected cache maintenance instructions that operate by set/way exist at further-out levels of
the hierarchy. So, for example, if Ctype3 is the first Cache Type field with a value of 000, the values of Ctype4 to
Ctype7 must be ignored.

Accessing the CLIDR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b001 0b0000 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return CLIDR;
elsif PSTATE.EL == EL2 then

return CLIDR;
elsif PSTATE.EL == EL3 then

return CLIDR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLIDR, Cache Level ID Register

Page 2122

CNTFRQ, Counter-timer Frequency register
The CNTFRQ characteristics are:

Purpose
This register is provided so that software can discover the frequency of the system counter. It must be programmed
with this value as part of system initialization. The value of the register is not interpreted by hardware.

Configuration
AArch32 System register CNTFRQ bits [31:0] are architecturally mapped to AArch64 System register
CNTFRQ_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CNTFRQ
are UNKNOWN.

Attributes
CNTFRQ is a 32-bit register.

Field descriptions
The CNTFRQ bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clock frequency

Bits [31:0]

Clock frequency. Indicates the system counter clock frequency, in Hz.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTFRQ
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0000 0b000

CNTFRQ, Counter-timer Frequency register

Page 2123

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

CNTKCTL_EL1.<EL0PCTEN,EL0VCTEN> == '00' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PCTEN == '0' && CNTKCTL.PL0VCTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&
CNTHCTL_EL2.<EL0PCTEN,EL0VCTEN> == '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

return CNTFRQ;
elsif PSTATE.EL == EL1 then

return CNTFRQ;
elsif PSTATE.EL == EL2 then

return CNTFRQ;
elsif PSTATE.EL == EL3 then

return CNTFRQ;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0000 0b000

if IsHighestEL(PSTATE.EL) then
CNTFRQ = R[t];

else
UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTFRQ, Counter-timer Frequency register

Page 2124

CNTHCTL, Counter-timer Hyp Control register
The CNTHCTL characteristics are:

Purpose
Controls the generation of an event stream from the physical counter, and access from Non-secure EL1 modes to the
physical counter and the Non-secure EL1 physical timer.

Configuration
AArch32 System register CNTHCTL bits [31:0] are architecturally mapped to AArch64 System register
CNTHCTL_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
CNTHCTL are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHCTL is a 32-bit register.

Field descriptions
The CNTHCTL bit assignments are:

3130292827262524232221201918 17 16151413121110 9 8 7 6 5 4 3 2 1 0
RES0 EVNTIS RES0 EVNTI EVNTDIREVNTENPL1PCENPL1PCTEN

Bits [31:18]

Reserved, RES0.

EVNTIS, bit [17]

When ARMv8.6-ECV is implemented:

Controls the scale of the generation of the event stream.

EVNTIS Meaning
0b0 The CNTHCTL.EVNTI field applies to CNTPCT[15:0].
0b1 The CNTHCTL.EVNTI field applies to CNTPCT[23:8].

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [16:8]

Reserved, RES0.

CNTHCTL, Counter-timer Hyp Control register

Page 2125

EVNTI, bits [7:4]

Selects which bit (0 to 15) of the counter register CNTPCT is the trigger for the event stream generated from that
counter, when that stream is enabled.

This field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTPCT trigger bit, defined by EVNTI, generates an event when the
event stream is enabled:

EVNTDIR Meaning
0b0 A 0 to 1 transition of the trigger bit triggers an event.
0b1 A 1 to 0 transition of the trigger bit triggers an event.

This field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTPCT:

EVNTEN Meaning
0b0 Disables the event stream.
0b1 Enables the event stream.

This field resets to an architecturally UNKNOWN value.

PL1PCEN, bit [1]

Traps Non-secure EL0 and EL1 accesses to the physical timer registers to Hyp mode.

PL1PCEN Meaning
0b0 Non-secure EL0 and EL1 accesses to the CNTP_CTL,

CNTP_CVAL, and CNTP_TVAL are trapped to Hyp mode,
unless the it is trapped by CNTKCTL.PL0PTEN.

0b1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the purpose of a direct
read.

This field resets to an architecturally UNKNOWN value.

PL1PCTEN, bit [0]

Traps Non-secure EL0 and EL1 accesses to the physical counter register to Hyp mode.

PL1PCTEN Meaning
0b0 Non-secure EL0 and EL1 accesses to the CNTPCT are

trapped to Hyp mode, unless it is trapped by
CNTKCTL.PL0PCTEN.

0b1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the purpose of a direct
read.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHCTL
Accesses to this register use the following encodings:

CNTHCTL, Counter-timer Hyp Control register

Page 2126

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
return CNTHCTL;

elsif PSTATE.EL == EL3 then
return CNTHCTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
CNTHCTL = R[t];

elsif PSTATE.EL == EL3 then
CNTHCTL = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHCTL, Counter-timer Hyp Control register

Page 2127

CNTHP_CTL, Counter-timer Hyp Physical Timer Control
register

The CNTHP_CTL characteristics are:

Purpose
Control register for the Hyp mode physical timer.

Configuration
AArch32 System register CNTHP_CTL bits [31:0] are architecturally mapped to AArch64 System register
CNTHP_CTL_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
CNTHP_CTL are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHP_CTL is a 32-bit register.

Field descriptions
The CNTHP_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views
of the timers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter D6.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 2128

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

In a system where the PE resets into EL2 or EL3, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHP_TVAL continues to
count down.

Note

Disabling the output signal might be a power-saving option.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

Accessing the CNTHP_CTL
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
return CNTHP_CTL;

elsif PSTATE.EL == EL3 then
return CNTHP_CTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
CNTHP_CTL = R[t];

elsif PSTATE.EL == EL3 then
CNTHP_CTL = R[t];

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 2129

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHPS_CTL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHP_CTL_EL2;
else

return CNTP_CTL;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
return CNTP_CTL_NS;

else
return CNTP_CTL;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

return CNTP_CTL_NS;
else

return CNTP_CTL;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
return CNTP_CTL_S;

else
return CNTP_CTL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b001

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 2130

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHPS_CTL_EL2 = R[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHP_CTL_EL2 = R[t];
else

CNTP_CTL = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_CTL_NS = R[t];

else
CNTP_CTL = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

CNTP_CTL_NS = R[t];
else

CNTP_CTL = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
CNTP_CTL_S = R[t];

else
CNTP_CTL_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 2131

CNTHP_CVAL, Counter-timer Hyp Physical
CompareValue register

The CNTHP_CVAL characteristics are:

Purpose
Holds the compare value for the Hyp mode physical timer.

Configuration
AArch32 System register CNTHP_CVAL bits [63:0] are architecturally mapped to AArch64 System register
CNTHP_CVAL_EL2[63:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
CNTHP_CVAL are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHP_CVAL is a 64-bit register.

Field descriptions
The CNTHP_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is greater than or equal
to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTHP_CTL.ISTATUS is set to 1.
• If CNTHP_CTL.IMASK is 0, an interrupt is generated.

When CNTHP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the
same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHP_CVAL
Accesses to this register use the following encodings:

CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register

Page 2132

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
return CNTHP_CVAL;

elsif PSTATE.EL == EL3 then
return CNTHP_CVAL;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
CNTHP_CVAL = R[t2]:R[t];

elsif PSTATE.EL == EL3 then
CNTHP_CVAL = R[t2]:R[t];

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0010

CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register

Page 2133

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHPS_CVAL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHP_CVAL_EL2;
else

return CNTP_CVAL;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x04);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
return CNTP_CVAL_NS;

else
return CNTP_CVAL;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

return CNTP_CVAL_NS;
else

return CNTP_CVAL;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
return CNTP_CVAL_S;

else
return CNTP_CVAL_NS;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0010

CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register

Page 2134

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHPS_CVAL_EL2 = R[t2]:R[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHP_CVAL_EL2 = R[t2]:R[t];
else

CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x04);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_CVAL_NS = R[t2]:R[t];

else
CNTP_CVAL = R[t2]:R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

CNTP_CVAL_NS = R[t2]:R[t];
else

CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
CNTP_CVAL_S = R[t2]:R[t];

else
CNTP_CVAL_NS = R[t2]:R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register

Page 2135

CNTHP_TVAL, Counter-timer Hyp Physical Timer
TimerValue register

The CNTHP_TVAL characteristics are:

Purpose
Holds the timer value for the Hyp mode physical timer.

Configuration
AArch32 System register CNTHP_TVAL bits [31:0] are architecturally mapped to AArch64 System register
CNTHP_TVAL_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
CNTHP_TVAL are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHP_TVAL is a 32-bit register.

Field descriptions
The CNTHP_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHP_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHP_CTL.ENABLE is 1, the value returned is (CNTHP_CVAL - CNTPCT).

On a write of this register, CNTHP_CVAL is set to (CNTPCT + TimerValue), where TimerValue is treated as a signed
32-bit integer.

When CNTHP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CNTHP_CVAL) is greater than or equal
to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTHP_CTL.ISTATUS is set to 1.
• If CNTHP_CTL.IMASK is 0, an interrupt is generated.

When CNTHP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count, so the TimerValue
view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHP_TVAL
Accesses to this register use the following encodings:

CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

Page 2136

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
return CNTHP_TVAL;

elsif PSTATE.EL == EL3 then
return CNTHP_TVAL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
CNTHP_TVAL = R[t];

elsif PSTATE.EL == EL3 then
CNTHP_TVAL = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b000

CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

Page 2137

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHPS_TVAL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHP_TVAL_EL2;
else

return CNTP_TVAL;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
return CNTP_TVAL_NS;

else
return CNTP_TVAL;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

return CNTP_TVAL_NS;
else

return CNTP_TVAL;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
return CNTP_TVAL_S;

else
return CNTP_TVAL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b000

CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

Page 2138

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHPS_TVAL_EL2 = R[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHP_TVAL_EL2 = R[t];
else

CNTP_TVAL = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_TVAL_NS = R[t];

else
CNTP_TVAL = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

CNTP_TVAL_NS = R[t];
else

CNTP_TVAL = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
CNTP_TVAL_S = R[t];

else
CNTP_TVAL_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

Page 2139

CNTHPS_CTL, Counter-timer Secure Physical Timer
Control Register (EL2)

The CNTHPS_CTL characteristics are:

Purpose
Provides AArch32 access to the Secure EL2 physical timer.

Note

The Secure EL2 timer is implemented by ARMv8.4-SecEL2. It is only
accessible from AArch32 state when EL2 is using AArch64 and the value of
SCR_EL3.{EEL2, NS} is {1, 0}.

Configuration
AArch32 System register CNTHPS_CTL bits [31:0] are architecturally mapped to AArch64 System register
CNTHPS_CTL_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level and ARMv8.4-SecEL2 is implemented.
Otherwise, direct accesses to CNTHPS_CTL are UNDEFINED.

Attributes
CNTHPS_CTL is a 32-bit register.

Field descriptions
The CNTHPS_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the CNTHPS_CTL.ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS
takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the CNTHPS_CTL.ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views
of the timers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter D6.

This bit is read-only.

CNTHPS_CTL, Counter-timer Secure Physical Timer Control Register (EL2)

Page 2140

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

This field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHPS_TVAL_EL2
continues to count down.

Note

Disabling the output signal might be a power-saving option.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHPS_CTL
This register is accessed using the encoding for CNTP_CTL.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b001

CNTHPS_CTL, Counter-timer Secure Physical Timer Control Register (EL2)

Page 2141

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHPS_CTL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHP_CTL_EL2;
else

return CNTP_CTL;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
return CNTP_CTL_NS;

else
return CNTP_CTL;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

return CNTP_CTL_NS;
else

return CNTP_CTL;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
return CNTP_CTL_S;

else
return CNTP_CTL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b001

CNTHPS_CTL, Counter-timer Secure Physical Timer Control Register (EL2)

Page 2142

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHPS_CTL_EL2 = R[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHP_CTL_EL2 = R[t];
else

CNTP_CTL = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_CTL_NS = R[t];

else
CNTP_CTL = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

CNTP_CTL_NS = R[t];
else

CNTP_CTL = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
CNTP_CTL_S = R[t];

else
CNTP_CTL_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHPS_CTL, Counter-timer Secure Physical Timer Control Register (EL2)

Page 2143

CNTHPS_CVAL, Counter-timer Secure Physical Timer
CompareValue Register (EL2)

The CNTHPS_CVAL characteristics are:

Purpose
Provides AArch32 access to the compare value for the Secure EL2 physical timer.

Note

The Secure EL2 timer is implemented by ARMv8.4-SecEL2. It is only
accessible from AArch32 state when EL2 is using AArch64 and the value of
SCR_EL3.{EEL2, NS} is {1, 0}.

Configuration
AArch32 System register CNTHPS_CVAL bits [63:0] are architecturally mapped to AArch64 System register
CNTHPS_CVAL_EL2[63:0] .

This register is present only when AArch32 is supported at any Exception level and ARMv8.4-SecEL2 is implemented.
Otherwise, direct accesses to CNTHPS_CVAL are UNDEFINED.

Attributes
CNTHPS_CVAL is a 64-bit register.

Field descriptions
The CNTHPS_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CompareValue) is greater
than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is
met:

• CNTHPS_CTL_EL2.ISTATUS is set to 1.
• If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the
same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

CNTHPS_CVAL, Counter-timer Secure Physical Timer CompareValue Register (EL2)

Page 2144

Accessing the CNTHPS_CVAL
This register is accessed using the encoding for CNTP_CVAL.

Accesses to this register use the following encodings:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0010

CNTHPS_CVAL, Counter-timer Secure Physical Timer CompareValue Register (EL2)

Page 2145

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHPS_CVAL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHP_CVAL_EL2;
else

return CNTP_CVAL;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x04);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
return CNTP_CVAL_NS;

else
return CNTP_CVAL;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

return CNTP_CVAL_NS;
else

return CNTP_CVAL;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
return CNTP_CVAL_S;

else
return CNTP_CVAL_NS;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0010

CNTHPS_CVAL, Counter-timer Secure Physical Timer CompareValue Register (EL2)

Page 2146

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHPS_CVAL_EL2 = R[t2]:R[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHP_CVAL_EL2 = R[t2]:R[t];
else

CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x04);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_CVAL_NS = R[t2]:R[t];

else
CNTP_CVAL = R[t2]:R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

CNTP_CVAL_NS = R[t2]:R[t];
else

CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
CNTP_CVAL_S = R[t2]:R[t];

else
CNTP_CVAL_NS = R[t2]:R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHPS_CVAL, Counter-timer Secure Physical Timer CompareValue Register (EL2)

Page 2147

CNTHPS_TVAL, Counter-timer Secure Physical Timer
TimerValue Register (EL2)

The CNTHPS_TVAL characteristics are:

Purpose
Provides AArch32 access to the timer value for the Secure EL2 physical timer.

Note

The Secure EL2 timer is implemented by ARMv8.4-SecEL2. It is only
accessible from AArch32 state when EL2 is using AArch64 and the value of
SCR_EL3.{EEL2, NS} is {1, 0}.

Configuration
AArch32 System register CNTHPS_TVAL bits [31:0] are architecturally mapped to AArch64 System register
CNTHPS_TVAL_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level and ARMv8.4-SecEL2 is implemented.
Otherwise, direct accesses to CNTHPS_TVAL are UNDEFINED.

Attributes
CNTHPS_TVAL is a 32-bit register.

Field descriptions
The CNTHPS_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHPS_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHPS_CTL_EL2.ENABLE is 1, the value returned is (CNTHPS_CVAL_EL2 - CNTPCT_EL0).

On a write of this register, CNTHPS_CVAL_EL2 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated as
a signed 32-bit integer.

When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTHPS_CVAL_EL2) is
greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer
condition is met:

• CNTHPS_CTL_EL2.ISTATUS is set to 1.
• If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the
TimerValue view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

CNTHPS_TVAL, Counter-timer Secure Physical Timer TimerValue Register (EL2)

Page 2148

Accessing the CNTHPS_TVAL
This register is accessed using the encoding for CNTP_TVAL.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b000

CNTHPS_TVAL, Counter-timer Secure Physical Timer TimerValue Register (EL2)

Page 2149

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHPS_TVAL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHP_TVAL_EL2;
else

return CNTP_TVAL;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
return CNTP_TVAL_NS;

else
return CNTP_TVAL;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

return CNTP_TVAL_NS;
else

return CNTP_TVAL;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
return CNTP_TVAL_S;

else
return CNTP_TVAL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b000

CNTHPS_TVAL, Counter-timer Secure Physical Timer TimerValue Register (EL2)

Page 2150

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHPS_TVAL_EL2 = R[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHP_TVAL_EL2 = R[t];
else

CNTP_TVAL = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_TVAL_NS = R[t];

else
CNTP_TVAL = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

CNTP_TVAL_NS = R[t];
else

CNTP_TVAL = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
CNTP_TVAL_S = R[t];

else
CNTP_TVAL_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHPS_TVAL, Counter-timer Secure Physical Timer TimerValue Register (EL2)

Page 2151

CNTHV_CTL, Counter-timer Virtual Timer Control
register (EL2)

The CNTHV_CTL characteristics are:

Purpose
Provides AArch32 access to the control register for the EL2 virtual timer.

Note

The EL2 virtual timer is implemented by ARMv8.1-VHE. It is only accessible
from AArch32 state when EL0 is using AArch32, EL2 is using AArch64, and
the value of HCR_EL2.{E2H, TGE} is {1, 1}.

Configuration
AArch32 System register CNTHV_CTL bits [31:0] are architecturally mapped to AArch64 System register
CNTHV_CTL_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level and ARMv8.1-VHE is implemented.
Otherwise, direct accesses to CNTHV_CTL are UNDEFINED.

Attributes
CNTHV_CTL is a 32-bit register.

Field descriptions
The CNTHV_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views
of the timers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter D6.

This bit is read-only.

CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

Page 2152

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHV_TVAL continues to
count down.

Note

Disabling the output signal might be a power-saving option.

Accessing the CNTHV_CTL
This register is accessed using the encoding for CNTV_CTL.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b001

CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

Page 2153

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

return CNTHVS_CTL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHV_CTL_EL2;

else
return CNTV_CTL;

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==

'1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
return CNTV_CTL;

elsif PSTATE.EL == EL2 then
return CNTV_CTL;

elsif PSTATE.EL == EL3 then
return CNTV_CTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b001

CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

Page 2154

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

CNTHVS_CTL_EL2 = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHV_CTL_EL2 = R[t];

else
CNTV_CTL = R[t];

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==

'1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
CNTV_CTL = R[t];

elsif PSTATE.EL == EL2 then
CNTV_CTL = R[t];

elsif PSTATE.EL == EL3 then
CNTV_CTL = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

Page 2155

CNTHV_CVAL, Counter-timer Virtual Timer
CompareValue register (EL2)

The CNTHV_CVAL characteristics are:

Purpose
Provides AArch32 access to the compare value for the EL2 virtual timer.

Note

The EL2 virtual timer is implemented by ARMv8.1-VHE. It is only accessible
from AArch32 state when EL0 is using AArch32, EL2 is using AArch64, and
the value of HCR_EL2.{E2H, TGE} is {1, 1}.

Configuration
AArch32 System register CNTHV_CVAL bits [63:0] are architecturally mapped to AArch64 System register
CNTHV_CVAL_EL2[63:0] .

This register is present only when ARMv8.1-VHE is implemented. Otherwise, direct accesses to CNTHV_CVAL are
UNDEFINED.

Attributes
CNTHV_CVAL is a 64-bit register.

Field descriptions
The CNTHV_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 virtual timer CompareValue.

When CNTHV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than or equal
to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTHV_CTL.ISTATUS is set to 1.
• If CNTHV_CTL.IMASK is 0, an interrupt is generated.

When CNTHV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the
same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

Accessing the CNTHV_CVAL
Accesses to this register use the following encodings:

CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)

Page 2156

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0011

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

return CNTHVS_CVAL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHV_CVAL_EL2;

else
return CNTV_CVAL;

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==

'1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

else
return CNTV_CVAL;

elsif PSTATE.EL == EL2 then
return CNTV_CVAL;

elsif PSTATE.EL == EL3 then
return CNTV_CVAL;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0011

CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)

Page 2157

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

CNTHVS_CVAL_EL2 = R[t2]:R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHV_CVAL_EL2 = R[t2]:R[t];

else
CNTV_CVAL = R[t2]:R[t];

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==

'1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

else
CNTV_CVAL = R[t2]:R[t];

elsif PSTATE.EL == EL2 then
CNTV_CVAL = R[t2]:R[t];

elsif PSTATE.EL == EL3 then
CNTV_CVAL = R[t2]:R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)

Page 2158

CNTHV_TVAL, Counter-timer Virtual Timer TimerValue
register (EL2)

The CNTHV_TVAL characteristics are:

Purpose
Provides AArch32 access to the timer value for the EL2 virtual timer.

Note

The EL2 virtual timer is implemented by ARMv8.1-VHE. It is only accessible
from AArch32 state when EL0 is using AArch32, EL2 is using AArch64, and
the value of HCR_EL2.{E2H, TGE} is {1, 1}.

Configuration
AArch32 System register CNTHV_TVAL bits [31:0] are architecturally mapped to AArch64 System register
CNTHV_TVAL_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level and ARMv8.1-VHE is implemented.
Otherwise, direct accesses to CNTHV_TVAL are UNDEFINED.

Attributes
CNTHV_TVAL is a 32-bit register.

Field descriptions
The CNTHV_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHV_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHV_CTL.ENABLE is 1, the value returned is (CNTHV_CVAL - CNTVCT).

On a write of this register, CNTHV_CVAL is set to (CNTVCT + TimerValue), where TimerValue is treated as a signed
32-bit integer.

When CNTHV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CNTHV_CVAL) is greater than or equal
to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTHV_CTL.ISTATUS is set to 1.
• If CNTHV_CTL.IMASK is 0, an interrupt is generated.

When CNTHV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count, so the TimerValue
view appears to continue to count down.

CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)

Page 2159

Accessing the CNTHV_TVAL
This register is accessed using the encoding for CNTV_TVAL.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b000

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

return CNTHVS_TVAL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHV_TVAL_EL2;

else
return CNTV_TVAL;

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==

'1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
return CNTV_TVAL;

elsif PSTATE.EL == EL2 then
return CNTV_TVAL;

elsif PSTATE.EL == EL3 then
return CNTV_TVAL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b000

CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)

Page 2160

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

CNTHVS_TVAL_EL2 = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHV_TVAL_EL2 = R[t];

else
CNTV_TVAL = R[t];

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==

'1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
CNTV_TVAL = R[t];

elsif PSTATE.EL == EL2 then
CNTV_TVAL = R[t];

elsif PSTATE.EL == EL3 then
CNTV_TVAL = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)

Page 2161

CNTHVS_CTL, Counter-timer Secure Virtual Timer
Control Register (EL2)

The CNTHVS_CTL characteristics are:

Purpose
Provides AArch32 access to the Secure EL2 virtual timer.

Note

The Secure EL2 timer is implemented by ARMv8.4-SecEL2. It is only
accessible from AArch32 state when EL2 is using AArch64 and the value of
SCR_EL3.{EEL2, NS} is {1, 0}.

Configuration
AArch32 System register CNTHVS_CTL bits [31:0] are architecturally mapped to AArch64 System register
CNTHVS_CTL_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level and ARMv8.4-SecEL2 is implemented.
Otherwise, direct accesses to CNTHVS_CTL are UNDEFINED.

Attributes
CNTHVS_CTL is a 32-bit register.

Field descriptions
The CNTHVS_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views
of the timers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter D8.

This bit is read-only.

CNTHVS_CTL, Counter-timer Secure Virtual Timer Control Register (EL2)

Page 2162

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHVS_TVAL continues to
count down.

Note

Disabling the output signal might be a power-saving option.

Accessing the CNTHVS_CTL
This register is accessed using the encoding for CNTV_CTL.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b001

CNTHVS_CTL, Counter-timer Secure Virtual Timer Control Register (EL2)

Page 2163

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

return CNTHVS_CTL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHV_CTL_EL2;

else
return CNTV_CTL;

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==

'1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
return CNTV_CTL;

elsif PSTATE.EL == EL2 then
return CNTV_CTL;

elsif PSTATE.EL == EL3 then
return CNTV_CTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b001

CNTHVS_CTL, Counter-timer Secure Virtual Timer Control Register (EL2)

Page 2164

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

CNTHVS_CTL_EL2 = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHV_CTL_EL2 = R[t];

else
CNTV_CTL = R[t];

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==

'1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
CNTV_CTL = R[t];

elsif PSTATE.EL == EL2 then
CNTV_CTL = R[t];

elsif PSTATE.EL == EL3 then
CNTV_CTL = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHVS_CTL, Counter-timer Secure Virtual Timer Control Register (EL2)

Page 2165

CNTHVS_CVAL, Counter-timer Secure Virtual Timer
CompareValue Register (EL2)

The CNTHVS_CVAL characteristics are:

Purpose
Provides AArch32 access to the compare value for the Secure EL2 virtual timer.

Note

The Secure EL2 timer is implemented by ARMv8.4-SecEL2. It is only
accessible from AArch32 state when EL2 is using AArch64 and the value of
SCR_EL3.{EEL2, NS} is {1, 0}.

Configuration
AArch32 System register CNTHVS_CVAL bits [63:0] are architecturally mapped to AArch64 System register
CNTHVS_CVAL_EL2[63:0] .

This register is present only when AArch32 is supported at any Exception level and ARMv8.4-SecEL2 is implemented.
Otherwise, direct accesses to CNTHVS_CVAL are UNDEFINED.

Attributes
CNTHVS_CVAL is a 64-bit register.

Field descriptions
The CNTHVS_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 virtual timer CompareValue.

When CNTHVS_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than or equal
to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTHVS_CTL.ISTATUS is set to 1.
• If CNTHVS_CTL.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the
same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

Accessing the CNTHVS_CVAL
This register is accessed using the encoding for CNTV_CVAL.

CNTHVS_CVAL, Counter-timer Secure Virtual Timer CompareValue Register (EL2)

Page 2166

Accesses to this register use the following encodings:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0011

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

return CNTHVS_CVAL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHV_CVAL_EL2;

else
return CNTV_CVAL;

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==

'1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

else
return CNTV_CVAL;

elsif PSTATE.EL == EL2 then
return CNTV_CVAL;

elsif PSTATE.EL == EL3 then
return CNTV_CVAL;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0011

CNTHVS_CVAL, Counter-timer Secure Virtual Timer CompareValue Register (EL2)

Page 2167

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

CNTHVS_CVAL_EL2 = R[t2]:R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHV_CVAL_EL2 = R[t2]:R[t];

else
CNTV_CVAL = R[t2]:R[t];

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==

'1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

else
CNTV_CVAL = R[t2]:R[t];

elsif PSTATE.EL == EL2 then
CNTV_CVAL = R[t2]:R[t];

elsif PSTATE.EL == EL3 then
CNTV_CVAL = R[t2]:R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHVS_CVAL, Counter-timer Secure Virtual Timer CompareValue Register (EL2)

Page 2168

CNTHVS_TVAL, Counter-timer Secure Virtual Timer
TimerValue Register (EL2)

The CNTHVS_TVAL characteristics are:

Purpose
Provides AArch32 access to the timer value for the Secure EL2 virtual timer.

Note

The Secure EL2 timer is implemented by ARMv8.4-SecEL2. It is only
accessible from AArch32 state when EL2 is using AArch64 and the value of
SCR_EL3.{EEL2, NS} is {1, 0}.

Configuration
AArch32 System register CNTHVS_TVAL bits [31:0] are architecturally mapped to AArch64 System register
CNTHVS_TVAL_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level and ARMv8.4-SecEL2 is implemented.
Otherwise, direct accesses to CNTHVS_TVAL are UNDEFINED.

Attributes
CNTHVS_TVAL is a 32-bit register.

Field descriptions
The CNTHVS_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHVS_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHVS_CTL.ENABLE is 1, the value returned is (CNTHVS_CVAL - CNTVCT).

On a write of this register, CNTHVS_CVAL is set to (CNTVCT + TimerValue), where TimerValue is treated as a signed
32-bit integer.

When CNTHVS_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CNTHVS_CVAL) is greater than or
equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTHVS_CTL.ISTATUS is set to 1.
• If CNTHVS_CTL.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count, so the TimerValue
view appears to continue to count down.

CNTHVS_TVAL, Counter-timer Secure Virtual Timer TimerValue Register (EL2)

Page 2169

Accessing the CNTHVS_TVAL
This register is accessed using the encoding for CNTV_TVAL.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b000

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

return CNTHVS_TVAL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHV_TVAL_EL2;

else
return CNTV_TVAL;

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==

'1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
return CNTV_TVAL;

elsif PSTATE.EL == EL2 then
return CNTV_TVAL;

elsif PSTATE.EL == EL3 then
return CNTV_TVAL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b000

CNTHVS_TVAL, Counter-timer Secure Virtual Timer TimerValue Register (EL2)

Page 2170

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

CNTHVS_TVAL_EL2 = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHV_TVAL_EL2 = R[t];

else
CNTV_TVAL = R[t];

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==

'1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
CNTV_TVAL = R[t];

elsif PSTATE.EL == EL2 then
CNTV_TVAL = R[t];

elsif PSTATE.EL == EL3 then
CNTV_TVAL = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHVS_TVAL, Counter-timer Secure Virtual Timer TimerValue Register (EL2)

Page 2171

CNTKCTL, Counter-timer Kernel Control register
The CNTKCTL characteristics are:

Purpose
Controls the generation of an event stream from the virtual counter, and access from EL0 modes to the physical
counter, virtual counter, EL1 physical timers, and the virtual timer.

Configuration
AArch32 System register CNTKCTL bits [31:0] are architecturally mapped to AArch64 System register
CNTKCTL_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
CNTKCTL are UNKNOWN.

Attributes
CNTKCTL is a 32-bit register.

Field descriptions
The CNTKCTL bit assignments are:

3130292827262524232221201918 17 16151413121110 9 8 7 6 5 4 3 2 1 0
RES0 EVNTIS RES0 PL0PTENPL0VTENEVNTIEVNTDIREVNTENPL0VCTENPL0PCTEN

Bits [31:18]

Reserved, RES0.

EVNTIS, bit [17]

When ARMv8.6-ECV is implemented:

Controls the scale of the generation of the event stream.

EVNTIS Meaning
0b0 The CNTKCTL.EVNTI field applies to CNTVCT[15:0].
0b1 The CNTKCTL.EVNTI field applies to CNTVCT[23:8].

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [16:10]

Reserved, RES0.

CNTKCTL, Counter-timer Kernel Control register

Page 2172

PL0PTEN, bit [9]

Traps PL0 accesses to the physical timer registers to Undefined mode.

PL0PTEN Meaning
0b0 PL0 accesses to the CNTP_CTL, CNTP_CVAL, and

CNTP_TVAL registers are trapped to Undefined mode.
0b1 This control does not cause any instructions to be trapped.

This field resets to an architecturally UNKNOWN value.

PL0VTEN, bit [8]

Traps PL0 accesses to the virtual timer registers to Undefined mode.

PL0VTEN Meaning
0b0 PL0 accesses to the CNTV_CTL, CNTV_CVAL, and

CNTV_TVAL registers are trapped to Undefined mode.
0b1 This control does not cause any instructions to be trapped.

This field resets to an architecturally UNKNOWN value.

EVNTI, bits [7:4]

Selects which bit (0 to 15) of the counter register CNTVCT is the trigger for the event stream generated from that
counter, when that stream is enabled.

This field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTVCT trigger bit, defined by EVNTI, generates an event when the
event stream is enabled:

EVNTDIR Meaning
0b0 A 0 to 1 transition of the trigger bit triggers an event.
0b1 A 1 to 0 transition of the trigger bit triggers an event.

This field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTVCT:

EVNTEN Meaning
0b0 Disables the event stream.
0b1 Enables the event stream.

This field resets to an architecturally UNKNOWN value.

PL0VCTEN, bit [1]

Traps PL0 accesses to the frequency register and virtual counter register to Undefined mode.

PL0VCTEN Meaning
0b0 PL0 accesses to the CNTVCT are trapped to Undefined

mode.
PL0 accesses to the CNTFRQ register are trapped to
Undefined mode, if CNTKCTL.PL0PCTEN is also 0.

0b1 This control does not cause any instructions to be trapped.

This field resets to an architecturally UNKNOWN value.

CNTKCTL, Counter-timer Kernel Control register

Page 2173

PL0PCTEN, bit [0]

Traps PL0 accesses to the frequency register and physical counter register to Undefined mode.

PL0PCTEN Meaning
0b0 PL0 accesses to the CNTPCT are trapped to Undefined

mode.
PL0 accesses to the CNTFRQ register are trapped to
Undefined mode, if CNTKCTL.PL0VCTEN is also 0.

0b1 This control does not cause any instructions to be trapped.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTKCTL
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
return CNTKCTL;

elsif PSTATE.EL == EL2 then
return CNTKCTL;

elsif PSTATE.EL == EL3 then
return CNTKCTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
CNTKCTL = R[t];

elsif PSTATE.EL == EL2 then
CNTKCTL = R[t];

elsif PSTATE.EL == EL3 then
CNTKCTL = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTKCTL, Counter-timer Kernel Control register

Page 2174

CNTP_CTL, Counter-timer Physical Timer Control
register

The CNTP_CTL characteristics are:

Purpose
Control register for the EL1 physical timer.

Configuration
AArch32 System register CNTP_CTL bits [31:0] are architecturally mapped to AArch64 System register
CNTP_CTL_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
CNTP_CTL are UNKNOWN.

Attributes
CNTP_CTL is a 32-bit register.

Field descriptions
The CNTP_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views
of the timers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter D6.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTP_CTL, Counter-timer Physical Timer Control register

Page 2175

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

This field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTP_TVAL continues to
count down.

Note

Disabling the output signal might be a power-saving option.

This field resets to 0.

Accessing the CNTP_CTL
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b001

CNTP_CTL, Counter-timer Physical Timer Control register

Page 2176

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHPS_CTL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHP_CTL_EL2;
else

return CNTP_CTL;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
return CNTP_CTL_NS;

else
return CNTP_CTL;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

return CNTP_CTL_NS;
else

return CNTP_CTL;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
return CNTP_CTL_S;

else
return CNTP_CTL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b001

CNTP_CTL, Counter-timer Physical Timer Control register

Page 2177

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHPS_CTL_EL2 = R[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHP_CTL_EL2 = R[t];
else

CNTP_CTL = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_CTL_NS = R[t];

else
CNTP_CTL = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

CNTP_CTL_NS = R[t];
else

CNTP_CTL = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
CNTP_CTL_S = R[t];

else
CNTP_CTL_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP_CTL, Counter-timer Physical Timer Control register

Page 2178

CNTP_CVAL, Counter-timer Physical Timer
CompareValue register

The CNTP_CVAL characteristics are:

Purpose
Holds the compare value for the EL1 physical timer.

Configuration
AArch32 System register CNTP_CVAL bits [63:0] are architecturally mapped to AArch64 System register
CNTP_CVAL_EL0[63:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
CNTP_CVAL are UNKNOWN.

Attributes
CNTP_CVAL is a 64-bit register.

Field descriptions
The CNTP_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL1 physical timer CompareValue.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is greater than or equal to
zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.
• If CNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the
same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTP_CVAL
Accesses to this register use the following encodings:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1

CNTP_CVAL, Counter-timer Physical Timer CompareValue register

Page 2179

0b1111 0b1110 0b0010

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHPS_CVAL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHP_CVAL_EL2;
else

return CNTP_CVAL;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x04);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
return CNTP_CVAL_NS;

else
return CNTP_CVAL;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

return CNTP_CVAL_NS;
else

return CNTP_CVAL;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
return CNTP_CVAL_S;

else
return CNTP_CVAL_NS;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0010

CNTP_CVAL, Counter-timer Physical Timer CompareValue register

Page 2180

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHPS_CVAL_EL2 = R[t2]:R[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHP_CVAL_EL2 = R[t2]:R[t];
else

CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x04);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_CVAL_NS = R[t2]:R[t];

else
CNTP_CVAL = R[t2]:R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

CNTP_CVAL_NS = R[t2]:R[t];
else

CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
CNTP_CVAL_S = R[t2]:R[t];

else
CNTP_CVAL_NS = R[t2]:R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP_CVAL, Counter-timer Physical Timer CompareValue register

Page 2181

CNTP_TVAL, Counter-timer Physical Timer TimerValue
register

The CNTP_TVAL characteristics are:

Purpose
Holds the timer value for the EL1 physical timer.

Configuration
AArch32 System register CNTP_TVAL bits [31:0] are architecturally mapped to AArch64 System register
CNTP_TVAL_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
CNTP_TVAL are UNKNOWN.

Attributes
CNTP_TVAL is a 32-bit register.

Field descriptions
The CNTP_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:

• If CNTP_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTP_CTL.ENABLE is 1, the value returned is (CNTP_CVAL - CNTPCT).

On a write of this register, CNTP_CVAL is set to (CNTPCT + TimerValue), where TimerValue is treated as a signed
32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CNTP_CVAL) is greater than or equal to
zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.
• If CNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count, so the TimerValue view
appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTP_TVAL
Accesses to this register use the following encodings:

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

Page 2182

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHPS_TVAL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHP_TVAL_EL2;
else

return CNTP_TVAL;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
return CNTP_TVAL_NS;

else
return CNTP_TVAL;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

return CNTP_TVAL_NS;
else

return CNTP_TVAL;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
return CNTP_TVAL_S;

else
return CNTP_TVAL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b000

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

Page 2183

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHPS_TVAL_EL2 = R[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHP_TVAL_EL2 = R[t];
else

CNTP_TVAL = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_TVAL_NS = R[t];

else
CNTP_TVAL = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

CNTP_TVAL_NS = R[t];
else

CNTP_TVAL = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
CNTP_TVAL_S = R[t];

else
CNTP_TVAL_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

Page 2184

CNTPCT, Counter-timer Physical Count register
The CNTPCT characteristics are:

Purpose
Holds the 64-bit physical count value.

Configuration
AArch32 System register CNTPCT bits [63:0] are architecturally mapped to AArch64 System register
CNTPCT_EL0[63:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CNTPCT
are UNKNOWN.

All reads to the CNTPCT occur in program order relative to reads to CNTPCTSS or CNTPCT.

Attributes
CNTPCT is a 64-bit register.

Field descriptions
The CNTPCT bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Physical count value
Physical count value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Physical count value.

Accessing the CNTPCT
Accesses to this register use the following encodings:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0000

CNTPCT, Counter-timer Physical Count register

Page 2185

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

CNTKCTL_EL1.EL0PCTEN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PCTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' &&

CNTHCTL_EL2.EL1PCTEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&
CNTHCTL_EL2.EL0PCTEN == '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCTEN == '0' then

AArch32.TakeHypTrapException(0x04);
else

return CNTPCT;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1PCTEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCTEN == '0' then
AArch32.TakeHypTrapException(0x04);

else
return CNTPCT;

elsif PSTATE.EL == EL2 then
return CNTPCT;

elsif PSTATE.EL == EL3 then
return CNTPCT;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTPCT, Counter-timer Physical Count register

Page 2186

CNTPCTSS, Counter-timer Self-Synchronized Physical
Count register

The CNTPCTSS characteristics are:

Purpose
Holds the 64-bit physical count value.

Configuration
AArch32 System register CNTPCTSS bits [63:0] are architecturally mapped to AArch64 System register
CNTPCTSS_EL0[63:0] .

This register is present only when AArch32 is supported at any Exception level and ARMv8.6-ECV is implemented.
Otherwise, direct accesses to CNTPCTSS are UNDEFINED.

All reads to the CNTPCTSS occur in program order relative to reads to CNTPCT or CNTPCTSS.

This register is a self-synchronised view of the CNTPCT counter, and cannot be read speculatively.

Attributes
CNTPCTSS is a 64-bit register.

Field descriptions
The CNTPCTSS bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Self-Synchronized Physical count value
Self-Synchronized Physical count value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Self-Synchronized Physical count value.

Accessing the CNTPCTSS
Accesses to this register use the following encodings:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b1000

CNTPCTSS, Counter-timer Self-Synchronized Physical Count register

Page 2187

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

CNTKCTL_EL1.EL0PCTEN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PCTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' &&

CNTHCTL_EL2.EL1PCTEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&
CNTHCTL_EL2.EL0PCTEN == '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCTEN == '0' then

AArch32.TakeHypTrapException(0x04);
else

return CNTPCTSS;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1PCTEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCTEN == '0' then
AArch32.TakeHypTrapException(0x04);

else
return CNTPCTSS;

elsif PSTATE.EL == EL2 then
return CNTPCTSS;

elsif PSTATE.EL == EL3 then
return CNTPCTSS;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTPCTSS, Counter-timer Self-Synchronized Physical Count register

Page 2188

CNTV_CTL, Counter-timer Virtual Timer Control
register

The CNTV_CTL characteristics are:

Purpose
Control register for the virtual timer.

Configuration
AArch32 System register CNTV_CTL bits [31:0] are architecturally mapped to AArch64 System register
CNTV_CTL_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
CNTV_CTL are UNKNOWN.

Attributes
CNTV_CTL is a 32-bit register.

Field descriptions
The CNTV_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views
of the timers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter D6.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTV_CTL, Counter-timer Virtual Timer Control register

Page 2189

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

This field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTV_TVAL continues to
count down.

Note

Disabling the output signal might be a power-saving option.

This field resets to 0.

Accessing the CNTV_CTL
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b001

CNTV_CTL, Counter-timer Virtual Timer Control register

Page 2190

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

return CNTHVS_CTL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHV_CTL_EL2;

else
return CNTV_CTL;

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==

'1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
return CNTV_CTL;

elsif PSTATE.EL == EL2 then
return CNTV_CTL;

elsif PSTATE.EL == EL3 then
return CNTV_CTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b001

CNTV_CTL, Counter-timer Virtual Timer Control register

Page 2191

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

CNTHVS_CTL_EL2 = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHV_CTL_EL2 = R[t];

else
CNTV_CTL = R[t];

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==

'1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
CNTV_CTL = R[t];

elsif PSTATE.EL == EL2 then
CNTV_CTL = R[t];

elsif PSTATE.EL == EL3 then
CNTV_CTL = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTV_CTL, Counter-timer Virtual Timer Control register

Page 2192

CNTV_CVAL, Counter-timer Virtual Timer
CompareValue register

The CNTV_CVAL characteristics are:

Purpose
Holds the compare value for the virtual timer.

Configuration
AArch32 System register CNTV_CVAL bits [63:0] are architecturally mapped to AArch64 System register
CNTV_CVAL_EL0[63:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
CNTV_CVAL are UNKNOWN.

Attributes
CNTV_CVAL is a 64-bit register.

Field descriptions
The CNTV_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL1 virtual timer CompareValue.

When CNTV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than or equal to
zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.
• If CNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the
same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTV_CVAL
Accesses to this register use the following encodings:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1

CNTV_CVAL, Counter-timer Virtual Timer CompareValue register

Page 2193

0b1111 0b1110 0b0011

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

return CNTHVS_CVAL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHV_CVAL_EL2;

else
return CNTV_CVAL;

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==

'1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

else
return CNTV_CVAL;

elsif PSTATE.EL == EL2 then
return CNTV_CVAL;

elsif PSTATE.EL == EL3 then
return CNTV_CVAL;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0011

CNTV_CVAL, Counter-timer Virtual Timer CompareValue register

Page 2194

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

CNTHVS_CVAL_EL2 = R[t2]:R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHV_CVAL_EL2 = R[t2]:R[t];

else
CNTV_CVAL = R[t2]:R[t];

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==

'1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

else
CNTV_CVAL = R[t2]:R[t];

elsif PSTATE.EL == EL2 then
CNTV_CVAL = R[t2]:R[t];

elsif PSTATE.EL == EL3 then
CNTV_CVAL = R[t2]:R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTV_CVAL, Counter-timer Virtual Timer CompareValue register

Page 2195

CNTV_TVAL, Counter-timer Virtual Timer TimerValue
register

The CNTV_TVAL characteristics are:

Purpose
Holds the timer value for the virtual timer.

Configuration
AArch32 System register CNTV_TVAL bits [31:0] are architecturally mapped to AArch64 System register
CNTV_TVAL_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
CNTV_TVAL are UNKNOWN.

Attributes
CNTV_TVAL is a 32-bit register.

Field descriptions
The CNTV_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TimerValue

TimerValue, bits [31:0]

The TimerValue view of the virtual timer.

On a read of this register:

• If CNTV_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTV_CTL.ENABLE is 1, the value returned is (CNTV_CVAL - CNTVCT).

On a write of this register, CNTV_CVAL is set to (CNTVCT + TimerValue), where TimerValue is treated as a signed
32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CNTP_CVAL) is greater than or equal to
zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.
• If CNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count, so the TimerValue
view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTV_TVAL
Accesses to this register use the following encodings:

CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

Page 2196

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b000

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

return CNTHVS_TVAL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHV_TVAL_EL2;

else
return CNTV_TVAL;

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==

'1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
return CNTV_TVAL;

elsif PSTATE.EL == EL2 then
return CNTV_TVAL;

elsif PSTATE.EL == EL3 then
return CNTV_TVAL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b000

CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

Page 2197

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented("ARMv8.4-SecEL2") then

CNTHVS_TVAL_EL2 = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHV_TVAL_EL2 = R[t];

else
CNTV_TVAL = R[t];

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT ==

'1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
CNTV_TVAL = R[t];

elsif PSTATE.EL == EL2 then
CNTV_TVAL = R[t];

elsif PSTATE.EL == EL3 then
CNTV_TVAL = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

Page 2198

CNTVCT, Counter-timer Virtual Count register
The CNTVCT characteristics are:

Purpose
Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value minus the virtual
offset visible in CNTVOFF.

Configuration
AArch32 System register CNTVCT bits [63:0] are architecturally mapped to AArch64 System register
CNTVCT_EL0[63:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CNTVCT
are UNKNOWN.

The value of this register is the same as the value of CNTPCT in the following conditions:

• When EL2 is not implemented.
• When EL2 is implemented and is using AArch64, HCR_EL2.{E2H, TGE} is {1, 1}, and this register is read

from Non-secure EL0.

All reads to the CNTVCT occur in program order relative to reads to CNTVCTSS or CNTVCT.

Attributes
CNTVCT is a 64-bit register.

Field descriptions
The CNTVCT bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual count value
Virtual count value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual count value.

Accessing the CNTVCT
Accesses to this register use the following encodings:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0001

CNTVCT, Counter-timer Virtual Count register

Page 2199

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

CNTKCTL_EL1.EL0VCTEN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VCTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&
CNTHCTL_EL2.EL0VCTEN == '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

CNTHCTL_EL2.EL1TVCT == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

else
return CNTVCT;

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTHCTL_EL2.EL1TVCT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

else
return CNTVCT;

elsif PSTATE.EL == EL2 then
return CNTVCT;

elsif PSTATE.EL == EL3 then
return CNTVCT;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTVCT, Counter-timer Virtual Count register

Page 2200

CNTVCTSS, Counter-timer Self-Synchronized Virtual
Count register

The CNTVCTSS characteristics are:

Purpose
Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value visible in CNTPCT
minus the virtual offset visible in CNTVOFF.

Configuration
AArch32 System register CNTVCTSS bits [63:0] are architecturally mapped to AArch64 System register
CNTVCTSS_EL0[63:0] .

This register is present only when AArch32 is supported at any Exception level and ARMv8.6-ECV is implemented.
Otherwise, direct accesses to CNTVCTSS are UNDEFINED.

All reads to the CNTVCTSS occur in program order relative to reads to CNTVCT or CNTVCTSS.

This register is a self-synchronised view of the CNTVCT counter, and cannot be read speculatively.

Attributes
CNTVCTSS is a 64-bit register.

Field descriptions
The CNTVCTSS bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Self-Synchronized Virtual count value
Self-Synchronized Virtual count value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Self-Synchronized Virtual count value.

Accessing the CNTVCTSS
Accesses to this register use the following encodings:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b1001

CNTVCTSS, Counter-timer Self-Synchronized Virtual Count register

Page 2201

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

CNTKCTL_EL1.EL0VCTEN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VCTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&
CNTHCTL_EL2.EL0VCTEN == '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

CNTHCTL_EL2.EL1TVCT == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

else
return CNTVCTSS;

elsif PSTATE.EL == EL1 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTHCTL_EL2.EL1TVCT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

else
return CNTVCTSS;

elsif PSTATE.EL == EL2 then
return CNTVCTSS;

elsif PSTATE.EL == EL3 then
return CNTVCTSS;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTVCTSS, Counter-timer Self-Synchronized Virtual Count register

Page 2202

CNTVOFF, Counter-timer Virtual Offset register
The CNTVOFF characteristics are:

Purpose
Holds the 64-bit virtual offset. This is the offset between the physical count value visible in CNTPCT and the virtual
count value visible in CNTVCT.

Configuration
AArch32 System register CNTVOFF bits [63:0] are architecturally mapped to AArch64 System register
CNTVOFF_EL2[63:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
CNTVOFF are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3 and the virtual counter uses a fixed virtual offset of zero.

Note

When EL2 is implemented and is using AArch64, if HCR_EL2.{E2H, TGE} is
{1, 1}, the virtual counter uses a fixed virtual offset of zero when CNTVCT is
read from Non-secure EL0.

Attributes
CNTVOFF is a 64-bit register.

Field descriptions
The CNTVOFF bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual offset
Virtual offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual offset.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the
same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTVOFF
Accesses to this register use the following encodings:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1

CNTVOFF, Counter-timer Virtual Offset register

Page 2203

0b1111 0b1110 0b0100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
return CNTVOFF;

elsif PSTATE.EL == EL3 then
return CNTVOFF;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
CNTVOFF = R[t2]:R[t];

elsif PSTATE.EL == EL3 then
CNTVOFF = R[t2]:R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTVOFF, Counter-timer Virtual Offset register

Page 2204

CONTEXTIDR, Context ID Register
The CONTEXTIDR characteristics are:

Purpose
Identifies the current Process Identifier and, when using the Short-descriptor translation table format, the Address
Space Identifier.

The value of the whole of this register is called the Context ID and is used by:

• The debug logic, for Linked and Unlinked Context ID matching.
• The trace logic, to identify the current process.

The significance of this register is for debug and trace use only.

Configuration
AArch32 System register CONTEXTIDR bits [31:0] are architecturally mapped to AArch64 System register
CONTEXTIDR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
CONTEXTIDR are UNKNOWN.

The register format depends on whether address translation is using the Long-descriptor or the Short-descriptor
translation table format.

Attributes
CONTEXTIDR is a 32-bit register.

Field descriptions
The CONTEXTIDR bit assignments are:

When TTBCR.EAE == 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PROCID ASID

PROCID, bits [31:8]

Process Identifier. This field must be programmed with a unique value that identifies the current process.

This field resets to an architecturally UNKNOWN value.

ASID, bits [7:0]

Address Space Identifier. This field is programmed with the value of the current ASID.

This field resets to an architecturally UNKNOWN value.

When TTBCR.EAE == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PROCID

CONTEXTIDR, Context ID Register

Page 2205

PROCID, bits [31:0]

Process Identifier. This field must be programmed with a unique value that identifies the current process.

This field resets to an architecturally UNKNOWN value.

Accessing the CONTEXTIDR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return CONTEXTIDR_NS;
else

return CONTEXTIDR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return CONTEXTIDR_NS;

else
return CONTEXTIDR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return CONTEXTIDR_S;
else

return CONTEXTIDR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0000 0b001

CONTEXTIDR, Context ID Register

Page 2206

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

CONTEXTIDR_NS = R[t];
else

CONTEXTIDR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
CONTEXTIDR_NS = R[t];

else
CONTEXTIDR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

CONTEXTIDR_S = R[t];
else

CONTEXTIDR_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CONTEXTIDR, Context ID Register

Page 2207

CP15DMB, Data Memory Barrier System instruction
The CP15DMB characteristics are:

Purpose
Performs a Data Memory Barrier.

Arm deprecates any use of this System instruction, and strongly recommends that software use the DMB instruction
instead.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
CP15DMB are UNKNOWN.

Attributes
CP15DMB is a 32-bit System instruction.

Field descriptions
CP15DMB ignores the value in the register specified by the instruction encoding. Software does not have to write a
value to the register before issuing this instruction.

Executing the CP15DMB instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1010 0b101

CP15DMB, Data Memory Barrier System instruction

Page 2208

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.CP15BEN

== '0' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.CP15BEN
== '0' then

UNDEFINED;
elsif ELUsingAArch32(EL1) && SCTLR.CP15BEN == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
AArch32.TakeHypTrapException(0x03);

else
CP15DMB();

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ELUsingAArch32(EL1) && SCTLR.CP15BEN == '0' then

UNDEFINED;
else

CP15DMB();
elsif PSTATE.EL == EL2 then

if HSCTLR.CP15BEN == '0' then
UNDEFINED;

else
CP15DMB();

elsif PSTATE.EL == EL3 then
CP15DMB();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CP15DMB, Data Memory Barrier System instruction

Page 2209

CP15DSB, Data Synchronization Barrier System
instruction

The CP15DSB characteristics are:

Purpose
Performs a Data Synchronization Barrier.

Arm deprecates any use of this System instruction, and strongly recommends that software use the DSB instruction
instead.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
CP15DSB are UNKNOWN.

Attributes
CP15DSB is a 32-bit System instruction.

Field descriptions
CP15DSB ignores the value in the register specified by the instruction encoding. Software does not have to write a
value to the register before issuing this instruction.

Executing the CP15DSB instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1010 0b100

CP15DSB, Data Synchronization Barrier System instruction

Page 2210

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.CP15BEN

== '0' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.CP15BEN
== '0' then

UNDEFINED;
elsif ELUsingAArch32(EL1) && SCTLR.CP15BEN == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
AArch32.TakeHypTrapException(0x03);

else
CP15DSB();

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ELUsingAArch32(EL1) && SCTLR.CP15BEN == '0' then

UNDEFINED;
else

CP15DSB();
elsif PSTATE.EL == EL2 then

if HSCTLR.CP15BEN == '0' then
UNDEFINED;

else
CP15DSB();

elsif PSTATE.EL == EL3 then
CP15DSB();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CP15DSB, Data Synchronization Barrier System instruction

Page 2211

CP15ISB, Instruction Synchronization Barrier System
instruction

The CP15ISB characteristics are:

Purpose
Performs an Instruction Synchronization Barrier.

Arm deprecates any use of this System instruction, and strongly recommends that software use the ISB instruction
instead.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
CP15ISB are UNKNOWN.

Attributes
CP15ISB is a 32-bit System instruction.

Field descriptions
CP15ISB ignores the value in the register specified by the instruction encoding. Software does not have to write a
value to the register before issuing this instruction.

Executing the CP15ISB instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0101 0b100

CP15ISB, Instruction Synchronization Barrier System instruction

Page 2212

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.CP15BEN

== '0' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.CP15BEN
== '0' then

UNDEFINED;
elsif ELUsingAArch32(EL1) && SCTLR.CP15BEN == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
AArch32.TakeHypTrapException(0x03);

else
CP15ISB();

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ELUsingAArch32(EL1) && SCTLR.CP15BEN == '0' then

UNDEFINED;
else

CP15ISB();
elsif PSTATE.EL == EL2 then

if HSCTLR.CP15BEN == '0' then
UNDEFINED;

else
CP15ISB();

elsif PSTATE.EL == EL3 then
CP15ISB();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CP15ISB, Instruction Synchronization Barrier System instruction

Page 2213

CPACR, Architectural Feature Access Control Register
The CPACR characteristics are:

Purpose
Controls access to trace, and to Advanced SIMD and floating-point functionality from EL0, EL1, and EL3.

In an implementation that includes EL2, the CPACR has no effect on instructions executed at EL2.

Configuration
AArch32 System register CPACR bits [31:0] are architecturally mapped to AArch64 System register CPACR_EL1[31:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CPACR
are UNKNOWN.

Bits in the NSACR control Non-secure access to the CPACR fields. See the field descriptions for more information.

Note

In the register field descriptions, controls are described as applying at
specified Privilege levels. This is because, in Secure state, a PL1 control:

• Applies to execution in a Secure EL3 mode when EL3 is using AArch32.
• Applies to execution in a Secure EL1 mode when EL3 is using AArch64.

See 'Security state, Exception levels, and AArch32 execution privilege' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture
profile, section G1.7.

Attributes
CPACR is a 32-bit register.

Field descriptions
The CPACR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ASEDIS RES0 TRCDIS RES0 cp11 cp10 RES0

ASEDIS, bit [31]

Disables PL0 and PL1 execution of Advanced SIMD instructions.

ASEDIS Meaning
0b0 This control permits execution of Advanced SIMD instructions

at PL0 and PL1.
0b1 All instruction encodings that are Advanced SIMD instruction

encodings, but are not also floating-point instruction
encodings, are UNDEFINED at PL0 and PL1.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0. Otherwise, it
is IMPLEMENTATION DEFINED whether this field is implemented as a RW field. If it is not implemented as a RW field, it is
RAZ/WI.

CPACR, Architectural Feature Access Control Register

Page 2214

If EL3 is implemented and is using AArch32, and the value of NSACR.NSASEDIS is 1, this field behaves as RAO/WI in
Non-secure state, regardless of its actual value. This applies even if the field is implemented as RAZ/WI.

For the list of instructions affected by this field, see 'Controls of Advanced SIMD operation that do not apply to
floating-point operation' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section
E1.

See the description of CPACR.cp10 for a list of other controls that can disable or trap execution of Advanced SIMD
instructions in AArch32 state.

This field resets to 0.

Bits [30:29]

Reserved, RES0.

TRCDIS, bit [28]

Traps PL0 and PL1 System register accesses to all implemented trace registers to Undefined mode.

TRCDIS Meaning
0b0 This control has no effect on PL0 and PL1 System register

accesses to trace registers.
0b1 PL0 and PL1 System register accesses to all implemented

trace registers are trapped to Undefined mode.

If the implementation does not include a PE trace unit, or does not include a System register interface to the PE trace
unit registers, this field is RES0. Otherwise, it is IMPLEMENTATION DEFINED whether this field is implemented as a RW
field. If it is not implemented as a RW field, it is RAZ/WI.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSTRCDIS is 1, this field behaves as RAO/WI in
Non-secure state, regardless of its actual value. This applies even if the field is implemented as RAZ/WI.

Note
• The ETMv4 architecture does not permit EL0 to access the trace

registers. If the implementation includes an ETMv4 implementation,
EL0 accesses to the trace registers are UNDEFINED.

• The architecture does not provide traps on trace register accesses
through the optional memory-mapped external debug interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any
side-effects that are normally associated with the access do not occur before the exception is taken.

This field resets to an architecturally UNKNOWN value.

Bits [27:24]

Reserved, RES0.

cp11, bits [23:22]

The value of this field is ignored. If this field is programmed with a different value to the cp10 field then this field is
UNKNOWN on a direct read of the CPACR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0.

In Non-secure state, if EL3 is implemented and is using AArch32, when the value of NSACR.cp10 is 0, this field
behaves as RAZ/WI, regardless of its actual value.

This field resets to 0.

cp10, bits [21:20]

Defines the access rights for the floating-point and Advanced SIMD functionality. Possible values of the field are:

CPACR, Architectural Feature Access Control Register

Page 2215

cp10 Meaning
0b00 PL0 and PL1 accesses to floating-point and Advanced SIMD

registers or instructions are UNDEFINED.
0b01 PL0 accesses to floating-point and Advanced SIMD registers or

instructions are UNDEFINED.
0b10 Reserved. The effect of programming this field to this value is

CONSTRAINED UNPREDICTABLE. See 'Unallocated values in fields of
AArch32 System registers and translation table entries' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section J1.1.11.

0b11 This control permits full access to the floating-point and
Advanced SIMD functionality from PL0 and PL1.

The floating-point and Advanced SIMD features controlled by these fields are:

• Execution of any floating-point or Advanced SIMD instruction.
• Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as S0-S31 and Q0-Q15.
• Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.

Note

The CPACR has no effect on floating-point and Advanced SIMD accesses from
PL2. These can be disabled by the HCPTR.TCP10 field.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0.

In Non-secure state, if EL3 is implemented and is using AArch32, when the value of NSACR.cp10 is 0, this field
behaves as RAZ/WI, regardless of its actual value.

Execution of floating-point and Advanced SIMD instructions in AArch32 state can be disabled or trapped by the
following controls:

• CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.
• FPEXC.EN.
• If executing in Non-secure state:

◦ HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.
◦ NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.

• For Advanced SIMD instructions only:
◦ CPACR.ASEDIS.
◦ If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

See the descriptions of the controls for more information.

This field resets to 0.

Bits [19:0]

Reserved, RES0.

Accessing the CPACR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0000 0b010

CPACR, Architectural Feature Access Control Register

Page 2216

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TCPAC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return CPACR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return CPACR;

elsif PSTATE.EL == EL3 then
return CPACR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TCPAC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

CPACR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
CPACR = R[t];

elsif PSTATE.EL == EL3 then
CPACR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPACR, Architectural Feature Access Control Register

Page 2217

CPPRCTX, Cache Prefetch Prediction Restriction by
Context

The CPPRCTX characteristics are:

Purpose
Cache Prefetch Prediction Restriction by Context applies to all Cache Allocation Resources that predict cache
allocations based on information gathered within the target execution context or contexts.

When this instruction is complete and synchronized, cache prefetch prediction does not permit later speculative
execution within the target execution context to be observable through side channels.

This instruction applies to all:

• Instruction caches.
• Data caches.
• TLB prefetching hardware used by the executing PE that applies to the supplied context or contexts.

This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same
PE as executed the original restriction instruction, and a subsequent context synchronization event is required to
ensure that the effect of the completion of the instructions is synchronized to the current execution.

Note

This instruction does not require the invalidation of Cache Allocation
Resources so long as the behavior described for completion of this instruction
is met by the implementation.

On some implementations the instruction is likely to take a significant number
of cycles to execute. This instruction is expected to be used very rarely, such
as on the roll-over of an ASID or VMID, but should not be used on every
context switch.

Configuration
This instruction is present only when AArch32 is supported at any Exception level and ARMv8.0-PredInv is
implemented. Otherwise, direct accesses to CPPRCTX are UNDEFINED.

Attributes
CPPRCTX is a 32-bit System instruction.

Field descriptions
The CPPRCTX input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 GVMIDNS EL VMID RES0 GASID ASID

Bits [31:28]

Reserved, RES0.

GVMID, bit [27]

Execution of this instruction applies to all VMIDs or a specified VMID.

CPPRCTX, Cache Prefetch Prediction Restriction by Context

Page 2218

GVMID Meaning
0b0 Applies to specified VMID for an EL0 or EL1 context. For all

other contexts this field is RES0.
0b1 Applies to all VMIDs for an EL0 or EL1 context. For all other

contexts this field is RES0.

If the instruction is executed at EL0 or EL1, then this field has an Effective value of 0.

NS, bit [26]

Security State.

NS Meaning
0b0 Secure state.
0b1 Non-secure state.

If the instruction is executed in Non-secure state, this field is treated as 1.

EL, bits [25:24]

Exception Level.

EL Meaning
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.

If the instruction is executed at an exception level lower than the specified level, this instruction is treated as a NOP.

VMID, bits [23:16]

Only applies when bit[27] is 0 and either:

• an EL1 context.
• an EL0 context when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0) or EL2 is using AArch32 state.

Otherwise this field is RES0.

When the instruction is executed at EL1 then this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0 or ELUsingAArch32(EL2))
then this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1 and !ELUsingAArch32(EL2))
then this field is ignored.

Bits [15:9]

Reserved, RES0.

GASID, bit [8]

Execution of this instruction applies to all ASIDs or a specified ASID.

GASID Meaning
0b0 Applies to specified ASID for an EL0 context. For all other

contexts this field is RES0.
0b1 Applies to all ASID for an EL0 context. For all other contexts

this field is RES0.

If the instruction is executed at EL0, then this field has an Effective value of 0.

CPPRCTX, Cache Prefetch Prediction Restriction by Context

Page 2219

ASID, bits [7:0]

Only applies for an EL0 context and when bit[8] is 0.

Otherwise this field is RES0.

When the instruction is executed at EL0 then this field is treated as the current ASID.

Executing the CPPRCTX instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0011 0b111

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && SCTLR.EnRCTX == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX ==

'0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
CPPRCTX(R[t]);

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x03);
else

CPPRCTX(R[t]);
elsif PSTATE.EL == EL2 then

CPPRCTX(R[t]);
elsif PSTATE.EL == EL3 then

CPPRCTX(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPPRCTX, Cache Prefetch Prediction Restriction by Context

Page 2220

CPSR, Current Program Status Register
The CPSR characteristics are:

Purpose
Holds PE status and control information.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CPSR
are UNKNOWN.

Attributes
CPSR is a 32-bit register.

Field descriptions
The CPSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q RES0 SSBSPANDITRES0 GE RES0 E A I F RES0RES1 M

N, bit [31]

Negative condition flag. Set to bit[31] of the result of the last flag-setting instruction. If the result is regarded as a
two's complement signed integer, then N is set to 1 if the result was negative, and N is set to 0 if the result was
positive or zero.

Z, bit [30]

Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0 otherwise. A result of
zero often indicates an equal result from a comparison.

C, bit [29]

Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for example an unsigned
overflow on an addition.

V, bit [28]

Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition, for example a
signed overflow on an addition.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

Bits [26:24]

Reserved, RES0.

SSBS, bit [23]

CPSR, Current Program Status Register

Page 2221

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass Safe.

Prohibits speculative loads or stores which might practically allow a cache timing side channel.

A cache timing side channel might be exploited where a load or store uses an address that is derived from a register
that is being loaded from memory using a load instruction speculatively read from a memory location. If PSTATE.SSBS
is enabled, the address derived from the load instruction might be from earlier in the coherence order than the latest
store to that memory location with the same virtual address.

SSBS Meaning
0b0 Hardware is not permitted to load or store speculatively in the

manner described.
0b1 Hardware is permitted to load or store speculatively in the

manner described.

The value of this bit is usually set to the value described by the SCTLR.DSSBS bit on exceptions to any mode except
Hyp mode, and the value described by HSCTLR.DSSBS on exceptions to Hyp mode.

This field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never.

PAN Meaning
0b0 The translation system is the same as Armv8.0.
0b1 Disables privileged read and write accesses to addresses

accessible at EL0.

The value of this bit is usually preserved on taking an exception, except in the following situations:

• When the target of the exception is EL1, and the value of the SCTLR.SPAN bit for the current Security state is
0, this bit is set to 1.

• When the target of the exception is EL3, from Secure state, and the value of the Secure SCTLR.SPAN is 0, this
bit is set to 1.

• When the target of the exception is EL3, from Non-secure state, this bit is set to 0 regardless of the value of
the Secure SCTLR.SPAN bit.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When ARMv8.4-DIT is implemented:

Data Independent Timing.

CPSR, Current Program Status Register

Page 2222

DIT Meaning
0b0 The architecture makes no statement about the timing properties

of any instructions.
0b1 The architecture requires that:

• The timing of every load and store instruction is insensitive
to the value of the data being loaded or stored.

• For certain data processing instructions, the instruction
takes a time which is independent of:

◦ The values of the data supplied in any of its
registers.

◦ The values of the NZCV flags.
• For certain data processing instructions, the response of

the instruction to asynchronous exceptions does not vary
based on:

◦ The values of the data supplied in any of its
registers.

◦ The values of the NZCV flags.

The data processing instructions affected by this bit are:

• All cryptographic instructions. These instructions are:

◦ AESD, AESE, AESIMC, AESMC, SHA1C, SHA1H, SHA1M, SHA1P, SHA1SU0, SHA1SU1, SHA256H, SHA256H2,
SHA256SU0, and SHA256SU1.

• A subset of those instructions which use the general-purpose register file. For these instructions, the effects
of CPSR.DIT apply only if they do not use R15 as either their source or destination and pass their condition
execution check. The instructions are:

◦ BFI, BFC, CLZ, CMN, CMP, MLA, MLAS, MLS, MOVT, MUL, MULS, NOP, PKHBT, PKHTB, RBIT, REV, REV16, REVSH,
RRX, SADD16, SADD8, SASX, SBFX, SHADD16, SHADD8, SHASX, SHSAX, SHSUB16, SHSUB8, SMLAL**, SMLAW*,
SMLSD*, SMMLA*, SMMLS*, SMMUL*, SMUAD*, SMUL*, SSAX, SSUB16, SSUB8, SXTAB*, SXTAH, SXTB*, SXTH,
TEQ, TST, UADD*, UASX, UBFX, UHADD*, UHASX, UHSAX, UHSUB*, UMAAL, UMLAL, UMLALS, UMULL, UMULLS,
USADA8, USAX, USUB*, UXTAB*, UXTAH, UXTB*, UXTH, ADC (register-shifted register), ADCS (register-
shifted register), ADD (register-shifted register), ADDS (register-shifted register), AND (register-shifted
register), ANDS (register-shifted register), ASR (register-shifted register), ASRS (register-shifted
register), BIC (register-shifted register), BICS (register-shifted register), EOR (register-shifted
register), EORS (register-shifted register), LSL (register-shifted register), LSLS (register-shifted
register), LSR (register-shifted register), LSRS (register-shifted register), MOV (register-shifted
register), MOVS (register-shifted register), MVN (register-shifted register), MVNS (register-shifted
register), ORR (register-shifted register), ORRS (register-shifted register), ROR (register-shifted
register), RORS (register-shifted register), RSB (register-shifted register), RSBS (register-shifted
register), RSC (register-shifted register), RSCS (register-shifted register), SBC (register-shifted
register), SBCS (register-shifted register), SUB (register-shifted register), and SUBS (register-shifted
register).

• A subset of those instructions which use the general-purpose register file. For these instructions, the effects
of CPSR.DIT apply only if they do not use R15 as either their source or destination. The effects of CPSR.DIT
do not depend on these instructions passing their condition execution check. These instructions are:

◦ ADC (immediate), ADC (register), ADCS (immediate), ADCS (register), ADD (immediate), ADD (register),
ADDS (immediate), ADDS (register), AND (immediate), AND (register), ANDS (immediate), ANDS (register),
ASR (immediate), ASR (register), ASRS (immediate), ASRS (register), BIC (immediate), BIC (register),
BICS (immediate), BICS (register), EOR (immediate), EOR (register), EORS (immediate), EORS (register),
LSL (immediate), LSL (register), LSLS (immediate), LSLS (register), LSR (immediate), LSR (register),
LSRS (immediate), LSRS (register), MOV (immediate), MOV (register), MOVS (immediate), MOVS (register),
MVN (immediate), MVN (register), MVNS (immediate), MVNS (register), ORR (immediate), ORR (register),
ORRS (immediate), ORRS (register), ROR (immediate), ROR (register), RORS (immediate), RORS (register),
RSB (immediate), RSB (register), RSBS (immediate), RSBS (register), RSC (immediate), RSC (register),
RSCS (immediate), RSCS (register), SBC (immediate), SBC (register), SBCS (immediate), SBCS (register),
SUB (immediate), SUB (register), SUBS (immediate), and SUBS (register).

• A subset of those instructions which use the SIMD&FP register file. For these instructions, the effects of
CPSR.DIT apply only if they pass their condition execution check. These instructions are:

◦ CRC32B, CRC32H, CRC32W, CRC32CB, CRC32CH, CRC32CW, VABA*, VABD*, VABS, VACGE, VACGT, VACLE,
VACLT, VADD (integer), VADDHN, VADDL, VADDW, VAND, VBIC, VBIF, VBIT, VBSL, VCGE, VCGT, VCLE, VCLS,
VCLT, VCLZ, VCMP, VCMPE, VCNT, VDUP, VEOR, VEXT, VHADD, VHSUB, VMAX (integer), VMIN (integer), VMLA
(integer), VMLAL, VMLS (integer), VMLSL, VMOV, VMOVL, VMOVN, VMUL (integer and polynomial), VMULL
(integer and polynomial), VMVN, VNEG, VORN, VORR, VPADAL, VPADD (integer), VPADDL, VPMAX (integer),

CPSR, Current Program Status Register

Page 2223

VPMIN (integer), VRADDHN, VREV*, VRHADD, VRSHL, VRSHR, VRSHRN, VRSRA, VRSUBHN, VSELEQ, VSELGE,
VSELGT, VSELVS, VSHL, VSHLL, VSHR, VSLI, VSRA, VSRI, VSUB (integer), VSUBHN, VSUBL, VSUBW, VSWP,
VTBL, VTBX, VTRN, VTST, VUZP, and VZIP

This field resets to 0.

Otherwise:

Reserved, RES0.

Bit [20]

Reserved, RES0.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

Bits [15:10]

Reserved, RES0.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0b0 Little-endian operation
0b1 Big-endian operation.

Instruction fetches ignore this bit.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support,
this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any
Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level
other than EL0.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the
CPSR.E bit on reset, and therefore applies to software execution from reset.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0b0 Exception not masked.
0b1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0b0 Exception not masked.
0b1 Exception masked.

CPSR, Current Program Status Register

Page 2224

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0b0 Exception not masked.
0b1 Exception masked.

Bit [5]

Reserved, RES0.

Bit [4]

Reserved, RES1.

M, bits [3:0]

Current PE mode. Possible values are:

M Meaning
0b0000 User.
0b0001 FIQ.
0b0010 IRQ.
0b0011 Supervisor.
0b0110 Monitor.
0b0111 Abort.
0b1010 Hyp.
0b1011 Undefined.
0b1111 System.

Accessing the CPSR
CPSR can be read using the MRS instruction and written using the MSR (register) or MSR (immediate) instructions.

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPSR, Current Program Status Register

Page 2225

CSSELR, Cache Size Selection Register
The CSSELR characteristics are:

Purpose
Selects the current Cache Size ID Register, CCSIDR, by specifying the required cache level and the cache type, which
is either instruction cache or data cache.

If ARMv8.3-CCIDX is implemented, CSSELR also selects the current CCSIDR2.

Configuration
AArch32 System register CSSELR bits [31:0] are architecturally mapped to AArch64 System register
CSSELR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CSSELR
are UNKNOWN.

Attributes
CSSELR is a 32-bit register.

Field descriptions
The CSSELR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Level InD

Bits [31:4]

Reserved, RES0.

Level, bits [3:1]

Cache level of required cache. Permitted values are:

Level Meaning
0b000 Level 1 cache.
0b001 Level 2 cache.
0b010 Level 3 cache.
0b011 Level 4 cache.
0b100 Level 5 cache.
0b101 Level 6 cache.
0b110 Level 7 cache.

All other values are reserved.

If CSSELR.Level is programmed to a cache level that is not implemented, then the value for this field on a read of
CSSELR is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

InD, bit [0]

Instruction not Data bit. Permitted values are:

CSSELR, Cache Size Selection Register

Page 2226

InD Meaning
0b0 Data or unified cache.
0b1 Instruction cache.

If CSSELR.Level is programmed to a cache level that is not implemented, then the value for this field on a read of
CSSELR is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Accessing the CSSELR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b010 0b0000 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return CSSELR_NS;
else

return CSSELR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return CSSELR_NS;

else
return CSSELR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return CSSELR_S;
else

return CSSELR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b010 0b0000 0b0000 0b000

CSSELR, Cache Size Selection Register

Page 2227

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

CSSELR_NS = R[t];
else

CSSELR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
CSSELR_NS = R[t];

else
CSSELR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

CSSELR_S = R[t];
else

CSSELR_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSSELR, Cache Size Selection Register

Page 2228

CTR, Cache Type Register
The CTR characteristics are:

Purpose
Provides information about the architecture of the caches.

Configuration
AArch32 System register CTR bits [31:0] are architecturally mapped to AArch64 System register CTR_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CTR are
UNKNOWN.

Attributes
CTR is a 32-bit register.

Field descriptions
The CTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES1RES0DICIDC CWG ERG DminLine L1Ip RES0 IminLine

Bit [31]

Reserved, RES1.

Bit [30]

Reserved, RES0.

DIC, bit [29]

Instruction cache invalidation requirements for data to instruction coherence.

DIC Meaning
0b0 Instruction cache invalidation to the Point of Unification is

required for data to instruction coherence.
0b1 Instruction cache invalidation to the Point of Unification is not

required for data to instruction coherence.

IDC, bit [28]

Data cache clean requirements for instruction to data coherence. The meaning of this bit is:

IDC Meaning
0b0 Data cache clean to the Point of Unification is required for

instruction to data coherence, unless CLIDR.LoC == 0b000 or
(CLIDR.LoUIS == 0b000 && CLIDR.LoUU == 0b000).

0b1 Data cache clean to the Point of Unification is not required for
instruction to data coherence.

CTR, Cache Type Register

Page 2229

CWG, bits [27:24]

Cache writeback granule. Log2 of the number of words of the maximum size of memory that can be overwritten as a
result of the eviction of a cache entry that has had a memory location in it modified.

A value of 0b0000 indicates that this register does not provide Cache writeback granule information and either:

• The architectural maximum of 512 words (2KB) must be assumed.
• The Cache writeback granule can be determined from maximum cache line size encoded in the Cache Size ID

Registers.

Values greater than 0b1001 are reserved.

Arm recommends that an implementation that does not support cache write-back implements this field as 0b0001. This
applies, for example, to an implementation that supports only write-through caches.

ERG, bits [23:20]

Exclusives reservation granule. Log2 of the number of words of the maximum size of the reservation granule that has
been implemented for the Load-Exclusive and Store-Exclusive instructions.

The use of the value 0b0000 is deprecated.

The value 0b0001 and values greater than 0b1001 are reserved.

DminLine, bits [19:16]

Log2 of the number of words in the smallest cache line of all the data caches and unified caches that are controlled by
the PE.

L1Ip, bits [15:14]

Level 1 instruction cache policy. Indicates the indexing and tagging policy for the L1 instruction cache. Possible values
of this field are:

L1Ip Meaning
0b00 VMID aware Physical Index, Physical tag (VPIPT)
0b01 ASID-tagged Virtual Index, Virtual Tag (AIVIVT)
0b10 Virtual Index, Physical Tag (VIPT)
0b11 Physical Index, Physical Tag (PIPT)

The value 0b01 is reserved in Armv8.

The value 0b00 is permitted only in an implementation that includes ARMv8.2-PIPTV, otherwise the value is reserved.

Bits [13:4]

Reserved, RES0.

IminLine, bits [3:0]

Log2 of the number of words in the smallest cache line of all the instruction caches that are controlled by the PE.

Accessing the CTR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0000 0b001

CTR, Cache Type Register

Page 2230

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return CTR;
elsif PSTATE.EL == EL2 then

return CTR;
elsif PSTATE.EL == EL3 then

return CTR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTR, Cache Type Register

Page 2231

DACR, Domain Access Control Register
The DACR characteristics are:

Purpose
Defines the access permission for each of the sixteen memory domains.

Configuration
AArch32 System register DACR bits [31:0] are architecturally mapped to AArch64 System register DACR32_EL2[31:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DACR
are UNKNOWN.

This register has no function when TTBCR.EAE is set to 1, to select the Long-descriptor translation table format.

Attributes
DACR is a 32-bit register.

Field descriptions
The DACR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

D<n>, bits [2n+1:2n], for n = 0 to 15

Domain n access permission, where n = 0 to 15. Permitted values are:

D<n> Meaning
0b00 No access. Any access to the domain generates a Domain fault.
0b01 Client. Accesses are checked against the permission bits in the

translation tables.
0b11 Manager. Accesses are not checked against the permission bits

in the translation tables.

The value 0b10 is reserved.

This field resets to an architecturally UNKNOWN value.

Accessing the DACR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0011 0b0000 0b000

DACR, Domain Access Control Register

Page 2232

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T3 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return DACR_NS;
else

return DACR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return DACR_NS;

else
return DACR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return DACR_S;
else

return DACR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0011 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T3 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

DACR_NS = R[t];
else

DACR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
DACR_NS = R[t];

else
DACR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if SCR.NS == '0' then
DACR_S = R[t];

else
DACR_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

DACR, Domain Access Control Register

Page 2233

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DACR, Domain Access Control Register

Page 2234

DBGAUTHSTATUS, Debug Authentication Status
register

The DBGAUTHSTATUS characteristics are:

Purpose
Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for debug.

Configuration
AArch32 System register DBGAUTHSTATUS bits [31:0] are architecturally mapped to AArch64 System register
DBGAUTHSTATUS_EL1[31:0] .

AArch32 System register DBGAUTHSTATUS bits [31:0] are architecturally mapped to External register
DBGAUTHSTATUS_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGAUTHSTATUS are UNKNOWN.

This register is required in all implementations.

Attributes
DBGAUTHSTATUS is a 32-bit register.

Field descriptions
The DBGAUTHSTATUS bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SNID SID NSNID NSID

Bits [31:8]

Reserved, RES0.

SNID, bits [7:6]

When ARMv8.4-Debug is implemented:

Secure Non-Invasive Debug.

This field has the same value as DBGAUTHSTATUS.SID.

Otherwise:

Secure Non-Invasive Debug.

SNID Meaning
0b00 Not implemented. EL3 is not implemented and the Effective

value of SCR.NS is 1.
0b10 Implemented and disabled.

ExternalSecureNoninvasiveDebugEnabled() == FALSE.
0b11 Implemented and enabled.

ExternalSecureNoninvasiveDebugEnabled() == TRUE.

DBGAUTHSTATUS, Debug Authentication Status register

Page 2235

All other values are reserved.

SID, bits [5:4]

Secure Invasive Debug.

SID Meaning
0b00 Not implemented. EL3 is not implemented and the Effective value

of SCR_EL3.NS is 1.
0b10 Implemented and disabled.

ExternalSecureInvasiveDebugEnabled() == FALSE.
0b11 Implemented and enabled.

ExternalSecureInvasiveDebugEnabled() == TRUE.

All other values are reserved.

NSNID, bits [3:2]

When ARMv8.4-Debug is implemented:

Non-secure Non-invasive debug.

NSNID Meaning
0b00 Not implemented. EL3 is not implemented and the Effective

value of SCR.NS is 0.
0b11 Implemented and enabled. EL3 is implemented or the Effective

value of SCR.NS is 1.

All other values are reserved.

Otherwise:

Non-secure Non-Invasive Debug.

NSNID Meaning
0b00 Not implemented. EL3 is not implemented and the Effective

value of SCR.NS is 0
0b10 Implemented and disabled.

ExternalNoninvasiveDebugEnabled() == FALSE.
0b11 Implemented and enabled.

ExternalNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.

NSID, bits [1:0]

Non-secure Invasive Debug.

NSID Meaning
0b00 Not implemented. EL3 is not implemented or the Effective value

of SCR_EL3.NS is 0.
0b10 Implemented and disabled. ExternalInvasiveDebugEnabled() ==

FALSE.
0b11 Implemented and enabled. ExternalInvasiveDebugEnabled() ==

TRUE.

All other values are reserved.

Accessing the DBGAUTHSTATUS
Accesses to this register use the following encodings:

DBGAUTHSTATUS, Debug Authentication Status register

Page 2236

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0111 0b1110 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGAUTHSTATUS;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGAUTHSTATUS;

elsif PSTATE.EL == EL3 then
return DBGAUTHSTATUS;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGAUTHSTATUS, Debug Authentication Status register

Page 2237

DBGBCR<n>, Debug Breakpoint Control Registers, n =
0 - 15

The DBGBCR<n> characteristics are:

Purpose
Holds control information for a breakpoint. Forms breakpoint n together with value register DBGBVR<n>. If EL2 is
implemented and this breakpoint supports Context matching, DBGBVR<n> can be associated with a Breakpoint
Extended Value Register DBGBXVR<n> for VMID matching.

Configuration
AArch32 System register DBGBCR<n> bits [31:0] are architecturally mapped to AArch64 System register
DBGBCR<n>_EL1[31:0] .

AArch32 System register DBGBCR<n> bits [31:0] are architecturally mapped to External register
DBGBCR<n>_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGBCR<n> are UNKNOWN.

If breakpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes
DBGBCR<n> is a 32-bit register.

Field descriptions
The DBGBCR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BT LBN SSC HMC RES0 BAS RES0 PMC E

When the E field is zero, all the other fields in the register are ignored.

Bits [31:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 2238

BT Meaning
0b0000 Unlinked instruction address match. DBGBVR<n> is the

address of an instruction.
0b0001 As 0b0000 with linking enabled.
0b0010 Unlinked Context ID match. When ARMv8.1-VHE is

implemented, EL2 is using AArch64, and the Effective value of
HCR_EL2.E2H is 1, if either the PE is executing at EL0 with
HCR_EL2.TGE set to 0 or the PE is executing at EL2, then
DBGBVR<n>.ContextID must match the CONTEXTIDR_EL2
value. Otherwise DBGBVR<n>.ContextID must match the
CONTEXTIDR value.

0b0011 As 0b0010 with linking enabled.
0b0100 Unlinked instruction address mismatch. DBGBVR<n> is the

address of an instruction to be stepped.
0b0101 As 0b0100 with linking enabled.
0b0110 Unlinked CONTEXTIDR_EL1 match. DBGBVR<n>.ContextID is

a Context ID compared against CONTEXTIDR.
0b0111 As 0b0110 with linking enabled.
0b1000 Unlinked VMID match. DBGBXVR<n>.VMID is a VMID

compared against VTTBR.VMID.
0b1001 As 0b1000 with linking enabled.
0b1010 Unlinked VMID and Context ID match. DBGBVR<n>.ContextID

is a Context ID compared against CONTEXTIDR, and
DBGBXVR<n>.VMID is a VMID compared against
VTTBR.VMID.

0b1011 As 0b1010 with linking enabled.
0b1100 Unlinked CONTEXTIDR_EL2 match. DBGBXVR<n>.ContextID2

is a Context ID compared against CONTEXTIDR_EL2.
0b1101 As 0b1100 with linking enabled.
0b1110 Unlinked Full Context ID match. DBGBVR<n>.ContextID is

compared against CONTEXTIDR, and
DBGBXVR<n>.ContextID2 is compared against
CONTEXTIDR_EL2.

0b1111 As 0b1110 with linking enabled.

For more information on Breakpoints and their constraints, see 'Breakpoint exceptions' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile, section G2.9 and 'Reserved DBGBCR<n>.BT values' in
the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G2 (AArch32 Self-hosted
Debug).

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the Context-matching
breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN value.

This field is ignored when the value of DBGBCR<n>.E is 0.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for breakpoint n is
generated. This field must be interpreted along with the HMC and PMC fields, and there are constraints on the
permitted values of the {HMC, SSC, PMC} fields.

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 2239

For more information, see 'Execution conditions for which a breakpoint generates Breakpoint exceptions' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, and 'Reserved DBGBCR<n>.{SSC, HMC,
PMC} values' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug event for breakpoint n
is generated. This field must be interpreted along with the SSC and PMC fields, and there are constraints on the
permitted values of the {HMC, SSC, PMC} fields. For more information see the SSC, bits [15:14] description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a
breakpoint generates Breakpoint exceptions' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section G2 (AArch32 Self-hosted Debug).

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless of the instruction
set and Execution state.

The permitted values depend on the breakpoint type.

For Address match breakpoints, the permitted values are:

BAS Match instruction at Constraint for debuggers
0b0011 DBGBVR<n> Use for T32 instructions
0b1100 DBGBVR<n>+2 Use for T32 instructions
0b1111 DBGBVR<n> Use for A32 instructions

All other values are reserved. For more information, see 'Reserved DBGBCR<n>.BAS values' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G2 (AArch32 Self-hosted Debug).

For more information on using the BAS field in Address Match breakpoints, see 'Using the BAS field in Address Match
breakpoints' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G2
(AArch32 Self-hosted Debug).

For Address mismatch breakpoints in an AArch32 stage 1 translation regime, the permitted values are:

BAS Step instruction at Constraint for debuggers
0b0000 - Use for a match anywhere breakpoint
0b0011 DBGBVR<n> Use for T32 instructions
0b1100 DBGBVR<n>+2 Use for T32 instructions
0b1111 DBGBVR<n> Use for A32 instructions

All other values are reserved. For more information, see 'Reserved DBGBCR<n>.BAS values' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G2 (AArch32 Self-hosted Debug).

For more information on using the BAS field in address mismatch breakpoints, see 'Using the BAS field in Address
Match breakpoints' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G2
(AArch32 Self-hosted Debug).

For Context matching breakpoints, this field is RES1 and ignored.

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 2240

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Bits [4:3]

Reserved, RES0.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event for breakpoint n is
generated. This field must be interpreted along with the SSC and HMC fields, and there are constraints on the
permitted values of the {HMC, SSC, PMC} fields. For more information see the DBGBCR<n>.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a
breakpoint generates Breakpoint exceptions' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section G2 (AArch32 Self-hosted Debug).

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

E, bit [0]

Enable breakpoint DBGBVR<n>. Possible values are:

E Meaning
0b0 Breakpoint disabled.
0b1 Breakpoint enabled.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Accessing the DBGBCR<n>
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 n[3:0] 0b101

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 2241

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

return DBGBCR[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
return DBGBCR[UInt(CRm<3:0>)];

elsif PSTATE.EL == EL3 then
if ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

return DBGBCR[UInt(CRm<3:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 n[3:0] 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

DBGBCR[UInt(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
DBGBCR[UInt(CRm<3:0>)] = R[t];

elsif PSTATE.EL == EL3 then
if ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

DBGBCR[UInt(CRm<3:0>)] = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 2242

DBGBVR<n>, Debug Breakpoint Value Registers, n = 0
- 15

The DBGBVR<n> characteristics are:

Purpose
Holds a value for use in breakpoint matching, either the virtual address of an instruction or a context ID. Forms
breakpoint n together with control register DBGBCR<n>. If EL2 is implemented and this breakpoint supports Context
matching, DBGBVR<n> can be associated with a Breakpoint Extended Value Register DBGBXVR<n> for VMID
matching.

Configuration
AArch32 System register DBGBVR<n> bits [31:0] are architecturally mapped to AArch64 System register
DBGBVR<n>_EL1[31:0] .

AArch32 System register DBGBVR<n> bits [31:0] are architecturally mapped to External register
DBGBVR<n>_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGBVR<n> are UNKNOWN.

If breakpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes
How this register is interpreted depends on the value of DBGBCR<n>.BT.

• When DBGBCR<n>.BT is 0b0x0x, this register holds a virtual address.
• When DBGBCR<n>.BT is 0bxx1x, this register holds a Context ID.

For other values of DBGBCR<n>.BT, this register is RES0.

Some breakpoints might not support Context ID comparison. For more information, see the description of the
DBGDIDR.CTX_CMPs field.

Field descriptions
The DBGBVR<n> bit assignments are:

When DBGBCR<n>.BT == 0b0x0x:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA[31:2] RES0

VA[31:2], bits [31:2]

Bits[31:2] of the address value for comparison.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15

Page 2243

Bits [1:0]

Reserved, RES0.

When DBGBCR<n>.BT == 0b001x:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ContextID

ContextID, bits [31:0]

Context ID value for comparison.

The value is compared against CONTEXTIDR_EL2 when all of the following are true:

• CONTEXTIDR_EL2 is implemented.
• HCR_EL2.{E2H, TGE} is {1,1}.
• The PE is executing at EL0.
• EL2 is using AArch64 and is enabled in the current Security state.

Otherwise, the value is compared against CONTEXTIDR.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

When DBGBCR<n>.BT == 0b101x and EL2 is implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ContextID

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

When DBGBCR<n>.BT == 0bx11x, EL2 is implemented and (ARMv8.1-VHE is
implemented or ARMv8.2-Debug is implemented):

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ContextID

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Accessing the DBGBVR<n>
Accesses to this register use the following encodings:

DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15

Page 2244

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 n[3:0] 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

return DBGBVR[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
return DBGBVR[UInt(CRm<3:0>)];

elsif PSTATE.EL == EL3 then
if ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

return DBGBVR[UInt(CRm<3:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 n[3:0] 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

DBGBVR[UInt(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
DBGBVR[UInt(CRm<3:0>)] = R[t];

elsif PSTATE.EL == EL3 then
if ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

DBGBVR[UInt(CRm<3:0>)] = R[t];

DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15

Page 2245

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15

Page 2246

DBGBXVR<n>, Debug Breakpoint Extended Value
Registers, n = 0 - 15

The DBGBXVR<n> characteristics are:

Purpose
Holds a value for use in breakpoint matching, to support VMID matching. Used in conjunction with a control register
DBGBCR<n> and a value register DBGBVR<n>, where EL2 is implemented and breakpoint n supports Context
matching.

Configuration
AArch32 System register DBGBXVR<n> bits [31:0] are architecturally mapped to AArch64 System register
DBGBVR<n>_EL1[63:32] .

AArch32 System register DBGBXVR<n> bits [31:0] are architecturally mapped to External register
DBGBVR<n>_EL1[63:32] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGBXVR<n> are UNKNOWN.

Accesses to this register are UNDEFINED in any of the following cases:

• Breakpoint n is not implemented.
• Breakpoint n does not support Context matching.
• EL2 is not implemented.

For more information, see the description of the DBGDIDR.CTX_CMPs field.

Attributes
How this register is interpreted depends on the value of DBGBCR<n>.BT.

• When DBGBCR<n>.BT is 0b10xx, this register holds a VMID.
• When DBGBCR<n>.BT is 0b11xx, this register holds a Context ID.

For other values of DBGBCR<n>.BT, this register is RES0.

Field descriptions
The DBGBXVR<n> bit assignments are:

When DBGBCR<n>.BT == 0b10xx and EL2 is implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 VMID[15:8] VMID[7:0]

Bits [31:16]

Reserved, RES0.

VMID[15:8], bits [15:8]

When ARMv8.1-VMID16 is implemented and VTCR_EL2.VS == 1:

Extension to VMID[7:0]. See VMID[7:0] for more details.

DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15

Page 2247

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [7:0]

VMID value for comparison. The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.
• VTCR_EL2.VS is 0.
• ARMv8.1-VMID16 is not implemented.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

When DBGBCR<n>.BT == 0b11xx and EL2 is implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ContextID2

ContextID2, bits [31:0]

When ARMv8.1-VHE is implemented or ARMv8.2-Debug is implemented:

Context ID value for comparison against CONTEXTIDR_EL2.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Otherwise:

Reserved, RES0.

Accessing the DBGBXVR<n>
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0001 n[3:0] 0b001

DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15

Page 2248

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

return DBGBXVR[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
return DBGBXVR[UInt(CRm<3:0>)];

elsif PSTATE.EL == EL3 then
if ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

return DBGBXVR[UInt(CRm<3:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0001 n[3:0] 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

DBGBXVR[UInt(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
DBGBXVR[UInt(CRm<3:0>)] = R[t];

elsif PSTATE.EL == EL3 then
if ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

DBGBXVR[UInt(CRm<3:0>)] = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15

Page 2249

DBGCLAIMCLR, Debug CLAIM Tag Clear register
The DBGCLAIMCLR characteristics are:

Purpose
Used by software to read the values of the CLAIM tag bits, and to clear CLAIM tag bits to 0.

The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and
target software.

Used in conjunction with the DBGCLAIMSET register.

Configuration
AArch32 System register DBGCLAIMCLR bits [31:0] are architecturally mapped to AArch64 System register
DBGCLAIMCLR_EL1[31:0] .

AArch32 System register DBGCLAIMCLR bits [31:0] are architecturally mapped to External register
DBGCLAIMCLR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGCLAIMCLR are UNKNOWN.

An implementation must include eight CLAIM tag bits.

Attributes
DBGCLAIMCLR is a 32-bit register.

Field descriptions
The DBGCLAIMCLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAZ/SBZ CLAIM

Bits [31:8]

Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes.
Implementations must ignore writes.

CLAIM, bits [7:0]

Read or clear CLAIM tag bits. Reading this field returns the current value of the CLAIM tag bits.

Writing a 1 to one of these bits clears the corresponding CLAIM tag bit to 0. This is an indirect write to the CLAIM tag
bits. A single write operation can clear multiple CLAIM tag bits to 0.

Writing 0 to one of these bits has no effect.

The following resets apply:

• On a Cold reset, this field resets to 0.

DBGCLAIMCLR, Debug CLAIM Tag Clear register

Page 2250

• On a Warm reset, the value of this field is unchanged.

Accessing the DBGCLAIMCLR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0111 0b1001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGCLAIMCLR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGCLAIMCLR;

elsif PSTATE.EL == EL3 then
return DBGCLAIMCLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0111 0b1001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGCLAIMCLR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGCLAIMCLR = R[t];

elsif PSTATE.EL == EL3 then
DBGCLAIMCLR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGCLAIMCLR, Debug CLAIM Tag Clear register

Page 2251

DBGCLAIMSET, Debug CLAIM Tag Set register
The DBGCLAIMSET characteristics are:

Purpose
Used by software to set the CLAIM tag bits to 1.

The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and
target software.

Used in conjunction with the DBGCLAIMCLR register.

Configuration
AArch32 System register DBGCLAIMSET bits [31:0] are architecturally mapped to AArch64 System register
DBGCLAIMSET_EL1[31:0] .

AArch32 System register DBGCLAIMSET bits [31:0] are architecturally mapped to External register
DBGCLAIMSET_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGCLAIMSET are UNKNOWN.

An implementation must include eight CLAIM tag bits.

Attributes
DBGCLAIMSET is a 32-bit register.

Field descriptions
The DBGCLAIMSET bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAZ/SBZ CLAIM

Bits [31:8]

Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes.
Implementations must ignore writes.

CLAIM, bits [7:0]

Set CLAIM tag bits.

This field is RAO.

Writing a 1 to one of these bits sets the corresponding CLAIM tag bit to 1. This is an indirect write to the CLAIM tag
bits. A single write operation can set multiple CLAIM tag bits to 1.

Writing 0 to one of these bits has no effect.

On a Cold reset, this field resets to 0.

DBGCLAIMSET, Debug CLAIM Tag Set register

Page 2252

Accessing the DBGCLAIMSET
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0111 0b1000 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGCLAIMSET;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGCLAIMSET;

elsif PSTATE.EL == EL3 then
return DBGCLAIMSET;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0111 0b1000 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGCLAIMSET = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGCLAIMSET = R[t];

elsif PSTATE.EL == EL3 then
DBGCLAIMSET = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGCLAIMSET, Debug CLAIM Tag Set register

Page 2253

DBGDCCINT, DCC Interrupt Enable Register
The DBGDCCINT characteristics are:

Purpose
Enables interrupt requests to be signaled based on the DCC status flags.

Configuration
AArch32 System register DBGDCCINT bits [31:0] are architecturally mapped to AArch64 System register
MDCCINT_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDCCINT are UNKNOWN.

Attributes
DBGDCCINT is a 32-bit register.

Field descriptions
The DBGDCCINT bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0RX TX RES0

Bit [31]

Reserved, RES0.

RX, bit [30]

DCC interrupt request enable control for DTRRX. Enables a common COMMIRQ interrupt request to be signaled
based on the DCC status flags.

RX Meaning
0b0 No interrupt request generated by DTRRX.
0b1 Interrupt request will be generated on RXfull == 1.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the value of this bit.

On a Warm reset, this field resets to 0.

TX, bit [29]

DCC interrupt request enable control for DTRTX. Enables a common COMMIRQ interrupt request to be signaled
based on the DCC status flags.

TX Meaning
0b0 No interrupt request generated by DTRTX.
0b1 Interrupt request will be generated on TXfull == 0.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the value of this bit.

On a Warm reset, this field resets to 0.

DBGDCCINT, DCC Interrupt Enable Register

Page 2254

Bits [28:0]

Reserved, RES0.

Accessing the DBGDCCINT
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then

AArch32.TakeHypTrapException(0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDCCINT;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDCCINT;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
else

return DBGDCCINT;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0010 0b000

DBGDCCINT, DCC Interrupt Enable Register

Page 2255

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then

AArch32.TakeHypTrapException(0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGDCCINT = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGDCCINT = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
else

DBGDCCINT = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDCCINT, DCC Interrupt Enable Register

Page 2256

DBGDEVID, Debug Device ID register 0
The DBGDEVID characteristics are:

Purpose
Adds to the information given by the DBGDIDR by describing other features of the debug implementation.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDEVID are UNKNOWN.

This register is required in all implementations.

Attributes
DBGDEVID is a 32-bit register.

Field descriptions
The DBGDEVID bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CIDMask AuxRegs DoubleLock VirtExtns VectorCatch BPAddrMask WPAddrMask PCSample

CIDMask, bits [31:28]

Indicates the level of support for the Context ID matching breakpoint masking capability. Permitted values of this field
are:

CIDMask Meaning
0b0000 Context ID masking is not implemented.
0b0001 Context ID masking is implemented.

All other values are reserved. The value of this for Armv8 is 0b0000.

AuxRegs, bits [27:24]

Indicates support for Auxiliary registers. Permitted values for this field are:

AuxRegs Meaning
0b0000 None supported.
0b0001 Support for External Debug Auxiliary Control Register,

EDACR.

All other values are reserved.

DoubleLock, bits [23:20]

OS Double Lock implemented. Defined values are:

DoubleLock Meaning
0b0000 OS Double Lock is not implemented. DBGOSDLR is RAZ/

WI.
0b0001 OS Double Lock is implemented. DBGOSDLR is RW.

ARMv8.0-DoubleLock implements the functionality identified by the value 0b0001.

DBGDEVID, Debug Device ID register 0

Page 2257

All other values are reserved.

VirtExtns, bits [19:16]

Indicates whether EL2 is implemented. Permitted values of this field are:

VirtExtns Meaning
0b0000 EL2 is not implemented.
0b0001 EL2 is implemented.

All other values are reserved.

VectorCatch, bits [15:12]

Defines the form of Vector Catch exception implemented. Permitted values of this field are:

VectorCatch Meaning
0b0000 Address matching Vector Catch exception implemented.
0b0001 Exception matching Vector Catch exception

implemented.

All other values are reserved.

BPAddrMask, bits [11:8]

Indicates the level of support for the instruction address matching breakpoint masking capability. Permitted values of
this field are:

BPAddrMask Meaning
0b0000 Breakpoint address masking might be implemented. If

not implemented, DBGBCR<n>[28:24] is RAZ/WI.
0b0001 Breakpoint address masking is implemented.
0b1111 Breakpoint address masking is not implemented.

DBGBCR<n>[28:24] is RES0.

All other values are reserved. The value of this for Armv8 is 0b1111.

WPAddrMask, bits [7:4]

Indicates the level of support for the data address matching watchpoint masking capability. Permitted values of this
field are:

WPAddrMask Meaning
0b0000 Watchpoint address masking might be implemented. If

not implemented, DBGWCR<n>.MASK (Address mask)
is RAZ/WI.

0b0001 Watchpoint address masking is implemented.
0b1111 Watchpoint address masking is not implemented.

DBGWCR<n>.MASK (Address mask) is RES0.

All other values are reserved. The value of this for Armv8 is 0b0001.

PCSample, bits [3:0]

Indicates the level of PC Sample-based Profiling support using external debug registers. Permitted values of this field
are:

PCSample Meaning
0b0000 PC Sample-based Profiling Extension is not implemented in

the external debug registers space.
0b0010 Only EDPCSR and EDCIDSR are implemented. This option

is only permitted if EL3 and EL2 are not implemented.
0b0011 EDPCSR, EDCIDSR, and EDVIDSR are implemented.

All other values are reserved.

DBGDEVID, Debug Device ID register 0

Page 2258

When ARMv8.2-PCSample is implemented, the only permitted value is 0b0000.

Note

ARMv8.2-PCSample implements the PC Sample-based Profiling Extension in
the Performance Monitors register space, as indicated by the value of
PMDEVID.PCSample.

Accessing the DBGDEVID
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0111 0b0010 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDEVID;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDEVID;

elsif PSTATE.EL == EL3 then
return DBGDEVID;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDEVID, Debug Device ID register 0

Page 2259

DBGDEVID1, Debug Device ID register 1
The DBGDEVID1 characteristics are:

Purpose
Adds to the information given by the DBGDIDR by describing other features of the debug implementation.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDEVID1 are UNKNOWN.

This register is required in all implementations.

Attributes
DBGDEVID1 is a 32-bit register.

Field descriptions
The DBGDEVID1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PCSROffset

Bits [31:4]

Reserved, RES0.

PCSROffset, bits [3:0]

This field indicates the offset applied to PC samples returned by reads of EDPCSR. Permitted values of this field in
Armv8 are:

PCSROffset Meaning
0b0000 EDPCSR is not implemented.
0b0010 EDPCSR implemented. Samples have no offset applied

and do not sample the instruction set state in AArch32
state.

When ARMv8.2-PCSample is implemented, the only permitted value is 0b0000.

Note

ARMv8.2-PCSample implements the PC Sample-based Profiling Extension in
the Performance Monitors register space, as indicated by the value of
PMDEVID.PCSample.

Accessing the DBGDEVID1
Accesses to this register use the following encodings:

DBGDEVID1, Debug Device ID register 1

Page 2260

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0111 0b0001 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDEVID1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDEVID1;

elsif PSTATE.EL == EL3 then
return DBGDEVID1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDEVID1, Debug Device ID register 1

Page 2261

DBGDEVID2, Debug Device ID register 2
The DBGDEVID2 characteristics are:

Purpose
Reserved for future descriptions of features of the debug implementation.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDEVID2 are UNKNOWN.

Attributes
DBGDEVID2 is a 32-bit register.

Field descriptions
The DBGDEVID2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [31:0]

Reserved, RES0.

Accessing the DBGDEVID2
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0111 0b0000 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDEVID2;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDEVID2;

elsif PSTATE.EL == EL3 then
return DBGDEVID2;

DBGDEVID2, Debug Device ID register 2

Page 2262

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDEVID2, Debug Device ID register 2

Page 2263

DBGDIDR, Debug ID Register
The DBGDIDR characteristics are:

Purpose
Specifies which version of the Debug architecture is implemented, and some features of the debug implementation.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDIDR are UNKNOWN.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes
DBGDIDR is a 32-bit register.

Field descriptions
The DBGDIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
WRPs BRPs CTX_CMPs Version RES1nSUHD_impRES0SE_imp RES0

WRPs, bits [31:28]

The number of watchpoints implemented, minus 1.

Permitted values of this field are from 0b0001 for 2 implemented watchpoints, to 0b1111 for 16 implemented
watchpoints.

The value of 0b0000 is reserved.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.WRPs.

BRPs, bits [27:24]

The number of breakpoints implemented, minus 1.

Permitted values of this field are from 0b0001 for 2 implemented breakpoint, to 0b1111 for 16 implemented
breakpoints.

The value of 0b0000 is reserved.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.BRPs.

CTX_CMPs, bits [23:20]

The number of breakpoints that can be used for Context matching, minus 1.

Permitted values of this field are from 0b0000 for 1 Context matching breakpoint, to 0b1111 for 16 Context matching
breakpoints.

The Context matching breakpoints must be the highest addressed breakpoints. For example, if six breakpoints are
implemented and two are Context matching breakpoints, they must be breakpoints 4 and 5.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.CTX_CMPs.

DBGDIDR, Debug ID Register

Page 2264

Version, bits [19:16]

The Debug architecture version. Defined values are:

Version Meaning
0b0001 Armv6, v6 Debug architecture.
0b0010 Armv6, v6.1 Debug architecture.
0b0011 Armv7, v7 Debug architecture, with baseline CP14 registers

implemented.
0b0100 Armv7, v7 Debug architecture, with all CP14 registers

implemented.
0b0101 Armv7, v7.1 Debug architecture.
0b0110 Armv8, v8 Debug architecture.
0b0111 Armv8.1, v8 Debug architecture, with Virtualization Host

Extensions.
0b1000 Armv8.2, v8.2 Debug architecture.
0b1001 Armv8.4, v8.4 Debug architecture.

All other values are reserved.

In any Armv8 implementation, the values 0b0001, 0b0010, 0b0011, 0b0100, and 0b0101 are not permitted.

• If ARMv8.1-VHE is not implemented, the only permitted value is 0b0110.

• In an Armv8.0 implementation, the value 0b1000 or higher is not permitted.

Bit [15]

Reserved, RES1.

nSUHD_imp, bit [14]

In Armv7-A, was Secure User Halting Debug not implemented.

The value of this bit must match the value of the SE_imp bit.

Bit [13]

Reserved, RES0.

SE_imp, bit [12]

EL3 implemented. The meanings of the values of this bit are:

SE_imp Meaning
0b0 EL3 not implemented.
0b1 EL3 implemented.

The value of this bit must match the value of the nSUHD_imp bit.

Bits [11:0]

Reserved, RES0.

Accessing the DBGDIDR
Arm deprecates any access to this register from EL0.

Accesses to this register use the following encodings:

DBGDIDR, Debug ID Register

Page 2265

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0000 0b000

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x05);

elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> !=

'00') then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00') then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDIDR;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDIDR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDIDR;

elsif PSTATE.EL == EL3 then
return DBGDIDR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDIDR, Debug ID Register

Page 2266

DBGDRAR, Debug ROM Address Register
The DBGDRAR characteristics are:

Purpose
Defines the base physical address of a 4KB-aligned memory-mapped debug component, usually a ROM table that
locates and describes the memory-mapped debug components in the system. Armv8 deprecates any use of this
register.

Configuration
AArch32 System register DBGDRAR bits [63:0] are architecturally mapped to AArch64 System register
MDRAR_EL1[63:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDRAR are UNKNOWN.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes
DBGDRAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, bits
[31:0] are read.

Field descriptions
The DBGDRAR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 ROMADDR[47:12]
ROMADDR[47:12] RES0 Valid

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

ROMADDR[47:12], bits [47:12]

Bits[47:12] of the ROM table physical address.

If the physical address size in bits (PAsize) is less than 48 then the register bits corresponding to ROMADDR
[47:PAsize] are RES0.

Bits [11:0] of the ROM table physical address are zero.

Arm strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system that supports AArch32 at the
highest implemented Exception level.

In an implementation that includes EL3, ROMADDR is an address in Non-secure memory. It is IMPLEMENTATION DEFINED
whether the ROM table is also accessible in Secure memory.

Bits [11:2]

Reserved, RES0.

DBGDRAR, Debug ROM Address Register

Page 2267

Valid, bits [1:0]

This field indicates whether the ROM Table address is valid. The permitted values of this field are:

Valid Meaning
0b00 ROM Table address is not valid. Software must ignore

ROMADDR.
0b11 ROM Table address is valid.

Other values are reserved.

Accessing the DBGDRAR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x05);

elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDRA> !=

'00') then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDRA> != '00') then
AArch32.TakeHypTrapException(0x05);

else
return DBGDRAR<31:0>;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDRA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDRA> != '00' then

AArch32.TakeHypTrapException(0x05);
else

return DBGDRAR<31:0>;
elsif PSTATE.EL == EL2 then

return DBGDRAR<31:0>;
elsif PSTATE.EL == EL3 then

return DBGDRAR<31:0>;

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1110 0b0001 0b0000

DBGDRAR, Debug ROM Address Register

Page 2268

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x0C);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x0C);

elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDRA> !=

'00') then
AArch64.AArch32SystemAccessTrap(EL2, 0x0C);

elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDRA> != '00') then
AArch32.TakeHypTrapException(0x0C);

else
return DBGDRAR;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDRA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDRA> != '00' then

AArch32.TakeHypTrapException(0x0C);
else

return DBGDRAR;
elsif PSTATE.EL == EL2 then

return DBGDRAR;
elsif PSTATE.EL == EL3 then

return DBGDRAR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDRAR, Debug ROM Address Register

Page 2269

DBGDSAR, Debug Self Address Register
The DBGDSAR characteristics are:

Purpose
In earlier versions of the Arm Architecture, this register defines the offset from the base address defined in DBGDRAR
of the physical base address of the debug registers for the PE. Armv8 deprecates any use of this register.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDSAR are UNKNOWN.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes
DBGDSAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, bits
[31:0] are read.

Field descriptions
The DBGDSAR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 RAZ
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

Bits [1:0]

Reserved, RAZ.

This field indicates whether the debug self address offset is valid. For ARMv8, this field is always 0b00, the offset is not
valid.

Accessing the DBGDSAR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0010 0b0000 0b000

DBGDSAR, Debug Self Address Register

Page 2270

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x05);

elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDRA> !=

'00') then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDRA> != '00') then
AArch32.TakeHypTrapException(0x05);

else
return DBGDSAR<31:0>;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDRA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDRA> != '00' then

AArch32.TakeHypTrapException(0x05);
else

return DBGDSAR<31:0>;
elsif PSTATE.EL == EL2 then

return DBGDSAR<31:0>;
elsif PSTATE.EL == EL3 then

return DBGDSAR<31:0>;

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1110 0b0010 0b0000

DBGDSAR, Debug Self Address Register

Page 2271

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x0C);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x0C);

elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDRA> !=

'00') then
AArch64.AArch32SystemAccessTrap(EL2, 0x0C);

elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDRA> != '00') then
AArch32.TakeHypTrapException(0x0C);

else
return DBGDSAR;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDRA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDRA> != '00' then

AArch32.TakeHypTrapException(0x0C);
else

return DBGDSAR;
elsif PSTATE.EL == EL2 then

return DBGDSAR;
elsif PSTATE.EL == EL3 then

return DBGDSAR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDSAR, Debug Self Address Register

Page 2272

DBGDSCRext, Debug Status and Control Register,
External View

The DBGDSCRext characteristics are:

Purpose
Main control register for the debug implementation.

Configuration
AArch32 System register DBGDSCRext bits [31:0] are architecturally mapped to AArch64 System register
MDSCR_EL1[31:0] .

AArch32 System register DBGDSCRext bits [15:2] are architecturally mapped to AArch32 System register
DBGDSCRint[15:2] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDSCRext are UNKNOWN.

This register is required in all implementations.

Attributes
DBGDSCRext is a 32-bit register.

Field descriptions
The DBGDSCRext bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110987 6 5432 1 0
TFORXfullTXfullRES0RXOTXURES0INTdisTDARES0SC2NSSPNIDdisSPIDdisMDBGenHDERES0UDCCdis RES0 ERRMOERES0

TFO, bit [31]

When ARMv8.4-Trace is implemented:

Trace Filter override. Used for save/restore of EDSCR.TFO.

When the OS Lock is unlocked, DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When the OS Lock is locked, DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TFO. Reads and writes of this
bit are indirect accesses to EDSCR.TFO.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

Otherwise:

Reserved, RES0.

RXfull, bit [30]

DTRRX full. Used for save/restore of EDSCR.RXfull.

DBGDSCRext, Debug Status and Control Register, External View

Page 2273

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.RXfull. Reads and writes of this bit are indirect
accesses to EDSCR.RXfull.

Arm deprecates use of this bit other than for save/restore. Use DBGDSCRint to access the DTRRX full status.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

TXfull, bit [29]

DTRTX full. Used for save/restore of EDSCR.TXfull.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TXfull. Reads and writes of this bit are indirect
accesses to EDSCR.TXfull.

Arm deprecates use of this bit other than for save/restore. Use DBGDSCRint to access the DTRTX full status.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

Bit [28]

Reserved, RES0.

RXO, bit [27]

Used for save/restore of EDSCR.RXO.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.RXO. Reads and writes of this bit are indirect
accesses to EDSCR.RXO.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

TXU, bit [26]

Used for save/restore of EDSCR.TXU.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TXU. Reads and writes of this bit are indirect
accesses to EDSCR.TXU.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

DBGDSCRext, Debug Status and Control Register, External View

Page 2274

Bits [25:24]

Reserved, RES0.

INTdis, bits [23:22]

Used for save/restore of EDSCR.INTdis.

When DBGOSLSR.OSLK == 0, this field is RO, and software must treat it as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this field is RW and holds the value of EDSCR.INTdis. Reads and writes of this field are
indirect accesses to EDSCR.INTdis.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

TDA, bit [21]

Used for save/restore of EDSCR.TDA.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TDA. Reads and writes of this bit are indirect
accesses to EDSCR.TDA.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

Bit [20]

Reserved, RES0.

SC2, bit [19]

When ARMv8.0-PCSample is implemented, ARMv8.1-VHE is implemented and ARMv8.2-PCSample is not implemented:

Used for save/restore of EDSCR.SC2.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.SC2. Reads and writes of this bit are indirect
accesses to EDSCR.SC2.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

Otherwise:

Reserved, RES0.

NS, bit [18]

Non-secure status. Returns the inverse of IsSecure().

DBGDSCRext, Debug Status and Control Register, External View

Page 2275

Arm deprecates use of this field.

Access to this field is RO.

SPNIDdis, bit [17]

When EL3 is implemented:

Secure privileged profiling disabled status bit.

SPNIDdis Meaning
0b0 Profiling allowed in Secure privileged modes.
0b1 Profiling prohibited in Secure privileged modes.

This field reads as 0 if any of the following applies, and reads as 1 otherwise:

• ARMv8.2-Debug is not implemented and ExternalSecureNoninvasiveDebugEnabled() returns TRUE.
• EL3 is using AArch32 and the value of SDCR.SPME is 1.
• EL3 is using AArch64 and the value of MDCR_EL3.SPME is 1.

Arm deprecates use of this field.

Access to this field is RO.

Otherwise:

Reserved, RES0.

SPIDdis, bit [16]

When EL3 is implemented:

Secure privileged AArch32 invasive self-hosted debug disabled status bit. The value of this bit depends on the value of
SDCR.SPD and the pseudocode function AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled().

SPIDdis Meaning
0b0 Self-hosted debug enabled in Secure privileged AArch32

modes.
0b1 Self-hosted debug disabled in Secure privileged AArch32

modes.

This bit reads as 1 if any of the following is true and reads as 0 otherwise:

• EL3 is using AArch32 and SDCR.SPD has the value 0b10.
• EL3 is using AArch64 and MDCR_EL3.SPD32 has the value 0b10.
• EL3 is using AArch32, SDCR.SPD has the value 0b00, and

AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled() returns FALSE.
• EL3 is using AArch64, MDCR_EL3.SPD32 has the value 0b00, and

AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled() returns FALSE.

Arm deprecates use of this field.

Access to this field is RO.

Otherwise:

Reserved, RES0.

MDBGen, bit [15]

Monitor debug events enable. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.

DBGDSCRext, Debug Status and Control Register, External View

Page 2276

MDBGen Meaning
0b0 Breakpoint, Watchpoint, and Vector Catch exceptions

disabled.
0b1 Breakpoint, Watchpoint, and Vector Catch exceptions

enabled.

On a Warm reset, this field resets to 0.

HDE, bit [14]

Used for save/restore of EDSCR.HDE.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.HDE. Reads and writes of this bit are indirect
accesses to EDSCR.HDE.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

Bit [13]

Reserved, RES0.

UDCCdis, bit [12]

Traps EL0 accesses to the DCC registers to Undefined mode.

UDCCdis Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0 accesses to the DBGDSCRint, DBGDTRRXint,

DBGDTRTXint, DBGDIDR, DBGDSAR, and DBGDRAR are
trapped to Undefined mode.

Note

All accesses to these registers are trapped, including LDC and STC accesses
to DBGDTRTXint and DBGDTRRXint, and MRRC accesses to DBGDSAR and
DBGDRAR.

Traps of EL0 accesses to the DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

On a Warm reset, this field resets to 0.

Bits [11:7]

Reserved, RES0.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.ERR. Reads and writes of this bit are indirect
accesses to EDSCR.ERR.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

DBGDSCRext, Debug Status and Control Register, External View

Page 2277

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

MOE, bits [5:2]

Method of Entry for debug exception. When a debug exception is taken to an Exception level using AArch32, this field
is set to indicate the event that caused the exception:

MOE Meaning
0b0001 Breakpoint.
0b0011 Software breakpoint (BKPT) instruction.
0b0101 Vector catch.
0b1010 Watchpoint.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

Accessing the DBGDSCRext
Individual fields within this register might have restricted accessibility when the OS lock is unlocked,
DBGOSLSR.OSLK == 0. See the field descriptions for more detail.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDSCRext;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDSCRext;

elsif PSTATE.EL == EL3 then
return DBGDSCRext;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0010 0b010

DBGDSCRext, Debug Status and Control Register, External View

Page 2278

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGDSCRext = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGDSCRext = R[t];

elsif PSTATE.EL == EL3 then
DBGDSCRext = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDSCRext, Debug Status and Control Register, External View

Page 2279

DBGDSCRint, Debug Status and Control Register,
Internal View

The DBGDSCRint characteristics are:

Purpose
Main control register for the debug implementation. This is an internal, read-only view.

Configuration
AArch32 System register DBGDSCRint bits [30:29] are architecturally mapped to AArch64 System register
MDCCSR_EL0[30:29] .

AArch32 System register DBGDSCRint bits [15:2] are architecturally mapped to AArch32 System register
DBGDSCRext[15:2] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDSCRint are UNKNOWN.

This register is required in all implementations.

DBGDSCRint.{NS, SPNIDdis, SPIDdis, MDBGen, UDCCdis, MOE} are UNKNOWN when the register is accessed at EL0.
However, although these values are not accessible at EL0 by instructions that are neither UNPREDICTABLE nor return
UNKNOWN values, it is permissible for an implementation to return the values of DBGDSCRext.{NS, SPNIDdis, SPIDdis,
MDBGen, UDCCdis, MOE} for these fields at EL0.

It is also permissible for an implementation to return the same values as defined for a read of DBGDSCRint at EL1 or
above. (This is the case even if the implementation does not support AArch32 at EL1 or above.)

Attributes
DBGDSCRint is a 32-bit register.

Field descriptions
The DBGDSCRint bit assignments are:

31 30 29 28272625242322212019 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
RES0RXfullTXfull RES0 NSSPNIDdisSPIDdisMDBGenRES0UDCCdis RES0 MOE RES0

Bit [31]

Reserved, RES0.

RXfull, bit [30]

DTRRX full. Read-only view of the equivalent bit in the EDSCR.

TXfull, bit [29]

DTRTX full. Read-only view of the equivalent bit in the EDSCR.

Bits [28:19]

Reserved, RES0.

DBGDSCRint, Debug Status and Control Register, Internal View

Page 2280

NS, bit [18]

Non-secure status.

Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

SPNIDdis, bit [17]

Secure privileged non-invasive debug disable.

Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

SPIDdis, bit [16]

Secure privileged invasive debug disable.

Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

MDBGen, bit [15]

Monitor debug events enable.

Read-only view of the equivalent bit in the DBGDSCRext.

Bits [14:13]

Reserved, RES0.

UDCCdis, bit [12]

User mode access to Debug Communications Channel disable.

Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

Bits [11:6]

Reserved, RES0.

MOE, bits [5:2]

Method of Entry for debug exception. When a debug exception is taken to an Exception level using AArch32, this field
is set to indicate the event that caused the exception:

MOE Meaning
0b0001 Breakpoint
0b0011 Software breakpoint (BKPT) instruction
0b0101 Vector catch
0b1010 Watchpoint

Read-only view of the equivalent bit in the DBGDSCRext.

Bits [1:0]

Reserved, RES0.

Accessing the DBGDSCRint
Accesses to this register use the following encodings:

DBGDSCRint, Debug Status and Control Register, Internal View

Page 2281

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0001 0b000

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x05);

elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then

AArch32.TakeHypTrapException(0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> !=

'00') then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00') then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDSCRint;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then

AArch32.TakeHypTrapException(0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDSCRint;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDSCRint;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
else

return DBGDSCRint;

DBGDSCRint, Debug Status and Control Register, Internal View

Page 2282

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDSCRint, Debug Status and Control Register, Internal View

Page 2283

DBGDTRRXext, Debug OS Lock Data Transfer Register,
Receive, External View

The DBGDTRRXext characteristics are:

Purpose
Used for save/restore of DBGDTRRXint. It is a component of the Debug Communications Channel.

Configuration
AArch32 System register DBGDTRRXext bits [31:0] are architecturally mapped to AArch64 System register
OSDTRRX_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDTRRXext are UNKNOWN.

Attributes
DBGDTRRXext is a 32-bit register.

Field descriptions
The DBGDTRRXext bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Update DTRRX without side-effect

Bits [31:0]

Update DTRRX without side-effect.

Writes to this register update the value in DTRRX and do not change RXfull.

Reads of this register return the last value written to DTRRX and do not change RXfull.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction
Transfer Register' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter H4.

This field resets to an architecturally UNKNOWN value.

Accessing the DBGDTRRXext
Arm deprecates reads and writes of DBGDTRRXext through the System register interface when the OS Lock is
unlocked, DBGOSLSR.OSLK == 0.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0000 0b010

DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View

Page 2284

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then

AArch32.TakeHypTrapException(0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDTRRXext;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDTRRXext;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
else

return DBGDTRRXext;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0000 0b010

DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View

Page 2285

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then

AArch32.TakeHypTrapException(0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGDTRRXext = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGDTRRXext = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
else

DBGDTRRXext = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View

Page 2286

DBGDTRRXint, Debug Data Transfer Register, Receive
The DBGDTRRXint characteristics are:

Purpose
Transfers data from an external debugger to the PE. For example, it is used by a debugger transferring commands and
data to a debug target. See Arch64-DBGDTR_EL0 for additional architectural mappings. It is a component of the
Debug Communications Channel.

Configuration
AArch32 System register DBGDTRRXint bits [31:0] are architecturally mapped to AArch64 System register
DBGDTRRX_EL0[31:0] .

AArch32 System register DBGDTRRXint bits [31:0] are architecturally mapped to External register
DBGDTRRX_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDTRRXint are UNKNOWN.

Attributes
DBGDTRRXint is a 32-bit register.

Field descriptions
The DBGDTRRXint bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Update DTRRX

Bits [31:0]

Update DTRRX.

Reads of this register:

• If RXfull is set to 1, return the last value written to DTRRX.

• If RXfull is set to 0, return an UNKNOWN value.

After the read, RXfull is cleared to 0.

For the full behavior of the Debug Communications Channel, see The Debug Communication Channel and Instruction
Transfer Register.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGDTRRXint
Data can be stored to memory from this register using STC.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

DBGDTRRXint, Debug Data Transfer Register, Receive

Page 2287

0b1110 0b000 0b0000 0b0101 0b000

if Halted() then
return DBGDTRRXint;

elsif PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x05);

elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then

AArch32.TakeHypTrapException(0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> !=

'00') then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00') then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDTRRXint;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then

AArch32.TakeHypTrapException(0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDTRRXint;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDTRRXint;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
else

return DBGDTRRXint;

DBGDTRRXint, Debug Data Transfer Register, Receive

Page 2288

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDTRRXint, Debug Data Transfer Register, Receive

Page 2289

DBGDTRTXext, Debug OS Lock Data Transfer Register,
Transmit

The DBGDTRTXext characteristics are:

Purpose
Used for save/restore of DBGDTRTXint. It is a component of the Debug Communication Channel.

Configuration
AArch32 System register DBGDTRTXext bits [31:0] are architecturally mapped to AArch64 System register
OSDTRTX_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDTRTXext are UNKNOWN.

Attributes
DBGDTRTXext is a 32-bit register.

Field descriptions
The DBGDTRTXext bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Return DTRTX without side-effect

Bits [31:0]

Return DTRTX without side-effect.

Reads of this register return the value in DTRTX and do not change TXfull.

Writes of this register update the value in DTRTX and do not change TXfull.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction
Transfer Register' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter H4.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGDTRTXext
Arm deprecates reads and writes of DBGDTRTXext through the System register interface when the OS Lock is
unlocked, DBGOSLSR.OSLK == 0.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0011 0b010

DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit

Page 2290

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then

AArch32.TakeHypTrapException(0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDTRTXext;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDTRTXext;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
else

return DBGDTRTXext;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0011 0b010

DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit

Page 2291

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then

AArch32.TakeHypTrapException(0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGDTRTXext = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGDTRTXext = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
else

DBGDTRTXext = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit

Page 2292

DBGDTRTXint, Debug Data Transfer Register, Transmit
The DBGDTRTXint characteristics are:

Purpose
Transfers data from the PE to an external debugger. For example, it is used by a debug target to transfer data to the
debugger. See DBGDTR_EL0 for additional architectural mappings. It is a component of the Debug Communication
Channel.

Configuration
AArch32 System register DBGDTRTXint bits [31:0] are architecturally mapped to AArch64 System register
DBGDTRTX_EL0[31:0] .

AArch32 System register DBGDTRTXint bits [31:0] are architecturally mapped to External register
DBGDTRTX_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDTRTXint are UNKNOWN.

Attributes
DBGDTRTXint is a 32-bit register.

Field descriptions
The DBGDTRTXint bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Return DTRTX

Bits [31:0]

Return DTRTX.

Writes to this register:

• If TXfull is set to 1, set DTRTX to UNKNOWN.

• If TXfull is set to 0, update the value in DTRTX.

After the write, TXfull is set to 1.

For the full behavior of the Debug Communications Channel, see The Debug Communication Channel and Instruction
Transfer Register.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGDTRTXint
Data can be loaded from memory into this register using LDC (immediate) and LDC (literal).

Accesses to this register use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

DBGDTRTXint, Debug Data Transfer Register, Transmit

Page 2293

0b1110 0b000 0b0000 0b0101 0b000

if Halted() then
DBGDTRTXint = R[t];

elsif PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x05);

elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then

AArch32.TakeHypTrapException(0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> !=

'00') then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00') then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGDTRTXint = R[t];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then

AArch32.TakeHypTrapException(0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGDTRTXint = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGDTRTXint = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
else

DBGDTRTXint = R[t];

DBGDTRTXint, Debug Data Transfer Register, Transmit

Page 2294

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDTRTXint, Debug Data Transfer Register, Transmit

Page 2295

DBGOSDLR, Debug OS Double Lock Register
The DBGOSDLR characteristics are:

Purpose
Locks out the external debug interface.

Configuration
AArch32 System register DBGOSDLR bits [31:0] are architecturally mapped to AArch64 System register
OSDLR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGOSDLR are UNKNOWN.

Attributes
DBGOSDLR is a 32-bit register.

Field descriptions
The DBGOSDLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 DLK

Bits [31:1]

Reserved, RES0.

DLK, bit [0]

When ARMv8.0-DoubleLock is implemented:

OS Double Lock control bit.

DLK Meaning
0b0 OS Double Lock unlocked.
0b1 OS Double Lock locked, if DBGPRCR.CORENPDRQ (Core no

powerdown request) bit is set to 0 and the PE is in Non-debug
state.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RAZ/WI.

Accessing the DBGOSDLR
Accesses to this register use the following encodings:

DBGOSDLR, Debug OS Double Lock Register

Page 2296

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0001 0b0011 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' &&

(IsFeatureImplemented("ARMv8.0-DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL2.TDOSA") then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' &&

(IsFeatureImplemented("ARMv8.0-DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by
HDCR.TDOSA") then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&

(IsFeatureImplemented("ARMv8.0-DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGOSDLR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented("ARMv8.0-DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGOSDLR;
elsif PSTATE.EL == EL3 then

return DBGOSDLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0001 0b0011 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' &&

(IsFeatureImplemented("ARMv8.0-DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL2.TDOSA") then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' &&

(IsFeatureImplemented("ARMv8.0-DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by
HDCR.TDOSA") then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&

(IsFeatureImplemented("ARMv8.0-DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGOSDLR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented("ARMv8.0-DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGOSDLR = R[t];
elsif PSTATE.EL == EL3 then

DBGOSDLR = R[t];

DBGOSDLR, Debug OS Double Lock Register

Page 2297

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGOSDLR, Debug OS Double Lock Register

Page 2298

DBGOSECCR, Debug OS Lock Exception Catch Control
Register

The DBGOSECCR characteristics are:

Purpose
Provides a mechanism for an operating system to access the contents of EDECCR that are otherwise invisible to
software, so it can save/restore the contents of EDECCR over powerdown on behalf of the external debugger.

Configuration
AArch32 System register DBGOSECCR bits [31:0] are architecturally mapped to AArch64 System register
OSECCR_EL1[31:0] .

AArch32 System register DBGOSECCR bits [31:0] are architecturally mapped to External register EDECCR[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGOSECCR are UNKNOWN.

If DBGOSLSR.OSLK == 0 then DBGOSECCR returns an UNKNOWN value on reads and ignores writes.

Attributes
DBGOSECCR is a 32-bit register.

Field descriptions
The DBGOSECCR bit assignments are:

When DBGOSLSR.OSLK == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EDECCR

EDECCR, bits [31:0]

Used for save/restore to EDECCR over powerdown.

Reads or writes to this field are indirect accesses to EDECCR.

Accessing the DBGOSECCR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0110 0b010

DBGOSECCR, Debug OS Lock Exception Catch Control Register

Page 2299

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGOSECCR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGOSECCR;

elsif PSTATE.EL == EL3 then
return DBGOSECCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0110 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGOSECCR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGOSECCR = R[t];

elsif PSTATE.EL == EL3 then
DBGOSECCR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGOSECCR, Debug OS Lock Exception Catch Control Register

Page 2300

DBGOSLAR, Debug OS Lock Access Register
The DBGOSLAR characteristics are:

Purpose
Provides a lock for the debug registers. The OS Lock also disables some debug exceptions and debug events.

Configuration
AArch32 System register DBGOSLAR bits [31:0] are architecturally mapped to AArch64 System register
OSLAR_EL1[31:0] .

AArch32 System register DBGOSLAR bits [31:0] are architecturally mapped to External register OSLAR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGOSLAR are UNKNOWN.

Attributes
DBGOSLAR is a 32-bit register.

Field descriptions
The DBGOSLAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OSLA

OSLA, bits [31:0]

OS Lock Access. Writing the value 0xC5ACCE55 to the DBGOSLAR sets the OS lock to 1. Writing any other value sets
the OS lock to 0.

Use DBGOSLSR.OSLK to check the current status of the lock.

Accessing the DBGOSLAR
Accesses to this register use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0001 0b0000 0b100

DBGOSLAR, Debug OS Lock Access Register

Page 2301

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGOSLAR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGOSLAR = R[t];

elsif PSTATE.EL == EL3 then
DBGOSLAR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGOSLAR, Debug OS Lock Access Register

Page 2302

DBGOSLSR, Debug OS Lock Status Register
The DBGOSLSR characteristics are:

Purpose
Provides status information for the OS Lock.

Configuration
AArch32 System register DBGOSLSR bits [31:0] are architecturally mapped to AArch64 System register
OSLSR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGOSLSR are UNKNOWN.

The OS Lock status is also visible in the external debug interface through EDPRSR.

Attributes
DBGOSLSR is a 32-bit register.

Field descriptions
The DBGOSLSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 OSLM[1]nTTOSLKOSLM[0]

Bits [31:4]

Reserved, RES0.

OSLM[1], bit [3]

This field is bit[1] of OSLM[1:0].

OS lock model implemented. Identifies the form of OS save and restore mechanism implemented.

OSLM Meaning
0b00 OS Lock not implemented.
0b10 OS Lock implemented.

All other values are reserved. In an Armv8 implementation the value 0b00 is not permitted.

The OSLM field is split as follows:

• OSLM[1] is DBGOSLSR[3].
• OSLM[0] is DBGOSLSR[0].

nTT, bit [2]

Not 32-bit access. This bit is always RAZ. It indicates that a 32-bit access is needed to write the key to the OS Lock
Access Register.

OSLK, bit [1]

OS Lock Status. The possible values are:

DBGOSLSR, Debug OS Lock Status Register

Page 2303

OSLK Meaning
0b0 OS Lock unlocked.
0b1 OS Lock locked.

The OS Lock is locked and unlocked by writing to the OS Lock Access Register.

The following resets apply:

• On a Cold reset, this field resets to 1.

• On a Warm reset, the value of this field is unchanged.

OSLM[0], bit [0]

This field is bit[0] of OSLM[1:0].

See OSLM[1] for the field description.

Accessing the DBGOSLSR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0001 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGOSLSR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGOSLSR;

elsif PSTATE.EL == EL3 then
return DBGOSLSR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGOSLSR, Debug OS Lock Status Register

Page 2304

DBGPRCR, Debug Power Control Register
The DBGPRCR characteristics are:

Purpose
Controls behavior of the PE on powerdown request.

Configuration
AArch32 System register DBGPRCR bits [31:0] are architecturally mapped to AArch64 System register
DBGPRCR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGPRCR are UNKNOWN.

Bit [0] of this register is mapped to EDPRCR.CORENPDRQ, bit [0] of the external view of this register.

The other bits in these registers are not mapped to each other.

Attributes
DBGPRCR is a 32-bit register.

Field descriptions
The DBGPRCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CORENPDRQ

Bits [31:1]

Reserved, RES0.

CORENPDRQ, bit [0]

When ARMv8.3-DoPD is implemented:

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request causes power up is
dependent on the IMPLEMENTATION DEFINED nature of the system. The power controller must not allow the Core power
domain to switch off while this bit is 1.

CORENPDRQ Meaning
0b0 If the system responds to a powerdown request, it

powers down Core power domain.
0b1 If the system responds to a powerdown request, it does

not powerdown the Core power domain, but instead
emulates a powerdown of that domain.

In an implementation that includes the recommended external debug interface, this bit drives the DBGNOPWRDWN
signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to the Cold reset value on exit from an IMPLEMENTATION DEFINED
software-visible retention state. For more information about retention states see Core power domain power states.

Note

DBGPRCR, Debug Power Control Register

Page 2305

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED
authentication interface. This means that a debugger can request emulation of
powerdown regardless of whether invasive debug is permitted.

The following resets apply:

• On a Cold reset, this field is set to 1 if the powerup request is implemented and the powerup request has
been asserted, and is set to 0 otherwise.

• On a Warm reset, the value of this field is unchanged.

Otherwise:

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request causes power up is
dependent on the IMPLEMENTATION DEFINED nature of the system. The power controller must not allow the Core power
domain to switch off while this bit is 1.

CORENPDRQ Meaning
0b0 If the system responds to a powerdown request, it

powers down Core power domain.
0b1 If the system responds to a powerdown request, it does

not powerdown the Core power domain, but instead
emulates a powerdown of that domain.

In an implementation that includes the recommended external debug interface, this bit drives the DBGNOPWRDWN
signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to the value of EDPRCR.COREPURQ on exit from an
IMPLEMENTATION DEFINED software-visible retention state. For more information about retention states see Core power
domain power states.

Note

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED
authentication interface. This means that a debugger can request emulation of
powerdown regardless of whether invasive debug is permitted.

The following resets apply:

• On a Cold reset, this field resets to the value in EDPRCR.COREPURQ.

• On a Warm reset, the value of this field is unchanged.

Accessing the DBGPRCR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0001 0b0100 0b100

DBGPRCR, Debug Power Control Register

Page 2306

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGPRCR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGPRCR;

elsif PSTATE.EL == EL3 then
return DBGPRCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0001 0b0100 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGPRCR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGPRCR = R[t];

elsif PSTATE.EL == EL3 then
DBGPRCR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGPRCR, Debug Power Control Register

Page 2307

DBGVCR, Debug Vector Catch Register
The DBGVCR characteristics are:

Purpose
Controls Vector Catch debug events.

Configuration
AArch32 System register DBGVCR bits [31:0] are architecturally mapped to AArch64 System register
DBGVCR32_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGVCR
are UNKNOWN.

This register is required in all implementations.

Attributes
DBGVCR is a 32-bit register.

Field descriptions
The DBGVCR bit assignments are:

When EL3 is implemented and EL3 is using AArch32:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NSFNSIRES0NSDNSPNSSNSU RES0 MFMIRES0MDMPMSRES0SF SI RES0SDSPSSSURES0

NSF, bit [31]

FIQ vector catch enable in Non-secure state.

The exception vector offset is 0x1C.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSI, bit [30]

IRQ vector catch enable in Non-secure state.

The exception vector offset is 0x18.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [29]

Reserved, RES0.

NSD, bit [28]

Data Abort vector catch enable in Non-secure state.

The exception vector offset is 0x10.

DBGVCR, Debug Vector Catch Register

Page 2308

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSP, bit [27]

Prefetch Abort vector catch enable in Non-secure state.

The exception vector offset is 0x0C.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSS, bit [26]

Supervisor Call (SVC) vector catch enable in Non-secure state.

The exception vector offset is 0x08.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSU, bit [25]

Undefined Instruction vector catch enable in Non-secure state.

The exception vector offset is 0x04.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [24:16]

Reserved, RES0.

MF, bit [15]

FIQ vector catch enable in Monitor mode.

The exception vector offset is 0x1C.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

MI, bit [14]

IRQ vector catch enable in Monitor mode.

The exception vector offset is 0x18.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

MD, bit [12]

Data Abort vector catch enable in Monitor mode.

The exception vector offset is 0x10.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

MP, bit [11]

Prefetch Abort vector catch enable in Monitor mode.

DBGVCR, Debug Vector Catch Register

Page 2309

The exception vector offset is 0x0C.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

MS, bit [10]

Secure Monitor Call (SMC) vector catch enable in Monitor mode.

The exception vector offset is 0x08.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [9:8]

Reserved, RES0.

SF, bit [7]

FIQ vector catch enable in Secure state.

The exception vector offset is 0x1C.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SI, bit [6]

IRQ vector catch enable in Secure state.

The exception vector offset is 0x18.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

SD, bit [4]

Data Abort vector catch enable in Secure state.

The exception vector offset is 0x10.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SP, bit [3]

Prefetch Abort vector catch enable in Secure state.

The exception vector offset is 0x0C.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SS, bit [2]

Supervisor Call (SVC) vector catch enable in Secure state.

The exception vector offset is 0x08.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DBGVCR, Debug Vector Catch Register

Page 2310

SU, bit [1]

Undefined Instruction vector catch enable in Secure state.

The exception vector offset is 0x04.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.

When EL3 is implemented and EL3 is using AArch64:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NSFNSIRES0NSDNSPNSSNSU RES0 SF SI RES0SDSPSSSURES0

NSF, bit [31]

FIQ vector catch enable in Non-secure state.

The exception vector offset is 0x1C.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSI, bit [30]

IRQ vector catch enable in Non-secure state.

The exception vector offset is 0x18.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [29]

Reserved, RES0.

NSD, bit [28]

Data Abort vector catch enable in Non-secure state.

The exception vector offset is 0x10.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSP, bit [27]

Prefetch Abort vector catch enable in Non-secure state.

The exception vector offset is 0x0C.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSS, bit [26]

Supervisor Call (SVC) vector catch enable in Non-secure state.

The exception vector offset is 0x08.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DBGVCR, Debug Vector Catch Register

Page 2311

NSU, bit [25]

Undefined Instruction vector catch enable in Non-secure state.

The exception vector offset is 0x04.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [24:8]

Reserved, RES0.

SF, bit [7]

FIQ vector catch enable in Secure state.

The exception vector offset is 0x1C.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SI, bit [6]

IRQ vector catch enable in Secure state.

The exception vector offset is 0x18.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

SD, bit [4]

Data Abort vector catch enable in Secure state.

The exception vector offset is 0x10.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SP, bit [3]

Prefetch Abort vector catch enable in Secure state.

The exception vector offset is 0x0C.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SS, bit [2]

Supervisor Call (SVC) vector catch enable in Secure state.

The exception vector offset is 0x08.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SU, bit [1]

Undefined Instruction vector catch enable in Secure state.

The exception vector offset is 0x04.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DBGVCR, Debug Vector Catch Register

Page 2312

Bit [0]

Reserved, RES0.

When EL3 is not implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 F I RES0 D P S U RES0

Bits [31:8]

Reserved, RES0.

F, bit [7]

FIQ vector catch enable.

The exception vector offset is 0x1C.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [6]

IRQ vector catch enable.

The exception vector offset is 0x18.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

D, bit [4]

Data Abort vector catch enable.

The exception vector offset is 0x10.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P, bit [3]

Prefetch Abort vector catch enable.

The exception vector offset 0x0C.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

S, bit [2]

Supervisor Call (SVC) vector catch enable.

The exception vector offset is 0x08.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [1]

Undefined Instruction vector catch enable.

DBGVCR, Debug Vector Catch Register

Page 2313

The exception vector offset is 0x04.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.

Accessing the DBGVCR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0111 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGVCR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGVCR;

elsif PSTATE.EL == EL3 then
return DBGVCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0111 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGVCR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGVCR = R[t];

elsif PSTATE.EL == EL3 then
DBGVCR = R[t];

DBGVCR, Debug Vector Catch Register

Page 2314

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGVCR, Debug Vector Catch Register

Page 2315

DBGWCR<n>, Debug Watchpoint Control Registers, n
= 0 - 15

The DBGWCR<n> characteristics are:

Purpose
Holds control information for a watchpoint. Forms watchpoint n together with value register DBGWVR<n>.

Configuration
AArch32 System register DBGWCR<n> bits [31:0] are architecturally mapped to AArch64 System register
DBGWCR<n>_EL1[31:0] .

AArch32 System register DBGWCR<n> bits [31:0] are architecturally mapped to External register
DBGWCR<n>_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGWCR<n> are UNKNOWN.

If watchpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes
DBGWCR<n> is a 32-bit register.

Field descriptions
The DBGWCR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 MASK RES0 WT LBN SSC HMC BAS LSC PAC E

When the E field is zero, all the other fields in the register are ignored.

Bits [31:29]

Reserved, RES0.

MASK, bits [28:24]

Address mask. Only objects up to 2GB can be watched using a single mask.

MASK Meaning
0b00000 No mask.
0b00001 Reserved.
0b00010 Reserved.

If programmed with a reserved value, a watchpoint must behave as if either:

• MASK has been programmed with a defined value, which might be 0 (no mask), other than for a direct read of
DBGWCRn_EL1.

• The watchpoint is disabled.

Software must not rely on this property because the behavior of reserved values might change in a future revision of
the architecture.

Other values mask the corresponding number of address bits, from 0b00011 masking 3 address bits (0x00000007 mask
for address) to 0b11111 masking 31 address bits (0x7FFFFFFF mask for address).

DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

Page 2316

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Bits [23:21]

Reserved, RES0.

WT, bit [20]

Watchpoint type. Possible values are:

WT Meaning
0b0 Unlinked data address match.
0b1 Linked data address match.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

LBN, bits [19:16]

Linked breakpoint number. For Linked data address watchpoints, this specifies the index of the Context-matching
breakpoint linked to.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Watchpoint debug event for watchpoint n is
generated. This field must be interpreted along with the HMC and PAC fields.

For more information, see 'Execution conditions for which a breakpoint generates Breakpoint exceptions' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, and 'Reserved DBGBCR<n>.{SSC, HMC,
PMC} values' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug event for watchpoint n
is generated. This field must be interpreted along with the SSC and PAC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a
watchpoint generates Watchpoint exceptions' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section G2 (AArch32 Self-hosted Debug).

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

Page 2317

BAS, bits [12:5]

Byte address select. Each bit of this field selects whether a byte from within the word or double-word addressed by
DBGWVR<n> is being watched.

BAS Description
0bxxxxxxx1 Match byte at DBGWVR<n>
0bxxxxxx1x Match byte at DBGWVR<n>+1
0bxxxxx1xx Match byte at DBGWVR<n>+2
0bxxxx1xxx Match byte at DBGWVR<n>+3

In cases where DBGWVR<n> addresses a double-word:

BAS Description, if DBGWVR<n>[2] == 0
0bxxx1xxxx Match byte at DBGWVR<n>+4
0bxx1xxxxx Match byte at DBGWVR<n>+5
0bx1xxxxxx Match byte at DBGWVR<n>+6
0b1xxxxxxx Match byte at DBGWVR<n>+7

If DBGWVR<n>[2] == 1, only BAS[3:0] are used and BAS[7:4] are ignored. Arm deprecates setting DBGWVR<n>[2]
== 1.

The valid values for BAS are non-zero binary numbers all of whose set bits are contiguous. All other values are
reserved and must not be used by software. See 'Reserved DBGWCR<n>.BAS values' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile, section G2 (AArch32 Self-hosted Debug)

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

LSC, bits [4:3]

Load/store control. This field enables watchpoint matching on the type of access being made. Possible values of this
field are:

LSC Meaning
0b01 Match instructions that load from a watchpointed address.
0b10 Match instructions that store to a watchpointed address.
0b11 Match instructions that load from or store to a watchpointed

address.

All other values are reserved, but must behave as if the watchpoint is disabled. Software must not rely on this property
as the behavior of reserved values might change in a future revision of the architecture.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

PAC, bits [2:1]

Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug event for watchpoint
n is generated. This field must be interpreted along with the SSC and HMC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a
watchpoint generates Watchpoint exceptions' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section G2 (AArch32 Self-hosted Debug).

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

Page 2318

E, bit [0]

Enable watchpoint n. Possible values are:

E Meaning
0b0 Watchpoint disabled.
0b1 Watchpoint enabled.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Accessing the DBGWCR<n>
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 n[3:0] 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

return DBGWCR[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
return DBGWCR[UInt(CRm<3:0>)];

elsif PSTATE.EL == EL3 then
if ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

return DBGWCR[UInt(CRm<3:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 n[3:0] 0b111

DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

Page 2319

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

DBGWCR[UInt(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
DBGWCR[UInt(CRm<3:0>)] = R[t];

elsif PSTATE.EL == EL3 then
if ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

DBGWCR[UInt(CRm<3:0>)] = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

Page 2320

DBGWFAR, Debug Watchpoint Fault Address Register
The DBGWFAR characteristics are:

Purpose
Previously returned information about the address of the instruction that accessed a watchpointed address. Is now
deprecated and RES0.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGWFAR are UNKNOWN.

Attributes
DBGWFAR is a 32-bit register.

Field descriptions
The DBGWFAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [31:0]

Reserved, RES0.

Accessing the DBGWFAR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGWFAR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGWFAR;

elsif PSTATE.EL == EL3 then
return DBGWFAR;

DBGWFAR, Debug Watchpoint Fault Address Register

Page 2321

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGWFAR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGWFAR = R[t];

elsif PSTATE.EL == EL3 then
DBGWFAR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGWFAR, Debug Watchpoint Fault Address Register

Page 2322

DBGWVR<n>, Debug Watchpoint Value Registers, n =
0 - 15

The DBGWVR<n> characteristics are:

Purpose
Holds a data address value for use in watchpoint matching. Forms watchpoint n together with control register
DBGWCR<n>.

Configuration
AArch32 System register DBGWVR<n> bits [31:0] are architecturally mapped to AArch64 System register
DBGWVR<n>_EL1[31:0] .

AArch32 System register DBGWVR<n> bits [31:0] are architecturally mapped to External register
DBGWVR<n>_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGWVR<n> are UNKNOWN.

If watchpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes
DBGWVR<n> is a 32-bit register.

Field descriptions
The DBGWVR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA RES0

VA, bits [31:2]

Bits[31:2] of the address value for comparison.

Arm deprecates setting DBGWVR<n>[2] == 1.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On a Warm reset, the value of this field is unchanged.

Bits [1:0]

Reserved, RES0.

Accessing the DBGWVR<n>
Accesses to this register use the following encodings:

DBGWVR<n>, Debug Watchpoint Value Registers, n = 0 - 15

Page 2323

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 n[3:0] 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

return DBGWVR[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
return DBGWVR[UInt(CRm<3:0>)];

elsif PSTATE.EL == EL3 then
if ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

return DBGWVR[UInt(CRm<3:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 n[3:0] 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

DBGWVR[UInt(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
DBGWVR[UInt(CRm<3:0>)] = R[t];

elsif PSTATE.EL == EL3 then
if ELUsingAArch32(EL1) && DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

DBGWVR[UInt(CRm<3:0>)] = R[t];

DBGWVR<n>, Debug Watchpoint Value Registers, n = 0 - 15

Page 2324

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGWVR<n>, Debug Watchpoint Value Registers, n = 0 - 15

Page 2325

DCCIMVAC, Data Cache line Clean and Invalidate by
VA to PoC

The DCCIMVAC characteristics are:

Purpose
Clean and Invalidate data or unified cache line by virtual address to PoC.

Configuration
AArch32 System instruction DCCIMVAC performs the same function as AArch64 System instruction DC CIVAC.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DCCIMVAC are UNKNOWN.

Attributes
DCCIMVAC is a 32-bit System instruction.

Field descriptions
The DCCIMVAC input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Virtual address to use

Bits [31:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DCCIMVAC instruction
Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'AArch32 data cache maintenance instruction (DC*)' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1110 0b001

DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC

Page 2326

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPC == '1' then

AArch32.TakeHypTrapException(0x03);
else

DCCIMVAC(R[t]);
elsif PSTATE.EL == EL2 then

DCCIMVAC(R[t]);
elsif PSTATE.EL == EL3 then

DCCIMVAC(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC

Page 2327

DCCISW, Data Cache line Clean and Invalidate by Set/
Way

The DCCISW characteristics are:

Purpose
Clean and Invalidate data or unified cache line by set/way.

Configuration
AArch32 System instruction DCCISW performs the same function as AArch64 System instruction DC CISW.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DCCISW are UNKNOWN.

Attributes
DCCISW is a 32-bit System instruction.

Field descriptions
The DCCISW input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SetWay Level RES0

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the
values for the cache level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2
cache.

Bit [0]

Reserved, RES0.

Executing the DCCISW instruction
If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED

DCCISW, Data Cache line Clean and Invalidate by Set/Way

Page 2328

• The instruction performs cache maintenance on one of:
◦ No cache lines.
◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1110 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TSW == '1' then

AArch32.TakeHypTrapException(0x03);
else

DCCISW(R[t]);
elsif PSTATE.EL == EL2 then

DCCISW(R[t]);
elsif PSTATE.EL == EL3 then

DCCISW(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCCISW, Data Cache line Clean and Invalidate by Set/Way

Page 2329

DCCMVAC, Data Cache line Clean by VA to PoC
The DCCMVAC characteristics are:

Purpose
Clean data or unified cache line by virtual address to PoC.

Configuration
AArch32 System instruction DCCMVAC performs the same function as AArch64 System instruction DC CVAC.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DCCMVAC are UNKNOWN.

Attributes
DCCMVAC is a 32-bit System instruction.

Field descriptions
The DCCMVAC input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Virtual address to use

Bits [31:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DCCMVAC instruction
Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'AArch32 data cache maintenance instruction (DC*)' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1010 0b001

DCCMVAC, Data Cache line Clean by VA to PoC

Page 2330

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPC == '1' then

AArch32.TakeHypTrapException(0x03);
else

DCCMVAC(R[t]);
elsif PSTATE.EL == EL2 then

DCCMVAC(R[t]);
elsif PSTATE.EL == EL3 then

DCCMVAC(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCCMVAC, Data Cache line Clean by VA to PoC

Page 2331

DCCMVAU, Data Cache line Clean by VA to PoU
The DCCMVAU characteristics are:

Purpose
Clean data or unified cache line by virtual address to PoU.

Configuration
AArch32 System instruction DCCMVAU performs the same function as AArch64 System instruction DC CVAU.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DCCMVAU are UNKNOWN.

Attributes
DCCMVAU is a 32-bit System instruction.

Field descriptions
The DCCMVAU input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Virtual address to use

Bits [31:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DCCMVAU instruction
Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'AArch32 data cache maintenance instruction (DC*)' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1011 0b001

DCCMVAU, Data Cache line Clean by VA to PoU

Page 2332

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TOCU == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPU == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TOCU == '1' then

AArch32.TakeHypTrapException(0x03);
else

DCCMVAU(R[t]);
elsif PSTATE.EL == EL2 then

DCCMVAU(R[t]);
elsif PSTATE.EL == EL3 then

DCCMVAU(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCCMVAU, Data Cache line Clean by VA to PoU

Page 2333

DCCSW, Data Cache line Clean by Set/Way
The DCCSW characteristics are:

Purpose
Clean data or unified cache line by set/way.

Configuration
AArch32 System instruction DCCSW performs the same function as AArch64 System instruction DC CSW.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DCCSW are UNKNOWN.

Attributes
DCCSW is a 32-bit System instruction.

Field descriptions
The DCCSW input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SetWay Level RES0

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the
values for the cache level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2
cache.

Bit [0]

Reserved, RES0.

Executing the DCCSW instruction
If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED
• The instruction performs cache maintenance on one of:

◦ No cache lines.

DCCSW, Data Cache line Clean by Set/Way

Page 2334

◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TSW == '1' then

AArch32.TakeHypTrapException(0x03);
else

DCCISW(R[t]);
elsif PSTATE.EL == EL2 then

DCCISW(R[t]);
elsif PSTATE.EL == EL3 then

DCCISW(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCCSW, Data Cache line Clean by Set/Way

Page 2335

DCIMVAC, Data Cache line Invalidate by VA to PoC
The DCIMVAC characteristics are:

Purpose
Invalidate data or unified cache line by virtual address to PoC.

Configuration
AArch32 System instruction DCIMVAC performs the same function as AArch64 System instruction DC IVAC.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DCIMVAC are UNKNOWN.

Attributes
DCIMVAC is a 32-bit System instruction.

Field descriptions
The DCIMVAC input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Virtual address to use

Bits [31:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DCIMVAC instruction
It is IMPLEMENTATION DEFINED whether, when this instruction is executed, it can generate a watchpoint. If this
instruction can generate a watchpoint this is prioritized in the same way as other watchpoints.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'AArch32 data cache maintenance instruction (DC*)' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0110 0b001

DCIMVAC, Data Cache line Invalidate by VA to PoC

Page 2336

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<DC,VM> != '00' then

DCCIMVAC(R[t]);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.<DC,VM> != '00' then

DCCIMVAC(R[t]);
else

DCIMVAC(R[t]);
elsif PSTATE.EL == EL2 then

DCIMVAC(R[t]);
elsif PSTATE.EL == EL3 then

DCIMVAC(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCIMVAC, Data Cache line Invalidate by VA to PoC

Page 2337

DCISW, Data Cache line Invalidate by Set/Way
The DCISW characteristics are:

Purpose
Invalidate data or unified cache line by set/way.

Configuration
AArch32 System instruction DCISW performs the same function as AArch64 System instruction DC ISW.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DCISW are UNKNOWN.

Attributes
DCISW is a 32-bit System instruction.

Field descriptions
The DCISW input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SetWay Level RES0

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the
values for the cache level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2
cache.

Bit [0]

Reserved, RES0.

Executing the DCISW instruction
If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED
• The instruction performs cache maintenance on one of:

◦ No cache lines.

DCISW, Data Cache line Invalidate by Set/Way

Page 2338

◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0110 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TSW == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.SWIO == '1' then

DCCISW(R[t]);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<DC,VM> != '00' then

DCCISW(R[t]);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.SWIO == '1' then

DCCISW(R[t]);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.<DC,VM> != '00' then

DCCISW(R[t]);
else

DCISW(R[t]);
elsif PSTATE.EL == EL2 then

DCISW(R[t]);
elsif PSTATE.EL == EL3 then

DCISW(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCISW, Data Cache line Invalidate by Set/Way

Page 2339

DFAR, Data Fault Address Register
The DFAR characteristics are:

Purpose
Holds the virtual address of the faulting address that caused a synchronous Data Abort exception.

Configuration
AArch32 System register DFAR bits [31:0] are architecturally mapped to AArch64 System register FAR_EL1[31:0] .

AArch32 System register DFAR bits [31:0] (S) are architecturally mapped to AArch32 System register HDFAR[31:0]
when EL2 is implemented, EL3 is implemented and the highest implemented Exception level is using AArch32 state.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DFAR
are UNKNOWN.

Attributes
DFAR is a 32-bit register.

Field descriptions
The DFAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA of faulting address of synchronous Data Abort exception

Bits [31:0]

VA of faulting address of synchronous Data Abort exception.

This field resets to an architecturally UNKNOWN value.

Accessing the DFAR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0110 0b0000 0b000

DFAR, Data Fault Address Register

Page 2340

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return DFAR_NS;
else

return DFAR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return DFAR_NS;

else
return DFAR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return DFAR_S;
else

return DFAR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

DFAR_NS = R[t];
else

DFAR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
DFAR_NS = R[t];

else
DFAR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

DFAR_S = R[t];
else

DFAR_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DFAR, Data Fault Address Register

Page 2341

DFSR, Data Fault Status Register
The DFSR characteristics are:

Purpose
Holds status information about the last data fault.

Configuration
AArch32 System register DFSR bits [31:0] are architecturally mapped to AArch64 System register ESR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DFSR
are UNKNOWN.

The current translation table format determines which format of the register is used.

Attributes
DFSR is a 32-bit register.

Field descriptions
The DFSR bit assignments are:

When TTBCR.EAE == 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 FnV AET CMExTWnRFS[4]LPAERES0 Domain FS[3:0]

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

FnV Meaning
0b0 DFAR is valid.
0b1 DFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a synchronous External abort other than a synchronous External abort on a translation table
walk. It is RES0 for all other Data Abort exceptions.

This field resets to an architecturally UNKNOWN value.

AET, bits [15:14]

Asynchronous Error Type. When the RAS Extension is implemented, this field describes the state of the PE after taking
an asynchronous Data Abort exception. Possible values are:

AET Meaning
0b00 Uncontainable error (UC) or uncategorized.
0b01 Unrecoverable error (UEU).
0b10 Restartable error (UEO) or Corrected error (CE).
0b11 Recoverable error (UER).

DFSR, Data Fault Status Register

Page 2342

When the RAS Extension is not implemented, or on a synchronous Data Abort, this field is RES0.

Note

Armv8.2 requires the implementation of the RAS Extension.

In the event of multiple errors taken as a single SError interrupt exception, the overall state of the PE is reported.

Note

Software can use this information to determine what recovery might be
possible. The recovery software must also examine any implemented fault
records to determine the location and extent of the error.

This field resets to an architecturally UNKNOWN value.

CM, bit [13]

Cache maintenance fault. For synchronous faults, this bit indicates whether a cache maintenance instruction
generated the fault. The possible values of this bit are:

CM Meaning
0b0 Abort not caused by execution of a cache maintenance instruction.
0b1 Abort caused by execution of a cache maintenance instruction, or

on an address translation.

On a synchronous Data Abort on a translation table walk, this bit is UNKNOWN.

On an asynchronous fault, this bit is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

This field resets to an architecturally UNKNOWN value.

WnR, bit [11]

Write not Read bit. Indicates whether the abort was caused by a write or a read instruction. The possible values of this
bit are:

WnR Meaning
0b0 Abort caused by a read instruction.
0b1 Abort caused by a write instruction.

For faults on the cache maintenance and address translation System instructions in the (coproc==0b1111) encoding
space this bit always returns a value of 1.

This field resets to an architecturally UNKNOWN value.

FS[4], bit [10]

This field is bit[4] of FS[4:0].

Fault status bits. Possible values of FS[4:0] are:

DFSR, Data Fault Status Register

Page 2343

FS Meaning Applies when
0b00001 Alignment fault.
0b00010 Debug exception.
0b00011 Access flag fault, level 1.
0b00100 Fault on instruction cache maintenance.
0b00101 Translation fault, level 1.
0b00110 Access flag fault, level 2.
0b00111 Translation fault, level 2.
0b01000 Synchronous External abort, not on

translation table walk.
0b01001 Domain fault, level 1.
0b01011 Domain fault, level 2.
0b01100 Synchronous External abort, on translation

table walk, level 1.
0b01101 Permission fault, level 1.
0b01110 Synchronous External abort, on translation

table walk, level 2.
0b01111 Permission fault, level 2.
0b10000 TLB conflict abort.
0b10100 IMPLEMENTATION DEFINED fault (Lockdown

fault).
0b10101 IMPLEMENTATION DEFINED fault

(Unsupported Exclusive access fault).
0b10110 SError interrupt.
0b11000 SError interrupt, from a parity or ECC

error on memory access.
When RAS is
not
implemented

0b11001 Synchronous parity or ECC error on
memory access, not on translation table
walk.

When RAS is
not
implemented

0b11100 Synchronous parity or ECC error on
translation table walk, level 1.

When RAS is
not
implemented

0b11110 Synchronous parity or ECC error on
translation table walk, level 2.

When RAS is
not
implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults on a
Short-descriptor translation table lookup' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile.

The FS field is split as follows:

• FS[4] is DFSR[10].
• FS[3:0] is DFSR[3:0].

This field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

LPAE Meaning
0b0 Using the Short-descriptor translation table formats.
0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set
this bit to 0 or 1 without affecting operation.

This field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

DFSR, Data Fault Status Register

Page 2344

Domain, bits [7:4]

The domain of the fault address.

Arm deprecates any use of this field, see 'The Domain field in the DFSR' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

This field is UNKNOWN for certain faults where the DFSR is updated and reported using the Short-descriptor FSR
encodings, see 'Validity of Domain field on faults that update the DFSR when using the Short-descriptor encodings' in
the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

FS[3:0], bits [3:0]

This field is bits[3:0] of FS[4:0].

See FS[4] for the field description.

When TTBCR.EAE == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 FnV AET CMExTWnRRES0LPAE RES0 STATUS

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

FnV Meaning
0b0 DFAR is valid.
0b1 DFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a synchronous External abort other than a synchronous External abort on a translation table
walk. It is RES0 for all other Data Abort exceptions.

This field resets to an architecturally UNKNOWN value.

AET, bits [15:14]

Asynchronous Error Type. When the RAS Extension is implemented, this field describes the state of the PE after taking
an asynchronous Data Abort exception. Possible values are:

AET Meaning
0b00 Uncontainable error (UC) or uncategorized.
0b01 Unrecoverable error (UEU).
0b10 Restartable error (UEO) or Corrected error (CE).
0b11 Recoverable error (UER).

When the RAS Extension is not implemented, or on a synchronous Data Abort, this field is RES0.

Note

Armv8.2 requires the implementation of the RAS Extension.

In the event of multiple errors taken as a single SError interrupt exception, the overall state of the PE is reported.

Note

DFSR, Data Fault Status Register

Page 2345

Software can use this information to determine what recovery might be
possible. The recovery software must also examine any implemented fault
records to determine the location and extent of the error.

This field resets to an architecturally UNKNOWN value.

CM, bit [13]

Cache maintenance fault. For synchronous faults, this bit indicates whether a cache maintenance instruction
generated the fault. The possible values of this bit are:

CM Meaning
0b0 Abort not caused by execution of a cache maintenance instruction.
0b1 Abort caused by execution of a cache maintenance instruction.

On a synchronous Data Abort on a translation table walk, this bit is UNKNOWN.

On an asynchronous fault, this bit is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

This field resets to an architecturally UNKNOWN value.

WnR, bit [11]

Write not Read bit. Indicates whether the abort was caused by a write or a read instruction. The possible values of this
bit are:

WnR Meaning
0b0 Abort caused by a read instruction.
0b1 Abort caused by a write instruction.

For faults on the cache maintenance and address translation System instructions in the (coproc==0b1111) encoding
space this bit always returns a value of 1.

This field resets to an architecturally UNKNOWN value.

Bit [10]

Reserved, RES0.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

LPAE Meaning
0b0 Using the Short-descriptor translation table formats.
0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set
this bit to 0 or 1 without affecting operation.

This field resets to an architecturally UNKNOWN value.

DFSR, Data Fault Status Register

Page 2346

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status bits. Possible values of this field are:

STATUS Meaning Applies
when

0b000000 Address size fault in translation table base
register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not on

translation table walk.
0b010001 Asynchronous SError interrupt.
0b010101 Synchronous External abort, on translation

table walk, level 1.
0b010110 Synchronous External abort, on translation

table walk, level 2.
0b010111 Synchronous External abort, on translation

table walk, level 3.
0b011000 Synchronous parity or ECC error on

memory access, not on translation table
walk.

When RAS is
not
implemented

0b011001 Asynchronous SError interrupt, from a
parity or ECC error on memory access.

When RAS is
not
implemented

0b011101 Synchronous parity or ECC error on
memory access on translation table walk,
level 1.

When RAS is
not
implemented

0b011110 Synchronous parity or ECC error on
memory access on translation table walk,
level 2.

When RAS is
not
implemented

0b011111 Synchronous parity or ECC error on
memory access on translation table walk,
level 3.

When RAS is
not
implemented

0b100001 Alignment fault.
0b100010 Debug exception.
0b110000 TLB conflict abort.
0b110100 IMPLEMENTATION DEFINED fault (Lockdown).
0b110101 IMPLEMENTATION DEFINED fault

(Unsupported Exclusive access).

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults on a
Long-descriptor translation table lookup' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile.

This field resets to an architecturally UNKNOWN value.

Accessing the DFSR
Accesses to this register use the following encodings:

DFSR, Data Fault Status Register

Page 2347

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return DFSR_NS;
else

return DFSR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return DFSR_NS;

else
return DFSR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return DFSR_S;
else

return DFSR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

DFSR_NS = R[t];
else

DFSR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
DFSR_NS = R[t];

else
DFSR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

DFSR_S = R[t];
else

DFSR_NS = R[t];

DFSR, Data Fault Status Register

Page 2348

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DFSR, Data Fault Status Register

Page 2349

DISR, Deferred Interrupt Status Register
The DISR characteristics are:

Purpose
Records that an SError interrupt has been consumed by an ESB instruction.

Configuration
AArch32 System register DISR bits [31:0] are architecturally mapped to AArch64 System register DISR_EL1[31:0]
when the highest implemented Exception level is using AArch64.

This register is present only when RAS is implemented. Otherwise, direct accesses to DISR are UNDEFINED.

Attributes
DISR is a 32-bit register.

Field descriptions
The DISR bit assignments are:

When the ESB instruction is executed at EL2:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A RES0 AET EA RES0 DFSC

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does not include any
sources of SError interrupt that can be synchronized by an Error Synchronization Barrier, then this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bits [30:12]

Reserved, RES0.

AET, bits [11:10]

Asynchronous Error Type. See the description of HSR.AET for an SError interrupt.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort Type. See the description of HSR.EA for an SError interrupt.

This field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

DISR, Deferred Interrupt Status Register

Page 2350

DFSC, bits [5:0]

Fault Status Code. See the description of HSR.DFSC for an SError interrupt.

This field resets to an architecturally UNKNOWN value.

When the ESB instruction is executed at EL0 or EL1 and where TTBCR.EAE == 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A RES0 AET RES0ExTRES0FS[4]LPAE RES0 FS[3:0]

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does not include any
sources of SError interrupt that can be synchronized by an Error Synchronization Barrier, then this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

Asynchronous Error Type. See the description of DFSR.AET for an SError interrupt.

This field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

External abort Type. See the description of DFSR.ExT for an SError interrupt.

This field resets to an architecturally UNKNOWN value.

Bit [11]

Reserved, RES0.

FS[4], bit [10]

This field is bit[4] of FS[4:0].

Fault Status Code. See the description of DFSR.FS for an SError interrupt.

The FS field is split as follows:

• FS[4] is DISR[10].
• FS[3:0] is DISR[3:0].

This field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

Format.

LPAE Meaning
0b0 Using the Short-descriptor translation table format.

DISR, Deferred Interrupt Status Register

Page 2351

This field resets to an architecturally UNKNOWN value.

Bits [8:4]

Reserved, RES0.

FS[3:0], bits [3:0]

This field is bits[3:0] of FS[4:0].

See FS[4] for the field description.

When the ESB instruction is executed at EL0 or EL1 and where TTBCR.EAE == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A RES0 AET RES0ExT RES0 LPAE RES0 STATUS

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does not include any
sources of SError interrupt that can be synchronized by an Error Synchronization Barrier, then this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

Asynchronous Error Type. See the description of DFSR.AET for an SError interrupt.

This field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

External abort Type. See the description of DFSR.ExT for an SError interrupt.

This field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

LPAE, bit [9]

Format.

LPAE Meaning
0b1 Using the Long-descriptor translation table format.

This field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

DISR, Deferred Interrupt Status Register

Page 2352

STATUS, bits [5:0]

Fault Status Code. See the description of DFSR.FS for an SError interrupt.

This field resets to an architecturally UNKNOWN value.

Accessing the DISR
An indirect write to DISR made by an ESB instruction does not require an explicit synchronization operation for the
value that is written to be observed by a direct read of DISR occurring in program order after the ESB instruction.

DISR is RAZ/WI if EL3 is implemented, the PE is in Non-debug state, and any of the following apply:

• EL3 is using AArch64, SCR_EL3.EA == 1, and any of the following apply:
◦ The PE is executing at EL2.
◦ The PE is executing at EL1 and ((SCR_EL3.NS == 0 && SCR_EL3.EEL2 == 0) || HCR_EL2.AMO ==

0).
• EL3 is using AArch32, SCR.EA == 1, and any of the following apply:

◦ The PE is executing at EL2.
◦ The PE is executing at EL1 and (SCR.NS == 0 || HCR.AMO == 0).

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AMO == '1' then

return VDISR_EL2;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.AMO == '1' then

return VDISR;
else

return DISR;
elsif PSTATE.EL == EL2 then

return DISR;
elsif PSTATE.EL == EL3 then

return DISR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0001 0b001

DISR, Deferred Interrupt Status Register

Page 2353

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AMO == '1' then

VDISR_EL2 = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.AMO == '1' then

VDISR = R[t];
else

DISR = R[t];
elsif PSTATE.EL == EL2 then

DISR = R[t];
elsif PSTATE.EL == EL3 then

DISR = R[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DISR, Deferred Interrupt Status Register

Page 2354

DLR, Debug Link Register
The DLR characteristics are:

Purpose
In Debug state, holds the address to restart from.

Configuration
AArch32 System register DLR bits [31:0] are architecturally mapped to AArch64 System register DLR_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DLR are
UNKNOWN.

Attributes
DLR is a 32-bit register.

Field descriptions
The DLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Restart address

Bits [31:0]

Restart address.

Accessing the DLR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b011 0b0100 0b0101 0b001

if !Halted() then
UNDEFINED;

else
return DLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b011 0b0100 0b0101 0b001

if !Halted() then
UNDEFINED;

else
DLR = R[t];

DLR, Debug Link Register

Page 2355

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DLR, Debug Link Register

Page 2356

DSPSR, Debug Saved Program Status Register
The DSPSR characteristics are:

Purpose
Holds the saved process state for Debug state. On entering Debug state, PSTATE information is written to this
register. On exiting Debug state, values are copied from this register to PSTATE.

Configuration
AArch32 System register DSPSR bits [31:0] are architecturally mapped to AArch64 System register DSPSR_EL0[31:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DSPSR
are UNKNOWN.

Attributes
DSPSR is a 32-bit register.

Field descriptions
The DSPSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q IT[1:0]DITSSBSPAN SS IL GE IT[7:2] E A I F T M[4:0]

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on entering Debug state, and copied to PSTATE.N on exiting
Debug state.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on entering Debug state, and copied to PSTATE.Z on exiting Debug
state.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on entering Debug state, and copied to PSTATE.C on exiting Debug
state.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on entering Debug state, and copied to PSTATE.V on exiting
Debug state.

This field resets to an architecturally UNKNOWN value.

DSPSR, Debug Saved Program Status Register

Page 2357

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on entering Debug state, and copied to PSTATE.Q on exiting
Debug state.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on entering Debug state, and copied to PSTATE.IT[1:0] on exiting Debug
state.

On exiting Debug state DSPSR.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on entering Debug state, and copied to PSTATE.DIT on
exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on entering Debug state, and copied to PSTATE.SSBS on
exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on entering Debug state, and copied to PSTATE.PAN on
exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on entering Debug state, and conditionally copied to PSTATE.SS on
exiting Debug state.

This field resets to an architecturally UNKNOWN value.

DSPSR, Debug Saved Program Status Register

Page 2358

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on entering Debug state, and copied to PSTATE.IL on exiting
Debug state.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on entering Debug state, and copied to PSTATE.GE on
exiting Debug state.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on entering Debug state, and copied to PSTATE.IT[7:2] on exiting Debug
state.

DSPSR.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on entering Debug state, and copied to PSTATE.E on exiting Debug state.

If the implementation does not support big-endian operation, DSPSR.E is RES0. If the implementation does not support
little-endian operation, DSPSR.E is RES1. On exiting Debug state, if the implementation does not support big-endian
operation at the Exception level being returned to, DSPSR.E is RES0, and if the implementation does not support little-
endian operation at the Exception level being returned to, DSPSR.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on entering Debug state, and copied to PSTATE.A on exiting
Debug state.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on entering Debug state, and copied to PSTATE.I on exiting Debug
state.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on entering Debug state, and copied to PSTATE.F on exiting Debug
state.

This field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on entering Debug state, and copied to PSTATE.T on exiting
Debug state.

This field resets to an architecturally UNKNOWN value.

DSPSR, Debug Saved Program Status Register

Page 2359

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on entering Debug state, and copied to PSTATE.M[4:0] on exiting Debug
state.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10110 Monitor.
0b10111 Abort.
0b11010 Hyp.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If DSPSR.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
exiting Debug state is an illegal return event, as described in 'Illegal return events from AArch32 state' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

Accessing the DSPSR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b011 0b0100 0b0101 0b000

if !Halted() then
UNDEFINED;

else
return DSPSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b011 0b0100 0b0101 0b000

if !Halted() then
UNDEFINED;

else
DSPSR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DSPSR, Debug Saved Program Status Register

Page 2360

DTLBIALL, Data TLB Invalidate All
The DTLBIALL characteristics are:

Purpose
Invalidate all cached copies of translation table entries from data TLBs that are from any level of the translation table
walk. The entries that are invalidated are as follows:

• If executed at EL1, all entries that:
◦ Would be required for the EL1&0 translation regime.
◦ Match the current VMID, if EL2 is implemented and enabled in the current Security state.

• If executed in Secure state when EL3 is using AArch32, all entries that would be required for the Secure
PL1&0 translation regime.

• If executed at EL2, and if EL2 is enabled in the current Security state, the stage 1 or stage 2 translation table
entries that would be required for the Non-secure PL1&0 translation regime and matches the current VMID.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility with earlier versions
of the Arm architecture.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DTLBIALL are UNKNOWN.

Attributes
DTLBIALL is a 32-bit System instruction.

Field descriptions
DTLBIALL ignores the value in the register specified by the instruction encoding. Software does not have to write a
value to the register before issuing this instruction.

Executing the DTLBIALL instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1000 0b0110 0b000

DTLBIALL, Data TLB Invalidate All

Page 2361

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then

AArch32.TakeHypTrapException(0x03);
else

DTLBIALL();
elsif PSTATE.EL == EL2 then

DTLBIALL();
elsif PSTATE.EL == EL3 then

DTLBIALL();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DTLBIALL, Data TLB Invalidate All

Page 2362

DTLBIASID, Data TLB Invalidate by ASID match
The DTLBIASID characteristics are:

Purpose
Invalidate all cached copies of translation table entries from data TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used for the specified ASID, and either:

◦ Is from a level of lookup above the final level.
◦ Is a non-global entry from the final level of lookup.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with the current
VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following
translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility with earlier versions
of the Arm architecture.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DTLBIASID are UNKNOWN.

Attributes
DTLBIASID is a 32-bit System instruction.

Field descriptions
The DTLBIASID input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ASID

Bits [31:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries for non-global pages that match the ASID values will be affected by this System
instruction.

Executing the DTLBIASID instruction
Accesses to this instruction use the following encodings:

DTLBIASID, Data TLB Invalidate by ASID match

Page 2363

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1000 0b0110 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then

AArch32.TakeHypTrapException(0x03);
else

DTLBIASID(R[t]);
elsif PSTATE.EL == EL2 then

DTLBIASID(R[t]);
elsif PSTATE.EL == EL3 then

DTLBIASID(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DTLBIASID, Data TLB Invalidate by ASID match

Page 2364

DTLBIMVA, Data TLB Invalidate by VA
The DTLBIMVA characteristics are:

Purpose
Invalidate all cached copies of translation table entries from data TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.
◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with the current
VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following
translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility with earlier versions
of the Arm architecture.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DTLBIMVA are UNKNOWN.

Attributes
DTLBIMVA is a 32-bit System instruction.

Field descriptions
The DTLBIMVA input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA RES0 ASID

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

DTLBIMVA, Data TLB Invalidate by VA

Page 2365

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

Executing the DTLBIMVA instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1000 0b0110 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then

AArch32.TakeHypTrapException(0x03);
else

DTLBIMVA(R[t]);
elsif PSTATE.EL == EL2 then

DTLBIMVA(R[t]);
elsif PSTATE.EL == EL3 then

DTLBIMVA(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DTLBIMVA, Data TLB Invalidate by VA

Page 2366

DVPRCTX, Data Value Prediction Restriction by
Context

The DVPRCTX characteristics are:

Purpose
Data Value Prediction Restriction by Context applies to all Data Value Prediction Resources that predict execution
based on information gathered within the target execution context or contexts.

When this instruction is complete and synchronized, data value prediction does not permit later speculative execution
within the target execution context to be observable through side channels.

This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same
PE as executed the original restriction instruction, and a subsequent context synchronization event is required to
ensure that the effect of the completion of the instructions is synchronized to the current execution.

Note

This instruction does not require the invalidation of prediction structures so
long as the behavior described for completion of this instruction is met by the
implementation.

On some implementations the instruction is likely to take a significant number
of cycles to execute. This instruction is expected to be used very rarely, such
as on the roll-over of an ASID or VMID, but should not be used on every
context switch.

Configuration
This instruction is present only when AArch32 is supported at any Exception level and ARMv8.0-PredInv is
implemented. Otherwise, direct accesses to DVPRCTX are UNDEFINED.

Attributes
DVPRCTX is a 32-bit System instruction.

Field descriptions
The DVPRCTX input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 GVMIDNS EL VMID RES0 GASID ASID

Bits [31:28]

Reserved, RES0.

GVMID, bit [27]

Execution of this instruction applies to all VMIDs or a specified VMID.

GVMID Meaning
0b0 Applies to specified VMID for an EL0 or EL1 context. For all

other contexts this field is RES0.
0b1 Applies to all VMIDs for an EL0 or EL1 context. For all other

contexts this field is RES0.

DVPRCTX, Data Value Prediction Restriction by Context

Page 2367

If the instruction is executed at EL0 or EL1, then this field has an Effective value of 0.

NS, bit [26]

Security State.

NS Meaning
0b0 Secure state.
0b1 Non-secure state.

If the instruction is executed in Non-secure state, this field has an Effective value of 1.

EL, bits [25:24]

Exception Level

EL Meaning
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.

If the instruction is executed at an exception level lower than the specified level, this instruction is treated as a NOP.

VMID, bits [23:16]

Only applies when bit[27] is 0 and either:

• an EL1 context.
• an EL0 context when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0) or EL2 is using AArch32 state.

Otherwise this field is RES0.

When the instruction is executed at EL1 then this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0 or ELUsingAArch32(EL2))
then this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1 and !ELUsingAArch32(EL2))
then this field is ignored.

Bits [15:9]

Reserved, RES0.

GASID, bit [8]

Execution of this instruction applies to all ASIDs or a specified ASID.

GASID Meaning
0b0 Applies to specified ASID for an EL0 context. For all other

contexts this field is RES0.
0b1 Applies to all ASID for an EL0 context. For all other contexts

this field is RES0.

If the instruction is executed at EL0, then this field has an Effective value of 0.

ASID, bits [7:0]

Only applies for an EL0 context and when bit[8] is 0.

Otherwise this field is RES0.

When the instruction is executed at EL0 then this field is treated as the current ASID.

DVPRCTX, Data Value Prediction Restriction by Context

Page 2368

Executing the DVPRCTX instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0011 0b101

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && SCTLR.EnRCTX == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX ==

'0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
DVPRCTX(R[t]);

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x03);
else

DVPRCTX(R[t]);
elsif PSTATE.EL == EL2 then

DVPRCTX(R[t]);
elsif PSTATE.EL == EL3 then

DVPRCTX(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DVPRCTX, Data Value Prediction Restriction by Context

Page 2369

ELR_hyp, Exception Link Register (Hyp mode)
The ELR_hyp characteristics are:

Purpose
When taking an exception to Hyp mode, holds the address to return to.

Configuration
AArch32 System register ELR_hyp bits [31:0] are architecturally mapped to AArch64 System register ELR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ELR_hyp
are UNKNOWN.

Attributes
ELR_hyp is a 32-bit register.

Field descriptions
The ELR_hyp bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Return address

Bits [31:0]

Return address.

This field resets to an architecturally UNKNOWN value.

Accessing the ELR_hyp
ELR_hyp is accessible only at Hyp mode and Monitor mode.

Accesses to this register use the following encodings:

MRS{<c>}{<q>} <Rd>, ELR_hyp

R M M1
0b0 0b1 0b1110

MSR{<c>}{<q>} ELR_hyp, <Rn>

R M M1
0b0 0b1 0b1110

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ELR_hyp, Exception Link Register (Hyp mode)

Page 2370

ERRIDR, Error Record ID Register
The ERRIDR characteristics are:

Purpose
Defines the highest numbered index of the error records that can be accessed through the Error Record System
registers.

Configuration
AArch32 System register ERRIDR bits [31:0] are architecturally mapped to AArch64 System register
ERRIDR_EL1[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERRIDR are UNDEFINED.

Attributes
ERRIDR is a 32-bit register.

Field descriptions
The ERRIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 NUM

Bits [31:16]

Reserved, RES0.

NUM, bits [15:0]

Highest numbered index of the records that can be accessed through the Error Record System registers plus one.
Zero indicates that no records can be accessed through the Error Record System registers.

Each implemented record is owned by a node. A node might own multiple records.

Accessing the ERRIDR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0011 0b000

ERRIDR, Error Record ID Register

Page 2371

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERRIDR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
return ERRIDR;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERRIDR;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRIDR, Error Record ID Register

Page 2372

ERRSELR, Error Record Select Register
The ERRSELR characteristics are:

Purpose
Selects an error record to be accessed through the Error Record System registers.

Configuration
AArch32 System register ERRSELR bits [31:0] are architecturally mapped to AArch64 System register
ERRSELR_EL1[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERRSELR are UNDEFINED.

If ERRIDR indicates that zero error records are implemented, then it is IMPLEMENTATION DEFINED whether ERRSELR is
UNDEFINED or RES0.

Attributes
ERRSELR is a 32-bit register.

Field descriptions
The ERRSELR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SEL

Bits [31:16]

Reserved, RES0.

SEL, bits [15:0]

Selects the error record accessed through the ERX registers.

For example, if ERRSELR.SEL is set to 0x0004, then direct reads and writes of ERXSTATUS access ERR4STATUS.

If ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then all of the following apply:

• The value read back from ERRSELR.SEL is UNKNOWN.
• One of the following occurs:

◦ An UNKNOWN error record is selected.
◦ The ERX* registers are RAZ/WI.
◦ ERX* register reads and writes are NOPs.
◦ ERX* register reads and writes are UNDEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the ERRSELR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

ERRSELR, Error Record Select Register

Page 2373

0b1111 0b000 0b0101 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERRSELR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
return ERRSELR;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERRSELR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERRSELR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
ERRSELR = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERRSELR = R[t];

ERRSELR, Error Record Select Register

Page 2374

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRSELR, Error Record Select Register

Page 2375

ERXADDR, Selected Error Record Address Register
The ERXADDR characteristics are:

Purpose
Accesses bits [31:0] of ERR<n>ADDR for the error record <n> selected by ERRSELR.SEL.

Configuration
AArch32 System register ERXADDR bits [31:0] are architecturally mapped to AArch64 System register
ERXADDR_EL1[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERXADDR are UNDEFINED.

Attributes
ERXADDR is a 32-bit register.

Field descriptions
The ERXADDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bits [31:0] of ERR<n>ADDR

Bits [31:0]

ERXADDR accesses bits [31:0] of ERR<n>ADDR, where <n> is the value in ERRSELR.SEL.

Accessing the ERXADDR
If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the
following occurs:

• An UNKNOWN error record is selected.
• ERXADDR is RAZ/WI.
• Direct reads and writes of ERXADDR are NOPs.
• Direct reads and writes of ERXADDR are UNDEFINED.

ERR<n>ADDR describes additional constraints that also apply when ERR<n>ADDR is accessed through ERXADDR.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0100 0b011

ERXADDR, Selected Error Record Address Register

Page 2376

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXADDR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
return ERXADDR;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXADDR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0100 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXADDR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
ERXADDR = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXADDR = R[t];

ERXADDR, Selected Error Record Address Register

Page 2377

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXADDR, Selected Error Record Address Register

Page 2378

ERXADDR2, Selected Error Record Address Register 2
The ERXADDR2 characteristics are:

Purpose
Accesses bits [63:32] of ERR<n>ADDR for the error record <n> selected by ERRSELR.SEL.

Configuration
AArch32 System register ERXADDR2 bits [31:0] are architecturally mapped to AArch64 System register
ERXADDR_EL1[63:32] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERXADDR2 are UNDEFINED.

Attributes
ERXADDR2 is a 32-bit register.

Field descriptions
The ERXADDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bits [63:32] of ERR<n>ADDR

Bits [31:0]

ERXADDR2 accesses bits [63:32] of ERR<n>ADDR, where <n> is the value in ERRSELR.SEL.

Accessing the ERXADDR2
If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the
following occurs:

• An UNKNOWN error record is selected.
• ERXADDR2 is RAZ/WI.
• Direct reads and writes of ERXADDR2 are NOPs.
• Direct reads and writes of ERXADDR2 are UNDEFINED.

ERR<n>ADDR describes additional constraints that also apply when ERR<n>ADDR is accessed through ERXADDR2.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0100 0b111

ERXADDR2, Selected Error Record Address Register 2

Page 2379

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXADDR2;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
return ERXADDR2;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXADDR2;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0100 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXADDR2 = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
ERXADDR2 = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXADDR2 = R[t];

ERXADDR2, Selected Error Record Address Register 2

Page 2380

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXADDR2, Selected Error Record Address Register 2

Page 2381

ERXCTLR, Selected Error Record Control Register
The ERXCTLR characteristics are:

Purpose
Accesses bits [31:0] of ERR<n>CTLR for the error record <n> selected by ERRSELR.SEL.

Configuration
AArch32 System register ERXCTLR bits [31:0] are architecturally mapped to AArch64 System register
ERXCTLR_EL1[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERXCTLR are UNDEFINED.

Attributes
ERXCTLR is a 32-bit register.

Field descriptions
The ERXCTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bits [31:0] of ERR<n>CTLR

Bits [31:0]

ERXCTLR accesses bits [31:0] of ERR<n>CTLR, where <n> is the value in ERRSELR.SEL.

Accessing the ERXCTLR
If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the
following occurs:

• An UNKNOWN error record is selected.
• ERXCTLR is RAZ/WI.
• Direct reads and writes of ERXCTLR are NOPs.
• Direct reads and writes of ERXCTLR are UNDEFINED.

If ERRSELR.SEL is not the index of the first error record owned by a node, then ERR<n>CTLR[31:0] is not present,
meaning reads and writes of ERXCTLR are RES0.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0100 0b001

ERXCTLR, Selected Error Record Control Register

Page 2382

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXCTLR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
return ERXCTLR;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXCTLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXCTLR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
ERXCTLR = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXCTLR = R[t];

ERXCTLR, Selected Error Record Control Register

Page 2383

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXCTLR, Selected Error Record Control Register

Page 2384

ERXCTLR2, Selected Error Record Control Register 2
The ERXCTLR2 characteristics are:

Purpose
Accesses bits [63:32] of ERR<n>CTLR for the error record <n> selected by ERRSELR.SEL.

Configuration
AArch32 System register ERXCTLR2 bits [31:0] are architecturally mapped to AArch64 System register
ERXCTLR_EL1[63:32] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERXCTLR2 are UNDEFINED.

Attributes
ERXCTLR2 is a 32-bit register.

Field descriptions
The ERXCTLR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bits [63:32] of ERR<n>CTLR

Bits [31:0]

ERXCTLR2 accesses bits [63:32] of ERR<n>CTLR, where <n> is the value in ERRSELR.SEL.

Accessing the ERXCTLR2
If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the
following occurs:

• An UNKNOWN error record is selected.
• ERXCTLR2 is RAZ/WI.
• Direct reads and writes of ERXCTLR2 are NOPs.
• Direct reads and writes of ERXCTLR2 are UNDEFINED.

If ERRSELR.SEL is not the index of the first error record owned by a node, then ERR<n>CTLR[63:32] is not present,
meaning reads and writes of ERXCTLR2 are RES0.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0100 0b101

ERXCTLR2, Selected Error Record Control Register 2

Page 2385

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXCTLR2;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
return ERXCTLR2;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXCTLR2;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0100 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXCTLR2 = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
ERXCTLR2 = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXCTLR2 = R[t];

ERXCTLR2, Selected Error Record Control Register 2

Page 2386

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXCTLR2, Selected Error Record Control Register 2

Page 2387

ERXFR, Selected Error Record Feature Register
The ERXFR characteristics are:

Purpose
Accesses bits [31:0] of ERR<n>FR for the error record <n> selected by ERRSELR.SEL.

Configuration
AArch32 System register ERXFR bits [31:0] are architecturally mapped to AArch64 System register ERXFR_EL1[31:0]
.

This register is present only when RAS is implemented. Otherwise, direct accesses to ERXFR are UNDEFINED.

Attributes
ERXFR is a 32-bit register.

Field descriptions
The ERXFR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bits [31:0] of ERR<n>FR

Bits [31:0]

ERXFR accesses bits [31:0] of ERR<n>FR, where <n> is the value in ERRSELR.SEL.

Accessing the ERXFR
If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the
following occurs:

• An UNKNOWN error record is selected.
• ERXFR is RAZ.
• Direct reads of ERXFR are NOPs.
• Direct reads of ERXFR are UNDEFINED.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0100 0b000

ERXFR, Selected Error Record Feature Register

Page 2388

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXFR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
return ERXFR;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXFR;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXFR, Selected Error Record Feature Register

Page 2389

ERXFR2, Selected Error Record Feature Register 2
The ERXFR2 characteristics are:

Purpose
Accesses bits [63:32] of ERR<n>FR for the error record <n> selected by ERRSELR.SEL.

Configuration
AArch32 System register ERXFR2 bits [31:0] are architecturally mapped to AArch64 System register
ERXFR_EL1[63:32] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERXFR2 are UNDEFINED.

Attributes
ERXFR2 is a 32-bit register.

Field descriptions
The ERXFR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bits [63:32] of ERR<n>FR

Bits [31:0]

ERXFR2 accesses bits [63:32] of ERR<n>FR, where <n> is the value in ERRSELR.SEL.

Accessing the ERXFR2
If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the
following occurs:

• An UNKNOWN error record is selected.
• ERXFR2 is RAZ.
• Direct reads of ERXFR2 are NOPs.
• Direct reads of ERXFR2 are UNDEFINED.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0100 0b100

ERXFR2, Selected Error Record Feature Register 2

Page 2390

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXFR2;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
return ERXFR2;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXFR2;

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXFR2, Selected Error Record Feature Register 2

Page 2391

ERXMISC0, Selected Error Record Miscellaneous
Register 0

The ERXMISC0 characteristics are:

Purpose
Accesses bits [31:0] of ERR<n>MISC0 for the error record <n> selected by ERRSELR.SEL.

Configuration
AArch32 System register ERXMISC0 bits [31:0] are architecturally mapped to AArch64 System register
ERXMISC0_EL1[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERXMISC0 are UNDEFINED.

Attributes
ERXMISC0 is a 32-bit register.

Field descriptions
The ERXMISC0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bits [31:0] of ERR<n>MISC0

Bits [31:0]

ERXMISC0 accesses bits [31:0] of ERR<n>MISC0, where <n> is the value in ERRSELR.SEL.

Accessing the ERXMISC0
If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the
following occurs:

• An UNKNOWN error record is selected.
• ERXMISC0 is RAZ/WI.
• Direct reads and writes of ERXMISC0 are NOPs.
• Direct reads and writes of ERXMISC0 are UNDEFINED.

ERR<n>MISC0 describes additional constraints that also apply when ERR<n>MISC0 is accessed through ERXMISC0.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0101 0b000

ERXMISC0, Selected Error Record Miscellaneous Register 0

Page 2392

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXMISC0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
return ERXMISC0;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXMISC0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0101 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXMISC0 = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
ERXMISC0 = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXMISC0 = R[t];

ERXMISC0, Selected Error Record Miscellaneous Register 0

Page 2393

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXMISC0, Selected Error Record Miscellaneous Register 0

Page 2394

ERXMISC1, Selected Error Record Miscellaneous
Register 1

The ERXMISC1 characteristics are:

Purpose
Accesses bits [63:32] of ERR<n>MISC0 for the error record <n> selected by ERRSELR.SEL.

Configuration
AArch32 System register ERXMISC1 bits [31:0] are architecturally mapped to AArch64 System register
ERXMISC0_EL1[63:32] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERXMISC1 are UNDEFINED.

Attributes
ERXMISC1 is a 32-bit register.

Field descriptions
The ERXMISC1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bits [63:32] of ERR<n>MISC0

Bits [31:0]

ERXMISC1 accesses bits [63:32] of ERR<n>MISC0, where <n> is the value in ERRSELR.SEL.

Accessing the ERXMISC1
If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the
following occurs:

• An UNKNOWN error record is selected.
• ERXMISC1 is RAZ/WI.
• Direct reads and writes of ERXMISC1 are NOPs.
• Direct reads and writes of ERXMISC1 are UNDEFINED.

ERR<n>MISC0 describes additional constraints that also apply when ERR<n>MISC0 is accessed through ERXMISC1.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0101 0b001

ERXMISC1, Selected Error Record Miscellaneous Register 1

Page 2395

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXMISC1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
return ERXMISC1;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXMISC1;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0101 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXMISC1 = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
ERXMISC1 = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXMISC1 = R[t];

ERXMISC1, Selected Error Record Miscellaneous Register 1

Page 2396

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXMISC1, Selected Error Record Miscellaneous Register 1

Page 2397

ERXMISC2, Selected Error Record Miscellaneous
Register 2

The ERXMISC2 characteristics are:

Purpose
Accesses bits [31:0] of ERR<n>MISC1 for the error record <n> selected by ERRSELR.SEL.

Configuration
AArch32 System register ERXMISC2 bits [31:0] are architecturally mapped to AArch64 System register
ERXMISC1_EL1[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERXMISC2 are UNDEFINED.

Attributes
ERXMISC2 is a 32-bit register.

Field descriptions
The ERXMISC2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bits [31:0] of ERR<n>MISC1

Bits [31:0]

ERXMISC2 accesses bits [31:0] of ERR<n>MISC1, where <n> is the value in ERRSELR.SEL.

Accessing the ERXMISC2
If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the
following occurs:

• An UNKNOWN error record is selected.
• ERXMISC2 is RAZ/WI.
• Direct reads and writes of ERXMISC2 are NOPs.
• Direct reads and writes of ERXMISC2 are UNDEFINED.

ERR<n>MISC1 describes additional constraints that also apply when ERR<n>MISC1 is accessed through ERXMISC2.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0101 0b100

ERXMISC2, Selected Error Record Miscellaneous Register 2

Page 2398

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXMISC2;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
return ERXMISC2;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXMISC2;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0101 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXMISC2 = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
ERXMISC2 = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXMISC2 = R[t];

ERXMISC2, Selected Error Record Miscellaneous Register 2

Page 2399

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXMISC2, Selected Error Record Miscellaneous Register 2

Page 2400

ERXMISC3, Selected Error Record Miscellaneous
Register 3

The ERXMISC3 characteristics are:

Purpose
Accesses bits [63:32] of ERR<n>MISC1 for the error record <n> selected by ERRSELR.SEL.

Configuration
AArch32 System register ERXMISC3 bits [31:0] are architecturally mapped to AArch64 System register
ERXMISC1_EL1[63:32] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERXMISC3 are UNDEFINED.

Attributes
ERXMISC3 is a 32-bit register.

Field descriptions
The ERXMISC3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bits [63:32] of ERR<n>MISC1

Bits [31:0]

ERXMISC3 accesses bits [63:32] of ERR<n>MISC1, where <n> is the value in ERRSELR.SEL.

Accessing the ERXMISC3
If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the
following occurs:

• An UNKNOWN error record is selected.
• ERXMISC3 is RAZ/WI.
• Direct reads and writes of ERXMISC3 are NOPs.
• Direct reads and writes of ERXMISC3 are UNDEFINED.

ERR<n>MISC1 describes additional constraints that also apply when ERR<n>MISC1 is accessed through ERXMISC3.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0101 0b101

ERXMISC3, Selected Error Record Miscellaneous Register 3

Page 2401

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXMISC3;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
return ERXMISC3;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXMISC3;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0101 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXMISC3 = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
ERXMISC3 = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXMISC3 = R[t];

ERXMISC3, Selected Error Record Miscellaneous Register 3

Page 2402

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXMISC3, Selected Error Record Miscellaneous Register 3

Page 2403

ERXMISC4, Selected Error Record Miscellaneous
Register 4

The ERXMISC4 characteristics are:

Purpose
Accesses bits [31:0] of ERR<n>MISC2 for the error record <n> selected by ERRSELR.SEL.

Configuration
AArch32 System register ERXMISC4 bits [31:0] are architecturally mapped to AArch64 System register
ERXMISC2_EL1[31:0] .

This register is present only when ARMv8.4-RAS is implemented. Otherwise, direct accesses to ERXMISC4 are
UNDEFINED.

Attributes
ERXMISC4 is a 32-bit register.

Field descriptions
The ERXMISC4 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bits [31:0] of ERR<n>MISC2

Bits [31:0]

ERXMISC4 accesses bits [31:0] of ERR<n>MISC2, where <n> is the value in ERRSELR.SEL.

Accessing the ERXMISC4
If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the
following occurs:

• An UNKNOWN error record is selected.
• ERXMISC4 is RAZ/WI.
• Direct reads and writes of ERXMISC4 are NOPs.
• Direct reads and writes of ERXMISC4 are UNDEFINED.

ERR<n>MISC2 describes additional constraints that also apply when ERR<n>MISC2 is accessed through ERXMISC4.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0101 0b010

ERXMISC4, Selected Error Record Miscellaneous Register 4

Page 2404

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXMISC4;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
return ERXMISC4;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXMISC4;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0101 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXMISC4 = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
ERXMISC4 = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXMISC4 = R[t];

ERXMISC4, Selected Error Record Miscellaneous Register 4

Page 2405

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXMISC4, Selected Error Record Miscellaneous Register 4

Page 2406

ERXMISC5, Selected Error Record Miscellaneous
Register 5

The ERXMISC5 characteristics are:

Purpose
Accesses bits [63:32] of ERR<n>MISC2 for the error record <n> selected by ERRSELR.SEL.

Configuration
AArch32 System register ERXMISC5 bits [31:0] are architecturally mapped to AArch64 System register
ERXMISC2_EL1[63:32] .

This register is present only when ARMv8.4-RAS is implemented. Otherwise, direct accesses to ERXMISC5 are
UNDEFINED.

Attributes
ERXMISC5 is a 32-bit register.

Field descriptions
The ERXMISC5 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bits [63:32] of ERR<n>MISC2

Bits [31:0]

ERXMISC5 accesses bits [63:32] of ERR<n>MISC2, where <n> is the value in ERRSELR.SEL.

Accessing the ERXMISC5
If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the
following occurs:

• An UNKNOWN error record is selected.
• ERXMISC5 is RAZ/WI.
• Direct reads and writes of ERXMISC5 are NOPs.
• Direct reads and writes of ERXMISC5 are UNDEFINED.

ERR<n>MISC2 describes additional constraints that also apply when ERR<n>MISC2 is accessed through ERXMISC5.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0101 0b011

ERXMISC5, Selected Error Record Miscellaneous Register 5

Page 2407

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXMISC5;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
return ERXMISC5;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXMISC5;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0101 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXMISC5 = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
ERXMISC5 = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXMISC5 = R[t];

ERXMISC5, Selected Error Record Miscellaneous Register 5

Page 2408

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXMISC5, Selected Error Record Miscellaneous Register 5

Page 2409

ERXMISC6, Selected Error Record Miscellaneous
Register 6

The ERXMISC6 characteristics are:

Purpose
Accesses bits [31:0] of ERR<n>MISC3 for the error record <n> selected by ERRSELR.SEL.

Configuration
AArch32 System register ERXMISC6 bits [31:0] are architecturally mapped to AArch64 System register
ERXMISC3_EL1[31:0] .

This register is present only when ARMv8.4-RAS is implemented. Otherwise, direct accesses to ERXMISC6 are
UNDEFINED.

Attributes
ERXMISC6 is a 32-bit register.

Field descriptions
The ERXMISC6 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bits [31:0] of ERR<n>MISC3

Bits [31:0]

ERXMISC6 accesses bits [31:0] of ERR<n>MISC3, where <n> is the value in ERRSELR.SEL.

Accessing the ERXMISC6
If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the
following occurs:

• An UNKNOWN error record is selected.
• ERXMISC6 is RAZ/WI.
• Direct reads and writes of ERXMISC6 are NOPs.
• Direct reads and writes of ERXMISC6 are UNDEFINED.

ERR<n>MISC3 describes additional constraints that also apply when ERR<n>MISC3 is accessed through ERXMISC6.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0101 0b110

ERXMISC6, Selected Error Record Miscellaneous Register 6

Page 2410

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXMISC6;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
return ERXMISC6;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXMISC6;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0101 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXMISC6 = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
ERXMISC6 = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXMISC6 = R[t];

ERXMISC6, Selected Error Record Miscellaneous Register 6

Page 2411

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXMISC6, Selected Error Record Miscellaneous Register 6

Page 2412

ERXMISC7, Selected Error Record Miscellaneous
Register 7

The ERXMISC7 characteristics are:

Purpose
Accesses bits [63:32] of ERR<n>MISC3 for the error record <n> selected by ERRSELR.SEL.

Configuration
AArch32 System register ERXMISC7 bits [31:0] are architecturally mapped to AArch64 System register
ERXMISC3_EL1[63:32] .

This register is present only when ARMv8.4-RAS is implemented. Otherwise, direct accesses to ERXMISC7 are
UNDEFINED.

Attributes
ERXMISC7 is a 32-bit register.

Field descriptions
The ERXMISC7 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bits [63:32] of ERR<n>MISC3

Bits [31:0]

ERXMISC7 accesses bits [63:32] of ERR<n>MISC3, where <n> is the value in ERRSELR.SEL.

Accessing the ERXMISC7
If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the
following occurs:

• An UNKNOWN error record is selected.
• ERXMISC7 is RAZ/WI.
• Direct reads and writes of ERXMISC7 are NOPs.
• Direct reads and writes of ERXMISC7 are UNDEFINED.

ERR<n>MISC3 describes additional constraints that also apply when ERR<n>MISC3 is accessed through ERXMISC7.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0101 0b111

ERXMISC7, Selected Error Record Miscellaneous Register 7

Page 2413

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXMISC7;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
return ERXMISC7;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXMISC7;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0101 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXMISC7 = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
ERXMISC7 = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXMISC7 = R[t];

ERXMISC7, Selected Error Record Miscellaneous Register 7

Page 2414

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXMISC7, Selected Error Record Miscellaneous Register 7

Page 2415

ERXSTATUS, Selected Error Record Primary Status
Register

The ERXSTATUS characteristics are:

Purpose
Accesses bits [31:0] of ERR<n>STATUS for the error record selected by ERRSELR.SEL.

Configuration
AArch32 System register ERXSTATUS bits [31:0] are architecturally mapped to AArch64 System register
ERXSTATUS_EL1[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERXSTATUS are UNDEFINED.

Attributes
ERXSTATUS is a 32-bit register.

Field descriptions
The ERXSTATUS bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bits [31:0] of ERR<n>STATUS

Bits [31:0]

ERXSTATUS accesses bits [31:0] of ERR<n>STATUS, where n is the value in ERRSELR.SEL.

Accessing the ERXSTATUS
If ERRIDR.NUM == 0 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the
following occurs:

• An UNKNOWN record is selected.

• ERXSTATUS is RAZ/WI.

• Direct reads and writes of ERXSTATUS are NOPs.

• Direct reads and writes of ERXSTATUS are UNDEFINED.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0100 0b010

ERXSTATUS, Selected Error Record Primary Status Register

Page 2416

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXSTATUS;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
return ERXSTATUS;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

return ERXSTATUS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0100 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXSTATUS = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();

else
ERXSTATUS = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then

AArch32.TakeMonitorTrapException();
else

ERXSTATUS = R[t];

ERXSTATUS, Selected Error Record Primary Status Register

Page 2417

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERXSTATUS, Selected Error Record Primary Status Register

Page 2418

FCSEIDR, FCSE Process ID register
The FCSEIDR characteristics are:

Purpose
Identifies whether the Fast Context Switch Extension (FCSE) is implemented.

From Armv8, the FCSE is not implemented, so this register is RAZ/WI. Software can access this register to determine
that the implementation does not include the FCSE.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
FCSEIDR are UNKNOWN.

Attributes
FCSEIDR is a 32-bit register.

Field descriptions
The FCSEIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAZ/WI

Bits [31:0]

Reserved, RAZ/WI.

Accessing the FCSEIDR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return FCSEIDR;
elsif PSTATE.EL == EL2 then

return FCSEIDR;
elsif PSTATE.EL == EL3 then

return FCSEIDR;

FCSEIDR, FCSE Process ID register

Page 2419

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then

AArch32.TakeHypTrapException(0x03);
else

FCSEIDR = R[t];
elsif PSTATE.EL == EL2 then

FCSEIDR = R[t];
elsif PSTATE.EL == EL3 then

FCSEIDR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCSEIDR, FCSE Process ID register

Page 2420

FPEXC, Floating-Point Exception Control register
The FPEXC characteristics are:

Purpose
Provides a global enable for the implemented Advanced SIMD and floating-point functionality, and reports floating-
point status information.

Configuration
AArch32 System register FPEXC bits [31:0] are architecturally mapped to AArch64 System register
FPEXC32_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to FPEXC
are UNKNOWN.

Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

Attributes
FPEXC is a 32-bit register.

Field descriptions
The FPEXC bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EX ENDEXFP2VVVTFV RES0 VECITR IDF RES0 IXFUFFOFFDZFIOF

EX, bit [31]

Exception bit. From Armv8, this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

EN, bit [30]

Enables access to the Advanced SIMD and floating-point functionality from all Exception levels, except that setting
this field to 0 does not disable the following:

• VMSR accesses to the FPEXC or FPSID.
• VMRS accesses from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2.

EN Meaning
0b0 Accesses to the FPSCR, and any of the SIMD and floating-point

registers Q0-Q15, including their views as D0-D31 registers or
S0-S31 registers, are UNDEFINED at all Exception levels.

0b1 This control permits access to the Advanced SIMD and floating-
point functionality at all Exception levels.

Execution of floating-point and Advanced SIMD instructions in AArch32 state can be disabled or trapped by the
following controls:

• CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.
• FPEXC.EN.
• If executing in Non-secure state:

◦ HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.
◦ NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.

• For Advanced SIMD instructions only:

FPEXC, Floating-Point Exception Control register

Page 2421

◦ CPACR.ASEDIS.
◦ If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

See the descriptions of the controls for more information.

Note

When executing at EL0 using AArch32:

• If EL1 is using AArch64 then behavior is as if the value of FPEXC.EN is
1.

• If EL2 is using AArch64 and enabled in the current Security state, and
the value of HCR_EL2.{RW, TGE} is {1, 1}, then the behavior is as if the
value of FPEXC.EN is 1.

• If EL2 is using AArch64 and enabled in the current Security state, and
the value of HCR_EL2.{RW, TGE} is {0, 1}, then it is IMPLEMENTATION
DEFINED whether the behavior is:

◦ As if the value of FPEXC.EN is 1.
◦ Determined by the value of FPEXC.EN, as described in this field

description. However, Arm deprecates using the value of
FPEXC.EN to determine behavior.

This field resets to 0.

DEX, bit [29]

Defined synchronous exception on floating-point execution.

This field identifies whether a synchronous exception generated by the attempted execution of an instruction was
generated by an unallocated encoding. The instruction must be in the encoding space that is identified by the
pseudocode function ExecutingCP10or11Instr() returning TRUE. This field also indicates whether the FPEXC.TFV field
is valid.

The meaning of this bit is:

DEX Meaning
0b0 The exception was generated by the attempted execution of an

unallocated instruction in the encoding space that is identified by
the pseudocode function ExecutingCP10or11Instr(). If
FPEXC.TFV is RW then it is invalid and UNKNOWN. If FPEXC.{IDF,
IXF, UFF, OFF, DZF, IOF} are RW then they are invalid and
UNKNOWN.

0b1 The exception was generated during the execution of an
unallocated encoding. FPEXC.TFV is valid and indicates the cause
of the exception.

On an exception that sets this bit to 1 the exception-handling routine must clear this bit to 0.

On an implementation that both does not support trapping of floating-point exceptions and implements the
FPSCR.{Stride, Len} fields as RAZ, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

FP2V, bit [28]

FPINST2 instruction valid bit. From Armv8, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

VV, bit [27]

VECITR valid bit. From Armv8, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

FPEXC, Floating-Point Exception Control register

Page 2422

TFV, bit [26]

Trapped Fault Valid bit. Valid only when the value of FPEXC.DEX is 1. When valid, it indicates the cause of the
exception and therefore whether the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} bits are valid.

TFV Meaning
0b0 The exception was caused by the execution of a floating-point

VABS, VADD, VDIV, VFMA, VFMS, VFNMA, VFNMS, VMLA,
VMLS, VMOV, VMUL, VNEG, VNMLA, VNMLS, VNMUL, VSQRT,
or VSUB instruction when one or both of FPSCR.{Stride, Len}
was non-zero. If the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} bits
are RW then they are invalid and UNKNOWN.

0b1 FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} indicate the presence of
trapped floating-point exceptions that had occurred at the time of
the exception. Bits are set for all trapped exceptions that had
occurred at the time of the exception.

This bit returns a status value and ignores writes.

When the value of FPEXC.DEX is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On an implementation that supports the trapping of floating-point exceptions and implements FPSCR.{Stride, Len} as
RAZ, this bit is RAO/WI.

This field resets to an architecturally UNKNOWN value.

Bits [25:11]

Reserved, RES0.

VECITR, bits [10:8]

Vector iteration count. From Armv8, this field is RES1.

This field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether
an Input Denormal exception occurred while FPSCR.IDE was 1:

IDF Meaning
0b0 Input Denormal exception has not occurred.
0b1 Input Denormal exception has occurred.

Input Denormal exceptions can occur only when FPSCR.FZ is 1.

Note

A half-precision floating-point value that is flushed to zero because the value
of FPSCR.FZ16 is 1 does not generate an Input Denormal exception.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

FPEXC, Floating-Point Exception Control register

Page 2423

IXF, bit [4]

Inexact trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an
Inexact exception occurred while FPSCR.IXE was 1:

IXF Meaning
0b0 Inexact exception has not occurred.
0b1 Inexact exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an
Underflow exception occurred while FPSCR.UFE was 1:

UFF Meaning
0b0 Underflow exception has not occurred.
0b1 Underflow exception has occurred.

Underflow trapped exceptions can occur:

• On half-precision data-processing instructions only when FPSCR.FZ16 is 0.
• Otherwise only when FPSCR.FZ is 0.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an
Overflow exception occurred while FPSCR.OFE was 1:

OFF Meaning
0b0 Overflow exception has not occurred.
0b1 Overflow exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether a
Divide by Zero exception occurred while FPSCR.DZE was 1:

DZF Meaning
0b0 Divide by Zero exception has not occurred.
0b1 Divide by Zero exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

FPEXC, Floating-Point Exception Control register

Page 2424

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether
an Invalid Operation exception occurred while FPSCR.IOE was 1:

IOF Meaning
0b0 Invalid Operation exception has not occurred.
0b1 Invalid Operation exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

Accessing the FPEXC
Accesses to this register use the following encodings:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

reg
0b1000

FPEXC, Floating-Point Exception Control register

Page 2425

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||

CPACR.cp10 == '00') then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x08);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x08);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x08);
else

return FPEXC;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x00);
else

return FPEXC;
elsif PSTATE.EL == EL3 then

if CPACR.cp10 == '00' then
UNDEFINED;

else
return FPEXC;

VMSR{<c>}{<q>} <spec_reg>, <Rt>

reg
0b1000

FPEXC, Floating-Point Exception Control register

Page 2426

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||

CPACR.cp10 == '00') then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x08);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x08);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x08);
else

FPEXC = R[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x00);
else

FPEXC = R[t];
elsif PSTATE.EL == EL3 then

if CPACR.cp10 == '00' then
UNDEFINED;

else
FPEXC = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FPEXC, Floating-Point Exception Control register

Page 2427

FPSCR, Floating-Point Status and Control Register
The FPSCR characteristics are:

Purpose
Provides floating-point system status information and control.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to FPSCR
are UNKNOWN.

The named fields in this register map to the equivalent fields in the AArch64 FPCR and FPSR.

It is IMPLEMENTATION DEFINED whether the Len and Stride fields can be programmed to non-zero values, which will
cause some AArch32 floating-point instruction encodings to be UNDEFINED, or whether these fields are RAZ.

Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

Attributes
FPSCR is a 32-bit register.

Field descriptions
The FPSCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V QCAHPDNFZRModeStrideFZ16 Len IDERES0IXEUFEOFEDZEIOEIDCRES0IXCUFCOFCDZCIOC

N, bit [31]

Negative condition flag. This is updated by floating-point comparison operations.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero condition flag. This is updated by floating-point comparison operations.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry condition flag. This is updated by floating-point comparison operations.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow condition flag. This is updated by floating-point comparison operations.

This field resets to an architecturally UNKNOWN value.

FPSCR, Floating-Point Status and Control Register

Page 2428

QC, bit [27]

Cumulative saturation bit, Advanced SIMD only. This bit is set to 1 to indicate that an Advanced SIMD integer
operation has saturated since 0 was last written to this bit.

This field resets to an architecturally UNKNOWN value.

AHP, bit [26]

Alternative half-precision control bit:

AHP Meaning
0b0 IEEE half-precision format selected.
0b1 Alternative half-precision format selected.

This bit is only used for conversions between half-precision floating-point and other floating-point formats.

The data-processing instructions added as part of the ARMv8.2-FP16 extension always use the IEEE half-precision
format, and ignore the value of this bit.

This field resets to an architecturally UNKNOWN value.

DN, bit [25]

Default NaN mode control bit:

DN Meaning
0b0 NaN operands propagate through to the output of a floating-point

operation.
0b1 Any operation involving one or more NaNs returns the Default

NaN.

The value of this bit only controls scalar floating-point arithmetic. Advanced SIMD arithmetic always uses the Default
NaN setting, regardless of the value of the DN bit.

This field resets to an architecturally UNKNOWN value.

FZ, bit [24]

Flush-to-zero mode control bit:

FZ Meaning
0b0 Flush-to-zero mode disabled. Behavior of the floating-point system

is fully compliant with the IEEE 754 standard.
0b1 Flush-to-zero mode enabled.

The value of this bit only controls scalar floating-point arithmetic. Advanced SIMD arithmetic always uses the Flush-to-
zero setting, regardless of the value of the FZ bit.

This bit has no effect on half-precision calculations.

This field resets to an architecturally UNKNOWN value.

RMode, bits [23:22]

Rounding Mode control field. The encoding of this field is:

RMode Meaning
0b00 Round to Nearest (RN) mode.
0b01 Round towards Plus Infinity (RP) mode.
0b10 Round towards Minus Infinity (RM) mode.
0b11 Round towards Zero (RZ) mode.

The specified rounding mode is used by almost all scalar floating-point instructions. Advanced SIMD arithmetic always
uses the Round to Nearest setting, regardless of the value of the RMode bits.

FPSCR, Floating-Point Status and Control Register

Page 2429

This field resets to an architecturally UNKNOWN value.

Stride, bits [21:20]

It is IMPLEMENTATION DEFINED whether this field is RW or RAZ.

If this field is RW and is set to a value other than zero, some floating-point instruction encodings are UNDEFINED. The
instruction pseudocode identifies these instructions.

Arm strongly recommends that software never sets this field to a value other than zero.

The value of this field is ignored when processing Advanced SIMD instructions.

This field resets to an architecturally UNKNOWN value.

FZ16, bit [19]

When ARMv8.2-FP16 is implemented:

Flush-to-zero mode control bit on half-precision data-processing instructions:

FZ16 Meaning
0b0 Flush-to-zero mode disabled. Behavior of the floating-point

system is fully compliant with the IEEE 754 standard.
0b1 Flush-to-zero mode enabled.

The value of this bit applies to both scalar and Advanced SIMD floating-point half-precision calculations.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Len, bits [18:16]

It is IMPLEMENTATION DEFINED whether this field is RW or RAZ.

If this field is RW and is set to a value other than zero, some floating-point instruction encodings are UNDEFINED. The
instruction pseudocode identifies these instructions.

Arm strongly recommends that software never sets this field to a value other than zero.

The value of this field is ignored when processing Advanced SIMD instructions.

This field resets to an architecturally UNKNOWN value.

IDE, bit [15]

Input Denormal floating-point exception trap enable. Possible values are:

IDE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs then the IDC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the IDC bit. The trap
handling software can decide whether to set the IDC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that
does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped
floating-point exception handling in AArch32 state.

This field resets to an architecturally UNKNOWN value.

FPSCR, Floating-Point Status and Control Register

Page 2430

Bits [14:13]

Reserved, RES0.

IXE, bit [12]

Inexact floating-point exception trap enable. Possible values are:

IXE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs then the IXC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the IXC bit. The trap
handling software can decide whether to set the IXC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that
does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped
floating-point exception handling in AArch32 state.

This field resets to an architecturally UNKNOWN value.

UFE, bit [11]

Underflow floating-point exception trap enable. Possible values are:

UFE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs then the UFC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the UFC bit. The trap
handling software can decide whether to set the UFC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that
does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped
floating-point exception handling in AArch32 state.

This field resets to an architecturally UNKNOWN value.

OFE, bit [10]

Overflow floating-point exception trap enable. Possible values are:

OFE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs then the OFC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the OFC bit. The trap
handling software can decide whether to set the OFC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that
does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped
floating-point exception handling in AArch32 state.

This field resets to an architecturally UNKNOWN value.

DZE, bit [9]

Divide by Zero floating-point exception trap enable. Possible values are:

FPSCR, Floating-Point Status and Control Register

Page 2431

DZE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs then the DZC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the DZC bit. The trap
handling software can decide whether to set the DZC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that
does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped
floating-point exception handling in AArch32 state.

This field resets to an architecturally UNKNOWN value.

IOE, bit [8]

Invalid Operation floating-point exception trap enable. Possible values are:

IOE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs then the IOC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the IOC bit. The trap
handling software can decide whether to set the IOC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that
does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped
floating-point exception handling in AArch32 state.

This field resets to an architecturally UNKNOWN value.

IDC, bit [7]

Input Denormal cumulative floating-point exception bit. This bit is set to 1 to indicate that the Input Denormal floating-
point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the IDE bit.

Advanced SIMD instructions set this bit if the Input Denormal floating-point exception occurs in one or more of the
floating-point calculations performed by the instruction, regardless of the value of the IDE bit.

This field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXC, bit [4]

Inexact cumulative floating-point exception bit. This bit is set to 1 to indicate that the Inexact floating-point exception
has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the IXE bit.

Advanced SIMD instructions set this bit if the Inexact floating-point exception occurs in one or more of the floating-
point calculations performed by the instruction, regardless of the value of the IXE bit.

The criteria for the Inexact floating-point exception to occur are different in Flush-to-zero mode. For details, see
'Flush-to-zero'.

This field resets to an architecturally UNKNOWN value.

FPSCR, Floating-Point Status and Control Register

Page 2432

UFC, bit [3]

Underflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Underflow floating-point
exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the UFE bit.

Advanced SIMD instructions set this bit if the Underflow floating-point exception occurs in one or more of the floating-
point calculations performed by the instruction, regardless of the value of the UFE bit.

The criteria for the Underflow floating-point exception to occur are different in Flush-to-zero mode. For details, see
'Flush-to-zero'.

This field resets to an architecturally UNKNOWN value.

OFC, bit [2]

Overflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Overflow floating-point
exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the OFE bit.

Advanced SIMD instructions set this bit if the Overflow floating-point exception occurs in one or more of the floating-
point calculations performed by the instruction, regardless of the value of the OFE bit.

This field resets to an architecturally UNKNOWN value.

DZC, bit [1]

Divide by Zero cumulative floating-point exception bit. This bit is set to 1 to indicate that the Divide by Zero floating-
point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the DZE bit.

Advanced SIMD instructions set this bit if the Divide by Zero floating-point exception occurs in one or more of the
floating-point calculations performed by the instruction, regardless of the value of the DZE bit.

This field resets to an architecturally UNKNOWN value.

IOC, bit [0]

Invalid Operation cumulative floating-point exception bit. This bit is set to 1 to indicate that the Invalid Operation
floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the IOE bit.

Advanced SIMD instructions set this bit if the Invalid Operation floating-point exception occurs in one or more of the
floating-point calculations performed by the instruction, regardless of the value of the IOE bit.

This field resets to an architecturally UNKNOWN value.

Accessing the FPSCR
Accesses to this register use the following encodings:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

reg
0b0001

FPSCR, Floating-Point Status and Control Register

Page 2433

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.FPEN == 'x0' then

AArch64.AArch32SystemAccessTrap(EL1, 0x07);
elsif ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||

CPACR.cp10 == '00') then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x08);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x08);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x08);
else

return FPSCR;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x00);
else

return FPSCR;
elsif PSTATE.EL == EL3 then

if CPACR.cp10 == '00' then
UNDEFINED;

else
return FPSCR;

VMSR{<c>}{<q>} <spec_reg>, <Rt>

reg
0b0001

FPSCR, Floating-Point Status and Control Register

Page 2434

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.FPEN == 'x0' then

AArch64.AArch32SystemAccessTrap(EL1, 0x07);
elsif ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||

CPACR.cp10 == '00') then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x08);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x08);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x08);
else

FPSCR = R[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x00);
else

FPSCR = R[t];
elsif PSTATE.EL == EL3 then

if CPACR.cp10 == '00' then
UNDEFINED;

else
FPSCR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FPSCR, Floating-Point Status and Control Register

Page 2435

FPSID, Floating-Point System ID register
The FPSID characteristics are:

Purpose
Provides top-level information about the floating-point implementation.

This register largely duplicates information held in the MIDR. Arm deprecates use of it.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to FPSID
are UNKNOWN.

Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

Attributes
FPSID is a 32-bit register.

Field descriptions
The FPSID bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Implementer SW Subarchitecture PartNum Variant Revision

Implementer, bits [31:24]

Implementer codes are the same as those used for the MIDR.

For an implementation by Arm this field is 0x41, the ASCII code for A.

This field resets to an architecturally UNKNOWN value.

SW, bit [23]

Software bit. Defined values are:

SW Meaning
0b0 The implementation provides a hardware implementation of the

floating-point instructions.
0b1 The implementation supports only software emulation of the

floating-point instructions.

In Armv8-A the only permitted value is 0b0.

This field resets to an architecturally UNKNOWN value.

Subarchitecture, bits [22:16]

Subarchitecture version number. For an implementation by Arm, defined values are:

FPSID, Floating-Point System ID register

Page 2436

Subarchitecture Meaning
0b0000000 VFPv1 architecture with an IMPLEMENTATION DEFINED

subarchitecture.
0b0000001 VFPv2 architecture with Common VFP

subarchitecture v1.
0b0000010 VFPv3 architecture, or later, with Common VFP

subarchitecture v2. The VFP architecture version is
indicated by the MVFR0 and MVFR1 registers.

0b0000011 VFPv3 architecture, or later, with Null
subarchitecture. The entire floating-point
implementation is in hardware, and no software
support code is required. The VFP architecture
version is indicated by the MVFR0 and MVFR1
registers. This value can be used only by an
implementation that does not support the trap
enable bits in the FPSCR.

0b0000100 VFPv3 architecture, or later, with Common VFP
subarchitecture v3, and support for trap enable bits
in FPSCR. The VFP architecture version is indicated
by the MVFR0 and MVFR1 registers.

For a subarchitecture designed by Arm the most significant bit of this field, register bit[22], is 0. Values with a most
significant bit of 0 that are not listed here are reserved.

When the subarchitecture designer is not Arm, the most significant bit of this field, register bit[22], must be 1. Each
implementer must maintain its own list of subarchitectures it has designed, starting at subarchitecture version
number 0x40.

In Armv8-A the permitted values are 0b0000011 and 0b0000100.

This field resets to an architecturally UNKNOWN value.

PartNum, bits [15:8]

An IMPLEMENTATION DEFINED part number for the floating-point implementation, assigned by the implementer.

This field resets to an architecturally UNKNOWN value.

Variant, bits [7:4]

An IMPLEMENTATION DEFINED variant number. Typically, this field distinguishes between different production variants of
a single product.

This field resets to an architecturally UNKNOWN value.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the floating-point implementation.

This field resets to an architecturally UNKNOWN value.

Accessing the FPSID
Accesses to this register use the following encodings:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

reg
0b0000

FPSID, Floating-Point System ID register

Page 2437

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||

CPACR.cp10 == '00') then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x08);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x08);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x08);
else

return FPSID;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x00);
else

return FPSID;
elsif PSTATE.EL == EL3 then

if CPACR.cp10 == '00' then
UNDEFINED;

else
return FPSID;

VMSR{<c>}{<q>} <spec_reg>, <Rt>

reg
0b0000

FPSID, Floating-Point System ID register

Page 2438

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||

CPACR.cp10 == '00') then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x08);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x08);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x08);
else

//no operation
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x00);
else

//no operation
elsif PSTATE.EL == EL3 then

if CPACR.cp10 == '00' then
UNDEFINED;

else
//no operation

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FPSID, Floating-Point System ID register

Page 2439

HACR, Hyp Auxiliary Configuration Register
The HACR characteristics are:

Purpose
Controls trapping to Hyp mode of IMPLEMENTATION DEFINED aspects of Non-secure EL1 or EL0 operation.

Configuration
AArch32 System register HACR bits [31:0] are architecturally mapped to AArch64 System register HACR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HACR
are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HACR is a 32-bit register.

Field descriptions
The HACR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the HACR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b111

HACR, Hyp Auxiliary Configuration Register

Page 2440

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HACR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HACR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HACR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HACR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HACR, Hyp Auxiliary Configuration Register

Page 2441

HACTLR, Hyp Auxiliary Control Register
The HACTLR characteristics are:

Purpose
Controls IMPLEMENTATION DEFINED features of Hyp mode operation.

Configuration
AArch32 System register HACTLR bits [31:0] are architecturally mapped to AArch64 System register
ACTLR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HACTLR
are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HACTLR is a 32-bit register.

Field descriptions
The HACTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the HACTLR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0000 0b001

HACTLR, Hyp Auxiliary Control Register

Page 2442

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HACTLR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HACTLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HACTLR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HACTLR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HACTLR, Hyp Auxiliary Control Register

Page 2443

HACTLR2, Hyp Auxiliary Control Register 2
The HACTLR2 characteristics are:

Purpose
Provides additional space to the HACTLR register to hold IMPLEMENTATION DEFINED trap functionality.

Configuration
AArch32 System register HACTLR2 bits [31:0] are architecturally mapped to AArch64 System register
ACTLR_EL2[63:32] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
HACTLR2 are UNKNOWN.

In Armv8.0 and Armv8.1, it is IMPLEMENTATION DEFINED whether this register is implemented, or whether it causes
UNDEFINED exceptions when accessed. The implementation of this register can be detected by examining
ID_MMFR4.AC2.

From Armv8.2 this register must be implemented.

Attributes
HACTLR2 is a 32-bit register.

Field descriptions
The HACTLR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the HACTLR2
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0000 0b011

HACTLR2, Hyp Auxiliary Control Register 2

Page 2444

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HACTLR2;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HACTLR2;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0000 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HACTLR2 = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HACTLR2 = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HACTLR2, Hyp Auxiliary Control Register 2

Page 2445

HADFSR, Hyp Auxiliary Data Fault Status Register
The HADFSR characteristics are:

Purpose
Provides additional IMPLEMENTATION DEFINED syndrome information for Data Abort exceptions taken to Hyp mode.

Configuration
AArch32 System register HADFSR bits [31:0] are architecturally mapped to AArch64 System register
AFSR0_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HADFSR
are UNKNOWN.

This is an optional register. An implementation that does not require this register can implement it as RES0.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HADFSR is a 32-bit register.

Field descriptions
The HADFSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the HADFSR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0101 0b0001 0b000

HADFSR, Hyp Auxiliary Data Fault Status Register

Page 2446

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HADFSR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HADFSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0101 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HADFSR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HADFSR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HADFSR, Hyp Auxiliary Data Fault Status Register

Page 2447

HAIFSR, Hyp Auxiliary Instruction Fault Status
Register

The HAIFSR characteristics are:

Purpose
Provides additional IMPLEMENTATION DEFINED syndrome information for Prefetch Abort exceptions taken to Hyp mode.

Configuration
AArch32 System register HAIFSR bits [31:0] are architecturally mapped to AArch64 System register AFSR1_EL2[31:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HAIFSR
are UNKNOWN.

This is an optional register. An implementation that does not require this register can implement it as RES0.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HAIFSR is a 32-bit register.

Field descriptions
The HAIFSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the HAIFSR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0101 0b0001 0b001

HAIFSR, Hyp Auxiliary Instruction Fault Status Register

Page 2448

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HAIFSR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HAIFSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0101 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HAIFSR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HAIFSR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HAIFSR, Hyp Auxiliary Instruction Fault Status Register

Page 2449

HAMAIR0, Hyp Auxiliary Memory Attribute Indirection
Register 0

The HAMAIR0 characteristics are:

Purpose
Provides IMPLEMENTATION DEFINED memory attributes for the memory attribute encodings defined by HMAIR0. These
IMPLEMENTATION DEFINED attributes can only provide additional qualifiers for the memory attribute encodings, and
cannot change the memory attributes defined in HMAIR0.

Configuration
AArch32 System register HAMAIR0 bits [31:0] are architecturally mapped to AArch64 System register
AMAIR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
HAMAIR0 are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HAMAIR0 is a 32-bit register.

Field descriptions
The HAMAIR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

If an implementation does not provide any IMPLEMENTATION DEFINED memory attributes, this register is RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the HAMAIR0
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1010 0b0011 0b000

HAMAIR0, Hyp Auxiliary Memory Attribute Indirection Register 0

Page 2450

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HAMAIR0;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HAMAIR0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1010 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HAMAIR0 = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HAMAIR0 = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HAMAIR0, Hyp Auxiliary Memory Attribute Indirection Register 0

Page 2451

HAMAIR1, Hyp Auxiliary Memory Attribute Indirection
Register 1

The HAMAIR1 characteristics are:

Purpose
Provides IMPLEMENTATION DEFINED memory attributes for the memory attribute encodings defined by HMAIR1. These
IMPLEMENTATION DEFINED attributes can only provide additional qualifiers for the memory attribute encodings, and
cannot change the memory attributes defined in HMAIR1.

Configuration
AArch32 System register HAMAIR1 bits [31:0] are architecturally mapped to AArch64 System register
AMAIR_EL2[63:32] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
HAMAIR1 are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HAMAIR1 is a 32-bit register.

Field descriptions
The HAMAIR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

If an implementation does not provide any IMPLEMENTATION DEFINED memory attributes, this register is RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the HAMAIR1
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1010 0b0011 0b001

HAMAIR1, Hyp Auxiliary Memory Attribute Indirection Register 1

Page 2452

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HAMAIR1;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HAMAIR1;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1010 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HAMAIR1 = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HAMAIR1 = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HAMAIR1, Hyp Auxiliary Memory Attribute Indirection Register 1

Page 2453

HCPTR, Hyp Architectural Feature Trap Register
The HCPTR characteristics are:

Purpose
Controls:

• Trapping to Hyp mode of Non-secure access, at EL1 or EL0, to trace, and to Advanced SIMD and floating-point
functionality.

• Hyp mode access to trace, and to Advanced SIMD and floating-point functionality.

Note

Accesses to this functionality:

• From Non-secure modes other than Hyp mode are also affected by
settings in the CPACR and NSACR.

• From Hyp mode are also affected by settings in the NSACR.

Exceptions generated by the CPACR and NSACR controls are higher priority
than those generated by the HCPTR controls.

Configuration
AArch32 System register HCPTR bits [31:0] are architecturally mapped to AArch64 System register CPTR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HCPTR
are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HCPTR is a 32-bit register.

Field descriptions
The HCPTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TCPACTAM RES0 TTA RES0 TASERES0RES1TCP11TCP10 RES1

TCPAC, bit [31]

Traps Non-secure EL1 accesses to the CPACR to Hyp mode.

TCPAC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 accesses to the CPACR are trapped to Hyp

mode.

Note

The CPACR is not accessible at EL0.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

HCPTR, Hyp Architectural Feature Trap Register

Page 2454

TAM, bit [30]

When AMUv1 is implemented:

Trap Activity Monitor access. Traps Non-secure EL1 and EL0 accesses to all Activity Monitor registers to EL2.

TAM Meaning
0b0 Accesses from Non-secure EL1 and EL0 to Activity Monitor

registers are not trapped.
0b1 Accesses from Non-secure EL1 and EL0 to Activity Monitor

registers are trapped to Hyp mode.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [29:21]

Reserved, RES0.

TTA, bit [20]

Traps Non-secure System register accesses to all implemented trace registers to Hyp mode.

TTA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any Non-secure System register access to an implemented trace

register is trapped to Hyp mode, unless the access is trapped to
EL1 by a CPACR or NSACR control, or the access is from Non-
secure EL0 and the definition of the register in the appropriate
trace architecture specification indicates that the register is not
accessible from EL0. A trapped instruction generates:

• A Hyp Trap exception, if the exception is taken from Non-
secure EL0 or EL1.

• An Undefined Instruction exception taken to Hyp mode, if
the exception is taken from Hyp mode.

If the implementation does not include a PE trace unit, or does not include a System register interface to the PE trace
unit registers, it is IMPLEMENTATION DEFINED whether this bit:

• Is RES0.
• Is RES1.
• Can be written from Hyp mode, and from Secure Monitor mode when SCR.NS is 1.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSTRCDIS is 1, in Non-secure state this field
behaves as RAO/WI, regardless of its actual value.

Note
• The ETMv4 architecture does not permit EL0 to access the trace

registers. If the implementation includes an ETMv4 implementation,
EL0 accesses to the trace registers are UNDEFINED, and a resulting
Undefined Instruction exception is higher priority than a HCPTR.TTA
Hyp Trap exception.

• The architecture does not provide traps on trace register accesses
through the optional memory-mapped debug interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any
side-effects that are normally associated with the access do not occur before the exception is taken.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

HCPTR, Hyp Architectural Feature Trap Register

Page 2455

Bits [19:16]

Reserved, RES0.

TASE, bit [15]

Traps Non-secure execution of Advanced SIMD instructions to Hyp mode when the value of HCPTR.TCP10 is 0.

TASE Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 When the value of HCPTR.TCP10 is 0, any attempt to execute an

Advanced SIMD instruction in Non-secure state is trapped to
Hyp mode, unless it is trapped to EL1 by a CPACR or NSACR
control. A trapped instruction generates:

• A Hyp Trap exception, if the exception is taken from Non-
secure EL0 or EL1.

• An Undefined Instruction exception taken to Hyp mode, if
the exception is taken from Hyp mode.

When the value of HCPTR.TCP10 is 1, the value of this field is ignored.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES1. Otherwise, it
is IMPLEMENTATION DEFINED whether this field is implemented as a RW field. If it is not implemented as a RW field, then
it is RAZ/WI.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSASEDIS is 1, in Non-secure state this field
behaves as RAO/WI, regardless of its actual value. This applies even if the field is implemented as RAZ/WI.

For the list of instructions affected by this field, see 'Controls of Advanced SIMD operation that do not apply to
floating-point operation' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section
E1.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

Bit [14]

Reserved, RES0.

Bits [13:12]

Reserved, RES1.

TCP11, bit [11]

The value of this field is ignored. If this field is programmed with a different value to the TCP10 bit then this field is
UNKNOWN on a direct read of the HCPTR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES1.

If EL3 is implemented and is using AArch32, and the value of NSACR.cp10 is 0, in Non-secure state this field behaves
as RAO/WI, regardless of its actual value.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TCP10, bit [10]

Trap Non-secure accesses to Advanced SIMD and floating-point functionality to Hyp mode:

HCPTR, Hyp Architectural Feature Trap Register

Page 2456

TCP10 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempted access to Advanced SIMD and floating-point

functionality from Non-secure state is trapped to Hyp mode,
unless it is trapped to EL1 by a CPACR or NSACR control. A
trapped instruction generates:

• A Hyp Trap exception, if the exception is taken from Non-
secure EL0 or EL1.

• An Undefined Instruction exception taken to Hyp mode, if
the exception is taken from Hyp mode.

The Advanced SIMD and floating-point features controlled by these fields are:

• Execution of any floating-point or Advanced SIMD instruction.
• Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as S0-S31 and Q0-Q15.
• Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES1.

If EL3 is implemented and is using AArch32, and the value of NSACR.cp10 is 0, in Non-secure state this field behaves
as RAO/WI, regardless of its actual value.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

Bits [9:0]

Reserved, RES1.

Accessing the HCPTR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return HCPTR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

return HCPTR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b010

HCPTR, Hyp Architectural Feature Trap Register

Page 2457

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
HCPTR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

HCPTR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HCPTR, Hyp Architectural Feature Trap Register

Page 2458

HCR, Hyp Configuration Register
The HCR characteristics are:

Purpose
Provides configuration controls for virtualization, including defining whether various Non-secure operations are
trapped to Hyp mode.

Configuration
AArch32 System register HCR bits [31:0] are architecturally mapped to AArch64 System register HCR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HCR are
UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HCR is a 32-bit register.

Field descriptions
The HCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
RES0TRVMHCDRES0TGETVMTTLBTPUTPCTSWTACTIDCPTSCTID3TID2TID1TID0TWETWIDCBSUFBVAVIVFAMOIMOFMOPTWSWIOVM

Bit [31]

Reserved, RES0.

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps Non-secure EL1 reads of the virtual memory control registers to EL2,
when EL2 is enabled in the current Security state.

The registers for which read accesses are trapped are as follows:

SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR, NMRR, MAIR0,
MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

TRVM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 read accesses to the specified Virtual Memory

controls are trapped to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

HCD, bit [29]

When EL3 is not implemented:

HVC instruction disable. Disables Non-secure EL1 and EL2 execution of HVC instructions, when EL2 is enabled in the
current Security state.

HCR, Hyp Configuration Register

Page 2459

HCD Meaning
0b0 HVC instruction execution is enabled at EL2 and EL1.
0b1 HVC instructions are UNDEFINED at EL2 and Non-secure EL1.

The Undefined Instruction exception is taken to the Exception
level at which the HVC instruction is executed.

Note

HVC instructions are always UNDEFINED at EL0.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [28]

Reserved, RES0.

TGE, bit [27]

Trap General Exceptions, from Non-secure EL0.

TGE Meaning
0b0 This control has no effect on execution at EL0.
0b1 When EL2 is not enabled in the current Security state, this

control has no effect on execution at EL0.
When EL2 is enabled in the current Security state, then:

• All exceptions that would be routed to EL1 are routed to
EL2.

• The SCTLR.M bit is treated as being 0 for all purposes other
than returning the result of a direct read of SCTLR.

• The HCR.{FMO, IMO, AMO} bits are treated as being 1 for
all purposes other than returning the result of a direct read
of HCR.

• All virtual interrupts are disabled.
• Any IMPLEMENTATION DEFINED mechanisms for signaling

virtual interrupts are disabled.
• An exception return to EL1 is treated as an illegal exception

return.
• Monitor mode execution of an MSR or CPS instruction that

changes CPSR.M to a Non-secure EL1 mode is an illegal
change to PSTATE.M. For more information see 'Illegal
changes to PSTATE.M' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile, section G1
(The AArch32 System Level Programmers' Model).

Also, when HCR.TGE is 1:

• If EL3 is using AArch32, an attempt to change from a Secure PL1 mode to a Non-secure EL1 mode by
changing SCR.NS from 0 to 1 results in SCR.NS remaining as 0.

• The HDCR.{TDRA, TDOSA, TDA, TDE} bits are ignored and treated as being 1 other than for the purpose of a
direct read of HDCR.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TVM, bit [26]

Trap Virtual Memory controls. Traps Non-secure EL1 writes to the virtual memory control registers to EL2, when EL2
is enabled in the current Security state.

The registers for which write accesses are trapped are as follows:

HCR, Hyp Configuration Register

Page 2460

SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR, NMRR, MAIR0,
MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

TVM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 write accesses to the specified virtual memory

control registers are trapped to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TTLB, bit [25]

Trap TLB maintenance instructions. Traps Non-secure EL1 execution of a TLBI instruction to EL2, when EL2 is
enabled in the current Security state.

This applies to the following instructions:

TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS, ITLBIALL, ITLBIMVA, ITLBIASID,
DTLBIALL, DTLBIMVA, DTLBIASID, TLBIALL, TLBIMVA, TLBIASID, TLBIMVAA, TLBIMVAL, TLBIMVAAL

TTLB Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 accesses to the specified TLB maintenance

instructions are trapped to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps Non-secure EL1 execution of those
cache maintenance instructions to EL2, when EL2 is enabled in the current Security state.

This applies to the following instructions:

• ICIMVAU, ICIALLU, ICIALLUIS, DCCMVAU.

Note

An Undefined Instruction exception generated at EL0 is higher priority than
this trap to EL2, and these instructions are always UNDEFINED at EL0.

TPU Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 execution of the specified cache maintenance

instructions is trapped to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any
data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control
is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution
of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value of this control
is 1.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TPC, bit [23]

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps Non-secure EL1
execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state.

This applies to the following instructions:

• DCIMVAC, DCCIMVAC, DCCMVAC.

Note

HCR, Hyp Configuration Register

Page 2461

An Undefined Instruction exception generated at EL0 is higher priority than
this trap to EL2, and these instructions are always UNDEFINED at EL0.

TPC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 execution of the specified cache maintenance

instructions is trapped to EL2.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any
data or unified cache clean, invalidate, or clean and invalidate instruction that operates by VA to the point of
coherency can be trapped when the value of this control is 1.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps Non-secure EL1 execution of those
cache maintenance instructions by set/way to EL2, when EL2 is enabled in the current Security state.

This applies to the following instructions:

• DCISW, DCCSW, DCCISW.

Note

An Undefined Instruction exception generated at EL0 is higher priority than
this trap to EL2, and these instructions are always UNDEFINED at EL0.

TSW Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 execution of the specified cache maintenance

instructions is trapped to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TAC, bit [21]

Trap Auxiliary Control Registers. Traps Non-secure EL1 accesses to the Auxiliary Control Registers to EL2, when EL2
is enabled in the current Security state, from both Execution states.

This applies to the following register accesses:

ACTLR and, if implemented, ACTLR2.

TAC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 accesses to the specified registers are trapped to

EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps Non-secure EL1 accesses to the encodings for IMPLEMENTATION
DEFINED System Registers to EL2, when EL2 is enabled in the current Security state.

MCR and MRC instructions accessing the following encodings:

• All coproc==p15, CRn==c9, Opcode1 = {0-7}, CRm == {c0-c2, c5-c8}, opcode2 == {0-7}.
• All coproc==p15, CRn==c10, Opcode1 =={0-7}, CRm == {c0, c1, c4, c8}, opcode2 == {0-7}.
• All coproc==p15, CRn==c11, Opcode1=={0-7}, CRm == {c0-c8, c15}, opcode2 == {0-7}.

When HCR.TIDCP is set to 1, it is IMPLEMENTATION DEFINED whether any of this functionality accessed from Non-secure
EL0 is trapped to EL2. Otherwise, it is UNDEFINED and the PE takes an Undefined Instruction exception to Non-secure
Undefined mode.

HCR, Hyp Configuration Register

Page 2462

TIDCP Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 accesses to the specified System register

encodings for IMPLEMENTATION DEFINED functionality are
trapped to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TSC, bit [19]

Trap SMC instructions. Traps Non-secure EL1 execution of SMC instructions to Hyp mode.

TSC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute an SMC instruction at Non-secure EL1 is

trapped to Hyp mode, regardless of the value of SCR.SCD.

The Armv8-A architecture permits, but does not require, this trap to apply to conditional SMC instructions that fail
their condition code check, in the same way as with traps on other conditional instructions.

Note
• This trap is only implemented if the implementation includes EL3.
• SMC instructions are always UNDEFINED at PL0.
• This bit traps execution of the SMC instruction. It is not a routing

control for the SMC exception. Hyp Trap exceptions and SMC
exceptions have different preferred return addresses.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TID3, bit [18]

Trap ID group 3. Traps Non-secure EL1 reads of the following registers to EL2, when EL2 is enabled in the current
Security state, as follows:

• ID_PFR0, ID_PFR1, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1, ID_MMFR2, ID_MMFR3, ID_ISAR0,
ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, ID_ISAR5, MVFR0, MVFR1, MVFR2.

• ID_MMFR4 and ID_MMFR5 are trapped unless implemented as RAZ, when it is IMPLEMENTATION DEFINED
whether accesses to ID_MMFR4 or ID_MMFR5 are trapped.

• ID_ISAR6 is trapped unless implemented as RAZ, when it is IMPLEMENTATION DEFINED whether accesses to
ID_ISAR6 are trapped.

• ID_DFR1 is trapped unless implemented as RAZ, when it is IMPLEMENTATION DEFINED whether accesses to
ID_DFR1 are trapped.

• It is IMPLEMENTATION DEFINED whether this bit traps MRC accesses to registers not already mentioned, with
coproc==p15, opc1 == 0, CRn == c0, CRm == {c2-c7}, opc2 == {0-7}.

TID3 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified Non-secure EL1 read accesses to ID group 3

registers are trapped to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:

• Non-secure EL1 and EL0 reads of the CTR, CCSIDR, CCSIDR2, CLIDR, and CSSELR.
• Non-secure EL1 and EL0 writes to the CSSELR.

TID2 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified Non-secure EL1 and EL0 accesses to ID group 2

registers are trapped to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

HCR, Hyp Configuration Register

Page 2463

TID1, bit [16]

Trap ID group 1. Traps Non-secure EL1 reads of the following registers to EL2, when EL2 is enabled in the current
Security state:

TCMTR, TLBTR, REVIDR, AIDR.

TID1 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified Non-secure EL1 read accesses to ID group 1

registers are trapped to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TID0, bit [15]

Trap ID group 0. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:

• Non-secure EL1 reads of the JIDR and FPSID.
• If the JIDR is RAZ from Non-secure EL0, Non-secure EL0 reads of the JIDR.

Note
• It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED at

EL0. If it is UNDEFINED at EL0 then the Undefined Instruction exception
takes precedence over this trap.

• The FPSID is not accessible at EL0.
• Writes to the FPSID are ignored, and not trapped by this control.

TID0 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified Non-secure EL1 read accesses to ID group 0

registers are trapped to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TWE, bit [14]

Traps Non-secure EL0 and EL1 execution of WFE instructions to EL2, when EL2 is enabled in the current Security
state.

TWE Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFE instruction at Non-secure EL0 or

EL1 is trapped to EL2, if the instruction would otherwise have
caused the PE to enter a low-power state and it is not trapped by
SCTLR.nTWE.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code
check.

Note

Since a WFE can complete at any time, even without a Wakeup event, the
traps on WFE are not guaranteed to be taken, even if the WFE is executed
when there is no Wakeup event. The only guarantee is that if the instruction
does not complete in finite time in the absence of a Wakeup event, the trap
will be taken.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TWI, bit [13]

Traps Non-secure EL0 and EL1 execution of WFI instructions to EL2, when EL2 is enabled in the current Security
state.

HCR, Hyp Configuration Register

Page 2464

TWI Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFI instruction at Non-secure EL0 or

EL1 is trapped to EL2, if the instruction would otherwise have
caused the PE to enter a low-power state and it is not trapped by
SCTLR.nTWI.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code
check.

Note

Since a WFI can complete at any time, even without a Wakeup event, the traps
on WFI are not guaranteed to be taken, even if the WFI is executed when
there is no Wakeup event. The only guarantee is that if the instruction does
not complete in finite time in the absence of a Wakeup event, the trap will be
taken.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

DC, bit [12]

Default Cacheability.

DC Meaning
0b0 This control has no effect on the Non-secure EL1&0 translation

regime.
0b1 In Non-secure state:

• The SCTLR.M field behaves as 0 for all purposes other than a
direct read of the value of the field.

• The HCR.VM field behaves as 1 for all purposes other than a
direct read of the value of the field.

• The memory type produced by the first stage of the EL1&0
translation regime is Normal Non-Shareable, Inner Write-
Back Read-Allocate Write-Allocate, Outer Write-Back Read-
Allocate Write-Allocate.

This field has no effect on the EL2 and EL3 translation regimes.

This field is permitted to be cached in a TLB.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied to any barrier
instruction executed from Non-secure EL1 or Non-secure EL0:

BSU Meaning
0b00 No effect.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Full system.

This value is combined with the specified level of the barrier held in its instruction, using the same principles as
combining the shareability attributes from two stages of address translation.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable domain when executed
from Non-secure EL1:

BPIALL, TLBIALL, TLBIMVA, TLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, ITLBIALL, ITLBIMVA, ITLBIASID,
TLBIMVAA, ICIALLU, TLBIMVAL, TLBIMVAAL.

HCR, Hyp Configuration Register

Page 2465

FB Meaning
0b0 This field has no effect on the operation of the specified

instructions.
0b1 When one of the specified instruction is executed at Non-secure

EL1, the instruction is broadcast within the Inner Shareable
shareability domain.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

VA, bit [8]

Virtual SError interrupt exception.

VA Meaning
0b0 This mechanism is not making a virtual SError interrupt pending.
0b1 A virtual SError interrupt is pending because of this mechanism.

The virtual SError interrupt is enabled only when the value of HCR.{TGE, AMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

VI, bit [7]

Virtual IRQ exception.

VI Meaning
0b0 This mechanism is not making a virtual IRQ pending.
0b1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR.{TGE, IMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

VF, bit [6]

Virtual FIQ exception.

VF Meaning
0b0 This mechanism is not making a virtual FIQ pending.
0b1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR.{TGE, FMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

AMO, bit [5]

SError interrupt Mask Override. When this bit is set to 1, it overrides the effect of CPSR.A, and enables virtual
exception signaling by the VA bit.

If the value of HCR.TGE is 0, then virtual SError interrupts are enabled in Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.AMO bit behaves as 1 for all purposes other than a
direct read of the value of the bit.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

HCR, Hyp Configuration Register

Page 2466

IMO, bit [4]

IRQ Mask Override. When this bit is set to 1, it overrides the effect of CPSR.I, and enables virtual exception signaling
by the VI bit.

If the value of HCR.TGE is 0, then Virtual IRQ interrupts are enabled in the Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.IMO bit behaves as 1 for all purposes other than a
direct read of the value of the bit.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

FMO, bit [3]

FIQ Mask Override. When this bit is set to 1, it overrides the effect of CPSR.F, and enables virtual exception signaling
by the VF bit.

If the value of HCR.TGE is 0, then Virtual FIQ interrupts are enabled in the Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.FMO bit behaves as 1 for all purposes other than a
direct read of the value of the bit.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

PTW, bit [2]

Protected Table Walk. In the Non-secure PL1&0 translation regime, a translation table access made as part of a stage
1 translation table walk is subject to a stage 2 translation. The combining of the memory type attributes from the two
stages of translation means the access might be made to a type of Device memory. If this occurs then the value of this
bit determines the behavior:

PTW Meaning
0b0 The translation table walk occurs as if it is to Normal Non-

cacheable memory. This means it can be made speculatively.
0b1 The memory access generates a stage 2 Permission fault.

This field is permitted to be cached in a TLB.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

SWIO, bit [1]

Set/Way Invalidation Override. Causes Non-secure EL1 execution of the data cache invalidate by set/way instructions
to perform a data cache clean and invalidate by set/way.

SWIO Meaning
0b0 This control has no effect on the operation of data cache

invalidate by set/way instructions.
0b1 Data cache invalidate by set/way instructions perform a data

cache clean and invalidate by set/way.

When this bit is set to 1, DCISW performs the same invalidation as a DCCISW instruction.

As a result of changes to the behavior of DCISW, this bit is redundant in Armv8. This bit can be implemented as RES1.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the Non-secure EL1&0 translation regime.

VM Meaning
0b0 Non-secure EL1&0 stage 2 address translation disabled.
0b1 Non-secure EL1&0 stage 2 address translation enabled.

HCR, Hyp Configuration Register

Page 2467

If the HCR.DC bit is set to 1, then the behavior of the PE when executing in a Non-secure mode other than Hyp mode
is consistent with HCR.VM being 1, regardless of the actual value of HCR.VM, other than the value returned by an
explicit read of HCR.VM.

When the value of this bit is 1, data cache invalidate instructions executed at Non-secure EL1 perform a data cache
clean and invalidate. For the invalidate by set/way instruction this behavior applies regardless of the value of the
HCR.SWIO bit.

This bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

Accessing the HCR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HCR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HCR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HCR = R[t];

HCR, Hyp Configuration Register

Page 2468

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HCR, Hyp Configuration Register

Page 2469

HCR2, Hyp Configuration Register 2
The HCR2 characteristics are:

Purpose
Provides additional configuration controls for virtualization.

Configuration
AArch32 System register HCR2 bits [31:0] are architecturally mapped to AArch64 System register HCR_EL2[63:32] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HCR2
are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HCR2 is a 32-bit register.

Field descriptions
The HCR2 bit assignments are:

313029282726252423 22 21 20 19 18 17 16151413121110 9 8 7 6 5 4 3 2 1 0
RES0 TTLBISRES0TOCURES0TICABTID4 RES0 MIOCNCETEATERRRES0IDCD

Bits [31:23]

Reserved, RES0.

TTLBIS, bit [22]

When ARMv8.2-EVT is implemented:

Trap TLB maintenance instructions that operate on the Inner Shareable domain. Traps execution of the following TLB
maintenance instructions at EL1 to EL2:

TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS

TTLBIS Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 execution of the specified TLB maintenance

instructions is trapped to EL2.

If ARMv8.2-EVT is not implemented, this field is RES0.

When ARMv8.1-VHE and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other
than a direct read of the value of this bit.

Otherwise:

Reserved, RES0.

HCR2, Hyp Configuration Register 2

Page 2470

Bit [21]

Reserved, RES0.

TOCU, bit [20]

When ARMv8.2-EVT is implemented:

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of those cache
maintenance instructions at EL1 or EL0 using AArch64, and at EL1 using AArch32, to EL2.

This applies to the following instructions:

• When Non-secure EL0 is using AArch64, IC IVAU, DC CVAU. However, if the value of SCTLR_EL1.UCI is 0
these instructions are UNDEFINED at EL0 and any resulting exception is higher priority than this trap to EL2.

• When EL1 is using AArch64, IC IVAU, IC IALLU, DC CVAU.
• When Non-secure EL1 is using AArch32, ICIMVAU, ICIALLU, DCCMVAU.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher
priority than this trap to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using AArch64.
• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always UNDEFINED at

EL0 using AArch32.
TOCU Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure execution of the specified cache maintenance

instructions is trapped to EL2.

If ARMv8.2-EVT is not implemented, this field is RES0.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any
data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control
is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution
of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value of this control
is 1.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

Otherwise:

Reserved, RES0.

Bit [19]

Reserved, RES0.

TICAB, bit [18]

When ARMv8.2-EVT is implemented:

Trap ICIALLUIS cache maintenance instructions. Traps execution of those cache maintenance instructions at EL1 to
EL2.

This applies to the following instructions:

ICIALLUIS.

HCR2, Hyp Configuration Register 2

Page 2471

TICAB Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 execution of the specified cache maintenance

instructions is trapped to EL2.

If ARMv8.2-EVT is not implemented, this field is RES0.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution
of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value of this control
is 1.

When ARMv8.1-VHE and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other
than a direct read of the value of this bit.

Otherwise:

Reserved, RES0.

TID4, bit [17]

When ARMv8.2-EVT is implemented:

Trap ID group 4. Traps the following register accesses to EL2:

• EL1 reads of CCSIDR, CCSIDR2, CLIDR, and CSSELR.
• EL1 writes to CSSELR.

TID4 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified Non-secure EL1 and EL0 accesses to ID group 4

registers are trapped to EL2.

If ARMv8.2-EVT is not implemented, this field is RES0.

When ARMv8.1-VHE is implemented and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

Otherwise:

Reserved, RES0.

Bits [16:7]

Reserved, RES0.

MIOCNCE, bit [6]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the Non-secure PL1&0 translation regime.

MIOCNCE Meaning
0b0 For the Non-secure PL1&0 translation regime, for

permitted accesses to a memory location that use a
common definition of the Shareability and Cacheability of
the location, there must be no loss of coherency if the Inner
Cacheability attribute for those accesses differs from the
Outer Cacheability attribute.

0b1 For the Non-secure PL1&0 translation regime, for
permitted accesses to a memory location that use a
common definition of the Shareability and Cacheability of
the location, there might be a loss of coherency if the Inner
Cacheability attribute for those accesses differs from the
Outer Cacheability attribute.

For more information see 'Mismatched memory attributes' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section E2 (The AArch32 Application Level Memory Model).

HCR2, Hyp Configuration Register 2

Page 2472

This field can be implemented as RAZ/WI.

In a system where the PE resets into EL2 or EL3, this field resets to an architecturally UNKNOWN value.

TEA, bit [5]

Route synchronous External abort exceptions from EL0 and EL1 to EL2. If the RAS Extension is implemented, the
possible values of this bit are:

TEA Meaning
0b0 Does not route synchronous External abort exceptions from Non-

secure EL0 and EL1 to EL2.
0b1 Route synchronous External abort exceptions from Non-secure

EL0 and EL1 to EL2, if not routed to EL3.

When the RAS Extension is not implemented, this field is RES0.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TERR, bit [4]

When RAS is implemented:

Trap Error record accesses from EL1 to EL2. Trap accesses to the following registers from EL1 to EL2:

ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR, ERXFR2, ERXMISC0, ERXMISC1,
ERXMISC2, ERXMISC3, and ERXSTATUS. When ARMv8.4-RAS is implemented, ERXMISC4, ERXMISC5, ERXMISC6,
and ERXMISC7.

TERR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Accesses to the specified registers from EL1 generate a Trap

exception to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [3:2]

Reserved, RES0.

ID, bit [1]

Stage 2 Instruction access cacheability disable. For the Non-secure PL1&0 translation regime, when HCR.VM==1,
this control forces all stage 2 translations for instruction accesses to Normal memory to be Non-cacheable.

ID Meaning
0b0 This control has no effect on stage 2 of the Non-secure PL1&0

translation regime.
0b1 For the Non-secure PL1&0 translation regime, forces all stage 2

translations for instruction accesses to Normal memory to be Non-
cacheable.

This bit has no effect on the EL2 translation regime.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

CD, bit [0]

Stage 2 Data access cacheability disable. When HCR.VM==1, this forces all stage 2 translations for data accesses and
translation table walks to Normal memory to be Non-cacheable for the Non-secure PL1&0 translation regime.

HCR2, Hyp Configuration Register 2

Page 2473

CD Meaning
0b0 This control has no effect on stage 2 of the Non-secure PL1&0

translation regime for data accesses and translation table walks.
0b1 For the Non-secure PL1&0 translation regime, forces all stage 2

translations for data accesses and translation table walks to
Normal memory to be Non-cacheable.

This bit has no effect on the EL2 translation regime.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

Accessing the HCR2
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HCR2;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HCR2;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HCR2 = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HCR2 = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

HCR2, Hyp Configuration Register 2

Page 2474

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HCR2, Hyp Configuration Register 2

Page 2475

HDCR, Hyp Debug Control Register
The HDCR characteristics are:

Purpose
Controls the trapping to Hyp mode of Non-secure accesses, at EL1 or lower, to functions provided by the debug and
trace architectures and the Performance Monitors Extension.

Configuration
AArch32 System register HDCR bits [31:0] are architecturally mapped to AArch64 System register MDCR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HDCR
are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3, and other than for a direct read of the register, the PE
behaves as if HDCR.HPMN == PMCR.N.

Attributes
HDCR is a 32-bit register.

Field descriptions
The HDCR bit assignments are:

313029 28 27 26 25 24 23 222120 19 18 17 1615141312 11 10 9 8 7 6 5 43210
RES0 MTPMETDCCHLPRES0HCCD RES0 TTRFRES0HPMD RES0 TDRATDOSATDATDEHPMETPMTPMCRHPMN

Bits [31:29]

Reserved, RES0.

MTPME, bit [28]

When ARMv8.6-MTPMU is implemented and EL3 is not implemented:

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>.MT bits.

MTPME Meaning
0b0 ARMv8.6-MTPMU is disabled. The Effective value of

PMEVTYPER<n>.MT is zero.
0b1 PMEVTYPER<n>.MT bits not affected by this bit.

If ARMv8.6-MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as the PE, it is
IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0.

On a Cold reset, in a system where the PE resets into EL2 or EL3, this field resets to 1.

Otherwise:

Reserved, RES0.

HDCR, Hyp Debug Control Register

Page 2476

TDCC, bit [27]

When ARMv8.6-FGT is implemented:

Trap DCC. Traps use of the Debug Comms Channel at EL1 and EL0 to EL2.

TDCC Meaning
0b0 This control does not cause any register accesses to be trapped.
0b1 If EL2 is implemented and enabled in the current Security state,

accesses to the DCC registers at EL1 and EL0 generate a Hyp
Trap exception, unless the access also generates a higher
priority exception.
Traps on the DCC data transfer registers are ignored when the
PE is in Debug state.

The DCC registers trapped by this control are:

• DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is in Non-debug state,
DBGDTRRXint and DBGDTRTXint.

The traps are reported with EC syndrome value:

• 0x05 for trapped MRC and MCR accesses with coproc == 0b1110.

• 0x06 for trapped LDC to DBGDTRTXint and STC from DBGDTRRXint.

When the PE is in Debug state, HDCR.TDCC does not trap any accesses to:

• DBGDTRRXint and DBGDTRTXint.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

HLP, bit [26]

When ARMv8.5-PMU is implemented:

Hypervisor Long event counter enable. Determines when unsigned overflow is recorded by a counter overflow bit.

HLP Meaning
0b0 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>[31:0].
0b1 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>[63:0].

If the highest implemented Exception level is using AArch32, it is IMPLEMENTATION DEFINED whether this bit is read/
write or RAZ/WI.

If HDCR.HPMN is less than PMCR.N, this bit affects the operation of event counters in the range
[HDCR.HPMN..(PMCR.N-1)]. Otherwise this bit has no effect on the operation of the event counters.

Note

The effect of HDCR.HPMN on the operation of this bit always applies if EL2 is
implemented, at all Exception levels including EL2 and EL3, and regardless of
whether EL2 is enabled in the current Security state.

For more information see the description of the HDCR.HPMN field.

Note

HDCR, Hyp Debug Control Register

Page 2477

PMEVCNTR<n>[63:32] cannot be accessed directly in AArch32 state.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [25:24]

Reserved, RES0.

HCCD, bit [23]

When ARMv8.5-PMU is implemented:

Hypervisor Cycle Counter Disable. Prohibits PMCCNTR from counting at EL2.

HCCD Meaning
0b0 Cycle counting by PMCCNTR is not affected by this bit.
0b1 Cycle counting by PMCCNTR is prohibited at EL2.

This bit does not affect the CPU_CYCLES event or any other event that counts cycles.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [22:20]

Reserved, RES0.

TTRF, bit [19]

When ARMv8.4-Trace is implemented:

Traps use of the Trace Filter Control registers at EL1 to EL2.

TTRF Meaning
0b0 Accesses to TRFCR at EL1 are not affected by this control bit.
0b1 Accesses to TRFCR at EL1 generate a Hyp Trap exception.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [18]

Reserved, RES0.

HDCR, Hyp Debug Control Register

Page 2478

HPMD, bit [17]

When ARMv8.1-PMU is implemented:

Guest Performance Monitors Disable. This control prohibits event counting at EL2.

HPMD Meaning
0b0 Event counting allowed in Hyp mode.
0b1 Event counting prohibited in Hyp mode.

If ARMv8.2-Debug is not implemented, event counting is
prohibited unless enabled by the IMPLEMENTATION DEFINED
authentication interface
ExternalSecureNoninvasiveDebugEnabled().

This control applies only to:

• The event counters in the range [0..(HDCR.HPMN-1)].
• If PMCR.DP is set to 1, PMCCNTR.

The other event counters are unaffected. When PMCR.DP is set to 0, PMCCNTR is unaffected.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [16:12]

Reserved, RES0.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps Non-secure EL0 and EL1 System register accesses to the Debug
ROM registers to Hyp mode.

TDRA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL0 and EL1 System register accesses to the

DBGDRAR or DBGDSAR are trapped to Hyp mode, unless it is
trapped by DBGDSCRext.UDCCdis.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TDOSA, bit [10]

When ARMv8.0-DoubleLock is implemented:

Trap debug OS-related register access. Traps Non-secure EL1 System register accesses to the powerdown debug
registers to Hyp mode.

TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 System register accesses to the powerdown

debug registers are trapped to Hyp mode.

The registers for which accesses are trapped are as follows:

• DBGOSLSR, DBGOSLAR, DBGOSDLR, and DBGPRCR.
• Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as trapped

by this bit.

Note

HDCR, Hyp Debug Control Register

Page 2479

These registers are not accessible at EL0.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Trap debug OS-related register access. Traps Non-secure EL1 System register accesses to the powerdown debug
registers to Hyp mode.

TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 System register accesses to the powerdown

debug registers are trapped to Hyp mode.

The registers for which accesses are trapped are as follows:

• DBGOSLSR, DBGOSLAR, and DBGPRCR.
• Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as trapped

by this bit.

It is IMPLEMENTATION DEFINED whether accesses to DBGOSDLR are trapped.

Note

These registers are not accessible at EL0.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TDA, bit [9]

Trap debug access. Traps Non-secure EL0 and EL1 System register accesses to those debug System registers in the
(coproc==0b1110) encoding space that are not trapped by either of the following:

• HDCR.TDRA.
• HDCR.TDOSA.

TDA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL0 or EL1 System register accesses to the debug

registers, other than the registers trapped by HDCR.TDRA and
HDCR.TDOSA, are trapped to Hyp mode, unless it is trapped by
DBGDSCRext.UDCCdis.

Traps of AArch32 accesses to DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TDE, bit [8]

Trap Debug exceptions. The possible values of this bit are:

TDE Meaning
0b0 This control has no effect on the routing of debug exceptions, and

has no effect on Non-secure accesses to debug registers.
0b1 Debug exceptions generated at EL1 or EL0 are routed to EL2

when enabled in the current Security state. The HDCR.{TDRA,
TDOSA, TDA} fields are treated as being 1 for all purposes other
than returning the result of a direct read of the register.

HDCR, Hyp Debug Control Register

Page 2480

When HCR.TGE == 1, the PE behaves as if the value of this field is 1 for all purposes other than returning the value of
a direct read of the register.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HPME, bit [7]

When PMUv3 is implemented:

[HDCR.HPMN..(N-1)] event counters enable.

HPME Meaning
0b0 Event counters in the range [HDCR.HPMN..(PMCR.N-1)] are

disabled.
0b1 Event counters in the range [HDCR.HPMN..(PMCR.N-1)] are

enabled by PMCNTENSET.

If HDCR.HPMN is less than PMCR.N, the event counters in the range [HDCR.HPMN..(PMCR.N-1)], are enabled and
disabled by this bit. Otherwise this bit has no effect on the operation of the event counters.

Note

The effect of HDCR.HPMN on the operation of this bit applies regardless of
whether EL2 is enabled in the current Security state.

For more information see the description of the HPMN field.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TPM, bit [6]

When PMUv3 is implemented:

Trap Performance Monitors accesses. Traps Non-secure EL0 and EL1 accesses to all Performance Monitors registers
to Hyp mode.

TPM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL0 and EL1 accesses to all Performance Monitors

registers are trapped to Hyp mode.

Note

EL2 does not provide traps on Performance Monitor register accesses through
the optional memory-mapped external debug interface.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

TPMCR, bit [5]

When PMUv3 is implemented:

Trap PMCR accesses. Traps Non-secure EL0 and EL1 accesses to the PMCR to Hyp mode.

HDCR, Hyp Debug Control Register

Page 2481

TPMCR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL0 and EL1 accesses to the PMCR are trapped to

Hyp mode, unless it is trapped by PMUSERENR.EN.

Note

EL2 does not provide traps on Performance Monitor register accesses through
the optional memory-mapped external debug interface.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

HPMN, bits [4:0]

When PMUv3 is implemented:

Defines the number of event counters that are accessible from Non-secure EL1 modes, and from Non-secure EL0
modes if unprivileged access is enabled.

If HPMN is less than PMCR.N, HPMN divides the event counters into two ranges, [0..(HPMN-1)] and
[HPMN..(PMCR.N-1)].

For an event counter in the range [0..(HPMN-1)]:

• The counter is accessible from EL1 and EL2, and from EL0 if unprivileged access to the counters is enabled.
• If ARMv8.5-PMU is implemented, PMCR.LP determines whether the counter overflows at

PMEVCNTR<n>[31:0] or PMEVCNTR<n>[63:0].
• PMCR.E enables the operation of counters in this range.

Note

If HPMN is equal to PMCR.N, this applies to all event counters.

If HPMN is less than PMCR.N, for an event counter in the range [HPMN..(PMCR.N-1)]:

• The counter is accessible only from EL2 and from Secure state.
• If ARMv8.5-PMU is implemented, HDCR.HLP determines whether the counter overflows at

PMEVCNTR<n>[31:0] or PMEVCNTR<n>[63:0].
• HDCR.HPME enables the operation of counters in this range.

If this field is set to 0, or to a value larger than PMCR.N, then the following CONSTRAINED UNPREDICTABLE behaviors
apply:

• The value returned by a direct read of HDCR.HPMN is UNKNOWN.
• Either:

◦ An UNKNOWN number of counters are reserved for EL2 use. That is, the PE behaves as if
HDCR.HPMN is set to an UNKNOWN non-zero value less than or equal to PMCR.N.

◦ All counters are reserved for EL2 use, meaning no counters are accessible from Non-secure EL1 and
Non-secure EL0.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the value in PMCR.N.

Otherwise:

Reserved, RES0.

Accessing the HDCR
Accesses to this register use the following encodings:

HDCR, Hyp Debug Control Register

Page 2482

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return HDCR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

return HDCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
HDCR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

HDCR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HDCR, Hyp Debug Control Register

Page 2483

HDFAR, Hyp Data Fault Address Register
The HDFAR characteristics are:

Purpose
Holds the virtual address of the faulting address that caused a synchronous Data Abort exception that is taken to Hyp
mode.

Configuration
AArch32 System register HDFAR bits [31:0] are architecturally mapped to AArch64 System register FAR_EL2[31:0] .

AArch32 System register HDFAR bits [31:0] are architecturally mapped to AArch32 System register DFAR[31:0] (S)
when EL2 is implemented, EL3 is implemented and the highest implemented Exception level is using AArch32 state.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HDFAR
are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HDFAR is a 32-bit register.

Field descriptions
The HDFAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA of faulting address of synchronous Data Abort exception taken to Hyp mode

Bits [31:0]

VA of faulting address of synchronous Data Abort exception taken to Hyp mode.

On a Prefetch Abort exception, this register is UNKNOWN.

Any execution in a Non-secure EL1 or Non-secure EL0 mode makes this register UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Accessing the HDFAR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0110 0b0000 0b000

HDFAR, Hyp Data Fault Address Register

Page 2484

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HDFAR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HDFAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HDFAR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HDFAR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HDFAR, Hyp Data Fault Address Register

Page 2485

HIFAR, Hyp Instruction Fault Address Register
The HIFAR characteristics are:

Purpose
Holds the virtual address of the faulting address that caused a synchronous Prefetch Abort exception that is taken to
Hyp mode.

Configuration
AArch32 System register HIFAR bits [31:0] are architecturally mapped to AArch64 System register FAR_EL2[63:32] .

AArch32 System register HIFAR bits [31:0] are architecturally mapped to AArch32 System register IFAR[31:0] (S)
when EL2 is implemented, EL3 is implemented and the highest implemented Exception level is using AArch32 state.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HIFAR
are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HIFAR is a 32-bit register.

Field descriptions
The HIFAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA of faulting address of synchronous Prefetch Abort exception taken to Hyp mode

Bits [31:0]

VA of faulting address of synchronous Prefetch Abort exception taken to Hyp mode.

On a Data Abort exception, this register is UNKNOWN.

Any execution in a Non-secure EL1 or Non-secure EL0 mode makes this register UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Accessing the HIFAR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0110 0b0000 0b010

HIFAR, Hyp Instruction Fault Address Register

Page 2486

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HIFAR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HIFAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0110 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HIFAR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HIFAR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HIFAR, Hyp Instruction Fault Address Register

Page 2487

HMAIR0, Hyp Memory Attribute Indirection Register 0
The HMAIR0 characteristics are:

Purpose
Along with HMAIR1, provides the memory attribute encodings corresponding to the possible AttrIndx values in a
Long-descriptor format translation table entry for stage 1 translations for memory accesses from Hyp mode.

AttrIndx[2] indicates the HMAIR register to be used:

• When AttrIndx[2] is 0, HMAIR0 is used.
• When AttrIndx[2] is 1, HMAIR1 is used.

Configuration
AArch32 System register HMAIR0 bits [31:0] are architecturally mapped to AArch64 System register MAIR_EL2[31:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HMAIR0
are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HMAIR0 is a 32-bit register.

Field descriptions
The HMAIR0 bit assignments are:

When TTBCR.EAE == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Attr3 Attr2 Attr1 Attr0

Attr<n>, bits [8n+7:8n], for n = 0 to 3

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.
• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0 are in MAIR0.

Bits [7:4] are encoded as follows:

Attr<n>[7:4] Meaning
0b0000 Device memory. See encoding of Attr<n>[3:0] for the

type of Device memory.
0b00RW, RW
not 0b00

Normal memory, Outer Write-Through Transient.

0b0100 Normal memory, Outer Non-cacheable.
0b01RW, RW
not 0b00

Normal memory, Outer Write-Back Transient.

0b10RW Normal memory, Outer Write-Through Non-transient.
0b11RW Normal memory, Outer Write-Back Non-transient.

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

HMAIR0, Hyp Memory Attribute Indirection Register 0

Page 2488

Attr<n>[3:0]
Meaning when
Attr<n>[7:4] is

0b0000
Meaning when Attr<n>[7:4]

is not 0b0000
0b0000 Device-nGnRnE

memory
UNPREDICTABLE

0b00RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-
Through Transient

0b0100 Device-nGnRE
memory

Normal memory, Inner Non-
cacheable

0b01RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-
Back Transient

0b1000 Device-nGRE
memory

Normal memory, Inner Write-
Through Non-transient
(RW=0b00)

0b10RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-
Through Non-transient

0b1100 Device-GRE memory Normal memory, Inner Write-
Back Non-transient (RW=0b00)

0b11RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-
Back Non-transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

R or W Meaning
0b0 No Allocate
0b1 Allocate

This field resets to an architecturally UNKNOWN value.

Accessing the HMAIR0
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HMAIR0;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HMAIR0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1010 0b0010 0b000

HMAIR0, Hyp Memory Attribute Indirection Register 0

Page 2489

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HMAIR0 = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HMAIR0 = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HMAIR0, Hyp Memory Attribute Indirection Register 0

Page 2490

HMAIR1, Hyp Memory Attribute Indirection Register 1
The HMAIR1 characteristics are:

Purpose
Along with HMAIR0, provides the memory attribute encodings corresponding to the possible AttrIndx values in a
Long-descriptor format translation table entry for stage 1 translations for memory accesses from Hyp mode.

AttrIndx[2] indicates the HMAIR register to be used:

• When AttrIndx[2] is 0, HMAIR0 is used.
• When AttrIndx[2] is 1, HMAIR1 is used.

Configuration
AArch32 System register HMAIR1 bits [31:0] are architecturally mapped to AArch64 System register
MAIR_EL2[63:32] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HMAIR1
are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HMAIR1 is a 32-bit register.

Field descriptions
The HMAIR1 bit assignments are:

When TTBCR.EAE == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Attr7 Attr6 Attr5 Attr4

Attr<n>, bits [8(n-4)+7:8(n-4)], for n = 4 to 7

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.
• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0 are in MAIR0.

Bits [7:4] are encoded as follows:

Attr<n>[7:4] Meaning
0b0000 Device memory. See encoding of Attr<n>[3:0] for the

type of Device memory.
0b00RW, RW
not 0b00

Normal memory, Outer Write-Through Transient.

0b0100 Normal memory, Outer Non-cacheable.
0b01RW, RW
not 0b00

Normal memory, Outer Write-Back Transient.

0b10RW Normal memory, Outer Write-Through Non-transient.
0b11RW Normal memory, Outer Write-Back Non-transient.

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

HMAIR1, Hyp Memory Attribute Indirection Register 1

Page 2491

Attr<n>[3:0]
Meaning when
Attr<n>[7:4] is

0b0000
Meaning when Attr<n>[7:4]

is not 0b0000
0b0000 Device-nGnRnE

memory
UNPREDICTABLE

0b00RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-
Through Transient

0b0100 Device-nGnRE
memory

Normal memory, Inner Non-
cacheable

0b01RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-
Back Transient

0b1000 Device-nGRE
memory

Normal memory, Inner Write-
Through Non-transient
(RW=0b00)

0b10RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-
Through Non-transient

0b1100 Device-GRE memory Normal memory, Inner Write-
Back Non-transient (RW=0b00)

0b11RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-
Back Non-transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

R or W Meaning
0b0 No Allocate
0b1 Allocate

This field resets to an architecturally UNKNOWN value.

Accessing the HMAIR1
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1010 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HMAIR1;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HMAIR1;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1010 0b0010 0b001

HMAIR1, Hyp Memory Attribute Indirection Register 1

Page 2492

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HMAIR1 = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HMAIR1 = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HMAIR1, Hyp Memory Attribute Indirection Register 1

Page 2493

HPFAR, Hyp IPA Fault Address Register
The HPFAR characteristics are:

Purpose
Holds the faulting IPA for some aborts on a stage 2 translation taken to Hyp mode.

Configuration
AArch32 System register HPFAR bits [31:0] are architecturally mapped to AArch64 System register HPFAR_EL2[31:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HPFAR
are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HPFAR is a 32-bit register.

Field descriptions
The HPFAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FIPA[39:12] RES0

Execution in any Non-secure mode other than Hyp mode makes this register UNKNOWN.

FIPA[39:12], bits [31:4]

Bits [39:12] of the faulting intermediate physical address.

This field resets to an architecturally UNKNOWN value.

Bits [3:0]

Reserved, RES0.

Accessing the HPFAR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0110 0b0000 0b100

HPFAR, Hyp IPA Fault Address Register

Page 2494

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HPFAR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HPFAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0110 0b0000 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HPFAR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HPFAR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HPFAR, Hyp IPA Fault Address Register

Page 2495

HRMR, Hyp Reset Management Register
The HRMR characteristics are:

Purpose
If EL2 is the highest implemented Exception level and this register is implemented:

• A write to the register at EL2 can request a Warm reset.
• If EL2 can use AArch32 and AArch64, this register specifies the Execution state that the PE boots into on a

Warm reset.

Configuration
AArch32 System register HRMR bits [31:0] are architecturally mapped to AArch64 System register RMR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HRMR
are UNKNOWN.

Only implemented if EL2 is the highest implemented Exception level. In this case:

• If EL2 can use AArch32 and AArch64 then this register must be implemented.
• If EL2 cannot use AArch64 then it is IMPLEMENTATION DEFINED whether the register is implemented.

Attributes
HRMR is a 32-bit register.

Field descriptions
The HRMR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 RRAA64

Bits [31:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

This field resets to 0.

AA64, bit [0]

When EL2 can use AArch64, determines which Execution state the PE boots into after a Warm reset:

AA64 Meaning
0b0 AArch32.
0b1 AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector address of the specified
Execution state.

If EL2 cannot use AArch64 this bit is RAZ/WI.

When implemented as a RW field, this field resets to 0 on a Cold reset.

HRMR, Hyp Reset Management Register

Page 2496

Accessing the HRMR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b0000 0b010

if PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && !ELUsingAArch32(EL2) && HSTR_EL2.T12 ==
'1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && ELUsingAArch32(EL2) && HSTR.T12 ==
'1' then

AArch32.TakeHypTrapException(0x03);
elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then

return HRMR;
else

UNDEFINED;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b0000 0b010

if PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && !ELUsingAArch32(EL2) && HSTR_EL2.T12 ==
'1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && ELUsingAArch32(EL2) && HSTR.T12 ==
'1' then

AArch32.TakeHypTrapException(0x03);
elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then

HRMR = R[t];
else

UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HRMR, Hyp Reset Management Register

Page 2497

HSCTLR, Hyp System Control Register
The HSCTLR characteristics are:

Purpose
Provides top level control of the system operation in Hyp mode.

Configuration
AArch32 System register HSCTLR bits [31:0] are architecturally mapped to AArch64 System register
SCTLR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HSCTLR
are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HSCTLR is a 32-bit register.

Field descriptions
The HSCTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15141312 11 10 9 8 7 6 5 4 3 2 1 0
DSSBSTERES1RES0EERES0RES1RES0WXNRES1RES0RES1 RES0 I RES1RES0SEDITDRES0CP15BENLSMAOEnTLSMDCAM

DSSBS, bit [31]

When ARMv8.0-SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry. The defined values are:

DSSBS Meaning
0b0 PSTATE.SSBS is set to 0 on an exception to Hyp mode.
0b1 PSTATE.SSBS is set to 1 on an exception to Hyp mode.

In a system where the PE resets into EL2, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

TE, bit [30]

T32 Exception Enable. This bit controls whether exceptions to EL2 are taken to A32 or T32 state:

TE Meaning
0b0 Exceptions, including reset, taken to A32 state.
0b1 Exceptions, including reset, taken to T32 state.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

HSCTLR, Hyp System Control Register

Page 2498

Bits [29:28]

Reserved, RES1.

Bits [27:26]

Reserved, RES0.

EE, bit [25]

The value of the PSTATE.E bit on entry to Hyp mode, the endianness of stage 1 translation table walks in the EL2
translation regime, and the endianness of stage 2 translation table walks in the PL1&0 translation regime.

The possible values of this bit are:

EE Meaning
0b0 Little-endian. PSTATE.E is cleared to 0 on entry to Hyp mode.

Stage 1 translation table walks in the EL2 translation regime, and
stage 2 translation table walks in the PL1&0 translation regime are
little-endian.

0b1 Big-endian. PSTATE.E is set to 1 on entry to Hyp mode. Stage 1
translation table walks in the EL2 translation regime, and stage 2
translation table walks in the PL1&0 translation regime are big-
endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

In a system where the PE resets into EL2, this field resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

Bits [23:22]

Reserved, RES1.

Bits [21:20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 translation regime, this bit can force all memory regions
that are writable to be treated as XN. The possible values of this bit are:

WXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable in the EL2 translation regime is

forced to XN for accesses from software executing at EL2.

This bit applies only when HSCTLR.M bit is set.

The WXN bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Bit [18]

Reserved, RES1.

HSCTLR, Hyp System Control Register

Page 2499

Bit [17]

Reserved, RES0.

Bit [16]

Reserved, RES1.

Bits [15:13]

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2:

I Meaning
0b0 All instruction access to Normal memory from EL2 are Non-

cacheable for all levels of instruction and unified cache.
If the value of HSCTLR.M is 0, instruction accesses from stage 1 of
the EL2 translation regime are to Normal, Outer Shareable, Inner
Non-cacheable, Outer Non-cacheable memory.

0b1 All instruction access to Normal memory from EL2 can be cached
at all levels of instruction and unified cache.
If the value of HSCTLR.M is 0, instruction accesses from stage 1 of
the EL2 translation regime are to Normal, Outer Shareable, Inner
Write-Through, Outer Write-Through memory.

This bit has no effect on the PL1&0 translation regime.

In a system where the PE resets into EL2, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at EL2.

SED Meaning
0b0 SETEND instruction execution is enabled at EL2.
0b1 SETEND instructions are UNDEFINED at EL2.

If the implementation does not support mixed-endian operation at EL2, this bit is RES1.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at EL2.

HSCTLR, Hyp System Control Register

Page 2500

ITD Meaning
0b0 All IT instruction functionality is enabled at EL2.
0b1 Any attempt at EL2 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the

following values for hw1:
◦ 11xxxxxxxxxxxxxx: All 32-bit instructions, and the

16-bit instructions B, UDF, SVC, LDM, and STM.
◦ 1011xxxxxxxxxxxx: All instructions in Miscellaneous

16-bit instructions.
◦ 10100xxxxxxxxxxx: ADD Rd, PC, #imm
◦ 01001xxxxxxxxxxx: LDR Rd, [PC, #imm]
◦ 0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC; MOV

Rd, PC; BX PC; BLX PC.
◦ 010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm; MOV

PC, Rm. This pattern also covers unpredictable cases
with BLX Rn.

These instructions are always UNDEFINED, regardless of whether
they would pass or fail the condition code check that applies to
them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated
as:

• A 16-bit instruction, that can only be followed by another
16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either the
second 16-bit instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is
treated as a 16-bit instruction or the first half of a 32-bit
instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is
CONSTRAINED UNPREDICTABLE. For more information see 'Changes to an ITD control by an instruction in an IT block' in
the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section E1.2.4

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the HSCTLR. If it is not
implemented then this bit is RAZ/WI.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the
(coproc==0b1111) encoding space from EL2:

CP15BEN Meaning
0b0 EL2 execution of the CP15DMB, CP15DSB, and CP15ISB

instructions is UNDEFINED.
0b1 EL2 execution of the CP15DMB, CP15DSB, and CP15ISB

instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the HSCTLR. If it is
not implemented then this bit is RAO/WI.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

LSMAOE, bit [4]

When ARMv8.2-LSMAOC is implemented:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

HSCTLR, Hyp System Control Register

Page 2501

LSMAOE Meaning
0b0 For all memory accesses at EL2, A32 and T32 Load Multiple

and Store Multiple can have an interrupt taken during the
sequence memory accesses, and the memory accesses are
not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load
Multiple and Store Multiple at EL2 is as defined for Armv8.0.

This bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to 1.

Otherwise:

Reserved, RES1.

nTLSMD, bit [3]

When ARMv8.2-LSMAOC is implemented:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

nTLSMD Meaning
0b0 All memory accesses by A32 and T32 Load Multiple and

Store Multiple at EL2 that are marked at stage 1 as Device-
nGRE/Device-nGnRE/Device-nGnRnE memory are trapped
and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and
Store Multiple at EL2 that are marked at stage 1 as Device-
nGRE/Device-nGnRE/Device-nGnRnE memory are not
trapped.

This bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to 1.

Otherwise:

Reserved, RES1.

C, bit [2]

Cacheability control, for data accesses at EL2:

C Meaning
0b0 All data access to Normal memory from EL2, and all accesses to

the EL2 translation tables, are Non-cacheable for all levels of data
and unified cache.

0b1 All data access to Normal memory from EL2, and all accesses to
the EL2 translation tables, can be cached at all levels of data and
unified cache.

This bit has no effect on the PL1&0 translation regime.

In a system where the PE resets into EL2, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2:

HSCTLR, Hyp System Control Register

Page 2502

A Meaning
0b0 Alignment fault checking disabled when executing at EL2.

Instructions that load or store one or more registers, other than
load/store exclusive and load-acquire/store-release, do not check
that the address being accessed is aligned to the size of the data
element or data elements being accessed.

0b1 Alignment fault checking enabled when executing at EL2.
All instructions that load or store one or more registers have an
alignment check that the address being accessed is aligned to the
size of the data element or data elements being accessed. If this
check fails it causes an Alignment fault, which is taken as a Data
Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of
the A bit.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL2 stage 1 address translation. Possible values of this bit are:

M Meaning
0b0 EL2 stage 1 address translation disabled.

See the HSCTLR.I field for the behavior of instruction accesses to
Normal memory.

0b1 EL2 stage 1 address translation enabled.

In a system where the PE resets into EL2, this field resets to 0.

Accessing the HSCTLR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HSCTLR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HSCTLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0000 0b000

HSCTLR, Hyp System Control Register

Page 2503

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HSCTLR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HSCTLR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HSCTLR, Hyp System Control Register

Page 2504

HSR, Hyp Syndrome Register
The HSR characteristics are:

Purpose
Holds syndrome information for an exception taken to Hyp mode.

Configuration
AArch32 System register HSR bits [31:0] are architecturally mapped to AArch64 System register ESR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HSR are
UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HSR is a 32-bit register.

Field descriptions
The HSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EC IL ISS

Execution in any Non-secure PE mode other than Hyp mode makes this register UNKNOWN.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL2, the value of HSR is
UNKNOWN. The value written to HSR must be consistent with a value that could be created as a result of an exception
from the same Exception level that generated the exception as a result of a situation that is not UNPREDICTABLE at that
Exception level, in order to avoid the possibility of a privilege violation.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about. Possible values of
this field are:

HSR, Hyp Syndrome Register

Page 2505

EC Meaning ISS
0b000000 Unknown reason. ISS encoding for

exceptions with an
unknown reason

0b000001 Trapped WFI or WFE instruction
execution.
Conditional WFE and WFI
instructions that fail their
condition code check do not
cause an exception.

ISS encoding for
Exception from a WFI or
WFE instruction

0b000011 Trapped MCR or MRC access
with (coproc==0b1111) that is
not reported using EC 0b000000.

ISS encoding for
Exception from an MCR
or MRC access

0b000100 Trapped MCRR or MRRC access
with (coproc==0b1111) that is
not reported using EC 0b000000.

ISS encoding for
Exception from an
MCRR or MRRC access

0b000101 Trapped MCR or MRC access
with (coproc==0b1110).

ISS encoding for
Exception from an MCR
or MRC access

0b000110 Trapped LDC or STC access.
The only architected uses of
these instructions are:

• An STC to write data to
memory from
DBGDTRRXint.

• An LDC to read data from
memory to DBGDTRTXint.

ISS encoding for
Exception from an LDC
or STC instruction

0b000111 Access to Advanced SIMD or
floating-point functionality
trapped by a HCPTR.{TASE,
TCP10} control.
Excludes exceptions generated
because Advanced SIMD and
floating-point are not
implemented. These are
reported with EC value
0b000000.

ISS encoding for
Exception from an
access to SIMD or
floating-point
functionality, resulting
from HCPTR

0b001000 Trapped VMRS access, from ID
group trap, that is not reported
using EC 0b000111.

ISS encoding for
Exception from an MCR
or MRC access

0b001100 Trapped MRRC access with
(coproc==0b1110).

ISS encoding for
Exception from an
MCRR or MRRC access

0b001110 Illegal exception return to
AArch32 state.

ISS encoding for
Exception from an
Illegal state or PC
alignment fault

0b010001 Exception on SVC instruction
execution in AArch32 state
routed to EL2.

ISS encoding for
Exception from HVC or
SVC instruction
execution

0b010010 HVC instruction execution in
AArch32 state, when HVC is not
disabled.

ISS encoding for
Exception from HVC or
SVC instruction
execution

0b010011 Trapped execution of SMC
instruction in AArch32 state.

ISS encoding for
Exception from SMC
instruction execution

0b100000 Prefetch Abort from a lower
Exception level.

ISS encoding for
Exception from a
Prefetch Abort

0b100001 Prefetch Abort taken without a
change in Exception level.

ISS encoding for
Exception from a
Prefetch Abort

0b100010 PC alignment fault exception. ISS encoding for
Exception from an
Illegal state or PC
alignment fault

HSR, Hyp Syndrome Register

Page 2506

0b100100 Data Abort from a lower
Exception level.

ISS encoding for
Exception from a Data
Abort

0b100101 Data Abort taken without a
change in Exception level.

ISS encoding for
Exception from a Data
Abort

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous
exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be used
for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as described in
'Reserved values in System and memory-mapped registers and translation table entries' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile, section K1.2.2.

This field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction length bit. Indicates the size of the instruction that has been trapped to Hyp mode. When this bit is valid,
possible values of this bit are:

IL Meaning
0b0 16-bit instruction trapped.
0b1 32-bit instruction trapped.

This field is RES1 and not valid for the following cases:

• When the EC field is 0b000000, indicating an exception with an unknown reason.
• Prefetch Aborts.
• Data Aborts for which the HSR.ISS.ISV field is 0.
• When the EC value is 0b001110, indicating an Illegal state exception.

Note

This is a change from the behavior in Armv7, where the IL field is UNK/SBZP
for the corresponding cases.

The IL field is not valid and is UNKNOWN on an exception from a PC alignment fault.

This field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception
class. However, in practice, some ISS encodings are used for more than one Exception class.

ISS encoding for exceptions with an unknown reason

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions
that are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or is not
accessible in the current PE mode in the current Security state, including:

HSR, Hyp Syndrome Register

Page 2507

◦ A read access using a System register encoding pattern that is not allocated for reads or that
does not permit reads in the current PE mode and Security state.

◦ A write access using a System register encoding pattern that is not allocated for writes or
that does not permit writes in the current PE mode and Security state.

◦ Instruction encodings that are unallocated.
◦ Instruction encodings for instructions not implemented in the implementation.

• In Debug state, the attempted execution of an instruction bit pattern that not accessible in Debug
state.

• In Non-debug state, the attempted execution of an instruction bit pattern that not accessible in Non-
debug state.

• The attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an

attempted access to Advanced SIMD or floating-point functionality under conditions where that access
would be permitted if that functionality was present. This includes the attempted execution of an
Advanced SIMD or floating-point instruction, and attempted accesses to Advanced SIMD and floating-
point System registers.

• An exception generated because of the value of one of the SCTLR.{ITD, SED, CP15BEN} control bits.
• Attempted execution of:

◦ An HVC instruction when disabled by HCR.HCD, SCR.HCE, or SCR_EL3.HCE.
◦ An SMC instruction when disabled by SCR.SCD or SCR_EL3.SMD.
◦ An HLT instruction when disabled by EDSCR.HDE.

• An HVC instruction when disabled by HCR.HCD, SCR.HCE, or SCR_EL3.HCE.An SMC instruction
when disabled by SCR.SCD or SCR_EL3.SMD.An HLT instruction when disabled by EDSCR.HDE.

• An exception generated because of the attempted execution of an MSR (Banked register) or MRS
(Banked register) instruction that would access a Banked register that is not accessible from the
Security state and PE mode at which the instruction was executed.

An exception is generated only if the CONSTRAINED UNPREDICTABLE behavior of the instruction is that it is
UNDEFINED, see 'MSR/MRS Banked registers' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section K1.1.29 (CONSTRAINED UNPREDICTABLE behavior of EL2 features).

• Attempted execution, in Debug state, of:
◦ A DCPS1 instruction in Non-secure state from EL0 when EL2 is using AArch32 and the value

of HCR.TGE is 1.
◦ A DCPS2 instruction at EL1 or EL0 when EL2 is not implemented, or when EL3 is using

AArch32 and the value of SCR.NS is 0, or when EL3 is using AArch64 and the value of
SCR_EL3.NS is 0.

◦ A DCPS3 instruction when EL3 is not implemented, or when the value of EDSCR.SDD is 1.
• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an

instruction that is configured to trap to EL3.

'Undefined Instruction exception, when HCR.TGE is set to 1' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section G1 (The AArch32 System Level Programmers' Model),
describes the configuration settings for a trap that returns an HSR.EC value of 0b000000.

ISS encoding for Exception from a WFI or WFE instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0 TI

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the
description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

HSR, Hyp Syndrome Register

Page 2508

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the instruction.
• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to
determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is set
to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition
that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Bits [19:1]

Reserved, RES0.

TI, bit [0]

Trapped instruction. Possible values of this bit are:

TI Meaning
0b0 WFI trapped.
0b1 WFE trapped.

This field resets to an architecturally UNKNOWN value.

'Trapping use of the WFI and WFE instructions' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section G1 (The AArch32 System Level Programmers' Model), describes the
configuration settings for this trap.

ISS encoding for Exception from an MCR or MRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc2 Opc1 CRn RES0 Rt CRm Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the
description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

HSR, Hyp Syndrome Register

Page 2509

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the instruction.
• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to
determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is set
to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition
that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

This field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

This field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

This field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES0.

Rt, bits [8:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

HSR, Hyp Syndrome Register

Page 2510

For a trapped VMRS access, holds the value 0b0000.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0b0 Write to System register space. MCR instruction.
0b1 Read from System register space. MRC or VMRS

instruction.

This field resets to an architecturally UNKNOWN value.

The following sections describe configuration settings for traps that are reported using EC value 0b000011:

• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the ID registers' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G1 (The AArch32
System Level Programmers' Model).

• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to lockdown, DMA, and TCM operations' in
the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G1.

• 'Traps to Hyp mode of Non-secure EL1 execution of cache maintenance instructions' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G1.

• 'Traps to Hyp mode of Non-secure EL1 execution of TLB maintenance instructions' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G1.

• 'Traps to Hyp mode of Non-secure EL1 accesses to the Auxiliary Control Register' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G1.

• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Performance Monitors registers' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G1.

• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Activity Monitors registers' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G1.

• 'Traps to Hyp mode of Non-secure EL1 accesses to the CPACR' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile, section G1.

• 'Traps to Hyp mode of Non-secure EL1 accesses to virtual memory control registers' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G1.

• 'General trapping to Hyp mode of Non-secure EL0 and EL1 accesses to System registers in the
(coproc == 1111) encoding space' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section G1.

The following sections describe configuration settings for traps that are reported using EC value 0b000101:

• 'ID group 0, Primary device identification registers' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section G1.

• 'Traps to Hyp mode of Non-secure System register accesses to trace registers' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G1.

• 'Trapping Non-secure System register accesses to Debug ROM registers' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile, section G1.

• 'Trapping Non-secure System register accesses to powerdown debug registers' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G1.

• 'Trapping general Non-secure System register accesses to debug registers' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile, section G1.

The following sections describes configuration settings for traps that are reported using EC value 0b001000:

• 'ID group 0, Primary device identification registers' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section G1.

• 'ID group 3, Detailed feature identification registers' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section G1.

ISS encoding for Exception from an MCRR or MRRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc1 RES0 Rt2 RES0 Rt CRm Direction

HSR, Hyp Syndrome Register

Page 2511

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the
description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the instruction.
• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to
determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is set
to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition
that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Bits [15:14]

Reserved, RES0.

Rt2, bits [13:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.

This field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES0.

Rt, bits [8:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

HSR, Hyp Syndrome Register

Page 2512

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0b0 Write to System register space. MCRR instruction.
0b1 Read from System register space. MRRC instruction.

This field resets to an architecturally UNKNOWN value.

The following sections describe configuration settings for traps that are reported using EC value 0b000100:

• 'Traps to Hyp mode of Non-secure EL1 accesses to virtual memory control registers' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G1 (The AArch32
System Level Programmers' Model).

• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Performance Monitors registers' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G1.

• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Activity Monitors registers' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G1.

• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the Generic Timer registers' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G1.

• 'General trapping to Hyp mode of Non-secure EL0 and EL1 accesses to System registers in the
(coproc == 1111) encoding space' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section G1.

The following sections describe configuration settings for traps that are reported using EC value 0b001100:

• 'Traps to Hyp mode of Non-secure System register accesses to trace registers' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G1.

• 'Trapping Non-secure System register accesses to Debug ROM registers' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile, section G1.

ISS encoding for Exception from an LDC or STC instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND imm8 RES0 Rn Offset AM Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the
description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

HSR, Hyp Syndrome Register

Page 2513

• If the instruction is conditional, COND is set to the condition code field value from the instruction.
• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to
determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is set
to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition
that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Bits [11:9]

Reserved, RES0.

Rn, bits [8:5]

The Rn value from the issued instruction. Valid only when AM[2] is 0, indicating an immediate form of the
LDC or STC instruction.

When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Offset Meaning
0b0 Subtract offset.
0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

This field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

HSR, Hyp Syndrome Register

Page 2514

AM Meaning
0b000 Immediate unindexed.
0b001 Immediate post-indexed.
0b010 Immediate offset.
0b011 Immediate pre-indexed.
0b100 Literal unindexed.

LDC instruction in A32 instruction set only.
For a trapped STC instruction or a trapped T32 LDC
instruction this encoding is reserved.

0b110 Literal offset.
LDC instruction only.
For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is that
behavior is CONSTRAINED UNPREDICTABLE, as described in 'Unallocated values in fields of AArch32 System
registers and translation table entries' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section K1.1.11.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0b0 Write to memory. STC instruction.
0b1 Read from memory. LDC instruction.

This field resets to an architecturally UNKNOWN value.

'Trapping general Non-secure System register accesses to debug registers' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile, section G1 describes the configuration settings
for the trap that is reported using EC value 0b000110.

ISS encoding for Exception from an access to SIMD or floating-point
functionality, resulting from HCPTR

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0 TA RES0 coproc

Excludes exceptions that occur because Advanced SIMD and floating-point functionality is not implemented,
or because the value of HCR.TGE or HCR_EL2.TGE is 1. These are reported with EC value 0b000000.

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the
description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

HSR, Hyp Syndrome Register

Page 2515

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the instruction.
• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to
determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is set
to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition
that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Bits [19:6]

Reserved, RES0.

TA, bit [5]

Indicates trapped use of Advanced SIMD functionality. The possible values of this bit are:

TA Meaning
0b0 Exception was not caused by trapped use of Advanced SIMD

functionality.
0b1 Exception was caused by trapped use of Advanced SIMD

functionality.

Any use of an Advanced SIMD instruction that is not also a floating-point instruction that is trapped to Hyp
mode because of a trap configured in the HCPTR sets this bit to 1.

For a list of these instructions, see 'Controls of Advanced SIMD operation that do not apply to floating-point
operation' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section E1.

This field resets to an architecturally UNKNOWN value.

Bit [4]

Reserved, RES0.

coproc, bits [3:0]

When the TA field returns the value 1, this field returns the value 1010, otherwise this field is RES0.

This field resets to an architecturally UNKNOWN value.

The following sections describe the configuration settings for the traps that are reported using EC value
0b000111:

• 'General trapping to Hyp mode of Non-secure accesses to the SIMD and floating-point registers' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G1 (The
AArch32 System Level Programmers' Model).

• 'Traps to Hyp mode of Non-secure accesses to Advanced SIMD functionality' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G1.

ISS encoding for Exception from HVC or SVC instruction execution

HSR, Hyp Syndrome Register

Page 2516

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, this is the value of the imm16 field of the issued instruction.

For an SVC instruction:

• If the instruction is unconditional, then:
◦ For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.
◦ For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.

• For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.For the A32
instruction, this field is the bottom 16 bits of the imm24 field of the instruction.

• If the instruction is conditional, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

The HVC instruction is unconditional, and a conditional SVC instruction generates an exception only if it
passes its condition code check. Therefore, the syndrome information for these exceptions does not require
conditionality information.

'Supervisor Call exception, when HCR.TGE is set to 1' in the Arm® Architecture Reference Manual, Armv8,
for Armv8-A architecture profile, section G1 (The AArch32 System Level Programmers' Model), describes the
configuration settings for the trap reported with EC value 0b010001.

ISS encoding for Exception from SMC instruction execution

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND CCKNOWNPASS RES0

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the
description of the COND field for more information.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the instruction.
• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

HSR, Hyp Syndrome Register

Page 2517

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to
determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is set
to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition
that applied to the instruction.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

CCKNOWNPASS Meaning
0b0 The instruction was unconditional, or was

conditional and passed its condition code
check.

0b1 The instruction was conditional, and might
have failed its condition code check.

This field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

'Traps to Hyp mode of Non-secure EL1 execution of SMC instructions' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile, section G1 (The AArch32 System Level Programmers'
Model), describes the configuration settings for this trap, for instructions executed in Non-secure EL1.

ISS encoding for Exception from a Prefetch Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 FnV EA RES0S1PTWRES0 IFSC

Bits [24:11]

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation
table walk.

FnV Meaning
0b0 HIFAR is valid.
0b1 HIFAR is not valid, and holds an UNKNOWN value.

This field is only valid if the IFSC code is 0b010000. It is RES0 for all other aborts.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

HSR, Hyp Syndrome Register

Page 2518

For any abort other than an External abort this bit returns a value of 0.

This field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation
table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a stage

1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code. Possible values of this field are:

HSR, Hyp Syndrome Register

Page 2519

IFSC Meaning Applies
when

0b000000 Address size fault in translation table
base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not on

translation table walk.
0b010101 Synchronous External abort, on

translation table walk, level 1.
0b010110 Synchronous External abort, on

translation table walk, level 2.
0b010111 Synchronous External abort, on

translation table walk, level 3.
0b011000 Synchronous parity or ECC error on

memory access, not on translation
table walk.

When RAS is
not
implemented

0b011101 Synchronous parity or ECC error on
memory access on translation table
walk, level 1.

When RAS is
not
implemented

0b011110 Synchronous parity or ECC error on
memory access on translation table
walk, level 2.

When RAS is
not
implemented

0b011111 Synchronous parity or ECC error on
memory access on translation table
walk, level 3.

When RAS is
not
implemented

0b100010 Debug exception.
0b110000 TLB conflict abort.

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU
faults on a Long-descriptor translation table lookup' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1
translation walk.

This field resets to an architecturally UNKNOWN value.

The following sections describe cases where Prefetch Abort exceptions can be routed to Hyp mode,
generating exceptions that are reported in the HSR with EC value 0b100000:

• 'Abort exceptions, when HCR.TGE is set to 1' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section G1 (The AArch32 System Level Programmers' Model).

• 'Routing Debug exceptions to Hyp mode' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section G1.

ISS encoding for Exception from an Illegal state or PC alignment fault

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

For more information about the Illegal state exception, see:

HSR, Hyp Syndrome Register

Page 2520

• 'Illegal changes to PSTATE.M' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section G1 (The AArch32 System Level Programmers' Model).

• 'Illegal return events from AArch32 state' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section G1.

• 'Legal exception returns that set PSTATE.IL to 1' in the Arm® Architecture Reference Manual, Armv8,
for Armv8-A architecture profile, section G1.

• 'The Illegal Execution state exception' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section G1.

For more information about the PC alignment fault exception, see 'Branching to an unaligned PC' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, appendix A.

ISS encoding for Exception from a Data Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV SAS SSERES0 SRT RES0 AR RES0 AET EA CMS1PTWWnR DFSC

ISV, bit [24]

Instruction syndrome valid. Indicates whether the syndrome information in ISS[23:14] is valid.

ISV Meaning
0b0 No valid instruction syndrome. ISS[23:14] are RES0.
0b1 ISS[23:14] hold a valid instruction syndrome.

This bit is 0 for all faults except Data Aborts generated by stage 2 address translations for which all the
following apply to the instruction that generated the Data Abort exception:

• The instruction is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT,
LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT instruction.

• The instruction is not performing register writeback.
• The instruction is not using the PC as a source or destination register.

For these cases, ISV is UNKNOWN if the exception was generated in Debug state in memory access mode, as
described in 'Data Aborts in Memory access mode' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section H4.3.2 (Memory access mode), and otherwise indicates whether
ISS[23:14] hold a valid syndrome.

Note

In the A32 instruction set, LDR*T and STR*T instructions always
perform register writeback and therefore never return a valid
instruction syndrome.

When the RAS Extension is implemented, ISV is 0 for any synchronous External abort.

ISV is set to 0 on a stage 2 abort on a stage 1 translation table walk.

When the RAS Extension is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0 on a
synchronous External abort on a stage 2 translation table walk.

This field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting operation.

SAS Meaning
0b00 Byte
0b01 Halfword
0b10 Word
0b11 Doubleword

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

HSR, Hyp Syndrome Register

Page 2521

This field resets to an architecturally UNKNOWN value.

SSE, bit [21]

Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates whether the
data item must be sign extended. For these cases, the possible values of this bit are:

SSE Meaning
0b0 Sign-extension not required.
0b1 Data item must be sign-extended.

For all other operations this bit is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

Bit [20]

Reserved, RES0.

SRT, bits [19:16]

Syndrome Register transfer. When ISV is 1, the register number of the Rt operand of the faulting instruction.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

AR, bit [14]

Acquire/Release. When ISV is 1, the possible values of this bit are:

AR Meaning
0b0 Instruction did not have acquire/release semantics.
0b1 Instruction did have acquire/release semantics.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

Bits [13:12]

Reserved, RES0.

AET, bits [11:10]

When RAS is implemented:

Asynchronous Error Type.

When the RAS Extension is implemented and the value returned in the DFSC field is 0b010001, describes the
state of the PE after taking the SError interrupt exception. The possible values of this field are:

HSR, Hyp Syndrome Register

Page 2522

AET Meaning
0b00 Uncontainable error (UC) or uncategorized.
0b01 Unrecoverable error (UEU).
0b10 Restartable error (UEO) or Corrected error (CE).
0b11 Recoverable error (UER).

On a synchronous Data Abort, this field is RES0.

If multiple errors are taken as a single SError interrupt exception, the overall state of the PE is reported. For
example, if both a Recoverable and Unrecoverable error occurred, the state is Unrecoverable.

Note

Software can use this information to determine what recovery might be
possible. The recovery software must also examine any implemented
fault records to determine the location and extent of the error.

When the RAS Extension is not implemented, or when DFSC is not 0b010001:

• Bit[11] is RES0.
• Bit[10] forms the FnV field.

Note

Armv8.2 requires the implementation of the RAS Extension.

This field resets to an architecturally UNKNOWN value.

Otherwise:

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation
table walk.

FnV Meaning
0b0 HDFAR is valid.
0b1 HDFAR is not valid, and holds an UNKNOWN value.

When the RAS Extension is not implemented, this field is valid only if DFSC is 0b010000. It is RES0 for all
other aborts.

When the RAS Extension is implemented:

• If DFSC is 0b010000, this field is valid.
• If DFSC is 0b010001, this bit forms part of the AET field, becoming AET[0].
• This field is RES0 for all other aborts.

Note

Armv8.2 requires the implementation of the RAS Extension.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. For a synchronous fault, identifies fault that comes from a cache maintenance or address
translation instruction. For synchronous faults, the possible values of this bit are:

HSR, Hyp Syndrome Register

Page 2523

CM Meaning
0b0 Fault not generated by a cache maintenance or address

translation instruction.
0b1 Fault generated by a cache maintenance or address

translation instruction.

For an asynchronous Data Abort exception, this bit is 0.

This field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation
table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a stage

1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

This field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by a write instruction or a read
instruction. The possible values of this bit are:

WnR Meaning
0b0 Abort caused by a read instruction.
0b1 Abort caused by a write instruction.

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.

On an asynchronous Data Abort:

• When the RAS Extension is not implemented, this bit is UNKNOWN.
• When the RAS Extension is implemented, this bit is RES0.

Note

Armv8.2 requires the implementation of the RAS Extension.

This field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code. Possible values of this field are:

HSR, Hyp Syndrome Register

Page 2524

DFSC Meaning Applies
when

0b000000 Address size fault in translation table
base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not on

translation table walk.
0b010001 Asynchronous SError interrupt.
0b010101 Synchronous External abort, on

translation table walk, level 1.
0b010110 Synchronous External abort, on

translation table walk, level 2.
0b010111 Synchronous External abort, on

translation table walk, level 3.
0b011000 Synchronous parity or ECC error on

memory access, not on translation
table walk.

When RAS is
not
implemented

0b011001 Asynchronous SError interrupt, from
a parity or ECC error on memory
access.

When RAS is
not
implemented

0b011101 Synchronous parity or ECC error on
memory access on translation table
walk, level 1.

When RAS is
not
implemented

0b011110 Synchronous parity or ECC error on
memory access on translation table
walk, level 2.

When RAS is
not
implemented

0b011111 Synchronous parity or ECC error on
memory access on translation table
walk, level 3.

When RAS is
not
implemented

0b100001 Alignment fault.
0b100010 Debug exception.
0b110000 TLB conflict abort.
0b110100 IMPLEMENTATION DEFINED fault

(Lockdown).
0b110101 IMPLEMENTATION DEFINED fault

(Unsupported Exclusive access).

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU
faults on a Long-descriptor translation table lookup' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1
translation walk.

This field resets to an architecturally UNKNOWN value.

The following describe cases where Data Abort exceptions can be routed to Hyp mode, generating exceptions
that are reported in the HSR with EC value 0b100100:

• 'Abort exceptions, when HCR.TGE is set to 1' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section G1 (The AArch32 System Level Programmers' Model).

• 'Routing Debug exceptions to EL2' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section G1.

The following describe cases that can cause a Data Abort exception that is taken to Hyp mode, and reported
in the HSR with EC value of 0b100000 or 0b100100:

HSR, Hyp Syndrome Register

Page 2525

• 'Hyp mode control of Non-secure access permissions' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section G1 (The AArch32 System Level Programmers'
Model).

• 'Memory fault reporting in Hyp mode' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section G1.

Accessing the HSR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HSR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HSR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HSR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HSR, Hyp Syndrome Register

Page 2526

HSTR, Hyp System Trap Register
The HSTR characteristics are:

Purpose
Controls trapping to Hyp mode of Non-secure accesses, at EL1 or lower, to System registers in the coproc == 0b1111
encoding space:

• By the CRn value used to access the register using MCR or MRC instruction.
• By the CRm value used to access the register using MCRR or MRRC instruction.

Configuration
AArch32 System register HSTR bits [31:0] are architecturally mapped to AArch64 System register HSTR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HSTR
are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HSTR is a 32-bit register.

Field descriptions
The HSTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 T15T14T13T12T11T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0

Bits [31:16]

Reserved, RES0.

T<n>, bit [n], for n = 0 to 15

Fields T14 and T4 are RES0.

The remaining fields control whether Non-secure EL0 and EL1 accesses, using MCR, MRC, MCRR, and MRRC
instructions, to the System registers in the coproc == 0b1111 encoding space are trapped to Hyp mode:

T<n> Meaning
0b0 This control has no effect on Non-secure EL0 or EL1 accesses to

System registers.
0b1 Any Non-secure EL1 MCR or MRC access with coproc ==

0b1111 and CRn == <n> is trapped to Hyp mode. A Non-secure
EL0 MCR or MRC access with these values is trapped to Hyp
mode only if the access is not UNDEFINED when the value of this
field is 0.
Any Non-secure EL1 MCRR or MRRC access with coproc ==
0b1111 and CRm == <n> is trapped to Hyp mode. A Non-secure
EL0 MCRR or MRRC access with these values is trapped to Hyp
mode only if the access is not UNDEFINED when the value of this
field is 0.

For example, when HSTR.T7 is 1, for instructions executed at Non-secure EL1:

• An MCR or MRC instruction with coproc set to 0b1111 and <CRn> set to c7 is trapped to Hyp mode.

HSTR, Hyp System Trap Register

Page 2527

• An MCRR or MRRC instruction with coproc set to 0b1111 and <CRm> set to c7 is trapped to Hyp mode.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

Accessing the HSTR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HSTR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HSTR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HSTR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HSTR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HSTR, Hyp System Trap Register

Page 2528

HTCR, Hyp Translation Control Register
The HTCR characteristics are:

Purpose
The control register for stage 1 of the EL2 translation regime.

Note

This stage of translation always uses the Long-descriptor translation table
format.

Configuration
AArch32 System register HTCR bits [31:0] are architecturally mapped to AArch64 System register TCR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HTCR
are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HTCR is a 32-bit register.

Field descriptions
The HTCR bit assignments are:

31 30 29 28 27 26 25 24 23 2221201918171615141312 11 10 9 8 76543 2 1 0

RES1IMPLEMENTATION
DEFINED RES0HWU62HWU61HWU60HWU59HPDRES1 RES0 SH0ORGN0IRGN0RES0T0SZ

Bit [31]

Reserved, RES1.

IMPLEMENTATION DEFINED, bit [30]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Bit [29]

Reserved, RES0.

HWU62, bit [28]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or
Page entry.

HTCR, Hyp Translation Control Register

Page 2529

HWU62 Meaning
0b0 Bit[62] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[62] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU61, bit [27]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or
Page entry.

HWU61 Meaning
0b0 Bit[61] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[61] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU60, bit [26]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or
Page entry.

HWU60 Meaning
0b0 Bit[60] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[60] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU59, bit [25]

HTCR, Hyp Translation Control Register

Page 2530

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or
Page entry.

HWU59 Meaning
0b0 Bit[59] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[59] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD, bit [24]

When ARMv8.2-AA32HPD is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, XNTable, and PXNTable, in the
PL2 translation regime.

HPD Meaning
0b0 Hierarchical permissions are enabled.
0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [23]

Reserved, RES1.

Bits [22:14]

Reserved, RES0.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using HTTBR.

SH0 Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED
UNPREDICTABLE, as described in 'Unallocated values in fields of AArch32 System registers and translation table entries'
in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section K1.1.11.

This field resets to an architecturally UNKNOWN value.

HTCR, Hyp Translation Control Register

Page 2531

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using HTTBR.

ORGN0 Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using HTTBR.

IRGN0 Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate

Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No Write-

Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

Bits [7:3]

Reserved, RES0.

T0SZ, bits [2:0]

The size offset of the memory region addressed by HTTBR. The region size is 2(32-T0SZ) bytes.

This field resets to an architecturally UNKNOWN value.

Accessing the HTCR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0010 0b0000 0b010

HTCR, Hyp Translation Control Register

Page 2532

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HTCR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HTCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0010 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HTCR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HTCR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HTCR, Hyp Translation Control Register

Page 2533

HTPIDR, Hyp Software Thread ID Register
The HTPIDR characteristics are:

Purpose
Provides a location where software running in Hyp mode can store thread identifying information that is not visible to
Non-secure software executing at EL0 or EL1, for hypervisor management purposes.

The PE makes no use of this register.

Configuration
AArch32 System register HTPIDR bits [31:0] are architecturally mapped to AArch64 System register TPIDR_EL2[31:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HTPIDR
are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Note

The PE never updates this register.

Attributes
HTPIDR is a 32-bit register.

Field descriptions
The HTPIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Thread ID

Bits [31:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

This field resets to an architecturally UNKNOWN value.

Accessing the HTPIDR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1101 0b0000 0b010

HTPIDR, Hyp Software Thread ID Register

Page 2534

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HTPIDR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HTPIDR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1101 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HTPIDR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HTPIDR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HTPIDR, Hyp Software Thread ID Register

Page 2535

HTRFCR, Hyp Trace Filter Control Register
The HTRFCR characteristics are:

Purpose
Provides EL2 controls for Trace.

Configuration
AArch32 System register HTRFCR bits [31:0] are architecturally mapped to AArch64 System register
TRFCR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level and ARMv8.4-Trace is implemented.
Otherwise, direct accesses to HTRFCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from Monitor mode when SCR.NS == 1.

Attributes
HTRFCR is a 32-bit register.

Field descriptions
The HTRFCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 TS RES0CXRES0E2TREE0HTRE

Bits [31:7]

Reserved, RES0.

TS, bits [6:5]

Timestamp Control. Controls which timebase is used for trace timestamps.

TS Meaning
0b00 The timestamp is controlled by TRFCR.TS.
0b01 Virtual timestamp. The traced timestamp is the physical counter

value minus the value of CNTVOFF.
0b11 Physical timestamp. The traced timestamp is the physical counter

value.

When SelfHostedTraceEnabled() == FALSE, this field is ignored.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Bit [4]

Reserved, RES0.

CX, bit [3]

VMID Trace Enable.

HTRFCR, Hyp Trace Filter Control Register

Page 2536

CX Meaning
0b0 VMID tracing is not allowed.
0b1 VMID tracing is allowed.

When SelfHostedTraceEnabled() == FALSE, this field is ignored.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Bit [2]

Reserved, RES0.

E2TRE, bit [1]

EL2 Trace Enable.

E2TRE Meaning
0b0 Tracing is prohibited at EL2.
0b1 Tracing is allowed at EL2.

When SelfHostedTraceEnabled() == FALSE, this field is ignored.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

E0HTRE, bit [0]

EL0 Trace Enable.

E0HTRE Meaning
0b0 Tracing is prohibited at EL0 when HCR.TGE == 1.
0b1 Tracing is allowed at EL0 when HCR.TGE == 1.

This field is ignored if any of the following are true:

• The PE is in Secure state.
• SelfHostedTraceEnabled() == FALSE.
• HCR.TGE == 0.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Accessing the HTRFCR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0010 0b001

HTRFCR, Hyp Trace Filter Control Register

Page 2537

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
AArch32.TakeMonitorTrapException();

else
return HTRFCR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

return HTRFCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
AArch32.TakeMonitorTrapException();

else
HTRFCR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

HTRFCR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HTRFCR, Hyp Trace Filter Control Register

Page 2538

HTTBR, Hyp Translation Table Base Register
The HTTBR characteristics are:

Purpose
Holds the base address of the translation table for the initial lookup for stage 1 of an address translation in the EL2
translation regime, and other information for this translation regime.

Configuration
AArch32 System register HTTBR bits [47:1] are architecturally mapped to AArch64 System register TTBR0_EL2[47:1]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HTTBR
are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HTTBR is a 64-bit register.

Field descriptions
The HTTBR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 BADDR

BADDR CnP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

BADDR, bits [47:1]

Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that if bits[x-1:3] are
not all zero, this is a misaligned translation table base address, with effects that are CONSTRAINED UNPREDICTABLE, and
must be one of the following:

• Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits is either the
value written or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in
those bits that are nonzero.

x is determined from the value of HTCR.T0SZ as follows:

• If HTCR.T0SZ is 0 or 1, x = 5 - HTCR.T0SZ.
• If HTCR.T0SZ is greater than 1, x = 14 - HTCR.T0SZ.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.

This field resets to an architecturally UNKNOWN value.

HTTBR, Hyp Translation Table Base Register

Page 2539

CnP, bit [0]

When ARMv8.2-TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by HTTBR is a member of a common set
that can be used by every PE in the Inner Shareable domain for which the value of HTTBR.CnP is 1.

CnP Meaning
0b0 The translation table entries pointed to by HTTBR are permitted

to differ from corresponding entries for HTTBR for other PEs in
the Inner Shareable domain. This is not affected by the value of
HTTBR.CnP on those other PEs.

0b1 The translation table entries pointed to by HTTBR are the same as
the translation table entries pointed to by HTTBR on every other
PE in the Inner Shareable domain for which the value of
HTTBR.CnP is 1.

Note

If the value of the HTTBR.CnP bit is 1 on multiple PEs in the same Inner
Shareable domain and those HTTBRs do not point to the same translation
table entries when the other conditions specified for the case when the value
of CnP is 1 apply, then the results of translations are CONSTRAINED
UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE behaviors due to
caching of control or data values' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the HTTBR
Accesses to this register use the following encodings:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b0010 0b0100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x04);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HTTBR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HTTBR;

HTTBR, Hyp Translation Table Base Register

Page 2540

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b0010 0b0100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x04);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HTTBR = R[t2]:R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HTTBR = R[t2]:R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HTTBR, Hyp Translation Table Base Register

Page 2541

HVBAR, Hyp Vector Base Address Register
The HVBAR characteristics are:

Purpose
Holds the vector base address for any exception that is taken to Hyp mode.

Configuration
AArch32 System register HVBAR bits [31:0] are architecturally mapped to AArch64 System register VBAR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HVBAR
are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HVBAR is a 32-bit register.

Field descriptions
The HVBAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Vector Base Address RES0

Bits [31:5]

Vector Base Address. Bits[31:5] of the base address of the exception vectors for exceptions taken to this Exception
level. Bits[4:0] of an exception vector are the exception offset.

This field resets to an architecturally UNKNOWN value.

Bits [4:0]

Reserved, RES0.

Accessing the HVBAR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b0000 0b000

HVBAR, Hyp Vector Base Address Register

Page 2542

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HVBAR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HVBAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HVBAR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HVBAR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HVBAR, Hyp Vector Base Address Register

Page 2543

ICC_AP0R<n>, Interrupt Controller Active Priorities
Group 0 Registers, n = 0 - 3

The ICC_AP0R<n> characteristics are:

Purpose
Provides information about Group 0 active priorities.

Configuration
AArch32 System register ICC_AP0R<n> bits [31:0] are architecturally mapped to AArch64 System register
ICC_AP0R<n>_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_AP0R<n> are UNKNOWN.

Attributes
ICC_AP0R<n> is a 32-bit register.

Field descriptions
The ICC_AP0R<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing the ICC_AP0R<n>
Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 0 active priorities) might result in UNPREDICTABLE behavior of the interrupt prioritization system, causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICC_AP0R1 is only implemented in implementations that support 6 or more bits of preemption. ICC_AP0R2 and
ICC_AP0R3 are only implemented in implementations that support 7 bits of preemption. Unimplemented registers are
UNDEFINED.

Note

The number of bits of preemption is indicated by ICH_VTR.PREbits.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

• ICC_AP0R<n>.

ICC_AP0R<n>, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3

Page 2544

• Secure ICC_AP1R<n>.
• Non-secure ICC_AP1R<n>.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1000 0b1:n[1:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_AP0R[UInt(opc2<1:0>)];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

return ICV_AP0R[UInt(opc2<1:0>)];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then

AArch32.TakeMonitorTrapException();
else

return ICC_AP0R[UInt(opc2<1:0>)];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
AArch32.TakeMonitorTrapException();

else
return ICC_AP0R[UInt(opc2<1:0>)];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICC_AP0R[UInt(opc2<1:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1000 0b1:n[1:0]

ICC_AP0R<n>, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3

Page 2545

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_AP0R[UInt(opc2<1:0>)] = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

ICV_AP0R[UInt(opc2<1:0>)] = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then

AArch32.TakeMonitorTrapException();
else

ICC_AP0R[UInt(opc2<1:0>)] = R[t];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
AArch32.TakeMonitorTrapException();

else
ICC_AP0R[UInt(opc2<1:0>)] = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

ICC_AP0R[UInt(opc2<1:0>)] = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_AP0R<n>, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3

Page 2546

ICC_AP1R<n>, Interrupt Controller Active Priorities
Group 1 Registers, n = 0 - 3

The ICC_AP1R<n> characteristics are:

Purpose
Provides information about Group 1 active priorities.

Configuration
AArch32 System register ICC_AP1R<n> bits [31:0] (S) are architecturally mapped to AArch64 System register
ICC_AP1R<n>_EL1[31:0] (S) .

AArch32 System register ICC_AP1R<n> bits [31:0] (NS) are architecturally mapped to AArch64 System register
ICC_AP1R<n>_EL1[31:0] (NS) .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_AP1R<n> are UNKNOWN.

Attributes
ICC_AP1R<n> is a 32-bit register.

Field descriptions
The ICC_AP1R<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing the ICC_AP1R<n>
Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 1 active priorities) might result in UNPREDICTABLE behavior of the interrupt prioritization system, causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICC_AP1R1 is only implemented in implementations that support 6 or more bits of preemption. ICC_AP1R2 and
ICC_AP1R3 are only implemented in implementations that support 7 bits of preemption. Unimplemented registers are
UNDEFINED.

Note

The number of bits of preemption is indicated by ICH_VTR.PREbits.

ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 2547

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

• ICC_AP0R<n>
• Secure ICC_AP1R<n>
• Non-secure ICC_AP1R<n>

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1001 0b0:n[1:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_AP1R[UInt(opc2<1:0>)];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_AP1R[UInt(opc2<1:0>)];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

return ICC_AP1R_NS[UInt(opc2<1:0>)];
else

return ICC_AP1R[UInt(opc2<1:0>)];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
return ICC_AP1R_NS[UInt(opc2<1:0>)];

else
return ICC_AP1R[UInt(opc2<1:0>)];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

if SCR.NS == '0' then
return ICC_AP1R_S[UInt(opc2<1:0>)];

else
return ICC_AP1R_NS[UInt(opc2<1:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1001 0b0:n[1:0]

ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 2548

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_AP1R[UInt(opc2<1:0>)] = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

ICV_AP1R[UInt(opc2<1:0>)] = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

ICC_AP1R_NS[UInt(opc2<1:0>)] = R[t];
else

ICC_AP1R[UInt(opc2<1:0>)] = R[t];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
ICC_AP1R_NS[UInt(opc2<1:0>)] = R[t];

else
ICC_AP1R[UInt(opc2<1:0>)] = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

if SCR.NS == '0' then
ICC_AP1R_S[UInt(opc2<1:0>)] = R[t];

else
ICC_AP1R_NS[UInt(opc2<1:0>)] = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 2549

ICC_ASGI1R, Interrupt Controller Alias Software
Generated Interrupt Group 1 Register

The ICC_ASGI1R characteristics are:

Purpose
Generates Group 1 SGIs for the Security state that is not the current Security state.

Configuration
AArch32 System register ICC_ASGI1R performs the same function as AArch64 System register ICC_ASGI1R_EL1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_ASGI1R are UNKNOWN.

Under certain conditions a write to ICC_ASGI1R can generate Group 0 interrupts, see Forwarding an SGI to a target
PE.

Attributes
ICC_ASGI1R is a 64-bit register.

Field descriptions
The ICC_ASGI1R bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 Aff3 RS RES0 IRM Aff2

RES0 INTID Aff1 TargetList
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

RS, bits [47:44]

RangeSelector

Controls which group of 16 values is represented by the TargetList field.

TargetList[n] represents aff0 value ((RS * 16) + n).

When ICC_CTLR_EL1.RSS==0, RS is RES0.

When ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0, writing this register with RS != 0 is a CONSTRAINED
UNPREDICTABLE choice of :

• The write is ignored.
• The RS field is treated as 0.

ICC_ASGI1R, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 2550

Bits [43:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible values are:

IRM Meaning
0b0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target

list>.
0b1 Interrupts routed to all PEs in the system, excluding "self".

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the PE within a cluster
with an Affinity 0 value equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the Distributor. It is
IMPLEMENTATION DEFINED whether, in such cases, a Distributor can signal a system error.

Note

This restricts a system to sending targeted SGIs to PEs with an affinity 0
number that is less than 16. If SRE is set only for Secure EL3, software
executing at EL3 might use the System register interface to generate SGIs.
Therefore, the Distributor must always be able to receive and acknowledge
Generate SGI packets received from CPU interface regardless of the ARE
settings for a Security state. However, the Distributor might discard such
packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_ASGI1R
This register allows software executing in a Secure state to generate Non-secure Group 1 SGIs. It will also allow
software executing in a Non-secure state to generate Secure Group 1 SGIs, if permitted by the settings of
GICR_NSACR in the Redistributor corresponding to the target PE.

ICC_ASGI1R, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 2551

When GICD_CTLR.DS==0, Non-secure writes do not generate an interrupt for a target PE if not permitted by the
GICR_NSACR register associated with the target PE. For more information see Use of control registers for SGI
forwarding.

Note

Accesses from Secure Monitor mode are treated as Secure regardless of the
value of SCR.NS.

Accesses to this register use the following encodings:

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1100 0b0001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11'

then
AArch32.TakeMonitorTrapException();

else
ICC_ASGI1R = R[t2]:R[t];

elsif PSTATE.EL == EL2 then
if ICC_HSRE.SRE == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then

AArch32.TakeMonitorTrapException();
else

ICC_ASGI1R = R[t2]:R[t];
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
ICC_ASGI1R = R[t2]:R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_ASGI1R, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 2552

ICC_BPR0, Interrupt Controller Binary Point Register 0
The ICC_BPR0 characteristics are:

Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field.
The group priority field determines Group 0 interrupt preemption.

Configuration
AArch32 System register ICC_BPR0 bits [31:0] are architecturally mapped to AArch64 System register
ICC_BPR0_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_BPR0 are UNKNOWN.

Attributes
ICC_BPR0 is a 32-bit register.

Field descriptions
The ICC_BPR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BinaryPoint

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

The value of this field controls how the 8-bit interrupt priority field is split into a group priority field, that determines
interrupt preemption, and a subpriority field. This is done as follows:

Binary point
value

Group priority
field

Subpriority
field

Field with binary
point

0 [7:1] [0] ggggggg.s
1 [7:2] [1:0] gggggg.ss
2 [7:3] [2:0] ggggg.sss
3 [7:4] [3:0] gggg.ssss
4 [7:5] [4:0] ggg.sssss
5 [7:6] [5:0] gg.ssssss
6 [7] [6:0] g.sssssss
7 No preemption [7:0] .ssssssss

This field resets to an architecturally UNKNOWN value.

Accessing the ICC_BPR0
The minimum binary point value is derived from the number of implemented priority bits. The number of priority bits
is IMPLEMENTATION DEFINED, and reported by ICC_CTLR.PRIbits and ICC_MCTLR.PRIbits.

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum
value. On a reset, the binary point field is set to the minimum supported value.

ICC_BPR0, Interrupt Controller Binary Point Register 0

Page 2553

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1000 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_BPR0;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

return ICV_BPR0;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then

AArch32.TakeMonitorTrapException();
else

return ICC_BPR0;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
AArch32.TakeMonitorTrapException();

else
return ICC_BPR0;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICC_BPR0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1000 0b011

ICC_BPR0, Interrupt Controller Binary Point Register 0

Page 2554

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_BPR0 = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

ICV_BPR0 = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then

AArch32.TakeMonitorTrapException();
else

ICC_BPR0 = R[t];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
AArch32.TakeMonitorTrapException();

else
ICC_BPR0 = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

ICC_BPR0 = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_BPR0, Interrupt Controller Binary Point Register 0

Page 2555

ICC_BPR1, Interrupt Controller Binary Point Register 1
The ICC_BPR1 characteristics are:

Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field.
The group priority field determines Group 1 interrupt preemption.

Configuration
AArch32 System register ICC_BPR1 bits [31:0] (S) are architecturally mapped to AArch64 System register
ICC_BPR1_EL1[31:0] (S) .

AArch32 System register ICC_BPR1 bits [31:0] (NS) are architecturally mapped to AArch64 System register
ICC_BPR1_EL1[31:0] (NS) .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_BPR1 are UNKNOWN.

In GIC implementations supporting two Security states, this register is Banked.

Attributes
ICC_BPR1 is a 32-bit register.

Field descriptions
The ICC_BPR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BinaryPoint

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for Group 0 and Group 1 interrupts, the value of this field
controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption,
and a subpriority field. For more information about priorities, see Priority grouping.

Writing 0 to this field will set this field to its reset value.

If EL3 is implemented and ICC_MCTLR.CBPR_EL1S is 1:

• Accesses to this register at EL3 not in Monitor mode access the state of ICC_BPR0.
• When SCR_EL3.EEL2 is 1 and HCR_EL2.IMO is 1, Secure accesses to this register at EL1 access the state of

ICV_BPR1.
• Otherwise, Secure accesses to this register at EL1 access the state of ICC_BPR0.

If EL3 is implemented and ICC_MCTLR.CBPR_EL1NS is 1, Non-secure accesses to this register at EL1 or EL2 behave
as follows, depending on the values of HCR.IMO and SCR.IRQ:

ICC_BPR1, Interrupt Controller Binary Point Register 1

Page 2556

HCR.IMO SCR_IRQ Behavior
0b0 0b0 Non-secure EL1 and EL2 reads return

ICC_BPR0 + 1 saturated to 0b111. Non-secure
EL1 and EL2 writes are ignored.

0b0 0b1 Non-secure EL1 and EL2 accesses trap to EL3.
0b1 0b0 Non-secure EL1 accesses affect virtual

interrupts. Non-secure EL2 reads return
ICC_BPR0 + 1 saturated to 0b111. Non-secure
EL2 writes ignored.

0b1 0b1 Non-secure EL1 accesses affect virtual
interrupts. Non-secure EL2 accesses trap to
EL3.

If EL3 is not implemented and ICC_CTLR.CBPR is 1, Non-secure accesses to this register at EL1 or EL2 behave as
follows, depending on the values of HCR.IMO:

HCR.IMO Behavior
0b0 Non-secure EL1 and EL2 reads return ICC_BPR0 + 1

saturated to 0b111. Non-secure EL1 and EL2 writes are
ignored.

0b1 Non-secure EL1 accesses affect virtual interrupts. Non-secure
EL2 reads return ICC_BPR0 + 1 saturated to 0b111. Non-
secure EL2 writes are ignored.

This field resets to an IMPLEMENTATION DEFINED non-zero value.

Accessing the ICC_BPR1
When the PE resets into an Exception level that is using AArch32, the reset value is equal to:

• For the Secure copy of the register, the minimum value of ICC_BPR0 plus one.
• For the Non-secure copy of the register, the minimum value of ICC_BPR0.

Where the minimum value of ICC_BPR0 is IMPLEMENTATION DEFINED.

If EL3 is not implemented:

• If the PE is Secure this reset value is (minimum value of ICC_BPR0 plus one).
• If the PE is Non-secure this reset value is (minimum value of ICC_BPR0).

An attempt to program the binary point field to a value less than the reset value sets the field to the reset value.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b011

ICC_BPR1, Interrupt Controller Binary Point Register 1

Page 2557

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_BPR1;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_BPR1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

return ICC_BPR1_NS;
else

return ICC_BPR1;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
return ICC_BPR1_NS;

else
return ICC_BPR1;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

if SCR.NS == '0' then
return ICC_BPR1_S;

else
return ICC_BPR1_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b011

ICC_BPR1, Interrupt Controller Binary Point Register 1

Page 2558

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_BPR1 = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

ICV_BPR1 = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

ICC_BPR1_NS = R[t];
else

ICC_BPR1 = R[t];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
ICC_BPR1_NS = R[t];

else
ICC_BPR1 = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

if SCR.NS == '0' then
ICC_BPR1_S = R[t];

else
ICC_BPR1_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_BPR1, Interrupt Controller Binary Point Register 1

Page 2559

ICC_CTLR, Interrupt Controller Control Register
The ICC_CTLR characteristics are:

Purpose
Controls aspects of the behavior of the GIC CPU interface and provides information about the features implemented.

Configuration
AArch32 System register ICC_CTLR bits [31:0] (S) are architecturally mapped to AArch64 System register
ICC_CTLR_EL1[31:0] (S) .

AArch32 System register ICC_CTLR bits [31:0] (NS) are architecturally mapped to AArch64 System register
ICC_CTLR_EL1[31:0] (NS) .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_CTLR are UNKNOWN.

Attributes
ICC_CTLR is a 32-bit register.

Field descriptions
The ICC_CTLR bit assignments are:

313029282726252423222120 19 18 17 16 15 14 13121110 9 8 7 6 5 4 3 2 1 0
RES0 ExtRangeRSSRES0A3VSEIS IDbits PRIbitsRES0PMHE RES0 EOImodeCBPR

Bits [31:20]

Reserved, RES0.

ExtRange, bit [19]

Extended INTID range (read-only).

ExtRange Meaning
0b0 CPU interface does not support INTIDs in the range

1024..8191.
Behaviour is UNPREDICTABLE if the IRI delivers an interrupt
in the range 1024 to 8191 to the CPU interface.

Note
Arm strongly recommends that the
IRI is not configured to deliver
interrupts in this range to a PE that
does not support them.

0b1 CPU interface supports INTIDs in the range 1024..8191.
All INTIDs in the range 1024..8191 are treated as requiring
deactivation.

If EL3 is implemented, ICC_CTLR_EL1.ExtRange is an alias of ICC_CTLR_EL3.ExtRange.

RSS, bit [18]

Range Selector Support. Possible values are:

ICC_CTLR, Interrupt Controller Control Register

Page 2560

RSS Meaning
0b0 Targeted SGIs with affinity level 0 values of 0 - 15 are supported.
0b1 Targeted SGIs with affinity level 0 values of 0 - 255 are supported.

This bit is read-only.

Bits [17:16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

A3V Meaning
0b0 The CPU interface logic only supports zero values of Affinity 3 in

SGI generation System registers.
0b1 The CPU interface logic supports non-zero values of Affinity 3 in

SGI generation System registers.

If EL3 is implemented and using AArch32, this bit is an alias of ICC_MCTLR.A3V.

If EL3 is implemented and using AArch64, this bit is an alias of ICC_CTLR_EL3.A3V.

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports local generation of SEIs:

SEIS Meaning
0b0 The CPU interface logic does not support local generation of

SEIs.
0b1 The CPU interface logic supports local generation of SEIs.

If EL3 is implemented and using AArch32, this bit is an alias of ICC_MCTLR.SEIS.

If EL3 is implemented and using AArch64, this bit is an alias of ICC_CTLR_EL3.SEIS.

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of physical interrupt identifier bits supported:

IDbits Meaning
0b000 16 bits.
0b001 24 bits.

All other values are reserved.

If EL3 is implemented and using AArch32, this field is an alias of ICC_MCTLR.IDbits.

If EL3 is implemented and using AArch64, this field is an alias of ICC_CTLR_EL3.IDbits.

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.

An implementation that supports two Security states must implement at least 32 levels of physical priority (5 priority
bits).

An implementation that supports only a single Security state must implement at least 16 levels of physical priority (4
priority bits).

Note

ICC_CTLR, Interrupt Controller Control Register

Page 2561

This field always returns the number of priority bits implemented, regardless
of the Security state of the access or the value of GICD_CTLR.DS.

The division between group priority and subpriority is defined in the binary point registers ICC_BPR0 and ICC_BPR1.

If EL3 is implemented and using AArch32, physical accesses return the value from ICC_MCTLR.PRIbits.

If EL3 is implemented and using AArch64, physical accesses return the value from ICC_CTLR_EL3.PRIbits.

If EL3 is not implemented, physical accesses return the value from this field.

Bit [7]

Reserved, RES0.

PMHE, bit [6]

Priority Mask Hint Enable. Controls whether the priority mask register is used as a hint for interrupt distribution:

PMHE Meaning
0b0 Disables use of ICC_PMR as a hint for interrupt distribution.
0b1 Enables use of ICC_PMR as a hint for interrupt distribution.

If EL3 is implemented:

• If EL3 is using AArch32, this bit is an alias of ICC_MCTLR.PMHE.
• If EL3 is using AArch64, this bit is an alias of ICC_CTLR_EL3.PMHE.
• If GICD_CTLR.DS == 0, this bit is read-only.
• If GICD_CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or read-write:

• If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.
• If this bit is read/write, it resets to zero.

Bits [5:2]

Reserved, RES0.

EOImode, bit [1]

EOI mode for the current Security state. Controls whether a write to an End of Interrupt register also deactivates the
interrupt:

EOImode Meaning
0b0 ICC_EOIR0 and ICC_EOIR1 provide both priority drop and

interrupt deactivation functionality. Accesses to ICC_DIR are
UNPREDICTABLE.

0b1 ICC_EOIR0 and ICC_EOIR1 provide priority drop
functionality only. ICC_DIR provides interrupt deactivation
functionality.

If EL3 is implemented:

• If EL3 is using AArch32, this bit is an alias of ICC_MCTLR.EOImode_EL1{S, NS} where S or NS corresponds
to the current Security state.

• If EL3 is using AArch64, this bit is an alias of ICC_CTLR_EL3.EOImode_EL1{S, NS} where S or NS
corresponds to the current Security state.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or read-write:

• If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.
• If this bit is read/write, it resets to zero.

ICC_CTLR, Interrupt Controller Control Register

Page 2562

CBPR, bit [0]

Common Binary Point Register. Controls whether the same register is used for interrupt preemption of both Group 0
and Group 1 interrupts:

CBPR Meaning
0b0 ICC_BPR0 determines the preemption group for Group 0

interrupts only.
ICC_BPR1 determines the preemption group for Group 1
interrupts.

0b1 ICC_BPR0 determines the preemption group for both Group 0
and Group 1 interrupts.

If EL3 is implemented:

• If EL3 is using AArch32, this bit is an alias of ICC_MCTLR.CBPR_EL1{S,NS} where S or NS corresponds to
the current Security state.

• If EL3 is using AArch64, this bit is an alias of ICC_CTLR_EL3.CBPR_EL1{S,NS} where S or NS corresponds to
the current Security state.

• If GICD_CTLR.DS == 0, this bit is read-only.
• If GICD_CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or read-write:

• If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.
• If this bit is read/write, it resets to zero.

Accessing the ICC_CTLR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b100

ICC_CTLR, Interrupt Controller Control Register

Page 2563

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_CTLR;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_CTLR;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

return ICV_CTLR;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_CTLR;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11'

then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
return ICC_CTLR_NS;

else
return ICC_CTLR;

elsif PSTATE.EL == EL2 then
if ICC_HSRE.SRE == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

return ICC_CTLR_NS;
else

return ICC_CTLR;
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
if SCR.NS == '0' then

return ICC_CTLR_S;
else

return ICC_CTLR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b100

ICC_CTLR, Interrupt Controller Control Register

Page 2564

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_CTLR = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_CTLR = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

ICV_CTLR = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

ICV_CTLR = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11'

then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
ICC_CTLR_NS = R[t];

else
ICC_CTLR = R[t];

elsif PSTATE.EL == EL2 then
if ICC_HSRE.SRE == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

ICC_CTLR_NS = R[t];
else

ICC_CTLR = R[t];
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
if SCR.NS == '0' then

ICC_CTLR_S = R[t];
else

ICC_CTLR_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_CTLR, Interrupt Controller Control Register

Page 2565

ICC_DIR, Interrupt Controller Deactivate Interrupt
Register

The ICC_DIR characteristics are:

Purpose
When interrupt priority drop is separated from interrupt deactivation, a write to this register deactivates the specified
interrupt.

Configuration
AArch32 System register ICC_DIR performs the same function as AArch64 System register ICC_DIR_EL1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ICC_DIR
are UNKNOWN.

Attributes
ICC_DIR is a 32-bit register.

Field descriptions
The ICC_DIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the interrupt to be deactivated.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR.IDbits and
ICC_MCTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICC_DIR
There are two cases when writing to ICC_DIR_EL1 that were UNPREDICTABLE for a corresponding GICv2 write to
GICC_DIR:

• When EOImode == 0. GICv3 implementations must ignore such writes. In systems supporting system error
generation, an implementation might generate an SEI.

• When EOImode == 1 but no EOI has been issued. The interrupt will be de-activated by the Distributor,
however the active priority in the CPU interface for the interrupt will remain set (because no EOI was issued).

Accesses to this register use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1011 0b001

ICC_DIR, Interrupt Controller Deactivate Interrupt Register

Page 2566

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TDIR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TDIR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_DIR = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_DIR = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

ICV_DIR = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

ICV_DIR = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11'

then
AArch32.TakeMonitorTrapException();

else
ICC_DIR = R[t];

elsif PSTATE.EL == EL2 then
if ICC_HSRE.SRE == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then

AArch32.TakeMonitorTrapException();
else

ICC_DIR = R[t];
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
ICC_DIR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_DIR, Interrupt Controller Deactivate Interrupt Register

Page 2567

ICC_EOIR0, Interrupt Controller End Of Interrupt
Register 0

The ICC_EOIR0 characteristics are:

Purpose
A PE writes to this register to inform the CPU interface that it has completed the processing of the specified Group 0
interrupt.

Configuration
AArch32 System register ICC_EOIR0 performs the same function as AArch64 System register ICC_EOIR0_EL1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_EOIR0 are UNKNOWN.

Attributes
ICC_EOIR0 is a 32-bit register.

Field descriptions
The ICC_EOIR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICC_IAR0 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR.IDbits and
ICC_MCTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

If the EOImode bit for the current Exception level and Security state is 0, a write to this register drops the priority for
the interrupt, and also deactivates the interrupt.

If the EOImode bit for the current Exception level and Security state is 1, a write to this register only drops the
priority for the interrupt. Software must write to ICC_DIR to deactivate the interrupt.

The appropriate EOImode bit varies as follows:

• If EL3 is not implemented, the appropriate bit is ICC_CTLR.EOImode.
• If EL3 is implemented and the software is executing in Monitor mode, the appropriate bit is

ICC_MCTLR.EOImode_EL3.
• If EL3 is implemented and the software is not executing in Monitor mode, the bit depends on the current

Security state:
◦ If the software is executing in Secure state, the bit is ICC_CTLR.EOImode in the Secure instance of

ICC_CTLR. This is an alias of ICC_MCTLR.EOImode_EL1S.
◦ If the software is executing in Non-secure state, the bit is ICC_CTLR.EOImode in the Non-secure

instance of ICC_CTLR. This is an alias of ICC_MCTLR.EOImode_EL1NS.

ICC_EOIR0, Interrupt Controller End Of Interrupt Register 0

Page 2568

Accessing the ICC_EOIR0
A write to this register must correspond to the most recent valid read by this PE from an Interrupt Acknowledge
Register, and must correspond to the INTID that was read from ICC_IAR0, otherwise the system behavior is
UNPREDICTABLE. A valid read is a read that returns a valid INTID that is not a special INTID.

A write of a Special INTID is ignored. See Special INTIDs, for more information.

Accesses to this register use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_EOIR0 = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

ICV_EOIR0 = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then

AArch32.TakeMonitorTrapException();
else

ICC_EOIR0 = R[t];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
AArch32.TakeMonitorTrapException();

else
ICC_EOIR0 = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

ICC_EOIR0 = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_EOIR0, Interrupt Controller End Of Interrupt Register 0

Page 2569

ICC_EOIR1, Interrupt Controller End Of Interrupt
Register 1

The ICC_EOIR1 characteristics are:

Purpose
A PE writes to this register to inform the CPU interface that it has completed the processing of the specified Group 1
interrupt.

Configuration
AArch32 System register ICC_EOIR1 performs the same function as AArch64 System register ICC_EOIR1_EL1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_EOIR1 are UNKNOWN.

Attributes
ICC_EOIR1 is a 32-bit register.

Field descriptions
The ICC_EOIR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICC_IAR1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR.IDbits and
ICC_MCTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

If the EOImode bit for the current Exception level and Security state is 0, a write to this register drops the priority for
the interrupt, and also deactivates the interrupt.

If the EOImode bit for the current Exception level and Security state is 1, a write to this register only drops the
priority for the interrupt. Software must write to ICC_DIR to deactivate the interrupt.

The appropriate EOImode bit varies as follows:

• If EL3 is not implemented, the appropriate bit is ICC_CTLR.EOImode.
• If EL3 is implemented and the software is executing in Monitor mode, the appropriate bit is

ICC_MCTLR.EOImode_EL3.
• If EL3 is implemented and the software is not executing in Monitor mode, the bit depends on the current

Security state:
◦ If the software is executing in Secure state, the bit is ICC_CTLR.EOImode in the Secure instance of

ICC_CTLR. This is an alias of ICC_MCTLR.EOImode_EL1S.
◦ If the software is executing in Non-secure state, the bit is ICC_CTLR.EOImode in the Non-secure

instance of ICC_CTLR. This is an alias of ICC_MCTLR.EOImode_EL1NS.

ICC_EOIR1, Interrupt Controller End Of Interrupt Register 1

Page 2570

Accessing the ICC_EOIR1
A write to this register must correspond to the most recent valid read by this PE from an Interrupt Acknowledge
Register, and must correspond to the INTID that was read from ICC_IAR1, otherwise the system behavior is
UNPREDICTABLE. A valid read is a read that returns a valid INTID that is not a special INTID.

A write of a Special INTID is ignored. See Special INTIDs, for more information.

Accesses to this register use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_EOIR1 = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

ICV_EOIR1 = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

AArch32.TakeMonitorTrapException();
else

ICC_EOIR1 = R[t];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();

else
ICC_EOIR1 = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

ICC_EOIR1 = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_EOIR1, Interrupt Controller End Of Interrupt Register 1

Page 2571

ICC_HPPIR0, Interrupt Controller Highest Priority
Pending Interrupt Register 0

The ICC_HPPIR0 characteristics are:

Purpose
Indicates the highest priority pending Group 0 interrupt on the CPU interface.

Configuration
AArch32 System register ICC_HPPIR0 performs the same function as AArch64 System register ICC_HPPIR0_EL1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_HPPIR0 are UNKNOWN.

Attributes
ICC_HPPIR0 is a 32-bit register.

Field descriptions
The ICC_HPPIR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending interrupt, if that interrupt is observable at the current Security state and
Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason.
These special INTIDs can be one of: 1020, 1021, or 1023. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR.IDbits and
ICC_MCTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICC_HPPIR0
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1000 0b010

ICC_HPPIR0, Interrupt Controller Highest Priority Pending Interrupt Register 0

Page 2572

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_HPPIR0;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

return ICV_HPPIR0;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then

AArch32.TakeMonitorTrapException();
else

return ICC_HPPIR0;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
AArch32.TakeMonitorTrapException();

else
return ICC_HPPIR0;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICC_HPPIR0;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_HPPIR0, Interrupt Controller Highest Priority Pending Interrupt Register 0

Page 2573

ICC_HPPIR1, Interrupt Controller Highest Priority
Pending Interrupt Register 1

The ICC_HPPIR1 characteristics are:

Purpose
Indicates the highest priority pending Group 1 interrupt on the CPU interface.

Configuration
AArch32 System register ICC_HPPIR1 performs the same function as AArch64 System register ICC_HPPIR1_EL1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_HPPIR1 are UNKNOWN.

Attributes
ICC_HPPIR1 is a 32-bit register.

Field descriptions
The ICC_HPPIR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending interrupt, if that interrupt is observable at the current Security state and
Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason.
This special INTID can take the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR.IDbits and
ICC_MCTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICC_HPPIR1
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b010

ICC_HPPIR1, Interrupt Controller Highest Priority Pending Interrupt Register 1

Page 2574

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_HPPIR1;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_HPPIR1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

AArch32.TakeMonitorTrapException();
else

return ICC_HPPIR1;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();

else
return ICC_HPPIR1;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICC_HPPIR1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_HPPIR1, Interrupt Controller Highest Priority Pending Interrupt Register 1

Page 2575

ICC_HSRE, Interrupt Controller Hyp System Register
Enable register

The ICC_HSRE characteristics are:

Purpose
Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for
EL2.

Configuration
AArch32 System register ICC_HSRE bits [31:0] are architecturally mapped to AArch64 System register
ICC_SRE_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_HSRE are UNKNOWN.

Attributes
ICC_HSRE is a 32-bit register.

Field descriptions
The ICC_HSRE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 EnableDIBDFBSRE

Bits [31:4]

Reserved, RES0.

Enable, bit [3]

Enable. Enables lower Exception level access to ICC_SRE.

Enable Meaning
0b0 Non-secure EL1 accesses to ICC_SRE trap to EL2.
0b1 Non-secure EL1 accesses to ICC_SRE do not trap to EL2.

If ICC_HSRE.SRE is RAO/WI, an implementation is permitted to make the Enable bit RAO/WI.

If ICC_HSRE.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value of the bit.

This field resets to an architecturally UNKNOWN value.

DIB, bit [2]

Disable IRQ bypass.

DIB Meaning
0b0 IRQ bypass enabled.
0b1 IRQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS is 0, this field is a read-only alias of ICC_MSRE.DIB.

ICC_HSRE, Interrupt Controller Hyp System Register Enable register

Page 2576

If EL3 is implemented and GICD_CTLR.DS is 1, this field is a read-write alias of ICC_MSRE.DIB.

In systems that do not support IRQ bypass, this bit is RAO/WI.

This field resets to 0.

DFB, bit [1]

Disable FIQ bypass.

DFB Meaning
0b0 FIQ bypass enabled.
0b1 FIQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS is 0, this field is a read-only alias of ICC_MSRE.DFB.

If EL3 is implemented and GICD_CTLR.DS is 1, this field is a read-write alias of ICC_MSRE.DFB.

In systems that do not support FIQ bypass, this bit is RAO/WI.

This field resets to 0.

SRE, bit [0]

System Register Enable.

SRE Meaning
0b0 The memory-mapped interface must be used. Accesses at EL2 or

below to any ICH_* System register, or any EL1 or EL2 ICC_*
register other than ICC_SRE or ICC_HSRE, are UNDEFINED.

0b1 The System register interface to the ICH_* registers and the EL1
and EL2 ICC_* registers is enabled for EL2.

If software changes this bit from 1 to 0, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is RAO/WI.

If EL3 is implemented and using AArch64:

• When ICC_SRE_EL3.SRE==0 this bit is RAZ/WI.

If EL3 is implemented using AArch32:

• When ICC_MSRE.SRE==0 this bit is RAZ/WI.

This field resets to 0.

Accessing the ICC_HSRE
The GIC architecture permits, but does not require, that registers can be shared between memory-mapped registers
and the equivalent System registers. This means that if the memory-mapped registers have been accessed while
ICC_HSRE.SRE==0, then the System registers might be modified. Therefore, software must only rely on the reset
values of the System registers if there has been no use of the GIC functionality while the memory-mapped registers
are in use. Otherwise, the System register values must be treated as UNKNOWN.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b1001 0b101

ICC_HSRE, Interrupt Controller Hyp System Register Enable register

Page 2577

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && ICC_SRE_EL3.Enable == '0' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif ICC_MSRE.Enable == '0' then
UNDEFINED;

else
return ICC_HSRE;

elsif PSTATE.EL == EL3 then
if !EL2Enabled() then

UNDEFINED;
else

return ICC_HSRE;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b1001 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && ICC_SRE_EL3.Enable == '0' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif ICC_MSRE.Enable == '0' then
UNDEFINED;

else
ICC_HSRE = R[t];

elsif PSTATE.EL == EL3 then
if !EL2Enabled() then

UNDEFINED;
else

ICC_HSRE = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_HSRE, Interrupt Controller Hyp System Register Enable register

Page 2578

ICC_IAR0, Interrupt Controller Interrupt Acknowledge
Register 0

The ICC_IAR0 characteristics are:

Purpose
The PE reads this register to obtain the INTID of the signaled Group 0 interrupt. This read acts as an acknowledge for
the interrupt.

Configuration
AArch32 System register ICC_IAR0 performs the same function as AArch64 System register ICC_IAR0_EL1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_IAR0 are UNKNOWN.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU
interface logic must ensure that reads of this register are self-synchronising when interrupts are masked by the PE
(that is when PSTATE.{I,F} == {0,0}). This ensures that the effect of activating an interrupt on the signaling of
interrupt exceptions is observed when a read of this register is architecturally executed so that no spurious interrupt
exception occurs if interrupts are unmasked by an instruction immediately following the read. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes
ICC_IAR0 is a 32-bit register.

Field descriptions
The ICC_IAR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

This is the INTID of the highest priority pending interrupt, if that interrupt is of sufficient priority for it to be signaled
to the PE, and if it can be acknowledged at the current Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason.
These special INTIDs can be one of: 1020, 1021, or 1023. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR.IDbits and
ICC_MCTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICC_IAR0
Accesses to this register use the following encodings:

ICC_IAR0, Interrupt Controller Interrupt Acknowledge Register 0

Page 2579

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_IAR0;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

return ICV_IAR0;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then

AArch32.TakeMonitorTrapException();
else

return ICC_IAR0;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
AArch32.TakeMonitorTrapException();

else
return ICC_IAR0;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICC_IAR0;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_IAR0, Interrupt Controller Interrupt Acknowledge Register 0

Page 2580

ICC_IAR1, Interrupt Controller Interrupt Acknowledge
Register 1

The ICC_IAR1 characteristics are:

Purpose
The PE reads this register to obtain the INTID of the signaled Group 1 interrupt. This read acts as an acknowledge for
the interrupt.

Configuration
AArch32 System register ICC_IAR1 performs the same function as AArch64 System register ICC_IAR1_EL1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_IAR1 are UNKNOWN.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU
interface logic must ensure that reads of this register are self-synchronising when interrupts are masked by the PE
(that is when PSTATE.{I,F} == {0,0}). This ensures that the effect of activating an interrupt on the signaling of
interrupt exceptions is observed when a read of this register is architecturally executed so that no spurious interrupt
exception occurs if interrupts are unmasked by an instruction immediately following the read. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes
ICC_IAR1 is a 32-bit register.

Field descriptions
The ICC_IAR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

This is the INTID of the highest priority pending interrupt, if that interrupt is of sufficient priority for it to be signaled
to the PE, and if it can be acknowledged at the current Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason.
This special INTID can take the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR.IDbits and
ICC_MCTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICC_IAR1
Accesses to this register use the following encodings:

ICC_IAR1, Interrupt Controller Interrupt Acknowledge Register 1

Page 2581

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_IAR1;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_IAR1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

AArch32.TakeMonitorTrapException();
else

return ICC_IAR1;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();

else
return ICC_IAR1;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICC_IAR1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_IAR1, Interrupt Controller Interrupt Acknowledge Register 1

Page 2582

ICC_IGRPEN0, Interrupt Controller Interrupt Group 0
Enable register

The ICC_IGRPEN0 characteristics are:

Purpose
Controls whether Group 0 interrupts are enabled or not.

Configuration
AArch32 System register ICC_IGRPEN0 bits [31:0] are architecturally mapped to AArch64 System register
ICC_IGRPEN0_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_IGRPEN0 are UNKNOWN.

Attributes
ICC_IGRPEN0 is a 32-bit register.

Field descriptions
The ICC_IGRPEN0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Enable

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables Group 0 interrupts.

Enable Meaning
0b0 Group 0 interrupts are disabled.
0b1 Group 0 interrupts are enabled.

Virtual accesses to this register update ICH_VMCR.VENG0.

This field resets to 0.

Accessing the ICC_IGRPEN0
The lowest Exception level at which this register can be accessed is governed by the Exception level to which FIQ is
routed. This routing depends on SCR.FIQ, SCR.NS and HCR.FMO.

If an interrupt is pending within the CPU interface when Enable becomes 0, the interrupt must be released to allow
the Distributor to forward the interrupt to a different PE.

Accesses to this register use the following encodings:

ICC_IGRPEN0, Interrupt Controller Interrupt Group 0 Enable register

Page 2583

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_IGRPEN0;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

return ICV_IGRPEN0;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then

AArch32.TakeMonitorTrapException();
else

return ICC_IGRPEN0;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
AArch32.TakeMonitorTrapException();

else
return ICC_IGRPEN0;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICC_IGRPEN0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b110

ICC_IGRPEN0, Interrupt Controller Interrupt Group 0 Enable register

Page 2584

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_IGRPEN0 = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

ICV_IGRPEN0 = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then

AArch32.TakeMonitorTrapException();
else

ICC_IGRPEN0 = R[t];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
AArch32.TakeMonitorTrapException();

else
ICC_IGRPEN0 = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

ICC_IGRPEN0 = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_IGRPEN0, Interrupt Controller Interrupt Group 0 Enable register

Page 2585

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1
Enable register

The ICC_IGRPEN1 characteristics are:

Purpose
Controls whether Group 1 interrupts are enabled for the current Security state.

Configuration
AArch32 System register ICC_IGRPEN1 bits [31:0] (S) are architecturally mapped to AArch64 System register
ICC_IGRPEN1_EL1[31:0] (S) .

AArch32 System register ICC_IGRPEN1 bits [31:0] (NS) are architecturally mapped to AArch64 System register
ICC_IGRPEN1_EL1[31:0] (NS) .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_IGRPEN1 are UNKNOWN.

Attributes
ICC_IGRPEN1 is a 32-bit register.

Field descriptions
The ICC_IGRPEN1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Enable

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables Group 1 interrupts for the current Security state.

Enable Meaning
0b0 Group 1 interrupts are disabled for the current Security state.
0b1 Group 1 interrupts are enabled for the current Security state.

Virtual accesses to this register update ICH_VMCR.VENG1.

If EL3 is present:

• This bit is a read/write alias of ICC_MGRPEN1.EnableGrp1{S, NS} as appropriate if EL3 is using AArch32, or
ICC_IGRPEN1_EL3.EnableGrp1{S, NS} as appropriate if EL3 is using AArch64.

• When this register is accessed at EL3, the copy of this register appropriate to the current setting of SCR.NS is
accessed.

This field resets to 0.

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register

Page 2586

Accessing the ICC_IGRPEN1
The lowest Exception level at which this register can be accessed is governed by the Exception level to which IRQ is
routed. This routing depends on SCR.IRQ, SCR.NS and HCR.IMO.

If an interrupt is pending within the CPU interface when Enable becomes 0, the interrupt must be released to allow
the Distributor to forward the interrupt to a different PE.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_IGRPEN1;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_IGRPEN1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

return ICC_IGRPEN1_NS;
else

return ICC_IGRPEN1;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
return ICC_IGRPEN1_NS;

else
return ICC_IGRPEN1;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

if SCR.NS == '0' then
return ICC_IGRPEN1_S;

else
return ICC_IGRPEN1_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b111

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register

Page 2587

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_IGRPEN1 = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

ICV_IGRPEN1 = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

ICC_IGRPEN1_NS = R[t];
else

ICC_IGRPEN1 = R[t];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
ICC_IGRPEN1_NS = R[t];

else
ICC_IGRPEN1 = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

if SCR.NS == '0' then
ICC_IGRPEN1_S = R[t];

else
ICC_IGRPEN1_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register

Page 2588

ICC_MCTLR, Interrupt Controller Monitor Control
Register

The ICC_MCTLR characteristics are:

Purpose
Controls aspects of the behavior of the GIC CPU interface and provides information about the features implemented.

Configuration
AArch32 System register ICC_MCTLR bits [31:0] can be mapped to AArch64 System register ICC_CTLR_EL3[31:0] ,
but this is not architecturally mandated.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_MCTLR are UNKNOWN.

Attributes
ICC_MCTLR is a 32-bit register.

Field descriptions
The ICC_MCTLR bit assignments are:

313029282726252423222120 19 18 17 16 15 14 13121110 9 8 7 6 5 4 3 2 1 0
RES0 ExtRangeRSSnDSRES0A3VSEIS IDbits PRIbitsRES0PMHERMEOImode_EL1NSEOImode_EL1SEOImode_EL3CBPR_EL1NSCBPR_EL1S

Bits [31:20]

Reserved, RES0.

ExtRange, bit [19]

Extended INTID range (read-only).

ExtRange Meaning
0b0 CPU interface does not support INTIDs in the range

1024..8191.
Behavior is UNPREDICTABLE if the IRI delivers an interrupt in
the range 1024 to 8191 to the CPU interface.

Note
Arm strongly recommends that the
IRI is not configured to deliver
interrupts in this range to a PE that
does not support them.

0b1 CPU interface supports INTIDs in the range 1024..8191
All INTIDs in the range 1024..8191 are treated as requiring
deactivation.

RSS, bit [18]

Range Selector Support. Possible values are:

ICC_MCTLR, Interrupt Controller Monitor Control Register

Page 2589

RSS Meaning
0b0 Targeted SGIs with affinity level 0 values of 0 - 15 are supported.
0b1 Targeted SGIs with affinity level 0 values of 0 - 255 are supported.

This bit is read-only.

nDS, bit [17]

Disable Security not supported. Read-only and writes are ignored.

nDS Meaning
0b0 The CPU interface logic supports disabling of security.
0b1 The CPU interface logic does not support disabling of security,

and requires that security is not disabled.

Bit [16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored.

A3V Meaning
0b0 The CPU interface logic does not support non-zero values of the

Aff3 field in SGI generation System registers.
0b1 The CPU interface logic supports non-zero values of the Aff3 field

in SGI generation System registers.

If EL3 is present, ICC_CTLR.A3V is an alias of ICC_MCTLR.A3V

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports generation of SEIs.

SEIS Meaning
0b0 The CPU interface logic does not support generation of SEIs.
0b1 The CPU interface logic supports generation of SEIs.

If EL3 is present, ICC_CTLR.SEIS is an alias of ICC_MCTLR.SEIS

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. Indicates the number of physical interrupt identifier bits supported.

IDbits Meaning
0b000 16 bits.
0b001 24 bits.

All other values are reserved.

If EL3 is present, ICC_CTLR.IDbits is an alias of ICC_MCTLR.IDbits

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.

An implementation that supports two Security states must implement at least 32 levels of physical priority (5 priority
bits).

An implementation that supports only a single Security state must implement at least 16 levels of physical priority (4
priority bits).

ICC_MCTLR, Interrupt Controller Monitor Control Register

Page 2590

Note

This field always returns the number of priority bits implemented, regardless
of the value of SCR.NS or the value of GICD_CTLR.DS.

The division between group priority and subpriority is defined in the binary point registers ICC_BPR0 and ICC_BPR1.

This field determines the minimum value of ICC_BPR0.

Bit [7]

Reserved, RES0.

PMHE, bit [6]

Priority Mask Hint Enable.

PMHE Meaning
0b0 Disables use of the priority mask register as a hint for interrupt

distribution.
0b1 Enables use of the priority mask register as a hint for interrupt

distribution.

Software must write ICC_PMR to 0xFF before clearing this field to 0.

An implementation might choose to make this field RAO/WI.

If EL3 is present, ICC_CTLR.PMHE is an alias of ICC_MCTLR.PMHE.

This field resets to 0.

RM, bit [5]

SBZ.

The equivalent bit in AArch64 is the Routing Modifier bit. This feature is not supported when EL3 is using AArch32.

This field resets to an architecturally UNKNOWN value.

EOImode_EL1NS, bit [4]

EOI mode for interrupts handled at Non-secure EL1 and EL2. Controls whether a write to an End of Interrupt register
also deactivates the interrupt.

EOImode_EL1NS Meaning
0b0 ICC_EOIR0 and ICC_EOIR1 provide both priority

drop and interrupt deactivation functionality.
Accesses to ICC_DIR are UNPREDICTABLE.

0b1 ICC_EOIR0 and ICC_EOIR1 provide priority drop
functionality only. ICC_DIR provides interrupt
deactivation functionality.

If EL3 is present, ICC_CTLR(NS).EOImode is an alias of ICC_MCTLR.EOImode_EL1NS.

This field resets to an architecturally UNKNOWN value.

EOImode_EL1S, bit [3]

EOI mode for interrupts handled at Secure EL1. Controls whether a write to an End of Interrupt register also
deactivates the interrupt.

ICC_MCTLR, Interrupt Controller Monitor Control Register

Page 2591

EOImode_EL1S Meaning
0b0 ICC_EOIR0 and ICC_EOIR1 provide both priority drop

and interrupt deactivation functionality. Accesses to
ICC_DIR are UNPREDICTABLE.

0b1 ICC_EOIR0 and ICC_EOIR1 provide priority drop
functionality only. ICC_DIR provides interrupt
deactivation functionality.

If EL3 is present, ICC_CTLR(S).EOImode is an alias of ICC_MCTLR.EOImode_EL1S.

This field resets to an architecturally UNKNOWN value.

EOImode_EL3, bit [2]

EOI mode for interrupts handled at EL3. Controls whether a write to an End of Interrupt register also deactivates the
interrupt.

EOImode_EL3 Meaning
0b0 ICC_EOIR0 and ICC_EOIR1 provide both priority drop

and interrupt deactivation functionality. Accesses to
ICC_DIR are UNPREDICTABLE.

0b1 ICC_EOIR0 and ICC_EOIR1 provide priority drop
functionality only. ICC_DIR provides interrupt
deactivation functionality.

This field resets to an architecturally UNKNOWN value.

CBPR_EL1NS, bit [1]

Common Binary Point Register, EL1 Non-secure. Controls whether the same register is used for interrupt preemption
of both Group 0 and Group 1 Non-secure interrupts at EL1 and EL2.

CBPR_EL1NS Meaning
0b0 ICC_BPR0 determines the preemption group for Group

0 interrupts only.
ICC_BPR1 determines the preemption group for Non-
secure Group 1 interrupts.

0b1 ICC_BPR0 determines the preemption group for Group
0 interrupts and Non-secure Group 1 interrupts. Non-
secure accesses to GICC_BPR and ICC_BPR1 access the
state of ICC_BPR0.

If EL3 is present, ICC_CTLR(NS).CBPR is an alias of ICC_MCTLR.CBPR_EL1NS.

This field resets to an architecturally UNKNOWN value.

CBPR_EL1S, bit [0]

Common Binary Point Register, EL1 Secure. Controls whether the same register is used for interrupt preemption of
both Group 0 and Group 1 Secure interrupts in Secure non-Monitor modes.

CBPR_EL1S Meaning
0b0 ICC_BPR0 determines the preemption group for Group 0

interrupts only.
ICC_BPR1 determines the preemption group for Secure
Group 1 interrupts.

0b1 ICC_BPR0 determines the preemption group for Group 0
interrupts and Secure Group 1 interrupts. Secure EL1
accesses, or EL3 accesses when not in Monitor mode, to
ICC_BPR1 access the state of ICC_BPR0.

If EL3 is present, ICC_CTLR(S).CBPR is an alias of ICC_MCTLR.CBPR_EL1S.

This field resets to an architecturally UNKNOWN value.

ICC_MCTLR, Interrupt Controller Monitor Control Register

Page 2592

Accessing the ICC_MCTLR
This register is only accessible when executing in Monitor mode.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b110 0b1100 0b1100 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
return ICC_MCTLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b110 0b1100 0b1100 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
ICC_MCTLR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_MCTLR, Interrupt Controller Monitor Control Register

Page 2593

ICC_MGRPEN1, Interrupt Controller Monitor Interrupt
Group 1 Enable register

The ICC_MGRPEN1 characteristics are:

Purpose
Controls whether Group 1 interrupts are enabled or not.

Configuration
AArch32 System register ICC_MGRPEN1 bits [31:0] can be mapped to AArch64 System register
ICC_IGRPEN1_EL3[31:0] , but this is not architecturally mandated.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_MGRPEN1 are UNKNOWN.

Attributes
ICC_MGRPEN1 is a 32-bit register.

Field descriptions
The ICC_MGRPEN1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 EnableGrp1SEnableGrp1NS

Bits [31:2]

Reserved, RES0.

EnableGrp1S, bit [1]

Enables Group 1 interrupts for the Secure state.

EnableGrp1S Meaning
0b0 Secure Group 1 interrupts are disabled.
0b1 Secure Group 1 interrupts are enabled.

The Secure ICC_IGRPEN1.Enable bit is a read/write alias of the ICC_MGRPEN1.EnableGrp1S bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N model, then the interrupt will
target another PE as a result of the Enable bit changing from 1 to 0.

This field resets to 0.

EnableGrp1NS, bit [0]

Enables Group 1 interrupts for the Non-secure state.

EnableGrp1NS Meaning
0b0 Non-secure Group 1 interrupts are disabled.
0b1 Non-secure Group 1 interrupts are enabled.

The Non-secure ICC_IGRPEN1.Enable bit is a read/write alias of the ICC_MGRPEN1.EnableGrp1NS bit.

ICC_MGRPEN1, Interrupt Controller Monitor Interrupt Group 1 Enable register

Page 2594

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N model, then the interrupt will
target another PE as a result of the Enable bit changing from 1 to 0.

This field resets to 0.

Accessing the ICC_MGRPEN1
If an interrupt is pending within the CPU interface when an Enable bit becomes 0, the interrupt must be released to
allow the Distributor to forward the interrupt to a different PE.

This register is only accessible when executing in Monitor mode.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b110 0b1100 0b1100 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
return ICC_MGRPEN1;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b110 0b1100 0b1100 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
ICC_MGRPEN1 = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_MGRPEN1, Interrupt Controller Monitor Interrupt Group 1 Enable register

Page 2595

ICC_MSRE, Interrupt Controller Monitor System
Register Enable register

The ICC_MSRE characteristics are:

Purpose
Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for
EL3.

Configuration
AArch32 System register ICC_MSRE bits [31:0] can be mapped to AArch64 System register ICC_SRE_EL3[31:0] , but
this is not architecturally mandated.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_MSRE are UNKNOWN.

Attributes
ICC_MSRE is a 32-bit register.

Field descriptions
The ICC_MSRE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 EnableDIBDFBSRE

Bits [31:4]

Reserved, RES0.

Enable, bit [3]

Enable. Enables lower Exception level access to ICC_SRE and ICC_HSRE.

Enable Meaning
0b0 Secure EL1 accesses to Secure ICC_SRE trap to EL3.

EL2 accesses to Non-secure ICC_SRE and ICC_HSRE trap to
EL3.
Non-secure EL1 accesses to ICC_SRE trap to EL3, unless these
accesses are trapped to EL2 as a result of ICC_HSRE.Enable
== 0.

0b1 Secure EL1 accesses to Secure ICC_SRE do not trap to EL3.
EL2 accesses to Non-secure ICC_SRE and ICC_HSRE do not
trap to EL3.
Non-secure EL1 accesses to ICC_SRE do not trap to EL3.

If ICC_MSRE.SRE is RAO/WI, an implementation is permitted to make the Enable bit RAO/WI.

If ICC_MSRE.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value of the bit.

This field resets to an architecturally UNKNOWN value.

ICC_MSRE, Interrupt Controller Monitor System Register Enable register

Page 2596

DIB, bit [2]

Disable IRQ bypass.

DIB Meaning
0b0 IRQ bypass enabled.
0b1 IRQ bypass disabled.

In systems that do not support IRQ bypass, this bit is RAO/WI.

This field resets to 0.

DFB, bit [1]

Disable FIQ bypass.

DFB Meaning
0b0 FIQ bypass enabled.
0b1 FIQ bypass disabled.

In systems that do not support FIQ bypass, this bit is RAO/WI.

This field resets to 0.

SRE, bit [0]

System Register Enable.

SRE Meaning
0b0 The memory-mapped interface must be used. Accesses at EL3 or

below to any ICH_* System register, or any EL1, EL2, or EL3
ICC_* register other than ICC_SRE, ICC_HSRE, or ICC_MSRE, are
UNDEFINED.

0b1 The System register interface to the ICH_* registers and the EL1,
EL2, and EL3 ICC_* registers is enabled for EL3.

If software changes this bit from 1 to 0, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is RAO/WI.

This field resets to 0.

Accessing the ICC_MSRE
This register is always System register accessible.

The GIC architecture permits, but does not require, that registers can be shared between memory-mapped registers
and the equivalent System registers. This means that if the memory-mapped registers have been accessed while
ICC_MSRE.SRE==0, then the System registers might be modified. Therefore, software must only rely on the reset
values of the System registers if there has been no use of the GIC functionality while the memory-mapped registers
are in use. Otherwise, the System register values must be treated as UNKNOWN.

This register is only accessible when executing in Monitor mode.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b110 0b1100 0b1100 0b101

ICC_MSRE, Interrupt Controller Monitor System Register Enable register

Page 2597

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

return ICC_MSRE;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b110 0b1100 0b1100 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' && CP15SDISABLE2 == HIGH then
UNDEFINED;

else
ICC_MSRE = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_MSRE, Interrupt Controller Monitor System Register Enable register

Page 2598

ICC_PMR, Interrupt Controller Interrupt Priority Mask
Register

The ICC_PMR characteristics are:

Purpose
Provides an interrupt priority filter. Only interrupts with a higher priority than the value in this register are signaled to
the PE.

Configuration
AArch32 System register ICC_PMR bits [31:0] are architecturally mapped to AArch64 System register
ICC_PMR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_PMR are UNKNOWN.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU
interface logic must ensure that writes to this register are self-synchronising. This ensures that no interrupts below
the written PMR value will be taken after a write to this register is architecturally executed. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes
ICC_PMR is a 32-bit register.

Field descriptions
The ICC_PMR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Priority

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The priority mask level for the CPU interface. If the priority of an interrupt is higher than the value indicated by this
field, the interface signals the interrupt to the PE.

The possible priority field values are as follows:

Implemented
priority bits

Possible priority field
values

Number of
priority levels

[7:0] 0x00-0xFF (0-255), all
values

256

[7:1] 0x00-0xFE (0-254), even
values only

128

[7:2] 0x00-0xFC (0-252), in steps
of 4

64

[7:3] 0x00-0xF8 (0-248), in steps
of 8

32

[7:4] 0x00-0xF0 (0-240), in steps
of 16

16

ICC_PMR, Interrupt Controller Interrupt Priority Mask Register

Page 2599

Unimplemented priority bits are RAZ/WI.

This field resets to 0.

Accessing the ICC_PMR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0100 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_PMR;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_PMR;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

return ICV_PMR;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_PMR;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11'

then
AArch32.TakeMonitorTrapException();

else
return ICC_PMR;

elsif PSTATE.EL == EL2 then
if ICC_HSRE.SRE == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then

AArch32.TakeMonitorTrapException();
else

return ICC_PMR;
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
return ICC_PMR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0100 0b0110 0b000

ICC_PMR, Interrupt Controller Interrupt Priority Mask Register

Page 2600

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_PMR = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_PMR = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

ICV_PMR = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

ICV_PMR = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11'

then
AArch32.TakeMonitorTrapException();

else
ICC_PMR = R[t];

elsif PSTATE.EL == EL2 then
if ICC_HSRE.SRE == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then

AArch32.TakeMonitorTrapException();
else

ICC_PMR = R[t];
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
ICC_PMR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_PMR, Interrupt Controller Interrupt Priority Mask Register

Page 2601

ICC_RPR, Interrupt Controller Running Priority
Register

The ICC_RPR characteristics are:

Purpose
Indicates the Running priority of the CPU interface.

Configuration
AArch32 System register ICC_RPR performs the same function as AArch64 System register ICC_RPR_EL1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ICC_RPR
are UNKNOWN.

Attributes
ICC_RPR is a 32-bit register.

Field descriptions
The ICC_RPR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Priority

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the CPU interface. This is the group priority of the current active interrupt.

The priority returned is the group priority as if the BPR for the current Exception level and Security state was set to
the minimum value of BPR for the number of implemented priority bits.

Note

If 8 bits of priority are implemented the group priority is bits[7:1] of the
priority.

Accessing the ICC_RPR
If there are no active interrupts on the CPU interface, or all active interrupts have undergone a priority drop, the value
returned is the Idle priority.

Software cannot determine the number of implemented priority bits from a read of this register.

Accesses to this register use the following encodings:

ICC_RPR, Interrupt Controller Running Priority Register

Page 2602

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1011 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_RPR;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_RPR;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

return ICV_RPR;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_RPR;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11'

then
AArch32.TakeMonitorTrapException();

else
return ICC_RPR;

elsif PSTATE.EL == EL2 then
if ICC_HSRE.SRE == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then

AArch32.TakeMonitorTrapException();
else

return ICC_RPR;
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
return ICC_RPR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_RPR, Interrupt Controller Running Priority Register

Page 2603

ICC_SGI0R, Interrupt Controller Software Generated
Interrupt Group 0 Register

The ICC_SGI0R characteristics are:

Purpose
Generates Secure Group 0 SGIs.

Configuration
AArch32 System register ICC_SGI0R performs the same function as AArch64 System register ICC_SGI0R_EL1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_SGI0R are UNKNOWN.

Attributes
ICC_SGI0R is a 64-bit register.

Field descriptions
The ICC_SGI0R bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 Aff3 RS RES0 IRM Aff2

RES0 INTID Aff1 TargetList
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

RS, bits [47:44]

RangeSelector

Controls which group of 16 values is represented by the TargetList field.

TargetList[n] represents aff0 value ((RS * 16) + n).

When ICC_CTLR_EL1.RSS==0, RS is RES0.

When ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0, writing this register with RS != 0 is a CONSTRAINED
UNPREDICTABLE choice of :

• The write is ignored.
• The RS field is treated as 0.

ICC_SGI0R, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 2604

Bits [43:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible values are:

IRM Meaning
0b0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target

list>.
0b1 Interrupts routed to all PEs in the system, excluding "self".

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the PE within a cluster
with an Affinity 0 value equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the Distributor. It is
IMPLEMENTATION DEFINED whether, in such cases, a Distributor can signal a system error.

Note

This restricts a system to sending targeted SGIs to PEs with an affinity 0
number that is less than 16. If SRE is set only for Secure EL3, software
executing at EL3 might use the System register interface to generate SGIs.
Therefore, the Distributor must always be able to receive and acknowledge
Generate SGI packets received from CPU interface regardless of the ARE
settings for a Security state. However, the Distributor might discard such
packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_SGI0R
This register allows software executing in a Secure state to generate Group 0 SGIs. It will also allow software
executing in a Non-secure state to generate Group 0 SGIs, if permitted by the settings of GICR_NSACR in the
Redistributor corresponding to the target PE.

ICC_SGI0R, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 2605

When GICD_CTLR.DS==0, Non-secure writes do not generate an interrupt for a target PE if not permitted by the
GICR_NSACR register associated with the target PE. For more information see Use of control registers for SGI
forwarding.

Note

Accesses from Secure Monitor mode are treated as Secure regardless of the
value of SCR.NS.

Accesses to this register use the following encodings:

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1100 0b0010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11'

then
AArch32.TakeMonitorTrapException();

else
ICC_SGI0R = R[t2]:R[t];

elsif PSTATE.EL == EL2 then
if ICC_HSRE.SRE == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then

AArch32.TakeMonitorTrapException();
else

ICC_SGI0R = R[t2]:R[t];
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
ICC_SGI0R = R[t2]:R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_SGI0R, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 2606

ICC_SGI1R, Interrupt Controller Software Generated
Interrupt Group 1 Register

The ICC_SGI1R characteristics are:

Purpose
Generates Group 1 SGIs for the current Security state.

Configuration
AArch32 System register ICC_SGI1R performs the same function as AArch64 System register ICC_SGI1R_EL1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_SGI1R are UNKNOWN.

Under certain conditions a write to ICC_SGI1R can generate Group 0 interrupts, see Forwarding an SGI to a target
PE.

Attributes
ICC_SGI1R is a 64-bit register.

Field descriptions
The ICC_SGI1R bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 Aff3 RS RES0 IRM Aff2

RES0 INTID Aff1 TargetList
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

RS, bits [47:44]

RangeSelector

Controls which group of 16 values is represented by the TargetList field.

TargetList[n] represents aff0 value ((RS * 16) + n).

When ICC_CTLR_EL1.RSS==0, RS is RES0.

When ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0, writing this register with RS != 0 is a CONSTRAINED
UNPREDICTABLE choice of :

• The write is ignored.
• The RS field is treated as 0.

ICC_SGI1R, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 2607

Bits [43:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible values are:

IRM Meaning
0b0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target

list>.
0b1 Interrupts routed to all PEs in the system, excluding "self".

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the PE within a cluster
with an Affinity 0 value equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the Distributor. It is
IMPLEMENTATION DEFINED whether, in such cases, a Distributor can signal a system error.

Note

This restricts a system to sending targeted SGIs to PEs with an affinity 0
number that is less than 16. If SRE is set only for Secure EL3, software
executing at EL3 might use the System register interface to generate SGIs.
Therefore, the Distributor must always be able to receive and acknowledge
Generate SGI packets received from CPU interface regardless of the ARE
settings for a Security state. However, the Distributor might discard such
packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_SGI1R

Note

Accesses from Secure Monitor mode are treated as Secure regardless of the
value of SCR.NS.

ICC_SGI1R, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 2608

Accesses to this register use the following encodings:

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1100 0b0000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11'

then
AArch32.TakeMonitorTrapException();

else
ICC_SGI1R = R[t2]:R[t];

elsif PSTATE.EL == EL2 then
if ICC_HSRE.SRE == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then

AArch32.TakeMonitorTrapException();
else

ICC_SGI1R = R[t2]:R[t];
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
ICC_SGI1R = R[t2]:R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_SGI1R, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 2609

ICC_SRE, Interrupt Controller System Register Enable
register

The ICC_SRE characteristics are:

Purpose
Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for
EL0 and EL1.

Configuration
AArch32 System register ICC_SRE bits [31:0] (S) are architecturally mapped to AArch64 System register
ICC_SRE_EL1[31:0] (S) .

AArch32 System register ICC_SRE bits [31:0] (NS) are architecturally mapped to AArch64 System register
ICC_SRE_EL1[31:0] (NS) .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ICC_SRE
are UNKNOWN.

Attributes
ICC_SRE is a 32-bit register.

Field descriptions
The ICC_SRE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 DIBDFBSRE

Bits [31:3]

Reserved, RES0.

DIB, bit [2]

Disable IRQ bypass.

DIB Meaning
0b0 IRQ bypass enabled.
0b1 IRQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS == 0, this field is a read-only alias of ICC_MSRE.DIB.

If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a read-write alias of
ICC_MSRE.DIB.

If EL3 is not implemented and EL2 is implemented, this field is a read-only alias of ICC_HSRE.DIB.

If GICD_CTLR.DS == 1 and EL2 is implemented, this field is a read-only alias of ICC_HSRE.DIB.

In systems that do not support IRQ bypass, this field is RAO/WI.

This field resets to 0.

ICC_SRE, Interrupt Controller System Register Enable register

Page 2610

DFB, bit [1]

Disable FIQ bypass.

DFB Meaning
0b0 FIQ bypass enabled.
0b1 FIQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS == 0, this field is a read-only alias of ICC_MSRE.DFB.

If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a read-write alias of
ICC_MSRE.DFB.

If EL3 is not implemented and EL2 is implemented, this field is a read-only alias of ICC_HSRE.DFB.

If GICD_CTLR.DS == 1 and EL2 is implemented, this field is a read-only alias of ICC_HSRE.DFB.

In systems that do not support FIQ bypass, this field is RAO/WI.

This field resets to 0.

SRE, bit [0]

System Register Enable.

SRE Meaning
0b0 The memory-mapped interface must be used. Accesses at EL1 to

any ICC_* System register other than ICC_SRE are UNDEFINED.
0b1 The System register interface for the current Security state is

enabled.

If software changes this bit from 1 to 0 in the Secure instance of this register, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is RAO/WI.

If EL3 is implemented and using AArch64:

• When ICC_SRE_EL3.SRE==0 the Secure copy of this bit is RAZ/WI.
• When ICC_SRE_EL3.SRE==0 the Non-secure copy of this bit is RAZ/WI.

If EL3 is implemented and using AArch32:

• When ICC_MSRE.SRE==0 the Secure copy of this bit is RAZ/WI.
• When ICC_MSRE.SRE==0 the Non-secure copy of this bit is RAZ/WI.

If EL2 is implemented and using AArch64:

• When ICC_SRE_EL2.SRE==0 the Non-secure copy of this bit is RAZ/WI.

If EL2 is implemented and using AArch32:

• When ICC_HSRE.SRE==0 the Non-secure copy of this bit is RAZ/WI.

This field resets to 0.

Accessing the ICC_SRE
The GIC architecture permits, but does not require, that registers can be shared between memory-mapped registers
and the equivalent System registers. This means that if the memory-mapped registers have been accessed while
ICC_SRE.SRE==0, then the System registers might be modified. Therefore, software must only rely on the reset
values of the System registers if there has been no use of the GIC functionality while the memory-mapped registers
are in use. Otherwise, the System register values must be treated as UNKNOWN.

Accesses to this register use the following encodings:

ICC_SRE, Interrupt Controller System Register Enable register

Page 2611

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && ICC_SRE_EL3.Enable == '0' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif ICC_MSRE.Enable == '0' then
UNDEFINED;

elsif HaveEL(EL3) then
if SCR_EL3.NS == '0' then

return ICC_SRE_S;
else

return ICC_SRE_NS;
else

return ICC_SRE;
elsif PSTATE.EL == EL3 then

if SCR_EL3.NS == '0' then
return ICC_SRE_S;

else
return ICC_SRE_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && ICC_SRE_EL3.Enable == '0' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif ICC_MSRE.Enable == '0' then
UNDEFINED;

elsif HaveEL(EL3) then
if SCR_EL3.NS == '0' then

ICC_SRE_S = R[t];
else

ICC_SRE_NS = R[t];
else

ICC_SRE = R[t];
elsif PSTATE.EL == EL3 then

if SCR_EL3.NS == '0' then
ICC_SRE_S = R[t];

else
ICC_SRE_NS = R[t];

ICC_SRE, Interrupt Controller System Register Enable register

Page 2612

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_SRE, Interrupt Controller System Register Enable register

Page 2613

ICH_AP0R<n>, Interrupt Controller Hyp Active
Priorities Group 0 Registers, n = 0 - 3

The ICH_AP0R<n> characteristics are:

Purpose
Provides information about Group 0 active priorities for EL2.

Configuration
AArch32 System register ICH_AP0R<n> bits [31:0] are architecturally mapped to AArch64 System register
ICH_AP0R<n>_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICH_AP0R<n> are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
ICH_AP0R<n> is a 32-bit register.

Field descriptions
The ICH_AP0R<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P31P30P29P28P27P26P25P24P23P22P21P20P19P18P17P16P15P14P13P12P11P10P9P8P7P6P5P4P3P2P1P0

P<x>, bit [x], for x = 0 to 31

Provides the access to the virtual active priorities for Group 0 interrupts. Possible values of each bit are:

P<x> Meaning
0b0 There is no Group 0 interrupt active at the priority

corresponding to that bit.
0b1 There is a Group 0 interrupt active at the priority corresponding

to that bit.

The correspondence between priority levels and bits depends on the number of bits of priority that are implemented.

If 5 bits of preemption are implemented (bits [7:3] of priority), then there are 32 preemption levels, and the active
state of these preemption levels are held in ICH_AP0R0 in the bits corresponding to Priority[7:3].

If 6 bits of preemption are implemented (bits [7:2] of priority), then there are 64 preemption levels, and:

• The active state of preemption levels 0 - 124 are held in ICH_AP0R0 in the bits corresponding to
0:Priority[6:2].

• The active state of preemption levels 128 - 252 are held in ICH_AP0R1 in the bits corresponding to
1:Priority[6:2].

If 7 bits of preemption are implemented (bits [7:1] of priority), then there are 128 preemption levels, and:

• The active state of preemption levels 0 - 62 are held in ICH_AP0R0 in the bits corresponding to
00:Priority[5:1].

• The active state of preemption levels 64 - 126 are held in ICH_AP0R1 in the bits corresponding to
01:Priority[5:1].

• The active state of preemption levels 128 - 190 are held in ICH_AP0R2 in the bits corresponding to
10:Priority[5:1].

ICH_AP0R<n>, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3

Page 2614

• The active state of preemption levels 192 - 254 are held in ICH_AP0R3 in the bits corresponding to
11:Priority[5:1].

Note

Having the bit corresponding to a priority set to 1 in both ICH_AP0R<n> and
ICH_AP1R<n> might result in UNPREDICTABLE behavior of the interrupt
prioritization system for virtual interrupts.

This field resets to 0.

Accessing the ICH_AP0R<n>
ICH_AP0R1 is only implemented in implementations that support 6 or more bits of preemption. ICH_AP0R2 and
ICH_AP0R3 are only implemented in implementations that support 7 bits of preemption. Unimplemented registers are
UNDEFINED.

Note

The number of bits of preemption is indicated by ICH_VTR.PREbits

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

• ICH_AP0R<n>
• ICH_AP1R<n>

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b1000 0b0:n[1:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

else
return ICH_AP0R[UInt(opc2<1:0>)];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICH_AP0R[UInt(opc2<1:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b1000 0b0:n[1:0]

ICH_AP0R<n>, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3

Page 2615

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

else
ICH_AP0R[UInt(opc2<1:0>)] = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

ICH_AP0R[UInt(opc2<1:0>)] = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_AP0R<n>, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3

Page 2616

ICH_AP1R<n>, Interrupt Controller Hyp Active
Priorities Group 1 Registers, n = 0 - 3

The ICH_AP1R<n> characteristics are:

Purpose
Provides information about Group 1 active priorities for EL2.

Configuration
AArch32 System register ICH_AP1R<n> bits [31:0] are architecturally mapped to AArch64 System register
ICH_AP1R<n>_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICH_AP1R<n> are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
ICH_AP1R<n> is a 32-bit register.

Field descriptions
The ICH_AP1R<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P31P30P29P28P27P26P25P24P23P22P21P20P19P18P17P16P15P14P13P12P11P10P9P8P7P6P5P4P3P2P1P0

P<x>, bit [x], for x = 0 to 31

Group 1 interrupt active priorities. Possible values of each bit are:

P<x> Meaning
0b0 There is no Group 1 interrupt active at the priority

corresponding to that bit.
0b1 There is a Group 1 interrupt active at the priority corresponding

to that bit.

The correspondence between priority levels and bits depends on the number of bits of priority that are implemented.

If 5 bits of preemption are implemented (bits [7:3] of priority), then there are 32 preemption levels, and the active
state of these preemption levels are held in ICH_AP1R0 in the bits corresponding to Priority[7:3].

If 6 bits of preemption are implemented (bits [7:2] of priority), then there are 64 preemption levels, and:

• The active state of preemption levels 0 - 124 are held in ICH_AP1R0 in the bits corresponding to
0:Priority[6:2].

• The active state of preemption levels 128 - 252 are held in ICH_AP1R1 in the bits corresponding to
1:Priority[6:2].

If 7 bits of preemption are implemented (bits [7:1] of priority), then there are 128 preemption levels, and:

• The active state of preemption levels 0 - 62 are held in ICH_AP1R0 in the bits corresponding to
00:Priority[5:1].

• The active state of preemption levels 64 - 126 are held in ICH_AP1R1 in the bits corresponding to
01:Priority[5:1].

• The active state of preemption levels 128 - 190 are held in ICH_AP1R2 in the bits corresponding to
10:Priority[5:1].

ICH_AP1R<n>, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3

Page 2617

• The active state of preemption levels 192 - 254 are held in ICH_AP1R3 in the bits corresponding to
11:Priority[5:1].

Note

Having the bit corresponding to a priority set to 1 in both ICH_AP0R<n> and
ICH_AP1R<n> might result in UNPREDICTABLE behavior of the interrupt
prioritization system for virtual interrupts.

This field resets to 0.

Accessing the ICH_AP1R<n>
ICH_AP1R1 is only implemented in implementations that support 6 or more bits of preemption. ICH_AP1R2 and
ICH_AP1R3 are only implemented in implementations that support 7 bits of preemption. Unimplemented registers are
UNDEFINED.

Note

The number of bits of preemption is indicated by ICH_VTR.PREbits

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

• ICH_AP0R<n>
• ICH_AP1R<n>

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b1001 0b0:n[1:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

else
return ICH_AP1R[UInt(opc2<1:0>)];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICH_AP1R[UInt(opc2<1:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b1001 0b0:n[1:0]

ICH_AP1R<n>, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3

Page 2618

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

else
ICH_AP1R[UInt(opc2<1:0>)] = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

ICH_AP1R[UInt(opc2<1:0>)] = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_AP1R<n>, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3

Page 2619

ICH_EISR, Interrupt Controller End of Interrupt Status
Register

The ICH_EISR characteristics are:

Purpose
Indicates which List registers have outstanding EOI maintenance interrupts.

Configuration
AArch32 System register ICH_EISR bits [31:0] are architecturally mapped to AArch64 System register
ICH_EISR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICH_EISR are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
ICH_EISR is a 32-bit register.

Field descriptions
The ICH_EISR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Status<n>, bit [n], for n = 0 to 15

Bits [31:16]

Reserved, RES0.

Status<n>, bit [n], for n = 0 to 15

EOI maintenance interrupt status bit for List register <n>:

Status<n> Meaning
0b0 List register <n>, ICH_LR<n>, does not have an EOI

maintenance interrupt.
0b1 List register <n>, ICH_LR<n>, has an EOI maintenance

interrupt that has not been handled.

For any ICH_LR<n>, the corresponding status bit is set to 1 if all of the following are true:

• ICH_LRC<n>.State is 0b00.
• ICH_LRC<n>.HW is 0.
• ICH_LRC<n>.EOI (bit [9]) is 1, indicating that when the interrupt corresponding to that List register is

deactivated, a maintenance interrupt is asserted.

This field resets to 0.

Accessing the ICH_EISR
Accesses to this register use the following encodings:

ICH_EISR, Interrupt Controller End of Interrupt Status Register

Page 2620

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b1011 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

else
return ICH_EISR;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICH_EISR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_EISR, Interrupt Controller End of Interrupt Status Register

Page 2621

ICH_ELRSR, Interrupt Controller Empty List Register
Status Register

The ICH_ELRSR characteristics are:

Purpose
Indicates which List registers contain valid interrupts.

Configuration
AArch32 System register ICH_ELRSR bits [31:0] are architecturally mapped to AArch64 System register
ICH_ELRSR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICH_ELRSR are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
ICH_ELRSR is a 32-bit register.

Field descriptions
The ICH_ELRSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Status<n>, bit [n], for n = 0 to 15

Bits [31:16]

Reserved, RES0.

Status<n>, bit [n], for n = 0 to 15

Status bit for List register <n>, ICH_LR<n>:

Status<n> Meaning
0b0 List register ICH_LR<n>, if implemented, contains a valid

interrupt. Using this List register can result in overwriting
a valid interrupt.

0b1 List register ICH_LR<n> does not contain a valid
interrupt. The List register is empty and can be used
without overwriting a valid interrupt or losing an EOI
maintenance interrupt.

For any List register <n>, the corresponding status bit is set to 1 if ICH_LRC<n>.State is 0b00 and either
ICH_LRC<n>.HW is 1 or ICH_LRC<n>.EOI (bit [9]) is 0.

Accessing the ICH_ELRSR
Accesses to this register use the following encodings:

ICH_ELRSR, Interrupt Controller Empty List Register Status Register

Page 2622

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b1011 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

else
return ICH_ELRSR;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICH_ELRSR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_ELRSR, Interrupt Controller Empty List Register Status Register

Page 2623

ICH_HCR, Interrupt Controller Hyp Control Register
The ICH_HCR characteristics are:

Purpose
Controls the environment for VMs.

Configuration
AArch32 System register ICH_HCR bits [31:0] are architecturally mapped to AArch64 System register
ICH_HCR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICH_HCR are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
ICH_HCR is a 32-bit register.

Field descriptions
The ICH_HCR bit assignments are:

3130292827262524232221201918171615 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EOIcount RES0 TDIRTSEITALL1TALL0TCRES0vSGIEOICountVGrp1DIEVGrp1EIEVGrp0DIEVGrp0EIENPIELRENPIEUIEEn

EOIcount, bits [31:27]

This field is incremented whenever a successful write to a virtual EOIR or DIR register would have resulted in a virtual
interrupt deactivation. That is either:

• A virtual write to EOIR with a valid interrupt identifier that is not in the LPI range (that is < 8192) when EOI
mode is zero and no List Register was found.

• A virtual write to DIR with a valid interrupt identifier that is not in the LPI range (that is < 8192) when EOI
mode is one and no List Register was found.

This allows software to manage more active interrupts than there are implemented List Registers.

It is CONSTRAINED UNPREDICTABLE whether a virtual write to EOIR that does not clear a bit in the Active Priorities
registers (ICH_AP0R<n>/ICH_AP1R<n>) increments EOIcount. Permitted behaviors are:

• Increment EOIcount.
• Leave EOIcount unchanged.

This field resets to 0.

Bits [26:15]

Reserved, RES0.

TDIR, bit [14]

Trap Non-secure EL1 writes to ICC_DIR and ICV_DIR.

ICH_HCR, Interrupt Controller Hyp Control Register

Page 2624

TDIR Meaning
0b0 Non-secure EL1 writes of ICC_DIR and ICV_DIR are not trapped

to EL2, unless trapped by other mechanisms.
0b1 Non-secure EL1 writes of ICV_DIR are trapped to EL2. It is

IMPLEMENTATION DEFINED whether Non-secure writes of ICC_DIR
are trapped. Not trapping ICC_DIR writes is DEPRECATED.

Support for this bit is OPTIONAL, with support indicated by ICH_VTR.

If the implementation does not support this trap, this bit is RES0.

Arm deprecates not including this trap bit.

This field resets to 0.

TSEI, bit [13]

Trap all locally generated SEIs. This bit allows the hypervisor to intercept locally generated SEIs that would otherwise
be taken at Non-secure EL1.

TSEI Meaning
0b0 Locally generated SEIs do not cause a trap to EL2.
0b1 Locally generated SEIs trap to EL2.

If ICH_VTR.SEIS is 0, this bit is RES0.

This field resets to 0.

TALL1, bit [12]

Trap all Non-secure EL1 accesses to ICC_* and ICV_* System registers for Group 1 interrupts to EL2.

TALL1 Meaning
0b0 Non-secure EL1 accesses to ICC_* and ICV_* registers for

Group 1 interrupts proceed as normal.
0b1 Non-secure EL1 accesses to ICC_* and ICV_* registers for

Group 1 interrupts trap to EL2.

This field resets to 0.

TALL0, bit [11]

Trap all Non-secure EL1 accesses to ICC_* and ICV_* System registers for Group 0 interrupts to EL2.

TALL0 Meaning
0b0 Non-secure EL1 accesses to ICC_* and ICV_* registers for

Group 0 interrupts proceed as normal.
0b1 Non-secure EL1 accesses to ICC_* and ICV_* registers for

Group 0 interrupts trap to EL2.

This field resets to 0.

TC, bit [10]

Trap all Non-secure EL1 accesses to System registers that are common to Group 0 and Group 1 to EL2.

TC Meaning
0b0 Non-secure EL1 accesses to common registers proceed as normal.
0b1 Non-secure EL1 accesses to common registers trap to EL2.

This affects accesses to ICC_SGI0R, ICC_SGI1R, ICC_ASGI1R, ICC_CTLR, ICC_DIR, ICC_PMR, ICC_RPR, ICV_CTLR,
ICV_DIR, ICV_PMR, and ICV_RPR.

This field resets to 0.

ICH_HCR, Interrupt Controller Hyp Control Register

Page 2625

Bit [9]

Reserved, RES0.

vSGIEOICount, bit [8]

When GICv4.1 is implemented:

Controls whether deactivation of virtual SGIs can increment ICH_HCR_EL2.EOIcount

vSGIEOICount Meaning
0b0 Deactivation of virtual SGIs can increment

ICH_HCR.EOIcount.
0b1 Deactivation of virtual SGIs does not increment

ICH_HCR.EOIcount.

This field resets to 0.

Otherwise:

Reserved, RES0.

VGrp1DIE, bit [7]

VM Group 1 Disabled Interrupt Enable. Enables the signaling of a maintenance interrupt while signaling of Group 1
interrupts from the virtual CPU interface to the connected vPE is disabled:

VGrp1DIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt signaled when ICH_VMCR.VENG1 is

0.

This field resets to 0.

VGrp1EIE, bit [6]

VM Group 1 Enabled Interrupt Enable. Enables the signaling of a maintenance interrupt while signaling of Group 1
interrupts from the virtual CPU interface to the connected vPE is enabled:

VGrp1EIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt signaled when ICH_VMCR.VENG1 is

1.

This field resets to 0.

VGrp0DIE, bit [5]

VM Group 0 Disabled Interrupt Enable. Enables the signaling of a maintenance interrupt while signaling of Group 0
interrupts from the virtual CPU interface to the connected vPE is disabled:

VGrp0DIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt signaled when ICH_VMCR.VENG0 is

0.

This field resets to 0.

VGrp0EIE, bit [4]

VM Group 0 Enabled Interrupt Enable. Enables the signaling of a maintenance interrupt while signaling of Group 0
interrupts from the virtual CPU interface to the connected vPE is enabled:

ICH_HCR, Interrupt Controller Hyp Control Register

Page 2626

VGrp0EIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt signaled when ICH_VMCR.VENG0 is

1.

This field resets to 0.

NPIE, bit [3]

No Pending Interrupt Enable. Enables the signaling of a maintenance interrupt when there are no List registers with
the State field set to 0b01 (pending):

NPIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt signaled while the List registers contain

no interrupts in the pending state.

This field resets to 0.

LRENPIE, bit [2]

List Register Entry Not Present Interrupt Enable. Enables the signaling of a maintenance interrupt while the virtual
CPU interface does not have a corresponding valid List register entry for an EOI request:

LRENPIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt is asserted while the EOIcount field

is not 0.

This field resets to 0.

UIE, bit [1]

Underflow Interrupt Enable. Enables the signaling of a maintenance interrupt when the List registers are empty, or
hold only one valid entry:

UIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt is asserted if none, or only one, of the List

register entries is marked as a valid interrupt.

This field resets to 0.

En, bit [0]

Enable. Global enable bit for the virtual CPU interface:

En Meaning
0b0 Virtual CPU interface operation disabled.
0b1 Virtual CPU interface operation enabled.

When this field is set to 0:

• The virtual CPU interface does not signal any maintenance interrupts.
• The virtual CPU interface does not signal any virtual interrupts.
• A read of ICV_IAR0, ICV_IAR1, GICV_IAR or GICV_AIAR returns a spurious interrupt ID.

This field resets to 0.

Accessing the ICH_HCR
Accesses to this register use the following encodings:

ICH_HCR, Interrupt Controller Hyp Control Register

Page 2627

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b1011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

else
return ICH_HCR;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICH_HCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b1011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

else
ICH_HCR = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

ICH_HCR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_HCR, Interrupt Controller Hyp Control Register

Page 2628

ICH_LRC<n>, Interrupt Controller List Registers, n = 0
- 15

The ICH_LRC<n> characteristics are:

Purpose
Provides interrupt context information for the virtual CPU interface.

Configuration
AArch32 System register ICH_LRC<n> bits [31:0] are architecturally mapped to AArch64 System register
ICH_LR<n>_EL2[63:32] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICH_LRC<n> are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

If list register n is not implemented, then accesses to this register are UNDEFINED.

Attributes
ICH_LRC<n> is a 32-bit register.

Field descriptions
The ICH_LRC<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
State HWGroup RES0 Priority RES0 pINTID

State, bits [31:30]

The state of the interrupt:

State Meaning
0b00 Invalid (Inactive).
0b01 Pending.
0b10 Active.
0b11 Pending and active.

The GIC updates these state bits as virtual interrupts proceed through the interrupt life cycle. Entries in the invalid
state are ignored, except for the purpose of generating virtual maintenance interrupts.

For hardware interrupts, the pending and active state is held in the physical Distributor rather than the virtual CPU
interface. A hypervisor must only use the pending and active state for software originated interrupts, which are
typically associated with virtual devices, or SGIs.

This field resets to 0.

HW, bit [29]

Indicates whether this virtual interrupt maps directly to a hardware interrupt, meaning that it corresponds to a
physical interrupt. Deactivation of the virtual interrupt also causes the deactivation of the physical interrupt with the
INTID that the pINTID field indicates.

ICH_LRC<n>, Interrupt Controller List Registers, n = 0 - 15

Page 2629

HW Meaning
0b0 The interrupt is triggered entirely by software. No notification is

sent to the Distributor when the virtual interrupt is deactivated.
0b1 The interrupt maps directly to a hardware interrupt. A deactivate

interrupt request is sent to the Distributor when the virtual
interrupt is deactivated, using the pINTID field from this register
to indicate the physical INTID.
If ICH_VMCR.VEOIM is 0, this request corresponds to a write to
ICC_EOIR0 or ICC_EOIR1. Otherwise, it corresponds to a write to
ICC_DIR.

This field resets to 0.

Group, bit [28]

Indicates the group for this virtual interrupt.

Group Meaning
0b0 This is a Group 0 virtual interrupt. ICH_VMCR.VFIQEn

determines whether it is signaled as a virtual IRQ or as a virtual
FIQ, and ICH_VMCR.VENG0 enables signaling of this interrupt
to the virtual machine.

0b1 This is a Group 1 virtual interrupt, signaled as a virtual IRQ.
ICH_VMCR.VENG1 enables the signaling of this interrupt to the
virtual machine.
If ICH_VMCR.VCBPR is 0, then ICC_BPR1 determines if a
pending Group 1 interrupt has sufficient priority to preempt
current execution. Otherwise, ICH_LR<n> determines
preemption.

This field resets to 0.

Bits [27:24]

Reserved, RES0.

Priority, bits [23:16]

The priority of this interrupt.

It is IMPLEMENTATION DEFINED how many bits of priority are implemented, though at least five bits must be
implemented. Unimplemented bits are RES0 and start from bit[16] up to bit[18]. The number of implemented bits can
be discovered from ICH_VTR.PRIbits.

This field resets to 0.

Bits [15:13]

Reserved, RES0.

pINTID, bits [12:0]

Physical INTID, for hardware interrupts.

When ICH_LRC<n>.HW is 0 (there is no corresponding physical interrupt), this field has the following meaning:

• Bits[12:10] : RES0.
• Bit[9] : EOI. If this bit is 1, then when the interrupt identified by vINTID is deactivated, an EOI maintenance

interrupt is asserted.
• Bits[8:0] : Reserved, RES0.

When ICH_LRC<n>.HW is 1 (there is a corresponding physical interrupt):

• This field indicates the physical INTID. This field is only required to implement enough bits to hold a valid
value for the implemented INTID size. Any unused higher order bits are RES0.

ICH_LRC<n>, Interrupt Controller List Registers, n = 0 - 15

Page 2630

• When ICC_CTLR_EL1.ExtRange is 0, then bits[44:42] of this field are RES0.
• If the value of pINTID is not a valid INTID, behavior is UNPREDICTABLE. If the value of pINTID indicates a PPI,

this field applies to the PPI associated with this same physical PE ID as the virtual CPU interface requesting
the deactivation.

A hardware physical identifier is only required in List Registers for interrupts that require deactivation. This means
only 13 bits of Physical INTID are required, regardless of the number specified by ICC_CTLR.IDbits.

This field resets to 0.

Accessing the ICH_LRC<n>
ICH_LR<n> and ICH_LRC<n> can be updated independently.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b111:n[3] n[2:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

else
return ICH_LRC[UInt(CRm<0>:opc2<2:0>)];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICH_LRC[UInt(CRm<0>:opc2<2:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b111:n[3] n[2:0]

ICH_LRC<n>, Interrupt Controller List Registers, n = 0 - 15

Page 2631

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

else
ICH_LRC[UInt(CRm<0>:opc2<2:0>)] = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

ICH_LRC[UInt(CRm<0>:opc2<2:0>)] = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_LRC<n>, Interrupt Controller List Registers, n = 0 - 15

Page 2632

ICH_LR<n>, Interrupt Controller List Registers, n = 0 -
15

The ICH_LR<n> characteristics are:

Purpose
Provides interrupt context information for the virtual CPU interface.

Configuration
AArch32 System register ICH_LR<n> bits [31:0] are architecturally mapped to AArch64 System register
ICH_LR<n>_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICH_LR<n> are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

If list register n is not implemented, then accesses to this register are UNDEFINED.

Attributes
ICH_LR<n> is a 32-bit register.

Field descriptions
The ICH_LR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
vINTID

vINTID, bits [31:0]

Virtual INTID of the interrupt.

If the value of vINTID is 1020-1023 and ICH_LRC<n>.State!=0b00 (Inactive), behavior is UNPREDICTABLE.

Behavior is UNPREDICTABLE if two or more List Registers specify the same vINTID when:

• ICH_LRC<n>.State == 01.
• ICH_LRC<n>.State == 10.
• ICH_LRC<n>.State == 11.

It is IMPLEMENTATION DEFINED how many bits are implemented, though at least 16 bits must be implemented.
Unimplemented bits are RES0. The number of implemented bits can be discovered from ICH_VTR.IDbits.

Note

When a VM is using memory-mapped access to the GIC, software must ensure
that the correct source PE ID is provided in bits[12:10].

This field resets to 0.

Accessing the ICH_LR<n>
ICH_LR<n> and ICH_LRC<n> can be updated independently.

ICH_LR<n>, Interrupt Controller List Registers, n = 0 - 15

Page 2633

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b110:n[3] n[2:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

else
return ICH_LR[UInt(CRm<0>:opc2<2:0>)];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICH_LR[UInt(CRm<0>:opc2<2:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b110:n[3] n[2:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

else
ICH_LR[UInt(CRm<0>:opc2<2:0>)] = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

ICH_LR[UInt(CRm<0>:opc2<2:0>)] = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_LR<n>, Interrupt Controller List Registers, n = 0 - 15

Page 2634

ICH_MISR, Interrupt Controller Maintenance Interrupt
State Register

The ICH_MISR characteristics are:

Purpose
Indicates which maintenance interrupts are asserted.

Configuration
AArch32 System register ICH_MISR bits [31:0] are architecturally mapped to AArch64 System register
ICH_MISR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICH_MISR are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
ICH_MISR is a 32-bit register.

Field descriptions
The ICH_MISR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 VGrp1DVGrp1EVGrp0DVGrp0ENPLRENP U EOI

Bits [31:8]

Reserved, RES0.

VGrp1D, bit [7]

vPE Group 1 Disabled.

VGrp1D Meaning
0b0 vPE Group 1 Disabled maintenance interrupt not asserted.
0b1 vPE Group 1 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.VGrp1DIE is 1 and ICH_VMCR.VENG0 is 0.

This field resets to 0.

VGrp1E, bit [6]

vPE Group 1 Enabled.

VGrp1E Meaning
0b0 vPE Group 1 Enabled maintenance interrupt not asserted.
0b1 vPE Group 1 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.VGrp1EIE is 1 and ICH_VMCR.VENG1 is 1.

This field resets to 0.

ICH_MISR, Interrupt Controller Maintenance Interrupt State Register

Page 2635

VGrp0D, bit [5]

vPE Group 0 Disabled.

VGrp0D Meaning
0b0 vPE Group 0 Disabled maintenance interrupt not asserted.
0b1 vPE Group 0 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.VGrp0DIE is 1 and ICH_VMCR.VENG0 is 0.

This field resets to 0.

VGrp0E, bit [4]

vPE Group 0 Enabled.

VGrp0E Meaning
0b0 vPE Group 0 Enabled maintenance interrupt not asserted.
0b1 vPE Group 0 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.VGrp0EIE is 1 and ICH_VMCR.VENG0 is 1.

This field resets to 0.

NP, bit [3]

No Pending.

NP Meaning
0b0 No Pending maintenance interrupt not asserted.
0b1 No Pending maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.NPIE is 1 and no List register is in pending state.

This field resets to 0.

LRENP, bit [2]

List Register Entry Not Present.

LRENP Meaning
0b0 List Register Entry Not Present maintenance interrupt not

asserted.
0b1 List Register Entry Not Present maintenance interrupt

asserted.

This maintenance interrupt is asserted when ICH_HCR.LRENPIE is 1 and ICH_HCR.EOIcount is non-zero.

This field resets to 0.

U, bit [1]

Underflow.

U Meaning
0b0 Underflow maintenance interrupt not asserted.
0b1 Underflow maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.UIE is 1 and zero or one of the List register entries are marked
as a valid interrupt, that is, if the corresponding ICH_LRC<n>.State bits do not equal 0x0.

This field resets to 0.

ICH_MISR, Interrupt Controller Maintenance Interrupt State Register

Page 2636

EOI, bit [0]

End Of Interrupt.

EOI Meaning
0b0 End Of Interrupt maintenance interrupt not asserted.
0b1 End Of Interrupt maintenance interrupt asserted.

This maintenance interrupt is asserted when at least one bit in ICH_EISR is 1.

This field resets to 0.

Accessing the ICH_MISR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b1011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

else
return ICH_MISR;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICH_MISR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_MISR, Interrupt Controller Maintenance Interrupt State Register

Page 2637

ICH_VMCR, Interrupt Controller Virtual Machine
Control Register

The ICH_VMCR characteristics are:

Purpose
Enables the hypervisor to save and restore the virtual machine view of the GIC state.

Configuration
AArch32 System register ICH_VMCR bits [31:0] are architecturally mapped to AArch64 System register
ICH_VMCR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICH_VMCR are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
ICH_VMCR is a 32-bit register.

Field descriptions
The ICH_VMCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VPMR VBPR0 VBPR1 RES0 VEOIM RES0 VCBPRVFIQEnVAckCtlVENG1VENG0

VPMR, bits [31:24]

Virtual Priority Mask. The priority mask level for the virtual CPU interface. If the priority of a pending virtual interrupt
is higher than the value indicated by this field, the interface signals the virtual interrupt to the PE.

This field is an alias of ICV_PMR.Priority.

This field resets to an architecturally UNKNOWN value.

VBPR0, bits [23:21]

Virtual Binary Point Register, Group 0. Defines the point at which the priority value fields split into two parts, the
group priority field and the subpriority field. The group priority field determines Group 0 interrupt preemption, and
also determines Group 1 interrupt preemption if ICH_VMCR.VCBPR == 1.

This field is an alias of ICV_BPR0.BinaryPoint.

This field resets to an architecturally UNKNOWN value.

VBPR1, bits [20:18]

Virtual Binary Point Register, Group 1. Defines the point at which the priority value fields split into two parts, the
group priority field and the subpriority field. The group priority field determines Group 1 interrupt preemption if
ICH_VMCR.VCBPR == 0.

This field is an alias of ICV_BPR1.BinaryPoint.

This field resets to an architecturally UNKNOWN value.

ICH_VMCR, Interrupt Controller Virtual Machine Control Register

Page 2638

Bits [17:10]

Reserved, RES0.

VEOIM, bit [9]

Virtual EOI mode. Controls whether a write to an End of Interrupt register also deactivates the virtual interrupt:

VEOIM Meaning
0b0 ICV_EOIR0 and ICV_EOIR1 provide both priority drop and

interrupt deactivation functionality. Accesses to ICV_DIR are
UNPREDICTABLE.

0b1 ICV_EOIR0 and ICV_EOIR1 provide priority drop functionality
only. ICV_DIR provides interrupt deactivation functionality.

This bit is an alias of ICV_CTLR.EOImode.

This field resets to an architecturally UNKNOWN value.

Bits [8:5]

Reserved, RES0.

VCBPR, bit [4]

Virtual Common Binary Point Register. Possible values of this bit are:

VCBPR Meaning
0b0 ICV_BPR0 determines the preemption group for virtual Group

0 interrupts only.
ICV_BPR1 determines the preemption group for virtual Group
1 interrupts.

0b1 ICV_BPR0 determines the preemption group for both virtual
Group 0 and virtual Group 1 interrupts.
Reads of ICV_BPR1 return ICV_BPR0 plus one, saturated to
0b111. Writes to ICV_BPR1 are ignored.

This field is an alias of ICV_CTLR.CBPR.

This field resets to an architecturally UNKNOWN value.

VFIQEn, bit [3]

Virtual FIQ enable. Possible values of this bit are:

VFIQEn Meaning
0b0 Group 0 virtual interrupts are presented as virtual IRQs.
0b1 Group 0 virtual interrupts are presented as virtual FIQs.

This bit is an alias of GICV_CTLR.FIQEn.

In implementations where the Non-secure copy of ICC_SRE.SRE is always 1, this bit is RES1.

This field resets to an architecturally UNKNOWN value.

VAckCtl, bit [2]

Virtual AckCtl. Possible values of this bit are:

VAckCtl Meaning
0b0 If the highest priority pending interrupt is Group 1, a read of

GICV_IAR or GICV_HPPIR returns an INTID of 1022.
0b1 If the highest priority pending interrupt is Group 1, a read of

GICV_IAR or GICV_HPPIR returns the INTID of the
corresponding interrupt.

ICH_VMCR, Interrupt Controller Virtual Machine Control Register

Page 2639

This bit is an alias of GICV_CTLR.AckCtl.

This field is supported for backwards compatibility with GICv2. Arm deprecates the use of this field.

In implementations where the Non-secure copy of ICC_SRE.SRE is always 1, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

VENG1, bit [1]

Virtual Group 1 interrupt enable. Possible values of this bit are:

VENG1 Meaning
0b0 Virtual Group 1 interrupts are disabled.
0b1 Virtual Group 1 interrupts are enabled.

This bit is an alias of ICV_IGRPEN1.Enable.

This field resets to an architecturally UNKNOWN value.

VENG0, bit [0]

Virtual Group 0 interrupt enable. Possible values of this bit are:

VENG0 Meaning
0b0 Virtual Group 0 interrupts are disabled.
0b1 Virtual Group 0 interrupts are enabled.

This bit is an alias of ICV_IGRPEN0.Enable.

This field resets to an architecturally UNKNOWN value.

Accessing the ICH_VMCR
When EL2 is using System register access, EL1 using either System register or memory-mapped access must be
supported.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b1011 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

else
return ICH_VMCR;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICH_VMCR;

ICH_VMCR, Interrupt Controller Virtual Machine Control Register

Page 2640

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b1011 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

else
ICH_VMCR = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

ICH_VMCR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_VMCR, Interrupt Controller Virtual Machine Control Register

Page 2641

ICH_VTR, Interrupt Controller VGIC Type Register
The ICH_VTR characteristics are:

Purpose
Reports supported GIC virtualisartion features.

Configuration
AArch32 System register ICH_VTR bits [31:0] are architecturally mapped to AArch64 System register
ICH_VTR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICH_VTR are UNKNOWN.

If EL2 is not implemented, all bits in this register are RES0 from EL3, except for nV4, which is RES1 from EL3.

Attributes
ICH_VTR is a 32-bit register.

Field descriptions
The ICH_VTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PRIbits PREbits IDbits SEISA3VnV4TDS RES0 ListRegs

PRIbits, bits [31:29]

Priority bits. The number of virtual priority bits implemented, minus one.

An implementation must implement at least 32 levels of virtual priority (5 priority bits).

This field is an alias of ICV_CTLR.PRIbits.

PREbits, bits [28:26]

The number of virtual preemption bits implemented, minus one.

An implementation must implement at least 32 levels of virtual preemption priority (5 preemption bits).

The value of this field must be less than or equal to the value of ICH_VTR.PRIbits.

IDbits, bits [25:23]

The number of virtual interrupt identifier bits supported:

IDbits Meaning
0b000 16 bits.
0b001 24 bits.

All other values are reserved.

This field is an alias of ICV_CTLR.IDbits.

ICH_VTR, Interrupt Controller VGIC Type Register

Page 2642

SEIS, bit [22]

SEI Support. Indicates whether the virtual CPU interface supports generation of SEIs:

SEIS Meaning
0b0 The virtual CPU interface logic does not support generation of

SEIs.
0b1 The virtual CPU interface logic supports generation of SEIs.

This bit is an alias of ICV_CTLR.SEIS.

A3V, bit [21]

Affinity 3 Valid. Possible values are:

A3V Meaning
0b0 The virtual CPU interface logic only supports zero values of

Affinity 3 in SGI generation System registers.
0b1 The virtual CPU interface logic supports non-zero values of

Affinity 3 in SGI generation System registers.

This bit is an alias of ICV_CTLR.A3V.

nV4, bit [20]

Direct injection of virtual interrupts not supported. Possible values are:

nV4 Meaning
0b0 The CPU interface logic supports direct injection of virtual

interrupts.
0b1 The CPU interface logic does not support direct injection of virtual

interrupts.

In GICv3 this bit is RES1.

TDS, bit [19]

Separate trapping of Non-secure EL1 writes to ICV_DIR supported.

TDS Meaning
0b0 Implementation does not support ICH_HCR.TDIR.
0b1 Implementation supports ICH_HCR.TDIR.

Bits [18:5]

Reserved, RES0.

ListRegs, bits [4:0]

The number of implemented List registers, minus one. For example, a value of 0b01111 indicates that the maximum of
16 List registers are implemented.

Accessing the ICH_VTR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b1011 0b001

ICH_VTR, Interrupt Controller VGIC Type Register

Page 2643

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

else
return ICH_VTR;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICH_VTR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_VTR, Interrupt Controller VGIC Type Register

Page 2644

ICIALLU, Instruction Cache Invalidate All to PoU
The ICIALLU characteristics are:

Purpose
Invalidate all instruction caches to PoU. If branch predictors are architecturally visible, also flush branch predictors.

Configuration
AArch32 System instruction ICIALLU performs the same function as AArch64 System instruction IC IALLU.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICIALLU are UNKNOWN.

Attributes
ICIALLU is a 32-bit System instruction.

Field descriptions
ICIALLU ignores the value in the register specified by the instruction encoding. Software does not have to write a
value to the register before issuing this instruction.

Executing the ICIALLU instruction
The PE ignores the value of <Rt>. Software does not have to write a value to this register before issuing this
instruction.

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a ICIALLUIS.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0101 0b000

ICIALLU, Instruction Cache Invalidate All to PoU

Page 2645

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TOCU == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPU == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TOCU == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then

ICIALLUIS();
else

ICIALLU();
elsif PSTATE.EL == EL2 then

ICIALLU();
elsif PSTATE.EL == EL3 then

ICIALLU();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICIALLU, Instruction Cache Invalidate All to PoU

Page 2646

ICIALLUIS, Instruction Cache Invalidate All to PoU,
Inner Shareable

The ICIALLUIS characteristics are:

Purpose
Invalidate all instruction caches Inner Shareable to PoU. If branch predictors are architecturally visible, also flush
branch predictors.

Configuration
AArch32 System instruction ICIALLUIS performs the same function as AArch64 System instruction IC IALLUIS.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICIALLUIS are UNKNOWN.

Attributes
ICIALLUIS is a 32-bit System instruction.

Field descriptions
ICIALLUIS ignores the value in the register specified by the instruction encoding. Software does not have to write a
value to the register before issuing this instruction.

Executing the ICIALLUIS instruction
The PE ignores the value of <Rt>. Software does not have to write a value to this register before issuing this
instruction.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0001 0b000

ICIALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable

Page 2647

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TICAB == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TOCU == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPU == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TICAB == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TOCU == '1' then

AArch32.TakeHypTrapException(0x03);
else

ICIALLU();
elsif PSTATE.EL == EL2 then

ICIALLU();
elsif PSTATE.EL == EL3 then

ICIALLU();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICIALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable

Page 2648

ICIMVAU, Instruction Cache line Invalidate by VA to
PoU

The ICIMVAU characteristics are:

Purpose
Invalidate instruction cache line by virtual address to PoU.

Configuration
AArch32 System instruction ICIMVAU performs the same function as AArch64 System instruction IC IVAU.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICIMVAU are UNKNOWN.

Attributes
ICIMVAU is a 32-bit System instruction.

Field descriptions
The ICIMVAU input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Virtual address to use

Bits [31:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the ICIMVAU instruction
Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'AArch32 instruction cache maintenance instruction (IC*)' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0101 0b001

ICIMVAU, Instruction Cache line Invalidate by VA to PoU

Page 2649

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TOCU == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPU == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TOCU == '1' then

AArch32.TakeHypTrapException(0x03);
else

ICIMVAU(R[t]);
elsif PSTATE.EL == EL2 then

ICIMVAU(R[t]);
elsif PSTATE.EL == EL3 then

ICIMVAU(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICIMVAU, Instruction Cache line Invalidate by VA to PoU

Page 2650

ICV_AP0R<n>, Interrupt Controller Virtual Active
Priorities Group 0 Registers, n = 0 - 3

The ICV_AP0R<n> characteristics are:

Purpose
Provides information about virtual Group 0 active priorities.

Configuration
AArch32 System register ICV_AP0R<n> bits [31:0] are architecturally mapped to AArch64 System register
ICV_AP0R<n>_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICV_AP0R<n> are UNKNOWN.

Attributes
ICV_AP0R<n> is a 32-bit register.

Field descriptions
The ICV_AP0R<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing the ICV_AP0R<n>
Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 0 active priorities) might result in UNPREDICTABLE behavior of the virtual interrupt prioritization system,
causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICV_AP0R1 is only implemented in implementations that support 6 or more bits of priority. ICV_AP0R2 and ICV_AP0R3
are only implemented in implementations that support 7 bits of priority. Unimplemented registers are UNDEFINED.

Writing to the active priority registers in any order other than the following order might result in UNPREDICTABLE
behavior of the interrupt prioritization system:

• ICV_AP0R<n>.
• ICV_AP1R<n>.

Accesses to this register use the following encodings:

ICV_AP0R<n>, Interrupt Controller Virtual Active Priorities Group 0 Registers, n = 0 - 3

Page 2651

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1000 0b1:n[1:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_AP0R[UInt(opc2<1:0>)];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

return ICV_AP0R[UInt(opc2<1:0>)];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then

AArch32.TakeMonitorTrapException();
else

return ICC_AP0R[UInt(opc2<1:0>)];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
AArch32.TakeMonitorTrapException();

else
return ICC_AP0R[UInt(opc2<1:0>)];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICC_AP0R[UInt(opc2<1:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1000 0b1:n[1:0]

ICV_AP0R<n>, Interrupt Controller Virtual Active Priorities Group 0 Registers, n = 0 - 3

Page 2652

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_AP0R[UInt(opc2<1:0>)] = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

ICV_AP0R[UInt(opc2<1:0>)] = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then

AArch32.TakeMonitorTrapException();
else

ICC_AP0R[UInt(opc2<1:0>)] = R[t];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
AArch32.TakeMonitorTrapException();

else
ICC_AP0R[UInt(opc2<1:0>)] = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

ICC_AP0R[UInt(opc2<1:0>)] = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_AP0R<n>, Interrupt Controller Virtual Active Priorities Group 0 Registers, n = 0 - 3

Page 2653

ICV_AP1R<n>, Interrupt Controller Virtual Active
Priorities Group 1 Registers, n = 0 - 3

The ICV_AP1R<n> characteristics are:

Purpose
Provides information about virtual Group 1 active priorities.

Configuration
AArch32 System register ICV_AP1R<n> bits [31:0] are architecturally mapped to AArch64 System register
ICV_AP1R<n>_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICV_AP1R<n> are UNKNOWN.

Attributes
ICV_AP1R<n> is a 32-bit register.

Field descriptions
The ICV_AP1R<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing the ICV_AP1R<n>
Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 1 active priorities) might result in UNPREDICTABLE behavior of the virtual interrupt prioritization system,
causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICV_AP1R1 is only implemented in implementations that support 6 or more bits of priority. ICV_AP1R2 and ICV_AP1R3
are only implemented in implementations that support 7 bits of priority. Unimplemented registers are UNDEFINED.

Writing to the active priority registers in any order other than the following order might result in UNPREDICTABLE
behavior of the interrupt prioritization system:

• ICV_AP0R<n>.
• ICV_AP1R<n>.

Accesses to this register use the following encodings:

ICV_AP1R<n>, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3

Page 2654

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1001 0b0:n[1:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_AP1R[UInt(opc2<1:0>)];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_AP1R[UInt(opc2<1:0>)];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

return ICC_AP1R_NS[UInt(opc2<1:0>)];
else

return ICC_AP1R[UInt(opc2<1:0>)];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
return ICC_AP1R_NS[UInt(opc2<1:0>)];

else
return ICC_AP1R[UInt(opc2<1:0>)];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

if SCR.NS == '0' then
return ICC_AP1R_S[UInt(opc2<1:0>)];

else
return ICC_AP1R_NS[UInt(opc2<1:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1001 0b0:n[1:0]

ICV_AP1R<n>, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3

Page 2655

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_AP1R[UInt(opc2<1:0>)] = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

ICV_AP1R[UInt(opc2<1:0>)] = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

ICC_AP1R_NS[UInt(opc2<1:0>)] = R[t];
else

ICC_AP1R[UInt(opc2<1:0>)] = R[t];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
ICC_AP1R_NS[UInt(opc2<1:0>)] = R[t];

else
ICC_AP1R[UInt(opc2<1:0>)] = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

if SCR.NS == '0' then
ICC_AP1R_S[UInt(opc2<1:0>)] = R[t];

else
ICC_AP1R_NS[UInt(opc2<1:0>)] = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_AP1R<n>, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3

Page 2656

ICV_BPR0, Interrupt Controller Virtual Binary Point
Register 0

The ICV_BPR0 characteristics are:

Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field.
The group priority field determines virtual Group 0 interrupt preemption.

Configuration
AArch32 System register ICV_BPR0 bits [31:0] are architecturally mapped to AArch64 System register
ICV_BPR0_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICV_BPR0 are UNKNOWN.

Attributes
ICV_BPR0 is a 32-bit register.

Field descriptions
The ICV_BPR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BinaryPoint

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

The value of this field controls how the 8-bit interrupt priority field is split into a group priority field, that determines
interrupt preemption, and a subpriority field. This is done as follows:

Binary point
value

Group priority
field

Subpriority
field

Field with binary
point

0 [7:1] [0] ggggggg.s
1 [7:2] [1:0] gggggg.ss
2 [7:3] [2:0] ggggg.sss
3 [7:4] [3:0] gggg.ssss
4 [7:5] [4:0] ggg.sssss
5 [7:6] [5:0] gg.ssssss
6 [7] [6:0] g.sssssss
7 No preemption [7:0] .ssssssss

This field resets to an architecturally UNKNOWN value.

Accessing the ICV_BPR0
The minimum binary point value is derived from the number of implemented priority bits. The number of priority bits
is IMPLEMENTATION DEFINED, and reported by ICV_CTLR.PRIbits.

ICV_BPR0, Interrupt Controller Virtual Binary Point Register 0

Page 2657

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum
value. On a reset, the binary point field is set to the minimum supported value.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1000 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_BPR0;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

return ICV_BPR0;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then

AArch32.TakeMonitorTrapException();
else

return ICC_BPR0;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
AArch32.TakeMonitorTrapException();

else
return ICC_BPR0;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICC_BPR0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1000 0b011

ICV_BPR0, Interrupt Controller Virtual Binary Point Register 0

Page 2658

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_BPR0 = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

ICV_BPR0 = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then

AArch32.TakeMonitorTrapException();
else

ICC_BPR0 = R[t];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
AArch32.TakeMonitorTrapException();

else
ICC_BPR0 = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

ICC_BPR0 = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_BPR0, Interrupt Controller Virtual Binary Point Register 0

Page 2659

ICV_BPR1, Interrupt Controller Virtual Binary Point
Register 1

The ICV_BPR1 characteristics are:

Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field.
The group priority field determines virtual Group 1 interrupt preemption.

Configuration
AArch32 System register ICV_BPR1 bits [31:0] are architecturally mapped to AArch64 System register
ICV_BPR1_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICV_BPR1 are UNKNOWN.

Attributes
ICV_BPR1 is a 32-bit register.

Field descriptions
The ICV_BPR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BinaryPoint

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for virtual Group 0 and virtual Group 1 interrupts, the value
of this field controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt
preemption, and a subpriority field. This is done as follows:

Binary point
value

Group priority
field

Subpriority
field

Field with binary
point

0 - - -
1 [7:1] [0] ggggggg.s
2 [7:2] [1:0] gggggg.ss
3 [7:3] [2:0] ggggg.sss
4 [7:4] [3:0] gggg.ssss
5 [7:5] [4:0] ggg.sssss
6 [7:6] [5:0] gg.ssssss
7 [7] [6:0] g.sssssss

Writing 0 to this field will set this field to its reset value.

If ICV_CTLR.CBPR is set to 1, Non-secure EL1 reads return ICV_BPR0 + 1 saturated to 0b111. Non-secure EL1 writes
are ignored.

This field resets to an IMPLEMENTATION DEFINED non-zero value.

ICV_BPR1, Interrupt Controller Virtual Binary Point Register 1

Page 2660

Accessing the ICV_BPR1
The reset value is IMPLEMENTATION DEFINED, but is equal to the minimum value of ICV_BPR0 plus one.

An attempt to program the binary point field to a value less than the reset value sets the field to the reset value.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_BPR1;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_BPR1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

return ICC_BPR1_NS;
else

return ICC_BPR1;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
return ICC_BPR1_NS;

else
return ICC_BPR1;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

if SCR.NS == '0' then
return ICC_BPR1_S;

else
return ICC_BPR1_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b011

ICV_BPR1, Interrupt Controller Virtual Binary Point Register 1

Page 2661

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_BPR1 = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

ICV_BPR1 = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

ICC_BPR1_NS = R[t];
else

ICC_BPR1 = R[t];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
ICC_BPR1_NS = R[t];

else
ICC_BPR1 = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

if SCR.NS == '0' then
ICC_BPR1_S = R[t];

else
ICC_BPR1_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_BPR1, Interrupt Controller Virtual Binary Point Register 1

Page 2662

ICV_CTLR, Interrupt Controller Virtual Control Register
The ICV_CTLR characteristics are:

Purpose
Controls aspects of the behavior of the GIC virtual CPU interface and provides information about the features
implemented.

Configuration
AArch32 System register ICV_CTLR bits [31:0] are architecturally mapped to AArch64 System register
ICV_CTLR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICV_CTLR are UNKNOWN.

Attributes
ICV_CTLR is a 32-bit register.

Field descriptions
The ICV_CTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ExtRangeRSSRES0A3VSEIS IDbits PRIbits RES0 EOImodeCBPR

Bits [31:20]

Reserved, RES0.

ExtRange, bit [19]

Extended INTID range (read-only).

ExtRange Meaning
0b0 CPU interface does not support INTIDs in the range

1024..8191.
Behaviour is UNPREDICTABLE if the IRI delivers an interrupt
in the range 1024 to 8191 to the CPU interface.

Note
Arm strongly recommends that the
IRI is not configured to deliver
interrupts in this range to a PE that
does not support them.

0b1 CPU interface supports INTIDs in the range 1024..8191.
All INTIDs in the range 1024..8191 are treated as requiring
deactivation.

ICV_CTLR.ExtRange is an alias of ICC_CTLR.ExtRange.

RSS, bit [18]

Range Selector Support. Possible values are:

ICV_CTLR, Interrupt Controller Virtual Control Register

Page 2663

RSS Meaning
0b0 Targeted SGIs with affinity level 0 values of 0 - 15 are supported.
0b1 Targeted SGIs with affinity level 0 values of 0 - 255 are supported.

This bit is read-only.

Bits [17:16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

A3V Meaning
0b0 The virtual CPU interface logic only supports zero values of

Affinity 3 in SGI generation System registers.
0b1 The virtual CPU interface logic supports non-zero values of

Affinity 3 in SGI generation System registers.

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the virtual CPU interface supports local generation
of SEIs:

SEIS Meaning
0b0 The virtual CPU interface logic does not support local generation

of SEIs.
0b1 The virtual CPU interface logic supports local generation of SEIs.

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of virtual interrupt identifier bits supported:

IDbits Meaning
0b000 16 bits.
0b001 24 bits.

All other values are reserved.

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.

An implementation must implement at least 32 levels of physical priority (5 priority bits).

Note

This field always returns the number of priority bits implemented.

The division between group priority and subpriority is defined in the binary point registers ICV_BPR0 and ICV_BPR1.

Bits [7:2]

Reserved, RES0.

EOImode, bit [1]

Virtual EOI mode. Controls whether a write to an End of Interrupt register also deactivates the virtual interrupt:

ICV_CTLR, Interrupt Controller Virtual Control Register

Page 2664

EOImode Meaning
0b0 ICV_EOIR0 and ICV_EOIR1 provide both priority drop and

interrupt deactivation functionality. Accesses to ICV_DIR are
UNPREDICTABLE.

0b1 ICV_EOIR0 and ICV_EOIR1 provide priority drop
functionality only. ICV_DIR provides interrupt deactivation
functionality.

This field resets to an architecturally UNKNOWN value.

CBPR, bit [0]

Common Binary Point Register. Controls whether the same register is used for interrupt preemption of both virtual
Group 0 and virtual Group 1 interrupts:

CBPR Meaning
0b0 ICV_BPR0 determines the preemption group for virtual Group 0

interrupts only.
ICV_BPR1 determines the preemption group for virtual Group 1
interrupts.

0b1 ICV_BPR0 determines the preemption group for both virtual
Group 0 and virtual Group 1 interrupts.
Reads of ICV_BPR1 return ICV_BPR0 plus one, saturated to
0b111. Writes to ICV_BPR1 are ignored.

This field resets to an architecturally UNKNOWN value.

Accessing the ICV_CTLR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b100

ICV_CTLR, Interrupt Controller Virtual Control Register

Page 2665

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_CTLR;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_CTLR;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

return ICV_CTLR;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_CTLR;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11'

then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
return ICC_CTLR_NS;

else
return ICC_CTLR;

elsif PSTATE.EL == EL2 then
if ICC_HSRE.SRE == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

return ICC_CTLR_NS;
else

return ICC_CTLR;
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
if SCR.NS == '0' then

return ICC_CTLR_S;
else

return ICC_CTLR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b100

ICV_CTLR, Interrupt Controller Virtual Control Register

Page 2666

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_CTLR = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_CTLR = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

ICV_CTLR = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

ICV_CTLR = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11'

then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
ICC_CTLR_NS = R[t];

else
ICC_CTLR = R[t];

elsif PSTATE.EL == EL2 then
if ICC_HSRE.SRE == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

ICC_CTLR_NS = R[t];
else

ICC_CTLR = R[t];
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
if SCR.NS == '0' then

ICC_CTLR_S = R[t];
else

ICC_CTLR_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_CTLR, Interrupt Controller Virtual Control Register

Page 2667

ICV_DIR, Interrupt Controller Deactivate Virtual
Interrupt Register

The ICV_DIR characteristics are:

Purpose
When interrupt priority drop is separated from interrupt deactivation, a write to this register deactivates the specified
virtual interrupt.

Configuration
AArch32 System register ICV_DIR bits [31:0] performs the same function as AArch64 System register
ICV_DIR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ICV_DIR
are UNKNOWN.

Attributes
ICV_DIR is a 32-bit register.

Field descriptions
The ICV_DIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the virtual interrupt to be deactivated.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR.IDbits. If
only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_DIR
When EOImode == 0, writes are ignored. In systems supporting system error generation, an implementation might
generate an SEI.

Accesses to this register use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1011 0b001

ICV_DIR, Interrupt Controller Deactivate Virtual Interrupt Register

Page 2668

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TDIR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TDIR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_DIR = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_DIR = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

ICV_DIR = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

ICV_DIR = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11'

then
AArch32.TakeMonitorTrapException();

else
ICC_DIR = R[t];

elsif PSTATE.EL == EL2 then
if ICC_HSRE.SRE == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then

AArch32.TakeMonitorTrapException();
else

ICC_DIR = R[t];
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
ICC_DIR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_DIR, Interrupt Controller Deactivate Virtual Interrupt Register

Page 2669

ICV_EOIR0, Interrupt Controller Virtual End Of
Interrupt Register 0

The ICV_EOIR0 characteristics are:

Purpose
A PE writes to this register to inform the CPU interface that it has completed the processing of the specified virtual
Group 0 interrupt.

Configuration
AArch32 System register ICV_EOIR0 performs the same function as AArch64 System register ICV_EOIR0_EL1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICV_EOIR0 are UNKNOWN.

Attributes
ICV_EOIR0 is a 32-bit register.

Field descriptions
The ICV_EOIR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICV_IAR0 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR.IDbits. If
only 16 bits are implemented, bits [23:16] of this register are RES0.

If the ICV_CTLR.EOImode bit is 0, a write to this register drops the priority for the virtual interrupt, and also
deactivates the virtual interrupt.

If the ICV_CTLR.EOImode bit is 1, a write to this register only drops the priority for the virtual interrupt. Software
must write to ICV_DIR to deactivate the virtual interrupt.

Accessing the ICV_EOIR0
A write to this register must correspond to the most recent valid read by this vPE from a Virtual Interrupt
Acknowledge Register, and must correspond to the INTID that was read from ICV_IAR0, otherwise the system
behavior is UNPREDICTABLE. A valid read is a read that returns a valid INTID that is not a special INTID.

Accesses to this register use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

ICV_EOIR0, Interrupt Controller Virtual End Of Interrupt Register 0

Page 2670

0b1111 0b000 0b1100 0b1000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_EOIR0 = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

ICV_EOIR0 = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then

AArch32.TakeMonitorTrapException();
else

ICC_EOIR0 = R[t];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
AArch32.TakeMonitorTrapException();

else
ICC_EOIR0 = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

ICC_EOIR0 = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_EOIR0, Interrupt Controller Virtual End Of Interrupt Register 0

Page 2671

ICV_EOIR1, Interrupt Controller Virtual End Of
Interrupt Register 1

The ICV_EOIR1 characteristics are:

Purpose
A PE writes to this register to inform the CPU interface that it has completed the processing of the specified virtual
Group 1 interrupt.

Configuration
AArch32 System register ICV_EOIR1 performs the same function as AArch64 System register ICV_EOIR1_EL1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICV_EOIR1 are UNKNOWN.

Attributes
ICV_EOIR1 is a 32-bit register.

Field descriptions
The ICV_EOIR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICV_IAR1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR.IDbits. If
only 16 bits are implemented, bits [23:16] of this register are RES0.

If the ICV_CTLR.EOImode bit is 0, a write to this register drops the priority for the virtual interrupt, and also
deactivates the virtual interrupt.

If the ICV_CTLR.EOImode bit is 1, a write to this register only drops the priority for the virtual interrupt. Software
must write to ICV_DIR to deactivate the virtual interrupt.

Accessing the ICV_EOIR1
A write to this register must correspond to the most recent valid read by this vPE from a Virtual Interrupt
Acknowledge Register, and must correspond to the INTID that was read from ICV_IAR1, otherwise the system
behavior is UNPREDICTABLE. A valid read is a read that returns a valid INTID that is not a special INTID.

Accesses to this register use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

ICV_EOIR1, Interrupt Controller Virtual End Of Interrupt Register 1

Page 2672

0b1111 0b000 0b1100 0b1100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_EOIR1 = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

ICV_EOIR1 = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

AArch32.TakeMonitorTrapException();
else

ICC_EOIR1 = R[t];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();

else
ICC_EOIR1 = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

ICC_EOIR1 = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_EOIR1, Interrupt Controller Virtual End Of Interrupt Register 1

Page 2673

ICV_HPPIR0, Interrupt Controller Virtual Highest
Priority Pending Interrupt Register 0

The ICV_HPPIR0 characteristics are:

Purpose
Indicates the highest priority pending virtual Group 0 interrupt on the virtual CPU interface.

Configuration
AArch32 System register ICV_HPPIR0 performs the same function as AArch64 System register ICV_HPPIR0_EL1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICV_HPPIR0 are UNKNOWN.

Attributes
ICV_HPPIR0 is a 32-bit register.

Field descriptions
The ICV_HPPIR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending virtual interrupt.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason.
This special INTID can take the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR.IDbits. If
only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_HPPIR0
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1000 0b010

ICV_HPPIR0, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

Page 2674

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_HPPIR0;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

return ICV_HPPIR0;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then

AArch32.TakeMonitorTrapException();
else

return ICC_HPPIR0;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
AArch32.TakeMonitorTrapException();

else
return ICC_HPPIR0;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICC_HPPIR0;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_HPPIR0, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

Page 2675

ICV_HPPIR1, Interrupt Controller Virtual Highest
Priority Pending Interrupt Register 1

The ICV_HPPIR1 characteristics are:

Purpose
Indicates the highest priority pending virtual Group 1 interrupt on the virtual CPU interface.

Configuration
AArch32 System register ICV_HPPIR1 performs the same function as AArch64 System register ICV_HPPIR1_EL1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICV_HPPIR1 are UNKNOWN.

Attributes
ICV_HPPIR1 is a 32-bit register.

Field descriptions
The ICV_HPPIR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending virtual interrupt.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason.
This special INTID can take the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR.IDbits. If
only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_HPPIR1
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b010

ICV_HPPIR1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

Page 2676

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_HPPIR1;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_HPPIR1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

AArch32.TakeMonitorTrapException();
else

return ICC_HPPIR1;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();

else
return ICC_HPPIR1;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICC_HPPIR1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_HPPIR1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

Page 2677

ICV_IAR0, Interrupt Controller Virtual Interrupt
Acknowledge Register 0

The ICV_IAR0 characteristics are:

Purpose
The PE reads this register to obtain the INTID of the signaled virtual Group 0 interrupt. This read acts as an
acknowledge for the interrupt.

Configuration
AArch32 System register ICV_IAR0 performs the same function as AArch64 System register ICV_IAR0_EL1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICV_IAR0 are UNKNOWN.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU
interface logic must ensure that reads of this register are self-synchronising when interrupts are masked by the PE
(that is when PSTATE.{I,F} == {0,0}). This ensures that the effect of activating an interrupt on the signaling of
interrupt exceptions is observed when a read of this register is architecturally executed so that no spurious interrupt
exception occurs if interrupts are unmasked by an instruction immediately following the read. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes
ICV_IAR0 is a 32-bit register.

Field descriptions
The ICV_IAR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled virtual interrupt.

This is the INTID of the highest priority pending virtual interrupt, if that interrupt is of sufficient priority for it to be
signaled to the PE, and if it can be acknowledged.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason.
This special INTID can take the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR.IDbits. If
only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_IAR0
Accesses to this register use the following encodings:

ICV_IAR0, Interrupt Controller Virtual Interrupt Acknowledge Register 0

Page 2678

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_IAR0;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

return ICV_IAR0;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then

AArch32.TakeMonitorTrapException();
else

return ICC_IAR0;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
AArch32.TakeMonitorTrapException();

else
return ICC_IAR0;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICC_IAR0;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_IAR0, Interrupt Controller Virtual Interrupt Acknowledge Register 0

Page 2679

ICV_IAR1, Interrupt Controller Virtual Interrupt
Acknowledge Register 1

The ICV_IAR1 characteristics are:

Purpose
The PE reads this register to obtain the INTID of the signaled virtual Group 1 interrupt. This read acts as an
acknowledge for the interrupt.

Configuration
AArch32 System register ICV_IAR1 performs the same function as AArch64 System register ICV_IAR1_EL1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICV_IAR1 are UNKNOWN.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU
interface logic must ensure that reads of this register are self-synchronising when interrupts are masked by the PE
(that is when PSTATE.{I,F} == {0,0}). This ensures that the effect of activating an interrupt on the signaling of
interrupt exceptions is observed when a read of this register is architecturally executed so that no spurious interrupt
exception occurs if interrupts are unmasked by an instruction immediately following the read. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes
ICV_IAR1 is a 32-bit register.

Field descriptions
The ICV_IAR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled virtual interrupt.

This is the INTID of the highest priority pending virtual interrupt, if that interrupt is of sufficient priority for it to be
signaled to the PE, and if it can be acknowledged.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason.
This special INTID can take the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR.IDbits. If
only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_IAR1
Accesses to this register use the following encodings:

ICV_IAR1, Interrupt Controller Virtual Interrupt Acknowledge Register 1

Page 2680

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_IAR1;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_IAR1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

AArch32.TakeMonitorTrapException();
else

return ICC_IAR1;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();

else
return ICC_IAR1;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICC_IAR1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_IAR1, Interrupt Controller Virtual Interrupt Acknowledge Register 1

Page 2681

ICV_IGRPEN0, Interrupt Controller Virtual Interrupt
Group 0 Enable register

The ICV_IGRPEN0 characteristics are:

Purpose
Controls whether virtual Group 0 interrupts are enabled or not.

Configuration
AArch32 System register ICV_IGRPEN0 bits [31:0] are architecturally mapped to AArch64 System register
ICV_IGRPEN0_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICV_IGRPEN0 are UNKNOWN.

Attributes
ICV_IGRPEN0 is a 32-bit register.

Field descriptions
The ICV_IGRPEN0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Enable

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables virtual Group 0 interrupts.

Enable Meaning
0b0 Virtual Group 0 interrupts are disabled.
0b1 Virtual Group 0 interrupts are enabled.

This field resets to 0.

Accessing the ICV_IGRPEN0
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b110

ICV_IGRPEN0, Interrupt Controller Virtual Interrupt Group 0 Enable register

Page 2682

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_IGRPEN0;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

return ICV_IGRPEN0;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then

AArch32.TakeMonitorTrapException();
else

return ICC_IGRPEN0;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
AArch32.TakeMonitorTrapException();

else
return ICC_IGRPEN0;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICC_IGRPEN0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b110

ICV_IGRPEN0, Interrupt Controller Virtual Interrupt Group 0 Enable register

Page 2683

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_IGRPEN0 = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

ICV_IGRPEN0 = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then

AArch32.TakeMonitorTrapException();
else

ICC_IGRPEN0 = R[t];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
AArch32.TakeMonitorTrapException();

else
ICC_IGRPEN0 = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

ICC_IGRPEN0 = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_IGRPEN0, Interrupt Controller Virtual Interrupt Group 0 Enable register

Page 2684

ICV_IGRPEN1, Interrupt Controller Virtual Interrupt
Group 1 Enable register

The ICV_IGRPEN1 characteristics are:

Purpose
Controls whether virtual Group 1 interrupts are enabled for the current Security state.

Configuration
AArch32 System register ICV_IGRPEN1 bits [31:0] are architecturally mapped to AArch64 System register
ICV_IGRPEN1_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICV_IGRPEN1 are UNKNOWN.

Attributes
ICV_IGRPEN1 is a 32-bit register.

Field descriptions
The ICV_IGRPEN1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Enable

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables virtual Group 1 interrupts.

Enable Meaning
0b0 Virtual Group 1 interrupts are disabled.
0b1 Virtual Group 1 interrupts are enabled.

This field resets to 0.

Accessing the ICV_IGRPEN1
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b111

ICV_IGRPEN1, Interrupt Controller Virtual Interrupt Group 1 Enable register

Page 2685

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_IGRPEN1;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_IGRPEN1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

return ICC_IGRPEN1_NS;
else

return ICC_IGRPEN1;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
return ICC_IGRPEN1_NS;

else
return ICC_IGRPEN1;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

if SCR.NS == '0' then
return ICC_IGRPEN1_S;

else
return ICC_IGRPEN1_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b111

ICV_IGRPEN1, Interrupt Controller Virtual Interrupt Group 1 Enable register

Page 2686

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_IGRPEN1 = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

ICV_IGRPEN1 = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

ICC_IGRPEN1_NS = R[t];
else

ICC_IGRPEN1 = R[t];
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
ICC_IGRPEN1_NS = R[t];

else
ICC_IGRPEN1 = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

if SCR.NS == '0' then
ICC_IGRPEN1_S = R[t];

else
ICC_IGRPEN1_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_IGRPEN1, Interrupt Controller Virtual Interrupt Group 1 Enable register

Page 2687

ICV_PMR, Interrupt Controller Virtual Interrupt
Priority Mask Register

The ICV_PMR characteristics are:

Purpose
Provides a virtual interrupt priority filter. Only virtual interrupts with a higher priority than the value in this register
are signaled to the PE.

Configuration
AArch32 System register ICV_PMR bits [31:0] are architecturally mapped to AArch64 System register
ICV_PMR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICV_PMR are UNKNOWN.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU
interface logic must ensure that writes to this register are self-synchronising. This ensures that no interrupts below
the written PMR value will be taken after a write to this register is architecturally executed. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes
ICV_PMR is a 32-bit register.

Field descriptions
The ICV_PMR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Priority

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The priority mask level for the virtual CPU interface. If the priority of a virtual interrupt is higher than the value
indicated by this field, the interface signals the virtual interrupt to the PE.

The possible priority field values are as follows:

Implemented
priority bits

Possible priority field
values

Number of
priority levels

[7:0] 0x00-0xFF (0-255), all
values

256

[7:1] 0x00-0xFE (0-254), even
values only

128

[7:2] 0x00-0xFC (0-252), in steps
of 4

64

[7:3] 0x00-0xF8 (0-248), in steps
of 8

32

[7:4] 0x00-0xF0 (0-240), in steps
of 16

16

ICV_PMR, Interrupt Controller Virtual Interrupt Priority Mask Register

Page 2688

Unimplemented priority bits are RAZ/WI.

This field resets to 0.

Accessing the ICV_PMR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0100 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_PMR;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_PMR;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

return ICV_PMR;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_PMR;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11'

then
AArch32.TakeMonitorTrapException();

else
return ICC_PMR;

elsif PSTATE.EL == EL2 then
if ICC_HSRE.SRE == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then

AArch32.TakeMonitorTrapException();
else

return ICC_PMR;
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
return ICC_PMR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0100 0b0110 0b000

ICV_PMR, Interrupt Controller Virtual Interrupt Priority Mask Register

Page 2689

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_PMR = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_PMR = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

ICV_PMR = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

ICV_PMR = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11'

then
AArch32.TakeMonitorTrapException();

else
ICC_PMR = R[t];

elsif PSTATE.EL == EL2 then
if ICC_HSRE.SRE == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then

AArch32.TakeMonitorTrapException();
else

ICC_PMR = R[t];
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
ICC_PMR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_PMR, Interrupt Controller Virtual Interrupt Priority Mask Register

Page 2690

ICV_RPR, Interrupt Controller Virtual Running Priority
Register

The ICV_RPR characteristics are:

Purpose
Indicates the Running priority of the virtual CPU interface.

Configuration
AArch32 System register ICV_RPR performs the same function as AArch64 System register ICV_RPR_EL1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ICV_RPR
are UNKNOWN.

Attributes
ICV_RPR is a 32-bit register.

Field descriptions
The ICV_RPR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Priority

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the virtual CPU interface. This is the group priority of the current active virtual
interrupt.

The priority returned is the group priority as if the BPR for the current Exception level and Security state was set to
the minimum value of BPR for the number of implemented priority bits.

Note

If 8 bits of priority are implemented the group priority is bits[7:1] of the
priority.

Accessing the ICV_RPR
If there are no active interrupts on the virtual CPU interface, or all active interrupts have undergone a priority drop,
the value returned is the Idle priority.

Software cannot determine the number of implemented priority bits from a read of this register.

Accesses to this register use the following encodings:

ICV_RPR, Interrupt Controller Virtual Running Priority Register

Page 2691

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1011 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_RPR;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_RPR;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

return ICV_RPR;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_RPR;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11'

then
AArch32.TakeMonitorTrapException();

else
return ICC_RPR;

elsif PSTATE.EL == EL2 then
if ICC_HSRE.SRE == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then

AArch32.TakeMonitorTrapException();
else

return ICC_RPR;
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
return ICC_RPR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_RPR, Interrupt Controller Virtual Running Priority Register

Page 2692

ID_AFR0, Auxiliary Feature Register 0
The ID_AFR0 characteristics are:

Purpose
Provides information about the IMPLEMENTATION DEFINED features of the PE in AArch32 state.

Must be interpreted with the Main ID Register, MIDR.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register ID_AFR0 bits [31:0] are architecturally mapped to AArch64 System register
ID_AFR0_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_AFR0
are UNKNOWN.

Attributes
ID_AFR0 is a 32-bit register.

Field descriptions
The ID_AFR0 bit assignments are:

31302928272625242322212019181716 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

Bits [31:16]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [15:12]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [11:8]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [7:4]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [3:0]

IMPLEMENTATION DEFINED.

ID_AFR0, Auxiliary Feature Register 0

Page 2693

Accessing the ID_AFR0
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0001 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_AFR0;
elsif PSTATE.EL == EL2 then

return ID_AFR0;
elsif PSTATE.EL == EL3 then

return ID_AFR0;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AFR0, Auxiliary Feature Register 0

Page 2694

ID_DFR0, Debug Feature Register 0
The ID_DFR0 characteristics are:

Purpose
Provides top level information about the debug system in AArch32 state.

Must be interpreted with the Main ID Register, MIDR.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register ID_DFR0 bits [31:0] are architecturally mapped to AArch64 System register
ID_DFR0_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_DFR0
are UNKNOWN.

Attributes
ID_DFR0 is a 32-bit register.

Field descriptions
The ID_DFR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TraceFilt PerfMon MProfDbg RES0 MMapDbg CopSDbg CopDbg

TraceFilt, bits [31:28]

Armv8.4 Self-hosted Trace Extension version. Defined values are:

TraceFilt Meaning
0b0000 Armv8.4 Self-hosted Trace Extension not implemented.
0b0001 Armv8.4 Self-hosted Trace Extension implemented.

All other values are reserved.

ARMv8.4-Trace implements the functionality added by the value 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

PerfMon, bits [27:24]

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the alternative ID scheme described in Alternative ID
scheme used for the Performance Monitors Extension version.

Defined values are:

ID_DFR0, Debug Feature Register 0

Page 2695

PerfMon Meaning
0b0000 Performance Monitors Extension not implemented.
0b0001 Performance Monitors Extension version 1 implemented,

PMUv1.
0b0010 Performance Monitors Extension version 2 implemented,

PMUv2.
0b0011 Performance Monitors Extension version 3 implemented,

PMUv3.
0b0100 PMUv3 for Armv8.1. As 0b0011, and also includes support

for:
• Extended 16-bit PMEVTYPER<n>.evtCount field.
• If EL2 is implemented, the HDCR.HPMD control bit.

0b0101 PMUv3 for Armv8.4. As 0b0100 and also includes support for
the PMMIR register.

0b0110 PMUv3 for Armv8.5. As 0b0101 and also includes support
for:

• 64-bit event counters.
• If EL2 is implemented, the HDCR.HCCD control bit.
• If EL3 is implemented, the SDCR.SCCD control bit.

0b1111 IMPLEMENTATION DEFINED form of performance monitors
supported, PMUv3 not supported. Arm does not recommend
this value in new implementations.

ARMv8.1-PMU implements the functionality added by the value 0b0100.

ARMv8.4-PMU implements the functionality added by the value 0b0101.

ARMv8.5-PMU implements the functionality added by the value 0b0110.

All other values are reserved.

In any Armv8 implementation, the values 0b0001 and 0b0010 are not permitted.

From Armv8.1, the value 0b0011 is not permitted.

From Armv8.4, the value 0b0100 is not permitted.

From Armv8.5, the value 0b0101 is not permitted.

Note

In Armv7, the value 0b0000 can mean that PMUv1 is implemented. PMUv1 is
not permitted in an Armv8 implementation.

MProfDbg, bits [23:20]

M Profile Debug. Support for memory-mapped debug model for M profile processors. Defined values are:

MProfDbg Meaning
0b0000 Not supported.
0b0001 Support for M profile Debug architecture, with memory-

mapped access.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Bits [19:12]

Reserved, RES0.

MMapDbg, bits [11:8]

Memory Mapped Debug. Support for v7 memory-mapped debug model, for A and R profile processors.

In Armv8-A, this field is RES0.

ID_DFR0, Debug Feature Register 0

Page 2696

The optional memory map defined by Armv8 is not compatible with Armv7.

CopSDbg, bits [7:4]

Support for a System registers-based Secure debug model, using registers in the coproc = 0b1110 encoding space, for
an A profile processor that includes EL3.

If EL3 is not implemented and the implemented Security state is Non-secure state, this field is RES0. Otherwise, this
field reads the same as bits [3:0].

CopDbg, bits [3:0]

Support for System registers-based debug model, using registers in the coproc == 0b1110 encoding space, for A and R
profile processors. Defined values are:

CopDbg Meaning
0b0000 Not supported.
0b0010 Support for Armv6, v6 Debug architecture, with System

registers access.
0b0011 Support for Armv6, v6.1 Debug architecture, with System

registers access.
0b0100 Support for Armv7, v7 Debug architecture, with System

registers access.
0b0101 Support for Armv7, v7.1 Debug architecture, with System

registers access.
0b0110 Support for Armv8 debug architecture, with System registers

access.
0b0111 Support for Armv8 debug architecture, with System registers

access, and Virtualization Host extensions.
0b1000 Support for Armv8.2 debug architecture.
0b1001 Support for Armv8.4 debug architecture.

All other values are reserved.

In any Armv8 implementation, the values 0b0000, 0b0010, 0b0011, 0b0100, and 0b0101 are not permitted.

If ARMv8.1-VHE is not implemented, the only permitted value is 0b0110.

In an Armv8.0 implementation, the value 0b1000 is not permitted.

Accessing the ID_DFR0
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0001 0b010

ID_DFR0, Debug Feature Register 0

Page 2697

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_DFR0;
elsif PSTATE.EL == EL2 then

return ID_DFR0;
elsif PSTATE.EL == EL3 then

return ID_DFR0;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_DFR0, Debug Feature Register 0

Page 2698

ID_DFR1, Debug Feature Register 1
The ID_DFR1 characteristics are:

Purpose
Provides top level information about the debug system in AArch32.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register ID_DFR1 bits [31:0] are architecturally mapped to AArch64 System register
ID_DFR1_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_DFR1
are RES0.

Note

Prior to the introduction of the features described by this register, this
register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

Attributes
ID_DFR1 is a 32-bit register.

Field descriptions
The ID_DFR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 MTPMU

Bits [31:4]

Reserved, RES0.

MTPMU, bits [3:0]

Multi-threaded PMU extension. Defined values are:

MTPMU Meaning
0b0000 ARMv8.6-MTPMU not implemented. If PMUv3 is

implemented, it is IMPLEMENTATION DEFINED whether
PMEVTYPER<n>.MT are read/write or RES0.

0b0001 ARMv8.6-MTPMU implemented and PMEVTYPER<n>.MT
are read/write. When ARMv8.6-MTPMU is disabled, the
Effective values of PMEVTYPER<n>.MT are 0.

0b1111 ARMv8.6-MTPMU not implemented. If PMUv3 is
implemented, PMEVTYPER<n>.MT are RES0.

All other values are reserved.

ARMv8.6-MTPMU implements the functionality identified by the value 0b0001.

In an Armv8.6-compliant implementation that includes PMUv3, the value 0b0000 is not permitted.

ID_DFR1, Debug Feature Register 1

Page 2699

In an implementation that does not include PMUv3, the value 0b0001 is not permitted.

Accessing the ID_DFR1
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0011 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!IsZero(ID_DFR1) || boolean

IMPLEMENTATION_DEFINED "ID_DFR1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && (!IsZero(ID_DFR1) || boolean
IMPLEMENTATION_DEFINED "ID_DFR1 trapped by HCR.TID3") && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_DFR1;
elsif PSTATE.EL == EL2 then

return ID_DFR1;
elsif PSTATE.EL == EL3 then

return ID_DFR1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_DFR1, Debug Feature Register 1

Page 2700

ID_ISAR0, Instruction Set Attribute Register 0
The ID_ISAR0 characteristics are:

Purpose
Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, and ID_ISAR5.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register ID_ISAR0 bits [31:0] are architecturally mapped to AArch64 System register
ID_ISAR0_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_ISAR0 are UNKNOWN.

Attributes
ID_ISAR0 is a 32-bit register.

Field descriptions
The ID_ISAR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Divide Debug Coproc CmpBranch BitField BitCount Swap

Bits [31:28]

Reserved, RES0.

Divide, bits [27:24]

Indicates the implemented Divide instructions. Defined values are:

Divide Meaning
0b0000 None implemented.
0b0001 Adds SDIV and UDIV in the T32 instruction set.
0b0010 As for 0b0001, and adds SDIV and UDIV in the A32 instruction

set.

All other values are reserved.

In Armv8-A the only permitted value is 0b0010.

Debug, bits [23:20]

Indicates the implemented Debug instructions. Defined values are:

Debug Meaning
0b0000 None implemented.
0b0001 Adds BKPT.

ID_ISAR0, Instruction Set Attribute Register 0

Page 2701

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

Coproc, bits [19:16]

Indicates the implemented System register access instructions. Defined values are:

Coproc Meaning
0b0000 None implemented, except for instructions separately

attributed by the architecture to provide access to AArch32
System registers and System instructions.

0b0001 Adds generic CDP, LDC, MCR, MRC, and STC.
0b0010 As for 0b0001, and adds generic CDP2, LDC2, MCR2, MRC2,

and STC2.
0b0011 As for 0b0010, and adds generic MCRR and MRRC.
0b0100 As for 0b0011, and adds generic MCRR2 and MRRC2.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

CmpBranch, bits [15:12]

Indicates the implemented combined Compare and Branch instructions in the T32 instruction set. Defined values are:

CmpBranch Meaning
0b0000 None implemented.
0b0001 Adds CBNZ and CBZ.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

BitField, bits [11:8]

Indicates the implemented BitField instructions. Defined values are:

BitField Meaning
0b0000 None implemented.
0b0001 Adds BFC, BFI, SBFX, and UBFX.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

BitCount, bits [7:4]

Indicates the implemented Bit Counting instructions. Defined values are:

BitCount Meaning
0b0000 None implemented.
0b0001 Adds CLZ.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

Swap, bits [3:0]

Indicates the implemented Swap instructions in the A32 instruction set. Defined values are:

Swap Meaning
0b0000 None implemented.
0b0001 Adds SWP and SWPB.

ID_ISAR0, Instruction Set Attribute Register 0

Page 2702

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

Accessing the ID_ISAR0
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_ISAR0;
elsif PSTATE.EL == EL2 then

return ID_ISAR0;
elsif PSTATE.EL == EL3 then

return ID_ISAR0;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR0, Instruction Set Attribute Register 0

Page 2703

ID_ISAR1, Instruction Set Attribute Register 1
The ID_ISAR1 characteristics are:

Purpose
Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR2, ID_ISAR3, ID_ISAR4, and ID_ISAR5.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register ID_ISAR1 bits [31:0] are architecturally mapped to AArch64 System register
ID_ISAR1_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_ISAR1 are UNKNOWN.

Attributes
ID_ISAR1 is a 32-bit register.

Field descriptions
The ID_ISAR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Jazelle Interwork Immediate IfThen Extend Except_AR Except Endian

Jazelle, bits [31:28]

Indicates the implemented Jazelle extension instructions. Defined values are:

Jazelle Meaning
0b0000 No support for Jazelle.
0b0001 Adds the BXJ instruction, and the J bit in the PSR. This setting

might indicate a trivial implementation of the Jazelle extension.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

Interwork, bits [27:24]

Indicates the implemented Interworking instructions. Defined values are:

Interwork Meaning
0b0000 None implemented.
0b0001 Adds the BX instruction, and the T bit in the PSR.
0b0010 As for 0b0001, and adds the BLX instruction. PC loads have

BX-like behavior.
0b0011 As for 0b0010, and guarantees that data-processing

instructions in the A32 instruction set with the PC as the
destination and the S bit clear have BX-like behavior.

All other values are reserved.

ID_ISAR1, Instruction Set Attribute Register 1

Page 2704

In Armv8-A the only permitted value is 0b0011.

Immediate, bits [23:20]

Indicates the implemented data-processing instructions with long immediates. Defined values are:

Immediate Meaning
0b0000 None implemented.
0b0001 Adds:

• The MOVT instruction
• The MOV instruction encodings with zero-extended

16-bit immediates.
• The T32 ADD and SUB instruction encodings with

zero-extended 12-bit immediates, and the other
ADD, ADR, and SUB encodings cross-referenced by
the pseudocode for those encodings.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

IfThen, bits [19:16]

Indicates the implemented If-Then instructions in the T32 instruction set. Defined values are:

IfThen Meaning
0b0000 None implemented.
0b0001 Adds the IT instructions, and the IT bits in the PSRs.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

Extend, bits [15:12]

Indicates the implemented Extend instructions. Defined values are:

Extend Meaning
0b0000 No scalar sign-extend or zero-extend instructions are

implemented, where scalar instructions means non-Advanced
SIMD instructions.

0b0001 Adds the SXTB, SXTH, UXTB, and UXTH instructions.
0b0010 As for 0b0001, and adds the SXTB16, SXTAB, SXTAB16,

SXTAH, UXTB16, UXTAB, UXTAB16, and UXTAH instructions.

All other values are reserved.

In Armv8-A the only permitted value is 0b0010.

Except_AR, bits [11:8]

Indicates the implemented A and R profile exception-handling instructions. Defined values are:

Except_AR Meaning
0b0000 None implemented.
0b0001 Adds the SRS and RFE instructions, and the A and R

profile forms of the CPS instruction.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

Except, bits [7:4]

Indicates the implemented exception-handling instructions in the A32 instruction set. Defined values are:

ID_ISAR1, Instruction Set Attribute Register 1

Page 2705

Except Meaning
0b0000 Not implemented. This indicates that the User bank and

Exception return forms of the LDM and STM instructions are
not implemented.

0b0001 Adds the LDM (exception return), LDM (user registers), and
STM (user registers) instruction versions.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

Endian, bits [3:0]

Indicates the implemented Endian instructions. Defined values are:

Endian Meaning
0b0000 None implemented.
0b0001 Adds the SETEND instruction, and the E bit in the PSRs.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

Accessing the ID_ISAR1
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_ISAR1;
elsif PSTATE.EL == EL2 then

return ID_ISAR1;
elsif PSTATE.EL == EL3 then

return ID_ISAR1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR1, Instruction Set Attribute Register 1

Page 2706

ID_ISAR2, Instruction Set Attribute Register 2
The ID_ISAR2 characteristics are:

Purpose
Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR3, ID_ISAR4, and ID_ISAR5.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register ID_ISAR2 bits [31:0] are architecturally mapped to AArch64 System register
ID_ISAR2_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_ISAR2 are UNKNOWN.

Attributes
ID_ISAR2 is a 32-bit register.

Field descriptions
The ID_ISAR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reversal PSR_AR MultU MultS Mult MultiAccessInt MemHint LoadStore

Reversal, bits [31:28]

Indicates the implemented Reversal instructions. Defined values are:

Reversal Meaning
0b0000 None implemented.
0b0001 Adds the REV, REV16, and REVSH instructions.
0b0010 As for 0b0001, and adds the RBIT instruction.

All other values are reserved.

In Armv8-A the only permitted value is 0b0010.

PSR_AR, bits [27:24]

Indicates the implemented A and R profile instructions to manipulate the PSR. Defined values are:

PSR_AR Meaning
0b0000 None implemented.
0b0001 Adds the MRS and MSR instructions, and the exception

return forms of data-processing instructions.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

The exception return forms of the data-processing instructions are:

ID_ISAR2, Instruction Set Attribute Register 2

Page 2707

• In the A32 instruction set, data-processing instructions with the PC as the destination and the S bit set. These
instructions might be affected by the WithShifts attribute.

• In the T32 instruction set, the SUBS PC,LR,#N instruction.

MultU, bits [23:20]

Indicates the implemented advanced unsigned Multiply instructions. Defined values are:

MultU Meaning
0b0000 None implemented.
0b0001 Adds the UMULL and UMLAL instructions.
0b0010 As for 0b0001, and adds the UMAAL instruction.

All other values are reserved.

In Armv8-A the only permitted value is 0b0010.

MultS, bits [19:16]

Indicates the implemented advanced signed Multiply instructions. Defined values are:

MultS Meaning
0b0000 None implemented.
0b0001 Adds the SMULL and SMLAL instructions.
0b0010 As for 0b0001, and adds the SMLABB, SMLABT, SMLALBB,

SMLALBT, SMLALTB, SMLALTT, SMLATB, SMLATT, SMLAWB,
SMLAWT, SMULBB, SMULBT, SMULTB, SMULTT, SMULWB,
and SMULWT instructions. Also adds the Q bit in the PSRs.

0b0011 As for 0b0010, and adds the SMLAD, SMLADX, SMLALD,
SMLALDX, SMLSD, SMLSDX, SMLSLD, SMLSLDX, SMMLA,
SMMLAR, SMMLS, SMMLSR, SMMUL, SMMULR, SMUAD,
SMUADX, SMUSD, and SMUSDX instructions.

All other values are reserved.

In Armv8-A the only permitted value is 0b0011.

Mult, bits [15:12]

Indicates the implemented additional Multiply instructions. Defined values are:

Mult Meaning
0b0000 No additional instructions implemented. This means only MUL

is implemented.
0b0001 Adds the MLA instruction.
0b0010 As for 0b0001, and adds the MLS instruction.

All other values are reserved.

In Armv8-A the only permitted value is 0b0010.

MultiAccessInt, bits [11:8]

Indicates the support for interruptible multi-access instructions. Defined values are:

MultiAccessInt Meaning
0b0000 No support. This means the LDM and STM

instructions are not interruptible.
0b0001 LDM and STM instructions are restartable.
0b0010 LDM and STM instructions are continuable.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

ID_ISAR2, Instruction Set Attribute Register 2

Page 2708

MemHint, bits [7:4]

Indicates the implemented Memory Hint instructions. Defined values are:

MemHint Meaning
0b0000 None implemented.
0b0001 Adds the PLD instruction.
0b0010 Adds the PLD instruction. (0b0001 and 0b0010 have

identical effects.)
0b0011 As for 0b0001 (or 0b0010), and adds the PLI instruction.
0b0100 As for 0b0011, and adds the PLDW instruction.

All other values are reserved.

In Armv8-A the only permitted value is 0b0100.

LoadStore, bits [3:0]

Indicates the implemented additional load/store instructions. Defined values are:

LoadStore Meaning
0b0000 No additional load/store instructions implemented.
0b0001 Adds the LDRD and STRD instructions.
0b0010 As for 0b0001, and adds the Load Acquire (LDAB, LDAH,

LDA, LDAEXB, LDAEXH, LDAEX, LDAEXD) and Store
Release (STLB, STLH, STL, STLEXB, STLEXH, STLEX,
STLEXD) instructions.

All other values are reserved.

In Armv8-A the only permitted value is 0b0010.

Accessing the ID_ISAR2
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_ISAR2;
elsif PSTATE.EL == EL2 then

return ID_ISAR2;
elsif PSTATE.EL == EL3 then

return ID_ISAR2;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR2, Instruction Set Attribute Register 2

Page 2709

ID_ISAR3, Instruction Set Attribute Register 3
The ID_ISAR3 characteristics are:

Purpose
Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR4, and ID_ISAR5.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register ID_ISAR3 bits [31:0] are architecturally mapped to AArch64 System register
ID_ISAR3_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_ISAR3 are UNKNOWN.

Attributes
ID_ISAR3 is a 32-bit register.

Field descriptions
The ID_ISAR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T32EE TrueNOP T32Copy TabBranch SynchPrim SVC SIMD Saturate

T32EE, bits [31:28]

Indicates the implemented T32EE instructions. Defined values are:

T32EE Meaning
0b0000 None implemented.
0b0001 Adds the ENTERX and LEAVEX instructions, and modifies the

load behavior to include null checking.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

TrueNOP, bits [27:24]

Indicates the implemented true NOP instructions. Defined values are:

TrueNOP Meaning
0b0000 None implemented. This means there are no NOP

instructions that do not have any register dependencies.
0b0001 Adds true NOP instructions in both the T32 and A32

instruction sets. This also permits additional NOP-
compatible hints.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

ID_ISAR3, Instruction Set Attribute Register 3

Page 2710

T32Copy, bits [23:20]

Indicates the support for T32 non flag-setting MOV instructions. Defined values are:

T32Copy Meaning
0b0000 Not supported. This means that in the T32 instruction set,

encoding T1 of the MOV (register) instruction does not
support a copy from a low register to a low register.

0b0001 Adds support for T32 instruction set encoding T1 of the MOV
(register) instruction, copying from a low register to a low
register.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

TabBranch, bits [19:16]

Indicates the implemented Table Branch instructions in the T32 instruction set. Defined values are:

TabBranch Meaning
0b0000 None implemented.
0b0001 Adds the TBB and TBH instructions.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

SynchPrim, bits [15:12]

Used in conjunction with ID_ISAR4.SynchPrim_frac to indicate the implemented Synchronization Primitive
instructions. Defined values are:

SynchPrim Meaning
0b0000 If SynchPrim_frac == 0b000, no Synchronization

Primitives implemented.
0b0001 If SynchPrim_frac == 0b000, adds the LDREX and STREX

instructions.
If SynchPrim_frac == 0b011, also adds the CLREX,
LDREXB, STREXB, and STREXH instructions.

0b0010 If SynchPrim_frac == 0b000, as for [0b001, 0b011] and
also adds the LDREXD and STREXD instructions.

All other combinations of SynchPrim and SynchPrim_frac are reserved.

In Armv8-A the only permitted value is 0b0010.

SVC, bits [11:8]

Indicates the implemented SVC instructions. Defined values are:

SVC Meaning
0b0000 Not implemented.
0b0001 Adds the SVC instruction.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

SIMD, bits [7:4]

Indicates the implemented SIMD instructions. Defined values are:

ID_ISAR3, Instruction Set Attribute Register 3

Page 2711

SIMD Meaning
0b0000 None implemented.
0b0001 Adds the SSAT and USAT instructions, and the Q bit in the

PSRs.
0b0011 As for 0b0001, and adds the PKHBT, PKHTB, QADD16, QADD8,

QASX, QSUB16, QSUB8, QSAX, SADD16, SADD8, SASX, SEL,
SHADD16, SHADD8, SHASX, SHSUB16, SHSUB8, SHSAX,
SSAT16, SSUB16, SSUB8, SSAX, SXTAB16, SXTB16, UADD16,
UADD8, UASX, UHADD16, UHADD8, UHASX, UHSUB16,
UHSUB8, UHSAX, UQADD16, UQADD8, UQASX, UQSUB16,
UQSUB8, UQSAX, USAD8, USADA8, USAT16, USUB16,
USUB8, USAX, UXTAB16, and UXTB16 instructions. Also adds
support for the GE[3:0] bits in the PSRs.

All other values are reserved.

In Armv8-A the only permitted value is 0b0011.

The SIMD field relates only to implemented instructions that perform SIMD operations on the general-purpose
registers. In an implementation that supports floating-point and Advanced SIMD instructions, MVFR0, MVFR1, and
MVFR2 give information about the implemented Advanced SIMD instructions.

Saturate, bits [3:0]

Indicates the implemented Saturate instructions. Defined values are:

Saturate Meaning
0b0000 None implemented. This means no non-Advanced SIMD

saturate instructions are implemented.
0b0001 Adds the QADD, QDADD, QDSUB, and QSUB instructions,

and the Q bit in the PSRs.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

Accessing the ID_ISAR3
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0010 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_ISAR3;
elsif PSTATE.EL == EL2 then

return ID_ISAR3;
elsif PSTATE.EL == EL3 then

return ID_ISAR3;

ID_ISAR3, Instruction Set Attribute Register 3

Page 2712

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR3, Instruction Set Attribute Register 3

Page 2713

ID_ISAR4, Instruction Set Attribute Register 4
The ID_ISAR4 characteristics are:

Purpose
Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, and ID_ISAR5.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register ID_ISAR4 bits [31:0] are architecturally mapped to AArch64 System register
ID_ISAR4_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_ISAR4 are UNKNOWN.

Attributes
ID_ISAR4 is a 32-bit register.

Field descriptions
The ID_ISAR4 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SWP_frac PSR_M SynchPrim_frac Barrier SMC Writeback WithShifts Unpriv

SWP_frac, bits [31:28]

Indicates support for the memory system locking the bus for SWP or SWPB instructions. Defined values are:

SWP_frac Meaning
0b0000 SWP or SWPB instructions not implemented.
0b0001 SWP or SWPB implemented but only in a uniprocessor

context. SWP and SWPB do not guarantee whether memory
accesses from other masters can come between the load
memory access and the store memory access of the SWP or
SWPB.

All other values are reserved. This field is valid only if ID_ISAR0.Swap is 0b0000.

In Armv8-A, the only permitted value is 0b0000.

PSR_M, bits [27:24]

Indicates the implemented M profile instructions to modify the PSRs. Defined values are:

PSR_M Meaning
0b0000 None implemented.
0b0001 Adds the M profile forms of the CPS, MRS, and MSR

instructions.

All other values are reserved.

ID_ISAR4, Instruction Set Attribute Register 4

Page 2714

In Armv8-A, the only permitted value is 0b0000.

SynchPrim_frac, bits [23:20]

Used in conjunction with ID_ISAR3.SynchPrim to indicate the implemented Synchronization Primitive instructions.
Possible values are:

SynchPrim_frac Meaning
0b0000 If SynchPrim == 0b0000, no Synchronization

Primitives implemented. If SynchPrim == 0b0001,
adds the LDREX and STREX instructions. If
SynchPrim == 0b0010, also adds the CLREX,
LDREXB, LDREXH, STREXB, STREXH, LDREXD, and
STREXD instructions.

0b0011 If SynchPrim == 0b0001, adds the LDREX, STREX,
CLREX, LDREXB, LDREXH, STREXB, and STREXH
instructions.

All other combinations of SynchPrim and SynchPrim_frac are reserved.

In Armv8-A, the only permitted value is 0b0000.

Barrier, bits [19:16]

Indicates the implemented Barrier instructions in the A32 and T32 instruction sets. Defined values are:

Barrier Meaning
0b0000 None implemented. Barrier operations are provided only as

System instructions in the (coproc==0b1111) encoding space.
0b0001 Adds the DMB, DSB, and ISB barrier instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

SMC, bits [15:12]

Indicates the implemented SMC instructions. Defined values are:

SMC Meaning
0b0000 None implemented.
0b0001 Adds the SMC instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Writeback, bits [11:8]

Indicates the support for Writeback addressing modes. Defined values are:

Writeback Meaning
0b0000 Basic support. Only the LDM, STM, PUSH, POP, SRS, and

RFE instructions support writeback addressing modes.
These instructions support all of their writeback
addressing modes.

0b0001 Adds support for all of the writeback addressing modes.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

WithShifts, bits [7:4]

Indicates the support for instructions with shifts. Defined values are:

ID_ISAR4, Instruction Set Attribute Register 4

Page 2715

WithShifts Meaning
0b0000 Nonzero shifts supported only in MOV and shift

instructions.
0b0001 Adds support for shifts of loads and stores over the range

LSL 0-3.
0b0011 As for 0b0001, and adds support for other constant shift

options, both on load/store and other instructions.
0b0100 As for 0b0011, and adds support for register-controlled

shift options.

All other values are reserved.

In Armv8-A the only permitted value is 0b0100.

Unpriv, bits [3:0]

Indicates the implemented unprivileged instructions. Defined values are:

Unpriv Meaning
0b0000 None implemented. No T variant instructions are implemented.
0b0001 Adds the LDRBT, LDRT, STRBT, and STRT instructions.
0b0010 As for 0b0001, and adds the LDRHT, LDRSBT, LDRSHT, and

STRHT instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Accessing the ID_ISAR4
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0010 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_ISAR4;
elsif PSTATE.EL == EL2 then

return ID_ISAR4;
elsif PSTATE.EL == EL3 then

return ID_ISAR4;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR4, Instruction Set Attribute Register 4

Page 2716

ID_ISAR5, Instruction Set Attribute Register 5
The ID_ISAR5 characteristics are:

Purpose
Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, and ID_ISAR4.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register ID_ISAR5 bits [31:0] are architecturally mapped to AArch64 System register
ID_ISAR5_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_ISAR5 are UNKNOWN.

Attributes
ID_ISAR5 is a 32-bit register.

Field descriptions
The ID_ISAR5 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VCMA RDM RES0 CRC32 SHA2 SHA1 AES SEVL

VCMA, bits [31:28]

Indicates AArch32 support for complex number addition and multiplication where numbers are stored in vectors.
Defined values are:

VCMA Meaning
0b0000 The VCMLA and VCADD instructions are not implemented in

AArch32.
0b0001 The VCMLA and VCADD instructions are implemented in

AArch32.

All other values are reserved.

ARMv8.3-CompNum implements the functionality identified by 0b0001.

From Armv8.3, the only permitted value is 0b0001.

RDM, bits [27:24]

Indicates support for the VQRDMLAH and VQRDMLSH instructions in AArch32 state. Defined values are:

RDM Meaning
0b0000 No VQRDMLAH and VQRDMLSH instructions implemented.
0b0001 VQRDMLAH and VQRDMLSH instructions implemented.

All other values are reserved.

ARMv8.1-RDMA implements the functionality identified by the value 0b0001.

ID_ISAR5, Instruction Set Attribute Register 5

Page 2717

From Armv8.1, the only permitted value is 0b0001.

Bits [23:20]

Reserved, RES0.

CRC32, bits [19:16]

Indicates supports for the CRC32 instructions in AArch32 state. Defined values are:

CRC32 Meaning
0b0000 No CRC32 instructions implemented.
0b0001 CRC32B, CRC32H, CRC32W, CRC32CB, CRC32CH, and

CRC32CW instructions implemented.

All other values are reserved.

In Armv8.0 the permitted values are 0b0000 and 0b0001.

From Armv8.1, the only permitted value is 0b0001.

SHA2, bits [15:12]

Indicates supports for the SHA2 instructions in AArch32 state.

SHA2 Meaning
0b0000 No SHA2 instructions implemented.
0b0001 SHA256H, SHA256H2, SHA256SU0, and SHA256SU1

implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

SHA1, bits [11:8]

Indicates support for the SHA1 instructions are implemented in AArch32 state. Defined values are:

SHA1 Meaning
0b0000 No SHA1 instructions implemented.
0b0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1

implemented.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

AES, bits [7:4]

Indicates support for the AES instructions in AArch32 state. Defined values are:

AES Meaning
0b0000 No AES instructions implemented.
0b0001 AESE, AESD, AESMC, and AESIMC implemented.
0b0010 As for 0b0001, plus VMULL (polynomial) instructions operating

on 64-bit data quantities.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0010.

SEVL, bits [3:0]

Indicates support for the SEVL instruction in AArch32 state. Defined values are:

ID_ISAR5, Instruction Set Attribute Register 5

Page 2718

SEVL Meaning
0b0000 SEVL is implemented as a NOP.
0b0001 SEVL is implemented as Send Event Local.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

Accessing the ID_ISAR5
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0010 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_ISAR5;
elsif PSTATE.EL == EL2 then

return ID_ISAR5;
elsif PSTATE.EL == EL3 then

return ID_ISAR5;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR5, Instruction Set Attribute Register 5

Page 2719

ID_ISAR6, Instruction Set Attribute Register 6
The ID_ISAR6 characteristics are:

Purpose
Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4 and ID_ISAR5.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register ID_ISAR6 bits [31:0] are architecturally mapped to AArch64 System register
ID_ISAR6_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_ISAR6 are UNKNOWN.

Note

Prior to the introduction of the features described by this register, this
register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

Attributes
ID_ISAR6 is a 32-bit register.

Field descriptions
The ID_ISAR6 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 I8MM BF16 SPECRES SB FHM DP JSCVT

Bits [31:28]

Reserved, RES0.

I8MM, bits [27:24]

Indicates support for Advanced SIMD and floating-point Int8 matrix multiplication instructions in AArch32 state.
Defined values are:

I8MM Meaning
0b0000 Int8 matrix multiplication instructions are not implemented.
0b0001 VSMMLA, VSUDOT, VUMMLA, VUSMMLA, and VUSDOT

instructions are implemented.

All other values are reserved.

ARMv8.2-AA32I8MM implements the functionality identified by 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

ID_ISAR6, Instruction Set Attribute Register 6

Page 2720

BF16, bits [23:20]

Indicates support for Advanced SIMD and floating-point BFloat16 instructions in AArch32 state. Defined values are:

BF16 Meaning
0b0000 BFloat16 instructions are not implemented.
0b0001 VCVT, VCVTB, VCVTT, VDOT, VFMAL, and VMMLA instructions

with BF16 operand or result types are implemented.

All other values are reserved.

ARMv8.2-AA32BF16 implements the functionality identified by 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

SPECRES, bits [19:16]

Indicates support for Speculation invalidation instructions in AArch32 state. Defined values are:

SPECRES Meaning
0b0000 CFPRCTX, DVPRCTX, and CPPRCTX instructions are not

implemented.
0b0001 CFPRCTX, DVPRCTX, and CPPRCTX instructions are

implemented.

All other values are reserved.

From Armv8.5, the only permitted value is 0b0001.

SB, bits [15:12]

Indicates support for SB instruction in AArch32 state. Defined values are:

SB Meaning
0b0000 SB instruction is not implemented.
0b0001 SB instruction is implemented.

All other values are reserved.

From Armv8.5, the only permitted value is 0b0001.

FHM, bits [11:8]

Indicates support for Advanced SIMD and floating-point VFMAL and VFMSL instructions in AArch32 state. Defined
values are:

FHM Meaning
0b0000 VFMAL and VMFSL instructions not implemented.
0b0001 VFMAL and VMFSL instructions implemented.

ARMv8.2-FHM implements the functionality identified by the value 0b0001.

DP, bits [7:4]

Indicates support for dot product instructions in AArch32 state. Defined values are:

DP Meaning
0b0000 No dot product instructions implemented.
0b0001 VUDOT and VSDOT instructions implemented.

All other values are reserved.

ARMv8.2-DotProd implements the functionality identified by the value 0b0001.

ID_ISAR6, Instruction Set Attribute Register 6

Page 2721

JSCVT, bits [3:0]

Indicates support for the Javascript conversion instruction in AArch32 state. Defined values are:

JSCVT Meaning
0b0000 The VJCVT instruction is not implemented.
0b0001 The VJCVT instruction is implemented.

All other values are reserved.

In Armv8.0, Armv8.1 and Armv8.2 the only permitted value is 0b0000.

ARMv8.3-JSConv implements the functionality identified by 0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is 0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value is 0b0000.

Accessing the ID_ISAR6
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0010 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!IsZero(ID_ISAR6) || boolean

IMPLEMENTATION_DEFINED "ID_ISAR6 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && (!IsZero(ID_ISAR6) || boolean
IMPLEMENTATION_DEFINED "ID_ISAR6 trapped by HCR.TID3") && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_ISAR6;
elsif PSTATE.EL == EL2 then

return ID_ISAR6;
elsif PSTATE.EL == EL3 then

return ID_ISAR6;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR6, Instruction Set Attribute Register 6

Page 2722

ID_MMFR0, Memory Model Feature Register 0
The ID_MMFR0 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR1, ID_MMFR2, ID_MMFR3, and ID_MMFR4.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register ID_MMFR0 bits [31:0] are architecturally mapped to AArch64 System register
ID_MMFR0_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_MMFR0 are UNKNOWN.

Attributes
ID_MMFR0 is a 32-bit register.

Field descriptions
The ID_MMFR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
InnerShr FCSE AuxReg TCM ShareLvl OuterShr PMSA VMSA

InnerShr, bits [31:28]

Innermost Shareability. Indicates the innermost shareability domain implemented. Defined values are:

InnerShr Meaning
0b0000 Implemented as Non-cacheable.
0b0001 Implemented with hardware coherency support.
0b1111 Shareability ignored.

All other values are reserved.

From Armv8 the permitted values are 0b0000, 0b0001, and 0b1111.

This field is valid only if the implementation supports two levels of shareability, as indicated by ID_MMFR0.ShareLvl
having the value 0b0001.

When ID_MMFR0.ShareLvl is zero, this field is UNKNOWN.

FCSE, bits [27:24]

Indicates whether the implementation includes the FCSE. Defined values are:

FCSE Meaning
0b0000 Not supported.
0b0001 Support for FCSE.

All other values are reserved.

ID_MMFR0, Memory Model Feature Register 0

Page 2723

From Armv8 the only permitted value is 0b0000.

AuxReg, bits [23:20]

Auxiliary Registers. Indicates support for Auxiliary registers. Defined values are:

AuxReg Meaning
0b0000 None supported.
0b0001 Support for Auxiliary Control Register only.
0b0010 Support for Auxiliary Fault Status Registers (AIFSR and

ADFSR) and Auxiliary Control Register.

All other values are reserved.

From Armv8 the only permitted value is 0b0010.

Note

Accesses to unimplemented Auxiliary registers are UNDEFINED.

TCM, bits [19:16]

Indicates support for TCMs and associated DMAs. Defined values are:

TCM Meaning
0b0000 Not supported.
0b0001 Support is IMPLEMENTATION DEFINED. Armv7 requires this

setting.
0b0010 Support for TCM only, Armv6 implementation.
0b0011 Support for TCM and DMA, Armv6 implementation.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

ShareLvl, bits [15:12]

Shareability Levels. Indicates the number of shareability levels implemented. Defined values are:

ShareLvl Meaning
0b0000 One level of shareability implemented.
0b0001 Two levels of shareability implemented.

All other values are reserved.

From Armv8 the only permitted value is 0b0001.

OuterShr, bits [11:8]

Outermost Shareability. Indicates the outermost shareability domain implemented. Defined values are:

OuterShr Meaning
0b0000 Implemented as Non-cacheable.
0b0001 Implemented with hardware coherency support.
0b1111 Shareability ignored.

All other values are reserved.

From Armv8 the permitted values are 0b0000, 0b0001, and 0b1111.

PMSA, bits [7:4]

Indicates support for a PMSA. Defined values are:

ID_MMFR0, Memory Model Feature Register 0

Page 2724

PMSA Meaning
0b0000 Not supported.
0b0001 Support for IMPLEMENTATION DEFINED PMSA.
0b0010 Support for PMSAv6, with a Cache Type Register implemented.
0b0011 Support for PMSAv7, with support for memory subsections.

Armv7-R profile.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

VMSA, bits [3:0]

Indicates support for a VMSA. Defined values are:

VMSA Meaning
0b0000 Not supported.
0b0001 Support for IMPLEMENTATION DEFINED VMSA.
0b0010 Support for VMSAv6, with Cache and TLB Type Registers

implemented.
0b0011 Support for VMSAv7, with support for remapping and the

Access flag. ARMv7-A profile.
0b0100 As for 0b0011, and adds support for the PXN bit in the Short-

descriptor translation table format descriptors.
0b0101 As for 0b0100, and adds support for the Long-descriptor

translation table format.

All other values are reserved.

In Armv8-A the only permitted value is 0b0101.

Accessing the ID_MMFR0
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_MMFR0;
elsif PSTATE.EL == EL2 then

return ID_MMFR0;
elsif PSTATE.EL == EL3 then

return ID_MMFR0;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR0, Memory Model Feature Register 0

Page 2725

ID_MMFR1, Memory Model Feature Register 1
The ID_MMFR1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0, ID_MMFR2, ID_MMFR3, and ID_MMFR4.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register ID_MMFR1 bits [31:0] are architecturally mapped to AArch64 System register
ID_MMFR1_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_MMFR1 are UNKNOWN.

Attributes
ID_MMFR1 is a 32-bit register.

Field descriptions
The ID_MMFR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BPred L1TstCln L1Uni L1Hvd L1UniSW L1HvdSW L1UniVA L1HvdVA

BPred, bits [31:28]

Branch Predictor. Indicates branch predictor management requirements. Defined values are:

BPred Meaning
0b0000 No branch predictor, or no MMU present. Implies a fixed MPU

configuration.
0b0001 Branch predictor requires flushing on:

• Enabling or disabling a stage of address translation.
• Writing new data to instruction locations.
• Writing new mappings to the translation tables.
• Changes to the TTBR0, TTBR1, or TTBCR registers.
• Changes to the ContextID or ASID, or to the FCSE

ProcessID if this is supported.
0b0010 Branch predictor requires flushing on:

• Enabling or disabling a stage of address translation.
• Writing new data to instruction locations.
• Writing new mappings to the translation tables.
• Any change to the TTBR0, TTBR1, or TTBCR registers

without a change to the corresponding ContextID or ASID,
or FCSE ProcessID if this is supported.

0b0011 Branch predictor requires flushing only on writing new data to
instruction locations.

0b0100 For execution correctness, branch predictor requires no
flushing at any time.

All other values are reserved.

ID_MMFR1, Memory Model Feature Register 1

Page 2726

In Armv8-A the permitted values are 0b0010, 0b0011, or 0b0100. For values other than 0b0000 and 0b0100 the Arm
Architecture Reference Manual, or the product documentation, might give more information about the required
maintenance.

L1TstCln, bits [27:24]

Level 1 cache Test and Clean. Indicates the supported Level 1 data cache test and clean operations, for Harvard or
unified cache implementations. Defined values are:

L1TstCln Meaning
0b0000 None supported.
0b0001 Supported Level 1 data cache test and clean operations are:

• Test and clean data cache.
0b0010 As for 0001, and adds:

• Test, clean, and invalidate data cache.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

L1Uni, bits [23:20]

Level 1 Unified cache. Indicates the supported entire Level 1 cache maintenance operations for a unified cache
implementation. Defined values are:

L1Uni Meaning
0b0000 None supported.
0b0001 Supported entire Level 1 cache operations are:

• Invalidate cache, including branch predictor if
appropriate.

• Invalidate branch predictor, if appropriate.
0b0010 As for 0001, and adds:

• Clean cache, using a recursive model that uses the cache
dirty status bit.

• Clean and invalidate cache, using a recursive model that
uses the cache dirty status bit.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

L1Hvd, bits [19:16]

Level 1 Harvard cache. Indicates the supported entire Level 1 cache maintenance operations for a Harvard cache
implementation. Defined values are:

L1Hvd Meaning
0b0000 None supported.
0b0001 Supported entire Level 1 cache operations are:

• Invalidate instruction cache, including branch predictor if
appropriate.

• Invalidate branch predictor, if appropriate.
0b0010 As for 0001, and adds:

• Invalidate data cache.
• Invalidate data cache and instruction cache, including

branch predictor if appropriate.
0b0011 As for 0010, and adds:

• Clean data cache, using a recursive model that uses the
cache dirty status bit.

• Clean and invalidate data cache, using a recursive model
that uses the cache dirty status bit.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

ID_MMFR1, Memory Model Feature Register 1

Page 2727

L1UniSW, bits [15:12]

Level 1 Unified cache by Set/Way. Indicates the supported Level 1 cache line maintenance operations by set/way, for a
unified cache implementation. Defined values are:

L1UniSW Meaning
0b0000 None supported.
0b0001 Supported Level 1 unified cache line maintenance

operations by set/way are:
• Clean cache line by set/way.

0b0010 As for 0001, and adds:
• Clean and invalidate cache line by set/way.

0b0011 As for 0010, and adds:
• Invalidate cache line by set/way.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

L1HvdSW, bits [11:8]

Level 1 Harvard cache by Set/Way. Indicates the supported Level 1 cache line maintenance operations by set/way, for a
Harvard cache implementation. Defined values are:

L1HvdSW Meaning
0b0000 None supported.
0b0001 Supported Level 1 Harvard cache line maintenance

operations by set/way are:
• Clean data cache line by set/way.
• Clean and invalidate data cache line by set/way.

0b0010 As for 0001, and adds:
• Invalidate data cache line by set/way.

0b0011 As for 0010, and adds:
• Invalidate instruction cache line by set/way

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

L1UniVA, bits [7:4]

Level 1 Unified cache by Virtual Address. Indicates the supported Level 1 cache line maintenance operations by VA,
for a unified cache implementation. Defined values are:

L1UniVA Meaning
0b0000 None supported.
0b0001 Supported Level 1 unified cache line maintenance operations

by VA are:
• Clean cache line by VA.
• Invalidate cache line by VA.
• Clean and invalidate cache line by VA.

0b0010 As for 0001, and adds:
• Invalidate branch predictor by VA, if branch predictor is

implemented.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

L1HvdVA, bits [3:0]

Level 1 Harvard cache by Virtual Address. Indicates the supported Level 1 cache line maintenance operations by VA,
for a Harvard cache implementation. Defined values are:

ID_MMFR1, Memory Model Feature Register 1

Page 2728

L1HvdVA Meaning
0b0000 None supported.
0b0001 Supported Level 1 Harvard cache line maintenance

operations by VA are:
• Clean data cache line by VA.
• Invalidate data cache line by VA.
• Clean and invalidate data cache line by VA.
• Clean instruction cache line by VA.

0b0010 As for 0001, and adds:
• Invalidate branch predictor by VA, if branch predictor

is implemented.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

Accessing the ID_MMFR1
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0001 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_MMFR1;
elsif PSTATE.EL == EL2 then

return ID_MMFR1;
elsif PSTATE.EL == EL3 then

return ID_MMFR1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR1, Memory Model Feature Register 1

Page 2729

ID_MMFR2, Memory Model Feature Register 2
The ID_MMFR2 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0, ID_MMFR1, ID_MMFR3, and ID_MMFR4.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register ID_MMFR2 bits [31:0] are architecturally mapped to AArch64 System register
ID_MMFR2_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_MMFR2 are UNKNOWN.

Attributes
ID_MMFR2 is a 32-bit register.

Field descriptions
The ID_MMFR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HWAccFlg WFIStall MemBarr UniTLB HvdTLB L1HvdRng L1HvdBG L1HvdFG

HWAccFlg, bits [31:28]

Hardware Access Flag. In earlier versions of the Arm Architecture, this field indicates support for a Hardware Access
flag, as part of the VMSAv7 implementation. Defined values are:

HWAccFlg Meaning
0b0000 Not supported.
0b0001 Support for VMSAv7 Access flag, updated in hardware.

All other values are reserved.

From Armv8 the only permitted value is 0b000.

WFIStall, bits [27:24]

Wait For Interrupt Stall. Indicates the support for Wait For Interrupt (WFI) stalling. Defined values are:

WFIStall Meaning
0b0000 Not supported.
0b0001 Support for WFI stalling.

All other values are reserved.

From Armv8 the permitted values are 0b000 and 0b001.

ID_MMFR2, Memory Model Feature Register 2

Page 2730

MemBarr, bits [23:20]

Memory Barrier. Indicates the supported memory barrier System instructions in the (coproc==1111) encoding space:

MemBarr Meaning
0b0000 None supported.
0b0001 Supported memory barrier System instructions are:

• Data Synchronization Barrier (DSB).
0b0010 As for 0b001, and adds:

• Instruction Synchronization Barrier (ISB).
• Data Memory Barrier (DMB).

All other values are reserved.

From Armv8 the only permitted value is 0b010.

Arm deprecates the use of these operations. ID_ISAR4.Barrier_instrs indicates the level of support for the preferred
barrier instructions.

UniTLB, bits [19:16]

Unified TLB. Indicates the supported TLB maintenance operations, for a unified TLB implementation. Defined values
are:

UniTLB Meaning
0b0000 Not supported.
0b0001 Supported unified TLB maintenance operations are:

• Invalidate all entries in the TLB.
• Invalidate TLB entry by VA.

0b0010 As for 0b001, and adds:
• Invalidate TLB entries by ASID match.

0b0011 As for 0b010, and adds:
• Invalidate instruction TLB and data TLB entries by VA All

ASID. This is a shared unified TLB operation
0b0100 As for 0b011, and adds:

• Invalidate Hyp mode unified TLB entry by VA.
• Invalidate entire Non-secure PL1&0 unified TLB.
• Invalidate entire Hyp mode unified TLB.

0b0101 As for 0b100, and adds the following operations: TLBIMVALIS,
TLBIMVAALIS, TLBIMVALHIS, TLBIMVAL,
TLBIMVAAL,TLBIMVALH.

0b0110 As for 0b101, and adds the following operations: TLBIIPAS2IS,
TLBIIPAS2LIS, TLBIIPAS2, TLBIIPAS2L.

All other values are reserved.

In Armv8-A the only permitted value is 0b110.

HvdTLB, bits [15:12]

If the Unified TLB field (UniTLB, bits [19:16]) is not 0000, then the meaning of this field is IMPLEMENTATION DEFINED.
Arm deprecates the use of this field by software.

L1HvdRng, bits [11:8]

Level 1 Harvard cache Range. Indicates the supported Level 1 cache maintenance range operations, for a Harvard
cache implementation. Defined values are:

L1HvdRng Meaning
0b0000 Not supported.
0b0001 Supported Level 1 Harvard cache maintenance range

operations are:
• Invalidate data cache range by VA.
• Invalidate instruction cache range by VA.
• Clean data cache range by VA.
• Clean and invalidate data cache range by VA.

ID_MMFR2, Memory Model Feature Register 2

Page 2731

All other values are reserved.

From Armv8 the only permitted value is 0b0000.

L1HvdBG, bits [7:4]

Level 1 Harvard cache Background fetch. Indicates the supported Level 1 cache background fetch operations, for a
Harvard cache implementation. When supported, background fetch operations are non-blocking operations. Defined
values are:

L1HvdBG Meaning
0b0000 Not supported.
0b0001 Supported Level 1 Harvard cache background fetch

operations are:
• Fetch instruction cache range by VA.
• Fetch data cache range by VA.

All other values are reserved.

From Armv8 the only permitted value is 0b0000.

L1HvdFG, bits [3:0]

Level 1 Harvard cache Foreground fetch. Indicates the supported Level 1 cache foreground fetch operations, for a
Harvard cache implementation. When supported, foreground fetch operations are blocking operations. Defined values
are:

L1HvdFG Meaning
0b0000 Not supported.
0b0001 Supported Level 1 Harvard cache foreground fetch

operations are:
• Fetch instruction cache range by VA.
• Fetch data cache range by VA.

All other values are reserved.

From Armv8 the only permitted value is 0b0000.

Accessing the ID_MMFR2
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_MMFR2;
elsif PSTATE.EL == EL2 then

return ID_MMFR2;
elsif PSTATE.EL == EL3 then

return ID_MMFR2;

ID_MMFR2, Memory Model Feature Register 2

Page 2732

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR2, Memory Model Feature Register 2

Page 2733

ID_MMFR3, Memory Model Feature Register 3
The ID_MMFR3 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0, ID_MMFR1, ID_MMFR2, and ID_MMFR4.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register ID_MMFR3 bits [31:0] are architecturally mapped to AArch64 System register
ID_MMFR3_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_MMFR3 are UNKNOWN.

Attributes
ID_MMFR3 is a 32-bit register.

Field descriptions
The ID_MMFR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Supersec CMemSz CohWalk PAN MaintBcst BPMaint CMaintSW CMaintVA

Supersec, bits [31:28]

Supersections. On a VMSA implementation, indicates whether Supersections are supported. Defined values are:

Supersec Meaning
0b0000 Supersections supported.
0b1111 Supersections not supported.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b1111.

CMemSz, bits [27:24]

Cached Memory Size. Indicates the physical memory size supported by the caches. Defined values are:

CMemSz Meaning
0b0000 4GB, corresponding to a 32-bit physical address range.
0b0001 64GB, corresponding to a 36-bit physical address range.
0b0010 1TB or more, corresponding to a 40-bit or larger physical

address range.

All other values are reserved.

In Armv8-A the permitted values are 0b0000, 0b0001, and 0b0010.

ID_MMFR3, Memory Model Feature Register 3

Page 2734

CohWalk, bits [23:20]

Coherent Walk. Indicates whether Translation table updates require a clean to the Point of Unification. Defined values
are:

CohWalk Meaning
0b0000 Updates to the translation tables require a clean to the Point

of Unification to ensure visibility by subsequent translation
table walks.

0b0001 Updates to the translation tables do not require a clean to
the Point of Unification to ensure visibility by subsequent
translation table walks.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

PAN, bits [19:16]

Privileged Access Never. Indicates support for the PAN bit in CPSR, SPSR, and DSPSR in AArch32 state. Defined
values are:

PAN Meaning
0b0000 PAN not supported.
0b0001 PAN supported.
0b0010 PAN supported and ATS1CPRP and ATS1CPWP instructions

supported.

All other values are reserved.

ARMv8.1-PAN implements the functionality identified by the value 0b0001.

ARMv8.2-ATS1E1 implements the functionality added by the value 0b0010.

In Armv8.1 the value 0b0000 is not permitted.

From Armv8.2, the only permitted value is 0b0010.

MaintBcst, bits [15:12]

Maintenance Broadcast. Indicates whether Cache, TLB, and branch predictor operations are broadcast. Defined values
are:

MaintBcst Meaning
0b0000 Cache, TLB, and branch predictor operations only affect

local structures.
0b0001 Cache and branch predictor operations affect structures

according to shareability and defined behavior of
instructions. TLB operations only affect local structures.

0b0010 Cache, TLB, and branch predictor operations affect
structures according to shareability and defined behavior
of instructions.

All other values are reserved.

In Armv8-A the only permitted value is 0b0010.

BPMaint, bits [11:8]

Branch Predictor Maintenance. Indicates the supported branch predictor maintenance operations in an
implementation with hierarchical cache maintenance operations. Defined values are:

ID_MMFR3, Memory Model Feature Register 3

Page 2735

BPMaint Meaning
0b0000 None supported.
0b0001 Supported branch predictor maintenance operations are:

• Invalidate all branch predictors.
0b0010 As for 0001, and adds:

• Invalidate branch predictors by VA.

All other values are reserved.

In Armv8-A the only permitted value is 0b0010.

CMaintSW, bits [7:4]

Cache Maintenance by Set/Way. Indicates the supported cache maintenance operations by set/way, in an
implementation with hierarchical caches. Defined values are:

CMaintSW Meaning
0b0000 None supported.
0b0001 Supported hierarchical cache maintenance instructions by

set/way are:
• Invalidate data cache by set/way.
• Clean data cache by set/way.
• Clean and invalidate data cache by set/way.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

In a unified cache implementation, the data cache maintenance operations apply to the unified caches.

CMaintVA, bits [3:0]

Cache Maintenance by Virtual Address. Indicates the supported cache maintenance operations by VA, in an
implementation with hierarchical caches. Defined values are:

CMaintVA Meaning
0b0000 None supported.
0b0001 Supported hierarchical cache maintenance operations by

VA are:
• Invalidate data cache by VA.
• Clean data cache by VA.
• Clean and invalidate data cache by VA.
• Invalidate instruction cache by VA.
• Invalidate all instruction cache entries.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

In a unified cache implementation, data cache maintenance operations apply to the unified caches, and the instruction
cache maintenance instructions are not implemented.

Accessing the ID_MMFR3
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0001 0b111

ID_MMFR3, Memory Model Feature Register 3

Page 2736

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_MMFR3;
elsif PSTATE.EL == EL2 then

return ID_MMFR3;
elsif PSTATE.EL == EL3 then

return ID_MMFR3;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR3, Memory Model Feature Register 3

Page 2737

ID_MMFR4, Memory Model Feature Register 4
The ID_MMFR4 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0, ID_MMFR1, ID_MMFR2, and ID_MMFR3.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register ID_MMFR4 bits [31:0] are architecturally mapped to AArch64 System register
ID_MMFR4_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_MMFR4 are UNKNOWN.

Attributes
ID_MMFR4 is a 32-bit register.

Field descriptions
The ID_MMFR4 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EVT CCIDX LSM HPDS CnP XNX AC2 SpecSEI

EVT, bits [31:28]

Enhanced Virtualization Traps. If EL2 is implemented, indicates support for the HCR2.{TTLBIS, TOCU, TICAB, TID4}
traps. Defined values are:

EVT Meaning
0b0000 HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are not supported.
0b0001 HCR2.{TOCU, TICAB, TID4} traps are supported.

HCR2.TTLBIS trap is not supported.
0b0010 HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are supported.

All other values are reserved.

ARMv8.2-EVT implements the functionality identified by the values 0b0001 and 0b0010.

If EL2 is not implemented, the only permitted value is 0b0000.

From Armv8.1, the permitted values are 0b0000 and 0b0001.

From Armv8.5, if EL2 is implemented, the only permitted value is 0b0010.

CCIDX, bits [27:24]

Support for use of the revised CCSIDR format and the presence of the CCSIDR2 is indicated. Defined values are:

ID_MMFR4, Memory Model Feature Register 4

Page 2738

CCIDX Meaning
0b0000 32-bit format implemented for all levels of the CCSIDR, and the

CCSIDR2 register is not implemented.
0b0001 64-bit format implemented for all levels of the CCSIDR, and the

CCSIDR2 register is implemented.

All other values are reserved.

ARMv8.3-CCIDX implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

LSM, bits [23:20]

Indicates support for LSMAOE and nTLSMD bits in HSCTLR and SCTLR. Defined values are:

LSM Meaning
0b0000 LSMAOE and nTLSMD bits not supported.
0b0001 LSMAOE and nTLSMD bits supported.

All other values are reserved.

ARMv8.2-LSMAOC implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

HPDS, bits [19:16]

Hierarchical permission disables bits in translation tables. Defined values are:

HPDS Meaning
0b0000 Disabling of hierarchical controls not supported.
0b0001 Supports disabling of hierarchical controls using the

TTBCR2.HPD0, TTBCR2.HPD1, and HTCR.HPD bits.
0b0010 As for value 0b0001, and adds possible hardware allocation of

bits[62:59] of the translation table descriptors from the final
lookup level for IMPLEMENTATION DEFINED use.

All other values are reserved.

ARMv8.2-AA32HPD implements the functionality identified by the value 0b0001.

ARMv8.2-TTPBHA implements the functionality added by the value 0b0010.

Note

The value 0b0000 implies that the encoding for TTBCR2 is UNDEFINED.

CnP, bits [15:12]

Common not Private translations. Defined values are:

CnP Meaning
0b0000 Common not Private translations not supported.
0b0001 Common not Private translations supported.

All other values are reserved.

ARMv8.2-TTCNP implements the functionality identified by the value 0b0001.

From Armv8.2 the only permitted value is 0b0001.

XNX, bits [11:8]

Support for execute-never control distinction by Exception level at stage 2. Defined values are:

ID_MMFR4, Memory Model Feature Register 4

Page 2739

XNX Meaning
0b0000 Distinction between EL0 and EL1 execute-never control at

stage 2 not supported.
0b0001 Distinction between EL0 and EL1 execute-never control at

stage 2 supported.

All other values are reserved.

ARMv8.2-TTS2UXN implements the functionality identified by the value 0b0001.

When ARMv8.2-TTS2UXN is implemented:

• If all of the following conditions are true, it is IMPLEMENTATION DEFINED whether the value of ID_MMFR4.XNX is
0b0000 or 0b0001:

◦ ID_AA64MMFR1_EL1.XNX ==1.
◦ EL2 cannot use AArch32.
◦ EL1 can use AArch32.

• If EL2 can use AArch32 then the only permitted value is 0b0001.

AC2, bits [7:4]

Indicates the extension of the ACTLR and HACTLR registers using ACTLR2 and HACTLR2. Defined values are:

AC2 Meaning
0b0000 ACTLR2 and HACTLR2 are not implemented.
0b0001 ACTLR2 and HACTLR2 are implemented.

All other values are reserved.

In Armv8.0 and Armv8.1 the permitted values are 0b0000 and 0b0001.

From Armv8.2, the only permitted value is 0b0001.

SpecSEI, bits [3:0]

Describes whether the PE can generate SError interrupt exceptions from speculative reads of memory, including
speculative instruction fetches. The defined values of this field are:

SpecSEI Meaning
0b0000 The PE never generates an SError interrupt due to an

External abort on a speculative read.
0b0001 The PE might generate an SError interrupt due to an

External abort on a speculative read.

All other values are reserved.

Accessing the ID_MMFR4
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0010 0b110

ID_MMFR4, Memory Model Feature Register 4

Page 2740

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!IsZero(ID_MMFR4) || boolean

IMPLEMENTATION_DEFINED "ID_MMFR4 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && (!IsZero(ID_MMFR4) || boolean
IMPLEMENTATION_DEFINED "ID_MMFR4 trapped by HCR.TID3") && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_MMFR4;
elsif PSTATE.EL == EL2 then

return ID_MMFR4;
elsif PSTATE.EL == EL3 then

return ID_MMFR4;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR4, Memory Model Feature Register 4

Page 2741

ID_MMFR5, Memory Model Feature Register 5
The ID_MMFR5 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch32 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register ID_MMFR5 bits [31:0] are architecturally mapped to AArch64 System register
ID_MMFR5_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_MMFR5 are UNKNOWN.

Attributes
ID_MMFR5 is a 32-bit register.

Field descriptions
The ID_MMFR5 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ETS

Bits [31:4]

Reserved, RES0.

ETS, bits [3:0]

Support for Enhanced Translation Synchronization. Defined values are:

ETS Meaning
0b0000 Enhanced Translation Synchronization is not supported.
0b0001 Enhanced Translation Synchronization is supported.

All other values are reserved.

ARMv8.0-ETS implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

Accessing the ID_MMFR5
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0011 0b110

ID_MMFR5, Memory Model Feature Register 5

Page 2742

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!IsZero(ID_MMFR5) || boolean

IMPLEMENTATION_DEFINED "ID_MMFR5 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && (!IsZero(ID_MMFR5) || boolean
IMPLEMENTATION_DEFINED "ID_MMFR5 trapped by HCR.TID3") && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_MMFR5;
elsif PSTATE.EL == EL2 then

return ID_MMFR5;
elsif PSTATE.EL == EL3 then

return ID_MMFR5;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR5, Memory Model Feature Register 5

Page 2743

ID_PFR0, Processor Feature Register 0
The ID_PFR0 characteristics are:

Purpose
Gives top-level information about the instruction sets and other features supported by the PE in AArch32 state.

Must be interpreted with ID_PFR1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register ID_PFR0 bits [31:0] are architecturally mapped to AArch64 System register
ID_PFR0_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_PFR0
are UNKNOWN.

Attributes
ID_PFR0 is a 32-bit register.

Field descriptions
The ID_PFR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAS DIT AMU CSV2 State3 State2 State1 State0

RAS, bits [31:28]

RAS Extension version. Defined values are:

RAS Meaning
0b0000 No RAS Extension.
0b0001 RAS Extension present.
0b0010 ARMv8.4-RAS present. As 0b0001, and adds support for

additional ERXMISC<m> System registers.
Error records accessed through System registers conform to
RAS System Architecture v1.1, which includes simplifications
to ERR<n>STATUS and support for the optional RAS
Timestamp Extension.

All other values are reserved.

From Armv8.4, when ARMv8.4-DFE is not implemented, and ERRIDR.NUM is zero, the permitted values are
IMPLEMENTATION DEFINED 0b0001 or 0b0010. Otherwise from Armv8.4 the only permitted value is 0b0010.

ARMv8.4-RAS implements the functionality identified by the value 0b0010.

In Armv8.2, the only permitted value is 0b0001.

In Armv8.1 and Armv8.0, the permitted values are 0b0000 and 0b0001.

DIT, bits [27:24]

Data Independent Timing. Defined values are:

ID_PFR0, Processor Feature Register 0

Page 2744

DIT Meaning
0b0000 AArch32 does not guarantee constant execution time of any

instructions.
0b0001 AArch32 provides the CPSR.DIT mechanism to guarantee

constant execution time of certain instructions.

All other values are reserved.

ARMv8.4-DIT implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

AMU, bits [23:20]

Activity Monitors Extension. Defined values are:

AMU Meaning
0b0000 Activity Monitors Extension is not implemented.
0b0001 AMUv1 for Armv8.4 is implemented.
0b0010 AMUv1 for Armv8.6 is implemented. As 0b0001 and adds

support for virtualization of the activity monitor event counters.

All other values are reserved.

AMUv1 implements the functionality identified by the value 0b0001.

ARMv8.6-AMU implements the functionality identified by the value 0b0010.

CSV2, bits [19:16]

Speculative use of out of context branch targets. Defined values are:

CSV2 Meaning
0b0000 This Device does not disclose whether branch targets trained in

one hardware described context can affect speculative
execution in a different hardware described context.

0b0001 Branch targets trained in one hardware described context can
only affect speculative execution in a different hardware
described context in a hard-to-determine way.

All other values are reserved.

ARMv8.0-CSV2 implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

State3, bits [15:12]

T32EE instruction set support. Defined values are:

State3 Meaning
0b0000 Not implemented.
0b0001 T32EE instruction set implemented.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

State2, bits [11:8]

Jazelle extension support. Defined values are:

ID_PFR0, Processor Feature Register 0

Page 2745

State2 Meaning
0b0000 Not implemented.
0b0001 Jazelle extension implemented, without clearing of JOSCR.CV

on exception entry.
0b0010 Jazelle extension implemented, with clearing of JOSCR.CV on

exception entry.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

State1, bits [7:4]

T32 instruction set support. Defined values are:

State1 Meaning
0b0000 T32 instruction set not implemented.
0b0001 T32 encodings before the introduction of Thumb-2 technology

implemented:
• All instructions are 16-bit.
• A BL or BLX is a pair of 16-bit instructions
• 32-bit instructions other than BL and BLX cannot be

encoded.
0b0011 T32 encodings after the introduction of Thumb-2 technology

implemented, for all 16-bit and 32-bit T32 basic instructions.

All other values are reserved.

In Armv8-A the only permitted value is 0b0011.

State0, bits [3:0]

A32 instruction set support. Defined values are:

State0 Meaning
0b0000 A32 instruction set not implemented.
0b0001 A32 instruction set implemented.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

Accessing the ID_PFR0
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0001 0b000

ID_PFR0, Processor Feature Register 0

Page 2746

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_PFR0;
elsif PSTATE.EL == EL2 then

return ID_PFR0;
elsif PSTATE.EL == EL3 then

return ID_PFR0;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_PFR0, Processor Feature Register 0

Page 2747

ID_PFR1, Processor Feature Register 1
The ID_PFR1 characteristics are:

Purpose
Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register ID_PFR1 bits [31:0] are architecturally mapped to AArch64 System register
ID_PFR1_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_PFR1
are UNKNOWN.

Attributes
ID_PFR1 is a 32-bit register.

Field descriptions
The ID_PFR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
GIC Virt_frac Sec_frac GenTimer Virtualization MProgMod Security ProgMod

GIC, bits [31:28]

System register GIC CPU interface. Defined values are:

GIC Meaning
0b0000 GIC CPU interface system registers not implemented.
0b0001 System register interface to versions 3.0 and 4.0 of the GIC

CPU interface is supported.
0b0011 System register interface to version 4.1 of the GIC CPU

interface is supported.

All other values are reserved.

Virt_frac, bits [27:24]

Virtualization fractional field. When the Virtualization field is 0b0000, determines the support for features from the
ARMv7 Virtualization Extensions. Defined values are:

ID_PFR1, Processor Feature Register 1

Page 2748

Virt_frac Meaning
0b0000 No features from the ARMv7 Virtualization Extensions are

implemented.
0b0001 The following features of the ARMv7 Virtualization

Extensions are implemented:
• The SCR.SIF bit, if EL3 is implemented.
• The modifications to the SCR.AW and SCR.FW bits

described in the Virtualization Extensions, if EL3 is
implemented.

• The MSR (banked register) and MRS (banked register)
instructions.

• The ERET instruction.

All other values are reserved.

In Armv8-A the permitted values are:

• 0b0000 when EL2 is implemented.
• 0b0001 when EL2 is not implemented.

This field is only valid when the value of ID_PFR1.Virtualization is 0, otherwise it holds the value 0b0000.

Note

The ID_ISAR registers do not identify whether the instructions added by the
ARMv7 Virtualization Extensions are implemented.

Sec_frac, bits [23:20]

Security fractional field. When the Security field is 0b0000, determines the support for features from the ARMv7
Security Extensions. Defined values are:

Sec_frac Meaning
0b0000 No features from the ARMv7 Security Extensions are

implemented.
0b0001 The following features from the ARMv7 Security Extensions

are implemented:
• The VBAR register.
• The TTBCR.PD0 and TTBCR.PD1 bits.

0b0010 As for 0b0001, plus the ability to access Secure or Non-
secure physical memory is supported.

All other values are reserved.

In Armv8-A the permitted values are:

• 0b0000 when EL3 is implemented.
• 0b0001 or 0b0010 when EL3 is not implemented.

This field is only valid when the value of ID_PFR1.Security is 0, otherwise it holds the value 0b0000.

GenTimer, bits [19:16]

Generic Timer support. Defined values are:

GenTimer Meaning
0b0000 Generic Timer is not implemented.
0b0001 Generic Timer is implemented.
0b0010 Generic Timer is implemented, and also includes support

for CNTHCTL.EVNTIS and CNTKCTL.EVNTIS fields, and
CNTPCTSS and CNTVCTSS counter views.

All other values are reserved.

ARMv8.6-ECV implements the functionality identified by the value 0b0010.

From Armv8.0 to Armv8.4, the only permitted value is 0b0001.

ID_PFR1, Processor Feature Register 1

Page 2749

From Armv8.6, the only permitted value is 0b0010.

Virtualization, bits [15:12]

Virtualization support. Defined values are:

Virtualization Meaning
0b0000 EL2, Hyp mode, and the HVC instruction not

implemented.
0b0001 EL2, Hyp mode, the HVC instruction, and all the

features described by Virt_frac == 0b0001
implemented.

All other values are reserved.

In Armv8-A the permitted values are:

• 0b0000 when EL2 is not implemented.
• 0b0001 when EL2 is implemented.

In an implementation that includes EL2, if EL2 cannot use AArch32 but EL1 can use AArch32 then this field has the
value 0b0001.

Note

The ID_ISARs do not identify whether the HVC instruction is implemented.

MProgMod, bits [11:8]

M profile programmers' model support. Defined values are:

MProgMod Meaning
0b0000 Not supported.
0b0010 Support for two-stack programmers' model.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

Security, bits [7:4]

Security support. Defined values are:

Security Meaning
0b0000 EL3, Monitor mode, and the SMC instruction not

implemented.
0b0001 EL3, Monitor mode, the SMC instruction, and all the features

described by Sec_frac == 0b0001 implemented.
0b0010 As for 0b0001, and adds the ability to set the NSACR.RFR bit.

Not permitted in Armv8 as the NSACR.RFR bit is RES0.

All other values are reserved.

In Armv8-A the permitted values are:

• 0b0000 when EL3 is not implemented.
• 0b0001 when EL3 is implemented.

In an implementation that includes EL3, if EL3 cannot use AArch32 but EL1 can use AArch32 then this field has the
value 0b0001.

ProgMod, bits [3:0]

Support for the standard programmers' model for ARMv4 and later. Model must support User, FIQ, IRQ, Supervisor,
Abort, Undefined, and System modes. Defined values are:

ID_PFR1, Processor Feature Register 1

Page 2750

ProgMod Meaning
0b0000 Not supported.
0b0001 Supported.

All other values are reserved.

In Armv8-A the only permitted value is 0b0001.

Accessing the ID_PFR1
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_PFR1;
elsif PSTATE.EL == EL2 then

return ID_PFR1;
elsif PSTATE.EL == EL3 then

return ID_PFR1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_PFR1, Processor Feature Register 1

Page 2751

ID_PFR2, Processor Feature Register 2
The ID_PFR2 characteristics are:

Purpose
Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0 and ID_PFR1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register ID_PFR2 bits [31:0] are architecturally mapped to AArch64 System register
ID_PFR2_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_PFR2
are UNKNOWN.

Attributes
ID_PFR2 is a 32-bit register.

Field descriptions
The ID_PFR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 RAS_frac SSBS CSV3

Bits [31:12]

Reserved, RES0.

RAS_frac, bits [11:8]

From Armv8.4:

RAS Extension fractional field.

RAS_frac Meaning
0b0000 If ID_PFR0.RAS == 0b0001, RAS Extension implemented.
0b0001 If ID_PFR0.RAS == 0b0001, as 0b0000 and adds support for

additional ERXMISC<m> System registers.
Error records accessed through System registers conform to
RAS System Architecture v1.1, which includes
simplifications to ERR<n>STATUS and support for the
optional RAS Timestamp Extension.

All other values are reserved.

This field is valid only if ID_PFR0.RAS == 0b0001.

Otherwise:

Reserved, RES0.

ID_PFR2, Processor Feature Register 2

Page 2752

SSBS, bits [7:4]

From Armv8.5:

Speculative Store Bypassing controls in AArch64 state. Defined values are:

SSBS Meaning
0b0000 AArch32 provides no mechanism to control the use of

Speculative Store Bypassing.
0b0001 AArch32 provides the PSTATE.SSBS mechanism to mark

regions that are Speculative Store Bypass Safe.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

All other values are reserved.

Otherwise:

Reserved, RES0.

CSV3, bits [3:0]

From Armv8.5:

Speculative use of faulting data. Defined values are:

CSV3 Meaning
0b0000 This Device does not disclose whether data loaded under

speculation with a permission or domain fault can be used to
form an address or generate condition codes or SVE predicate
values to be used by instructions newer than the load in the
speculative sequence

0b0001 Data loaded under speculation with a permission or domain
fault cannot be used to form an address or generate condition
codes or SVE predicate values to be used by instructions newer
than the load in the speculative sequence

From Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

All other values are reserved.

Otherwise:

Reserved, RES0.

Accessing the ID_PFR2
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0011 0b100

ID_PFR2, Processor Feature Register 2

Page 2753

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_PFR2;
elsif PSTATE.EL == EL2 then

return ID_PFR2;
elsif PSTATE.EL == EL3 then

return ID_PFR2;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_PFR2, Processor Feature Register 2

Page 2754

IFAR, Instruction Fault Address Register
The IFAR characteristics are:

Purpose
Holds the virtual address of the faulting address that caused a synchronous Prefetch Abort exception.

Configuration
AArch32 System register IFAR bits [31:0] are architecturally mapped to AArch64 System register FAR_EL1[63:32] .

AArch32 System register IFAR bits [31:0] (S) are architecturally mapped to AArch32 System register HIFAR[31:0]
when EL2 is implemented, EL3 is implemented and the highest implemented Exception level is using AArch32 state.

AArch32 System register IFAR bits [31:0] (S) are architecturally mapped to AArch64 System register FAR_EL2[63:32]
when EL2 is implemented.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to IFAR are
UNKNOWN.

Attributes
IFAR is a 32-bit register.

Field descriptions
The IFAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA of faulting address of synchronous Prefetch Abort exception

Bits [31:0]

VA of faulting address of synchronous Prefetch Abort exception.

This field resets to an architecturally UNKNOWN value.

Accessing the IFAR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0110 0b0000 0b010

IFAR, Instruction Fault Address Register

Page 2755

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return IFAR_NS;
else

return IFAR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return IFAR_NS;

else
return IFAR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return IFAR_S;
else

return IFAR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0110 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

IFAR_NS = R[t];
else

IFAR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
IFAR_NS = R[t];

else
IFAR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

IFAR_S = R[t];
else

IFAR_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IFAR, Instruction Fault Address Register

Page 2756

IFSR, Instruction Fault Status Register
The IFSR characteristics are:

Purpose
Holds status information about the last instruction fault.

Configuration
AArch32 System register IFSR bits [31:0] are architecturally mapped to AArch64 System register IFSR32_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to IFSR are
UNKNOWN.

The current translation table format determines which format of the register is used.

Attributes
IFSR is a 32-bit register.

Field descriptions
The IFSR bit assignments are:

When TTBCR.EAE == 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 FnV RES0 ExTRES0FS[4]LPAE RES0 FS[3:0]

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

FnV Meaning
0b0 IFAR is valid.
0b1 IFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a synchronous External abort other than a synchronous External abort on a translation table
walk. It is RES0 for all other Prefetch Abort exceptions.

This field resets to an architecturally UNKNOWN value.

Bits [15:13]

Reserved, RES0.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

IFSR, Instruction Fault Status Register

Page 2757

For aborts other than External aborts this bit always returns 0.

This field resets to an architecturally UNKNOWN value.

Bit [11]

Reserved, RES0.

FS[4], bit [10]

This field is bit[4] of FS[4:0].

Fault Status bits. Bits [10] and [3:0] are interpreted together.

FS Meaning Applies when
0b00001 PC alignment fault.
0b00010 Debug exception.
0b00011 Access flag fault, level 1.
0b00101 Translation fault, level 1.
0b00110 Access flag fault, level 2.
0b00111 Translation fault, level 2.
0b01000 Synchronous External abort, not on

translation table walk.
0b01001 Domain fault, level 1.
0b01011 Domain fault, level 2.
0b01100 Synchronous External abort, on translation

table walk, level 1.
0b01101 Permission fault, level 1.
0b01110 Synchronous External abort, on translation

table walk, level 2.
0b01111 Permission fault, level 2.
0b10000 TLB conflict abort.
0b10100 IMPLEMENTATION DEFINED fault (Lockdown

fault).
0b11001 Synchronous parity or ECC error on

memory access, not on translation table
walk.

When RAS is
not
implemented

0b11100 Synchronous parity or ECC error on
translation table walk, level 1.

When RAS is
not
implemented

0b11110 Synchronous parity or ECC error on
translation table walk, level 2.

When RAS is
not
implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults on a
Short-descriptor translation table lookup' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile.

The FS field is split as follows:

• FS[4] is IFSR[10].
• FS[3:0] is IFSR[3:0].

This field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

LPAE Meaning
0b0 Using the Short-descriptor translation table formats.
0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set
this bit to 0 or 1 without affecting operation.

IFSR, Instruction Fault Status Register

Page 2758

This field resets to an architecturally UNKNOWN value.

Bits [8:4]

Reserved, RES0.

FS[3:0], bits [3:0]

This field is bits[3:0] of FS[4:0].

See FS[4] for the field description.

When TTBCR.EAE == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 FnV RES0 ExT RES0 LPAE RES0 STATUS

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

FnV Meaning
0b0 IFAR is valid.
0b1 IFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a synchronous External abort other than a synchronous External abort on a translation table
walk. It is RES0 for all other Prefetch Abort exceptions.

This field resets to an architecturally UNKNOWN value.

Bits [15:13]

Reserved, RES0.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

This field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

LPAE Meaning
0b0 Using the Short-descriptor translation table formats.
0b1 Using the Long-descriptor translation table formats.

IFSR, Instruction Fault Status Register

Page 2759

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set
this bit to 0 or 1 without affecting operation.

This field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status bits. Possible values of this field are:

STATUS Meaning Applies
when

0b000000 Address size fault in translation table base
register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not on

translation table walk.
0b010101 Synchronous External abort, on translation

table walk, level 1.
0b010110 Synchronous External abort, on translation

table walk, level 2.
0b010111 Synchronous External abort, on translation

table walk, level 3.
0b011000 Synchronous parity or ECC error on

memory access, not on translation table
walk.

When RAS is
not
implemented

0b011101 Synchronous parity or ECC error on
memory access on translation table walk,
level 1.

When RAS is
not
implemented

0b011110 Synchronous parity or ECC error on
memory access on translation table walk,
level 2.

When RAS is
not
implemented

0b011111 Synchronous parity or ECC error on
memory access on translation table walk,
level 3.

When RAS is
not
implemented

0b100001 PC alignment fault.
0b100010 Debug exception.
0b110000 TLB conflict abort.

All other values are reserved.

When the RAS Extension is implemented, 0b011000, 0b011101, 0b011110, and 0b011111, are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults on a
Long-descriptor translation table lookup' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile.

This field resets to an architecturally UNKNOWN value.

Accessing the IFSR
Accesses to this register use the following encodings:

IFSR, Instruction Fault Status Register

Page 2760

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return IFSR_NS;
else

return IFSR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return IFSR_NS;

else
return IFSR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return IFSR_S;
else

return IFSR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

IFSR_NS = R[t];
else

IFSR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
IFSR_NS = R[t];

else
IFSR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

IFSR_S = R[t];
else

IFSR_NS = R[t];

IFSR, Instruction Fault Status Register

Page 2761

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IFSR, Instruction Fault Status Register

Page 2762

ISR, Interrupt Status Register
The ISR characteristics are:

Purpose
Shows the pending status of the IRQ, FIQ, or SError.

When executing at EL2, EL3, or Secure EL1, when SCR_EL3.EEL2 == 0b0, this shows the pending status of the
physical interrupts.

When executing at Non-secure EL1, or at Secure EL1, when SCR_EL3.EEL2 == 0b01:

• If the HCR.{IMO,FMO,AMO} bit has a value of 1, the corresponding ISR.{I,F,A} bit shows the pending status
of the virtual IRQ, FIQ, or SError.

• If the HCR.{IMO,FMO,AMO} bit has a value of 0, the corresponding ISR.{I,F,A} bit shows the pending status
of the physical IRQ, FIQ, or SError.

Configuration
AArch32 System register ISR bits [31:0] are architecturally mapped to AArch64 System register ISR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ISR are
UNKNOWN.

Attributes
ISR is a 32-bit register.

Field descriptions
The ISR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 A I F RES0

Bits [31:9]

Reserved, RES0.

A, bit [8]

SError interrupt pending bit:

A Meaning
0b0 No pending SError interrupt.
0b1 An SError interrupt is pending.

If the SError interrupt is edge-triggered, this field is cleared to zero when the physical SError interrupt is taken.

I, bit [7]

IRQ pending bit. Indicates whether an IRQ interrupt is pending:

I Meaning
0b0 No pending IRQ.
0b1 An IRQ interrupt is pending.

ISR, Interrupt Status Register

Page 2763

F, bit [6]

FIQ pending bit. Indicates whether an FIQ interrupt is pending.

F Meaning
0b0 No pending FIQ.
0b1 An FIQ interrupt is pending.

Bits [5:0]

Reserved, RES0.

Accessing the ISR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ISR;
elsif PSTATE.EL == EL2 then

return ISR;
elsif PSTATE.EL == EL3 then

return ISR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ISR, Interrupt Status Register

Page 2764

ITLBIALL, Instruction TLB Invalidate All
The ITLBIALL characteristics are:

Purpose
Invalidate all cached copies of translation table entries from instruction TLBs that are from any level of the translation
table walk. The entries that are invalidated are as follows:

• If executed at EL1, all entries that:
◦ Would be required for the EL1&0 translation regime.
◦ Match the current VMID, if EL2 is implemented and enabled in the current Security state.

• If executed in Secure state when EL3 is using AArch32, all entries that would be required for the Secure
PL1&0 translation regime.

• If executed at EL2, and if EL2 is enabled in the curent Security state, the stage 1 or stage 2 translation table
entries that would be required for the Non-secure PL1&0 translation regime and matches the current VMID.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility with earlier versions
of the Arm architecture.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ITLBIALL are UNKNOWN.

Attributes
ITLBIALL is a 32-bit System instruction.

Field descriptions
ITLBIALL ignores the value in the register specified by the instruction encoding. Software does not have to write a
value to the register before issuing this instruction.

Executing the ITLBIALL instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1000 0b0101 0b000

ITLBIALL, Instruction TLB Invalidate All

Page 2765

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then

AArch32.TakeHypTrapException(0x03);
else

ITLBIALL();
elsif PSTATE.EL == EL2 then

ITLBIALL();
elsif PSTATE.EL == EL3 then

ITLBIALL();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ITLBIALL, Instruction TLB Invalidate All

Page 2766

ITLBIASID, Instruction TLB Invalidate by ASID match
The ITLBIASID characteristics are:

Purpose
Invalidate all cached copies of translation table entries from instruction TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used for the specified ASID, and either:

◦ Is from a level of lookup above the final level.
◦ Is a non-global entry from the final level of lookup.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with the current
VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following
translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility with earlier versions
of the Arm architecture.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ITLBIASID are UNKNOWN.

Attributes
ITLBIASID is a 32-bit System instruction.

Field descriptions
The ITLBIASID input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ASID

Bits [31:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries for non-global pages that match the ASID values will be affected by this System
instruction.

Executing the ITLBIASID instruction
Accesses to this instruction use the following encodings:

ITLBIASID, Instruction TLB Invalidate by ASID match

Page 2767

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1000 0b0101 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then

AArch32.TakeHypTrapException(0x03);
else

ITLBIASID(R[t]);
elsif PSTATE.EL == EL2 then

ITLBIASID(R[t]);
elsif PSTATE.EL == EL3 then

ITLBIASID(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ITLBIASID, Instruction TLB Invalidate by ASID match

Page 2768

ITLBIMVA, Instruction TLB Invalidate by VA
The ITLBIMVA characteristics are:

Purpose
Invalidate all cached copies of translation table entries from instruction TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.
◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with the current
VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following
translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility with earlier versions
of the Arm architecture.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ITLBIMVA are UNKNOWN.

Attributes
ITLBIMVA is a 32-bit System instruction.

Field descriptions
The ITLBIMVA input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA RES0 ASID

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this operation, regardless of the value of the ASID field.

ITLBIMVA, Instruction TLB Invalidate by VA

Page 2769

Executing the ITLBIMVA instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1000 0b0101 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then

AArch32.TakeHypTrapException(0x03);
else

ITLBIASID(R[t]);
elsif PSTATE.EL == EL2 then

ITLBIASID(R[t]);
elsif PSTATE.EL == EL3 then

ITLBIASID(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ITLBIMVA, Instruction TLB Invalidate by VA

Page 2770

JIDR, Jazelle ID Register
The JIDR characteristics are:

Purpose
A Jazelle register, which identified the Jazelle architecture version.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to JIDR are
UNKNOWN.

Attributes
JIDR is a 32-bit register.

Field descriptions
The JIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAZ

Bits [31:0]

Reserved, RAZ.

Accessing the JIDR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b111 0b0000 0b0000 0b000

JIDR, Jazelle ID Register

Page 2771

if PSTATE.EL == EL0 then
if boolean IMPLEMENTATION_DEFINED "JIDR UNDEFINED at EL0" then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TID0 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID0 == '1' then
AArch32.TakeHypTrapException(0x05);

else
return JIDR;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID0 == '1' then

AArch32.TakeHypTrapException(0x05);
else

return JIDR;
elsif PSTATE.EL == EL2 then

return JIDR;
elsif PSTATE.EL == EL3 then

return JIDR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

JIDR, Jazelle ID Register

Page 2772

JMCR, Jazelle Main Configuration Register
The JMCR characteristics are:

Purpose
A Jazelle register, which provides control of the Jazelle extension.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to JMCR
are UNKNOWN.

Attributes
JMCR is a 32-bit register.

Field descriptions
The JMCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAZ/WI

Bits [31:0]

Reserved, RAZ/WI.

Accessing the JMCR
For accesses from EL0 it is IMPLEMENTATION DEFINED whether the register is RW or UNDEFINED.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b111 0b0010 0b0000 0b000

if PSTATE.EL == EL0 then
if boolean IMPLEMENTATION_DEFINED "JMCR UNDEFINED at EL0" then

UNDEFINED;
else

return JMCR;
elsif PSTATE.EL == EL1 then

return JMCR;
elsif PSTATE.EL == EL2 then

return JMCR;
elsif PSTATE.EL == EL3 then

return JMCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

JMCR, Jazelle Main Configuration Register

Page 2773

0b1110 0b111 0b0010 0b0000 0b000

if PSTATE.EL == EL0 then
if boolean IMPLEMENTATION_DEFINED "JMCR UNDEFINED at EL0" then

UNDEFINED;
else

//no operation
elsif PSTATE.EL == EL1 then

//no operation
elsif PSTATE.EL == EL2 then

//no operation
elsif PSTATE.EL == EL3 then

//no operation

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

JMCR, Jazelle Main Configuration Register

Page 2774

JOSCR, Jazelle OS Control Register
The JOSCR characteristics are:

Purpose
A Jazelle register, which provides operating system control of the Jazelle Extension.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to JOSCR
are UNKNOWN.

Attributes
JOSCR is a 32-bit register.

Field descriptions
The JOSCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAZ/WI

Bits [31:0]

Reserved, RAZ/WI.

Accessing the JOSCR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b111 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
if boolean IMPLEMENTATION_DEFINED "JOSCR UNDEFINED at EL0" then

UNDEFINED;
else

return JOSCR;
elsif PSTATE.EL == EL1 then

return JOSCR;
elsif PSTATE.EL == EL2 then

return JOSCR;
elsif PSTATE.EL == EL3 then

return JOSCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b111 0b0001 0b0000 0b000

JOSCR, Jazelle OS Control Register

Page 2775

if PSTATE.EL == EL0 then
if boolean IMPLEMENTATION_DEFINED "JOSCR UNDEFINED at EL0" then

UNDEFINED;
else

//no operation
elsif PSTATE.EL == EL1 then

//no operation
elsif PSTATE.EL == EL2 then

//no operation
elsif PSTATE.EL == EL3 then

//no operation

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

JOSCR, Jazelle OS Control Register

Page 2776

MAIR0, Memory Attribute Indirection Register 0
The MAIR0 characteristics are:

Purpose
Along with MAIR1, provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-
descriptor format translation table entry for stage 1 translations.

AttrIndx[2] indicates the MAIR register to be used:

• When AttrIndx[2] is 0, MAIR0 is used.
• When AttrIndx[2] is 1, MAIR1 is used.

Configuration
AArch32 System register MAIR0 bits [31:0] are architecturally mapped to AArch64 System register MAIR_EL1[31:0]
when TTBCR.EAE == 1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MAIR0
are UNKNOWN.

MAIR0 and PRRR are the same register, with a different view depending on the value of TTBCR.EAE:

• When it is set to 0, the register is as described in PRRR.
• When it is set to 1, the register is as described in MAIR0.

When EL3 is using AArch32, write access to MAIR0(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

Attributes
MAIR0 is a 32-bit register.

Field descriptions
The MAIR0 bit assignments are:

When TTBCR.EAE == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Attr3 Attr2 Attr1 Attr0

Attr<n>, bits [8n+7:8n], for n = 0 to 3

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.
• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0 are in MAIR0.

Bits [7:4] are encoded as follows:

MAIR0, Memory Attribute Indirection Register 0

Page 2777

Attr<n>[7:4] Meaning
0b0000 Device memory. See encoding of Attr<n>[3:0] for the

type of Device memory.
0b00RW, RW
not 0b00

Normal memory, Outer Write-Through Transient.

0b0100 Normal memory, Outer Non-cacheable.
0b01RW, RW
not 0b00

Normal memory, Outer Write-Back Transient.

0b10RW Normal memory, Outer Write-Through Non-transient.
0b11RW Normal memory, Outer Write-Back Non-transient.

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

Attr<n>[3:0]
Meaning when
Attr<n>[7:4] is

0b0000
Meaning when Attr<n>[7:4]

is not 0b0000
0b0000 Device-nGnRnE

memory
UNPREDICTABLE

0b00RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-
Through Transient

0b0100 Device-nGnRE
memory

Normal memory, Inner Non-
cacheable

0b01RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-
Back Transient

0b1000 Device-nGRE
memory

Normal memory, Inner Write-
Through Non-transient
(RW=0b00)

0b10RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-
Through Non-transient

0b1100 Device-GRE memory Normal memory, Inner Write-
Back Non-transient (RW=0b00)

0b11RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-
Back Non-transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

R or W Meaning
0b0 No Allocate
0b1 Allocate

This field resets to an architecturally UNKNOWN value.

Accessing the MAIR0
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b000

MAIR0, Memory Attribute Indirection Register 0

Page 2778

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return MAIR0_NS;
else

return MAIR0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return MAIR0_NS;

else
return MAIR0;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return MAIR0_S;
else

return MAIR0_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

MAIR0_NS = R[t];
else

MAIR0 = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
MAIR0_NS = R[t];

else
MAIR0 = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if SCR.NS == '0' then
MAIR0_S = R[t];

else
MAIR0_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

MAIR0, Memory Attribute Indirection Register 0

Page 2779

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MAIR0, Memory Attribute Indirection Register 0

Page 2780

MAIR1, Memory Attribute Indirection Register 1
The MAIR1 characteristics are:

Purpose
Along with MAIR0, provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-
descriptor format translation table entry for stage 1 translations.

AttrIndx[2] indicates the MAIR register to be used:

• When AttrIndx[2] is 0, MAIR0 is used.
• When AttrIndx[2] is 1, MAIR1 is used.

Configuration
AArch32 System register MAIR1 bits [31:0] are architecturally mapped to AArch64 System register MAIR_EL1[63:32]
when TTBCR.EAE == 1.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MAIR1
are UNKNOWN.

MAIR1 and NMRR are the same register, with a different view depending on the value of TTBCR.EAE:

• When it is set to 0, the register is as described in NMRR.
• When it is set to 1, the register is as described in MAIR1.

When EL3 is using AArch32, write access to MAIR1(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

Attributes
MAIR1 is a 32-bit register.

Field descriptions
The MAIR1 bit assignments are:

When TTBCR.EAE == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Attr7 Attr6 Attr5 Attr4

Attr<n>, bits [8(n-4)+7:8(n-4)], for n = 4 to 7

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.
• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0 are in MAIR0.

Bits [7:4] are encoded as follows:

MAIR1, Memory Attribute Indirection Register 1

Page 2781

Attr<n>[7:4] Meaning
0b0000 Device memory. See encoding of Attr<n>[3:0] for the

type of Device memory.
0b00RW, RW
not 0b00

Normal memory, Outer Write-Through Transient.

0b0100 Normal memory, Outer Non-cacheable.
0b01RW, RW
not 0b00

Normal memory, Outer Write-Back Transient.

0b10RW Normal memory, Outer Write-Through Non-transient.
0b11RW Normal memory, Outer Write-Back Non-transient.

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

Attr<n>[3:0]
Meaning when
Attr<n>[7:4] is

0b0000
Meaning when Attr<n>[7:4]

is not 0b0000
0b0000 Device-nGnRnE

memory
UNPREDICTABLE

0b00RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-
Through Transient

0b0100 Device-nGnRE
memory

Normal memory, Inner Non-
cacheable

0b01RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-
Back Transient

0b1000 Device-nGRE
memory

Normal memory, Inner Write-
Through Non-transient
(RW=0b00)

0b10RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-
Through Non-transient

0b1100 Device-GRE memory Normal memory, Inner Write-
Back Non-transient (RW=0b00)

0b11RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-
Back Non-transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

R or W Meaning
0b0 No Allocate
0b1 Allocate

This field resets to an architecturally UNKNOWN value.

Accessing the MAIR1
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b001

MAIR1, Memory Attribute Indirection Register 1

Page 2782

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return MAIR1_NS;
else

return MAIR1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return MAIR1_NS;

else
return MAIR1;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return MAIR1_S;
else

return MAIR1_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

MAIR1_NS = R[t];
else

MAIR1 = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
MAIR1_NS = R[t];

else
MAIR1 = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if SCR.NS == '0' then
MAIR1_S = R[t];

else
MAIR1_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

MAIR1, Memory Attribute Indirection Register 1

Page 2783

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MAIR1, Memory Attribute Indirection Register 1

Page 2784

MIDR, Main ID Register
The MIDR characteristics are:

Purpose
Provides identification information for the PE, including an implementer code for the device and a device ID number.

Configuration
AArch32 System register MIDR bits [31:0] are architecturally mapped to AArch64 System register MIDR_EL1[31:0] .

AArch32 System register MIDR bits [31:0] are architecturally mapped to External register MIDR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MIDR
are UNKNOWN.

Some fields of the MIDR are IMPLEMENTATION DEFINED. For details of the values of these fields for a particular Armv8
implementation, and any implementation-specific significance of these values, see the product documentation.

Attributes
MIDR is a 32-bit register.

Field descriptions
The MIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Implementer Variant Architecture PartNum Revision

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm. Assigned codes
include the following:

Hex representation Implementer
0x00 Reserved for software use
0xC0 Ampere Computing
0x41 Arm Limited
0x42 Broadcom Corporation
0x43 Cavium Inc.
0x44 Digital Equipment Corporation
0x46 Fujitsu Ltd.
0x49 Infineon Technologies AG
0x4D Motorola or Freescale Semiconductor Inc.
0x4E NVIDIA Corporation
0x50 Applied Micro Circuits Corporation
0x51 Qualcomm Inc.
0x56 Marvell International Ltd.
0x69 Intel Corporation

Arm can assign codes that are not published in this manual. All values not assigned by Arm are reserved and must not
be used.

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product
variants, or major revisions of a product.

MIDR, Main ID Register

Page 2785

Architecture, bits [19:16]

The permitted values of this field are:

Architecture Meaning
0b0001 Armv4.
0b0010 Armv4T.
0b0011 Armv5 (obsolete).
0b0100 Armv5T.
0b0101 Armv5TE.
0b0110 Armv5TEJ.
0b0111 Armv6.
0b1111 Architectural features are individually identified in the

ID_* registers, see 'ID registers' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section K12.5.3.

All other values are reserved.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7, the variant and
architecture are encoded differently.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

Accessing the MIDR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) then

return VPIDR_EL2<31:0>;
elsif EL2Enabled() && ELUsingAArch32(EL2) then

return VPIDR;
else

return MIDR;
elsif PSTATE.EL == EL2 then

return MIDR;
elsif PSTATE.EL == EL3 then

return MIDR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MIDR, Main ID Register

Page 2786

MPIDR, Multiprocessor Affinity Register
The MPIDR characteristics are:

Purpose
In a multiprocessor system, provides an additional PE identification mechanism for scheduling purposes.

Configuration
AArch32 System register MPIDR bits [31:0] are architecturally mapped to AArch64 System register MPIDR_EL1[31:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MPIDR
are UNKNOWN.

In a uniprocessor system Arm recommends that each Aff<n> field of this register returns a value of 0.

Attributes
MPIDR is a 32-bit register.

Field descriptions
The MPIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
M U RES0 MT Aff2 Aff1 Aff0

M, bit [31]

Indicates whether this implementation includes the functionality introduced by the ARMv7 Multiprocessing
Extensions. The possible values of this bit are:

M Meaning
0b0 This implementation does not include the ARMv7 Multiprocessing

Extensions functionality.
0b1 This implementation includes the ARMv7 Multiprocessing

Extensions functionality.

From Armv8, this bit is RAO.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system. The possible values of this bit are:

U Meaning
0b0 Processor is part of a multiprocessor system.
0b1 Processor is part of a uniprocessor system.

Bits [29:25]

Reserved, RES0.

MPIDR, Multiprocessor Affinity Register

Page 2787

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading type
approach. See the description of Aff0 for more information about affinity levels. The possible values of this bit are:

MT Meaning
0b0 Performance of PEs at the lowest affinity level, or PEs with

MPIDR.MT set to 1, different affinity level 0 values, and the same
values for affinity level 1 and higher, is largely independent.

0b1 Performance of PEs at the lowest affinity level, or PEs with
MPIDR.MT set to 1, different affinity level 0 values, and the same
values for affinity level 1 and higher, is very interdependent.

Aff2, bits [23:16]

Affinity level 2. See the description of Aff0 for more information.

Aff1, bits [15:8]

Affinity level 1. See the description of Aff0 for more information.

Aff0, bits [7:0]

Affinity level 0. This is the affinity level that is most significant for determining PE behavior. Higher affinity levels are
increasingly less significant in determining PE behavior. The assigned value of the MPIDR.{Aff2, Aff1, Aff0} or
MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set of fields of each PE must be unique within the system as a whole.

Accessing the MPIDR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0000 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) then

return VMPIDR_EL2<31:0>;
elsif EL2Enabled() && ELUsingAArch32(EL2) then

return VMPIDR;
else

return MPIDR;
elsif PSTATE.EL == EL2 then

return MPIDR;
elsif PSTATE.EL == EL3 then

return MPIDR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPIDR, Multiprocessor Affinity Register

Page 2788

MVBAR, Monitor Vector Base Address Register
The MVBAR characteristics are:

Purpose
When EL3 is implemented and can use AArch32, holds the vector base address for any exception that is taken to
Monitor mode.

Secure software must program the MVBAR with the required initial value as part of the PE boot sequence.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MVBAR
are UNKNOWN.

It is IMPLEMENTATION DEFINED whether MVBAR[0] has a fixed value and ignored writes, or takes the last value written
to it.

On a reset into EL3 using AArch32, the reset value of MVBAR is an IMPLEMENTATION DEFINED choice between the
following:

• MVBAR[31:5] = an IMPLEMENTATION DEFINED value, which might be UNKNOWN, MVBAR[4:1] = RES0, and
MVBAR[0] = 0.

• MVBAR[31:1] = an IMPLEMENTATION DEFINED value that is bits[31:1] of the AArch32 reset address, and
MVBAR[0] = 1.

Attributes
MVBAR is a 32-bit register.

Field descriptions
The MVBAR bit assignments are:

When programmed with a vector base address:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Vector Base Address Reserved

Bits [31:5]

Vector Base Address. Bits[31:5] of the base address of the exception vectors for exceptions taken to this Exception
level. Bits[4:0] of an exception vector are the exception offset.

Reserved, bits [4:0]

Reserved, see Configurations.

Accessing the MVBAR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

MVBAR, Monitor Vector Base Address Register

Page 2789

0b1111 0b000 0b1100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if IsHighestEL(EL1) then

return RVBAR;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if IsHighestEL(EL2) then
return RVBAR;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
return MVBAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' && CP15SDISABLE == HIGH then
UNDEFINED;

elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
UNDEFINED;

else
MVBAR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVBAR, Monitor Vector Base Address Register

Page 2790

MVFR0, Media and VFP Feature Register 0
The MVFR0 characteristics are:

Purpose
Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR1 and MVFR2.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register MVFR0 bits [31:0] are architecturally mapped to AArch64 System register MVFR0_EL1[31:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MVFR0
are UNKNOWN.

Implemented only if the implementation includes Advanced SIMD and floating-point instructions.

Attributes
MVFR0 is a 32-bit register.

Field descriptions
The MVFR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FPRound FPShVec FPSqrt FPDivide FPTrap FPDP FPSP SIMDReg

FPRound, bits [31:28]

Floating-Point Rounding modes. Indicates whether the floating-point implementation provides support for rounding
modes. Defined values are:

FPRound Meaning
0b0000 Not implemented, or only Round to Nearest mode

supported, except that Round towards Zero mode is
supported for VCVT instructions that always use that
rounding mode regardless of the FPSCR setting.

0b0001 All rounding modes supported.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

FPShVec, bits [27:24]

Short Vectors. Indicates whether the floating-point implementation provides support for the use of short vectors.
Defined values are:

FPShVec Meaning
0b0000 Short vectors not supported.
0b0001 Short vector operation supported.

MVFR0, Media and VFP Feature Register 0

Page 2791

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

FPSqrt, bits [23:20]

Square Root. Indicates whether the floating-point implementation provides support for the ARMv6 VFP square root
operations. Defined values are:

FPSqrt Meaning
0b0000 Not supported in hardware.
0b0001 Supported.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

The VSQRT.F32 instruction also requires the single-precision floating-point attribute, bits [7:4], and the VSQRT.F64
instruction also requires the double-precision floating-point attribute, bits [11:8].

FPDivide, bits [19:16]

Indicates whether the floating-point implementation provides support for VFP divide operations. Defined values are:

FPDivide Meaning
0b0000 Not supported in hardware.
0b0001 Supported.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

The VDIV.F32 instruction also requires the single-precision floating-point attribute, bits [7:4], and the VDIV.F64
instruction also requires the double-precision floating-point attribute, bits [11:8].

FPTrap, bits [15:12]

Floating Point Exception Trapping. Indicates whether the floating-point implementation provides support for exception
trapping. Defined values are:

FPTrap Meaning
0b0000 Not supported.
0b0001 Supported.

All other values are reserved.

A value of 0b0001 indicates that, when the corresponding trap is enabled, a floating-point exception generates an
exception.

FPDP, bits [11:8]

Double Precision. Indicates whether the floating-point implementation provides support for double-precision
operations. Defined values are:

FPDP Meaning
0b0000 Not supported in hardware.
0b0001 Supported, VFPv2.
0b0010 Supported, VFPv3, VFPv4, or Armv8. VFPv3 and Armv8 add an

instruction to load a double-precision floating-point constant,
and conversions between double-precision and fixed-point
values.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0010.

MVFR0, Media and VFP Feature Register 0

Page 2792

A value of 0b0001 or 0b0010 indicates support for all VFP double-precision instructions in the supported version of
VFP, except that, in addition to this field being nonzero:

• VSQRT.F64 is only available if the Square root field is 0b0001.
• VDIV.F64 is only available if the Divide field is 0b0001.
• Conversion between double-precision and single-precision is only available if the single-precision field is

nonzero.

FPSP, bits [7:4]

Single Precision. Indicates whether the floating-point implementation provides support for single-precision operations.
Defined values are:

FPSP Meaning
0b0000 Not supported in hardware.
0b0001 Supported, VFPv2.
0b0010 Supported, VFPv3 or VFPv4. VFPv3 adds an instruction to load

a single-precision floating-point constant, and conversions
between single-precision and fixed-point values.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0010.

A value of 0b0001 or 0b0010 indicates support for all VFP single-precision instructions in the supported version of VFP,
except that, in addition to this field being nonzero:

• VSQRT.F32 is only available if the Square root field is 0b0001.
• VDIV.F32 is only available if the Divide field is 0b0001.
• Conversion between double-precision and single-precision is only available if the double-precision field is

nonzero.

SIMDReg, bits [3:0]

Advanced SIMD registers. Indicates whether the Advanced SIMD and floating-point implementation provides support
for the Advanced SIMD and floating-point register bank. Defined values are:

SIMDReg Meaning
0b0000 The implementation has no Advanced SIMD and floating-

point support.
0b0001 The implementation includes floating-point support with 16

x 64-bit registers.
0b0010 The implementation includes Advanced SIMD and floating-

point support with 32 x 64-bit registers.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0010.

Accessing the MVFR0
Accesses to this register use the following encodings:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

reg
0b0111

MVFR0, Media and VFP Feature Register 0

Page 2793

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||

CPACR.cp10 == '00') then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x08);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x08);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x08);
else

return MVFR0;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x00);
else

return MVFR0;
elsif PSTATE.EL == EL3 then

if CPACR.cp10 == '00' then
UNDEFINED;

else
return MVFR0;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVFR0, Media and VFP Feature Register 0

Page 2794

MVFR1, Media and VFP Feature Register 1
The MVFR1 characteristics are:

Purpose
Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR0 and MVFR2.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register MVFR1 bits [31:0] are architecturally mapped to AArch64 System register MVFR1_EL1[31:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MVFR1
are UNKNOWN.

Implemented only if the implementation includes Advanced SIMD and floating-point instructions.

Attributes
MVFR1 is a 32-bit register.

Field descriptions
The MVFR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SIMDFMAC FPHP SIMDHP SIMDSP SIMDInt SIMDLS FPDNaN FPFtZ

SIMDFMAC, bits [31:28]

Advanced SIMD Fused Multiply-Accumulate. Indicates whether the Advanced SIMD implementation provides fused
multiply accumulate instructions. Defined values are:

SIMDFMAC Meaning
0b0000 Not implemented.
0b0001 Implemented.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

The Advanced SIMD and floating-point implementations must provide the same level of support for these instructions.

FPHP, bits [27:24]

Floating Point Half Precision. Indicates the level of half-precision floating-point support. Defined values are:

MVFR1, Media and VFP Feature Register 1

Page 2795

FPHP Meaning
0b0000 Not supported.
0b0001 Floating-point half-precision conversion instructions are

supported for conversion between single-precision and half-
precision.

0b0010 As for 0b0001, and adds instructions for conversion between
double-precision and half-precision.

0b0011 As for 0b0010, and adds support for half-precision floating-point
arithmetic.

All other values are reserved.

In Armv8-A the permitted values are:

• 0b0000 in an implementation without floating-point support.
• 0b0010 in an implementation with floating-point support that does not include the ARMv8.2-FP16 extension.
• 0b0011 in an implementation with floating-point support that includes the ARMv8.2-FP16 extension.

The level of support indicated by this field must be equivalent to the level of support indicated by the SIMDHP field,
meaning the permitted values are:

Half Precision instructions supported FPHP SIMDHP
No support 0b0000 0b0000
Conversions only 0b0010 0b0001
Conversions and arithmetic 0b0011 0b0010

SIMDHP, bits [23:20]

Advanced SIMD Half Precision. Indicates the level of half-precision floating-point support. Defined values are:

SIMDHP Meaning
0b0000 Not supported.
0b0001 SIMD half-precision conversion instructions are supported

for conversion between single-precision and half-precision.
0b0010 As for 0b0001, and adds support for half-precision floating-

point arithmetic.

All other values are reserved.

In Armv8-A the permitted values are:

• 0b0000 in an implementation without SIMD floating-point support.
• 0b0010 in an implementation with SIMD floating-point support that does not include the ARMv8.2-FP16

extension.
• 0b0011 in an implementation with SIMD floating-point support that includes the ARMv8.2-FP16 extension.

The level of support indicated by this field must be equivalent to the level of support indicated by the FPHP field,
meaning the permitted values are:

Half Precision instructions supported FPHP SIMDHP
No support 0b0000 0b0000
Conversions only 0b0010 0b0001
Conversions and arithmetic 0b0011 0b0010

SIMDSP, bits [19:16]

Advanced SIMD Single Precision. Indicates whether the Advanced SIMD and floating-point implementation provides
single-precision floating-point instructions. Defined values are:

SIMDSP Meaning
0b0000 Not implemented.
0b0001 Implemented. This value is permitted only if the SIMDInt

field is 0b0001.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

MVFR1, Media and VFP Feature Register 1

Page 2796

SIMDInt, bits [15:12]

Advanced SIMD Integer. Indicates whether the Advanced SIMD and floating-point implementation provides integer
instructions. Defined values are:

SIMDInt Meaning
0b0000 Not implemented.
0b0001 Implemented.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

SIMDLS, bits [11:8]

Advanced SIMD Load/Store. Indicates whether the Advanced SIMD and floating-point implementation provides load/
store instructions. Defined values are:

SIMDLS Meaning
0b0000 Not implemented.
0b0001 Implemented.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

FPDNaN, bits [7:4]

Default NaN mode. Indicates whether the floating-point implementation provides support only for the Default NaN
mode. Defined values are:

FPDNaN Meaning
0b0000 Not implemented, or hardware supports only the Default

NaN mode.
0b0001 Hardware supports propagation of NaN values.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

FPFtZ, bits [3:0]

Flush to Zero mode. Indicates whether the floating-point implementation provides support only for the Flush-to-Zero
mode of operation. Defined values are:

FPFtZ Meaning
0b0000 Not implemented, or hardware supports only the Flush-to-Zero

mode of operation.
0b0001 Hardware supports full denormalized number arithmetic.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

Accessing the MVFR1
Accesses to this register use the following encodings:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

reg
0b0110

MVFR1, Media and VFP Feature Register 1

Page 2797

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||

CPACR.cp10 == '00') then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x08);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x08);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x08);
else

return MVFR1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x00);
else

return MVFR1;
elsif PSTATE.EL == EL3 then

if CPACR.cp10 == '00' then
UNDEFINED;

else
return MVFR1;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVFR1, Media and VFP Feature Register 1

Page 2798

MVFR2, Media and VFP Feature Register 2
The MVFR2 characteristics are:

Purpose
Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR0 and MVFR1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section G7.1.3.

Configuration
AArch32 System register MVFR2 bits [31:0] are architecturally mapped to AArch64 System register MVFR2_EL1[31:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MVFR2
are UNKNOWN.

Implemented only if the implementation includes Advanced SIMD and floating-point instructions.

Attributes
MVFR2 is a 32-bit register.

Field descriptions
The MVFR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 FPMisc SIMDMisc

Bits [31:8]

Reserved, RES0.

FPMisc, bits [7:4]

Indicates whether the floating-point implementation provides support for miscellaneous VFP features.

FPMisc Meaning
0b0000 Not implemented, or no support for miscellaneous features.
0b0001 Support for Floating-point selection.
0b0010 As 0b0001, and Floating-point Conversion to Integer with

Directed Rounding modes.
0b0011 As 0b0010, and Floating-point Round to Integer Floating-point.
0b0100 As 0b0011, and Floating-point MaxNum and MinNum.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0100.

SIMDMisc, bits [3:0]

Indicates whether the Advanced SIMD implementation provides support for miscellaneous Advanced SIMD features.

MVFR2, Media and VFP Feature Register 2

Page 2799

SIMDMisc Meaning
0b0000 Not implemented, or no support for miscellaneous

features.
0b0001 Floating-point Conversion to Integer with Directed

Rounding modes.
0b0010 As 0b0001, and Floating-point Round to Integer Floating-

point.
0b0011 As 0b0010, and Floating-point MaxNum and MinNum.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0011.

Accessing the MVFR2
Accesses to this register use the following encodings:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

reg
0b0101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||

CPACR.cp10 == '00') then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x08);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x08);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x08);
else

return MVFR2;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then

AArch32.TakeHypTrapException(0x00);
else

return MVFR2;
elsif PSTATE.EL == EL3 then

if CPACR.cp10 == '00' then
UNDEFINED;

else
return MVFR2;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVFR2, Media and VFP Feature Register 2

Page 2800

NMRR, Normal Memory Remap Register
The NMRR characteristics are:

Purpose
Provides additional mapping controls for memory regions that are mapped as Normal memory by their entry in the
PRRR.

Used in conjunction with the PRRR.

Configuration
AArch32 System register NMRR bits [31:0] are architecturally mapped to AArch64 System register MAIR_EL1[63:32]
when TTBCR.EAE == 0.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to NMRR
are UNKNOWN.

MAIR1 and NMRR are the same register, with a different view depending on the value of TTBCR.EAE:

• When it is set to 0, the register is as described in NMRR.
• When it is set to 1, the register is as described in MAIR1.

Attributes
NMRR is a 32-bit register.

Field descriptions
The NMRR bit assignments are:

When TTBCR.EAE == 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OR7 OR6 OR5 OR4 OR3 OR2 OR1 OR0 IR7 IR6 IR5 IR4 IR3 IR2 IR1 IR0

OR<n>, bits [2n+17:2n+16], for n = 0 to 7

Outer Cacheable property mapping for memory attributes n, if the region is mapped as Normal memory by the
PRRR.TR<n> entry. n is the value of the TEX[0], C, and B bits concatenated. The possible values of this field are:

OR<n> Meaning
0b00 Region is Non-cacheable.
0b01 Region is Write-Back, Write-Allocate.
0b10 Region is Write-Through, no Write-Allocate.
0b11 Region is Write-Back, no Write-Allocate.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the meaning given here. This is
because the meaning of the attribute combination {TEX[0] = 1, C = 1, B = 0} is IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

IR<n>, bits [2n+1:2n], for n = 0 to 7

Inner Cacheable property mapping for memory attributes n, if the region is mapped as Normal memory by the
PRRR.TR<n> entry. n is the value of the TEX[0], C, and B bits concatenated. The possible values of this field are:

NMRR, Normal Memory Remap Register

Page 2801

IR<n> Meaning
0b00 Region is Non-cacheable.
0b01 Region is Write-Back, Write-Allocate.
0b10 Region is Write-Through, no Write-Allocate.
0b11 Region is Write-Back, no Write-Allocate.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the meaning given here. This is
because the meaning of the attribute combination {TEX[0] = 1, C = 1, B = 0} is IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the NMRR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return NMRR_NS;
else

return NMRR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return NMRR_NS;

else
return NMRR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return NMRR_S;
else

return NMRR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b001

NMRR, Normal Memory Remap Register

Page 2802

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

NMRR_NS = R[t];
else

NMRR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
NMRR_NS = R[t];

else
NMRR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if SCR.NS == '0' then
NMRR_S = R[t];

else
NMRR_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NMRR, Normal Memory Remap Register

Page 2803

NSACR, Non-Secure Access Control Register
The NSACR characteristics are:

Purpose
When EL3 is implemented and can use AArch32, defines the Non-secure access permissions to Trace, Advanced SIMD
and floating-point functionality. Also includes IMPLEMENTATION DEFINED bits that can define Non-secure access
permissions for IMPLEMENTATION DEFINED functionality.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to NSACR
are UNKNOWN.

Note

In AArch64 state, the NSACR controls are replaced by controls in CPTR_EL3.

Attributes
NSACR is a 32-bit register.

Field descriptions
The NSACR bit assignments are:

3130292827262524232221 20 19 18 17 16 15 141312 11 10 9 8 7 6 5 4 3 2 1 0

RES0 NSTRCDISRES0IMPLEMENTATION
DEFINED NSASEDIS RES0 cp11cp10 RES0

If EL3 is implemented and is using AArch64 then:

• Any read of the NSACR from Non-secure EL2 or Non-secure EL1 returns a value of 0x00000C00.
• Any read or write to NSACR from Secure EL1 is trapped as an exception to EL3.

If EL3 is not implemented, then any read of the NSACR from EL2 or EL1 returns a value of 0x00000C00.

Bits [31:21]

Reserved, RES0.

NSTRCDIS, bit [20]

Disables Non-secure System register accesses to all implemented trace registers.

NSTRCDIS Meaning
0b0 This control has no effect on:

• System register access to implemented trace
registers.

• The behavior of CPACR.TRCDIS and HCPTR.TTA.
0b1 Non-secure System register accesses to all implemented

trace registers are disabled, meaning:
• CPACR.TRCDIS behaves as RAO/WI in Non-secure

state, regardless of its actual value.
• HCPTR.TTA behaves as RAO/WI, regardless of its

actual value.

NSACR, Non-Secure Access Control Register

Page 2804

The implementation of this field must correspond to the implementation of the CPACR.TRCDIS field:

• If CPACR.TRCDIS is RAZ/WI, this field is RAZ/WI.
• If CPACR.TRCDIS is RW, this field is RW.

Note
• The ETMv4 architecture does not permit EL0 to access the trace

registers. If the implementation includes an ETMv4 implementation,
EL0 accesses to the trace registers are UNDEFINED.

• The architecture does not provide Non-secure access controls on trace
register accesses through the optional memory-mapped external debug
interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any
side-effects that are normally associated with the access do not occur before the exception is taken.

In a system where the PE resets into EL3, this field resets to 0.

Bit [19]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [18:16]

IMPLEMENTATION DEFINED.

NSASEDIS, bit [15]

Disables Non-secure access to the Advanced SIMD functionality.

NSASEDIS Meaning
0b0 This control has no effect on:

• Non-secure access to Advanced SIMD functionality.
• The behavior of CPACR.ASEDIS and HCPTR.TASE.

0b1 Non-secure access to the Advanced SIMD functionality is
disabled, meaning:

• CPACR.ASEDIS behaves as RAO/WI in Non-secure
state, regardless of its actual value.

• HCPTR.TASE behaves as RAO/WI, regardless of its
actual value.

The implementation of this field must correspond to the implementation of the CPACR.ASEDIS field:

• If CPACR.ASEDIS is RES0, this field is RES0. If the implementation does not include Advanced SIMD and
floating-point functionality, this field is RES0.

• If CPACR.ASEDIS is RAZ/WI, this field is RAZ/WI.
• If CPACR.ASEDIS is RW, this field is RW.

In a system where the PE resets into EL3, this field resets to 0.

Bits [14:12]

Reserved, RES0.

cp11, bit [11]

The value of this field is ignored. If this field is programmed with a different value to the cp10 field then this field is
UNKNOWN on a direct read of the NSACR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

NSACR, Non-Secure Access Control Register

Page 2805

cp10, bit [10]

Enable Non-secure access to the Advanced SIMD and floating-point features. Possible values of the fields are:

cp10 Meaning
0b0 Advanced SIMD and floating-point features can be accessed only

from Secure state. Any attempt to access this functionality from
Non-secure state is UNDEFINED.
When the PE is in Non-secure state:

• The CPACR.{cp11, cp10} fields ignore writes and read as
0b00, access denied.

• The HCPTR.{TCP11, TCP10} fields behave as RAO/WI,
regardless of their actual values.

0b1 Advanced SIMD and floating-point features can be accessed from
both Security states.

If Non-secure access to the Advanced SIMD and floating-point functionality is enabled, the CPACR must be checked to
determine the level of access that is permitted.

The Advanced SIMD and floating-point features controlled by these fields are:

• Execution of any floating-point or Advanced SIMD instruction.
• Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as S0-S31 and Q0-Q15.
• Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Bits [9:0]

Reserved, RES0.

Accessing the NSACR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif !HaveEL(EL3) || (!ELUsingAArch32(EL3) && SCR_EL3.NS == '1') then

return Zeros(20):'1100':Zeros(8);
else

return NSACR;
elsif PSTATE.EL == EL2 then

if !HaveEL(EL3) || (!ELUsingAArch32(EL3) && SCR_EL3.NS == '1') then
return Zeros(20):'1100':Zeros(8);

else
return NSACR;

elsif PSTATE.EL == EL3 then
return NSACR;

NSACR, Non-Secure Access Control Register

Page 2806

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' && CP15SDISABLE2 == HIGH then
UNDEFINED;

else
NSACR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NSACR, Non-Secure Access Control Register

Page 2807

PAR, Physical Address Register
The PAR characteristics are:

Purpose
Returns the output address (OA) from an Address translation instruction that executed successfully, or fault
information if the instruction did not execute successfully.

Configuration
AArch32 System register PAR bits [63:0] are architecturally mapped to AArch64 System register PAR_EL1[63:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to PAR are
UNKNOWN.

PAR is accessed as a 32-bit value:

• When the PE is not in Hyp mode and is using the Short-descriptor translation table format.
• When the PE is in Hyp mode and executes an ATS12NSOPR, ATS12NSOPW, ATS12NSOUR, or ATS12NSOUW

instruction and the value of HCR.VM is 0 and the value of TTBCR.EAE is 0.

In these cases, PAR[63:32] is RES0.

Otherwise, the PAR is accessed as a 64-bit value, if any of the following is true:

• When using the Long-descriptor translation table format.
• If the stage 1 address translation is disabled and TTBCR.EAE is set to 1.
• In an implementation that includes EL2, for the result of an ATS1Cxx instruction performed from Hyp mode.

For PL1&0 stage 1 translations, TTBCR.EAE selects the translation table format.

Attributes
PAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, accesses read
and write bits[31:0] and do not modify bits[63:32].

The Configurations section specifies the cases where each PAR format is used.

Field descriptions
The PAR bit assignments are:

When the instruction returned a 32-bit value to the PAR, PAR.F==0:

6362616059585756555453525150494847464544 43 42 41 40 39 38 37 36 35 34 33 32
RES0

PA LPAENOSNSIMPLEMENTATION
DEFINED SHInner[2:0]Outer[1:0]SS F

3130292827262524232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

This section describes the register value returned by the successful execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of the
PE.

On a successful conversion, the PAR can return a value that indicates the resulting attributes, rather than the values
that appear in the translation table descriptors. More precisely:

• Memory attribute fields are permitted to report the resulting attributes, as determined by any permitted
implementation choices and any applicable configuration bits, instead of reporting the values that appear in
the translation table descriptors. This applies to the NOS, SH, Inner, and Outer fields.

PAR, Physical Address Register

Page 2808

• See the NS bit description for constraints on the value it returns.

Bits [63:32]

Reserved, RES0.

PA, bits [31:12]

Output address. The output address (OA) corresponding to the supplied input address. This field returns address
bits[31:12].

This field resets to an architecturally UNKNOWN value.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

LPAE Meaning
0b0 Short-descriptor translation table format used. This means the

PAR returned a 32-bit value.

This field resets to an architecturally UNKNOWN value.

NOS, bit [10]

Not Outer Shareable. When the returned value of PAR.SH is 1, indicates the Shareability attribute for the physical
memory region:

NOS Meaning
0b0 Memory region is Outer Shareable.
0b1 Memory region is Inner Shareable.

When the returned value of PAR.SH is 0 the value returned to this field is UNKNOWN.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices
and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

This field resets to an architecturally UNKNOWN value.

NS, bit [9]

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, this bit reflects the Security state of the physical address space of the
translation. This means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if those
NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bit [8]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

SH, bit [7]

Shareability. Indicates whether the physical memory region is Non-shareable:

PAR, Physical Address Register

Page 2809

SH Meaning
0b0 Memory is Non-shareable.
0b1 Memory is shareable, and PAR.NOS indicates whether the region is

Outer Shareable or Inner Shareable.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices
and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

This field resets to an architecturally UNKNOWN value.

Inner[2:0], bits [6:4]

Inner cacheability attribute for the region. Permitted values are:

Inner[2:0] Meaning
0b000 Non-cacheable.
0b001 Device-nGnRnE.
0b011 Device-nGnRE.
0b101 Write-Back, Write-Allocate.
0b110 Write-Through.
0b111 Write-Back, no Write-Allocate.

The values 0b010 and 0b100 are reserved.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices
and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

This field resets to an architecturally UNKNOWN value.

Outer[1:0], bits [3:2]

Outer cacheability attribute for the region. Permitted values are:

Outer[1:0] Meaning
0b00 Non-cacheable.
0b01 Write-Back, Write-Allocate.
0b10 Write-Through, no Write-Allocate.
0b11 Write-Back, no Write-Allocate.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices
and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

This field resets to an architecturally UNKNOWN value.

SS, bit [1]

Supersection. Used to indicate if the result is a Supersection:

SS Meaning
0b0 Result is not a Supersection. PAR[31:12] contains OA[31:12].
0b1 Result is a Supersection, and:

• PAR[31:24] contains OA[31:24].
• PAR[23:16] contains OA[39:32].
• PAR[15:12] contains 0b0000.

If an implementation supports less than 40 bits of physical address,
the bits in the PAR field that correspond to physical address bits
that are not implemented are UNKNOWN.

This field resets to an architecturally UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
0b0 Address translation completed successfully.

PAR, Physical Address Register

Page 2810

This field resets to an architecturally UNKNOWN value.

When the instruction returned a 32-bit value to the PAR, PAR.F==1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

IMPLEMENTATION DEFINED RES0 LPAE RES0 FS[5] FS[4:0] F
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This section describes the register value returned by a fault on the execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of the
PE.

Bits [63:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:16]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Bits [15:12]

Reserved, RES0.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

LPAE Meaning
0b0 Short-descriptor translation table format used. This means the

PAR returned a 32-bit value.

This field resets to an architecturally UNKNOWN value.

Bits [10:7]

Reserved, RES0.

FS[5], bit [6]

Fault status bits, external abort type. Provides an IMPLEMENTATION DEFINED classification of an External abort. Values
are as in in the DFSR.ExT field when using the Short-descriptor translation table format.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

This field resets to an architecturally UNKNOWN value.

FS[4:0], bits [5:1]

Fault status bits. Values are as in the DFSR.FS field when using the Short-descriptor translation table format.

PAR, Physical Address Register

Page 2811

FS[4:0] Meaning Applies when
0b00001 Alignment fault.
0b00011 Access flag fault, level 1.
0b00100 Fault on instruction cache maintenance.
0b00101 Translation fault, level 1.
0b00110 Access flag fault, level 2.
0b00111 Translation fault, level 2.
0b01001 Domain fault, level 1.
0b01011 Domain fault, level 2.
0b01100 Synchronous External abort, on translation

table walk, level 1.
0b01101 Permission fault, level 1.
0b01110 Synchronous External abort, on translation

table walk, level 2.
0b01111 Permission fault, level 2.
0b10000 TLB conflict abort.
0b11001 Synchronous parity or ECC error on

memory access, not on translation table
walk.

When RAS is
not
implemented

0b11100 Synchronous parity or ECC error on
translation table walk, level 1.

When RAS is
not
implemented

0b11110 Synchronous parity or ECC error on
translation table walk, level 2.

When RAS is
not
implemented

This field resets to an UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
0b1 Address translation aborted.

This field resets to an architecturally UNKNOWN value.

When the instruction returned a 64-bit value to the PAR, PAR.F==0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ATTR RES0 PA

PA LPAEIMPLEMENTATION
DEFINED NS SH RES0 F

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This section describes the register value returned by the successful execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of the
PE.

On a successful conversion, the PAR can return a value that indicates the resulting attributes, rather than the values
that appear in the translation table descriptors. More precisely:

• Memory attribute fields are permitted to report the resulting attributes, as determined by any permitted
implementation choices and any applicable configuration bits, instead of reporting the values that appear in
the translation table descriptors. This applies to the ATTR and SH fields.

• See the NS bit description for constraints on the value it returns.

ATTR, bits [63:56]

Memory attributes for the returned output address. This field uses the same encoding as the Attr<n> fields in MAIR0
and MAIR1.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices
and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

This field resets to an architecturally UNKNOWN value.

PAR, Physical Address Register

Page 2812

Bits [55:40]

Reserved, RES0.

PA, bits [39:12]

Output address. The output address (OA) corresponding to the supplied input address. This field returns address
bits[39:12].

This field resets to an architecturally UNKNOWN value.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

LPAE Meaning
0b1 Long-descriptor translation table format used. This means the

PAR returned a 64-bit value.

This field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bit [10]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

NS, bit [9]

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, this bit reflects the Security state of the physical address space of the
translation. This means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if those
NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

SH, bits [8:7]

Shareability attribute, for the returned output address. Permitted values are:

SH Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

The value 0b01 is reserved.

Note

This field returns the value 0b10 for:

• Any type of Device memory.
• Normal memory with both Inner Non-cacheable and Outer Non-

cacheable attributes.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices
and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

This field resets to an architecturally UNKNOWN value.

PAR, Physical Address Register

Page 2813

Bits [6:1]

Reserved, RES0.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
0b0 Address translation completed successfully.

This field resets to an architecturally UNKNOWN value.

When the instruction returned a 64-bit value to the PAR, PAR.F==1:

6362616059585756 55 54 53 52 51 50 49 48 47464544 43 42 41 40 39 38373635343332
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED RES0
RES0 LPAERES0FSTAGES2WLKRES0 FST F

3130292827262524 23 22 21 20 19 18 17 16 15141312 11 10 9 8 7 6 5 4 3 2 1 0

This section describes the register value returned by a fault on the execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of the
PE.

IMPLEMENTATION DEFINED, bits [63:56]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [55:52]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [51:48]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Bits [47:12]

Reserved, RES0.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

LPAE Meaning
0b1 Long-descriptor translation table format used. This means the

PAR returned a 64-bit value.

This field resets to an architecturally UNKNOWN value.

Bit [10]

Reserved, RES0.

PAR, Physical Address Register

Page 2814

FSTAGE, bit [9]

Indicates the translation stage at which the translation aborted:

FSTAGE Meaning
0b0 Translation aborted because of a fault in the stage 1

translation.
0b1 Translation aborted because of a fault in the stage 2

translation.

This field resets to an architecturally UNKNOWN value.

S2WLK, bit [8]

If this bit is set to 1, it indicates the translation aborted because of a stage 2 fault during a stage 1 translation table
walk.

This field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

FST, bits [6:1]

Fault status field. Values are as in the DFSR.STATUS and IFSR.STATUS fields when using the Long-descriptor
translation table format.

PAR, Physical Address Register

Page 2815

FST Meaning Applies
when

0b000000 Address size fault in translation table base
register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not on

translation table walk.
0b010101 Synchronous External abort, on translation

table walk, level 1.
0b010110 Synchronous External abort, on translation

table walk, level 2.
0b010111 Synchronous External abort, on translation

table walk, level 3.
0b011000 Synchronous parity or ECC error on

memory access, not on translation table
walk.

When RAS is
not
implemented

0b011001 Asynchronous SError interrupt, from a
parity or ECC error on memory access.

When RAS is
not
implemented

0b011101 Synchronous parity or ECC error on
memory access on translation table walk,
level 1.

When RAS is
not
implemented

0b011110 Synchronous parity or ECC error on
memory access on translation table walk,
level 2.

When RAS is
not
implemented

0b011111 Synchronous parity or ECC error on
memory access on translation table walk,
level 3.

When RAS is
not
implemented

0b100001 Alignment fault.
0b110000 TLB conflict abort.

This field resets to an architecturally UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
0b1 Address translation aborted.

This field resets to an architecturally UNKNOWN value.

Accessing the PAR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0100 0b000

PAR, Physical Address Register

Page 2816

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return PAR_NS<31:0>;
else

return PAR<31:0>;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return PAR_NS<31:0>;

else
return PAR<31:0>;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return PAR_S<31:0>;
else

return PAR_NS<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

PAR_NS = ZeroExtend(R[t]);
else

PAR = ZeroExtend(R[t]);
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
PAR_NS = ZeroExtend(R[t]);

else
PAR = ZeroExtend(R[t]);

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

PAR_S = ZeroExtend(R[t]);
else

PAR_NS = ZeroExtend(R[t]);

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b0111 0b0000

PAR, Physical Address Register

Page 2817

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x04);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return PAR_NS;
else

return PAR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return PAR_NS;

else
return PAR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return PAR_S;
else

return PAR_NS;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b0111 0b0000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x04);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

PAR_NS = R[t2]:R[t];
else

PAR = R[t2]:R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
PAR_NS = R[t2]:R[t];

else
PAR = R[t2]:R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

PAR_S = R[t2]:R[t];
else

PAR_NS = R[t2]:R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PAR, Physical Address Register

Page 2818

PMCCFILTR, Performance Monitors Cycle Count Filter
Register

The PMCCFILTR characteristics are:

Purpose
Determines the modes in which the Cycle Counter, PMCCNTR, increments.

Configuration
AArch32 System register PMCCFILTR bits [31:0] are architecturally mapped to AArch64 System register
PMCCFILTR_EL0[31:0] .

AArch32 System register PMCCFILTR bits [31:0] are architecturally mapped to External register
PMCCFILTR_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level and PMUv3 is implemented. Otherwise,
direct accesses to PMCCFILTR are UNDEFINED.

Attributes
PMCCFILTR is a 32-bit register.

Field descriptions
The PMCCFILTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P U NSKNSUNSH RES0

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMCCFILTR.NSK bit.

P Meaning
0b0 Count cycles in EL1.
0b1 Do not count cycles in EL1.

On a Warm reset, this field resets to 0.

U, bit [30]

User filtering bit. Controls counting in EL0.

If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMCCFILTR.NSU bit.

U Meaning
0b0 Count cycles in EL0.
0b1 Do not count cycles in EL0.

On a Warm reset, this field resets to 0.

PMCCFILTR, Performance Monitors Cycle Count Filter Register

Page 2819

NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of PMCCFILTR.P, cycles in Non-secure EL1 are counted.

Otherwise, cycles in Non-secure EL1 are not counted.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of PMCCFILTR.U, cycles in Non-secure EL0 are counted.

Otherwise, cycles in Non-secure EL0 are not counted.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 (Hyp mode) filtering bit. Controls counting in EL2.

NSH Meaning
0b0 Do not count cycles in EL2.
0b1 Count cycles in EL2.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [26:0]

Reserved, RES0.

Accessing the PMCCFILTR
PMCCFILTR can also be accessed by using PMXEVTYPER with PMSELR.SEL set to 0b11111.

Accesses to this register use the following encodings:

PMCCFILTR, Performance Monitors Cycle Count Filter Register

Page 2820

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b1111 0b111

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCCFILTR_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCCFILTR;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCCFILTR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCCFILTR;

elsif PSTATE.EL == EL3 then
return PMCCFILTR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b1111 0b111

PMCCFILTR, Performance Monitors Cycle Count Filter Register

Page 2821

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCCFILTR_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMCCFILTR = R[t];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMCCFILTR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMCCFILTR = R[t];

elsif PSTATE.EL == EL3 then
PMCCFILTR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCCFILTR, Performance Monitors Cycle Count Filter Register

Page 2822

PMCCNTR, Performance Monitors Cycle Count
Register

The PMCCNTR characteristics are:

Purpose
Holds the value of the processor Cycle Counter, CCNT, that counts processor clock cycles. See 'Time as measured by
the Performance Monitors cycle counter' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile for more information.

PMCCFILTR determines the modes and states in which the PMCCNTR can increment.

Configuration
AArch32 System register PMCCNTR bits [63:0] are architecturally mapped to AArch64 System register
PMCCNTR_EL0[63:0] .

AArch32 System register PMCCNTR bits [63:0] are architecturally mapped to External register PMCCNTR_EL0[63:0] .

This register is present only when AArch32 is supported at any Exception level and PMUv3 is implemented. Otherwise,
direct accesses to PMCCNTR are UNDEFINED.

All counters are subject to any changes in clock frequency, including clock stopping caused by the WFI and WFE
instructions. This means that it is CONSTRAINED UNPREDICTABLE whether or not PMCCNTR continues to increment when
clocks are stopped by WFI and WFE instructions.

Attributes
PMCCNTR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, accesses
read and write bits [31:0] and do not modify bits [63:32].

Field descriptions
The PMCCNTR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CCNT
CCNT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCNT, bits [63:0]

Cycle count. Depending on the values of PMCR.{LC,D}, this field increments in one of the following ways:

• Every processor clock cycle.
• Every 64th processor clock cycle.

Writing 1 to PMCR.C sets this field to 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMCCNTR
Accesses to this register use the following encodings:

PMCCNTR, Performance Monitors Cycle Count Register

Page 2823

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1101 0b000

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.<CR,EN> == '00' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.<CR,EN> == '00' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCCNTR_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCCNTR<31:0>;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCCNTR<31:0>;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCCNTR<31:0>;
elsif PSTATE.EL == EL3 then

return PMCCNTR<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1101 0b000

PMCCNTR, Performance Monitors Cycle Count Register

Page 2824

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCCNTR_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMCCNTR = ZeroExtend(R[t]);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMCCNTR = ZeroExtend(R[t]);

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMCCNTR = ZeroExtend(R[t]);
elsif PSTATE.EL == EL3 then

PMCCNTR = ZeroExtend(R[t]);

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1001 0b0000

PMCCNTR, Performance Monitors Cycle Count Register

Page 2825

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.<CR,EN> == '00' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x04);

elsif ELUsingAArch32(EL1) && PMUSERENR.<CR,EN> == '00' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCCNTR_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x04);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x04);
else

return PMCCNTR;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x04);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x04);

else
return PMCCNTR;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x04);
else

return PMCCNTR;
elsif PSTATE.EL == EL3 then

return PMCCNTR;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1001 0b0000

PMCCNTR, Performance Monitors Cycle Count Register

Page 2826

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x04);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCCNTR_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x04);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x04);
else

PMCCNTR = R[t2]:R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x04);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x04);

else
PMCCNTR = R[t2]:R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x04);
else

PMCCNTR = R[t2]:R[t];
elsif PSTATE.EL == EL3 then

PMCCNTR = R[t2]:R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCCNTR, Performance Monitors Cycle Count Register

Page 2827

PMCEID0, Performance Monitors Common Event
Identification register 0

The PMCEID0 characteristics are:

Purpose
Defines which common architectural events and common microarchitectural events are implemented, or counted,
using PMU events in the range 0x0000 to 0x001F

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

Note

Arm recommends that, if a common event is never counted, the value of the
corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers see The section describing
'Event numbers and common events' in chapter D5 'The Performance Monitors Extension' of the Arm Architecture
Reference Manual, for Armv8-A architecture profile.

Configuration
AArch32 System register PMCEID0 bits [31:0] are architecturally mapped to AArch64 System register
PMCEID0_EL0[31:0] .

AArch32 System register PMCEID0 bits [31:0] are architecturally mapped to External register PMCEID0[31:0] .

This register is present only when AArch32 is supported at any Exception level and PMUv3 is implemented. Otherwise,
direct accesses to PMCEID0 are UNDEFINED.

Attributes
PMCEID0 is a 32-bit register.

Field descriptions
The PMCEID0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID31ID30ID29ID28ID27ID26ID25ID24ID23ID22ID21ID20ID19ID18ID17ID16ID15ID14ID13ID12ID11ID10ID9ID8ID7ID6ID5ID4ID3ID2ID1ID0

ID<n>, bit [n], for n = 0 to 31

ID[n] corresponds to common event n.

For each bit:

ID<n> Meaning
0b0 The common event is not implemented, or not counted.
0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional common event.

Note

PMCEID0, Performance Monitors Common Event Identification register 0

Page 2828

Such an event might be added retrospectively to an earlier version of the PMU
architecture, provided the event does not require any additional PMU features
and has an event number that can be represented in the PMCEID<n>
registers of that earlier version of the PMU architecture.

Accessing the PMCEID0
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b110

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCEID0;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCEID0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCEID0;

elsif PSTATE.EL == EL3 then
return PMCEID0;

PMCEID0, Performance Monitors Common Event Identification register 0

Page 2829

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID0, Performance Monitors Common Event Identification register 0

Page 2830

PMCEID1, Performance Monitors Common Event
Identification register 1

The PMCEID1 characteristics are:

Purpose
Defines which common architectural events and common microarchitectural events are implemented, or counted,
using PMU events in the range 0x0020 to 0x003F.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

Note

Arm recommends that, if a common event is never counted, the value of the
corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers see The section describing
'Event numbers and common events' in chapter D5 'The Performance Monitors Extension' of the Arm Architecture
Reference Manual, for Armv8-A architecture profile.

Configuration
AArch32 System register PMCEID1 bits [31:0] are architecturally mapped to AArch64 System register
PMCEID1_EL0[31:0] .

AArch32 System register PMCEID1 bits [31:0] are architecturally mapped to External register PMCEID1[31:0] .

This register is present only when AArch32 is supported at any Exception level and PMUv3 is implemented. Otherwise,
direct accesses to PMCEID1 are UNDEFINED.

Attributes
PMCEID1 is a 32-bit register.

Field descriptions
The PMCEID1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID31ID30ID29ID28ID27ID26ID25ID24ID23ID22ID21ID20ID19ID18ID17ID16ID15ID14ID13ID12ID11ID10ID9ID8ID7ID6ID5ID4ID3ID2ID1ID0

ID<n>, bit [n], for n = 0 to 31

ID[n] corresponds to common event (0x0020 + n).

For each bit:

ID<n> Meaning
0b0 The common event is not implemented, or not counted.
0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional common event.

Note

PMCEID1, Performance Monitors Common Event Identification register 1

Page 2831

Such an event might be added retrospectively to an earlier version of the PMU
architecture, provided the event does not require any additional PMU features
and has an event number that can be represented in the PMCEID<n>
registers of that earlier version of the PMU architecture.

Accessing the PMCEID1
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b111

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCEID1;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCEID1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCEID1;

elsif PSTATE.EL == EL3 then
return PMCEID1;

PMCEID1, Performance Monitors Common Event Identification register 1

Page 2832

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID1, Performance Monitors Common Event Identification register 1

Page 2833

PMCEID2, Performance Monitors Common Event
Identification register 2

The PMCEID2 characteristics are:

Purpose
Defines which common architectural events and common microarchitectural events are implemented, or counted,
using PMU events in the range 0x4000 to 0x401F.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

Note

Arm recommends that, if a common event is never counted, the value of the
corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers see The section describing
'Event numbers and common events' in chapter D5 'The Performance Monitors Extension' of the Arm Architecture
Reference Manual, for Armv8-A architecture profile.

Configuration
AArch32 System register PMCEID2 bits [31:0] are architecturally mapped to AArch64 System register
PMCEID0_EL0[63:32] .

AArch32 System register PMCEID2 bits [31:0] are architecturally mapped to External register PMCEID2[63:32] .

This register is present only when AArch32 is supported at any Exception level and ARMv8.1-PMU is implemented.
Otherwise, direct accesses to PMCEID2 are UNDEFINED.

Attributes
PMCEID2 is a 32-bit register.

Field descriptions
The PMCEID2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDhi<n>, bit [n], for n = 0 to 31

IDhi<n>, bit [n], for n = 0 to 31

IDhi[n] corresponds to common event (0x4000 + n).

For each bit:

IDhi<n> Meaning
0b0 The common event is not implemented, or not counted.
0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional common event.

Note

PMCEID2, Performance Monitors Common Event Identification register 2

Page 2834

Such an event might be added retrospectively to an earlier version of the PMU
architecture, provided the event does not require any additional PMU features
and has an event number that can be represented in the PMCEID<n>
registers of that earlier version of the PMU architecture.

Accessing the PMCEID2
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1110 0b100

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCEID2;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCEID2;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCEID2;

elsif PSTATE.EL == EL3 then
return PMCEID2;

PMCEID2, Performance Monitors Common Event Identification register 2

Page 2835

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID2, Performance Monitors Common Event Identification register 2

Page 2836

PMCEID3, Performance Monitors Common Event
Identification register 3

The PMCEID3 characteristics are:

Purpose
Defines which common architectural events and common microarchitectural events are implemented, or counted,
using PMU events in the range 0x4020 to 0x403F.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

Note

Arm recommends that, if a common event is never counted, the value of the
corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers see The section describing
'Event numbers and common events' in chapter D5 'The Performance Monitors Extension' of the Arm Architecture
Reference Manual, for Armv8-A architecture profile.

Configuration
AArch32 System register PMCEID3 bits [31:0] are architecturally mapped to AArch64 System register
PMCEID1_EL0[63:32] .

AArch32 System register PMCEID3 bits [31:0] are architecturally mapped to External register PMCEID3[63:32] .

This register is present only when AArch32 is supported at any Exception level and ARMv8.1-PMU is implemented.
Otherwise, direct accesses to PMCEID3 are UNDEFINED.

Attributes
PMCEID3 is a 32-bit register.

Field descriptions
The PMCEID3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDhi<n>, bit [n], for n = 0 to 31

IDhi<n>, bit [n], for n = 0 to 31

IDhi[n] corresponds to common event (0x4020 + n).

For each bit:

IDhi<n> Meaning
0b0 The common event is not implemented, or not counted.
0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional common event.

Note

PMCEID3, Performance Monitors Common Event Identification register 3

Page 2837

Such an event might be added retrospectively to an earlier version of the PMU
architecture, provided the event does not require any additional PMU features
and has an event number that can be represented in the PMCEID<n>
registers of that earlier version of the PMU architecture.

Accessing the PMCEID3
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1110 0b101

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCEID3;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCEID3;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCEID3;

elsif PSTATE.EL == EL3 then
return PMCEID3;

PMCEID3, Performance Monitors Common Event Identification register 3

Page 2838

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID3, Performance Monitors Common Event Identification register 3

Page 2839

PMCNTENCLR, Performance Monitors Count Enable
Clear register

The PMCNTENCLR characteristics are:

Purpose
Disables the Cycle Count Register, PMCCNTR, and any implemented event counters PMEVCNTR<n>. Reading this
register shows which counters are enabled.

PMCNTENCLR is used in conjunction with the PMCNTENSET register.

Configuration
AArch32 System register PMCNTENCLR bits [31:0] are architecturally mapped to AArch64 System register
PMCNTENCLR_EL0[31:0] .

AArch32 System register PMCNTENCLR bits [31:0] are architecturally mapped to External register
PMCNTENCLR_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level and PMUv3 is implemented. Otherwise,
direct accesses to PMCNTENCLR are UNDEFINED.

Attributes
PMCNTENCLR is a 32-bit register.

Field descriptions
The PMCNTENCLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C P<n>, bit [n]

C, bit [31]

PMCCNTR disable bit. Disables the cycle counter register. Possible values are:

C Meaning
0b0 When read, means the cycle counter is disabled. When written, has

no effect.
0b1 When read, means the cycle counter is enabled. When written,

disables the cycle counter.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter disable bit for PMEVCNTR<n>.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state,
in EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using AArch64, or in HDCR.HPMN if EL2 is using
AArch32. Otherwise, N is the value in PMCR.N.

PMCNTENCLR, Performance Monitors Count Enable Clear register

Page 2840

P<n> Meaning
0b0 When read, means that PMEVCNTR<n> is disabled. When

written, has no effect.
0b1 When read, means that PMEVCNTR<n> is enabled. When

written, disables PMEVCNTR<n>.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMCNTENCLR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b010

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCNTEN == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCNTENCLR;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCNTENCLR;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCNTENCLR;
elsif PSTATE.EL == EL3 then

return PMCNTENCLR;

PMCNTENCLR, Performance Monitors Count Enable Clear register

Page 2841

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b010

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCNTEN == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMCNTENCLR = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMCNTENCLR = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMCNTENCLR = R[t];
elsif PSTATE.EL == EL3 then

PMCNTENCLR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCNTENCLR, Performance Monitors Count Enable Clear register

Page 2842

PMCNTENSET, Performance Monitors Count Enable Set
register

The PMCNTENSET characteristics are:

Purpose
Enables the Cycle Count Register, PMCCNTR, and any implemented event counters PMEVCNTR<n>. Reading this
register shows which counters are enabled.

PMCNTENSET is used in conjunction with the PMCNTENCLR register.

Configuration
AArch32 System register PMCNTENSET bits [31:0] are architecturally mapped to AArch64 System register
PMCNTENSET_EL0[31:0] .

AArch32 System register PMCNTENSET bits [31:0] are architecturally mapped to External register
PMCNTENSET_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level and PMUv3 is implemented. Otherwise,
direct accesses to PMCNTENSET are UNDEFINED.

Attributes
PMCNTENSET is a 32-bit register.

Field descriptions
The PMCNTENSET bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C P<n>, bit [n]

C, bit [31]

PMCCNTR enable bit. Enables the cycle counter register. Possible values are:

C Meaning
0b0 When read, means the cycle counter is disabled. When written, has

no effect.
0b1 When read, means the cycle counter is enabled. When written,

enables the cycle counter.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter enable bit for PMEVCNTR<n>.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state,
in EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using AArch64, or in HDCR.HPMN if EL2 is using
AArch32. Otherwise, N is the value in PMCR.N.

PMCNTENSET, Performance Monitors Count Enable Set register

Page 2843

P<n> Meaning
0b0 When read, means that PMEVCNTR<n> is disabled. When

written, has no effect.
0b1 When read, means that PMEVCNTR<n> event counter is

enabled. When written, enables PMEVCNTR<n>.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMCNTENSET
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b001

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCNTEN == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCNTENSET;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCNTENSET;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCNTENSET;
elsif PSTATE.EL == EL3 then

return PMCNTENSET;

PMCNTENSET, Performance Monitors Count Enable Set register

Page 2844

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b001

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCNTEN == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMCNTENSET = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMCNTENSET = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMCNTENSET = R[t];
elsif PSTATE.EL == EL3 then

PMCNTENSET = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCNTENSET, Performance Monitors Count Enable Set register

Page 2845

PMCR, Performance Monitors Control Register
The PMCR characteristics are:

Purpose
Provides details of the Performance Monitors implementation, including the number of counters implemented, and
configures and controls the counters.

Configuration
AArch32 System register PMCR bits [31:0] are architecturally mapped to AArch64 System register PMCR_EL0[31:0] .

AArch32 System register PMCR bits [7:0] are architecturally mapped to External register PMCR_EL0[7:0] .

This register is present only when AArch32 is supported at any Exception level and PMUv3 is implemented. Otherwise,
direct accesses to PMCR are UNDEFINED.

Attributes
PMCR is a 32-bit register.

Field descriptions
The PMCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMP IDCODE N RES0 LP LC DP X D C P E

IMP, bits [31:24]

Implementer code. This field has an IMPLEMENTATION DEFINED value.

If this field is zero, then PMCR.IDCODE is RES0 and software must use MIDR to identify the PE.

Otherwise this field and PMCR.IDCODE identify the PMU implementation to software. The implementer codes are
allocated by Arm. A non-zero value has the same interpretation as MIDR.Implementer.

Access to this field is RO.

IDCODE, bits [23:16]

When PMCR.IMP != 0x00:

Identification code. This field has an IMPLEMENTATION DEFINED value.

Each implementer must maintain a list of identification codes that are specific to the implementer. A specific
implementation is identified by the combination of the implementer code and the identification code.

Access to this field is RO.

Otherwise:

Reserved, RES0.

PMCR, Performance Monitors Control Register

Page 2846

N, bits [15:11]

Indicates the number of event counters implemented. This value is in the range of 0b00000-0b111111. If the value is
0b00000 then only PMCCNTR is implemented. If the value is 0b111111 PMCCNTR and 31 event counters are
implemented.

In an implementation that includes EL2:

• If EL2 is using AArch32, reads of this field from Non-secure EL1 and Non-secure EL0 return the value of
HDCR.HPMN.

• If EL2 is using AArch64 and enabled in the current Security state, reads of this field from EL1 and EL0
return the value of MDCR_EL2.HPMN.

Access to this field is RO.

Bits [10:8]

Reserved, RES0.

LP, bit [7]

When ARMv8.5-PMU is implemented:

Long event counter enable. Determines when unsigned overflow is recorded by a counter overflow bit.

LP Meaning
0b0 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>[31:0].
0b1 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>[63:0].

If the highest implemented Exception level is using AArch32, it is IMPLEMENTATION DEFINED whether this bit is RW or
RAZ/WI.

If EL2 is implemented and HDCR.HPMN or MDCR_EL2.HPMN is less than PMCR.N, this bit does not affect the
operation of event counters in the range [HDCR.HPMN..(PMCR.N-1)] or [MDCR_EL2.HPMN..(PMCR.N-1)].

PMEVCNTR<n>[63:32] cannot be accessed directly in AArch32 state.

Note

The effect of HDCR.HPMN or MDCR_EL2.HPMN on the operation of this bit
always applies if EL2 is implemented, at all Exception levels including EL2
and EL3, and regardless of whether EL2 is enabled in the current Security
state. For more information, see the description of HDCR.HPMN or
MDCR_EL2.HPMN.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

LC, bit [6]

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter overflow bit.

LC Meaning
0b0 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR[31:0].
0b1 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR[63:0].

PMCR, Performance Monitors Control Register

Page 2847

Arm deprecates use of PMCR.LC = 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DP, bit [5]

When EL3 is implemented or (ARMv8.1-PMU is implemented and EL2 is implemented):

Disable cycle counter when event counting is prohibited.

DP Meaning
0b0 Cycle counting by PMCCNTR is not affected by this bit.
0b1 When event counting for counters in the range

[0..(HDCR.HPMN-1)] or [0..(MDCR_EL2.HPMN-1)] is prohibited,
cycle counting by PMCCNTR is disabled.

For more information about the interaction between the Performance Monitors and EL3, see 'Effect of EL3 and EL2' in
the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

X, bit [4]

When the implementation includes an PMU event export bus:

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

X Meaning
0b0 Do not export events.
0b1 Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus to another device,
for example to an OPTIONAL PE trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or signaling to a cross-
trigger interface (CTI) that can be implemented as signals exported from the PE.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RAZ/WI.

D, bit [3]

Clock divider. The possible values of this bit are:

D Meaning
0b0 When enabled, PMCCNTR counts every clock cycle.
0b1 When enabled, PMCCNTR counts once every 64 clock cycles.

If PMCR.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR.D = 1.

On a Warm reset, this field resets to 0.

PMCR, Performance Monitors Control Register

Page 2848

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

C Meaning
0b0 No action.
0b1 Reset PMCCNTR to zero.

This bit is always RAZ.

Note

Resetting PMCCNTR does not change the cycle counter overflow bit.

The value of PMCR_EL0.LC is ignored, and bits [63:0] of all affected event
counters are reset.

Access to this field is WO.

P, bit [1]

Event counter reset. The effects of writing to this bit are:

P Meaning
0b0 No action.
0b1 Reset all event counters accessible in the current Exception level,

not including PMCCNTR, to zero.

This bit is always RAZ.

In EL0 and EL1:

• If EL2 is implemented and enabled in the current Security state, and HDCR.HPMN or MDCR_EL2.HPMN is
less than PMCR_EL0.N, a write of 1 to this bit does not reset event counters in the range
[HDCR.HPMN..(PMCR.N-1)] or [MDCR_EL2.HPMN..(PMCR.N-1)].

• If EL2 is not implemented, EL2 is disabled in the current Security state, or HDCR.HPMN or
MDCR_EL2.HPMN is equal to PMCR_EL0.N, a write of 1 to this bit resets all the event counters.

In EL2 and EL3, a write of 1 to this bit resets all the event counters.

Note

Resetting the event counters does not change the event counter overflow bits.

If ARMv8.5-PMU is implemented, the values of HDCR.HLP and PMCR.LP are
ignored and bits [63:0] of all affected event counters are reset.

Access to this field is WO.

E, bit [0]

Enable.

E Meaning
0b0 All event counters in the range [0..(PMN-1)] and PMCCNTR, are

disabled.
0b1 All event counters in the range [0..(PMN-1)] and PMCCNTR, are

enabled by PMCNTENSET.

If EL2 is implemented then:

• If EL2 is using AArch32, PMN is HDCR.HPMN.
• If EL2 is using AArch64, PMN is MDCR_EL2.HPMN.
• If PMN is less than PMCR.N, this bit does not affect the operation of event counters in the range

[PMN..(PMCR.N-1)].

PMCR, Performance Monitors Control Register

Page 2849

If EL2 is not implemented, PMN is PMCR.N.

Note

The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this bit
always applies if EL2 is implemented, at all Exception levels including EL2
and EL3, regardless of whether EL2 is enabled in the current Security state.
For more information, see the description of MDCR_EL2.HPMN or
HDCR.HPMN.

On a Warm reset, this field resets to 0.

Accessing the PMCR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b000

PMCR, Performance Monitors Control Register

Page 2850

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCR;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCR;

elsif PSTATE.EL == EL3 then
return PMCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b000

PMCR, Performance Monitors Control Register

Page 2851

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCR_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMCR = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMCR = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMCR = R[t];
elsif PSTATE.EL == EL3 then

PMCR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCR, Performance Monitors Control Register

Page 2852

PMEVCNTR<n>, Performance Monitors Event Count
Registers, n = 0 - 30

The PMEVCNTR<n> characteristics are:

Purpose
Holds event counter n, which counts events, where n is 0 to 30.

Configuration
AArch32 System register PMEVCNTR<n> bits [31:0] are architecturally mapped to AArch64 System register
PMEVCNTR<n>_EL0[31:0] .

AArch32 System register PMEVCNTR<n> bits [31:0] are architecturally mapped to External register
PMEVCNTR<n>_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level and PMUv3 is implemented. Otherwise,
direct accesses to PMEVCNTR<n> are UNDEFINED.

Attributes
PMEVCNTR<n> is a 32-bit register.

Field descriptions
The PMEVCNTR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Event counter n

Bits [31:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number from 0 to 30.

If ARMv8.5-PMU is implemented, the event counter is 64 bits and only the least-significant part of the event counter is
accessible in AArch32 state:

• Reads from PMEVCNTR<n> return bits [31:0] of the counter.

• Writes to PMEVCNTR<n> update bits [31:0] and leave bits [63:32] unchanged.

• There is no means to access bits [63:32] directly from AArch32 state.

• If the implementation does not support AArch64 at any Exception level, bits [63:32] are not required to be
implemented.

If ARMv8.5-PMU is not implemented, the event counter is 32 bits.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMEVCNTR<n>
PMEVCNTR<n> can also be accessed by using PMXEVCNTR with PMSELR.SEL set to the value of <n>.

If ARMv8.6-FGT is implemented and <n> is greater than or equal to the number of accessible counters, then the
behavior of permitted reads and writes of PMEVCNTR<n> is as follows:

• If <n> is an unimplemented event counter, the access is UNDEFINED.

PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30

Page 2853

• Otherwise, the access is trapped to EL2.

If ARMv8.6-FGT is not implemented and <n> is greater than or equal to the number of accessible counters, then reads
and writes of PMEVCNTR<n> are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

If <n> is greater than or equal to the number of accessible counters, then reads and writes of PMEVCNTR<n> are
CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP
• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of

implemented counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR.{ER,EN} or
PMUSERENR_EL0.{ER,EN}.

If EL2 is implemented and enabled in the current Security state, at EL0 and
EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of
accessible counters.

• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of
accessible counters.

Otherwise, the number of accessible counters is the number of implemented
counters. See HDCR.HPMN and MDCR_EL2.HPMN for more details.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b10:n[4:3] n[2:0]

PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30

Page 2854

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.<ER,EN> == '00' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.<ER,EN> == '00' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];

elsif PSTATE.EL == EL3 then
return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b10:n[4:3] n[2:0]

PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30

Page 2855

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

elsif PSTATE.EL == EL3 then
PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30

Page 2856

PMEVTYPER<n>, Performance Monitors Event Type
Registers, n = 0 - 30

The PMEVTYPER<n> characteristics are:

Purpose
Configures event counter n, where n is 0 to 30.

Configuration
AArch32 System register PMEVTYPER<n> bits [31:0] are architecturally mapped to AArch64 System register
PMEVTYPER<n>_EL0[31:0] .

AArch32 System register PMEVTYPER<n> bits [31:0] are architecturally mapped to External register
PMEVTYPER<n>_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level and PMUv3 is implemented. Otherwise,
direct accesses to PMEVTYPER<n> are UNDEFINED.

Attributes
PMEVTYPER<n> is a 32-bit register.

Field descriptions
The PMEVTYPER<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P U NSKNSUNSHRES0MT RES0 evtCount[15:10] evtCount[9:0]

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMEVTYPER<n>.NSK bit.

P Meaning
0b0 Count events in EL1.
0b1 Do not count events in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering bit. Controls counting in EL0.

If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMEVTYPER<n>.NSU bit.

U Meaning
0b0 Count events in EL0.
0b1 Do not count events in EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 2857

NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of PMEVTYPER<n>.P, events in Non-secure EL1 are counted.

Otherwise, events in Non-secure EL1 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of PMEVTYPER<n>.U, events in Non-secure EL0 are counted.

Otherwise, events in Non-secure EL0 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 (Hyp mode) filtering bit. Controls counting in EL2.

NSH Meaning
0b0 Do not count events in EL2.
0b1 Count events in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [26]

Reserved, RES0.

MT, bit [25]

When (ARMv8.6-MTPMU is implemented and enabled) or an IMPLEMENTATION DEFINED multi-threaded PMU Extension is
implemented:

Multithreading.

MT Meaning
0b0 Count events only on controlling PE.
0b1 Count events from any PE with the same affinity at level 1 and

above as this PE.

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 2858

Note
• When the lowest level of affinity consists of logical PEs that are

implemented using a multi-threading type approach, an implementation
is described as multi-threaded. That is, the performance of PEs at the
lowest affinity level is highly interdependent.

• Events from a different thread of a multithreaded implementation are
not Attributable to the thread counting the event.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [24:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]

When ARMv8.1-PMU is implemented:

Extension to evtCount[9:0]. See evtCount[9:0] for more details.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>.

Software must program this field with an event that is supported by the PE being programmed.

The ranges of event numbers allocated to each type of event are shown in Allocation of the PMU event number space.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior depends on the value
written:

• For the range 0x0000 to 0x003F, no events are counted, and the value returned by a direct or external read of
the evtCount field is the value written to the field.

• If 16-bit evtCount is implemented, for the range 0x4000 to 0x403F, no events are counted, and the value
returned by a direct or external read of the evtCount field is the value written to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted, and the value returned
by a direct or external read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

Arm recommends that the behavior across a family of implementations is defined such that if a given implementation
does not include an event from a set of common IMPLEMENTATION DEFINED events, then no event is counted and the
value read back on evtCount is the value written.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMEVTYPER<n>
PMEVTYPER<n> can also be accessed by using PMXEVTYPER with PMSELR.SEL set to n.

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 2859

If ARMv8.6-FGT is implemented and <n> is greater than or equal to the number of accessible counters, then the
behavior of permitted reads and writes of PMEVTYPER<n> is as follows:

• If <n> is an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

If ARMv8.6-FGT is not implemented and <n> is greater than or equal to the number of accessible counters, then reads
and writes of PMEVTYPER<n> are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

If <n> is greater or equal to the number of accessible counters, then reads and writes of PMEVTYPER<n> are
CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of

implemented counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR.EN or
PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, at EL0 and
EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of
accessible counters.

• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of
accessible counters.

Otherwise, the number of accessible counters is the number of implemented
counters. See HDCR.HPMN and MDCR_EL2.HPMN for more details.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b11:n[4:3] n[2:0]

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 2860

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];

elsif PSTATE.EL == EL3 then
return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b11:n[4:3] n[2:0]

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 2861

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

elsif PSTATE.EL == EL3 then
PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 2862

PMINTENCLR, Performance Monitors Interrupt Enable
Clear register

The PMINTENCLR characteristics are:

Purpose
Disables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR, and the event
counters PMEVCNTR<n>. Reading the register shows which overflow interrupt requests are enabled.

PMINTENCLR is used in conjunction with the PMINTENSET register.

Configuration
AArch32 System register PMINTENCLR bits [31:0] are architecturally mapped to AArch64 System register
PMINTENCLR_EL1[31:0] .

AArch32 System register PMINTENCLR bits [31:0] are architecturally mapped to External register
PMINTENCLR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level and PMUv3 is implemented. Otherwise,
direct accesses to PMINTENCLR are UNDEFINED.

Attributes
PMINTENCLR is a 32-bit register.

Field descriptions
The PMINTENCLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C P<n>, bit [n]

C, bit [31]

PMCCNTR overflow interrupt request disable bit. Possible values are:

C Meaning
0b0 When read, means the cycle counter overflow interrupt request is

disabled. When written, has no effect.
0b1 When read, means the cycle counter overflow interrupt request is

enabled. When written, disables the cycle count overflow interrupt
request.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter overflow interrupt request disable bit for PMEVCNTR<n>.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state,
in EL1, N is the value in MDCR_EL2.HPMN if EL2 is using AArch64, or in HDCR.HPMN if EL2 is using AArch32.
Otherwise, N is the value in PMCR.N.

PMINTENCLR, Performance Monitors Interrupt Enable Clear register

Page 2863

P<n> Meaning
0b0 When read, means that the PMEVCNTR<n> event counter

interrupt request is disabled. When written, has no effect.
0b1 When read, means that the PMEVCNTR<n> event counter

interrupt request is enabled. When written, disables the
PMEVCNTR<n> interrupt request.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMINTENCLR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1110 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMINTENCLR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMINTENCLR;

elsif PSTATE.EL == EL3 then
return PMINTENCLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1110 0b010

PMINTENCLR, Performance Monitors Interrupt Enable Clear register

Page 2864

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMINTENCLR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMINTENCLR = R[t];

elsif PSTATE.EL == EL3 then
PMINTENCLR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMINTENCLR, Performance Monitors Interrupt Enable Clear register

Page 2865

PMINTENSET, Performance Monitors Interrupt Enable
Set register

The PMINTENSET characteristics are:

Purpose
Enables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR, and the event
counters PMEVCNTR<n>. Reading the register shows which overflow interrupt requests are enabled.

PMINTENSET is used in conjunction with the PMINTENCLR register.

Configuration
AArch32 System register PMINTENSET bits [31:0] are architecturally mapped to AArch64 System register
PMINTENSET_EL1[31:0] .

AArch32 System register PMINTENSET bits [31:0] are architecturally mapped to External register
PMINTENSET_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level and PMUv3 is implemented. Otherwise,
direct accesses to PMINTENSET are UNDEFINED.

Attributes
PMINTENSET is a 32-bit register.

Field descriptions
The PMINTENSET bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C P<n>, bit [n]

C, bit [31]

PMCCNTR overflow interrupt request enable bit. Possible values are:

C Meaning
0b0 When read, means the cycle counter overflow interrupt request is

disabled. When written, has no effect.
0b1 When read, means the cycle counter overflow interrupt request is

enabled. When written, enables the cycle count overflow interrupt
request.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter overflow interrupt request enable bit for PMEVCNTR<n>.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state,
in EL1, N is the value in MDCR_EL2.HPMN if EL2 is using AArch64, or in HDCR.HPMN if EL2 is using AArch32.
Otherwise, N is the value in PMCR.N.

PMINTENSET, Performance Monitors Interrupt Enable Set register

Page 2866

P<n> Meaning
0b0 When read, means that the PMEVCNTR<n> event counter

interrupt request is disabled. When written, has no effect.
0b1 When read, means that the PMEVCNTR<n> event counter

interrupt request is enabled. When written, enables the
PMEVCNTR<n> interrupt request.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMINTENSET
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1110 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMINTENSET;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMINTENSET;

elsif PSTATE.EL == EL3 then
return PMINTENSET;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1110 0b001

PMINTENSET, Performance Monitors Interrupt Enable Set register

Page 2867

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMINTENSET = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMINTENSET = R[t];

elsif PSTATE.EL == EL3 then
PMINTENSET = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMINTENSET, Performance Monitors Interrupt Enable Set register

Page 2868

PMMIR, Performance Monitors Machine Identification
Register

The PMMIR characteristics are:

Purpose
Describes Performance Monitors parameters specific to the implementation to software.

Configuration
This register is present only when AArch32 is supported at any Exception level and ARMv8.4-PMU is implemented.
Otherwise, direct accesses to PMMIR are UNDEFINED.

Attributes
PMMIR is a 32-bit register.

Field descriptions
The PMMIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SLOTS

Bits [31:8]

Reserved, RES0.

SLOTS, bits [7:0]

Operation width. The largest value by which the STALL_SLOT event might increment by in a single cycle. If the
STALL_SLOT event is not implemented, this field might read as zero.

Accessing the PMMIR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1110 0b110

PMMIR, Performance Monitors Machine Identification Register

Page 2869

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMMIR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMMIR;

elsif PSTATE.EL == EL3 then
return PMMIR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMMIR, Performance Monitors Machine Identification Register

Page 2870

PMOVSR, Performance Monitors Overflow Flag Status
Register

The PMOVSR characteristics are:

Purpose
Contains the state of the overflow bit for the Cycle Count Register, PMCCNTR, and each of the implemented event
counters PMEVCNTR<n>. Writing to this register clears these bits.

Configuration
AArch32 System register PMOVSR bits [31:0] are architecturally mapped to AArch64 System register
PMOVSCLR_EL0[31:0] .

AArch32 System register PMOVSR bits [31:0] are architecturally mapped to External register PMOVSCLR_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level and PMUv3 is implemented. Otherwise,
direct accesses to PMOVSR are UNDEFINED.

Attributes
PMOVSR is a 32-bit register.

Field descriptions
The PMOVSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C P<n>, bit [n]

C, bit [31]

Cycle counter overflow clear bit. Possible values are:

C Meaning
0b0 When read, means the cycle counter has not overflowed since this

bit was last cleared. When written, has no effect.
0b1 When read, means the cycle counter has overflowed since this bit

was last cleared. When written, clears the cycle counter overflow
bit to 0.

PMCR.LC controls whether an overflow is detected from unsigned overflow of PMCCNTR[31:0] or unsigned overflow
of PMCCNTR[63:0].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter overflow clear bit for PMEVCNTR<n>.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state,
in EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using AArch64, or in HDCR.HPMN if EL2 is using
AArch32. Otherwise, N is the value in PMCR.N.

PMOVSR, Performance Monitors Overflow Flag Status Register

Page 2871

P<n> Meaning
0b0 When read, means that PMEVCNTR<n> has not overflowed

since this bit was last cleared. When written, has no effect.
0b1 When read, means that PMEVCNTR<n> has overflowed since

this bit was last cleared. When written, clears the
PMEVCNTR<n> overflow bit to 0.

If ARMv8.5-PMU is implemented, MDCR_EL2.HLP, HDCR.HLP, and PMCR.LP control whether an overflow is detected
from unsigned overflow of PMEVCNTR<n>[31:0] or unsigned overflow of PMEVCNTR<n>[63:0].
PMEVCNTR<n>[63:32] cannot be accessed directly in AArch32 state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMOVSR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b011

PMOVSR, Performance Monitors Overflow Flag Status Register

Page 2872

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMOVS == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMOVSR;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMOVSR;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMOVSR;
elsif PSTATE.EL == EL3 then

return PMOVSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b011

PMOVSR, Performance Monitors Overflow Flag Status Register

Page 2873

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMOVS == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMOVSR = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMOVSR = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMOVSR = R[t];
elsif PSTATE.EL == EL3 then

PMOVSR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMOVSR, Performance Monitors Overflow Flag Status Register

Page 2874

PMOVSSET, Performance Monitors Overflow Flag
Status Set register

The PMOVSSET characteristics are:

Purpose
Sets the state of the overflow bit for the Cycle Count Register, PMCCNTR, and each of the implemented event
counters PMEVCNTR<n>.

Configuration
AArch32 System register PMOVSSET bits [31:0] are architecturally mapped to AArch64 System register
PMOVSSET_EL0[31:0] .

AArch32 System register PMOVSSET bits [31:0] are architecturally mapped to External register
PMOVSSET_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level and PMUv3 is implemented. Otherwise,
direct accesses to PMOVSSET are UNDEFINED.

Attributes
PMOVSSET is a 32-bit register.

Field descriptions
The PMOVSSET bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C P<n>, bit [n]

C, bit [31]

Cycle counter overflow set bit.

C Meaning
0b0 When read, means the cycle counter has not overflowed since this

bit was last cleared. When written, has no effect.
0b1 When read, means the cycle counter has overflowed since this bit

was last cleared. When written, sets the cycle counter overflow bit
to 1.

PMCR.LC controls whether an overflow is detected from unsigned overflow of PMCCNTR[31:0] or unsigned overflow
of PMCCNTR[63:0].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter overflow set bit for PMEVCNTR<n>.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state,
in EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using AArch64, or in HDCR.HPMN if EL2 is using
AArch32. Otherwise, N is the value in PMCR.N.

PMOVSSET, Performance Monitors Overflow Flag Status Set register

Page 2875

P<n> Meaning
0b0 When read, means that PMEVCNTR<n> has not overflowed

since this bit was last cleared. When written, has no effect.
0b1 When read, means that PMEVCNTR<n> has overflowed since

this bit was last . When written, sets the PMEVCNTR<n>
overflow bit to 1.

If ARMv8.5-PMU is implemented, MDCR_EL2.HLP, HDCR.HLP, and PMCR.LP control whether an overflow is detected
from unsigned overflow of PMEVCNTR<n>[31:0] or unsigned overflow of PMEVCNTR<n>[63:0].
PMEVCNTR<n>[63:32] cannot be accessed directly in AArch32 state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMOVSSET
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1110 0b011

PMOVSSET, Performance Monitors Overflow Flag Status Set register

Page 2876

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMOVS == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMOVSSET;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMOVSSET;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMOVSSET;
elsif PSTATE.EL == EL3 then

return PMOVSSET;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1110 0b011

PMOVSSET, Performance Monitors Overflow Flag Status Set register

Page 2877

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMOVS == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMOVSSET = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMOVSSET = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMOVSSET = R[t];
elsif PSTATE.EL == EL3 then

PMOVSSET = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMOVSSET, Performance Monitors Overflow Flag Status Set register

Page 2878

PMSELR, Performance Monitors Event Counter
Selection Register

The PMSELR characteristics are:

Purpose
Selects the current event counter PMEVCNTR<n> or the cycle counter, CCNT.

PMSELR is used in conjunction with PMXEVTYPER to determine the event that increments a selected event counter,
and the modes and states in which the selected counter increments.

It is also used in conjunction with PMXEVCNTR, to determine the value of a selected event counter.

Configuration
AArch32 System register PMSELR bits [31:0] are architecturally mapped to AArch64 System register
PMSELR_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level and PMUv3 is implemented. Otherwise,
direct accesses to PMSELR are UNDEFINED.

Attributes
PMSELR is a 32-bit register.

Field descriptions
The PMSELR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SEL

Bits [31:5]

Reserved, RES0.

SEL, bits [4:0]

Selects event counter, PMEVCNTR<n>, where n is the value held in this field. This value identifies which event
counter is accessed when a subsequent access to PMXEVTYPER or PMXEVCNTR occurs.

This field can take any value from 0 (0b00000) to (PMCR.N)-1, or 31 (0b11111).

When PMSELR.SEL is 0b11111, it selects the cycle counter and:

• A read of the PMXEVTYPER returns the value of PMCCFILTR.
• A write of the PMXEVTYPER writes to PMCCFILTR.
• A read or write of PMXEVCNTR has CONSTRAINED UNPREDICTABLE effects. See PMXEVCNTR for more details.

For details of the results of accesses to event counters, see PMXEVTYPER and PMXEVCNTR.

For information about the number of counters accessible at each Exception level, see HDCR.HPMN and
MDCR_EL2.HPMN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMSELR, Performance Monitors Event Counter Selection Register

Page 2879

Accessing the PMSELR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b101

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.<ER,EN> == '00' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.<ER,EN> == '00' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSELR_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMSELR;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMSELR;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMSELR;
elsif PSTATE.EL == EL3 then

return PMSELR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b101

PMSELR, Performance Monitors Event Counter Selection Register

Page 2880

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.<ER,EN> == '00' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.<ER,EN> == '00' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSELR_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMSELR = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMSELR = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMSELR = R[t];
elsif PSTATE.EL == EL3 then

PMSELR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMSELR, Performance Monitors Event Counter Selection Register

Page 2881

PMSWINC, Performance Monitors Software Increment
register

The PMSWINC characteristics are:

Purpose
Increments a counter that is configured to count the Software increment event, event 0x00. For more information, see
'SW_INCR' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section D5.

Configuration
AArch32 System register PMSWINC bits [31:0] are architecturally mapped to AArch64 System register
PMSWINC_EL0[31:0] .

AArch32 System register PMSWINC bits [31:0] are architecturally mapped to External register PMSWINC_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level and PMUv3 is implemented. Otherwise,
direct accesses to PMSWINC are UNDEFINED.

Attributes
PMSWINC is a 32-bit register.

Field descriptions
The PMSWINC bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 P<n>, bit [n]

Bit [31]

Reserved, RES0.

P<n>, bit [n], for n = 0 to 30

Event counter software increment bit for PMEVCNTR<n>.

If N is less than 31, then bits [30:N] are WI. When EL2 is implemented and enabled in the current Security state, in
EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using AArch64, or in HDCR.HPMN if EL2 is using AArch32.
Otherwise, N is the value in PMCR.N.

P<n> Meaning
0b0 No action. The write to this bit is ignored.
0b1 If PMEVCNTR<n> is enabled and configured to count the

software increment event, increments PMEVCNTR<n> by 1. If
PMEVCNTR<n> is disabled, or not configured to count the
software increment event, the write to this bit is ignored.

Accessing the PMSWINC
Accesses to this register use the following encodings:

PMSWINC, Performance Monitors Software Increment register

Page 2882

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b100

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.<SW,EN> == '00' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.<SW,EN> == '00' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSWINC_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMSWINC = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMSWINC = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMSWINC = R[t];
elsif PSTATE.EL == EL3 then

PMSWINC = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMSWINC, Performance Monitors Software Increment register

Page 2883

PMUSERENR, Performance Monitors User Enable
Register

The PMUSERENR characteristics are:

Purpose
Enables or disables User mode access to the Performance Monitors.

Configuration
AArch32 System register PMUSERENR bits [31:0] are architecturally mapped to AArch64 System register
PMUSERENR_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level and PMUv3 is implemented. Otherwise,
direct accesses to PMUSERENR are UNDEFINED.

Attributes
PMUSERENR is a 32-bit register.

Field descriptions
The PMUSERENR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ER CR SW EN

Bits [31:4]

Reserved, RES0.

ER, bit [3]

Event counter read trap control:

ER Meaning
0b0 EL0 reads of the PMXEVCNTR and PMEVCNTR<n>, and EL0 RW

access to the PMSELR, are trapped to Undefined mode if
PMUSERENR.EN is also 0.

0b1 Overrides PMUSERENR.EN and enables RO access to
PMXEVCNTR and PMEVCNTR<n>, and RW access to PMSELR.

On a Warm reset, this field resets to 0.

CR, bit [2]

Cycle counter read trap control:

CR Meaning
0b0 EL0 reads of the PMCCNTR are trapped to Undefined mode if

PMUSERENR.EN is also 0.
0b1 Overrides PMUSERENR.EN and enables access to PMCCNTR.

On a Warm reset, this field resets to 0.

PMUSERENR, Performance Monitors User Enable Register

Page 2884

SW, bit [1]

Software increment write trap control:

SW Meaning
0b0 EL0 writes to the PMSWINC are trapped to Undefined mode if

PMUSERENR.EN is also 0.
0b1 Overrides PMUSERENR.EN and enables access to PMSWINC.

On a Warm reset, this field resets to 0.

EN, bit [0]

Traps EL0 accesses to the Performance Monitors registers to Undefined mode, as follows:

• PMCR, PMOVSR, PMSELR, PMCEID0, PMCEID1, PMCCNTR, PMXEVTYPER, PMXEVNTR, PMCNTENSET,
PMCNTENCLR, PMOVSSET, PMEVCNTR<n>, PMEVTYPER<n>, PMCCFILTR, PMSWINC.

• If ARMv8.1-PMU is implemented, PMCEID2, and PMCEID3.

• If ARMv8.4-PMU is implemented, PMMIR.

EN Meaning
0b0 While at EL0, accesses to the specified registers at EL0 are

trapped to Undefined mode, unless overridden by one of
PMUSERENR.{ER, CR, SW}.

0b1 While at EL0, software can access all of the specified registers.

On a Warm reset, this field resets to 0.

Accessing the PMUSERENR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1110 0b000

PMUSERENR, Performance Monitors User Enable Register

Page 2885

AArch32-pmxevntr.html

if PSTATE.EL == EL0 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMUSERENR_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMUSERENR;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMUSERENR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMUSERENR;

elsif PSTATE.EL == EL3 then
return PMUSERENR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMUSERENR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMUSERENR = R[t];

elsif PSTATE.EL == EL3 then
PMUSERENR = R[t];

PMUSERENR, Performance Monitors User Enable Register

Page 2886

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMUSERENR, Performance Monitors User Enable Register

Page 2887

PMXEVCNTR, Performance Monitors Selected Event
Count Register

The PMXEVCNTR characteristics are:

Purpose
Reads or writes the value of the selected event counter, PMEVCNTR<n>. PMSELR.SEL determines which event
counter is selected.

Configuration
AArch32 System register PMXEVCNTR bits [31:0] are architecturally mapped to AArch64 System register
PMXEVCNTR_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level and PMUv3 is implemented. Otherwise,
direct accesses to PMXEVCNTR are UNDEFINED.

Attributes
PMXEVCNTR is a 32-bit register.

Field descriptions
The PMXEVCNTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PMEVCNTR<n>

PMEVCNTR<n>, bits [31:0]

Value of the selected event counter, PMEVCNTR<n>, where n is the value stored in PMSELR.SEL.

If ARMv8.5-PMU is implemented, the event counter is 64 bits and only the least-significant part of the event counter is
accessible in AArch32 state:

• Reads from PMXEVCNTR return bits [31:0] of the counter.

• Writes to PMXEVCNTR update bits [31:0] and leave bits [63:32] unchanged.

• There is no means to access bits [63:32] directly from AArch32 state.

• If the implementation does not support AArch64 at any Exception level, bits [63:32] are not required to be
implemented.

If ARMv8.5-PMU is not implemented, the event counter is 32 bits.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMXEVCNTR
If ARMv8.6-FGT is implemented and PMSELR.SEL is greater than or equal to the number of accessible counters, then
the behavior of permitted reads and writes of PMXEVCNTR is as follows:

• If PMSELR.SEL selects an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

If ARMv8.6-FGT is not implemented and PMSELR.SEL is greater than or equal to the number of accessible counters,
then reads and writes of PMXEVCNTR are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

PMXEVCNTR, Performance Monitors Selected Event Count Register

Page 2888

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP
• Accesses to the register behave as if PMSELR.SEL has an UNKNOWN value less than the number of counters

accessible at the current Exception level and Security state.
• If EL2 is implemented and enabled in the current Security state, and PMSELR.SEL is less than the number of

implemented counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR.{ER,EN} or
PMUSERENR_EL0.{ER,EN}.

If EL2 is implemented and enabled in the current Security state, at EL0 and
EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of
accessible counters.

• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of
accessible counters.

Otherwise, the number of accessible counters is the number of implemented
counters. See HDCR.HPMN and MDCR_EL2.HPMN for more details.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1101 0b010

PMXEVCNTR, Performance Monitors Selected Event Count Register

Page 2889

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.<ER,EN> == '00' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.<ER,EN> == '00' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMXEVCNTR;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMXEVCNTR;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMXEVCNTR;
elsif PSTATE.EL == EL3 then

return PMXEVCNTR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1101 0b010

PMXEVCNTR, Performance Monitors Selected Event Count Register

Page 2890

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMXEVCNTR = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMXEVCNTR = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMXEVCNTR = R[t];
elsif PSTATE.EL == EL3 then

PMXEVCNTR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMXEVCNTR, Performance Monitors Selected Event Count Register

Page 2891

PMXEVTYPER, Performance Monitors Selected Event
Type Register

The PMXEVTYPER characteristics are:

Purpose
When PMSELR.SEL selects an event counter, this accesses a PMEVTYPER<n> register. When PMSELR.SEL selects
the cycle counter, this accesses PMCCFILTR.

Configuration
AArch32 System register PMXEVTYPER bits [31:0] are architecturally mapped to AArch64 System register
PMXEVTYPER_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level and PMUv3 is implemented. Otherwise,
direct accesses to PMXEVTYPER are UNDEFINED.

Attributes
PMXEVTYPER is a 32-bit register.

Field descriptions
The PMXEVTYPER bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Event type register or PMCCFILTR

Bits [31:0]

Event type register or PMCCFILTR.

When PMSELR.SEL == 31, this register accesses PMCCFILTR.

Otherwise, this register accesses PMEVTYPER<n> where n is the value in PMSELR.SEL.

Accessing the PMXEVTYPER
If ARMv8.6-FGT is implemented, and PMSELR.SEL is not 31 and is greater than or equal to the number of accessible
counters, then the behavior of permitted reads and writes of PMXEVTYPER is as follows:

• If PMSELR.SEL selects an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

If ARMv8.6-FGT is not implemented, and PMSELR.SEL is not 31 and is greater than or equal to the number of
accessible counters, then reads and writes of PMXEVTYPER are CONSTRAINED UNPREDICTABLE, and the following
behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP
• Accesses to the register behave as if PMSELR.SEL has an UNKNOWN value less than the number of counters

accessible at the current Exception level and Security state.
• Accesses to the register behave as if PMSELR.SEL is 31.
• If EL2 is implemented and enabled in the current Security state, and PMSELR.SEL is less than the number of

implemented counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

PMXEVTYPER, Performance Monitors Selected Event Type Register

Page 2892

Note

In EL0, an access is permitted if it is enabled by PMUSERENR.EN or
PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, at EL0 and
EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of
accessible counters.

• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of
accessible counters.

Otherwise, the number of accessible counters is the number of implemented
counters. See HDCR.HPMN and MDCR_EL2.HPMN for more details.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1101 0b001

PMXEVTYPER, Performance Monitors Selected Event Type Register

Page 2893

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMXEVTYPER;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMXEVTYPER;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMXEVTYPER;
elsif PSTATE.EL == EL3 then

return PMXEVTYPER;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1101 0b001

PMXEVTYPER, Performance Monitors Selected Event Type Register

Page 2894

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);

elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMXEVTYPER = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMXEVTYPER = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMXEVTYPER = R[t];
elsif PSTATE.EL == EL3 then

PMXEVTYPER = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMXEVTYPER, Performance Monitors Selected Event Type Register

Page 2895

PRRR, Primary Region Remap Register
The PRRR characteristics are:

Purpose
Controls the top level mapping of the TEX[0], C, and B memory region attributes.

Configuration
AArch32 System register PRRR bits [31:0] are architecturally mapped to AArch64 System register MAIR_EL1[31:0]
when TTBCR.EAE == 0.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to PRRR
are UNKNOWN.

MAIR0 and PRRR are the same register, with a different view depending on the value of TTBCR.EAE:

• When it is set to 0, the register is as described in PRRR.
• When it is set to 1, the register is as described in MAIR0.

Attributes
PRRR is a 32-bit register.

Field descriptions
The PRRR bit assignments are:

When TTBCR.EAE == 0:

31 30 29 28 27 26 25 24 23222120 19 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 0
NOS7NOS6NOS5NOS4NOS3NOS2NOS1NOS0 RES0 NS1NS0DS1DS0TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

NOS<n>, bit [n+24], for n = 0 to 7

Not Outer Shareable. NOS<n> is the Outer Shareable property for memory attributes n, if the region is mapped as
Normal memory that is not Inner Non-cacheable, Outer Non-cacheable, and the appropriate PRRR.{NS0, NS1} field
identifies the region as shareable. n is the value of the concatenation of the {TEX[0], C, B} bits from the translation
table descriptor. The possible values of each NOS<n> field other than NOS6 are:

NOS<n> Meaning
0b0 Memory region is Outer Shareable.
0b1 Memory region is Inner Shareable.

The value of this bit is ignored if the region is:

• Device memory
• Normal memory that is at least one of:

◦ Inner Non-cacheable, Outer Non-cacheable.
◦ Identified by the appropriate PRRR.{NS0, NS1} field as Non-shareable.

The meaning of the NOS6 field is IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Bits [23:20]

Reserved, RES0.

PRRR, Primary Region Remap Register

Page 2896

NS1, bit [19]

Mapping of S = 1 attribute for Normal memory regions. This field is used in determining the Shareability of a memory
region that is mapped to Normal memory and both:

• Is not Inner Non-cacheable, Outer Non-cacheable.
• Has the S bit in the translation table descriptor set to 1.

The possible values of this bit are:

NS1 Meaning
0b0 Region is Non-shareable.
0b1 Region is shareable. The value of the appropriate PRRR.NOS<n>

field determines whether the region is Inner Shareable or Outer
Shareable.

This field resets to an architecturally UNKNOWN value.

NS0, bit [18]

Mapping of S = 0 attribute for Normal memory regions. This field is used in determining the Shareability of a memory
region that is mapped to Normal memory and both:

• Is not Inner Non-cacheable, Outer Non-cacheable.
• Has the S bit in the translation table descriptor set to 0.

The possible values of this bit are:

NS0 Meaning
0b0 Region is Non-shareable.
0b1 Region is shareable. The value of the appropriate PRRR.NOS<n>

field determines whether the region is Inner Shareable or Outer
Shareable.

This field resets to an architecturally UNKNOWN value.

DS1, bit [17]

Mapping of S = 1 attribute for Device memory. From Armv8, all types of Device memory are Outer Shareable, and
therefore this bit is RES1.

This field resets to an architecturally UNKNOWN value.

DS0, bit [16]

Mapping of S = 0 attribute for Device memory. From Armv8, all types of Device memory are Outer Shareable, and
therefore this bit is RES1.

This field resets to an architecturally UNKNOWN value.

TR<n>, bits [2n+1:2n], for n = 0 to 7

TR<n> is the primary TEX mapping for memory attributes n, and defines the mapped memory type for a region with
attributes n. n is the value of the concatenation of the {TEX[0], C, B} bits from the translation table descriptor. The
possible values for each field other than TR6 are:

TR<n> Meaning
0b00 Device-nGnRnE memory
0b01 Device-nGnRE memory
0b10 Normal memory

The value 0b11 is reserved. The effect of programming a field to 0b11 is CONSTRAINED UNPREDICTABLE, see 'Unallocated
values in fields of AArch32 System registers and translation table entries' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile, section K1.1.11.

The meaning of the TR6 field is IMPLEMENTATION DEFINED.

PRRR, Primary Region Remap Register

Page 2897

This field resets to an architecturally UNKNOWN value.

Accessing the PRRR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return PRRR_NS;
else

return PRRR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return PRRR_NS;

else
return PRRR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return PRRR_S;
else

return PRRR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b000

PRRR, Primary Region Remap Register

Page 2898

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

PRRR_NS = R[t];
else

PRRR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
PRRR_NS = R[t];

else
PRRR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if SCR.NS == '0' then
PRRR_S = R[t];

else
PRRR_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRRR, Primary Region Remap Register

Page 2899

REVIDR, Revision ID Register
The REVIDR characteristics are:

Purpose
Provides implementation-specific minor revision information.

Configuration
AArch32 System register REVIDR bits [31:0] are architecturally mapped to AArch64 System register
REVIDR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to REVIDR
are UNKNOWN.

If REVIDR has the same value as MIDR, then its contents have no significance.

Attributes
REVIDR is a 32-bit register.

Field descriptions
The REVIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the REVIDR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0000 0b110

REVIDR, Revision ID Register

Page 2900

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return REVIDR;
elsif PSTATE.EL == EL2 then

return REVIDR;
elsif PSTATE.EL == EL3 then

return REVIDR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REVIDR, Revision ID Register

Page 2901

RMR, Reset Management Register
The RMR characteristics are:

Purpose
If EL1 or EL3 is the highest implemented Exception level and this register is implemented:

• A write to the register at the highest implemented Exception level can request a Warm reset.
• If the highest implemented Exception level can use AArch32 and AArch64, this register specifies the Execution

state that the PE boots into on a Warm reset.

Configuration
AArch32 System register RMR bits [31:0] are architecturally mapped to AArch64 System register RMR_EL1[31:0]
when the highest implemented Exception level is EL1.

AArch32 System register RMR bits [31:0] are architecturally mapped to AArch64 System register RMR_EL3[31:0]
when EL3 is implemented.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to RMR are
UNKNOWN.

Only implemented if EL1 or EL3 is the highest implemented Exception level. In this case:

• If the highest implemented Exception level can use AArch32 and AArch64 then this register must be
implemented.

• If the highest implemented Exception level cannot use AArch64 then it is IMPLEMENTATION DEFINED whether the
register is implemented.

Attributes
RMR is a 32-bit register.

Field descriptions
The RMR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 RRAA64

Bits [31:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

This field resets to 0.

AA64, bit [0]

When the highest implemented Exception level can use AArch64, determines which Execution state the PE boots into
after a Warm reset:

AA64 Meaning
0b0 AArch32.
0b1 AArch64.

RMR, Reset Management Register

Page 2902

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector address of the specified
Execution state.

If the highest implemented Exception level cannot use AArch64 this bit is RAZ/WI.

When implemented as a RW field, this field resets to 0 on a Cold reset.

Accessing the RMR
When EL3 is implemented, Arm deprecates accessing this register from any PE mode other than Monitor mode.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0000 0b010

if PSTATE.EL IN {EL3, EL1} && IsHighestEL(PSTATE.EL) then
return RMR;

else
UNDEFINED;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0000 0b010

if PSTATE.EL IN {EL3, EL1} && IsHighestEL(PSTATE.EL) then
RMR = R[t];

else
UNDEFINED;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RMR, Reset Management Register

Page 2903

RVBAR, Reset Vector Base Address Register
The RVBAR characteristics are:

Purpose
If EL3 is not implemented, contains the IMPLEMENTATION DEFINED address that execution starts from after reset when
executing in AArch32 state.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to RVBAR
are UNKNOWN.

This register is only implemented if the highest Exception level implemented is capable of using AArch32, and is not
EL3.

Attributes
RVBAR is a 32-bit register.

Field descriptions
The RVBAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reset Address[31:1] RES1

Bits [31:1]

Reset Address[31:1]. Bits [31:1] of the IMPLEMENTATION DEFINED address that execution starts from after reset when
executing in 32-bit state.

Bit [0]

Reserved, RES1.

Accessing the RVBAR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0000 0b001

RVBAR, Reset Vector Base Address Register

Page 2904

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if IsHighestEL(EL1) then

return RVBAR;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if IsHighestEL(EL2) then
return RVBAR;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
return MVBAR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RVBAR, Reset Vector Base Address Register

Page 2905

SCR, Secure Configuration Register
The SCR characteristics are:

Purpose
When EL3 is implemented and can use AArch32, defines the configuration of the current Security state. It specifies:

• The Security state, either Secure or Non-secure.
• What mode the PE branches to if an IRQ, FIQ, or External abort occurs.
• Whether the CPSR.F or CPSR.A bits can be modified when SCR.NS==1.

Configuration
AArch32 System register SCR bits [31:0] can be mapped to AArch64 System register SCR_EL3[31:0] , but this is not
architecturally mandated.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SCR are
UNKNOWN.

Attributes
SCR is a 32-bit register.

Field descriptions
The SCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 TERRRES0TWETWIRES0SIFHCESCDnETAWFWEAFIQIRQNS

Bits [31:16]

Reserved, RES0.

TERR, bit [15]

When RAS is implemented:

Trap Error record accesses. Generate a Monitor Trap exception on accesses to the following registers from modes
other than Monitor mode:

ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR, ERXFR2, ERXMISC0, ERXMISC1,
ERXMISC2, ERXMISC3, and ERXSTATUS. When ARMv8.4-RAS is implemented, ERXMISC4, ERXMISC5, ERXMISC6,
ERXMISC7.

TERR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Accesses to the specified registers from modes other than

Monitor mode generate a Monitor Trap exception.

In a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

SCR, Secure Configuration Register

Page 2906

Bit [14]

Reserved, RES0.

TWE, bit [13]

Traps WFE instructions to Monitor mode.

TWE Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFE instruction in any mode other than

Monitor mode is trapped to Monitor mode, if the instruction
would otherwise have caused the PE to enter a low-power state
and the attempted execution does not generate an exception that
is taken to EL1 or EL2 by SCTLR.nTWE or HCR.TWE.
Any exception that is taken to EL1 or to EL2 has priority over this
trap.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code
check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event,
the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or
WFI is executed when there is no Wakeup event. The only guarantee is that if
the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

In a system where the PE resets into EL3, this field resets to 0.

TWI, bit [12]

Traps WFI instructions to Monitor mode.

TWI Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFI instruction in any mode other than

Monitor mode is trapped to Monitor mode, if the instruction
would otherwise have caused the PE to enter a low-power state
and the attempted execution does not generate an exception that
is taken to EL1 or EL2 by SCTLR.nTWI or HCR.TWI.
Any exception that is taken to EL1 or to EL2 has priority over this
trap.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code
check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event,
the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or
WFI is executed when there is no Wakeup event. The only guarantee is that if
the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

In a system where the PE resets into EL3, this field resets to 0.

Bits [11:10]

Reserved, RES0.

SCR, Secure Configuration Register

Page 2907

SIF, bit [9]

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from Non-secure memory.
The possible values for this bit are:

SIF Meaning
0b0 Secure state instruction fetches from Non-secure memory are

permitted.
0b1 Secure state instruction fetches from Non-secure memory are not

permitted.

This bit is permitted to be cached in a TLB.

In a system where the PE resets into EL3, this field resets to 0.

HCE, bit [8]

Hypervisor Call instruction enable. If EL2 is implemented, enables execution of HVC instructions at Non-secure EL1
and EL2.

HCE Meaning
0b0 HVC instructions are:

• UNDEFINED at Non-secure EL1. The Undefined Instruction
exception is taken from PL1 to PL1.

• UNPREDICTABLE at EL2. Behavior is one of the following:
◦ The instruction is UNDEFINED.
◦ The instruction executes as a NOP.

0b1 HVC instructions are enabled at Non-secure EL1 and EL2.

Note

HVC instructions are always UNDEFINED at EL0 and in Secure state.

If EL2 is not implemented, this bit is RES0 and HVC is UNDEFINED.

In a system where the PE resets into EL3, this field resets to 0.

SCD, bit [7]

Secure Monitor Call disable. Disables SMC instructions.

SCD Meaning
0b0 SMC instructions are enabled.
0b1 In Non-secure state, SMC instructions are UNDEFINED. The

Undefined Instruction exception is taken from the current
Exception level to the current Exception level.
In Secure state, behavior is one of the following:

• The instruction is UNDEFINED.
• The instruction executes as a NOP.

Note

SMC instructions are always UNDEFINED at PL0.

In a system where the PE resets into EL3, this field resets to 0.

nET, bit [6]

Not Early Termination. This bit disables early termination. The possible values of this bit are:

nET Meaning
0b0 Early termination permitted. Execution time of data operations

can depend on the data values.
0b1 Disable early termination. The number of cycles required for data

operations is forced to be independent of the data values.

SCR, Secure Configuration Register

Page 2908

This IMPLEMENTATION DEFINED mechanism can disable data dependent timing optimizations from multiplies and data
operations. It can provide system support against information leakage that might be exploited by timing correlation
types of attack.

On implementations that do not support early termination or do not support disabling early termination, this bit is
RES0.

In a system where the PE resets into EL3, this field resets to 0.

AW, bit [5]

When the value of SCR.EA is 1 and the value of HCR.AMO is 0, this bit controls whether CPSR.A masks an External
abort taken from Non-secure state, and the possible values of this bit are:

AW Meaning
0b0 External aborts taken from Non-secure state are not masked by

CPSR.A, and are taken to EL3.
External aborts taken from Secure state are masked by CPSR.A.

0b1 External aborts taken from either Security state are masked by
CPSR.A. When CPSR.A is 0, the abort is taken to EL3.

When SCR.EA is 0 or HCR.AMO is 1, this bit has no effect.

In a system where the PE resets into EL3, this field resets to 0.

FW, bit [4]

When the value of SCR.FIQ is 1 and the value of HCR.FMO is 0, this bit controls whether CPSR.F masks an FIQ
interrupt taken from Non-secure state, and the possible values of this bit are:

FW Meaning
0b0 An FIQ taken from Non-secure state is not masked by CPSR.F, and

is taken to EL3.
An FIQ taken from Secure state is masked by CPSR.F.

0b1 An FIQ taken from either Security state is masked by CPSR.F.
When CPSR.F is 0, the FIQ is taken to EL3.

When SCR.FIQ is 0 or HCR.FMO is 1, this bit has no effect.

In a system where the PE resets into EL3, this field resets to 0.

EA, bit [3]

External Abort handler. This bit controls which mode takes External aborts. The possible values of this bit are:

EA Meaning
0b0 External aborts taken to Abort mode.
0b1 External aborts taken to Monitor mode.

In a system where the PE resets into EL3, this field resets to 0.

FIQ, bit [2]

FIQ handler. This bit controls which mode takes FIQ exceptions. The possible values of this bit are:

FIQ Meaning
0b0 FIQs taken to FIQ mode.
0b1 FIQs taken to Monitor mode.

In a system where the PE resets into EL3, this field resets to 0.

IRQ, bit [1]

IRQ handler. This bit controls which mode takes IRQ exceptions. The possible values of this bit are:

SCR, Secure Configuration Register

Page 2909

IRQ Meaning
0b0 IRQs taken to IRQ mode.
0b1 IRQs taken to Monitor mode.

In a system where the PE resets into EL3, this field resets to 0.

NS, bit [0]

Non-secure bit. Except when the PE is in Monitor mode, this bit determines the Security state of the PE:

NS Meaning
0b0 PE is in Secure state.
0b1 PE is in Non-secure state.

If the HCR.TGE bit is set, an attempt to change from a Secure PL1 mode to a Non-secure EL1 mode by changing the
SCR.NS bit from 0 to 1 results in the SCR.NS bit remaining as 0.

In a system where the PE resets into EL3, this field resets to 0.

Accessing the SCR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

return SCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0001 0b000

SCR, Secure Configuration Register

Page 2910

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

SCR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCR, Secure Configuration Register

Page 2911

SCTLR, System Control Register
The SCTLR characteristics are:

Purpose
Provides the top level control of the system, including its memory system.

Configuration
AArch32 System register SCTLR bits [31:0] are architecturally mapped to AArch64 System register SCTLR_EL1[31:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SCTLR
are UNKNOWN.

Some bits in the register are read-only. These bits relate to non-configurable features of an implementation, and are
provided for compatibility with previous versions of the architecture.

Attributes
SCTLR is a 32-bit register.

Field descriptions
The SCTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
DSSBSTEAFETRERES0EERES0SPANRES1RES0UWXNWXNnTWERES0nTWIRES0 V I RES1EnRCTXRES0SEDITDUNKCP15BENLSMAOEnTLSMDCAM

DSSBS, bit [31]

When ARMv8.0-SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry. The defined values are:

DSSBS Meaning
0b0 PSTATE.SSBS is set to 0 on an exception to any mode in this

security state except Hyp mode
0b1 PSTATE.SSBS is set to 1 on an exception to any mode in this

security state except Hyp mode

Note

When EL3 is implemented and is using AArch32, this bit is banked between
the two Security states.

This field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

TE, bit [30]

T32 Exception Enable. This bit controls whether exceptions to an Exception Level that is executing at PL1 are taken to
A32 or T32 state:

SCTLR, System Control Register

Page 2912

TE Meaning
0b0 Exceptions, including reset, taken to A32 state.
0b1 Exceptions, including reset, taken to T32 state.

This field resets to an IMPLEMENTATION DEFINED choice between:

• 0.
• A value determined by an input configuration signal.

AFE, bit [29]

Access Flag Enable. When using the Short-descriptor translation table format for the PL1&0 translation regime, this
bit enables use of the AP[0] bit in the translation descriptors as the Access flag, and restricts access permissions in the
translation descriptors to the simplified model. The possible values of this bit are:

AFE Meaning
0b0 In the translation table descriptors, AP[0] is an access

permissions bit. The full range of access permissions is supported.
No Access flag is implemented.

0b1 In the translation table descriptors, AP[0] is the Access flag. Only
the simplified model for access permissions is supported.

When using the Long-descriptor translation table format, the VMSA behaves as if this bit is set to 1, regardless of the
value of this bit.

The AFE bit is permitted to be cached in a TLB.

This field resets to 0.

TRE, bit [28]

TEX remap enable. This bit enables remapping of the TEX[2:1] bits in the PL1&0 translation regime for use as two
translation table bits that can be managed by the operating system. Enabling this remapping also changes the scheme
used to describe the memory region attributes in the VMSA. The possible values of this bit are:

TRE Meaning
0b0 TEX remap disabled. TEX[2:0] are used, with the C and B bits, to

describe the memory region attributes.
0b1 TEX remap enabled. TEX[2:1] are reassigned for use as bits

managed by the operating system. The TEX[0], C, and B bits are
used to describe the memory region attributes, with the MMU
remap registers.

When the value of TTBCR.EAE is 1, this bit is RES1.

The TRE bit is permitted to be cached in a TLB.

This field resets to 0.

Bits [27:26]

Reserved, RES0.

EE, bit [25]

The value of the PSTATE.E bit on branch to an exception vector or coming out of reset, and the endianness of stage 1
translation table walks in the PL1&0 translation regime.

The possible values of this bit are:

SCTLR, System Control Register

Page 2913

EE Meaning
0b0 Little-endian. PSTATE.E is cleared to 0 on taking an exception or

coming out of reset. Stage 1 translation table walks in the PL1&0
translation regime are little-endian.

0b1 Big-endian. PSTATE.E is set to 1 on taking an exception or coming
out of reset. Stage 1 translation table walks in the PL1&0
translation regime are big-endian.

If an implementation does not provide Big-endian support for data accesses at Exception Levels higher than EL0, this
bit is RES0.

If an implementation does not provide Little-endian support for data accesses at Exception Levels higher than EL0,
this bit is RES1.

This field resets to an IMPLEMENTATION DEFINED choice between:

• 0.
• A value determined by an input configuration signal.

Bit [24]

Reserved, RES0.

SPAN, bit [23]

When ARMv8.1-PAN is implemented:

Set Privileged Access Never, on taking an exception to EL1 from either Secure or Non-secure state, or to EL3 from
Secure state when EL3 is using AArch32.

SPAN Meaning
0b0 CPSR.PAN is set to 1 in the following situations:

• In Non-secure state, on taking an exception to EL1.
• In Secure state, when EL3 is using AArch64, on taking an

exception to EL1.
• In Secure state, when EL3 is using AArch32, on taking an

exception to EL3.
0b1 The value of CPSR.PAN is left unchanged on taking an exception

to EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bit [22]

Reserved, RES1.

Bit [21]

Reserved, RES0.

UWXN, bit [20]

Unprivileged write permission implies PL1 XN (Execute-never). This bit can force all memory regions that are writable
at PL0 to be treated as XN for accesses from software executing at PL1. The possible values of this bit are:

UWXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable at PL0 forced to XN for accesses

from software executing at PL1.

SCTLR, System Control Register

Page 2914

The UWXN bit is permitted to be cached in a TLB.

This field resets to 0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the PL1&0 translation regime, this bit can force all memory regions
that are writable to be treated as XN. The possible values of this bit are:

WXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable in the PL1&0 translation regime is

forced to XN for accesses from software executing at PL1 or PL0.

This bit applies only when SCTLR.M bit is set.

The WXN bit is permitted to be cached in a TLB.

This field resets to 0.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to Undefined mode.

nTWE Meaning
0b0 Any attempt to execute a WFE instruction at EL0 is trapped to

Undefined mode, if the instruction would otherwise have caused
the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code
check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event,
the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or
WFI is executed when there is no Wakeup event. The only guarantee is that if
the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

This field resets to 1.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to Undefined mode.

nTWI Meaning
0b0 Any attempt to execute a WFI instruction at EL0 is trapped to

Undefined mode, if the instruction would otherwise have caused
the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code
check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event,
the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or

SCTLR, System Control Register

Page 2915

WFI is executed when there is no Wakeup event. The only guarantee is that if
the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

This field resets to 1.

Bits [15:14]

Reserved, RES0.

V, bit [13]

Vectors bit. This bit selects the base address of the exception vectors for exceptions taken to a PE mode other than
Monitor mode or Hyp mode:

V Meaning
0b0 Normal exception vectors. Base address is held in VBAR.
0b1 High exception vectors (Hivecs), base address 0xFFFF0000. This

base address cannot be remapped.

This field resets to an IMPLEMENTATION DEFINED choice between:

• 0.
• A value determined by an input configuration signal.

I, bit [12]

Instruction access Cacheability control, for accesses at EL1 and EL0:

I Meaning
0b0 All instruction access to Normal memory from PL1 and PL0 are

Non-cacheable for all levels of instruction and unified cache.
If the value of SCTLR.M is 0, instruction accesses from stage 1 of
the PL1&0 translation regime are to Normal, Outer Shareable,
Inner Non-cacheable, Outer Non-cacheable memory.

0b1 All instruction access to Normal memory from PL1 and PL0 can be
cached at all levels of instruction and unified cache.
If the value of SCTLR.M is 0, instruction accesses from stage 1 of
the PL1&0 translation regime are to Normal, Outer Shareable,
Inner Write-Through, Outer Write-Through memory.

Instruction accesses to Normal memory from EL1 and EL0 are Cacheable regardless of the value of the SCTLR.I bit if
either:

• EL2 is using AArch32 and the value of HCR.DC is 1.
• EL2 is using AArch64 and the value of HCR_EL2.DC is 1.

This field resets to 0.

Bit [11]

Reserved, RES1.

EnRCTX, bit [10]

When ARMv8.0-CSV2 is implemented:

Enable EL0 Access to the AArch32 CFPRCTX, DVPRCTX and CPPRCTX instructions. The defined values are:

EnRCTX Meaning
0b0 EL0 access to these instructions is disabled, and these

instructions are trapped to EL1.
0b1 EL0 access to these instructions is enabled.

SCTLR, System Control Register

Page 2916

Note

When EL3 is implemented and is using AArch32, this bit is banked between
the two Security states.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at PL0 and PL1.

SED Meaning
0b0 SETEND instruction execution is enabled at PL0 and PL1.
0b1 SETEND instructions are UNDEFINED at PL0 and PL1.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

This field resets to 0.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at PL1 and PL0.

ITD Meaning
0b0 All IT instruction functionality is enabled at PL1 and PL0.
0b1 Any attempt at PL1 or PL0 to execute any of the following is

UNDEFINED:
• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the

following values for hw1:
◦ 11xxxxxxxxxxxxxx: All 32-bit instructions, and the

16-bit instructions B, UDF, SVC, LDM, and STM.
◦ 1011xxxxxxxxxxxx: All instructions in Miscellaneous

16-bit instructions.
◦ 10100xxxxxxxxxxx: ADD Rd, PC, #imm
◦ 01001xxxxxxxxxxx: LDR Rd, [PC, #imm]
◦ 0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC; MOV

Rd, PC; BX PC; BLX PC.
◦ 010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm; MOV

PC, Rm. This pattern also covers unpredictable cases
with BLX Rn.

These instructions are always UNDEFINED, regardless of whether
they would pass or fail the condition code check that applies to
them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated
as:

• A 16-bit instruction, that can only be followed by another
16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either the
second 16-bit instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is
treated as a 16-bit instruction or the first half of a 32-bit
instruction.

SCTLR, System Control Register

Page 2917

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is
CONSTRAINED UNPREDICTABLE. For more information see 'Changes to an ITD control by an instruction in an IT block' in
the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section E1.2.4.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not
implemented then this bit is RAZ/WI.

This field resets to 0.

UNK, bit [6]

Writes to this bit are IGNORED. Reads of this bit return an UNKNOWN value.

This field resets to an architecturally UNKNOWN value.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the
(coproc==0b1111) encoding space from PL1 and PL0:

CP15BEN Meaning
0b0 PL0 and PL1 execution of the CP15DMB, CP15DSB, and

CP15ISB instructions is UNDEFINED.
0b1 PL0 and PL1 execution of the CP15DMB, CP15DSB, and

CP15ISB instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it
is not implemented then this bit is RAO/WI.

This field resets to 1.

LSMAOE, bit [4]

When ARMv8.2-LSMAOC is implemented:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

LSMAOE Meaning
0b0 For all memory accesses at EL1 or EL0, A32 and T32 Load

Multiple and Store Multiple can have an interrupt taken
during the sequence memory accesses, and the memory
accesses are not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load
Multiple and Store Multiple at EL1 or EL0 is as defined for
Armv8.0.

This bit is permitted to be cached in a TLB.

This field resets to 1.

Otherwise:

Reserved, RES1.

nTLSMD, bit [3]

When ARMv8.2-LSMAOC is implemented:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

SCTLR, System Control Register

Page 2918

nTLSMD Meaning
0b0 All memory accesses by A32 and T32 Load Multiple and

Store Multiple at EL1 or EL0 that are marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
trapped and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and
Store Multiple at EL1 or EL0 that are marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE memory are not
trapped.

This bit is permitted to be cached in a TLB.

This field resets to 1.

Otherwise:

Reserved, RES1.

C, bit [2]

Cacheability control, for data accesses at EL1 and EL0:

C Meaning
0b0 All data access to Normal memory from PL1 and PL0, and all

accesses to the PL1&0 stage 1 translation tables, are Non-
cacheable for all levels of data and unified cache.

0b1 All data access to Normal memory from PL1 and PL0, and all
accesses to the PL1&0 stage 1 translation tables, can be cached at
all levels of data and unified cache.

The PE ignores SCLTR.C for Non-secure state and data accesses to Normal memory from EL1 and EL0 are Cacheable
if either:

• EL2 is using AArch32 and the value of HCR.DC is 1.
• EL2 is using AArch64 and the value of HCR_EL2.DC is 1.

This field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at PL1 and PL0:

A Meaning
0b0 Alignment fault checking disabled when executing at PL1 or PL0.

Instructions that load or store one or more registers, other than
load/store exclusive and load-acquire/store-release, do not check
that the address being accessed is aligned to the size of the data
element(s) being accessed.

0b1 Alignment fault checking enabled when executing at PL1 or PL0.
All instructions that load or store one or more registers have an
alignment check that the address being accessed is aligned to the
size of the data element(s) being accessed. If this check fails it
causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of
the A bit.

This field resets to 0.

M, bit [0]

MMU enable for EL1 and EL0 stage 1 address translation. Possible values of this bit are:

SCTLR, System Control Register

Page 2919

M Meaning
0b0 EL1 and EL0 stage 1 address translation disabled.

See the SCTLR.I field for the behavior of instruction accesses to
Normal memory.

0b1 EL1 and EL0 stage 1 address translation enabled.

In the Non-secure state the PE behaves as if the value of the SCTLR.M field is 0 for all purposes other than returning
the value of a direct read of the field if either:

• EL2 is using AArch32 and the value of HCR.{DC, TGE} is not {0, 0}.
• EL2 is using AArch64 and the value of HCR_EL2.{DC, TGE} is not {0, 0}.

This field resets to 0.

Accessing the SCTLR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return SCTLR_NS;
else

return SCTLR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return SCTLR_NS;

else
return SCTLR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return SCTLR_S;
else

return SCTLR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0000 0b000

SCTLR, System Control Register

Page 2920

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

SCTLR_NS = R[t];
else

SCTLR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
SCTLR_NS = R[t];

else
SCTLR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if SCR.NS == '0' then
SCTLR_S = R[t];

else
SCTLR_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCTLR, System Control Register

Page 2921

SDCR, Secure Debug Control Register
The SDCR characteristics are:

Purpose
Provides EL3 configuration options for self-hosted debug, trace, and the Performance Monitors Extension.

Configuration
AArch32 System register SDCR bits [31:0] can be mapped to AArch64 System register MDCR_EL3[31:0] , but this is
not architecturally mandated.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SDCR
are UNKNOWN.

Attributes
SDCR is a 32-bit register.

Field descriptions
The SDCR bit assignments are:

313029 28 27 262524 23 22 21 20 19 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 0
RES0 MTPMETDCC RES0 SCCDRES0EPMADEDADTTRFSTESPMERES0SPD RES0

Bits [31:29]

Reserved, RES0.

MTPME, bit [28]

When ARMv8.6-MTPMU is implemented:

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>.MT bits.

MTPME Meaning
0b0 ARMv8.6-MTPMU is disabled. The Effective value of

PMEVTYPER<n>.MT is zero.
0b1 PMEVTYPER<n>.MT bits not affected by this bit.

If ARMv8.6-MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as the PE, it is
IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0.

On a Cold reset, in a system where the PE resets into EL3, this field resets to 1.

Otherwise:

Reserved, RES0.

TDCC, bit [27]

When ARMv8.6-FGT is implemented:

Trap DCC. Traps use of the Debug Comms Channel in modes other than Monitor mode to Monitor mode.

SDCR, Secure Debug Control Register

Page 2922

TDCC Meaning
0b0 This control does not cause any register accesses to be trapped.
0b1 Accesses to the DCC registers in modes other than Monitor

mode generate a Monitor Trap exception, unless the access also
generates a higher priority exception.
Traps on the DCC data transfer registers are ignored when the
PE is in Debug state.

The DCC registers trapped by this control are:

• DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is in Non-debug state,
DBGDTRRXint and DBGDTRTXint.

When the PE is in Debug state, SDCR.TDCC does not trap any accesses to:

• DBGDTRRXint and DBGDTRTXint.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [26:24]

Reserved, RES0.

SCCD, bit [23]

When ARMv8.5-PMU is implemented:

Secure Cycle Counter Disable. Prohibits PMCCNTR from counting in Secure state.

SCCD Meaning
0b0 Cycle counting by PMCCNTR is not affected by this bit.
0b1 Cycle counting by PMCCNTR is prohibited in Secure state.

This bit does not affect the CPU_CYCLES event or any other event that counts cycles.

In a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [22]

Reserved, RES0.

EPMAD, bit [21]

When ARMv8.4-Debug is implemented and PMUv3 is implemented:

External Performance Monitors Non-secure access disable. Controls Non-secure access to Performance Monitors
registers by an external debugger.

EPMAD Meaning
0b0 Non-secure access to the Performance Monitors registers

from an external debugger is permitted.
0b1 Non-secure access to the Performance Monitors registers

from an external debugger is not permitted.

If the Performance Monitors Extension does not support external debug interface accesses this bit is RES0.

SDCR, Secure Debug Control Register

Page 2923

Otherwise, if EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this field is
0b1.

In a system where the PE resets into EL3, this field resets to 0.

When PMUv3 is implemented:

External Performance Monitors access disable. Controls access to Performance Monitors registers by an external
debugger.

EPMAD Meaning
0b0 Access to Performance Monitors registers from an external

debugger is permitted.
0b1 Access to Performance Monitors registers from an external

debugger is not permitted, unless overridden by the
IMPLEMENTATION DEFINED authentication interface.

If the Performance Monitors Extension does not support external debug interface accesses this bit is RES0.

Otherwise, if EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this field is
0b1.

In a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

EDAD, bit [20]

When ARMv8.4-Debug is implemented:

External debug Non-secure access disable. Controls Non-secure access to breakpoint, watchpoint, and OSLAR_EL1
registers by an external debugger.

EDAD Meaning
0b0 Non-secure access to debug registers from an external

debugger is permitted.
0b1 Non-secure access to breakpoint registers, watchpoint

registers, and OSLAR_EL1 from an external debugger is not
permitted.

If EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this field is 0b1.

In a system where the PE resets into EL3, this field resets to 0.

When ARMv8.2-Debug is implemented:

External debug access disable. Controls access to breakpoint, watchpoint, and OSLAR_EL1 registers by an external
debugger.

EDAD Meaning
0b0 Access to debug registers from an external debugger is

permitted.
0b1 Access to breakpoint registers, watchpoint registers and

OSLAR_EL1 from an external debugger is not permitted, unless
overridden by the IMPLEMENTATION DEFINED authentication
interface.

If EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this field is 0b1.

In a system where the PE resets into EL3, this field resets to 0.

SDCR, Secure Debug Control Register

Page 2924

Otherwise:

External debug access disable. Controls access to breakpoint, watchpoint, and optionally OSLAR_EL1 registers by an
external debugger.

EDAD Meaning
0b0 Access to debug registers from an external debugger is

permitted.
0b1 Access to breakpoint registers and watchpoint registers from an

external debugger is not permitted, unless overridden by the
IMPLEMENTATION DEFINED authentication interface.
It is IMPLEMENTATION DEFINED whether access to the OSLAR_EL1
register from an external debugger is permitted or not
permitted.

If EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this field is 0b1.

In a system where the PE resets into EL3, this field resets to 0.

TTRF, bit [19]

When ARMv8.4-Trace is implemented:

Trap Trace Filter controls. Controls whether accesses at EL2 and EL1 to the trace filter control registers are trapped
to EL3.

TTRF Meaning
0b0 Accesses to HTRFCR and TRFCR registers are not affected by

this control bit.
0b1 When not in Monitor mode, accesses to HTRFCR and TRFCR

registers generate a Monitor Trap exception, unless the access
generates a higher priority exception.

In a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

STE, bit [18]

When ARMv8.4-Trace is implemented:

Secure Trace Enable. This bit enables tracing in Secure state and controls the level of authentication required by an
external debugger to enable external tracing.

STE Meaning
0b0 Trace is prohibited in Secure state unless overridden by the

IMPLEMENTATION DEFINED authentication interface.
0b1 Trace in Secure state is not affected by this bit.

This bit also controls the level of authentication required by an external debugger to enable external tracing. See
'Register controls to enable self-hosted trace' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile.

If EL3 is not implemented and the Effective value of SCR.NS is 0b0, the PE behaves as if this bit is set to 0b1.

In a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

SPME, bit [17]

SDCR, Secure Debug Control Register

Page 2925

When ARMv8.2-Debug is implemented and PMUv3 is implemented:

Secure Performance Monitors enable. This allows event counting in Secure state.

SPME Meaning
0b0 Event counting prohibited in Secure state.
0b1 Event counting allowed in Secure state.

If EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this bit is 0b1.

In a system where the PE resets into EL3, this field resets to 0.

When PMUv3 is implemented:

Secure Performance Monitors enable. This allows event counting in Secure state.

SPME Meaning
0b0 Event counting prohibited in Secure state, unless

ExternalSecureNoninvasiveDebugEnabled() is TRUE.
0b1 Event counting allowed in Secure state.

If EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this bit is 0b1.

In a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [16]

Reserved, RES0.

SPD, bits [15:14]

AArch32 Secure self-hosted Privileged Debug. Enables or disables debug exceptions from EL3, other than Breakpoint
Instruction exceptions

SPD Meaning
0b00 Legacy mode. Debug exceptions from EL3 are enabled by the

authentication interface.
0b10 Secure privileged debug disabled. Debug exceptions from EL3 are

disabled.
0b11 Secure privileged debug enabled. Debug exceptions from EL3 are

enabled.

Other values are reserved, and have the CONSTRAINED UNPREDICTABLE behavior that they must have the same behavior
as 0b00. Software must not rely on this property as the behavior of reserved values might change in a future revision
of the architecture.

This field has no effect on Breakpoint Instruction exceptions. These are always enabled.

This field is ignored in Non-secure state.

If debug exceptions from EL3 are enabled, then debug exceptions from Secure EL0 are also enabled.

Otherwise, debug exceptions from Secure EL0 are enabled only if the value of SDER.SUIDEN is 0b1.

If EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this field is 0b11.

In a system where the PE resets into EL3, this field resets to 0.

SDCR, Secure Debug Control Register

Page 2926

Bits [13:0]

Reserved, RES0.

Accessing the SDCR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

return SDCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' && CP15SDISABLE2 == HIGH then
UNDEFINED;

else
SDCR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDCR, Secure Debug Control Register

Page 2927

SDER, Secure Debug Enable Register
The SDER characteristics are:

Purpose
Controls invasive and non-invasive debug in the Secure EL0 mode.

Configuration
AArch32 System register SDER bits [31:0] are architecturally mapped to AArch64 System register SDER32_EL3[31:0]
.

This register is present only when AArch32 is supported at any Exception level, or EL3 is implemented or the
implemented Security state is Secure state. Otherwise, direct accesses to SDER are UNDEFINED.

This register is ignored by the PE when one or more of the following are true:

• The PE is in Non-secure state.

• EL1 is using AArch64.

Attributes
SDER is a 32-bit register.

Field descriptions
The SDER bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SUNIDENSUIDEN

Bits [31:2]

Reserved, RES0.

SUNIDEN, bit [1]

Secure User Non-Invasive Debug Enable.

SUNIDEN Meaning
0b0 This bit does not affect Performance Monitors event

counting at Secure EL0
0b1 If EL3 or EL1 is using AArch32, Performance Monitors

event counting is allowed in Secure EL0.

On a Warm reset, this field resets to 0.

SUIDEN, bit [0]

Secure User Invasive Debug Enable.

SUIDEN Meaning
0b0 This bit does not affect the generation of debug exceptions at

Secure EL0.
0b1 If EL3 or EL1 is using AArch32, debug exceptions from

Secure EL0 are enabled.

SDER, Secure Debug Enable Register

Page 2928

On a Warm reset, this field resets to 0.

Accessing the SDER
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif (!HaveEL(EL3) || !ELUsingAArch32(EL3)) && SCR_EL3.NS == '0' then

return SDER;
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

return SDER;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif (!HaveEL(EL3) || !ELUsingAArch32(EL3)) && SCR_EL3.NS == '0' then

SDER = R[t];
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' && CP15SDISABLE2 == HIGH then
UNDEFINED;

else
SDER = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDER, Secure Debug Enable Register

Page 2929

SPSR, Saved Program Status Register
The SPSR characteristics are:

Purpose
Holds the saved process state for the current mode.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SPSR
are UNKNOWN.

Attributes
SPSR is a 32-bit register.

Field descriptions
The SPSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4] M[3:0]

N, bit [31]

Set to the value of PSTATE.N on taking an exception to the current mode, and copied to PSTATE.N on executing an
exception return operation in the current mode.

Z, bit [30]

Set to the value of PSTATE.Z on taking an exception to the current mode, and copied to PSTATE.Z on executing an
exception return operation in the current mode.

C, bit [29]

Set to the value of PSTATE.C on taking an exception to the current mode, and copied to PSTATE.C on executing an
exception return operation in the current mode.

V, bit [28]

Set to the value of PSTATE.V on taking an exception to the current mode, and copied to PSTATE.V on executing an
exception return operation in the current mode.

Q, bit [27]

Set to the value of PSTATE.Q on taking an exception to the current mode, and copied to PSTATE.Q on executing an
exception return operation in the current mode.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

SPSR, Saved Program Status Register

Page 2930

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. Armv8 does not
support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass Safe. This bit is set to the value of PSTATE.SSBS on taking an exception to the current mode,
and copied to PSTATE.SSBS on executing an exception return operation in the current mode.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. This bit is set to the value of PSTATE.PAN on taking an exception to the current mode, and
copied to PSTATE.PAN on executing an exception return operation in the current mode.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When ARMv8.4-DIT is implemented:

Data Independent Timing. This bit is set to the value of PSTATE.DIT on taking an exception to the current mode, and
copied to PSTATE.DIT on executing an exception return operation in the current mode.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code
specified by the first condition field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally
executed, by the position of the least significant 1 in this field. It also encodes the value of the least significant
bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

SPSR, Saved Program Status Register

Page 2931

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0b0 Little-endian operation
0b1 Big-endian operation.

Instruction fetches ignore this bit.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support,
this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any
Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level
other than EL0.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the
CPSR.E bit on reset, and therefore applies to software execution from reset.

A, bit [8]

SError interrupt mask bit.

A Meaning
0b0 Exception not masked.
0b1 Exception masked.

I, bit [7]

IRQ mask bit.

I Meaning
0b0 Exception not masked.
0b1 Exception masked.

F, bit [6]

FIQ mask bit.

F Meaning
0b0 Exception not masked.
0b1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was taken from.

T Meaning
0b0 Taken from A32 state.
0b1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from.

M[4] Meaning
0b1 Exception taken from AArch32.

SPSR, Saved Program Status Register

Page 2932

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from.

M[3:0] Meaning Applies when
0b0000 User.
0b0001 FIQ.
0b0010 IRQ.
0b0011 Supervisor.
0b0110 Monitor (only valid in Secure

state, if EL3 is implemented and
can use AArch32).

When EL3 is implemented
and EL3 is capable of
using AArch32

0b0111 Abort.
0b1010 Hyp.
0b1011 Undefined.
0b1111 System.

Other values are reserved.

Accessing the SPSR
SPSR can be read using the MRS instruction and written using the MSR (register) or MSR (immediate) instructions.

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR, Saved Program Status Register

Page 2933

SPSR_abt, Saved Program Status Register (Abort
mode)

The SPSR_abt characteristics are:

Purpose
Holds the saved process state when an exception is taken to Abort mode.

Configuration
AArch32 System register SPSR_abt bits [31:0] are architecturally mapped to AArch64 System register SPSR_abt[31:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
SPSR_abt are UNKNOWN.

Attributes
SPSR_abt is a 32-bit register.

Field descriptions
The SPSR_abt bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Abort mode, and copied to PSTATE.N
on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Abort mode, and copied to PSTATE.Z on
executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Abort mode, and copied to PSTATE.C on
executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Abort mode, and copied to PSTATE.V
on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 2934

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Abort mode, and copied to
PSTATE.Q on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Abort mode, and copied to PSTATE.IT[1:0] on
executing an exception return operation in Abort mode.

On executing an exception return operation in Abort mode SPSR_abt.IT must contain a value that is valid for the
instruction being returned to.

This field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Abort mode, and copied to
PSTATE.SSBS on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Abort mode, and copied to
PSTATE.PAN on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Abort mode, and copied to
PSTATE.DIT on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 2935

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Abort mode, and copied to PSTATE.IL
on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Abort mode, and copied to
PSTATE.GE on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Abort mode, and copied to PSTATE.IT[7:2] on
executing an exception return operation in Abort mode.

SPSR_abt.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Abort mode, and copied to PSTATE.E on executing
an exception return operation in Abort mode.

If the implementation does not support big-endian operation, SPSR_abt.E is RES0. If the implementation does not
support little-endian operation, SPSR_abt.E is RES1. On executing an exception return operation in Abort mode, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_abt.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_abt.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Abort mode, and copied to PSTATE.A on
executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Abort mode, and copied to PSTATE.I on
executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Abort mode, and copied to PSTATE.F on
executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 2936

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Abort mode, and copied to PSTATE.T
on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Abort mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in Abort mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_abt.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in Abort mode is an illegal return event, as described in 'Illegal return events
from AArch32 state' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_abt
SPSR_abt is accessible in all modes other than User mode and Abort mode.

Accesses to this register use the following encodings:

MRS{<c>}{<q>} <Rd>, SPSR_abt

R M M1
0b1 0b1 0b0100

MSR{<c>}{<q>} SPSR_abt, <Rn>

R M M1
0b1 0b1 0b0100

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 2937

SPSR_fiq, Saved Program Status Register (FIQ mode)
The SPSR_fiq characteristics are:

Purpose
Holds the saved process state when an exception is taken to FIQ mode.

Configuration
AArch32 System register SPSR_fiq bits [31:0] are architecturally mapped to AArch64 System register SPSR_fiq[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SPSR_fiq
are UNKNOWN.

Attributes
SPSR_fiq is a 32-bit register.

Field descriptions
The SPSR_fiq bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to FIQ mode, and copied to PSTATE.N on
executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to FIQ mode, and copied to PSTATE.Z on
executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to FIQ mode, and copied to PSTATE.C on
executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to FIQ mode, and copied to PSTATE.V on
executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 2938

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to FIQ mode, and copied to PSTATE.Q
on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to FIQ mode, and copied to PSTATE.IT[1:0] on
executing an exception return operation in FIQ mode.

On executing an exception return operation in FIQ mode SPSR_fiq.IT must contain a value that is valid for the
instruction being returned to.

This field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to FIQ mode, and copied to
PSTATE.SSBS on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to FIQ mode, and copied to
PSTATE.PAN on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to FIQ mode, and copied to
PSTATE.DIT on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 2939

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to FIQ mode, and copied to PSTATE.IL on
executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to FIQ mode, and copied to
PSTATE.GE on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to FIQ mode, and copied to PSTATE.IT[7:2] on
executing an exception return operation in FIQ mode.

SPSR_fiq.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to FIQ mode, and copied to PSTATE.E on executing
an exception return operation in FIQ mode.

If the implementation does not support big-endian operation, SPSR_fiq.E is RES0. If the implementation does not
support little-endian operation, SPSR_fiq.E is RES1. On executing an exception return operation in FIQ mode, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_fiq.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_fiq.E
is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to FIQ mode, and copied to PSTATE.A on
executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to FIQ mode, and copied to PSTATE.I on
executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to FIQ mode, and copied to PSTATE.F on
executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 2940

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to FIQ mode, and copied to PSTATE.T
on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to FIQ mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in FIQ mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_fiq.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in FIQ mode is an illegal return event, as described in 'Illegal return events
from AArch32 state' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_fiq
SPSR_fiq is accessible in all modes other than User mode and FIQ mode.

Accesses to this register use the following encodings:

MRS{<c>}{<q>} <Rd>, SPSR_fiq

R M M1
0b1 0b0 0b1110

MSR{<c>}{<q>} SPSR_fiq, <Rn>

R M M1
0b1 0b0 0b1110

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 2941

SPSR_hyp, Saved Program Status Register (Hyp
mode)

The SPSR_hyp characteristics are:

Purpose
Holds the saved process state when an exception is taken to Hyp mode.

Configuration
AArch32 System register SPSR_hyp bits [31:0] are architecturally mapped to AArch64 System register
SPSR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
SPSR_hyp are UNKNOWN.

Attributes
SPSR_hyp is a 32-bit register.

Field descriptions
The SPSR_hyp bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Hyp mode, and copied to PSTATE.N
on executing an exception return operation in Hyp mode.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Hyp mode, and copied to PSTATE.Z on
executing an exception return operation in Hyp mode.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Hyp mode, and copied to PSTATE.C on
executing an exception return operation in Hyp mode.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Hyp mode, and copied to PSTATE.V on
executing an exception return operation in Hyp mode.

This field resets to an architecturally UNKNOWN value.

SPSR_hyp, Saved Program Status Register (Hyp mode)

Page 2942

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Hyp mode, and copied to
PSTATE.Q on executing an exception return operation in Hyp mode.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Hyp mode, and copied to PSTATE.IT[1:0] on
executing an exception return operation in Hyp mode.

On executing an exception return operation in Hyp mode SPSR_hyp.IT must contain a value that is valid for the
instruction being returned to.

This field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Hyp mode, and copied to
PSTATE.SSBS on executing an exception return operation in Hyp mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Hyp mode, and copied to
PSTATE.PAN on executing an exception return operation in Hyp mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Hyp mode, and copied to
PSTATE.DIT on executing an exception return operation in Hyp mode.

This field resets to an architecturally UNKNOWN value.

SPSR_hyp, Saved Program Status Register (Hyp mode)

Page 2943

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Hyp mode, and copied to PSTATE.IL on
executing an exception return operation in Hyp mode.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Hyp mode, and copied to
PSTATE.GE on executing an exception return operation in Hyp mode.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Hyp mode, and copied to PSTATE.IT[7:2] on
executing an exception return operation in Hyp mode.

SPSR_hyp.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Hyp mode, and copied to PSTATE.E on executing
an exception return operation in Hyp mode.

If the implementation does not support big-endian operation, SPSR_hyp.E is RES0. If the implementation does not
support little-endian operation, SPSR_hyp.E is RES1. On executing an exception return operation in Hyp mode, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_hyp.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_hyp.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Hyp mode, and copied to PSTATE.A on
executing an exception return operation in Hyp mode.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Hyp mode, and copied to PSTATE.I on
executing an exception return operation in Hyp mode.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Hyp mode, and copied to PSTATE.F on
executing an exception return operation in Hyp mode.

This field resets to an architecturally UNKNOWN value.

SPSR_hyp, Saved Program Status Register (Hyp mode)

Page 2944

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Hyp mode, and copied to PSTATE.T
on executing an exception return operation in Hyp mode.

This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Hyp mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in Hyp mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11010 Hyp.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_hyp.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in Hyp mode is an illegal return event, as described in 'Illegal return events
from AArch32 state' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_hyp
SPSR_hyp is accessible only in Monitor mode.

Accesses to this register use the following encodings:

MRS{<c>}{<q>} <Rd>, SPSR_hyp

R M M1
0b1 0b1 0b1110

MSR{<c>}{<q>} SPSR_hyp, <Rn>

R M M1
0b1 0b1 0b1110

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_hyp, Saved Program Status Register (Hyp mode)

Page 2945

SPSR_irq, Saved Program Status Register (IRQ mode)
The SPSR_irq characteristics are:

Purpose
Holds the saved process state when an exception is taken to IRQ mode.

Configuration
AArch32 System register SPSR_irq bits [31:0] are architecturally mapped to AArch64 System register SPSR_irq[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
SPSR_irq are UNKNOWN.

Attributes
SPSR_irq is a 32-bit register.

Field descriptions
The SPSR_irq bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to IRQ mode, and copied to PSTATE.N
on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to IRQ mode, and copied to PSTATE.Z on
executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to IRQ mode, and copied to PSTATE.C on
executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to IRQ mode, and copied to PSTATE.V on
executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 2946

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to IRQ mode, and copied to
PSTATE.Q on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to IRQ mode, and copied to PSTATE.IT[1:0] on
executing an exception return operation in IRQ mode.

On executing an exception return operation in IRQ mode SPSR_irq.IT must contain a value that is valid for the
instruction being returned to.

This field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to IRQ mode, and copied to
PSTATE.SSBS on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to IRQ mode, and copied to
PSTATE.PAN on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to IRQ mode, and copied to
PSTATE.DIT on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 2947

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to IRQ mode, and copied to PSTATE.IL on
executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to IRQ mode, and copied to
PSTATE.GE on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to IRQ mode, and copied to PSTATE.IT[7:2] on
executing an exception return operation in IRQ mode.

SPSR_irq.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to IRQ mode, and copied to PSTATE.E on executing
an exception return operation in IRQ mode.

If the implementation does not support big-endian operation, SPSR_irq.E is RES0. If the implementation does not
support little-endian operation, SPSR_irq.E is RES1. On executing an exception return operation in IRQ mode, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_irq.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_irq.E
is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to IRQ mode, and copied to PSTATE.A on
executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to IRQ mode, and copied to PSTATE.I on
executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to IRQ mode, and copied to PSTATE.F on
executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 2948

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to IRQ mode, and copied to PSTATE.T
on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to IRQ mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in IRQ mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_irq.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in IRQ mode is an illegal return event, as described in 'Illegal return events
from AArch32 state' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_irq
SPSR_irq is accessible in all modes other than User mode and IRQ mode.

Accesses to this register use the following encodings:

MRS{<c>}{<q>} <Rd>, SPSR_irq

R M M1
0b1 0b1 0b0000

MSR{<c>}{<q>} SPSR_irq, <Rn>

R M M1
0b1 0b1 0b0000

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 2949

SPSR_mon, Saved Program Status Register (Monitor
mode)

The SPSR_mon characteristics are:

Purpose
Holds the saved process state when an exception is taken to Monitor mode.

Configuration
AArch32 System register SPSR_mon bits [31:0] can be mapped to AArch64 System register SPSR_EL3[31:0] , but this
is not architecturally mandated.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
SPSR_mon are UNKNOWN.

Attributes
SPSR_mon is a 32-bit register.

Field descriptions
The SPSR_mon bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Monitor mode, and copied to
PSTATE.N on executing an exception return operation in Monitor mode.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Monitor mode, and copied to PSTATE.Z on
executing an exception return operation in Monitor mode.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Monitor mode, and copied to PSTATE.C
on executing an exception return operation in Monitor mode.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Monitor mode, and copied to
PSTATE.V on executing an exception return operation in Monitor mode.

This field resets to an architecturally UNKNOWN value.

SPSR_mon, Saved Program Status Register (Monitor mode)

Page 2950

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Monitor mode, and copied to
PSTATE.Q on executing an exception return operation in Monitor mode.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Monitor mode, and copied to PSTATE.IT[1:0] on
executing an exception return operation in Monitor mode.

On executing an exception return operation in Monitor mode SPSR_mon.IT must contain a value that is valid for the
instruction being returned to.

This field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Monitor mode, and copied to
PSTATE.SSBS on executing an exception return operation in Monitor mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Monitor mode, and copied to
PSTATE.PAN on executing an exception return operation in Monitor mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Monitor mode, and copied to
PSTATE.DIT on executing an exception return operation in Monitor mode.

This field resets to an architecturally UNKNOWN value.

SPSR_mon, Saved Program Status Register (Monitor mode)

Page 2951

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Monitor mode, and copied to
PSTATE.IL on executing an exception return operation in Monitor mode.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Monitor mode, and copied to
PSTATE.GE on executing an exception return operation in Monitor mode.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Monitor mode, and copied to PSTATE.IT[7:2] on
executing an exception return operation in Monitor mode.

SPSR_mon.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Monitor mode, and copied to PSTATE.E on
executing an exception return operation in Monitor mode.

If the implementation does not support big-endian operation, SPSR_mon.E is RES0. If the implementation does not
support little-endian operation, SPSR_mon.E is RES1. On executing an exception return operation in Monitor mode, if
the implementation does not support big-endian operation at the Exception level being returned to, SPSR_mon.E is
RES0, and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_mon.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Monitor mode, and copied to PSTATE.A
on executing an exception return operation in Monitor mode.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Monitor mode, and copied to PSTATE.I on
executing an exception return operation in Monitor mode.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Monitor mode, and copied to PSTATE.F on
executing an exception return operation in Monitor mode.

This field resets to an architecturally UNKNOWN value.

SPSR_mon, Saved Program Status Register (Monitor mode)

Page 2952

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Monitor mode, and copied to
PSTATE.T on executing an exception return operation in Monitor mode.

This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Monitor mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in Monitor mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10110 Monitor.
0b10111 Abort.
0b11010 Hyp.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_mon.M[4:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in Monitor mode is an illegal return event, as described in 'Illegal
return events from AArch32 state' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture
profile.

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_mon
SPSR_mon is only accessible in EL3 modes other than Monitor mode.

Accesses to this register use the following encodings:

MRS{<c>}{<q>} <Rd>, SPSR_mon

R M M1
0b1 0b1 0b1100

MSR{<c>}{<q>} SPSR_mon, <Rn>

R M M1
0b1 0b1 0b1100

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_mon, Saved Program Status Register (Monitor mode)

Page 2953

SPSR_svc, Saved Program Status Register (Supervisor
mode)

The SPSR_svc characteristics are:

Purpose
Holds the saved process state when an exception is taken to Supervisor mode.

Configuration
AArch32 System register SPSR_svc bits [31:0] are architecturally mapped to AArch64 System register
SPSR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
SPSR_svc are UNKNOWN.

Attributes
SPSR_svc is a 32-bit register.

Field descriptions
The SPSR_svc bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Supervisor mode, and copied to
PSTATE.N on executing an exception return operation in Supervisor mode.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Supervisor mode, and copied to PSTATE.Z
on executing an exception return operation in Supervisor mode.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Supervisor mode, and copied to
PSTATE.C on executing an exception return operation in Supervisor mode.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Supervisor mode, and copied to
PSTATE.V on executing an exception return operation in Supervisor mode.

This field resets to an architecturally UNKNOWN value.

SPSR_svc, Saved Program Status Register (Supervisor mode)

Page 2954

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Supervisor mode, and copied to
PSTATE.Q on executing an exception return operation in Supervisor mode.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Supervisor mode, and copied to PSTATE.IT[1:0]
on executing an exception return operation in Supervisor mode.

On executing an exception return operation in Supervisor mode SPSR_svc.IT must contain a value that is valid for the
instruction being returned to.

This field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Supervisor mode, and copied to
PSTATE.SSBS on executing an exception return operation in Supervisor mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Supervisor mode, and copied to
PSTATE.PAN on executing an exception return operation in Supervisor mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Supervisor mode, and copied to
PSTATE.DIT on executing an exception return operation in Supervisor mode.

This field resets to an architecturally UNKNOWN value.

SPSR_svc, Saved Program Status Register (Supervisor mode)

Page 2955

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Supervisor mode, and copied to
PSTATE.IL on executing an exception return operation in Supervisor mode.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Supervisor mode, and copied to
PSTATE.GE on executing an exception return operation in Supervisor mode.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Supervisor mode, and copied to PSTATE.IT[7:2]
on executing an exception return operation in Supervisor mode.

SPSR_svc.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Supervisor mode, and copied to PSTATE.E on
executing an exception return operation in Supervisor mode.

If the implementation does not support big-endian operation, SPSR_svc.E is RES0. If the implementation does not
support little-endian operation, SPSR_svc.E is RES1. On executing an exception return operation in Supervisor mode, if
the implementation does not support big-endian operation at the Exception level being returned to, SPSR_svc.E is
RES0, and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_svc.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Supervisor mode, and copied to
PSTATE.A on executing an exception return operation in Supervisor mode.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Supervisor mode, and copied to PSTATE.I
on executing an exception return operation in Supervisor mode.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Supervisor mode, and copied to PSTATE.F
on executing an exception return operation in Supervisor mode.

This field resets to an architecturally UNKNOWN value.

SPSR_svc, Saved Program Status Register (Supervisor mode)

Page 2956

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Supervisor mode, and copied to
PSTATE.T on executing an exception return operation in Supervisor mode.

This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Supervisor mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in Supervisor mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_svc.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in Supervisor mode is an illegal return event, as described in 'Illegal return
events from AArch32 state' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_svc
SPSR_svc is accessible in all modes other than User mode and Supervisor mode.

Accesses to this register use the following encodings:

MRS{<c>}{<q>} <Rd>, SPSR_svc

R M M1
0b1 0b1 0b0010

MSR{<c>}{<q>} SPSR_svc, <Rn>

R M M1
0b1 0b1 0b0010

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_svc, Saved Program Status Register (Supervisor mode)

Page 2957

SPSR_und, Saved Program Status Register (Undefined
mode)

The SPSR_und characteristics are:

Purpose
Holds the saved process state when an exception is taken to Undefined mode.

Configuration
AArch32 System register SPSR_und bits [31:0] are architecturally mapped to AArch64 System register
SPSR_und[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
SPSR_und are UNKNOWN.

Attributes
SPSR_und is a 32-bit register.

Field descriptions
The SPSR_und bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Undefined mode, and copied to
PSTATE.N on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Undefined mode, and copied to PSTATE.Z
on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Undefined mode, and copied to PSTATE.C
on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Undefined mode, and copied to
PSTATE.V on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 2958

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Undefined mode, and copied to
PSTATE.Q on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Undefined mode, and copied to PSTATE.IT[1:0]
on executing an exception return operation in Undefined mode.

On executing an exception return operation in Undefined mode SPSR_und.IT must contain a value that is valid for the
instruction being returned to.

This field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Undefined mode, and copied to
PSTATE.SSBS on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Undefined mode, and copied to
PSTATE.PAN on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When ARMv8.4-DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Undefined mode, and copied to
PSTATE.DIT on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 2959

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Undefined mode, and copied to
PSTATE.IL on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Undefined mode, and copied to
PSTATE.GE on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Undefined mode, and copied to PSTATE.IT[7:2]
on executing an exception return operation in Undefined mode.

SPSR_und.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Undefined mode, and copied to PSTATE.E on
executing an exception return operation in Undefined mode.

If the implementation does not support big-endian operation, SPSR_und.E is RES0. If the implementation does not
support little-endian operation, SPSR_und.E is RES1. On executing an exception return operation in Undefined mode, if
the implementation does not support big-endian operation at the Exception level being returned to, SPSR_und.E is
RES0, and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_und.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Undefined mode, and copied to
PSTATE.A on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Undefined mode, and copied to PSTATE.I
on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Undefined mode, and copied to PSTATE.F
on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 2960

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Undefined mode, and copied to
PSTATE.T on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Undefined mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in Undefined mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_und.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in Undefined mode is an illegal return event, as described in 'Illegal return
events from AArch32 state' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_und
SPSR_und is accessible in all modes other than User mode and Undefined mode.

Accesses to this register use the following encodings:

MRS{<c>}{<q>} <Rd>, SPSR_und

R M M1
0b1 0b1 0b0110

MSR{<c>}{<q>} SPSR_und, <Rn>

R M M1
0b1 0b1 0b0110

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 2961

TCMTR, TCM Type Register
The TCMTR characteristics are:

Purpose
Provides information about the implementation of the TCM.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TCMTR
are UNKNOWN.

If EL1 or above can use AArch32 then this register must be implemented.

Attributes
TCMTR is a 32-bit register.

Field descriptions
The TCMTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the TCMTR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return TCMTR;
elsif PSTATE.EL == EL2 then

return TCMTR;
elsif PSTATE.EL == EL3 then

return TCMTR;

TCMTR, TCM Type Register

Page 2962

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TCMTR, TCM Type Register

Page 2963

TLBIALL, TLB Invalidate All
The TLBIALL characteristics are:

Purpose
Invalidate all cached copies of translation table entries from TLBs that are from any level of the translation table walk.
The entries that are invalidated are as follows:

• If executed at EL1, all entries that:
◦ Would be required for the EL1&0 translation regime.
◦ Match the current VMID, if EL2 is implemented and enabled in the current Security state.

• If executed in Secure state when EL3 is using AArch32, all entries that would be required for the Secure
PL1&0 translation regime.

• If executed at EL2, and if EL2 is enabled in the current Security state, the stage 1 or stage 2 translation table
entries that would be required for the PL1&0 translation regime and matches the current VMID.

The invalidation only applies to the PE that executes this System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIALL are UNKNOWN.

Attributes
TLBIALL is a 32-bit System instruction.

Field descriptions
TLBIALL ignores the value in the register specified by the instruction encoding. Software does not have to write a
value to the register before issuing this instruction.

Executing the TLBIALL instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1000 0b0111 0b000

TLBIALL, TLB Invalidate All

Page 2964

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then

TLBIALLIS();
else

TLBIALL();
elsif PSTATE.EL == EL2 then

TLBIALL();
elsif PSTATE.EL == EL3 then

TLBIALL();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIALL, TLB Invalidate All

Page 2965

TLBIALLH, TLB Invalidate All, Hyp mode
The TLBIALLH characteristics are:

Purpose
If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from any level of the
translation table walk that would be required for the Non-secure EL2 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIALLH are UNKNOWN.

Attributes
TLBIALLH is a 32-bit System instruction.

Field descriptions
TLBIALLH ignores the value in the register specified by the instruction encoding. Software does not have to write a
value to the register before issuing this instruction.

Executing the TLBIALLH instruction
If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED
UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1000 0b0111 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBIALLH();
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
UNDEFINED;

else
TLBIALLH();

TLBIALLH, TLB Invalidate All, Hyp mode

Page 2966

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIALLH, TLB Invalidate All, Hyp mode

Page 2967

TLBIALLHIS, TLB Invalidate All, Hyp mode, Inner
Shareable

The TLBIALLHIS characteristics are:

Purpose
If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from any level of the
translation table walk that would be required for the Non-secure EL2 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIALLHIS are UNKNOWN.

Attributes
TLBIALLHIS is a 32-bit System instruction.

Field descriptions
TLBIALLHIS ignores the value in the register specified by the instruction encoding. Software does not have to write a
value to the register before issuing this instruction.

Executing the TLBIALLHIS instruction
If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED
UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1000 0b0011 0b000

TLBIALLHIS, TLB Invalidate All, Hyp mode, Inner Shareable

Page 2968

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBIALLHIS();
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
UNDEFINED;

else
TLBIALLHIS();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIALLHIS, TLB Invalidate All, Hyp mode, Inner Shareable

Page 2969

TLBIALLIS, TLB Invalidate All, Inner Shareable
The TLBIALLIS characteristics are:

Purpose
Invalidate all cached copies of translation table entries from TLBs that are from any level of the translation table walk.
The entries that are invalidated are as follows:

• If executed at EL1, all entries that:
◦ Would be required for the EL1&0 translation regime.
◦ Match the current VMID, if EL2 is implemented and enabled in the current Security state.

• If executed in Secure state when EL3 is using AArch32, all entries that would be required for the Secure
PL1&0 translation regime.

• If executed at EL2 and if EL2 is enabled in the current Security state, the stage 1 or stage 2 translation table
entries that would be required for the PL1&0 translation regime and matches the current VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIALLIS are UNKNOWN.

Attributes
TLBIALLIS is a 32-bit System instruction.

Field descriptions
TLBIALLIS ignores the value in the register specified by the instruction encoding. Software does not have to write a
value to the register before issuing this instruction.

Executing the TLBIALLIS instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1000 0b0011 0b000

TLBIALLIS, TLB Invalidate All, Inner Shareable

Page 2970

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then

AArch32.TakeHypTrapException(0x03);
else

TLBIALLIS();
elsif PSTATE.EL == EL2 then

TLBIALLIS();
elsif PSTATE.EL == EL3 then

TLBIALLIS();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIALLIS, TLB Invalidate All, Inner Shareable

Page 2971

TLBIALLNSNH, TLB Invalidate All, Non-Secure Non-Hyp
The TLBIALLNSNH characteristics are:

Purpose
If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from any level of the
translation table walk that would be required for stage 1 or stage 2 of the Non-secure PL1&0 translation regime,
regardless of the associated VMID.

The invalidation only applies to the PE that executes this System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIALLNSNH are UNKNOWN.

Attributes
TLBIALLNSNH is a 32-bit System instruction.

Field descriptions
TLBIALLNSNH ignores the value in the register specified by the instruction encoding. Software does not have to write
a value to the register before issuing this instruction.

Executing the TLBIALLNSNH instruction
If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED
UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1000 0b0111 0b100

TLBIALLNSNH, TLB Invalidate All, Non-Secure Non-Hyp

Page 2972

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBIALLNSNH();
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
UNDEFINED;

else
TLBIALLNSNH();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIALLNSNH, TLB Invalidate All, Non-Secure Non-Hyp

Page 2973

TLBIALLNSNHIS, TLB Invalidate All, Non-Secure Non-
Hyp, Inner Shareable

The TLBIALLNSNHIS characteristics are:

Purpose
If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from any level of the
translation table walk that would be required for stage 1 or stage 2 of the Non-secure PL1&0 translation regime,
regardless of the associated VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIALLNSNHIS are UNKNOWN.

Attributes
TLBIALLNSNHIS is a 32-bit System instruction.

Field descriptions
TLBIALLNSNHIS ignores the value in the register specified by the instruction encoding. Software does not have to
write a value to the register before issuing this instruction.

Executing the TLBIALLNSNHIS instruction
If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED
UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1000 0b0011 0b100

TLBIALLNSNHIS, TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable

Page 2974

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBIALLNSNHIS();
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
UNDEFINED;

else
TLBIALLNSNHIS();

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIALLNSNHIS, TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable

Page 2975

TLBIASID, TLB Invalidate by ASID match
The TLBIASID characteristics are:

Purpose
Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used for the specified ASID, and either:

◦ Is from a level of lookup above the final level.
◦ Is a non-global entry from the final level of lookup.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with the current
VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following
translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIASID are UNKNOWN.

Attributes
TLBIASID is a 32-bit System instruction.

Field descriptions
The TLBIASID input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ASID

Bits [31:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries for non-global pages that match the ASID values will be affected by this System
instruction.

Executing the TLBIASID instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

TLBIASID, TLB Invalidate by ASID match

Page 2976

0b1111 0b000 0b1000 0b0111 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then

TLBIASIDIS(R[t]);
else

TLBIASID(R[t]);
elsif PSTATE.EL == EL2 then

TLBIASID(R[t]);
elsif PSTATE.EL == EL3 then

TLBIASID(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIASID, TLB Invalidate by ASID match

Page 2977

TLBIASIDIS, TLB Invalidate by ASID match, Inner
Shareable

The TLBIASIDIS characteristics are:

Purpose
Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used for the specified ASID, and either:

◦ Is from a level of lookup above the final level.
◦ Is a non-global entry from the final level of lookup.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with the current
VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following
translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIASIDIS are UNKNOWN.

Attributes
TLBIASIDIS is a 32-bit System instruction.

Field descriptions
The TLBIASIDIS input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ASID

Bits [31:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries for non-global pages that match the ASID values will be affected by this System
instruction.

Executing the TLBIASIDIS instruction
Accesses to this instruction use the following encodings:

TLBIASIDIS, TLB Invalidate by ASID match, Inner Shareable

Page 2978

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1000 0b0011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then

AArch32.TakeHypTrapException(0x03);
else

TLBIASIDIS(R[t]);
elsif PSTATE.EL == EL2 then

TLBIASIDIS(R[t]);
elsif PSTATE.EL == EL3 then

TLBIASIDIS(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIASIDIS, TLB Invalidate by ASID match, Inner Shareable

Page 2979

TLBIIPAS2, TLB Invalidate by Intermediate Physical
Address, Stage 2

The TLBIIPAS2 characteristics are:

Purpose
If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.
• SCR.NS is 1.
• The entry would be used for the specified IPA.
• The entry would be used with the current VMID.
• The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation only applies to the PE that executes this System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIIPAS2 are UNKNOWN.

Note

This System instruction is not implemented in architecture versions before
Armv8.

Attributes
TLBIIPAS2 is a 32-bit System instruction.

Field descriptions
The TLBIIPAS2 input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IPA[39:12]

Bits [31:28]

Reserved, RES0.

IPA[39:12], bits [27:0]

Bits[39:12] of the intermediate physical address to match.

Executing the TLBIIPAS2 instruction
If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED
UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

TLBIIPAS2, TLB Invalidate by Intermediate Physical Address, Stage 2

Page 2980

• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1000 0b0100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBIIPAS2(R[t]);
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
UNDEFINED;

elsif SCR.NS == '0' then
//no operation

else
TLBIIPAS2(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIIPAS2, TLB Invalidate by Intermediate Physical Address, Stage 2

Page 2981

TLBIIPAS2IS, TLB Invalidate by Intermediate Physical
Address, Stage 2, Inner Shareable

The TLBIIPAS2IS characteristics are:

Purpose
If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.
• SCR.NS is 1.
• The entry would be used for the specified IPA.
• The entry would be used with the current VMID.
• The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIIPAS2IS are UNKNOWN.

Note

This System instruction is not implemented in architecture versions before
Armv8.

Attributes
TLBIIPAS2IS is a 32-bit System instruction.

Field descriptions
The TLBIIPAS2IS input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IPA[39:12]

Bits [31:28]

Reserved, RES0.

IPA[39:12], bits [27:0]

Bits[39:12] of the intermediate physical address to match.

Executing the TLBIIPAS2IS instruction
If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED
UNPREDICTABLE, and one of the following behaviors must occur:

TLBIIPAS2IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable

Page 2982

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1000 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBIIPAS2(R[t]);
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
UNDEFINED;

elsif SCR.NS == '0' then
//no operation

else
TLBIIPAS2(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIIPAS2IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable

Page 2983

TLBIIPAS2L, TLB Invalidate by Intermediate Physical
Address, Stage 2, Last level

The TLBIIPAS2L characteristics are:

Purpose
If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.
• SCR.NS is 1.
• The entry would be used for the specified IPA.
• The entry would be used with the current VMID.
• The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation only applies to the PE that executes this System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIIPAS2L are UNKNOWN.

Note

This System instruction is not implemented in architecture versions before
Armv8.

Attributes
TLBIIPAS2L is a 32-bit System instruction.

Field descriptions
The TLBIIPAS2L input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IPA[39:12]

Bits [31:28]

Reserved, RES0.

IPA[39:12], bits [27:0]

Bits[39:12] of the intermediate physical address to match.

Executing the TLBIIPAS2L instruction
If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED
UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

TLBIIPAS2L, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level

Page 2984

• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1000 0b0100 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBIIPAS2(R[t]);
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
UNDEFINED;

elsif SCR.NS == '0' then
//no operation

else
TLBIIPAS2(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIIPAS2L, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level

Page 2985

TLBIIPAS2LIS, TLB Invalidate by Intermediate Physical
Address, Stage 2, Last level, Inner Shareable

The TLBIIPAS2LIS characteristics are:

Purpose
If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.
• SCR.NS is 1.
• The entry would be used for the specified IPA.
• The entry would be used with the current VMID.
• The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIIPAS2LIS are UNKNOWN.

Note

This System instruction is not implemented in architecture versions before
Armv8.

Attributes
TLBIIPAS2LIS is a 32-bit System instruction.

Field descriptions
The TLBIIPAS2LIS input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IPA[39:12]

Bits [31:28]

Reserved, RES0.

IPA[39:12], bits [27:0]

Bits[39:12] of the intermediate physical address to match.

Executing the TLBIIPAS2LIS instruction
If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED
UNPREDICTABLE, and one of the following behaviors must occur:

TLBIIPAS2LIS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable

Page 2986

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1000 0b0000 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBIIPAS2IS(R[t]);
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
UNDEFINED;

elsif SCR.NS == '0' then
//no operation

else
TLBIIPAS2IS(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIIPAS2LIS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable

Page 2987

TLBIMVA, TLB Invalidate by VA
The TLBIMVA characteristics are:

Purpose
Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.
◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with the current
VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following
translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIMVA are UNKNOWN.

Attributes
TLBIMVA is a 32-bit System instruction.

Field descriptions
The TLBIMVA input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA RES0 ASID

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

TLBIMVA, TLB Invalidate by VA

Page 2988

Executing the TLBIMVA instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1000 0b0111 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then

TLBIMVAIS(R[t]);
else

TLBIMVA(R[t]);
elsif PSTATE.EL == EL2 then

TLBIMVA(R[t]);
elsif PSTATE.EL == EL3 then

TLBIMVA(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVA, TLB Invalidate by VA

Page 2989

TLBIMVAA, TLB Invalidate by VA, All ASID
The TLBIMVAA characteristics are:

Purpose
Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.
• The entry would be used to translate the specified address.
• If EL2 is implemented and enabled in the current Security state, the entry would be used with the current

VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following
translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIMVAA are UNKNOWN.

Attributes
TLBIMVAA is a 32-bit System instruction.

Field descriptions
The TLBIMVAA input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA RES0

VA, bits [31:12]

Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this System instruction,
regardless of the ASID.

Bits [11:0]

Reserved, RES0.

Executing the TLBIMVAA instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1000 0b0111 0b011

TLBIMVAA, TLB Invalidate by VA, All ASID

Page 2990

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then

TLBIMVAAIS(R[t]);
else

TLBIMVAA(R[t]);
elsif PSTATE.EL == EL2 then

TLBIMVAA(R[t]);
elsif PSTATE.EL == EL3 then

TLBIMVAA(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVAA, TLB Invalidate by VA, All ASID

Page 2991

TLBIMVAAIS, TLB Invalidate by VA, All ASID, Inner
Shareable

The TLBIMVAAIS characteristics are:

Purpose
Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.
• The entry would be used to translate the specified address.
• If EL2 is implemented and enabled in the current Security state, the entry would be used with the current

VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following
translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIMVAAIS are UNKNOWN.

Attributes
TLBIMVAAIS is a 32-bit System instruction.

Field descriptions
The TLBIMVAAIS input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA RES0

VA, bits [31:12]

Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this System instruction,
regardless of the ASID.

Bits [11:0]

Reserved, RES0.

Executing the TLBIMVAAIS instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

TLBIMVAAIS, TLB Invalidate by VA, All ASID, Inner Shareable

Page 2992

0b1111 0b000 0b1000 0b0011 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then

AArch32.TakeHypTrapException(0x03);
else

TLBIMVAAIS(R[t]);
elsif PSTATE.EL == EL2 then

TLBIMVAAIS(R[t]);
elsif PSTATE.EL == EL3 then

TLBIMVAAIS(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVAAIS, TLB Invalidate by VA, All ASID, Inner Shareable

Page 2993

TLBIMVAAL, TLB Invalidate by VA, All ASID, Last level
The TLBIMVAAL characteristics are:

Purpose
Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.
• The entry would be used to translate the specified address.
• If EL2 is implemented and enabled in the current Security state, the entry would be used with the current

VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following
translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIMVAAL are UNKNOWN.

Note

This System instruction is not implemented in architecture versions before
Armv8.

Attributes
TLBIMVAAL is a 32-bit System instruction.

Field descriptions
The TLBIMVAAL input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA RES0

VA, bits [31:12]

Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this System instruction,
regardless of the ASID.

Bits [11:0]

Reserved, RES0.

Executing the TLBIMVAAL instruction
Accesses to this instruction use the following encodings:

TLBIMVAAL, TLB Invalidate by VA, All ASID, Last level

Page 2994

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1000 0b0111 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then

TLBIMVAALIS(R[t]);
else

TLBIMVAAL(R[t]);
elsif PSTATE.EL == EL2 then

TLBIMVAAL(R[t]);
elsif PSTATE.EL == EL3 then

TLBIMVAAL(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVAAL, TLB Invalidate by VA, All ASID, Last level

Page 2995

TLBIMVAALIS, TLB Invalidate by VA, All ASID, Last
level, Inner Shareable

The TLBIMVAALIS characteristics are:

Purpose
Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.
• The entry would be used to translate the specified address.
• If EL2 is implemented and enabled in the current Security state, the entry would be used with the current

VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following
translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIMVAALIS are UNKNOWN.

Note

This System instruction is not implemented in architecture versions before
Armv8.

Attributes
TLBIMVAALIS is a 32-bit System instruction.

Field descriptions
The TLBIMVAALIS input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA RES0

VA, bits [31:12]

Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this System instruction,
regardless of the ASID.

Bits [11:0]

Reserved, RES0.

TLBIMVAALIS, TLB Invalidate by VA, All ASID, Last level, Inner Shareable

Page 2996

Executing the TLBIMVAALIS instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1000 0b0011 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then

AArch32.TakeHypTrapException(0x03);
else

TLBIMVAALIS(R[t]);
elsif PSTATE.EL == EL2 then

TLBIMVAALIS(R[t]);
elsif PSTATE.EL == EL3 then

TLBIMVAALIS(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVAALIS, TLB Invalidate by VA, All ASID, Last level, Inner Shareable

Page 2997

TLBIMVAH, TLB Invalidate by VA, Hyp mode
The TLBIMVAH characteristics are:

Purpose
If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from any level of the
translation table walk that would be required for the Non-secure EL2 translation regime and used to translate the
specified address.

The invalidation only applies to the PE that executes this System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIMVAH are UNKNOWN.

Attributes
TLBIMVAH is a 32-bit System instruction.

Field descriptions
The TLBIMVAH input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA RES0

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Bits [11:0]

Reserved, RES0.

Executing the TLBIMVAH instruction
If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED
UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1000 0b0111 0b001

TLBIMVAH, TLB Invalidate by VA, Hyp mode

Page 2998

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBIMVAH(R[t]);
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
UNDEFINED;

else
TLBIMVAH(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVAH, TLB Invalidate by VA, Hyp mode

Page 2999

TLBIMVAHIS, TLB Invalidate by VA, Hyp mode, Inner
Shareable

The TLBIMVAHIS characteristics are:

Purpose
If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from any level of the
translation table walk that would be required for the Non-secure EL2 translation regime and used to translate the
specified address.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIMVAHIS are UNKNOWN.

Attributes
TLBIMVAHIS is a 32-bit System instruction.

Field descriptions
The TLBIMVAHIS input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA RES0

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Bits [11:0]

Reserved, RES0.

Executing the TLBIMVAHIS instruction
If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED
UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1000 0b0011 0b001

TLBIMVAHIS, TLB Invalidate by VA, Hyp mode, Inner Shareable

Page 3000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBIMVAHIS(R[t]);
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
UNDEFINED;

else
TLBIMVAHIS(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVAHIS, TLB Invalidate by VA, Hyp mode, Inner Shareable

Page 3001

TLBIMVAIS, TLB Invalidate by VA, Inner Shareable
The TLBIMVAIS characteristics are:

Purpose
Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.
◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with the current
VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following
translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIMVAIS are UNKNOWN.

Attributes
TLBIMVAIS is a 32-bit System instruction.

Field descriptions
The TLBIMVAIS input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA RES0 ASID

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

TLBIMVAIS, TLB Invalidate by VA, Inner Shareable

Page 3002

Executing the TLBIMVAIS instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1000 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then

AArch32.TakeHypTrapException(0x03);
else

TLBIMVAIS(R[t]);
elsif PSTATE.EL == EL2 then

TLBIMVAIS(R[t]);
elsif PSTATE.EL == EL3 then

TLBIMVAIS(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVAIS, TLB Invalidate by VA, Inner Shareable

Page 3003

TLBIMVAL, TLB Invalidate by VA, Last level
The TLBIMVAL characteristics are:

Purpose
Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with the current
VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following
translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIMVAL are UNKNOWN.

This System instruction is not implemented in architecture versions before Armv8.

Attributes
TLBIMVAL is a 32-bit System instruction.

Field descriptions
The TLBIMVAL input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA RES0 ASID

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

TLBIMVAL, TLB Invalidate by VA, Last level

Page 3004

Executing the TLBIMVAL instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1000 0b0111 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then

TLBIMVALIS(R[t]);
else

TLBIMVAL(R[t]);
elsif PSTATE.EL == EL2 then

TLBIMVAL(R[t]);
elsif PSTATE.EL == EL3 then

TLBIMVAL(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVAL, TLB Invalidate by VA, Last level

Page 3005

TLBIMVALH, TLB Invalidate by VA, Last level, Hyp
mode

The TLBIMVALH characteristics are:

Purpose
If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from the final level
of the translation table walk that would be required for the Non-secure EL2 translation regime and used to translate
the specified address.

The invalidation only applies to the PE that executes this System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIMVALH are UNKNOWN.

This System instruction is not implemented in architecture versions before Armv8.

Attributes
TLBIMVALH is a 32-bit System instruction.

Field descriptions
The TLBIMVALH input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA RES0

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Bits [11:0]

Reserved, RES0.

Executing the TLBIMVALH instruction
If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED
UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1000 0b0111 0b101

TLBIMVALH, TLB Invalidate by VA, Last level, Hyp mode

Page 3006

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBIMVALH(R[t]);
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
UNDEFINED;

else
TLBIMVALH(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVALH, TLB Invalidate by VA, Last level, Hyp mode

Page 3007

TLBIMVALHIS, TLB Invalidate by VA, Last level, Hyp
mode, Inner Shareable

The TLBIMVALHIS characteristics are:

Purpose
If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from the final level
of the translation table walk that would be required for the Non-secure EL2 translation regime and used to translate
the specified address.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIMVALHIS are UNKNOWN.

This System instruction is not implemented in architecture versions before Armv8.

Attributes
TLBIMVALHIS is a 32-bit System instruction.

Field descriptions
The TLBIMVALHIS input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA RES0

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Bits [11:0]

Reserved, RES0.

Executing the TLBIMVALHIS instruction
If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED
UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

TLBIMVALHIS, TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable

Page 3008

0b1111 0b100 0b1000 0b0011 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBIMVALHIS(R[t]);
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
UNDEFINED;

else
TLBIMVALHIS(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVALHIS, TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable

Page 3009

TLBIMVALIS, TLB Invalidate by VA, Last level, Inner
Shareable

The TLBIMVALIS characteristics are:

Purpose
Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with the current
VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following
translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Configuration
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TLBIMVALIS are UNKNOWN.

This System instruction is not implemented in architecture versions before Armv8.

Attributes
TLBIMVALIS is a 32-bit System instruction.

Field descriptions
The TLBIMVALIS input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA RES0 ASID

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

TLBIMVALIS, TLB Invalidate by VA, Last level, Inner Shareable

Page 3010

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

Executing the TLBIMVALIS instruction
Accesses to this instruction use the following encodings:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1000 0b0011 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then

AArch32.TakeHypTrapException(0x03);
else

TLBIMVAL(R[t]);
elsif PSTATE.EL == EL2 then

TLBIMVAL(R[t]);
elsif PSTATE.EL == EL3 then

TLBIMVAL(R[t]);

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVALIS, TLB Invalidate by VA, Last level, Inner Shareable

Page 3011

TLBTR, TLB Type Register
The TLBTR characteristics are:

Purpose
Provides information about the TLB implementation. The register must define whether the implementation provides
separate instruction and data TLBs, or a unified TLB. Normally, the IMPLEMENTATION DEFINED information in this
register includes the number of lockable entries in the TLB.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBTR
are UNKNOWN.

Attributes
TLBTR is a 32-bit register.

Field descriptions
The TLBTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED nU

IMPLEMENTATION DEFINED, bits [31:1]

IMPLEMENTATION DEFINED.

nU, bit [0]

Not Unified TLB. Indicates whether the implementation has a unified TLB:

nU Meaning
0b0 Unified TLB.
0b1 Separate Instruction and Data TLBs.

Accessing the TLBTR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0000 0b011

TLBTR, TLB Type Register

Page 3012

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return TLBTR;
elsif PSTATE.EL == EL2 then

return TLBTR;
elsif PSTATE.EL == EL3 then

return TLBTR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBTR, TLB Type Register

Page 3013

TPIDRPRW, PL1 Software Thread ID Register
The TPIDRPRW characteristics are:

Purpose
Provides a location where software executing at EL1 or higher can store thread identifying information that is not
visible to software executing at EL0, for OS management purposes.

The PE makes no use of this register.

Configuration
AArch32 System register TPIDRPRW bits [31:0] are architecturally mapped to AArch64 System register
TPIDR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TPIDRPRW are UNKNOWN.

Note

The PE never updates this register.

Attributes
TPIDRPRW is a 32-bit register.

Field descriptions
The TPIDRPRW bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Thread ID

Bits [31:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

This field resets to an architecturally UNKNOWN value.

Accessing the TPIDRPRW
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0000 0b100

TPIDRPRW, PL1 Software Thread ID Register

Page 3014

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return TPIDRPRW_NS;
else

return TPIDRPRW;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return TPIDRPRW_NS;

else
return TPIDRPRW;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return TPIDRPRW_S;
else

return TPIDRPRW_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0000 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

TPIDRPRW_NS = R[t];
else

TPIDRPRW = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
TPIDRPRW_NS = R[t];

else
TPIDRPRW = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

TPIDRPRW_S = R[t];
else

TPIDRPRW_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TPIDRPRW, PL1 Software Thread ID Register

Page 3015

TPIDRURO, PL0 Read-Only Software Thread ID
Register

The TPIDRURO characteristics are:

Purpose
Provides a location where software executing at EL1 or higher can store thread identifying information that is visible
to software executing at EL0, for OS management purposes.

The PE makes no use of this register.

Configuration
AArch32 System register TPIDRURO bits [31:0] are architecturally mapped to AArch64 System register
TPIDRRO_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TPIDRURO are UNKNOWN.

Note

The PE never updates this register.

Attributes
TPIDRURO is a 32-bit register.

Field descriptions
The TPIDRURO bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Thread ID

Bits [31:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

This field resets to an architecturally UNKNOWN value.

Accessing the TPIDRURO
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0000 0b011

TPIDRURO, PL0 Read-Only Software Thread ID Register

Page 3016

if PSTATE.EL == EL0 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TPIDRRO_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

return TPIDRURO;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
return TPIDRURO_NS;

else
return TPIDRURO;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

return TPIDRURO_NS;
else

return TPIDRURO;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
return TPIDRURO_S;

else
return TPIDRURO_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0000 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

TPIDRURO_NS = R[t];
else

TPIDRURO = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
TPIDRURO_NS = R[t];

else
TPIDRURO = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

TPIDRURO_S = R[t];
else

TPIDRURO_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TPIDRURO, PL0 Read-Only Software Thread ID Register

Page 3017

TPIDRURW, PL0 Read/Write Software Thread ID
Register

The TPIDRURW characteristics are:

Purpose
Provides a location where software executing at EL0 can store thread identifying information, for OS management
purposes.

The PE makes no use of this register.

Configuration
AArch32 System register TPIDRURW bits [31:0] are architecturally mapped to AArch64 System register
TPIDR_EL0[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
TPIDRURW are UNKNOWN.

Note

The PE never updates this register.

Attributes
TPIDRURW is a 32-bit register.

Field descriptions
The TPIDRURW bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Thread ID

Bits [31:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

This field resets to an architecturally UNKNOWN value.

Accessing the TPIDRURW
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0000 0b010

TPIDRURW, PL0 Read/Write Software Thread ID Register

Page 3018

if PSTATE.EL == EL0 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TPIDR_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

return TPIDRURW;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
return TPIDRURW_NS;

else
return TPIDRURW;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

return TPIDRURW_NS;
else

return TPIDRURW;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
return TPIDRURW_S;

else
return TPIDRURW_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1101 0b0000 0b010

if PSTATE.EL == EL0 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TPIDR_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

TPIDRURW = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
TPIDRURW_NS = R[t];

else
TPIDRURW = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

TPIDRURW_NS = R[t];
else

TPIDRURW = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
TPIDRURW_S = R[t];

else
TPIDRURW_NS = R[t];

TPIDRURW, PL0 Read/Write Software Thread ID Register

Page 3019

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TPIDRURW, PL0 Read/Write Software Thread ID Register

Page 3020

TRFCR, Trace Filter Control Register
The TRFCR characteristics are:

Purpose
Provides EL1 controls for Trace.

Configuration
AArch32 System register TRFCR bits [31:0] are architecturally mapped to AArch64 System register TRFCR_EL1[31:0]
.

This register is present only when AArch32 is supported at any Exception level and ARMv8.4-Trace is implemented.
Otherwise, direct accesses to TRFCR are UNDEFINED.

Attributes
TRFCR is a 32-bit register.

Field descriptions
The TRFCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 TS RES0 E1TREE0TRE

Bits [31:7]

Reserved, RES0.

TS, bits [6:5]

Timestamp Control. Controls which timebase is used for trace timestamps.

TS Meaning Applies
when

0b01 Virtual timestamp. The traced timestamp is the
physical counter value, minus the value of
CNTVOFF.

0b10 Guest Physical timestamp. The traced
timestamp is the physical counter value, minus
the value of CNTPOFF_EL2.

When
ARMv8.6-ECV
is
implemented

0b11 Physical timestamp. The traced timestamp is
the physical counter value.

All other values are reserved.

This field is ignored if any of the following are true:

• SelfHostedTraceEnabled() == FALSE.
• HTRFCR.TS is not 0b00.

If ARMv8.6-ECV is implemented, the physical counter uses a fixed physical offset of zero if any of the following are
true:

• When EL2 is implemented and enabled in the current Security state and is using AArch32.
• CNTHCTL_EL2.ECV is 0.
• SCR_EL3.ECVEn is 0.

TRFCR, Trace Filter Control Register

Page 3021

• HCR_EL2.{E2H, TGE} is {1, 1}.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [4:2]

Reserved, RES0.

E1TRE, bit [1]

EL1 Trace Enable.

E1TRE Meaning
0b0 Tracing is prohibited in PL1 modes.
0b1 Tracing is allowed in PL1 modes.

This field is ignored if SelfHostedTraceEnabled() == FALSE.

On a Warm reset, this field resets to 0.

E0TRE, bit [0]

EL0 Trace Enable.

E0TRE Meaning
0b0 Tracing is prohibited at EL0.
0b1 Tracing is allowed at EL0.

This field is ignored if any of the following are true:

• SelfHostedTraceEnabled() == FALSE.
• EL2 is implemented and enabled in the current security state and HCR.TGE == 1.

On a Warm reset, this field resets to 0.

Accessing the TRFCR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0010 0b001

TRFCR, Trace Filter Control Register

Page 3022

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif SCR.NS == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TTRF == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TTRF == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SDCR.TTRF == '1' then

AArch32.TakeMonitorTrapException();
else

return TRFCR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
AArch32.TakeMonitorTrapException();

else
return TRFCR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

return TRFCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0010 0b001

TRFCR, Trace Filter Control Register

Page 3023

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif SCR.NS == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TTRF == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TTRF == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SDCR.TTRF == '1' then

AArch32.TakeMonitorTrapException();
else

TRFCR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
AArch32.TakeMonitorTrapException();

else
TRFCR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

TRFCR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRFCR, Trace Filter Control Register

Page 3024

TTBCR, Translation Table Base Control Register
The TTBCR characteristics are:

Purpose
The control register for stage 1 of the PL1&0 translation regime. Its controls include:

• Where the VA range is split between addresses translated using TTBR0 and addresses translated using TTBR1.
• The translation table format used by this stage of translation.

From Armv8.2, when the value of TTBCR.{EAE, T2E} is {1, 1}, TTBCR is used with TTBCR2.

Configuration
AArch32 System register TTBCR bits [31:0] are architecturally mapped to AArch64 System register TCR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TTBCR
are UNKNOWN.

The current translation table format determines which format of the register is used.

Some RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that
is using AArch32. If the PE resets into EL3 using AArch32 then:

• The EAE bit resets to 0 in both the Secure and the Non-secure instances of the register.
• Other reset values apply only to the Secure instance of the register.

Attributes
TTBCR is a 32-bit register.

Field descriptions
The TTBCR bit assignments are:

When TTBCR.EAE == 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EAE RES0 PD1PD0RES0 N

EAE, bit [31]

Extended Address Enable. The meanings of the possible values of this bit are:

EAE Meaning
0b0 Use the VMSAv8-32 translation system with the Short-descriptor

translation table format.

This field resets to 0.

Bits [30:6]

Reserved, RES0.

TTBCR, Translation Table Base Control Register

Page 3025

PD1, bit [5]

Translation table walk disable for translations using TTBR1. This bit controls whether a translation table walk is
performed on a TLB miss, for an address that is translated using TTBR1. The encoding of this bit is:

PD1 Meaning
0b0 Perform translation table walks using TTBR1.
0b1 A TLB miss on an address that is translated using TTBR1

generates a Translation fault. No translation table walk is
performed.

This field resets to 0.

PD0, bit [4]

Translation table walk disable for translations using TTBR0. This bit controls whether a translation table walk is
performed on a TLB miss for an address that is translated using TTBR0. The encoding of this bit is:

PD0 Meaning
0b0 Perform translation table walks using TTBR0.
0b1 A TLB miss on an address that is translated using TTBR0

generates a Translation fault. No translation table walk is
performed.

This field resets to 0.

Bit [3]

Reserved, RES0.

N, bits [2:0]

Indicate the width of the base address held in TTBR0. In TTBR0, the base address field is bits[31:14-N]. The value of N
also determines:

• Whether TTBR0 or TTBR1 is used as the base address for translation table walks.
• The size of the translation table pointed to by TTBR0.

N can take any value from 0 to 7, that is, from 0b000 to 0b111.

When N has its reset value of 0, the translation table base is compatible with Armv5 and Armv6.

This field resets to 0.

When TTBCR.EAE == 1:

31 30 2928 27 26 25 24 23 22 212019181716 15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

EAEIMPLEMENTATION
DEFINED SH1ORGN1IRGN1EPD1A1 RES0 T1SZ RES0SH0ORGN0IRGN0EPD0T2E RES0 T0SZ

EAE, bit [31]

Extended Address Enable. The meanings of the possible values of this bit are:

EAE Meaning
0b1 Use the VMSAv8-32 translation system with the Long-descriptor

translation table format.

This field resets to 0.

IMPLEMENTATION DEFINED, bit [30]

IMPLEMENTATION DEFINED.

TTBCR, Translation Table Base Control Register

Page 3026

This field resets to 0.

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1. Defined values are:

SH1 Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED
UNPREDICTABLE, as described in 'Unallocated values in fields of AArch32 System registers and translation table entries'
in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section K1.1.11.

This field resets to 0.

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1.

ORGN1 Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to 0.

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1.

IRGN1 Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate

Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No Write-

Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to 0.

EPD1, bit [23]

Translation table walk disable for translations using TTBR1. This bit controls whether a translation table walk is
performed on a TLB miss, for an address that is translated using TTBR1. The encoding of this bit is:

EPD1 Meaning
0b0 Perform translation table walks using TTBR1.
0b1 A TLB miss on an address that is translated using TTBR1

generates a Translation fault. No translation table walk is
performed.

This field resets to 0.

A1, bit [22]

Selects whether TTBR0 or TTBR1 defines the ASID. The encoding of this bit is:

TTBCR, Translation Table Base Control Register

Page 3027

A1 Meaning
0b0 TTBR0.ASID defines the ASID.
0b1 TTBR1.ASID defines the ASID.

This field resets to 0.

Bits [21:19]

Reserved, RES0.

T1SZ, bits [18:16]

See 'Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile for how TTBCR.{T1SZ, T0SZ} determine the
input address ranges and memory region sizes translated using TTBR0 and TTBR1.

This field resets to 0.

Bits [15:14]

Reserved, RES0.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0.

SH0 Meaning
0b00 Non-shareable
0b10 Outer Shareable
0b11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED
UNPREDICTABLE, as described in 'Unallocated values in fields of AArch32 System registers and translation table entries'
in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section K1.1.11.

This field resets to 0.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0.

ORGN0 Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to 0.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0.

IRGN0 Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate

Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No Write-

Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-

Allocate Cacheable.

TTBCR, Translation Table Base Control Register

Page 3028

This field resets to 0.

EPD0, bit [7]

Translation table walk disable for translations using TTBR0. This bit controls whether a translation table walk is
performed on a TLB miss, for an address that is translated using TTBR0. The encoding of this bit is:

EPD0 Meaning
0b0 Perform translation table walks using TTBR0.
0b1 A TLB miss on an address that is translated using TTBR0

generates a Translation fault. No translation table walk is
performed.

This field resets to 0.

T2E, bit [6]

When ARMv8.2-AA32HPD is implemented:

TTBCR2 Enable.

T2E Meaning
0b0 TTBCR2 is disabled. The contents of TTBCR2 are treated as 0 for

all purposes other than reading or writing the register.
0b1 TTBCR2 is enabled.

If TTBCR.EAE==0, then the behavior is as if the bit is 0.

Otherwise:

Reserved, RES0.

Bits [5:3]

Reserved, RES0.

T0SZ, bits [2:0]

See 'Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile for how TTBCR.{T1SZ, T0SZ} determine the
input address ranges and memory region sizes translated using TTBR0 and TTBR1.

This field resets to 0.

Accessing the TTBCR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0010 0b0000 0b010

TTBCR, Translation Table Base Control Register

Page 3029

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return TTBCR_NS;
else

return TTBCR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return TTBCR_NS;

else
return TTBCR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return TTBCR_S;
else

return TTBCR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0010 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

TTBCR_NS = R[t];
else

TTBCR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
TTBCR_NS = R[t];

else
TTBCR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if SCR.NS == '0' then
TTBCR_S = R[t];

else
TTBCR_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

TTBCR, Translation Table Base Control Register

Page 3030

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TTBCR, Translation Table Base Control Register

Page 3031

TTBCR2, Translation Table Base Control Register 2
The TTBCR2 characteristics are:

Purpose
The second control register for stage 1 of the PL1&0 translation regime.

If ARMv8.2-AA32HPD is not implemented then this register is not implemented and its encoding is UNDEFINED.
Otherwise:

• When the value of TTBCR.{EAE, T2E} is not {1, 1} the contents of TTBCR2 are treated as zero for all
purposes other than reading or writing the register.

• When the value of TTBCR.{EAE, T2E} is {1, 1} TTBCR2 is used with TTBCR.

Configuration
AArch32 System register TTBCR2 bits [31:0] are architecturally mapped to AArch64 System register TCR_EL1[63:32]
.

This register is present only when AArch32 is supported at any Exception level and ARMv8.2-AA32HPD is
implemented. Otherwise, direct accesses to TTBCR2 are UNDEFINED.

Attributes
TTBCR2 is a 32-bit register.

Field descriptions
The TTBCR2 bit assignments are:

31302928272625242322212019 18 17 16 15 14 13 12 11 10 9 876543210
RES0 HWU162HWU161HWU160HWU159HWU062HWU061HWU060HWU059HPD1HPD0 RES0

Bits [31:19]

Reserved, RES0.

HWU162, bit [18]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or
Page entry for translations using TTBR1.

HWU162 Meaning
0b0 For translations using TTBR1, bit[62] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1, bit[62] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TTBCR2.HPD1 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD1 is 0 or the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.

TTBCR2, Translation Table Base Control Register 2

Page 3032

Otherwise:

Reserved, RES0.

HWU161, bit [17]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or
Page entry for translations using TTBR1.

HWU161 Meaning
0b0 For translations using TTBR1, bit[61] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1, bit[61] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TTBCR2.HPD1 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD1 is 0 or the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU160, bit [16]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or
Page entry for translations using TTBR1.

HWU160 Meaning
0b0 For translations using TTBR1, bit[60] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1, bit[60] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TTBCR2.HPD1 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD1 is 0 or the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU159, bit [15]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or
Page entry for translations using TTBR1.

TTBCR2, Translation Table Base Control Register 2

Page 3033

HWU159 Meaning
0b0 For translations using TTBR1, bit[59] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1, bit[59] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TTBCR2.HPD1 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD1 is 0 or the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU062, bit [14]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or
Page entry for translations using TTBR0.

HWU062 Meaning
0b0 For translations using TTBR0, bit[62] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0, bit[62] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TTBCR2.HPD0 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD0 is 0 or the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU061, bit [13]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or
Page entry for translations using TTBR0.

HWU061 Meaning
0b0 For translations using TTBR0, bit[61] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0, bit[61] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TTBCR2.HPD0 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD0 is 0 or the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TTBCR2, Translation Table Base Control Register 2

Page 3034

HWU060, bit [12]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or
Page entry for translations using TTBR0.

HWU060 Meaning
0b0 For translations using TTBR0, bit[60] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0, bit[60] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TTBCR2.HPD0 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD0 is 0 or the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU059, bit [11]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or
Page entry for translations using TTBR0.

HWU059 Meaning
0b0 For translations using TTBR0, bit[59] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0, bit[59] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TTBCR2.HPD0 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD0 is 0 or the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD1, bit [10]

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, XNTable, and PXNTable, in the
translation tables pointed to by TTBR1.

HPD1 Meaning
0b0 Hierarchical permissions are enabled.
0b1 Hierarchical permissions are disabled if TTBCR.T2E == 1.

When disabled, the permissions are treated as if the bits are 0.

The Effective value of this field is 0 if the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.

TTBCR2, Translation Table Base Control Register 2

Page 3035

HPD0, bit [9]

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, XNTable, and PXNTable, in the
translation tables pointed to by TTBR0.

HPD0 Meaning
0b0 Hierarchical permissions are enabled.
0b1 Hierarchical permissions are disabled if TTBCR.T2E ==1.

When disabled, the permissions are treated is as if the bits are 0.

The Effective value of this field is 0 if the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.

Bits [8:0]

Reserved, RES0.

Accessing the TTBCR2
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0010 0b0000 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return TTBCR2_NS;
else

return TTBCR2;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return TTBCR2_NS;

else
return TTBCR2;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return TTBCR2_S;
else

return TTBCR2_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0010 0b0000 0b011

TTBCR2, Translation Table Base Control Register 2

Page 3036

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

TTBCR2_NS = R[t];
else

TTBCR2 = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
TTBCR2_NS = R[t];

else
TTBCR2 = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if SCR.NS == '0' then
TTBCR2_S = R[t];

else
TTBCR2_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TTBCR2, Translation Table Base Control Register 2

Page 3037

TTBR0, Translation Table Base Register 0
The TTBR0 characteristics are:

Purpose
Holds the base address of the translation table for the initial lookup for stage 1 of the translation of an address from
the lower VA range in the PL1&0 translation regime, and other information for this translation regime.

Configuration
AArch32 System register TTBR0 bits [63:0] are architecturally mapped to AArch64 System register TTBR0_EL1[63:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TTBR0
are UNKNOWN.

TTBCR.EAE determines which TTBR0 format is used:

• TTBCR.EAE == 0b0: 32-bit format is used. TTBR0[63:32] are ignored.
• TTBCR.EAE == 0b1: 64-bit format is used.

When EL3 is using AArch32, write access to TTBR0(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

Used in conjunction with the TTBCR. When the 64-bit TTBR0 format is used, cacheability and shareability information
is held in the TTBCR, not in TTBR0.

Attributes
TTBR0 is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, accesses
read and write bits [31:0] and do not modify bits [63:32].

Field descriptions
The TTBR0 bit assignments are:

When TTBCR.EAE == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

TTB0 IRGN[0]NOS RGN IMP S IRGN[1]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TTB0, bits [31:7]

Translation table base address, bits[31:x], where x is 14-(TTBCR.N). Register bits [x-1:7] are RES0, with the additional
requirement that if these bits are not all zero, this is a misaligned translation table base address, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Register bits [x-1:7] are treated as if all the bits are zero. The value read back from these bits is either the
value written or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in
those bits that are nonzero.

This field resets to an architecturally UNKNOWN value.

TTBR0, Translation Table Base Register 0

Page 3038

IRGN[0], bit [6]

This field is bit[0] of IRGN[1:0].

Inner region bits. Bits [0,6] of this register together indicate the Inner Cacheability attributes for the memory
associated with the translation table walks. The possible values of IRGN[1:0] are:

IRGN Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Write-Allocate Cacheable.
0b10 Normal memory, Inner Write-Through Cacheable.
0b11 Normal memory, Inner Write-Back no Write-Allocate Cacheable.

Note

The encoding of the IRGN bits is counter-intuitive, with register bit[6] being
IRGN[0] and register bit[0] being IRGN[1]. This encoding is chosen to give a
consistent encoding of memory region types and to ensure that software
written for ARMv7 without the Multiprocessing Extensions can run
unmodified on an implementation that includes the functionality introduced by
the ARMv7 Multiprocessing Extensions.

The IRGN field is split as follows:

• IRGN[0] is TTBR0[6].
• IRGN[1] is TTBR0[0].

This field resets to an architecturally UNKNOWN value.

NOS, bit [5]

Not Outer Shareable. When the value of TTBR0.S is 1, indicates whether the memory associated with a translation
table walk is Inner Shareable or Outer Shareable:

NOS Meaning
0b0 Memory is Outer Shareable.
0b1 Memory is Inner Shareable.

This bit is ignored when the value of TTBR0.S is 0.

This field resets to an architecturally UNKNOWN value.

RGN, bits [4:3]

Region bits. Indicates the Outer cacheability attributes for the memory associated with the translation table walks:

RGN Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Write-Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Cacheable.
0b11 Normal memory, Outer Write-Back no Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

IMP, bit [2]

The effect of this bit is IMPLEMENTATION DEFINED. If the translation table implementation does not include any
IMPLEMENTATION DEFINED features this bit is RES0.

This field resets to an architecturally UNKNOWN value.

S, bit [1]

Shareable. Indicates whether the memory associated with the translation table walks is Non-shareable:

TTBR0, Translation Table Base Register 0

Page 3039

S Meaning
0b0 Memory is Non-shareable.
0b1 Memory is shareable. The TTBR0.NOS field indicates whether the

memory is Inner Shareable or Outer Shareable.

This field resets to an architecturally UNKNOWN value.

IRGN[1], bit [0]

This field is bit[1] of IRGN[1:0].

See IRGN[0] for the field description.

When TTBCR.EAE == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 ASID BADDR

BADDR CnP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

ASID, bits [55:48]

An ASID for the translation table base address. The TTBCR.A1 field selects either TTBR0.ASID or TTBR1.ASID.

This field resets to an architecturally UNKNOWN value.

BADDR, bits [47:1]

Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that if bits[x-1:3] are
not all zero, this is a misaligned translation table base address, with effects that are CONSTRAINED UNPREDICTABLE, and
must be one of the following:

• Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits is either the
value written or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in
those bits that are nonzero.

x is determined from the value of TTBCR.T0SZ as follows:

• If TTBCR.T0SZ is 0 or 1, x = 5 - TTBCR.T0SZ.
• If TTBCR.T0SZ is greater than 1, x = 14 - TTBCR.T0SZ.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.

This field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When ARMv8.2-TTCNP is implemented:

Common not Private. When TTBCR.EAE ==1, this bit indicates whether each entry that is pointed to by TTBR0 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the value of
TTBR0.CnP is 1.

TTBR0, Translation Table Base Register 0

Page 3040

CnP Meaning
0b0 The translation table entries pointed to by this instance of TTBR0,

for the current ASID, are permitted to differ from corresponding
entries for this instance of TTBR0 for other PEs in the Inner
Shareable domain. This is not affected by:

• The value of TTBR0.CnP on those other PEs.
• The value of TTBCR.EAE on those other PEs.
• The value of the current ASID or, for the Non-secure

instance of TTBR0, the value of the current VMID.
0b1 The translation table entries pointed to by this instance of TTBR0

are the same as the translation table entries for every other PE in
the Inner Shareable domain for which the value of TTBR0.CnP is
1 for this instance of TTBR0 and all of the following apply:

• The translation table entries are pointed to by this instance
of TTBR0.

• The value of the applicable TTBCR.EAE field is 1.
• The ASID is the same as the current ASID.
• For the Non-secure instance of TTBR0, the VMID is the same

as the current VMID.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry, that entry can only
be shared between different PEs if the value of the CnP bit is 1 for both stage 1 and stage 2.

Note

If the value of the TTBR0.CnP bit is 1 on multiple PEs in the same Inner
Shareable domain and those TTBR0s do not point to the same translation table
entries when the other conditions specified for the case when the value of CnP
is 1 apply, then the results of translations are CONSTRAINED UNPREDICTABLE, see
'CONSTRAINED UNPREDICTABLE behaviors due to caching of control or
data values' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TTBR0
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0010 0b0000 0b000

TTBR0, Translation Table Base Register 0

Page 3041

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return TTBR0_NS<31:0>;
else

return TTBR0<31:0>;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return TTBR0_NS<31:0>;

else
return TTBR0<31:0>;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return TTBR0_S<31:0>;
else

return TTBR0_NS<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0010 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

TTBR0_NS = ZeroExtend(R[t]);
else

TTBR0 = ZeroExtend(R[t]);
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
TTBR0_NS = ZeroExtend(R[t]);

else
TTBR0 = ZeroExtend(R[t]);

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
else

if SCR.NS == '0' then
TTBR0_S = ZeroExtend(R[t]);

else
TTBR0_NS = ZeroExtend(R[t]);

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b0010 0b0000

TTBR0, Translation Table Base Register 0

Page 3042

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x04);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return TTBR0_NS;
else

return TTBR0;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return TTBR0_NS;

else
return TTBR0;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return TTBR0_S;
else

return TTBR0_NS;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b0010 0b0000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x04);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

TTBR0_NS = R[t2]:R[t];
else

TTBR0 = R[t2]:R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
TTBR0_NS = R[t2]:R[t];

else
TTBR0 = R[t2]:R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
else

if SCR.NS == '0' then
TTBR0_S = R[t2]:R[t];

else
TTBR0_NS = R[t2]:R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TTBR0, Translation Table Base Register 0

Page 3043

TTBR1, Translation Table Base Register 1
The TTBR1 characteristics are:

Purpose
Holds the base address of the translation table for the initial lookup for stage 1 of the translation of an address from
the higher VA range in the PL1&0 translation regime, and other information for this translation regime.

Configuration
AArch32 System register TTBR1 bits [63:0] are architecturally mapped to AArch64 System register TTBR1_EL1[63:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TTBR1
are UNKNOWN.

TTBCR.EAE determines which TTBR1 format is used:

• TTBCR.EAE == 0b0: 32-bit format is used. TTBR1[63:32] are ignored.
• TTBCR.EAE == 0b1: 64-bit format is used.

Used in conjunction with the TTBCR. When the 64-bit TTBR1 format is used, cacheability and shareability information
is held in the TTBCR, not in TTBR1.

Attributes
TTBR1 is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, accesses
read and write bits [31:0] and do not modify bits [63:32].

Field descriptions
The TTBR1 bit assignments are:

When TTBCR.EAE == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

TTB1 IRGN[1]NOS RGN IMP S IRGN[0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TTB1, bits [31:7]

Translation table base address, bits[31:14]. Register bits [13:7] are RES0, with the additional requirement that if these
bits are not all zero, this is a misaligned translation table base address, with effects that are CONSTRAINED
UNPREDICTABLE, and must be one of the following:

• Register bits [13:7] are treated as if all the bits are zero. The value read back from these bits is either the
value written or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in
those bits that are nonzero.

This field resets to an architecturally UNKNOWN value.

TTBR1, Translation Table Base Register 1

Page 3044

IRGN[1], bit [6]

This field is bit[1] of IRGN[1:0].

Inner region bits. IRGN[1:0] indicate the Inner Cacheability attributes for the memory associated with the translation
table walks. The possible values of IRGN[1:0] are:

IRGN Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Write-Allocate Cacheable.
0b10 Normal memory, Inner Write-Through Cacheable.
0b11 Normal memory, Inner Write-Back no Write-Allocate Cacheable.

Note

The encoding of the IRGN bits is counter-intuitive, with register bit[6] being
IRGN[0] and register bit[0] being IRGN[1]. This encoding is chosen to give a
consistent encoding of memory region types and to ensure that software
written for Armv7 without the Multiprocessing Extensions can run unmodified
on an implementation that includes the functionality introduced by the ARMv7
Multiprocessing Extensions.

The IRGN field is split as follows:

• IRGN[1] is TTBR1[6].
• IRGN[0] is TTBR1[0].

This field resets to an architecturally UNKNOWN value.

NOS, bit [5]

Not Outer Shareable. When the value of TTBR1.S is 1, indicates whether the memory associated with a translation
table walk is Inner Shareable or Outer Shareable:

NOS Meaning
0b0 Memory is Outer Shareable.
0b1 Memory is Inner Shareable.

This bit is ignored when the value of TTBR1.S is 0.

This field resets to an architecturally UNKNOWN value.

RGN, bits [4:3]

Region bits. Indicates the Outer cacheability attributes for the memory associated with the translation table walks:

RGN Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Write-Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Cacheable.
0b11 Normal memory, Outer Write-Back no Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

IMP, bit [2]

The effect of this bit is IMPLEMENTATION DEFINED. If the translation table implementation does not include any
IMPLEMENTATION DEFINED features this bit is RES0.

This field resets to an architecturally UNKNOWN value.

S, bit [1]

Shareable. Indicates whether the memory associated with the translation table walks is Non-shareable:

TTBR1, Translation Table Base Register 1

Page 3045

S Meaning
0b0 Memory is Non-shareable.
0b1 Memory is shareable. The TTBR1.NOS field indicates whether the

memory is Inner Shareable or Outer Shareable.

This field resets to an architecturally UNKNOWN value.

IRGN[0], bit [0]

This field is bit[0] of IRGN[1:0].

See IRGN[1] for the field description.

When TTBCR.EAE == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 ASID BADDR

BADDR CnP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

ASID, bits [55:48]

An ASID for the translation table base address. The TTBCR.A1 field selects either TTBR0.ASID or TTBR1.ASID.

This field resets to an architecturally UNKNOWN value.

BADDR, bits [47:1]

Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that if bits[x-1:3] are
not all zero, this is a misaligned translation table base address, with effects that are CONSTRAINED UNPREDICTABLE, and
must be one of the following:

• Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits is either the
value written or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in
those bits that are nonzero.

x is determined from the value of TTBCR.T1SZ as follows:

• If TTBCR.T1SZ is 0 or 1, x = 5 - TTBCR.T1SZ.
• If TTBCR.T1SZ is greater than 1, x = 14 - TTBCR.T1SZ.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.

This field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When ARMv8.2-TTCNP is implemented:

Common not Private. When TTBCR.EAE ==1, this bit indicates whether each entry that is pointed to by TTBR1 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the value of
TTBR1.CnP is 1.

TTBR1, Translation Table Base Register 1

Page 3046

CnP Meaning
0b0 The translation table entries pointed to by this instance of TTBR1,

for the current ASID, are permitted to differ from corresponding
entries for this instance of TTBR1 for other PEs in the Inner
Shareable domain. This is not affected by:

• The value of TTBR1.CnP on those other PEs.
• The value of TTBCR.EAE on those other PEs.
• The value of the current ASID or, for the Non-secure

instance of TTBR1, the value of the current VMID.
0b1 The translation table entries pointed to by this instance of TTBR1

are the same as the translation table entries for every other PE in
the Inner Shareable domain for which the value of TTBR1.CnP is
1 for this instance of TTBR1 and all of the following apply:

• The translation table entries are pointed to by this instance
of TTBR1.

• The value of the applicable TTBCR.EAE field is 1.
• The ASID is the same as the current ASID.
• For the Non-secure instance of TTBR1, the VMID is the same

as the current VMID.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry, that entry can only
be shared between different PEs if the value of the CnP bit is 1 for both stage 1 and stage 2.

Note

If the value of the TTBR1.CnP bit is 1 on multiple PEs in the same Inner
Shareable domain and those TTBR1s do not point to the same translation table
entries when the other conditions specified for the case when the value of CnP
is 1 apply, then the results of translations are CONSTRAINED UNPREDICTABLE, see
'CONSTRAINED UNPREDICTABLE behaviors due to caching of control or
data values' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TTBR1
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0010 0b0000 0b001

TTBR1, Translation Table Base Register 1

Page 3047

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return TTBR1_NS<31:0>;
else

return TTBR1<31:0>;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return TTBR1_NS<31:0>;

else
return TTBR1<31:0>;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return TTBR1_S<31:0>;
else

return TTBR1_NS<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0010 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

TTBR1_NS = ZeroExtend(R[t]);
else

TTBR1 = ZeroExtend(R[t]);
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
TTBR1_NS = ZeroExtend(R[t]);

else
TTBR1 = ZeroExtend(R[t]);

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if SCR.NS == '0' then
TTBR1_S = ZeroExtend(R[t]);

else
TTBR1_NS = ZeroExtend(R[t]);

TTBR1, Translation Table Base Register 1

Page 3048

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b0010 0b0001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x04);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return TTBR1_NS;
else

return TTBR1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return TTBR1_NS;

else
return TTBR1;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return TTBR1_S;
else

return TTBR1_NS;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b0010 0b0001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x04);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

TTBR1_NS = R[t2]:R[t];
else

TTBR1 = R[t2]:R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
TTBR1_NS = R[t2]:R[t];

else
TTBR1 = R[t2]:R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
else

if SCR.NS == '0' then
TTBR1_S = R[t2]:R[t];

else
TTBR1_NS = R[t2]:R[t];

TTBR1, Translation Table Base Register 1

Page 3049

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TTBR1, Translation Table Base Register 1

Page 3050

VBAR, Vector Base Address Register
The VBAR characteristics are:

Purpose
When high exception vectors are not selected, holds the vector base address for exceptions that are not taken to
Monitor mode or to Hyp mode.

Software must program VBAR(NS) with the required initial value as part of the PE boot sequence.

Configuration
AArch32 System register VBAR bits [31:0] are architecturally mapped to AArch64 System register VBAR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to VBAR
are UNKNOWN.

Attributes
VBAR is a 32-bit register.

Field descriptions
The VBAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Vector Base Address RES0

Bits [31:5]

Vector Base Address. Bits[31:5] of the base address of the exception vectors for exceptions taken to this Exception
level. Bits[4:0] of an exception vector are the exception offset.

This field resets to an IMPLEMENTATION DEFINED value.

Bits [4:0]

Reserved, RES0.

Accessing the VBAR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0000 0b000

VBAR, Vector Base Address Register

Page 3051

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return VBAR_NS;
else

return VBAR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return VBAR_NS;

else
return VBAR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return VBAR_S;
else

return VBAR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

VBAR_NS = R[t];
else

VBAR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
VBAR_NS = R[t];

else
VBAR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if SCR.NS == '0' then
VBAR_S = R[t];

else
VBAR_NS = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VBAR, Vector Base Address Register

Page 3052

VDFSR, Virtual SError Exception Syndrome Register
The VDFSR characteristics are:

Purpose
Provides the syndrome value reported to software on taking a virtual SError interrupt exception to EL1, or on
executing an ESB instruction at EL1.

When a virtual SError interrupt is taken, the syndrome value is reported in DFSR.{AET, ExT} and the remainder of the
DFSR is set as defined by VMSAv8-32. For more information, see The AArch32 Virtual Memory System Architecture.

If the virtual SError interrupt is deferred by an ESB instruction, then the syndrome value is written to VDISR.

Configuration
AArch32 System register VDFSR bits [31:0] are architecturally mapped to AArch64 System register VSESR_EL2[31:0]
when the highest implemented Exception level is using AArch64.

This register is present only when RAS is implemented. Otherwise, direct accesses to VDFSR are UNDEFINED.

If EL2 is not implemented, then VDFSR is RES0 from Monitor mode when SCR.NS == 1.

Attributes
VDFSR is a 32-bit register.

Field descriptions
The VDFSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 AET RES0ExT RES0

Bits [31:16]

Reserved, RES0.

AET, bits [15:14]

When a virtual SError interrupt is taken to EL1 using AArch32, DFSR[15:4] is set to VDFSR.AET.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR[15:4] is set to VDFSR.AET.

This field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

When a virtual SError interrupt is taken to EL1 using AArch32, DFSR[12] is set to VDFSR.ExT.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR[12] is set to VDFSR.ExT.

This field resets to an architecturally UNKNOWN value.

VDFSR, Virtual SError Exception Syndrome Register

Page 3053

Bits [11:0]

Reserved, RES0.

Accessing the VDFSR
Direct reads and writes of VDFSR are UNDEFINED if EL3 is implemented and using AArch32 in all Secure privileged
modes other than Monitor mode.

If EL2 is not implemented, then VDFSR is RES0 from Monitor mode when SCR.NS == 1.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0101 0b0010 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VDFSR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return VDFSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0101 0b0010 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VDFSR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
VDFSR = R[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VDFSR, Virtual SError Exception Syndrome Register

Page 3054

VDISR, Virtual Deferred Interrupt Status Register
The VDISR characteristics are:

Purpose
Records that an SError interrupt has been consumed by an ESB instruction.

Configuration
AArch32 System register VDISR bits [31:0] are architecturally mapped to AArch64 System register VDISR_EL2[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to VDISR are UNDEFINED.

If EL2 is not implemented, then VDISR is RES0 from Monitor mode when SCR.NS == 1.

Attributes
VDISR is a 32-bit register.

Field descriptions
The VDISR bit assignments are:

When TTBCR.EAE == 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A RES0 AET RES0ExTRES0FS[4]LPAE RES0 FS[3:0]

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError interrupt.

This field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

The value copied from VDFSR.AET.

This field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

The value copied from VDFSR.ExT.

This field resets to an architecturally UNKNOWN value.

VDISR, Virtual Deferred Interrupt Status Register

Page 3055

Bit [11]

Reserved, RES0.

FS[4], bit [10]

This field is bit[4] of FS[4:0].

Fault status code. Set to 0b10110 when an ESB instruction defers a virtual SError interrupt.

FS Meaning
0b10110 Asynchronous SError interrupt.

All other values are reserved.

The FS field is split as follows:

• FS[4] is VDISR[10].
• FS[3:0] is VDISR[3:0].

This field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

Format.

Set to TTBCR.EAE when an ESB instruction defers a virtual SError interrupt.

LPAE Meaning
0b0 Using the Short-descriptor translation table format.

This field resets to an architecturally UNKNOWN value.

Bits [8:4]

Reserved, RES0.

FS[3:0], bits [3:0]

This field is bits[3:0] of FS[4:0].

See FS[4] for the field description.

When TTBCR.EAE == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A RES0 AET RES0ExT RES0 LPAE RES0 STATUS

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError interrupt.

This field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

The value copied from VDFSR.AET.

VDISR, Virtual Deferred Interrupt Status Register

Page 3056

This field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

The value copied from VDFSR.ExT.

This field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

LPAE, bit [9]

Format.

Set to TTBCR.EAE when an ESB instruction defers a virtual SError interrupt.

LPAE Meaning
0b1 Using the Long-descriptor translation table format.

This field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status code. Set to 0b010001 when an ESB instruction defers a virtual SError interrupt.

STATUS Meaning
0b010001 Asynchronous SError interrupt.

All other values are reserved.

This field resets to an architecturally UNKNOWN value.

Accessing the VDISR
Direct reads and writes of VDFSR are UNDEFINED if EL3 is implemented and using AArch32 in all Secure privileged
modes other than Monitor mode.

An indirect write to VDISR made by an ESB instruction does not require an explicit synchronization operation for the
value that is written to be observed by a direct read of DISR occurring in program order after the ESB instruction.

If EL2 is not implemented, then VDISR is RES0 from Monitor mode when SCR.NS == 1.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b0001 0b001

VDISR, Virtual Deferred Interrupt Status Register

Page 3057

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VDISR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return VDISR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VDISR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
VDISR = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AMO == '1' then

return VDISR_EL2;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.AMO == '1' then

return VDISR;
else

return DISR;
elsif PSTATE.EL == EL2 then

return DISR;
elsif PSTATE.EL == EL3 then

return DISR;

VDISR, Virtual Deferred Interrupt Status Register

Page 3058

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AMO == '1' then

VDISR_EL2 = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.AMO == '1' then

VDISR = R[t];
else

DISR = R[t];
elsif PSTATE.EL == EL2 then

DISR = R[t];
elsif PSTATE.EL == EL3 then

DISR = R[t];

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VDISR, Virtual Deferred Interrupt Status Register

Page 3059

VMPIDR, Virtualization Multiprocessor ID Register
The VMPIDR characteristics are:

Purpose
Holds the value of the Virtualization Multiprocessor ID. This is the value returned by Non-secure EL1 reads of MPIDR.

Configuration
AArch32 System register VMPIDR bits [31:0] are architecturally mapped to AArch64 System register
VMPIDR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to VMPIDR
are UNKNOWN.

If EL2 is not implemented but EL3 is implemented, this register takes the value of the MPIDR.

Attributes
VMPIDR is a 32-bit register.

Field descriptions
The VMPIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
M U RES0 MT Aff2 Aff1 Aff0

M, bit [31]

Indicates whether this implementation includes the functionality introduced by the ARMv7 Multiprocessing
Extensions. The possible values of this bit are:

M Meaning
0b0 This implementation does not include the ARMv7 Multiprocessing

Extensions functionality.
0b1 This implementation includes the ARMv7 Multiprocessing

Extensions functionality.

From Armv8 this bit is RES1.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system. The possible values of this bit are:

U Meaning
0b0 Processor is part of a multiprocessor system.
0b1 Processor is part of a uniprocessor system.

In a system where the PE resets into EL2 or EL3, this field resets to the value in MPIDR.U.

Bits [29:25]

Reserved, RES0.

VMPIDR, Virtualization Multiprocessor ID Register

Page 3060

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading type
approach. See the description of Aff0 for more information about affinity levels. The possible values of this bit are:

MT Meaning
0b0 Performance of PEs at the lowest affinity level is largely

independent.
0b1 Performance of PEs at the lowest affinity level is very

interdependent.

In a system where the PE resets into EL2 or EL3, this field resets to the value in MPIDR.MT.

Aff2, bits [23:16]

Affinity level 2. See the description of Aff0 for more information.

In a system where the PE resets into EL2 or EL3, this field resets to the value in MPIDR.Aff2.

Aff1, bits [15:8]

Affinity level 1. See the description of Aff0 for more information.

In a system where the PE resets into EL2 or EL3, this field resets to the value in MPIDR.Aff1.

Aff0, bits [7:0]

Affinity level 0. This is the affinity level that is most significant for determining PE behavior. Higher affinity levels are
increasingly less significant in determining PE behavior. The assigned value of the MPIDR.{Aff2, Aff1, Aff0} or
MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set of fields of each PE must be unique within the system as a whole.

In a system where the PE resets into EL2 or EL3, this field resets to the value in MPIDR.Aff0.

Accessing the VMPIDR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0000 0b0000 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VMPIDR;
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
return MPIDR;

elsif SCR.NS == '0' then
UNDEFINED;

else
return VMPIDR;

VMPIDR, Virtualization Multiprocessor ID Register

Page 3061

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0000 0b0000 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VMPIDR = R[t];
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
//no operation

elsif SCR.NS == '0' then
UNDEFINED;

else
VMPIDR = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0000 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) then

return VMPIDR_EL2<31:0>;
elsif EL2Enabled() && ELUsingAArch32(EL2) then

return VMPIDR;
else

return MPIDR;
elsif PSTATE.EL == EL2 then

return MPIDR;
elsif PSTATE.EL == EL3 then

return MPIDR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMPIDR, Virtualization Multiprocessor ID Register

Page 3062

VPIDR, Virtualization Processor ID Register
The VPIDR characteristics are:

Purpose
Holds the value of the Virtualization Processor ID. This is the value returned by Non-secure EL1 reads of MIDR.

Configuration
AArch32 System register VPIDR bits [31:0] are architecturally mapped to AArch64 System register VPIDR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to VPIDR
are UNKNOWN.

If EL2 is not implemented but EL3 is implemented, this register takes the value of the MIDR.

Attributes
VPIDR is a 32-bit register.

Field descriptions
The VPIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Implementer Variant Architecture PartNum Revision

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm. Assigned codes
include the following:

Hex
representation

ASCII
representation Implementer

0x41 A Arm Limited
0x42 B Broadcom Corporation
0x43 C Cavium Inc.
0x44 D Digital Equipment Corporation
0x49 I Infineon Technologies AG
0x4D M Motorola or Freescale

Semiconductor Inc.
0x4E N NVIDIA Corporation
0x50 P Applied Micro Circuits

Corporation
0x51 Q Qualcomm Inc.
0x56 V Marvell International Ltd.
0x69 i Intel Corporation

Arm can assign codes that are not published in this manual. All values not assigned by Arm are reserved and must not
be used.

In a system where the PE resets into EL2 or EL3, this field resets to the value in MIDR.Implementer.

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product
variants, or major revisions of a product.

VPIDR, Virtualization Processor ID Register

Page 3063

In a system where the PE resets into EL2 or EL3, this field resets to the value in MIDR.Variant.

Architecture, bits [19:16]

The permitted values of this field are:

Architecture Meaning
0b0001 Armv4.
0b0010 Armv4T.
0b0011 Armv5 (obsolete).
0b0100 Armv5T.
0b0101 Armv5TE.
0b0110 Armv5TEJ.
0b0111 Armv6.
0b1111 Architectural features are individually identified in the

ID_* registers, see 'ID registers' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section K12.5.3.

All other values are reserved.

In a system where the PE resets into EL2 or EL3, this field resets to the value in MIDR.Architecture.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7, the variant and
architecture are encoded differently.

In a system where the PE resets into EL2 or EL3, this field resets to the value in MIDR.PartNum.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

In a system where the PE resets into EL2 or EL3, this field resets to the value in MIDR.Revision.

Accessing the VPIDR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0000 0b0000 0b000

VPIDR, Virtualization Processor ID Register

Page 3064

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VPIDR;
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
return MIDR;

elsif SCR.NS == '0' then
UNDEFINED;

else
return VPIDR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0000 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VPIDR = R[t];
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
//no operation

elsif SCR.NS == '0' then
UNDEFINED;

else
VPIDR = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0000 0b000

VPIDR, Virtualization Processor ID Register

Page 3065

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) then

return VPIDR_EL2<31:0>;
elsif EL2Enabled() && ELUsingAArch32(EL2) then

return VPIDR;
else

return MIDR;
elsif PSTATE.EL == EL2 then

return MIDR;
elsif PSTATE.EL == EL3 then

return MIDR;

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VPIDR, Virtualization Processor ID Register

Page 3066

VTCR, Virtualization Translation Control Register
The VTCR characteristics are:

Purpose
The control register for stage 2 of the Non-secure PL1&0 translation regime.

Note

This stage of translation always uses the Long-descriptor translation table
format.

Configuration
AArch32 System register VTCR bits [31:0] are architecturally mapped to AArch64 System register VTCR_EL2[31:0] .

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to VTCR
are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
VTCR is a 32-bit register.

Field descriptions
The VTCR bit assignments are:

31 30 29 28 27 26 25 24232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0
RES1RES0HWU62HWU61HWU60HWU59 RES0 SH0ORGN0IRGN0 SL0 RES0 S T0SZ

Bit [31]

Reserved, RES1.

Bits [30:29]

Reserved, RES0.

HWU62, bit [28]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 2 translation table Block or
Page entry.

HWU62 Meaning
0b0 Bit[62] of each stage 2 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[62] of each stage 2 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose.

This field resets to an architecturally UNKNOWN value.

VTCR, Virtualization Translation Control Register

Page 3067

Otherwise:

Reserved, RES0.

HWU61, bit [27]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 2 translation table Block or
Page entry.

HWU61 Meaning
0b0 Bit[61] of each stage 2 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[61] of each stage 2 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU60, bit [26]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 2 translation table Block or
Page entry.

HWU60 Meaning
0b0 Bit[60] of each stage 2 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[60] of each stage 2 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU59, bit [25]

When ARMv8.2-TTPBHA is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 2 translation table Block or
Page entry.

HWU59 Meaning
0b0 Bit[59] of each stage 2 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[59] of each stage 2 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose.

This field resets to an architecturally UNKNOWN value.

VTCR, Virtualization Translation Control Register

Page 3068

Otherwise:

Reserved, RES0.

Bits [24:14]

Reserved, RES0.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using VTTBR.

SH0 Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED
UNPREDICTABLE, as described in 'Unallocated values in fields of AArch32 System registers and translation table entries'
in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section K1.1.11.

This field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using VTTBR.

ORGN0 Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using VTTBR.

IRGN0 Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate

Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No Write-

Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-

Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

SL0, bits [7:6]

Starting level for translation table walks using VTTBR.

SL0 Meaning
0b00 Start at level 2
0b01 Start at level 1

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not consistent with
the programming of T0SZ, then a stage 2 level 1 Translation fault is generated.

VTCR, Virtualization Translation Control Register

Page 3069

This field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

S, bit [4]

Sign extension bit. This bit must be programmed to the value of T0SZ[3]. If it is not, then the behavior is CONSTRAINED
UNPREDICTABLE and the stage 2 T0SZ value is treated as an UNKNOWN value, see 'Misprogramming VTCR.S' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

T0SZ, bits [3:0]

The size offset of the memory region addressed by VTTBR. The region size is 2(32-T0SZ) bytes.

This field holds a four-bit signed integer value, meaning it supports values from -8 to 7.

Note

This is different from the other translation control registers, where TnSZ holds
a three-bit unsigned integer, supporting values from 0 to 7.

If this field is programmed to a value that is not consistent with the programming of SL0 then a stage 2 level 1
Translation fault is generated.

This field resets to an architecturally UNKNOWN value.

Accessing the VTCR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0010 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VTCR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return VTCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0010 0b0001 0b010

VTCR, Virtualization Translation Control Register

Page 3070

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VTCR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
VTCR = R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VTCR, Virtualization Translation Control Register

Page 3071

VTTBR, Virtualization Translation Table Base Register
The VTTBR characteristics are:

Purpose
Holds the base address of the translation table for the initial lookup for stage 2 of an address translation in the Non-
secure PL1&0 translation regime, and other information for this translation regime.

Configuration
AArch32 System register VTTBR bits [63:0] are architecturally mapped to AArch64 System register VTTBR_EL2[63:0]
.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to VTTBR
are UNKNOWN.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
VTTBR is a 64-bit register.

Field descriptions
The VTTBR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 VMID BADDR

BADDR CnP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

VMID, bits [55:48]

The VMID for the translation table.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

BADDR, bits [47:1]

Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that if bits[x-1:3] are
not all zero, this is a misaligned translation table base address, with effects that are CONSTRAINED UNPREDICTABLE, and
must be one of the following:

• Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits is either the
value written or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in
those bits that are nonzero.

x is determined from the value of VTCR.SL0 and VTCR.T0SZ as follows:

• If VTCR.SL0 is 0b00, meaning that lookup starts at level 2, then x is 14 - VTCR.T0SZ.
• If VTCR.SL0 is 0b01, meaning that lookup starts at level 1, then x is 5 - VTCR.T0SZ.
• If VTCR.SL0 is either 0b10 or 0b11 then a stage 2 level 1 Translation fault is generated.

VTTBR, Virtualization Translation Table Base Register

Page 3072

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.

In a system where the PE resets into EL2 or EL3, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When ARMv8.2-TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by VTTBR is a member of a common set
that can be used by every PE in the Inner Shareable domain for which the value of VTTBR.CnP is 1.

CnP Meaning
0b0 The translation table entries pointed to by VTTBR are permitted

to differ from the entries for VTTBR for other PEs in the Inner
Shareable domain. This is not affected by the value of the current
VMID.

0b1 The translation table entries pointed to by VTTBR are the same as
the translation table entries for every other PE in the Inner
Shareable domain for which the value of VTTBR.CnP is 1 and the
VMID is the same as the current VMID.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry, that entry can only
be shared between different PEs if the value of the CnP bit is 1 for both stage 1 and stage 2.

Note

If the value of the VTTBR.CnP bit is 1 on multiple PEs in the same Inner
Shareable domain and those VTTBRs do not point to the same translation
table entries when the VMID value is the same as the current VMID, then the
results of translations are CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED
UNPREDICTABLE behaviors due to caching of control or data values' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture
profile.

In a system where the PE resets into EL2 or EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the VTTBR
Accesses to this register use the following encodings:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b0010 0b0110

VTTBR, Virtualization Translation Table Base Register

Page 3073

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x04);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VTTBR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return VTTBR;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b0010 0b0110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x04);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VTTBR = R[t2]:R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
VTTBR = R[t2]:R[t];

09/12/2019 19:22; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VTTBR, Virtualization Translation Table Base Register

Page 3074

System Register index by instruction and encoding
Below are indexes for registers and operations accessed in the following ways:

For AArch32

• MCR/MRC
• MCRR/MRRC
• MRS/MSR
• VMRS/VMSR

For AArch64

• AT
• CFP
• CPP
• DC
• DVP
• IC
• MRS/MSR
• TLBI

Registers and operations in AArch32

Accessed using MCR/MRC:
Register selectors

coproc opc1 CRn CRm opc2 Name Description

0b1110 0b000 0b0000 0b0000 0b000 DBGDIDR Debug ID
Register

0b1110 0b000 0b0000 0b0000 0b010 DBGDTRRXext Debug OS Lock
Data Transfer
Register,
Receive,
External View

0b1110 0b000 0b0000 0b0001 0b000 DBGDSCRint Debug Status
and Control
Register,
Internal View

0b1110 0b000 0b0000 0b0010 0b000 DBGDCCINT DCC Interrupt
Enable Register

0b1110 0b000 0b0000 0b0010 0b010 DBGDSCRext Debug Status
and Control
Register,
External View

0b1110 0b000 0b0000 0b0011 0b010 DBGDTRTXext Debug OS Lock
Data Transfer
Register,
Transmit

0b1110 0b000 0b0000 0b0101 0b000 DBGDTRRXint Debug Data
Transfer
Register,
Receive

0b1110 0b000 0b0000 0b0101 0b000 DBGDTRTXint Debug Data
Transfer
Register,
Transmit

0b1110 0b000 0b0000 0b0110 0b000 DBGWFAR Debug
Watchpoint
Fault Address
Register

System Register index by instruction and encoding

Page 3075

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1110 0b000 0b0000 0b0110 0b010 DBGOSECCR Debug OS Lock
Exception
Catch Control
Register

0b1110 0b000 0b0000 0b0111 0b000 DBGVCR Debug Vector
Catch Register

0b1110 0b000 0b0000 n[3:0] 0b100 DBGBVR<n> Debug
Breakpoint
Value Registers

0b1110 0b000 0b0000 n[3:0] 0b101 DBGBCR<n> Debug
Breakpoint
Control
Registers

0b1110 0b000 0b0000 n[3:0] 0b110 DBGWVR<n> Debug
Watchpoint
Value Registers

0b1110 0b000 0b0000 n[3:0] 0b111 DBGWCR<n> Debug
Watchpoint
Control
Registers

0b1110 0b000 0b0001 0b0000 0b000 DBGDRAR Debug ROM
Address
Register

0b1110 0b000 0b0001 0b0000 0b100 DBGOSLAR Debug OS Lock
Access Register

0b1110 0b000 0b0001 0b0001 0b100 DBGOSLSR Debug OS Lock
Status Register

0b1110 0b000 0b0001 0b0011 0b100 DBGOSDLR Debug OS
Double Lock
Register

0b1110 0b000 0b0001 0b0100 0b100 DBGPRCR Debug Power
Control
Register

0b1110 0b000 0b0001 n[3:0] 0b001 DBGBXVR<n> Debug
Breakpoint
Extended Value
Registers

0b1110 0b000 0b0010 0b0000 0b000 DBGDSAR Debug Self
Address
Register

0b1110 0b000 0b0111 0b0000 0b111 DBGDEVID2 Debug Device
ID register 2

0b1110 0b000 0b0111 0b0001 0b111 DBGDEVID1 Debug Device
ID register 1

0b1110 0b000 0b0111 0b0010 0b111 DBGDEVID Debug Device
ID register 0

0b1110 0b000 0b0111 0b1000 0b110 DBGCLAIMSET Debug CLAIM
Tag Set register

0b1110 0b000 0b0111 0b1001 0b110 DBGCLAIMCLR Debug CLAIM
Tag Clear
register

0b1110 0b000 0b0111 0b1110 0b110 DBGAUTHSTATUS Debug
Authentication
Status register

0b1110 0b111 0b0000 0b0000 0b000 JIDR Jazelle ID
Register

0b1110 0b111 0b0001 0b0000 0b000 JOSCR Jazelle OS
Control
Register

System Register index by instruction and encoding

Page 3076

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1110 0b111 0b0010 0b0000 0b000 JMCR Jazelle Main
Configuration
Register

0b1111 0b000 0b0000 0b0000 0b000 MIDR Main ID
Register

0b1111 0b000 0b0000 0b0000 0b001 CTR Cache Type
Register

0b1111 0b000 0b0000 0b0000 0b010 TCMTR TCM Type
Register

0b1111 0b000 0b0000 0b0000 0b011 TLBTR TLB Type
Register

0b1111 0b000 0b0000 0b0000 0b101 MPIDR Multiprocessor
Affinity
Register

0b1111 0b000 0b0000 0b0000 0b110 REVIDR Revision ID
Register

0b1111 0b000 0b0000 0b0001 0b000 ID_PFR0 Processor
Feature
Register 0

0b1111 0b000 0b0000 0b0001 0b001 ID_PFR1 Processor
Feature
Register 1

0b1111 0b000 0b0000 0b0001 0b010 ID_DFR0 Debug Feature
Register 0

0b1111 0b000 0b0000 0b0001 0b011 ID_AFR0 Auxiliary
Feature
Register 0

0b1111 0b000 0b0000 0b0001 0b100 ID_MMFR0 Memory Model
Feature
Register 0

0b1111 0b000 0b0000 0b0001 0b101 ID_MMFR1 Memory Model
Feature
Register 1

0b1111 0b000 0b0000 0b0001 0b110 ID_MMFR2 Memory Model
Feature
Register 2

0b1111 0b000 0b0000 0b0001 0b111 ID_MMFR3 Memory Model
Feature
Register 3

0b1111 0b000 0b0000 0b0010 0b000 ID_ISAR0 Instruction Set
Attribute
Register 0

0b1111 0b000 0b0000 0b0010 0b001 ID_ISAR1 Instruction Set
Attribute
Register 1

0b1111 0b000 0b0000 0b0010 0b010 ID_ISAR2 Instruction Set
Attribute
Register 2

0b1111 0b000 0b0000 0b0010 0b011 ID_ISAR3 Instruction Set
Attribute
Register 3

0b1111 0b000 0b0000 0b0010 0b100 ID_ISAR4 Instruction Set
Attribute
Register 4

0b1111 0b000 0b0000 0b0010 0b101 ID_ISAR5 Instruction Set
Attribute
Register 5

0b1111 0b000 0b0000 0b0010 0b110 ID_MMFR4 Memory Model
Feature
Register 4

System Register index by instruction and encoding

Page 3077

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b0000 0b0010 0b111 ID_ISAR6 Instruction Set
Attribute
Register 6

0b1111 0b000 0b0000 0b0011 0b100 ID_PFR2 Processor
Feature
Register 2

0b1111 0b000 0b0000 0b0011 0b101 ID_DFR1 Debug Feature
Register 1

0b1111 0b000 0b0000 0b0011 0b110 ID_MMFR5 Memory Model
Feature
Register 5

0b1111 0b000 0b0001 0b0000 0b000 SCTLR System Control
Register

0b1111 0b000 0b0001 0b0000 0b001 ACTLR Auxiliary
Control
Register

0b1111 0b000 0b0001 0b0000 0b010 CPACR Architectural
Feature Access
Control
Register

0b1111 0b000 0b0001 0b0000 0b011 ACTLR2 Auxiliary
Control
Register 2

0b1111 0b000 0b0001 0b0001 0b000 SCR Secure
Configuration
Register

0b1111 0b000 0b0001 0b0001 0b001 SDER Secure Debug
Enable Register

0b1111 0b000 0b0001 0b0001 0b010 NSACR Non-Secure
Access Control
Register

0b1111 0b000 0b0001 0b0010 0b001 TRFCR Trace Filter
Control
Register

0b1111 0b000 0b0001 0b0011 0b001 SDCR Secure Debug
Control
Register

0b1111 0b000 0b0010 0b0000 0b000 TTBR0 Translation
Table Base
Register 0

0b1111 0b000 0b0010 0b0000 0b001 TTBR1 Translation
Table Base
Register 1

0b1111 0b000 0b0010 0b0000 0b010 TTBCR Translation
Table Base
Control
Register

0b1111 0b000 0b0010 0b0000 0b011 TTBCR2 Translation
Table Base
Control
Register 2

0b1111 0b000 0b0011 0b0000 0b000 DACR Domain Access
Control
Register

0b1111 0b000 0b0100 0b0110 0b000 ICC_PMR Interrupt
Controller
Interrupt
Priority Mask
Register

0b1111 0b000 0b0101 0b0000 0b000 DFSR Data Fault
Status Register

System Register index by instruction and encoding

Page 3078

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b0101 0b0000 0b001 IFSR Instruction
Fault Status
Register

0b1111 0b000 0b0101 0b0001 0b000 ADFSR Auxiliary Data
Fault Status
Register

0b1111 0b000 0b0101 0b0001 0b001 AIFSR Auxiliary
Instruction
Fault Status
Register

0b1111 0b000 0b0101 0b0011 0b000 ERRIDR Error Record ID
Register

0b1111 0b000 0b0101 0b0011 0b001 ERRSELR Error Record
Select Register

0b1111 0b000 0b0101 0b0100 0b000 ERXFR Selected Error
Record Feature
Register

0b1111 0b000 0b0101 0b0100 0b001 ERXCTLR Selected Error
Record Control
Register

0b1111 0b000 0b0101 0b0100 0b010 ERXSTATUS Selected Error
Record Primary
Status Register

0b1111 0b000 0b0101 0b0100 0b011 ERXADDR Selected Error
Record Address
Register

0b1111 0b000 0b0101 0b0100 0b100 ERXFR2 Selected Error
Record Feature
Register 2

0b1111 0b000 0b0101 0b0100 0b101 ERXCTLR2 Selected Error
Record Control
Register 2

0b1111 0b000 0b0101 0b0100 0b111 ERXADDR2 Selected Error
Record Address
Register 2

0b1111 0b000 0b0101 0b0101 0b000 ERXMISC0 Selected Error
Record
Miscellaneous
Register 0

0b1111 0b000 0b0101 0b0101 0b001 ERXMISC1 Selected Error
Record
Miscellaneous
Register 1

0b1111 0b000 0b0101 0b0101 0b010 ERXMISC4 Selected Error
Record
Miscellaneous
Register 4

0b1111 0b000 0b0101 0b0101 0b011 ERXMISC5 Selected Error
Record
Miscellaneous
Register 5

0b1111 0b000 0b0101 0b0101 0b100 ERXMISC2 Selected Error
Record
Miscellaneous
Register 2

0b1111 0b000 0b0101 0b0101 0b101 ERXMISC3 Selected Error
Record
Miscellaneous
Register 3

0b1111 0b000 0b0101 0b0101 0b110 ERXMISC6 Selected Error
Record

System Register index by instruction and encoding

Page 3079

Register selectors
coproc opc1 CRn CRm opc2 Name Description

Miscellaneous
Register 6

0b1111 0b000 0b0101 0b0101 0b111 ERXMISC7 Selected Error
Record
Miscellaneous
Register 7

0b1111 0b000 0b0110 0b0000 0b000 DFAR Data Fault
Address
Register

0b1111 0b000 0b0110 0b0000 0b010 IFAR Instruction
Fault Address
Register

0b1111 0b000 0b0111 0b0001 0b000 ICIALLUIS Instruction
Cache
Invalidate All to
PoU, Inner
Shareable

0b1111 0b000 0b0111 0b0001 0b110 BPIALLIS Branch
Predictor
Invalidate All,
Inner Shareable

0b1111 0b000 0b0111 0b0011 0b100 CFPRCTX Control Flow
Prediction
Restriction by
Context

0b1111 0b000 0b0111 0b0011 0b101 DVPRCTX Data Value
Prediction
Restriction by
Context

0b1111 0b000 0b0111 0b0011 0b111 CPPRCTX Cache Prefetch
Prediction
Restriction by
Context

0b1111 0b000 0b0111 0b0100 0b000 PAR Physical
Address
Register

0b1111 0b000 0b0111 0b0101 0b000 ICIALLU Instruction
Cache
Invalidate All to
PoU

0b1111 0b000 0b0111 0b0101 0b001 ICIMVAU Instruction
Cache line
Invalidate by
VA to PoU

0b1111 0b000 0b0111 0b0101 0b100 CP15ISB Instruction
Synchronization
Barrier System
instruction

0b1111 0b000 0b0111 0b0101 0b110 BPIALL Branch
Predictor
Invalidate All

0b1111 0b000 0b0111 0b0101 0b111 BPIMVA Branch
Predictor
Invalidate by
VA

0b1111 0b000 0b0111 0b0110 0b001 DCIMVAC Data Cache line
Invalidate by
VA to PoC

0b1111 0b000 0b0111 0b0110 0b010 DCISW Data Cache line
Invalidate by
Set/Way

System Register index by instruction and encoding

Page 3080

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b0111 0b1000 0b000 ATS1CPR Address
Translate Stage
1 Current state
PL1 Read

0b1111 0b000 0b0111 0b1000 0b001 ATS1CPW Address
Translate Stage
1 Current state
PL1 Write

0b1111 0b000 0b0111 0b1000 0b010 ATS1CUR Address
Translate Stage
1 Current state
Unprivileged
Read

0b1111 0b000 0b0111 0b1000 0b011 ATS1CUW Address
Translate Stage
1 Current state
Unprivileged
Write

0b1111 0b000 0b0111 0b1000 0b100 ATS12NSOPR Address
Translate
Stages 1 and 2
Non-secure
Only PL1 Read

0b1111 0b000 0b0111 0b1000 0b101 ATS12NSOPW Address
Translate
Stages 1 and 2
Non-secure
Only PL1 Write

0b1111 0b000 0b0111 0b1000 0b110 ATS12NSOUR Address
Translate
Stages 1 and 2
Non-secure
Only
Unprivileged
Read

0b1111 0b000 0b0111 0b1000 0b111 ATS12NSOUW Address
Translate
Stages 1 and 2
Non-secure
Only
Unprivileged
Write

0b1111 0b000 0b0111 0b1001 0b000 ATS1CPRP Address
Translate Stage
1 Current state
PL1 Read PAN

0b1111 0b000 0b0111 0b1001 0b001 ATS1CPWP Address
Translate Stage
1 Current state
PL1 Write PAN

0b1111 0b000 0b0111 0b1010 0b001 DCCMVAC Data Cache line
Clean by VA to
PoC

0b1111 0b000 0b0111 0b1010 0b010 DCCSW Data Cache line
Clean by Set/
Way

0b1111 0b000 0b0111 0b1010 0b100 CP15DSB Data
Synchronization
Barrier System
instruction

0b1111 0b000 0b0111 0b1010 0b101 CP15DMB Data Memory
Barrier System
instruction

System Register index by instruction and encoding

Page 3081

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b0111 0b1011 0b001 DCCMVAU Data Cache line
Clean by VA to
PoU

0b1111 0b000 0b0111 0b1110 0b001 DCCIMVAC Data Cache line
Clean and
Invalidate by
VA to PoC

0b1111 0b000 0b0111 0b1110 0b010 DCCISW Data Cache line
Clean and
Invalidate by
Set/Way

0b1111 0b000 0b1000 0b0011 0b000 TLBIALLIS TLB Invalidate
All, Inner
Shareable

0b1111 0b000 0b1000 0b0011 0b001 TLBIMVAIS TLB Invalidate
by VA, Inner
Shareable

0b1111 0b000 0b1000 0b0011 0b010 TLBIASIDIS TLB Invalidate
by ASID match,
Inner Shareable

0b1111 0b000 0b1000 0b0011 0b011 TLBIMVAAIS TLB Invalidate
by VA, All ASID,
Inner Shareable

0b1111 0b000 0b1000 0b0011 0b101 TLBIMVALIS TLB Invalidate
by VA, Last
level, Inner
Shareable

0b1111 0b000 0b1000 0b0011 0b111 TLBIMVAALIS TLB Invalidate
by VA, All ASID,
Last level,
Inner Shareable

0b1111 0b000 0b1000 0b0101 0b000 ITLBIALL Instruction TLB
Invalidate All

0b1111 0b000 0b1000 0b0101 0b001 ITLBIMVA Instruction TLB
Invalidate by
VA

0b1111 0b000 0b1000 0b0101 0b010 ITLBIASID Instruction TLB
Invalidate by
ASID match

0b1111 0b000 0b1000 0b0110 0b000 DTLBIALL Data TLB
Invalidate All

0b1111 0b000 0b1000 0b0110 0b001 DTLBIMVA Data TLB
Invalidate by
VA

0b1111 0b000 0b1000 0b0110 0b010 DTLBIASID Data TLB
Invalidate by
ASID match

0b1111 0b000 0b1000 0b0111 0b000 TLBIALL TLB Invalidate
All

0b1111 0b000 0b1000 0b0111 0b001 TLBIMVA TLB Invalidate
by VA

0b1111 0b000 0b1000 0b0111 0b010 TLBIASID TLB Invalidate
by ASID match

0b1111 0b000 0b1000 0b0111 0b011 TLBIMVAA TLB Invalidate
by VA, All ASID

0b1111 0b000 0b1000 0b0111 0b101 TLBIMVAL TLB Invalidate
by VA, Last
level

0b1111 0b000 0b1000 0b0111 0b111 TLBIMVAAL TLB Invalidate
by VA, All ASID,
Last level

System Register index by instruction and encoding

Page 3082

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b1001 0b1100 0b000 PMCR Performance
Monitors
Control
Register

0b1111 0b000 0b1001 0b1100 0b001 PMCNTENSET Performance
Monitors Count
Enable Set
register

0b1111 0b000 0b1001 0b1100 0b010 PMCNTENCLR Performance
Monitors Count
Enable Clear
register

0b1111 0b000 0b1001 0b1100 0b011 PMOVSR Performance
Monitors
Overflow Flag
Status Register

0b1111 0b000 0b1001 0b1100 0b100 PMSWINC Performance
Monitors
Software
Increment
register

0b1111 0b000 0b1001 0b1100 0b101 PMSELR Performance
Monitors Event
Counter
Selection
Register

0b1111 0b000 0b1001 0b1100 0b110 PMCEID0 Performance
Monitors
Common Event
Identification
register 0

0b1111 0b000 0b1001 0b1100 0b111 PMCEID1 Performance
Monitors
Common Event
Identification
register 1

0b1111 0b000 0b1001 0b1101 0b000 PMCCNTR Performance
Monitors Cycle
Count Register

0b1111 0b000 0b1001 0b1101 0b001 PMXEVTYPER Performance
Monitors
Selected Event
Type Register

0b1111 0b000 0b1001 0b1101 0b010 PMXEVCNTR Performance
Monitors
Selected Event
Count Register

0b1111 0b000 0b1001 0b1110 0b000 PMUSERENR Performance
Monitors User
Enable Register

0b1111 0b000 0b1001 0b1110 0b001 PMINTENSET Performance
Monitors
Interrupt
Enable Set
register

0b1111 0b000 0b1001 0b1110 0b010 PMINTENCLR Performance
Monitors
Interrupt
Enable Clear
register

0b1111 0b000 0b1001 0b1110 0b011 PMOVSSET Performance
Monitors
Overflow Flag

System Register index by instruction and encoding

Page 3083

Register selectors
coproc opc1 CRn CRm opc2 Name Description

Status Set
register

0b1111 0b000 0b1001 0b1110 0b100 PMCEID2 Performance
Monitors
Common Event
Identification
register 2

0b1111 0b000 0b1001 0b1110 0b101 PMCEID3 Performance
Monitors
Common Event
Identification
register 3

0b1111 0b000 0b1001 0b1110 0b110 PMMIR Performance
Monitors
Machine
Identification
Register

0b1111 0b000 0b1010 0b0011 0b000 AMAIR0 Auxiliary
Memory
Attribute
Indirection
Register 0

0b1111 0b000 0b1010 0b0011 0b001 AMAIR1 Auxiliary
Memory
Attribute
Indirection
Register 1

0b1111 0b000 0b1100 0b0000 0b000 VBAR Vector Base
Address
Register

0b1111 0b000 0b1100 0b0000 0b010 RMR Reset
Management
Register

0b1111 0b000 0b1100 0b0001 0b000 ISR Interrupt
Status Register

0b1111 0b000 0b1100 0b0001 0b001 DISR Deferred
Interrupt
Status Register

0b1111 0b000 0b1100 0b1000 0b000 ICC_IAR0 Interrupt
Controller
Interrupt
Acknowledge
Register 0

0b1111 0b000 0b1100 0b1000 0b001 ICC_EOIR0 Interrupt
Controller End
Of Interrupt
Register 0

0b1111 0b000 0b1100 0b1000 0b010 ICC_HPPIR0 Interrupt
Controller
Highest Priority
Pending
Interrupt
Register 0

0b1111 0b000 0b1100 0b1000 0b011 ICC_BPR0 Interrupt
Controller
Binary Point
Register 0

0b1111 0b000 0b1100 0b1000 0b1:n[1:0] ICC_AP0R<n> Interrupt
Controller
Active Priorities
Group 0
Registers

System Register index by instruction and encoding

Page 3084

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b1100 0b1001 0b0:n[1:0] ICC_AP1R<n> Interrupt
Controller
Active Priorities
Group 1
Registers

0b1111 0b000 0b1100 0b1011 0b001 ICC_DIR Interrupt
Controller
Deactivate
Interrupt
Register

0b1111 0b000 0b1100 0b1011 0b011 ICC_RPR Interrupt
Controller
Running
Priority
Register

0b1111 0b000 0b1100 0b1100 0b000 ICC_IAR1 Interrupt
Controller
Interrupt
Acknowledge
Register 1

0b1111 0b000 0b1100 0b1100 0b001 ICC_EOIR1 Interrupt
Controller End
Of Interrupt
Register 1

0b1111 0b000 0b1100 0b1100 0b010 ICC_HPPIR1 Interrupt
Controller
Highest Priority
Pending
Interrupt
Register 1

0b1111 0b000 0b1100 0b1100 0b011 ICC_BPR1 Interrupt
Controller
Binary Point
Register 1

0b1111 0b000 0b1100 0b1100 0b100 ICC_CTLR Interrupt
Controller
Control
Register

0b1111 0b000 0b1100 0b1100 0b101 ICC_SRE Interrupt
Controller
System
Register Enable
register

0b1111 0b000 0b1100 0b1100 0b110 ICC_IGRPEN0 Interrupt
Controller
Interrupt Group
0 Enable
register

0b1111 0b000 0b1100 0b1100 0b111 ICC_IGRPEN1 Interrupt
Controller
Interrupt Group
1 Enable
register

0b1111 0b000 0b1101 0b0000 0b000 FCSEIDR FCSE Process
ID register

0b1111 0b000 0b1101 0b0000 0b001 CONTEXTIDR Context ID
Register

0b1111 0b000 0b1101 0b0000 0b010 TPIDRURW PL0 Read/Write
Software
Thread ID
Register

0b1111 0b000 0b1101 0b0000 0b011 TPIDRURO PL0 Read-Only
Software

System Register index by instruction and encoding

Page 3085

Register selectors
coproc opc1 CRn CRm opc2 Name Description

Thread ID
Register

0b1111 0b000 0b1101 0b0000 0b100 TPIDRPRW PL1 Software
Thread ID
Register

0b1111 0b000 0b1101 0b0010 0b000 AMCR Activity
Monitors
Control
Register

0b1111 0b000 0b1101 0b0010 0b001 AMCFGR Activity
Monitors
Configuration
Register

0b1111 0b000 0b1101 0b0010 0b010 AMCGCR Activity
Monitors
Counter Group
Configuration
Register

0b1111 0b000 0b1101 0b0010 0b011 AMUSERENR Activity
Monitors User
Enable Register

0b1111 0b000 0b1101 0b0010 0b100 AMCNTENCLR0 Activity
Monitors Count
Enable Clear
Register 0

0b1111 0b000 0b1101 0b0010 0b101 AMCNTENSET0 Activity
Monitors Count
Enable Set
Register 0

0b1111 0b000 0b1101 0b0011 0b000 AMCNTENCLR1 Activity
Monitors Count
Enable Clear
Register 1

0b1111 0b000 0b1101 0b0011 0b001 AMCNTENSET1 Activity
Monitors Count
Enable Set
Register 1

0b1111 0b000 0b1101 0b011:n[3] n[2:0] AMEVTYPER0<n> Activity
Monitors Event
Type Registers
0

0b1111 0b000 0b1101 0b111:n[3] n[2:0] AMEVTYPER1<n> Activity
Monitors Event
Type Registers
1

0b1111 0b000 0b1110 0b0000 0b000 CNTFRQ Counter-timer
Frequency
register

0b1111 0b000 0b1110 0b0001 0b000 CNTKCTL Counter-timer
Kernel Control
register

0b1111 0b000 0b1110 0b0010 0b000 CNTP_TVAL Counter-timer
Physical Timer
TimerValue
register

0b1111 0b000 0b1110 0b0010 0b001 CNTP_CTL Counter-timer
Physical Timer
Control register

0b1111 0b000 0b1110 0b0011 0b000 CNTV_TVAL Counter-timer
Virtual Timer
TimerValue
register

System Register index by instruction and encoding

Page 3086

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b1110 0b0011 0b001 CNTV_CTL Counter-timer
Virtual Timer
Control register

0b1111 0b000 0b1110 0b10:n[4:3] n[2:0] PMEVCNTR<n> Performance
Monitors Event
Count Registers

0b1111 0b000 0b1110 0b1111 0b111 PMCCFILTR Performance
Monitors Cycle
Count Filter
Register

0b1111 0b000 0b1110 0b11:n[4:3] n[2:0] PMEVTYPER<n> Performance
Monitors Event
Type Registers

0b1111 0b001 0b0000 0b0000 0b000 CCSIDR Current Cache
Size ID
Register

0b1111 0b001 0b0000 0b0000 0b001 CLIDR Cache Level ID
Register

0b1111 0b001 0b0000 0b0000 0b010 CCSIDR2 Current Cache
Size ID
Register 2

0b1111 0b001 0b0000 0b0000 0b111 AIDR Auxiliary ID
Register

0b1111 0b010 0b0000 0b0000 0b000 CSSELR Cache Size
Selection
Register

0b1111 0b011 0b0100 0b0101 0b000 DSPSR Debug Saved
Program Status
Register

0b1111 0b011 0b0100 0b0101 0b001 DLR Debug Link
Register

0b1111 0b100 0b0000 0b0000 0b000 VPIDR Virtualization
Processor ID
Register

0b1111 0b100 0b0000 0b0000 0b101 VMPIDR Virtualization
Multiprocessor
ID Register

0b1111 0b100 0b0001 0b0000 0b000 HSCTLR Hyp System
Control
Register

0b1111 0b100 0b0001 0b0000 0b001 HACTLR Hyp Auxiliary
Control
Register

0b1111 0b100 0b0001 0b0000 0b011 HACTLR2 Hyp Auxiliary
Control
Register 2

0b1111 0b100 0b0001 0b0001 0b000 HCR Hyp
Configuration
Register

0b1111 0b100 0b0001 0b0001 0b001 HDCR Hyp Debug
Control
Register

0b1111 0b100 0b0001 0b0001 0b010 HCPTR Hyp
Architectural
Feature Trap
Register

0b1111 0b100 0b0001 0b0001 0b011 HSTR Hyp System
Trap Register

0b1111 0b100 0b0001 0b0001 0b100 HCR2 Hyp
Configuration
Register 2

System Register index by instruction and encoding

Page 3087

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b100 0b0001 0b0001 0b111 HACR Hyp Auxiliary
Configuration
Register

0b1111 0b100 0b0001 0b0010 0b001 HTRFCR Hyp Trace
Filter Control
Register

0b1111 0b100 0b0010 0b0000 0b010 HTCR Hyp Translation
Control
Register

0b1111 0b100 0b0010 0b0001 0b010 VTCR Virtualization
Translation
Control
Register

0b1111 0b100 0b0101 0b0001 0b000 HADFSR Hyp Auxiliary
Data Fault
Status Register

0b1111 0b100 0b0101 0b0001 0b001 HAIFSR Hyp Auxiliary
Instruction
Fault Status
Register

0b1111 0b100 0b0101 0b0010 0b000 HSR Hyp Syndrome
Register

0b1111 0b100 0b0101 0b0010 0b011 VDFSR Virtual SError
Exception
Syndrome
Register

0b1111 0b100 0b0110 0b0000 0b000 HDFAR Hyp Data Fault
Address
Register

0b1111 0b100 0b0110 0b0000 0b010 HIFAR Hyp Instruction
Fault Address
Register

0b1111 0b100 0b0110 0b0000 0b100 HPFAR Hyp IPA Fault
Address
Register

0b1111 0b100 0b0111 0b1000 0b000 ATS1HR Address
Translate Stage
1 Hyp mode
Read

0b1111 0b100 0b0111 0b1000 0b001 ATS1HW Address
Translate Stage
1 Hyp mode
Write

0b1111 0b100 0b1000 0b0000 0b001 TLBIIPAS2IS TLB Invalidate
by Intermediate
Physical
Address, Stage
2, Inner
Shareable

0b1111 0b100 0b1000 0b0000 0b101 TLBIIPAS2LIS TLB Invalidate
by Intermediate
Physical
Address, Stage
2, Last level,
Inner Shareable

0b1111 0b100 0b1000 0b0011 0b000 TLBIALLHIS TLB Invalidate
All, Hyp mode,
Inner Shareable

0b1111 0b100 0b1000 0b0011 0b001 TLBIMVAHIS TLB Invalidate
by VA, Hyp
mode, Inner
Shareable

System Register index by instruction and encoding

Page 3088

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b100 0b1000 0b0011 0b100 TLBIALLNSNHIS TLB Invalidate
All, Non-Secure
Non-Hyp, Inner
Shareable

0b1111 0b100 0b1000 0b0011 0b101 TLBIMVALHIS TLB Invalidate
by VA, Last
level, Hyp
mode, Inner
Shareable

0b1111 0b100 0b1000 0b0100 0b001 TLBIIPAS2 TLB Invalidate
by Intermediate
Physical
Address, Stage
2

0b1111 0b100 0b1000 0b0100 0b101 TLBIIPAS2L TLB Invalidate
by Intermediate
Physical
Address, Stage
2, Last level

0b1111 0b100 0b1000 0b0111 0b000 TLBIALLH TLB Invalidate
All, Hyp mode

0b1111 0b100 0b1000 0b0111 0b001 TLBIMVAH TLB Invalidate
by VA, Hyp
mode

0b1111 0b100 0b1000 0b0111 0b100 TLBIALLNSNH TLB Invalidate
All, Non-Secure
Non-Hyp

0b1111 0b100 0b1000 0b0111 0b101 TLBIMVALH TLB Invalidate
by VA, Last
level, Hyp mode

0b1111 0b100 0b1010 0b0010 0b000 HMAIR0 Hyp Memory
Attribute
Indirection
Register 0

0b1111 0b100 0b1010 0b0010 0b001 HMAIR1 Hyp Memory
Attribute
Indirection
Register 1

0b1111 0b100 0b1010 0b0011 0b000 HAMAIR0 Hyp Auxiliary
Memory
Attribute
Indirection
Register 0

0b1111 0b100 0b1010 0b0011 0b001 HAMAIR1 Hyp Auxiliary
Memory
Attribute
Indirection
Register 1

0b1111 0b100 0b1100 0b0000 0b000 HVBAR Hyp Vector
Base Address
Register

0b1111 0b100 0b1100 0b0000 0b010 HRMR Hyp Reset
Management
Register

0b1111 0b100 0b1100 0b0001 0b001 VDISR Virtual
Deferred
Interrupt
Status Register

0b1111 0b100 0b1100 0b1000 0b0:n[1:0] ICH_AP0R<n> Interrupt
Controller Hyp
Active Priorities
Group 0
Registers

System Register index by instruction and encoding

Page 3089

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b100 0b1100 0b1001 0b0:n[1:0] ICH_AP1R<n> Interrupt
Controller Hyp
Active Priorities
Group 1
Registers

0b1111 0b100 0b1100 0b1001 0b101 ICC_HSRE Interrupt
Controller Hyp
System
Register Enable
register

0b1111 0b100 0b1100 0b1011 0b000 ICH_HCR Interrupt
Controller Hyp
Control
Register

0b1111 0b100 0b1100 0b1011 0b001 ICH_VTR Interrupt
Controller VGIC
Type Register

0b1111 0b100 0b1100 0b1011 0b010 ICH_MISR Interrupt
Controller
Maintenance
Interrupt State
Register

0b1111 0b100 0b1100 0b1011 0b011 ICH_EISR Interrupt
Controller End
of Interrupt
Status Register

0b1111 0b100 0b1100 0b1011 0b101 ICH_ELRSR Interrupt
Controller
Empty List
Register Status
Register

0b1111 0b100 0b1100 0b1011 0b111 ICH_VMCR Interrupt
Controller
Virtual Machine
Control
Register

0b1111 0b100 0b1100 0b110:n[3] n[2:0] ICH_LR<n> Interrupt
Controller List
Registers

0b1111 0b100 0b1100 0b111:n[3] n[2:0] ICH_LRC<n> Interrupt
Controller List
Registers

0b1111 0b100 0b1101 0b0000 0b010 HTPIDR Hyp Software
Thread ID
Register

0b1111 0b100 0b1110 0b0001 0b000 CNTHCTL Counter-timer
Hyp Control
register

0b1111 0b100 0b1110 0b0010 0b000 CNTHP_TVAL Counter-timer
Hyp Physical
Timer
TimerValue
register

0b1111 0b100 0b1110 0b0010 0b001 CNTHP_CTL Counter-timer
Hyp Physical
Timer Control
register

0b1111 0b110 0b1100 0b1100 0b100 ICC_MCTLR Interrupt
Controller
Monitor Control
Register

0b1111 0b110 0b1100 0b1100 0b101 ICC_MSRE Interrupt
Controller

System Register index by instruction and encoding

Page 3090

Register selectors
coproc opc1 CRn CRm opc2 Name Description

Monitor System
Register Enable
register

0b1111 0b110 0b1100 0b1100 0b111 ICC_MGRPEN1 Interrupt
Controller
Monitor
Interrupt Group
1 Enable
register

Accessed using MCRR/MRRC:
Register selectors

coproc CRm opc1 Name Description

0b1110 0b0001 0b0000 DBGDRAR Debug ROM Address Register
0b1110 0b0010 0b0000 DBGDSAR Debug Self Address Register
0b1111 0b000:n[3] 0b0:n[2:0] AMEVCNTR0<n> Activity Monitors Event Counter

Registers 0
0b1111 0b0010 0b0000 TTBR0 Translation Table Base Register 0
0b1111 0b0010 0b0001 TTBR1 Translation Table Base Register 1
0b1111 0b0010 0b0100 HTTBR Hyp Translation Table Base Register
0b1111 0b0010 0b0110 VTTBR Virtualization Translation Table Base

Register
0b1111 0b010:n[3] n[2:0] AMEVCNTR1<n> Activity Monitors Event Counter

Registers 1
0b1111 0b0111 0b0000 PAR Physical Address Register
0b1111 0b1001 0b0000 PMCCNTR Performance Monitors Cycle Count

Register
0b1111 0b1100 0b0000 ICC_SGI1R Interrupt Controller Software

Generated Interrupt Group 1
Register

0b1111 0b1100 0b0001 ICC_ASGI1R Interrupt Controller Alias Software
Generated Interrupt Group 1
Register

0b1111 0b1100 0b0010 ICC_SGI0R Interrupt Controller Software
Generated Interrupt Group 0
Register

0b1111 0b1110 0b0000 CNTPCT Counter-timer Physical Count
register

0b1111 0b1110 0b0001 CNTVCT Counter-timer Virtual Count register
0b1111 0b1110 0b0010 CNTP_CVAL Counter-timer Physical Timer

CompareValue register
0b1111 0b1110 0b0011 CNTV_CVAL Counter-timer Virtual Timer

CompareValue register
0b1111 0b1110 0b0100 CNTVOFF Counter-timer Virtual Offset register
0b1111 0b1110 0b0110 CNTHP_CVAL Counter-timer Hyp Physical

CompareValue register
0b1111 0b1110 0b1000 CNTPCTSS Counter-timer Self-Synchronized

Physical Count register
0b1111 0b1110 0b1001 CNTVCTSS Counter-timer Self-Synchronized

Virtual Count register

Accessed using MRS/MSR:
Register selectors

R M M1 Name Description

0b0 0b1 0b1110 ELR_hyp Exception Link Register (Hyp mode)

System Register index by instruction and encoding

Page 3091

Register selectors
R M M1 Name Description

0b1 0b0 0b1110 SPSR_fiq Saved Program Status Register (FIQ mode)
0b1 0b1 0b0000 SPSR_irq Saved Program Status Register (IRQ mode)
0b1 0b1 0b0010 SPSR_svc Saved Program Status Register (Supervisor mode)
0b1 0b1 0b0100 SPSR_abt Saved Program Status Register (Abort mode)
0b1 0b1 0b0110 SPSR_und Saved Program Status Register (Undefined mode)
0b1 0b1 0b1100 SPSR_mon Saved Program Status Register (Monitor mode)
0b1 0b1 0b1110 SPSR_hyp Saved Program Status Register (Hyp mode)

Accessed using VMRS/VMSR:
Register
selectors

reg
Name Description

0b0000 FPSID Floating-Point System ID register
0b0001 FPSCR Floating-Point Status and Control Register
0b0101 MVFR2 Media and VFP Feature Register 2
0b0110 MVFR1 Media and VFP Feature Register 1
0b0111 MVFR0 Media and VFP Feature Register 0
0b1000 FPEXC Floating-Point Exception Control register

Registers and operations in AArch64

Accessed using AT:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b0111 0b1000 0b000 AT
S1E1R

Address Translate Stage 1 EL1
Read

0b01 0b000 0b0111 0b1000 0b001 AT
S1E1W

Address Translate Stage 1 EL1
Write

0b01 0b000 0b0111 0b1000 0b010 AT
S1E0R

Address Translate Stage 1 EL0
Read

0b01 0b000 0b0111 0b1000 0b011 AT
S1E0W

Address Translate Stage 1 EL0
Write

0b01 0b000 0b0111 0b1001 0b000 AT
S1E1RP

Address Translate Stage 1 EL1
Read PAN

0b01 0b000 0b0111 0b1001 0b001 AT
S1E1WP

Address Translate Stage 1 EL1
Write PAN

0b01 0b100 0b0111 0b1000 0b000 AT
S1E2R

Address Translate Stage 1 EL2
Read

0b01 0b100 0b0111 0b1000 0b001 AT
S1E2W

Address Translate Stage 1 EL2
Write

0b01 0b100 0b0111 0b1000 0b100 AT
S12E1R

Address Translate Stages 1 and 2
EL1 Read

0b01 0b100 0b0111 0b1000 0b101 AT
S12E1W

Address Translate Stages 1 and 2
EL1 Write

0b01 0b100 0b0111 0b1000 0b110 AT
S12E0R

Address Translate Stages 1 and 2
EL0 Read

0b01 0b100 0b0111 0b1000 0b111 AT
S12E0W

Address Translate Stages 1 and 2
EL0 Write

0b01 0b110 0b0111 0b1000 0b000 AT
S1E3R

Address Translate Stage 1 EL3
Read

0b01 0b110 0b0111 0b1000 0b001 AT
S1E3W

Address Translate Stage 1 EL3
Write

System Register index by instruction and encoding

Page 3092

Accessed using CFP:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b011 0b0111 0b0011 0b100 CFP
RCTX

Control Flow Prediction Restriction
by Context

Accessed using CPP:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b011 0b0111 0b0011 0b111 CPP
RCTX

Cache Prefetch Prediction
Restriction by Context

Accessed using DC:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b0111 0b0110 0b001 DC IVAC Data or unified Cache line
Invalidate by VA to PoC

0b01 0b000 0b0111 0b0110 0b010 DC ISW Data or unified Cache line
Invalidate by Set/Way

0b01 0b000 0b0111 0b0110 0b011 DC
IGVAC

Data, Allocation Tag or unified
Cache line Invalidate of Allocation
Tags by VA to PoC

0b01 0b000 0b0111 0b0110 0b100 DC IGSW Data, Allocation Tag or unified
Cache line Invalidate of Allocation
Tags by Set/Way

0b01 0b000 0b0111 0b0110 0b101 DC
IGDVAC

Data, Allocation Tag or unified
Cache line Invalidate of Allocation
Tags by VA to PoC

0b01 0b000 0b0111 0b0110 0b110 DC
IGDSW

Data, Allocation Tag or unified
Cache line Invalidate of Data and
Allocation Tags by Set/Way

0b01 0b000 0b0111 0b1010 0b010 DC CSW Data or unified Cache line Clean
by Set/Way

0b01 0b000 0b0111 0b1010 0b100 DC CGSW Data, Allocation Tag or unified
Cache line Clean of Allocation
Tags by Set/Way

0b01 0b000 0b0111 0b1010 0b110 DC
CGDSW

Data, Allocation Tag or unified
Cache line Clean of Data and
Allocation Tags by Set/Way

0b01 0b000 0b0111 0b1110 0b010 DC CISW Data or unified Cache line Clean
and Invalidate by Set/Way

0b01 0b000 0b0111 0b1110 0b100 DC
CIGSW

Data, Allocation Tag or unified
Cache line Clean and Invalidate of
Allocation Tags by Set/Way

0b01 0b000 0b0111 0b1110 0b110 DC
CIGDSW

Data, Allocation Tag or unified
Cache line Clean and Invalidate of
Data and Allocation Tags by Set/
Way

0b01 0b011 0b0111 0b0100 0b001 DC ZVA Data Cache Zero by VA
0b01 0b011 0b0111 0b0100 0b011 DC GVA Data Cache set Allocation Tag by

VA
0b01 0b011 0b0111 0b0100 0b100 DC GZVA Data Cache set Allocation Tags

and Zero by VA
0b01 0b011 0b0111 0b1010 0b001 DC CVAC Data or unified Cache line Clean

by VA to PoC

System Register index by instruction and encoding

Page 3093

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b011 0b0111 0b1010 0b011 DC
CGVAC

Data, Allocation Tag or unified
Cache line Clean of Allocation
Tags by VA to PoC

0b01 0b011 0b0111 0b1010 0b101 DC
CGDVAC

Data, Allocation Tag or unified
Cache line Clean of Allocation
Tags by VA to PoC

0b01 0b011 0b0111 0b1011 0b001 DC CVAU Data or unified Cache line Clean
by VA to PoU

0b01 0b011 0b0111 0b1100 0b001 DC CVAP Data or unified Cache line Clean
by VA to PoP

0b01 0b011 0b0111 0b1100 0b011 DC
CGVAP

Data, Allocation Tag or unified
Cache line Clean of Allocation
Tags by VA to PoP

0b01 0b011 0b0111 0b1100 0b101 DC
CGDVAP

Data, Allocation Tag or unified
Cache line Clean of Data and
Allocation Tags by VA to PoP

0b01 0b011 0b0111 0b1101 0b001 DC
CVADP

Data or unified Cache line Clean
by VA to PoDP

0b01 0b011 0b0111 0b1101 0b011 DC
CGVADP

Data, Allocation Tag or unified
Cache line Clean of Data and
Allocation Tags by VA to PoDP

0b01 0b011 0b0111 0b1101 0b101 DC
CGDVADP

Data, Allocation Tag or unified
Cache line Clean of Allocation
Tags by VA to PoDP

0b01 0b011 0b0111 0b1110 0b001 DC CIVAC Data or unified Cache line Clean
and Invalidate by VA to PoC

0b01 0b011 0b0111 0b1110 0b011 DC
CIGVAC

Data, Allocation Tag or unified
Cache line Clean and Invalidate of
Allocation Tags by VA to PoC

0b01 0b011 0b0111 0b1110 0b101 DC
CIGDVAC

Data, Allocation Tag or unified
Cache line Clean and Invalidate of
Data and Allocation Tags by VA to
PoC

Accessed using DVP:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b011 0b0111 0b0011 0b101 DVP
RCTX

Data Value Prediction Restriction by
Context

Accessed using IC:
Register selectors

op0 op1 CRn CRm op2 Rt Name Description

0b01 0b000 0b0111 0b0001 0b000 0b11111 IC
IALLUIS

Instruction Cache
Invalidate All to
PoU, Inner
Shareable

0b01 0b000 0b0111 0b0101 0b000 0b11111 IC
IALLU

Instruction Cache
Invalidate All to
PoU

0b01 0b011 0b0111 0b0101 0b001 - IC IVAU Instruction Cache
line Invalidate by
VA to PoU

System Register index by instruction and encoding

Page 3094

Accessed using MRS/MSR:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b10 0b000 0b0000 0b0000 0b010 OSDTRRX_EL1 OS Lock Data
Transfer
Register,
Receive

0b10 0b000 0b0000 0b0010 0b000 MDCCINT_EL1 Monitor DCC
Interrupt
Enable Register

0b10 0b000 0b0000 0b0010 0b010 MDSCR_EL1 Monitor Debug
System Control
Register

0b10 0b000 0b0000 0b0011 0b010 OSDTRTX_EL1 OS Lock Data
Transfer
Register,
Transmit

0b10 0b000 0b0000 0b0110 0b010 OSECCR_EL1 OS Lock
Exception
Catch Control
Register

0b10 0b000 0b0000 n[3:0] 0b100 DBGBVR<n>_EL1 Debug
Breakpoint
Value Registers

0b10 0b000 0b0000 n[3:0] 0b101 DBGBCR<n>_EL1 Debug
Breakpoint
Control
Registers

0b10 0b000 0b0000 n[3:0] 0b110 DBGWVR<n>_EL1 Debug
Watchpoint
Value Registers

0b10 0b000 0b0000 n[3:0] 0b111 DBGWCR<n>_EL1 Debug
Watchpoint
Control
Registers

0b10 0b000 0b0001 0b0000 0b000 MDRAR_EL1 Monitor Debug
ROM Address
Register

0b10 0b000 0b0001 0b0000 0b100 OSLAR_EL1 OS Lock Access
Register

0b10 0b000 0b0001 0b0001 0b100 OSLSR_EL1 OS Lock Status
Register

0b10 0b000 0b0001 0b0011 0b100 OSDLR_EL1 OS Double Lock
Register

0b10 0b000 0b0001 0b0100 0b100 DBGPRCR_EL1 Debug Power
Control
Register

0b10 0b000 0b0111 0b1000 0b110 DBGCLAIMSET_EL1 Debug CLAIM
Tag Set register

0b10 0b000 0b0111 0b1001 0b110 DBGCLAIMCLR_EL1 Debug CLAIM
Tag Clear
register

0b10 0b000 0b0111 0b1110 0b110 DBGAUTHSTATUS_EL1 Debug
Authentication
Status register

0b10 0b001 0b0000 0b0000 0b001 TRCTRACEIDR Trace ID
Register

0b10 0b001 0b0000 0b0000 0b010 TRCVICTLR ViewInst Main
Control
Register

0b10 0b001 0b0000 0b0000 0b110 TRCIDR8 ID Register 8

System Register index by instruction and encoding

Page 3095

Register selectors
op0 op1 CRn CRm op2 Name Description

0b10 0b001 0b0000 0b0000 0b111 TRCIMSPEC0 IMP DEF
Register 0

0b10 0b001 0b0000 0b0001 0b000 TRCPRGCTLR Programming
Control
Register

0b10 0b001 0b0000 0b0001 0b001 TRCQCTLR Q Element
Control
Register

0b10 0b001 0b0000 0b0001 0b010 TRCVIIECTLR ViewInst
Include/Exclude
Control
Register

0b10 0b001 0b0000 0b0001 0b110 TRCIDR9 ID Register 9
0b10 0b001 0b0000 0b0010 0b010 TRCVISSCTLR ViewInst Start/

Stop Control
Register

0b10 0b001 0b0000 0b0010 0b110 TRCIDR10 ID Register 10
0b10 0b001 0b0000 0b0011 0b000 TRCSTATR Trace Status

Register
0b10 0b001 0b0000 0b0011 0b010 TRCVIPCSSCTLR ViewInst Start/

Stop PE
Comparator
Control
Register

0b10 0b001 0b0000 0b0011 0b110 TRCIDR11 ID Register 11
0b10 0b001 0b0000 0b00:n[1:0] 0b100 TRCSEQEVR<n> Sequencer

State Transition
Control
Register <n>

0b10 0b001 0b0000 0b00:n[1:0] 0b101 TRCCNTRLDVR<n> Counter Reload
Value Register
<n>

0b10 0b001 0b0000 0b0100 0b000 TRCCONFIGR Trace
Configuration
Register

0b10 0b001 0b0000 0b0100 0b110 TRCIDR12 ID Register 12
0b10 0b001 0b0000 0b0101 0b110 TRCIDR13 ID Register 13
0b10 0b001 0b0000 0b0110 0b000 TRCAUXCTLR Auxillary

Control
Register

0b10 0b001 0b0000 0b0110 0b100 TRCSEQRSTEVR Sequencer
Reset Control
Register

0b10 0b001 0b0000 0b0111 0b100 TRCSEQSTR Sequencer
State Register

0b10 0b001 0b0000 0b01:n[1:0] 0b101 TRCCNTCTLR<n> Counter
Control
Register <n>

0b10 0b001 0b0000 0b0:n[2:0] 0b111 TRCIMSPEC<n> IMP DEF
Register <n>

0b10 0b001 0b0000 0b1000 0b000 TRCEVENTCTL0R Event Control 0
Register

0b10 0b001 0b0000 0b1000 0b111 TRCIDR0 ID Register 0
0b10 0b001 0b0000 0b1001 0b000 TRCEVENTCTL1R Event Control 1

Register
0b10 0b001 0b0000 0b1001 0b111 TRCIDR1 ID Register 1
0b10 0b001 0b0000 0b1010 0b000 TRCRSR Resources

Status Register
0b10 0b001 0b0000 0b1010 0b111 TRCIDR2 ID Register 2

System Register index by instruction and encoding

Page 3096

Register selectors
op0 op1 CRn CRm op2 Name Description

0b10 0b001 0b0000 0b1011 0b000 TRCSTALLCTLR Stall Control
Register

0b10 0b001 0b0000 0b1011 0b111 TRCIDR3 ID Register 3
0b10 0b001 0b0000 0b10:n[1:0] 0b100 TRCEXTINSELR<n> External Input

Select Register
<n>

0b10 0b001 0b0000 0b10:n[1:0] 0b101 TRCCNTVR<n> Counter Value
Register <n>

0b10 0b001 0b0000 0b1100 0b000 TRCTSCTLR Timestamp
Control
Register

0b10 0b001 0b0000 0b1100 0b111 TRCIDR4 ID Register 4
0b10 0b001 0b0000 0b1101 0b000 TRCSYNCPR Synchronization

Period Register
0b10 0b001 0b0000 0b1101 0b111 TRCIDR5 ID Register 5
0b10 0b001 0b0000 0b1110 0b000 TRCCCCTLR Cycle Count

Control
Register

0b10 0b001 0b0000 0b1110 0b111 TRCIDR6 ID Register 6
0b10 0b001 0b0000 0b1111 0b000 TRCBBCTLR Branch

Broadcast
Control
Register

0b10 0b001 0b0000 0b1111 0b111 TRCIDR7 ID Register 7
0b10 0b001 0b0001 0b0001 0b100 TRCOSLSR Trace OS Lock

Status Register
0b10 0b001 0b0001 0b0:n[2:0] 0b010 TRCSSCCR<n> Single-shot

Comparator
Control
Register <n>

0b10 0b001 0b0001 0b0:n[2:0] 0b011 TRCSSPCICR<n> Single-shot
Processing
Element
Comparator
Input Control
Register <n>

0b10 0b001 0b0001 0b1:n[2:0] 0b010 TRCSSCSR<n> Single-shot
Comparator
Control Status
Register <n>

0b10 0b001 0b0001 n[3:0] 0b00:n[4] TRCRSCTLR<n> Resource
Selection
Control
Register <n>

0b10 0b001 0b0010 n[2:0]:0b0 0b00:n[3] TRCACVR<n> Address
Comparator
Value Register
<n>

0b10 0b001 0b0010 n[2:0]:0b0 0b01:n[3] TRCACATR<n> Address
Comparator
Access Type
Register <n>

0b10 0b001 0b0011 0b0000 0b010 TRCCIDCCTLR0 Context
Identifier
Comparator
Control
Register 0

0b10 0b001 0b0011 0b0001 0b010 TRCCIDCCTLR1 Context
Identifier
Comparator

System Register index by instruction and encoding

Page 3097

Register selectors
op0 op1 CRn CRm op2 Name Description

Control
Register 1

0b10 0b001 0b0011 0b0010 0b010 TRCVMIDCCTLR0 Virtual Context
Identifier
Comparator
Control
Register 0

0b10 0b001 0b0011 0b0011 0b010 TRCVMIDCCTLR1 Virtual Context
Identifier
Comparator
Control
Register 1

0b10 0b001 0b0011 n[2:0]:0b0 0b000 TRCCIDCVR<n> Context
Identifier
Comparator
Value Registers
<n>

0b10 0b001 0b0011 n[2:0]:0b0 0b001 TRCVMIDCVR<n> Virtual Context
Identifier
Comparator
Value Register
<n>

0b10 0b001 0b0111 0b0010 0b111 TRCDEVID Device
Configuration
Register

0b10 0b001 0b0111 0b1000 0b110 TRCCLAIMSET Claim Tag Set
Register

0b10 0b001 0b0111 0b1001 0b110 TRCCLAIMCLR Claim Tag Clear
Register

0b10 0b001 0b0111 0b1110 0b110 TRCAUTHSTATUS Authentication
Status Register

0b10 0b001 0b0111 0b1111 0b110 TRCDEVARCH Device
Architecture
Register

0b10 0b011 0b0000 0b0001 0b000 MDCCSR_EL0 Monitor DCC
Status Register

0b10 0b011 0b0000 0b0100 0b000 DBGDTR_EL0 Debug Data
Transfer
Register, half-
duplex

0b10 0b011 0b0000 0b0101 0b000 DBGDTRRX_EL0 Debug Data
Transfer
Register,
Receive

0b10 0b011 0b0000 0b0101 0b000 DBGDTRTX_EL0 Debug Data
Transfer
Register,
Transmit

0b10 0b100 0b0000 0b0111 0b000 DBGVCR32_EL2 Debug Vector
Catch Register

0b11 0b000 0b0000 0b0000 0b000 MIDR_EL1 Main ID
Register

0b11 0b000 0b0000 0b0000 0b101 MPIDR_EL1 Multiprocessor
Affinity
Register

0b11 0b000 0b0000 0b0000 0b110 REVIDR_EL1 Revision ID
Register

0b11 0b000 0b0000 0b0001 0b000 ID_PFR0_EL1 AArch32
Processor
Feature
Register 0

System Register index by instruction and encoding

Page 3098

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b0000 0b0001 0b001 ID_PFR1_EL1 AArch32
Processor
Feature
Register 1

0b11 0b000 0b0000 0b0001 0b010 ID_DFR0_EL1 AArch32 Debug
Feature
Register 0

0b11 0b000 0b0000 0b0001 0b011 ID_AFR0_EL1 AArch32
Auxiliary
Feature
Register 0

0b11 0b000 0b0000 0b0001 0b100 ID_MMFR0_EL1 AArch32
Memory Model
Feature
Register 0

0b11 0b000 0b0000 0b0001 0b101 ID_MMFR1_EL1 AArch32
Memory Model
Feature
Register 1

0b11 0b000 0b0000 0b0001 0b110 ID_MMFR2_EL1 AArch32
Memory Model
Feature
Register 2

0b11 0b000 0b0000 0b0001 0b111 ID_MMFR3_EL1 AArch32
Memory Model
Feature
Register 3

0b11 0b000 0b0000 0b0010 0b000 ID_ISAR0_EL1 AArch32
Instruction Set
Attribute
Register 0

0b11 0b000 0b0000 0b0010 0b001 ID_ISAR1_EL1 AArch32
Instruction Set
Attribute
Register 1

0b11 0b000 0b0000 0b0010 0b010 ID_ISAR2_EL1 AArch32
Instruction Set
Attribute
Register 2

0b11 0b000 0b0000 0b0010 0b011 ID_ISAR3_EL1 AArch32
Instruction Set
Attribute
Register 3

0b11 0b000 0b0000 0b0010 0b100 ID_ISAR4_EL1 AArch32
Instruction Set
Attribute
Register 4

0b11 0b000 0b0000 0b0010 0b101 ID_ISAR5_EL1 AArch32
Instruction Set
Attribute
Register 5

0b11 0b000 0b0000 0b0010 0b110 ID_MMFR4_EL1 AArch32
Memory Model
Feature
Register 4

0b11 0b000 0b0000 0b0010 0b111 ID_ISAR6_EL1 AArch32
Instruction Set
Attribute
Register 6

0b11 0b000 0b0000 0b0011 0b000 MVFR0_EL1 AArch32 Media
and VFP
Feature
Register 0

System Register index by instruction and encoding

Page 3099

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b0000 0b0011 0b001 MVFR1_EL1 AArch32 Media
and VFP
Feature
Register 1

0b11 0b000 0b0000 0b0011 0b010 MVFR2_EL1 AArch32 Media
and VFP
Feature
Register 2

0b11 0b000 0b0000 0b0011 0b100 ID_PFR2_EL1 AArch32
Processor
Feature
Register 2

0b11 0b000 0b0000 0b0011 0b101 ID_DFR1_EL1 Debug Feature
Register 1

0b11 0b000 0b0000 0b0011 0b110 ID_MMFR5_EL1 AArch32
Memory Model
Feature
Register 5

0b11 0b000 0b0000 0b0100 0b000 ID_AA64PFR0_EL1 AArch64
Processor
Feature
Register 0

0b11 0b000 0b0000 0b0100 0b001 ID_AA64PFR1_EL1 AArch64
Processor
Feature
Register 1

0b11 0b000 0b0000 0b0100 0b100 ID_AA64ZFR0_EL1 SVE Feature ID
register 0

0b11 0b000 0b0000 0b0101 0b000 ID_AA64DFR0_EL1 AArch64 Debug
Feature
Register 0

0b11 0b000 0b0000 0b0101 0b001 ID_AA64DFR1_EL1 AArch64 Debug
Feature
Register 1

0b11 0b000 0b0000 0b0101 0b100 ID_AA64AFR0_EL1 AArch64
Auxiliary
Feature
Register 0

0b11 0b000 0b0000 0b0101 0b101 ID_AA64AFR1_EL1 AArch64
Auxiliary
Feature
Register 1

0b11 0b000 0b0000 0b0110 0b000 ID_AA64ISAR0_EL1 AArch64
Instruction Set
Attribute
Register 0

0b11 0b000 0b0000 0b0110 0b001 ID_AA64ISAR1_EL1 AArch64
Instruction Set
Attribute
Register 1

0b11 0b000 0b0000 0b0111 0b000 ID_AA64MMFR0_EL1 AArch64
Memory Model
Feature
Register 0

0b11 0b000 0b0000 0b0111 0b001 ID_AA64MMFR1_EL1 AArch64
Memory Model
Feature
Register 1

0b11 0b000 0b0000 0b0111 0b010 ID_AA64MMFR2_EL1 AArch64
Memory Model
Feature
Register 2

System Register index by instruction and encoding

Page 3100

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b0001 0b0000 0b000 SCTLR_EL1 System Control
Register (EL1)

0b11 0b000 0b0001 0b0000 0b001 ACTLR_EL1 Auxiliary
Control
Register (EL1)

0b11 0b000 0b0001 0b0000 0b010 CPACR_EL1 Architectural
Feature Access
Control
Register

0b11 0b000 0b0001 0b0000 0b101 RGSR_EL1 Random
Allocation Tag
Seed Register.

0b11 0b000 0b0001 0b0000 0b110 GCR_EL1 Tag Control
Register.

0b11 0b000 0b0001 0b0010 0b000 ZCR_EL1 SVE Control
Register for
EL1

0b11 0b000 0b0001 0b0010 0b001 TRFCR_EL1 Trace Filter
Control
Register (EL1)

0b11 0b000 0b0010 0b0000 0b000 TTBR0_EL1 Translation
Table Base
Register 0
(EL1)

0b11 0b000 0b0010 0b0000 0b001 TTBR1_EL1 Translation
Table Base
Register 1
(EL1)

0b11 0b000 0b0010 0b0000 0b010 TCR_EL1 Translation
Control
Register (EL1)

0b11 0b000 0b0010 0b0001 0b000 APIAKeyLo_EL1 Pointer
Authentication
Key A for
Instruction
(bits[63:0])

0b11 0b000 0b0010 0b0001 0b001 APIAKeyHi_EL1 Pointer
Authentication
Key A for
Instruction
(bits[127:64])

0b11 0b000 0b0010 0b0001 0b010 APIBKeyLo_EL1 Pointer
Authentication
Key B for
Instruction
(bits[63:0])

0b11 0b000 0b0010 0b0001 0b011 APIBKeyHi_EL1 Pointer
Authentication
Key B for
Instruction
(bits[127:64])

0b11 0b000 0b0010 0b0010 0b000 APDAKeyLo_EL1 Pointer
Authentication
Key A for Data
(bits[63:0])

0b11 0b000 0b0010 0b0010 0b001 APDAKeyHi_EL1 Pointer
Authentication
Key A for Data
(bits[127:64])

0b11 0b000 0b0010 0b0010 0b010 APDBKeyLo_EL1 Pointer
Authentication

System Register index by instruction and encoding

Page 3101

Register selectors
op0 op1 CRn CRm op2 Name Description

Key B for Data
(bits[63:0])

0b11 0b000 0b0010 0b0010 0b011 APDBKeyHi_EL1 Pointer
Authentication
Key B for Data
(bits[127:64])

0b11 0b000 0b0010 0b0011 0b000 APGAKeyLo_EL1 Pointer
Authentication
Key A for Code
(bits[63:0])

0b11 0b000 0b0010 0b0011 0b001 APGAKeyHi_EL1 Pointer
Authentication
Key A for Code
(bits[127:64])

0b11 0b000 0b0100 0b0000 0b000 SPSR_EL1 Saved Program
Status Register
(EL1)

0b11 0b000 0b0100 0b0000 0b001 ELR_EL1 Exception Link
Register (EL1)

0b11 0b000 0b0100 0b0001 0b000 SP_EL0 Stack Pointer
(EL0)

0b11 0b000 0b0100 0b0010 0b000 SPSel Stack Pointer
Select

0b11 0b000 0b0100 0b0010 0b010 CurrentEL Current
Exception Level

0b11 0b000 0b0100 0b0010 0b011 PAN Privileged
Access Never

0b11 0b000 0b0100 0b0010 0b100 UAO User Access
Override

0b11 0b000 0b0100 0b0110 0b000 ICC_PMR_EL1 Interrupt
Controller
Interrupt
Priority Mask
Register

0b11 0b000 0b0101 0b0001 0b000 AFSR0_EL1 Auxiliary Fault
Status Register
0 (EL1)

0b11 0b000 0b0101 0b0001 0b001 AFSR1_EL1 Auxiliary Fault
Status Register
1 (EL1)

0b11 0b000 0b0101 0b0010 0b000 ESR_EL1 Exception
Syndrome
Register (EL1)

0b11 0b000 0b0101 0b0011 0b000 ERRIDR_EL1 Error Record ID
Register

0b11 0b000 0b0101 0b0011 0b001 ERRSELR_EL1 Error Record
Select Register

0b11 0b000 0b0101 0b0100 0b000 ERXFR_EL1 Selected Error
Record Feature
Register

0b11 0b000 0b0101 0b0100 0b001 ERXCTLR_EL1 Selected Error
Record Control
Register

0b11 0b000 0b0101 0b0100 0b010 ERXSTATUS_EL1 Selected Error
Record Primary
Status Register

0b11 0b000 0b0101 0b0100 0b011 ERXADDR_EL1 Selected Error
Record Address
Register

0b11 0b000 0b0101 0b0100 0b100 ERXPFGF_EL1 Selected
Pseudo-fault

System Register index by instruction and encoding

Page 3102

Register selectors
op0 op1 CRn CRm op2 Name Description

Generation
Feature
register

0b11 0b000 0b0101 0b0100 0b101 ERXPFGCTL_EL1 Selected
Pseudo-fault
Generation
Control register

0b11 0b000 0b0101 0b0100 0b110 ERXPFGCDN_EL1 Selected
Pseudo-fault
Generation
Countdown
register

0b11 0b000 0b0101 0b0101 0b000 ERXMISC0_EL1 Selected Error
Record
Miscellaneous
Register 0

0b11 0b000 0b0101 0b0101 0b001 ERXMISC1_EL1 Selected Error
Record
Miscellaneous
Register 1

0b11 0b000 0b0101 0b0101 0b010 ERXMISC2_EL1 Selected Error
Record
Miscellaneous
Register 2

0b11 0b000 0b0101 0b0101 0b011 ERXMISC3_EL1 Selected Error
Record
Miscellaneous
Register 3

0b11 0b000 0b0101 0b0110 0b000 TFSR_EL1 Tag Fault
Status Register
(EL1)

0b11 0b000 0b0101 0b0110 0b001 TFSRE0_EL1 Tag Fault
Status Register
(EL0).

0b11 0b000 0b0110 0b0000 0b000 FAR_EL1 Fault Address
Register (EL1)

0b11 0b000 0b0111 0b0100 0b000 PAR_EL1 Physical
Address
Register

0b11 0b000 0b1001 0b1001 0b000 PMSCR_EL1 Statistical
Profiling
Control
Register (EL1)

0b11 0b000 0b1001 0b1001 0b010 PMSICR_EL1 Sampling
Interval
Counter
Register

0b11 0b000 0b1001 0b1001 0b011 PMSIRR_EL1 Sampling
Interval Reload
Register

0b11 0b000 0b1001 0b1001 0b100 PMSFCR_EL1 Sampling Filter
Control
Register

0b11 0b000 0b1001 0b1001 0b101 PMSEVFR_EL1 Sampling Event
Filter Register

0b11 0b000 0b1001 0b1001 0b110 PMSLATFR_EL1 Sampling
Latency Filter
Register

0b11 0b000 0b1001 0b1001 0b111 PMSIDR_EL1 Sampling
Profiling ID
Register

System Register index by instruction and encoding

Page 3103

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b1001 0b1010 0b000 PMBLIMITR_EL1 Profiling Buffer
Limit Address
Register

0b11 0b000 0b1001 0b1010 0b001 PMBPTR_EL1 Profiling Buffer
Write Pointer
Register

0b11 0b000 0b1001 0b1010 0b011 PMBSR_EL1 Profiling Buffer
Status/
syndrome
Register

0b11 0b000 0b1001 0b1010 0b111 PMBIDR_EL1 Profiling Buffer
ID Register

0b11 0b000 0b1001 0b1011 0b000 TRBLIMITR_EL1 Trace Buffer
Limit Address
Register

0b11 0b000 0b1001 0b1011 0b001 TRBPTR_EL1 Trace Buffer
Write Pointer
Register

0b11 0b000 0b1001 0b1011 0b010 TRBBASER_EL1 Trace Buffer
Base Address
Register

0b11 0b000 0b1001 0b1011 0b011 TRBSR_EL1 Trace Buffer
Status/
syndrome
Register

0b11 0b000 0b1001 0b1011 0b100 TRBMAR_EL1 Trace Buffer
Memory
Attribute
Register

0b11 0b000 0b1001 0b1011 0b110 TRBTRG_EL1 Trace Buffer
Trigger
Counter
Register

0b11 0b000 0b1001 0b1011 0b111 TRBIDR_EL1 Trace Buffer ID
Register

0b11 0b000 0b1001 0b1110 0b001 PMINTENSET_EL1 Performance
Monitors
Interrupt
Enable Set
register

0b11 0b000 0b1001 0b1110 0b010 PMINTENCLR_EL1 Performance
Monitors
Interrupt
Enable Clear
register

0b11 0b000 0b1001 0b1110 0b110 PMMIR_EL1 Performance
Monitors
Machine
Identification
Register

0b11 0b000 0b1010 0b0010 0b000 MAIR_EL1 Memory
Attribute
Indirection
Register (EL1)

0b11 0b000 0b1010 0b0011 0b000 AMAIR_EL1 Auxiliary
Memory
Attribute
Indirection
Register (EL1)

0b11 0b000 0b1010 0b0100 0b000 LORSA_EL1 LORegion Start
Address (EL1)

System Register index by instruction and encoding

Page 3104

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b1010 0b0100 0b001 LOREA_EL1 LORegion End
Address (EL1)

0b11 0b000 0b1010 0b0100 0b010 LORN_EL1 LORegion
Number (EL1)

0b11 0b000 0b1010 0b0100 0b011 LORC_EL1 LORegion
Control (EL1)

0b11 0b000 0b1010 0b0100 0b100 MPAMIDR_EL1 MPAM ID
Register (EL1)

0b11 0b000 0b1010 0b0100 0b111 LORID_EL1 LORegionID
(EL1)

0b11 0b000 0b1010 0b0101 0b000 MPAM1_EL1 MPAM1
Register (EL1)

0b11 0b000 0b1010 0b0101 0b001 MPAM0_EL1 MPAM0
Register (EL1)

0b11 0b000 0b1100 0b0000 0b000 VBAR_EL1 Vector Base
Address
Register (EL1)

0b11 0b000 0b1100 0b0000 0b001 RVBAR_EL1 Reset Vector
Base Address
Register (if EL2
and EL3 not
implemented)

0b11 0b000 0b1100 0b0000 0b010 RMR_EL1 Reset
Management
Register (EL1)

0b11 0b000 0b1100 0b0001 0b000 ISR_EL1 Interrupt
Status Register

0b11 0b000 0b1100 0b0001 0b001 DISR_EL1 Deferred
Interrupt
Status Register

0b11 0b000 0b1100 0b1000 0b000 ICC_IAR0_EL1 Interrupt
Controller
Interrupt
Acknowledge
Register 0

0b11 0b000 0b1100 0b1000 0b001 ICC_EOIR0_EL1 Interrupt
Controller End
Of Interrupt
Register 0

0b11 0b000 0b1100 0b1000 0b010 ICC_HPPIR0_EL1 Interrupt
Controller
Highest Priority
Pending
Interrupt
Register 0

0b11 0b000 0b1100 0b1000 0b011 ICC_BPR0_EL1 Interrupt
Controller
Binary Point
Register 0

0b11 0b000 0b1100 0b1000 0b1:n[1:0] ICC_AP0R<n>_EL1 Interrupt
Controller
Active Priorities
Group 0
Registers

0b11 0b000 0b1100 0b1001 0b0:n[1:0] ICC_AP1R<n>_EL1 Interrupt
Controller
Active Priorities
Group 1
Registers

0b11 0b000 0b1100 0b1011 0b001 ICC_DIR_EL1 Interrupt
Controller
Deactivate

System Register index by instruction and encoding

Page 3105

Register selectors
op0 op1 CRn CRm op2 Name Description

Interrupt
Register

0b11 0b000 0b1100 0b1011 0b011 ICC_RPR_EL1 Interrupt
Controller
Running
Priority
Register

0b11 0b000 0b1100 0b1011 0b101 ICC_SGI1R_EL1 Interrupt
Controller
Software
Generated
Interrupt Group
1 Register

0b11 0b000 0b1100 0b1011 0b110 ICC_ASGI1R_EL1 Interrupt
Controller Alias
Software
Generated
Interrupt Group
1 Register

0b11 0b000 0b1100 0b1011 0b111 ICC_SGI0R_EL1 Interrupt
Controller
Software
Generated
Interrupt Group
0 Register

0b11 0b000 0b1100 0b1100 0b000 ICC_IAR1_EL1 Interrupt
Controller
Interrupt
Acknowledge
Register 1

0b11 0b000 0b1100 0b1100 0b001 ICC_EOIR1_EL1 Interrupt
Controller End
Of Interrupt
Register 1

0b11 0b000 0b1100 0b1100 0b010 ICC_HPPIR1_EL1 Interrupt
Controller
Highest Priority
Pending
Interrupt
Register 1

0b11 0b000 0b1100 0b1100 0b011 ICC_BPR1_EL1 Interrupt
Controller
Binary Point
Register 1

0b11 0b000 0b1100 0b1100 0b100 ICC_CTLR_EL1 Interrupt
Controller
Control
Register (EL1)

0b11 0b000 0b1100 0b1100 0b101 ICC_SRE_EL1 Interrupt
Controller
System
Register Enable
register (EL1)

0b11 0b000 0b1100 0b1100 0b110 ICC_IGRPEN0_EL1 Interrupt
Controller
Interrupt Group
0 Enable
register

0b11 0b000 0b1100 0b1100 0b111 ICC_IGRPEN1_EL1 Interrupt
Controller
Interrupt Group
1 Enable
register

System Register index by instruction and encoding

Page 3106

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b1101 0b0000 0b001 CONTEXTIDR_EL1 Context ID
Register (EL1)

0b11 0b000 0b1101 0b0000 0b100 TPIDR_EL1 EL1 Software
Thread ID
Register

0b11 0b000 0b1101 0b0000 0b111 SCXTNUM_EL1 EL1 Read/Write
Software
Context
Number

0b11 0b000 0b1110 0b0001 0b000 CNTKCTL_EL1 Counter-timer
Kernel Control
register

0b11 0b001 0b0000 0b0000 0b000 CCSIDR_EL1 Current Cache
Size ID
Register

0b11 0b001 0b0000 0b0000 0b001 CLIDR_EL1 Cache Level ID
Register

0b11 0b001 0b0000 0b0000 0b010 CCSIDR2_EL1 Current Cache
Size ID
Register 2

0b11 0b001 0b0000 0b0000 0b100 GMID_EL1 Multiple tag
transfer ID
register

0b11 0b001 0b0000 0b0000 0b111 AIDR_EL1 Auxiliary ID
Register

0b11 0b010 0b0000 0b0000 0b000 CSSELR_EL1 Cache Size
Selection
Register

0b11 0b011 0b0000 0b0000 0b001 CTR_EL0 Cache Type
Register

0b11 0b011 0b0000 0b0000 0b111 DCZID_EL0 Data Cache
Zero ID register

0b11 0b011 0b0010 0b0100 0b000 RNDR Random
Number

0b11 0b011 0b0010 0b0100 0b001 RNDRRS Reseeded
Random
Number

0b11 0b011 0b0100 0b0010 0b000 NZCV Condition Flags
0b11 0b011 0b0100 0b0010 0b001 DAIF Interrupt Mask

Bits
0b11 0b011 0b0100 0b0010 0b101 DIT Data

Independent
Timing

0b11 0b011 0b0100 0b0010 0b110 SSBS Speculative
Store Bypass
Safe

0b11 0b011 0b0100 0b0010 0b111 TCO Tag Check
Override

0b11 0b011 0b0100 0b0100 0b000 FPCR Floating-point
Control
Register

0b11 0b011 0b0100 0b0100 0b001 FPSR Floating-point
Status Register

0b11 0b011 0b0100 0b0101 0b000 DSPSR_EL0 Debug Saved
Program Status
Register

0b11 0b011 0b0100 0b0101 0b001 DLR_EL0 Debug Link
Register

0b11 0b011 0b1001 0b1100 0b000 PMCR_EL0 Performance
Monitors

System Register index by instruction and encoding

Page 3107

Register selectors
op0 op1 CRn CRm op2 Name Description

Control
Register

0b11 0b011 0b1001 0b1100 0b001 PMCNTENSET_EL0 Performance
Monitors Count
Enable Set
register

0b11 0b011 0b1001 0b1100 0b010 PMCNTENCLR_EL0 Performance
Monitors Count
Enable Clear
register

0b11 0b011 0b1001 0b1100 0b011 PMOVSCLR_EL0 Performance
Monitors
Overflow Flag
Status Clear
Register

0b11 0b011 0b1001 0b1100 0b100 PMSWINC_EL0 Performance
Monitors
Software
Increment
register

0b11 0b011 0b1001 0b1100 0b101 PMSELR_EL0 Performance
Monitors Event
Counter
Selection
Register

0b11 0b011 0b1001 0b1100 0b110 PMCEID0_EL0 Performance
Monitors
Common Event
Identification
register 0

0b11 0b011 0b1001 0b1100 0b111 PMCEID1_EL0 Performance
Monitors
Common Event
Identification
register 1

0b11 0b011 0b1001 0b1101 0b000 PMCCNTR_EL0 Performance
Monitors Cycle
Count Register

0b11 0b011 0b1001 0b1101 0b001 PMXEVTYPER_EL0 Performance
Monitors
Selected Event
Type Register

0b11 0b011 0b1001 0b1101 0b010 PMXEVCNTR_EL0 Performance
Monitors
Selected Event
Count Register

0b11 0b011 0b1001 0b1110 0b000 PMUSERENR_EL0 Performance
Monitors User
Enable Register

0b11 0b011 0b1001 0b1110 0b011 PMOVSSET_EL0 Performance
Monitors
Overflow Flag
Status Set
register

0b11 0b011 0b1101 0b0000 0b010 TPIDR_EL0 EL0 Read/Write
Software
Thread ID
Register

0b11 0b011 0b1101 0b0000 0b011 TPIDRRO_EL0 EL0 Read-Only
Software
Thread ID
Register

System Register index by instruction and encoding

Page 3108

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b011 0b1101 0b0000 0b111 SCXTNUM_EL0 EL0 Read/Write
Software
Context
Number

0b11 0b011 0b1101 0b0010 0b000 AMCR_EL0 Activity
Monitors
Control
Register

0b11 0b011 0b1101 0b0010 0b001 AMCFGR_EL0 Activity
Monitors
Configuration
Register

0b11 0b011 0b1101 0b0010 0b010 AMCGCR_EL0 Activity
Monitors
Counter Group
Configuration
Register

0b11 0b011 0b1101 0b0010 0b011 AMUSERENR_EL0 Activity
Monitors User
Enable Register

0b11 0b011 0b1101 0b0010 0b100 AMCNTENCLR0_EL0 Activity
Monitors Count
Enable Clear
Register 0

0b11 0b011 0b1101 0b0010 0b101 AMCNTENSET0_EL0 Activity
Monitors Count
Enable Set
Register 0

0b11 0b011 0b1101 0b0010 0b110 AMCG1IDR_EL0 Activity
Monitors
Counter Group
1 Identification
Register

0b11 0b011 0b1101 0b0011 0b000 AMCNTENCLR1_EL0 Activity
Monitors Count
Enable Clear
Register 1

0b11 0b011 0b1101 0b0011 0b001 AMCNTENSET1_EL0 Activity
Monitors Count
Enable Set
Register 1

0b11 0b011 0b1101 0b010:n[3] n[2:0] AMEVCNTR0<n>_EL0 Activity
Monitors Event
Counter
Registers 0

0b11 0b011 0b1101 0b011:n[3] n[2:0] AMEVTYPER0<n>_EL0 Activity
Monitors Event
Type Registers
0

0b11 0b011 0b1101 0b110:n[3] n[2:0] AMEVCNTR1<n>_EL0 Activity
Monitors Event
Counter
Registers 1

0b11 0b011 0b1101 0b111:n[3] n[2:0] AMEVTYPER1<n>_EL0 Activity
Monitors Event
Type Registers
1

0b11 0b011 0b1110 0b0000 0b000 CNTFRQ_EL0 Counter-timer
Frequency
register

0b11 0b011 0b1110 0b0000 0b001 CNTPCT_EL0 Counter-timer
Physical Count
register

System Register index by instruction and encoding

Page 3109

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b011 0b1110 0b0000 0b010 CNTVCT_EL0 Counter-timer
Virtual Count
register

0b11 0b011 0b1110 0b0000 0b101 CNTPCTSS_EL0 Counter-timer
Self-
Synchronized
Physical Count
register

0b11 0b011 0b1110 0b0000 0b110 CNTVCTSS_EL0 Counter-timer
Self-
Synchronized
Virtual Count
register

0b11 0b011 0b1110 0b0010 0b000 CNTP_TVAL_EL0 Counter-timer
Physical Timer
TimerValue
register

0b11 0b011 0b1110 0b0010 0b001 CNTP_CTL_EL0 Counter-timer
Physical Timer
Control register

0b11 0b011 0b1110 0b0010 0b010 CNTP_CVAL_EL0 Counter-timer
Physical Timer
CompareValue
register

0b11 0b011 0b1110 0b0011 0b000 CNTV_TVAL_EL0 Counter-timer
Virtual Timer
TimerValue
register

0b11 0b011 0b1110 0b0011 0b001 CNTV_CTL_EL0 Counter-timer
Virtual Timer
Control register

0b11 0b011 0b1110 0b0011 0b010 CNTV_CVAL_EL0 Counter-timer
Virtual Timer
CompareValue
register

0b11 0b011 0b1110 0b10:n[4:3] n[2:0] PMEVCNTR<n>_EL0 Performance
Monitors Event
Count Registers

0b11 0b011 0b1110 0b1111 0b111 PMCCFILTR_EL0 Performance
Monitors Cycle
Count Filter
Register

0b11 0b011 0b1110 0b11:n[4:3] n[2:0] PMEVTYPER<n>_EL0 Performance
Monitors Event
Type Registers

0b11 0b100 0b0000 0b0000 0b000 VPIDR_EL2 Virtualization
Processor ID
Register

0b11 0b100 0b0000 0b0000 0b101 VMPIDR_EL2 Virtualization
Multiprocessor
ID Register

0b11 0b100 0b0001 0b0000 0b000 SCTLR_EL2 System Control
Register (EL2)

0b11 0b100 0b0001 0b0000 0b001 ACTLR_EL2 Auxiliary
Control
Register (EL2)

0b11 0b100 0b0001 0b0001 0b000 HCR_EL2 Hypervisor
Configuration
Register

0b11 0b100 0b0001 0b0001 0b001 MDCR_EL2 Monitor Debug
Configuration
Register (EL2)

System Register index by instruction and encoding

Page 3110

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b100 0b0001 0b0001 0b010 CPTR_EL2 Architectural
Feature Trap
Register (EL2)

0b11 0b100 0b0001 0b0001 0b011 HSTR_EL2 Hypervisor
System Trap
Register

0b11 0b100 0b0001 0b0001 0b100 HFGRTR_EL2 Hypervisor
Fine-Grained
Read Trap
Register

0b11 0b100 0b0001 0b0001 0b101 HFGWTR_EL2 Hypervisor
Fine-Grained
Write Trap
Register

0b11 0b100 0b0001 0b0001 0b110 HFGITR_EL2 Hypervisor
Fine-Grained
Instruction
Trap Register

0b11 0b100 0b0001 0b0001 0b111 HACR_EL2 Hypervisor
Auxiliary
Control
Register

0b11 0b100 0b0001 0b0010 0b000 ZCR_EL2 SVE Control
Register for
EL2

0b11 0b100 0b0001 0b0010 0b001 TRFCR_EL2 Trace Filter
Control
Register (EL2)

0b11 0b100 0b0001 0b0011 0b001 SDER32_EL2 AArch32
Secure Debug
Enable Register

0b11 0b100 0b0010 0b0000 0b000 TTBR0_EL2 Translation
Table Base
Register 0
(EL2)

0b11 0b100 0b0010 0b0000 0b001 TTBR1_EL2 Translation
Table Base
Register 1
(EL2)

0b11 0b100 0b0010 0b0000 0b010 TCR_EL2 Translation
Control
Register (EL2)

0b11 0b100 0b0010 0b0001 0b000 VTTBR_EL2 Virtualization
Translation
Table Base
Register

0b11 0b100 0b0010 0b0001 0b010 VTCR_EL2 Virtualization
Translation
Control
Register

0b11 0b100 0b0010 0b0010 0b000 VNCR_EL2 Virtual Nested
Control
Register

0b11 0b100 0b0010 0b0110 0b000 VSTTBR_EL2 Virtualization
Secure
Translation
Table Base
Register

0b11 0b100 0b0010 0b0110 0b010 VSTCR_EL2 Virtualization
Secure
Translation

System Register index by instruction and encoding

Page 3111

Register selectors
op0 op1 CRn CRm op2 Name Description

Control
Register

0b11 0b100 0b0011 0b0000 0b000 DACR32_EL2 Domain Access
Control
Register

0b11 0b100 0b0011 0b0001 0b100 HDFGRTR_EL2 Hypervisor
Debug Fine-
Grained Read
Trap Register

0b11 0b100 0b0011 0b0001 0b101 HDFGWTR_EL2 Hypervisor
Debug Fine-
Grained Write
Trap Register

0b11 0b100 0b0011 0b0001 0b110 HAFGRTR_EL2 Hypervisor
Activity
Monitors Fine-
Grained Read
Trap Register

0b11 0b100 0b0100 0b0000 0b000 SPSR_EL2 Saved Program
Status Register
(EL2)

0b11 0b100 0b0100 0b0000 0b001 ELR_EL2 Exception Link
Register (EL2)

0b11 0b100 0b0100 0b0001 0b000 SP_EL1 Stack Pointer
(EL1)

0b11 0b100 0b0100 0b0011 0b000 SPSR_irq Saved Program
Status Register
(IRQ mode)

0b11 0b100 0b0100 0b0011 0b001 SPSR_abt Saved Program
Status Register
(Abort mode)

0b11 0b100 0b0100 0b0011 0b010 SPSR_und Saved Program
Status Register
(Undefined
mode)

0b11 0b100 0b0100 0b0011 0b011 SPSR_fiq Saved Program
Status Register
(FIQ mode)

0b11 0b100 0b0101 0b0000 0b001 IFSR32_EL2 Instruction
Fault Status
Register (EL2)

0b11 0b100 0b0101 0b0001 0b000 AFSR0_EL2 Auxiliary Fault
Status Register
0 (EL2)

0b11 0b100 0b0101 0b0001 0b001 AFSR1_EL2 Auxiliary Fault
Status Register
1 (EL2)

0b11 0b100 0b0101 0b0010 0b000 ESR_EL2 Exception
Syndrome
Register (EL2)

0b11 0b100 0b0101 0b0010 0b011 VSESR_EL2 Virtual SError
Exception
Syndrome
Register

0b11 0b100 0b0101 0b0011 0b000 FPEXC32_EL2 Floating-Point
Exception
Control register

0b11 0b100 0b0101 0b0110 0b000 TFSR_EL2 Tag Fault
Status Register
(EL2)

0b11 0b100 0b0110 0b0000 0b000 FAR_EL2 Fault Address
Register (EL2)

System Register index by instruction and encoding

Page 3112

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b100 0b0110 0b0000 0b100 HPFAR_EL2 Hypervisor IPA
Fault Address
Register

0b11 0b100 0b1001 0b1001 0b000 PMSCR_EL2 Statistical
Profiling
Control
Register (EL2)

0b11 0b100 0b1010 0b0010 0b000 MAIR_EL2 Memory
Attribute
Indirection
Register (EL2)

0b11 0b100 0b1010 0b0011 0b000 AMAIR_EL2 Auxiliary
Memory
Attribute
Indirection
Register (EL2)

0b11 0b100 0b1010 0b0100 0b000 MPAMHCR_EL2 MPAM
Hypervisor
Control
Register (EL2)

0b11 0b100 0b1010 0b0100 0b001 MPAMVPMV_EL2 MPAM Virtual
Partition
Mapping Valid
Register

0b11 0b100 0b1010 0b0101 0b000 MPAM2_EL2 MPAM2
Register (EL2)

0b11 0b100 0b1010 0b0110 0b000 MPAMVPM0_EL2 MPAM Virtual
PARTID
Mapping
Register 0

0b11 0b100 0b1010 0b0110 0b001 MPAMVPM1_EL2 MPAM Virtual
PARTID
Mapping
Register 1

0b11 0b100 0b1010 0b0110 0b010 MPAMVPM2_EL2 MPAM Virtual
PARTID
Mapping
Register 2

0b11 0b100 0b1010 0b0110 0b011 MPAMVPM3_EL2 MPAM Virtual
PARTID
Mapping
Register 3

0b11 0b100 0b1010 0b0110 0b100 MPAMVPM4_EL2 MPAM Virtual
PARTID
Mapping
Register 4

0b11 0b100 0b1010 0b0110 0b101 MPAMVPM5_EL2 MPAM Virtual
PARTID
Mapping
Register 5

0b11 0b100 0b1010 0b0110 0b110 MPAMVPM6_EL2 MPAM Virtual
PARTID
Mapping
Register 6

0b11 0b100 0b1010 0b0110 0b111 MPAMVPM7_EL2 MPAM Virtual
PARTID
Mapping
Register 7

0b11 0b100 0b1100 0b0000 0b000 VBAR_EL2 Vector Base
Address
Register (EL2)

System Register index by instruction and encoding

Page 3113

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b100 0b1100 0b0000 0b001 RVBAR_EL2 Reset Vector
Base Address
Register (if EL3
not
implemented)

0b11 0b100 0b1100 0b0000 0b010 RMR_EL2 Reset
Management
Register (EL2)

0b11 0b100 0b1100 0b0001 0b001 VDISR_EL2 Virtual
Deferred
Interrupt
Status Register

0b11 0b100 0b1100 0b1000 0b0:n[1:0] ICH_AP0R<n>_EL2 Interrupt
Controller Hyp
Active Priorities
Group 0
Registers

0b11 0b100 0b1100 0b1001 0b0:n[1:0] ICH_AP1R<n>_EL2 Interrupt
Controller Hyp
Active Priorities
Group 1
Registers

0b11 0b100 0b1100 0b1001 0b101 ICC_SRE_EL2 Interrupt
Controller
System
Register Enable
register (EL2)

0b11 0b100 0b1100 0b1011 0b000 ICH_HCR_EL2 Interrupt
Controller Hyp
Control
Register

0b11 0b100 0b1100 0b1011 0b001 ICH_VTR_EL2 Interrupt
Controller VGIC
Type Register

0b11 0b100 0b1100 0b1011 0b010 ICH_MISR_EL2 Interrupt
Controller
Maintenance
Interrupt State
Register

0b11 0b100 0b1100 0b1011 0b011 ICH_EISR_EL2 Interrupt
Controller End
of Interrupt
Status Register

0b11 0b100 0b1100 0b1011 0b101 ICH_ELRSR_EL2 Interrupt
Controller
Empty List
Register Status
Register

0b11 0b100 0b1100 0b1011 0b111 ICH_VMCR_EL2 Interrupt
Controller
Virtual Machine
Control
Register

0b11 0b100 0b1100 0b110:n[3] n[2:0] ICH_LR<n>_EL2 Interrupt
Controller List
Registers

0b11 0b100 0b1101 0b0000 0b001 CONTEXTIDR_EL2 Context ID
Register (EL2)

0b11 0b100 0b1101 0b0000 0b010 TPIDR_EL2 EL2 Software
Thread ID
Register

0b11 0b100 0b1101 0b0000 0b111 SCXTNUM_EL2 EL2 Read/Write
Software

System Register index by instruction and encoding

Page 3114

Register selectors
op0 op1 CRn CRm op2 Name Description

Context
Number

0b11 0b100 0b1101 0b100:n[3] n[2:0] AMEVCNTVOFF0<n>_EL2 Activity
Monitors Event
Counter Virtual
Offset Registers
0

0b11 0b100 0b1101 0b101:n[3] n[2:0] AMEVCNTVOFF1<n>_EL2 Activity
Monitors Event
Counter Virtual
Offset Registers
1

0b11 0b100 0b1110 0b0000 0b011 CNTVOFF_EL2 Counter-timer
Virtual Offset
register

0b11 0b100 0b1110 0b0000 0b110 CNTPOFF_EL2 Counter-timer
Physical Offset
register

0b11 0b100 0b1110 0b0001 0b000 CNTHCTL_EL2 Counter-timer
Hypervisor
Control register

0b11 0b100 0b1110 0b0010 0b000 CNTHP_TVAL_EL2 Counter-timer
Physical Timer
TimerValue
register (EL2)

0b11 0b100 0b1110 0b0010 0b001 CNTHP_CTL_EL2 Counter-timer
Hypervisor
Physical Timer
Control register

0b11 0b100 0b1110 0b0010 0b010 CNTHP_CVAL_EL2 Counter-timer
Physical Timer
CompareValue
register (EL2)

0b11 0b100 0b1110 0b0011 0b000 CNTHV_TVAL_EL2 Counter-timer
Virtual Timer
TimerValue
Register (EL2)

0b11 0b100 0b1110 0b0011 0b001 CNTHV_CTL_EL2 Counter-timer
Virtual Timer
Control register
(EL2)

0b11 0b100 0b1110 0b0011 0b010 CNTHV_CVAL_EL2 Counter-timer
Virtual Timer
CompareValue
register (EL2)

0b11 0b100 0b1110 0b0100 0b000 CNTHVS_TVAL_EL2 Counter-timer
Secure Virtual
Timer
TimerValue
register (EL2)

0b11 0b100 0b1110 0b0100 0b001 CNTHVS_CTL_EL2 Counter-timer
Secure Virtual
Timer Control
register (EL2)

0b11 0b100 0b1110 0b0100 0b010 CNTHVS_CVAL_EL2 Counter-timer
Secure Virtual
Timer
CompareValue
register (EL2)

0b11 0b100 0b1110 0b0101 0b000 CNTHPS_TVAL_EL2 Counter-timer
Secure Physical
Timer

System Register index by instruction and encoding

Page 3115

Register selectors
op0 op1 CRn CRm op2 Name Description

TimerValue
register (EL2)

0b11 0b100 0b1110 0b0101 0b001 CNTHPS_CTL_EL2 Counter-timer
Secure Physical
Timer Control
register (EL2)

0b11 0b100 0b1110 0b0101 0b010 CNTHPS_CVAL_EL2 Counter-timer
Secure Physical
Timer
CompareValue
register (EL2)

0b11 0b110 0b0001 0b0000 0b000 SCTLR_EL3 System Control
Register (EL3)

0b11 0b110 0b0001 0b0000 0b001 ACTLR_EL3 Auxiliary
Control
Register (EL3)

0b11 0b110 0b0001 0b0001 0b000 SCR_EL3 Secure
Configuration
Register

0b11 0b110 0b0001 0b0001 0b001 SDER32_EL3 AArch32
Secure Debug
Enable Register

0b11 0b110 0b0001 0b0001 0b010 CPTR_EL3 Architectural
Feature Trap
Register (EL3)

0b11 0b110 0b0001 0b0010 0b000 ZCR_EL3 SVE Control
Register for
EL3

0b11 0b110 0b0001 0b0011 0b001 MDCR_EL3 Monitor Debug
Configuration
Register (EL3)

0b11 0b110 0b0010 0b0000 0b000 TTBR0_EL3 Translation
Table Base
Register 0
(EL3)

0b11 0b110 0b0010 0b0000 0b010 TCR_EL3 Translation
Control
Register (EL3)

0b11 0b110 0b0100 0b0000 0b000 SPSR_EL3 Saved Program
Status Register
(EL3)

0b11 0b110 0b0100 0b0000 0b001 ELR_EL3 Exception Link
Register (EL3)

0b11 0b110 0b0100 0b0001 0b000 SP_EL2 Stack Pointer
(EL2)

0b11 0b110 0b0101 0b0001 0b000 AFSR0_EL3 Auxiliary Fault
Status Register
0 (EL3)

0b11 0b110 0b0101 0b0001 0b001 AFSR1_EL3 Auxiliary Fault
Status Register
1 (EL3)

0b11 0b110 0b0101 0b0010 0b000 ESR_EL3 Exception
Syndrome
Register (EL3)

0b11 0b110 0b0101 0b0110 0b000 TFSR_EL3 Tag Fault
Status Register
(EL3)

0b11 0b110 0b0110 0b0000 0b000 FAR_EL3 Fault Address
Register (EL3)

0b11 0b110 0b1010 0b0010 0b000 MAIR_EL3 Memory
Attribute

System Register index by instruction and encoding

Page 3116

Register selectors
op0 op1 CRn CRm op2 Name Description

Indirection
Register (EL3)

0b11 0b110 0b1010 0b0011 0b000 AMAIR_EL3 Auxiliary
Memory
Attribute
Indirection
Register (EL3)

0b11 0b110 0b1010 0b0101 0b000 MPAM3_EL3 MPAM3
Register (EL3)

0b11 0b110 0b1100 0b0000 0b000 VBAR_EL3 Vector Base
Address
Register (EL3)

0b11 0b110 0b1100 0b0000 0b001 RVBAR_EL3 Reset Vector
Base Address
Register (if EL3
implemented)

0b11 0b110 0b1100 0b0000 0b010 RMR_EL3 Reset
Management
Register (EL3)

0b11 0b110 0b1100 0b1100 0b100 ICC_CTLR_EL3 Interrupt
Controller
Control
Register (EL3)

0b11 0b110 0b1100 0b1100 0b101 ICC_SRE_EL3 Interrupt
Controller
System
Register Enable
register (EL3)

0b11 0b110 0b1100 0b1100 0b111 ICC_IGRPEN1_EL3 Interrupt
Controller
Interrupt Group
1 Enable
register (EL3)

0b11 0b110 0b1101 0b0000 0b010 TPIDR_EL3 EL3 Software
Thread ID
Register

0b11 0b110 0b1101 0b0000 0b111 SCXTNUM_EL3 EL3 Read/Write
Software
Context
Number

0b11 0b111 0b1110 0b0010 0b000 CNTPS_TVAL_EL1 Counter-timer
Physical Secure
Timer
TimerValue
register

0b11 0b111 0b1110 0b0010 0b001 CNTPS_CTL_EL1 Counter-timer
Physical Secure
Timer Control
register

0b11 0b111 0b1110 0b0010 0b010 CNTPS_CVAL_EL1 Counter-timer
Physical Secure
Timer
CompareValue
register

Accessed using TLBI:
Register selectors

op0 op1 CRn CRm op2 Rt Name Description

0b01 0b000 0b1000 0b0001 0b000 0b11111 TLBI
VMALLE1OS

TLB
Invalidate by
VMID, All at

System Register index by instruction and encoding

Page 3117

Register selectors
op0 op1 CRn CRm op2 Rt Name Description

stage 1,
EL1, Outer
Shareable

0b01 0b000 0b1000 0b0001 0b001 - TLBI VAE1OS TLB
Invalidate by
VA, EL1,
Outer
Shareable

0b01 0b000 0b1000 0b0001 0b010 - TLBI ASIDE1OS TLB
Invalidate by
ASID, EL1,
Outer
Shareable

0b01 0b000 0b1000 0b0001 0b011 - TLBI VAAE1OS TLB
Invalidate by
VA, All ASID,
EL1, Outer
Shareable

0b01 0b000 0b1000 0b0001 0b101 - TLBI VALE1OS TLB
Invalidate by
VA, Last
level, EL1,
Outer
Shareable

0b01 0b000 0b1000 0b0001 0b111 - TLBI VAALE1OS TLB
Invalidate by
VA, All ASID,
Last Level,
EL1, Outer
Shareable

0b01 0b000 0b1000 0b0010 0b001 - TLBI RVAE1IS TLB Range
Invalidate by
VA, EL1,
Inner
Shareable

0b01 0b000 0b1000 0b0010 0b011 - TLBI RVAAE1IS TLB Range
Invalidate by
VA, All ASID,
EL1, Inner
Shareable

0b01 0b000 0b1000 0b0010 0b101 - TLBI RVALE1IS TLB Range
Invalidate by
VA, Last
level, EL1,
Inner
Shareable

0b01 0b000 0b1000 0b0010 0b111 - TLBI
RVAALE1IS

TLB Range
Invalidate by
VA, All ASID,
Last Level,
EL1, Inner
Shareable

0b01 0b000 0b1000 0b0011 0b000 0b11111 TLBI
VMALLE1IS

TLB
Invalidate by
VMID, All at
stage 1,
EL1, Inner
Shareable

0b01 0b000 0b1000 0b0011 0b001 - TLBI VAE1IS TLB
Invalidate by
VA, EL1,
Inner
Shareable

System Register index by instruction and encoding

Page 3118

Register selectors
op0 op1 CRn CRm op2 Rt Name Description

0b01 0b000 0b1000 0b0011 0b010 - TLBI ASIDE1IS TLB
Invalidate by
ASID, EL1,
Inner
Shareable

0b01 0b000 0b1000 0b0011 0b011 - TLBI VAAE1IS TLB
Invalidate by
VA, All ASID,
EL1, Inner
Shareable

0b01 0b000 0b1000 0b0011 0b101 - TLBI VALE1IS TLB
Invalidate by
VA, Last
level, EL1,
Inner
Shareable

0b01 0b000 0b1000 0b0011 0b111 - TLBI VAALE1IS TLB
Invalidate by
VA, All ASID,
Last Level,
EL1, Inner
Shareable

0b01 0b000 0b1000 0b0101 0b001 - TLBI RVAE1OS TLB Range
Invalidate by
VA, EL1,
Outer
Shareable

0b01 0b000 0b1000 0b0101 0b011 - TLBI RVAAE1OS TLB Range
Invalidate by
VA, All ASID,
EL1, Outer
Shareable

0b01 0b000 0b1000 0b0101 0b101 - TLBI RVALE1OS TLB Range
Invalidate by
VA, Last
level, EL1,
Outer
Shareable

0b01 0b000 0b1000 0b0101 0b111 - TLBI
RVAALE1OS

TLB Range
Invalidate by
VA, All ASID,
Last Level,
EL1, Outer
Shareable

0b01 0b000 0b1000 0b0110 0b001 - TLBI RVAE1 TLB Range
Invalidate by
VA, EL1

0b01 0b000 0b1000 0b0110 0b011 - TLBI RVAAE1 TLB Range
Invalidate by
VA, All ASID,
EL1

0b01 0b000 0b1000 0b0110 0b101 - TLBI RVALE1 TLB Range
Invalidate by
VA, Last
level, EL1

0b01 0b000 0b1000 0b0110 0b111 - TLBI RVAALE1 TLB Range
Invalidate by
VA, All ASID,
Last level,
EL1

0b01 0b000 0b1000 0b0111 0b000 0b11111 TLBI VMALLE1 TLB
Invalidate by
VMID, All at
stage 1, EL1

System Register index by instruction and encoding

Page 3119

Register selectors
op0 op1 CRn CRm op2 Rt Name Description

0b01 0b000 0b1000 0b0111 0b001 - TLBI VAE1 TLB
Invalidate by
VA, EL1

0b01 0b000 0b1000 0b0111 0b010 - TLBI ASIDE1 TLB
Invalidate by
ASID, EL1

0b01 0b000 0b1000 0b0111 0b011 - TLBI VAAE1 TLB
Invalidate by
VA, All ASID,
EL1

0b01 0b000 0b1000 0b0111 0b101 - TLBI VALE1 TLB
Invalidate by
VA, Last
level, EL1

0b01 0b000 0b1000 0b0111 0b111 - TLBI VAALE1 TLB
Invalidate by
VA, All ASID,
Last level,
EL1

0b01 0b100 0b1000 0b0000 0b001 - TLBI IPAS2E1IS TLB
Invalidate by
Intermediate
Physical
Address,
Stage 2,
EL1, Inner
Shareable

0b01 0b100 0b1000 0b0000 0b010 - TLBI
RIPAS2E1IS

TLB Range
Invalidate by
Intermediate
Physical
Address,
Stage 2,
EL1, Inner
Shareable

0b01 0b100 0b1000 0b0000 0b101 - TLBI
IPAS2LE1IS

TLB
Invalidate by
Intermediate
Physical
Address,
Stage 2,
Last level,
EL1, Inner
Shareable

0b01 0b100 0b1000 0b0000 0b110 - TLBI
RIPAS2LE1IS

TLB Range
Invalidate by
Intermediate
Physical
Address,
Stage 2,
Last level,
EL1, Inner
Shareable

0b01 0b100 0b1000 0b0001 0b000 0b11111 TLBI ALLE2OS TLB
Invalidate
All, EL2,
Outer
Shareable

0b01 0b100 0b1000 0b0001 0b001 - TLBI VAE2OS TLB
Invalidate by
VA, EL2,
Outer
Shareable

System Register index by instruction and encoding

Page 3120

Register selectors
op0 op1 CRn CRm op2 Rt Name Description

0b01 0b100 0b1000 0b0001 0b100 0b11111 TLBI ALLE1OS TLB
Invalidate
All, EL1,
Outer
Shareable

0b01 0b100 0b1000 0b0001 0b101 - TLBI VALE2OS TLB
Invalidate by
VA, Last
level, EL2,
Outer
Shareable

0b01 0b100 0b1000 0b0001 0b110 0b11111 TLBI
VMALLS12E1OS

TLB
Invalidate by
VMID, All at
Stage 1 and
2, EL1,
Outer
Shareable

0b01 0b100 0b1000 0b0010 0b001 - TLBI RVAE2IS TLB Range
Invalidate by
VA, EL2,
Inner
Shareable

0b01 0b100 0b1000 0b0010 0b101 - TLBI RVALE2IS TLB Range
Invalidate by
VA, Last
level, EL2,
Inner
Shareable

0b01 0b100 0b1000 0b0011 0b000 0b11111 TLBI ALLE2IS TLB
Invalidate
All, EL2,
Inner
Shareable

0b01 0b100 0b1000 0b0011 0b001 - TLBI VAE2IS TLB
Invalidate by
VA, EL2,
Inner
Shareable

0b01 0b100 0b1000 0b0011 0b100 0b11111 TLBI ALLE1IS TLB
Invalidate
All, EL1,
Inner
Shareable

0b01 0b100 0b1000 0b0011 0b101 - TLBI VALE2IS TLB
Invalidate by
VA, Last
level, EL2,
Inner
Shareable

0b01 0b100 0b1000 0b0011 0b110 0b11111 TLBI
VMALLS12E1IS

TLB
Invalidate by
VMID, All at
Stage 1 and
2, EL1,
Inner
Shareable

0b01 0b100 0b1000 0b0100 0b000 - TLBI
IPAS2E1OS

TLB
Invalidate by
Intermediate
Physical
Address,
Stage 2,

System Register index by instruction and encoding

Page 3121

Register selectors
op0 op1 CRn CRm op2 Rt Name Description

EL1, Outer
Shareable

0b01 0b100 0b1000 0b0100 0b001 - TLBI IPAS2E1 TLB
Invalidate by
Intermediate
Physical
Address,
Stage 2, EL1

0b01 0b100 0b1000 0b0100 0b010 - TLBI RIPAS2E1 TLB Range
Invalidate by
Intermediate
Physical
Address,
Stage 2, EL1

0b01 0b100 0b1000 0b0100 0b011 - TLBI
RIPAS2E1OS

TLB Range
Invalidate by
Intermediate
Physical
Address,
Stage 2,
EL1, Outer
Shareable

0b01 0b100 0b1000 0b0100 0b100 - TLBI
IPAS2LE1OS

TLB
Invalidate by
Intermediate
Physical
Address,
Stage 2,
Last level,
EL1, Outer
Shareable

0b01 0b100 0b1000 0b0100 0b101 - TLBI IPAS2LE1 TLB
Invalidate by
Intermediate
Physical
Address,
Stage 2,
Last level,
EL1

0b01 0b100 0b1000 0b0100 0b110 - TLBI RIPAS2LE1 TLB Range
Invalidate by
Intermediate
Physical
Address,
Stage 2,
Last level,
EL1

0b01 0b100 0b1000 0b0100 0b111 - TLBI
RIPAS2LE1OS

TLB Range
Invalidate by
Intermediate
Physical
Address,
Stage 2,
Last level,
EL1, Outer
Shareable

0b01 0b100 0b1000 0b0101 0b001 - TLBI RVAE2OS TLB Range
Invalidate by
VA, EL2,
Outer
Shareable

0b01 0b100 0b1000 0b0101 0b101 - TLBI RVALE2OS TLB Range
Invalidate by
VA, Last
level, EL2,

System Register index by instruction and encoding

Page 3122

Register selectors
op0 op1 CRn CRm op2 Rt Name Description

Outer
Shareable

0b01 0b100 0b1000 0b0110 0b001 - TLBI RVAE2 TLB Range
Invalidate by
VA, EL2

0b01 0b100 0b1000 0b0110 0b101 - TLBI RVALE2 TLB Range
Invalidate by
VA, Last
level, EL2

0b01 0b100 0b1000 0b0111 0b000 0b11111 TLBI ALLE2 TLB
Invalidate
All, EL2

0b01 0b100 0b1000 0b0111 0b001 - TLBI VAE2 TLB
Invalidate by
VA, EL2

0b01 0b100 0b1000 0b0111 0b100 0b11111 TLBI ALLE1 TLB
Invalidate
All, EL1

0b01 0b100 0b1000 0b0111 0b101 - TLBI VALE2 TLB
Invalidate by
VA, Last
level, EL2

0b01 0b100 0b1000 0b0111 0b110 0b11111 TLBI
VMALLS12E1

TLB
Invalidate by
VMID, All at
Stage 1 and
2, EL1

0b01 0b110 0b1000 0b0001 0b000 0b11111 TLBI ALLE3OS TLB
Invalidate
All, EL3,
Outer
Shareable

0b01 0b110 0b1000 0b0001 0b001 - TLBI VAE3OS TLB
Invalidate by
VA, EL3,
Outer
Shareable

0b01 0b110 0b1000 0b0001 0b101 - TLBI VALE3OS TLB
Invalidate by
VA, Last
level, EL3,
Outer
Shareable

0b01 0b110 0b1000 0b0010 0b001 - TLBI RVAE3IS TLB Range
Invalidate by
VA, EL3,
Inner
Shareable

0b01 0b110 0b1000 0b0010 0b101 - TLBI RVALE3IS TLB Range
Invalidate by
VA, Last
level, EL3,
Inner
Shareable

0b01 0b110 0b1000 0b0011 0b000 0b11111 TLBI ALLE3IS TLB
Invalidate
All, EL3,
Inner
Shareable

0b01 0b110 0b1000 0b0011 0b001 - TLBI VAE3IS TLB
Invalidate by
VA, EL3,

System Register index by instruction and encoding

Page 3123

Register selectors
op0 op1 CRn CRm op2 Rt Name Description

Inner
Shareable

0b01 0b110 0b1000 0b0011 0b101 - TLBI VALE3IS TLB
Invalidate by
VA, Last
level, EL3,
Inner
Shareable

0b01 0b110 0b1000 0b0101 0b001 - TLBI RVAE3OS TLB Range
Invalidate by
VA, EL3,
Outer
Shareable

0b01 0b110 0b1000 0b0101 0b101 - TLBI RVALE3OS TLB Range
Invalidate by
VA, Last
level, EL3,
Outer
Shareable

0b01 0b110 0b1000 0b0110 0b001 - TLBI RVAE3 TLB Range
Invalidate by
VA, EL3

0b01 0b110 0b1000 0b0110 0b101 - TLBI RVALE3 TLB Range
Invalidate by
VA, Last
level, EL3

0b01 0b110 0b1000 0b0111 0b000 0b11111 TLBI ALLE3 TLB
Invalidate
All, EL3

0b01 0b110 0b1000 0b0111 0b001 - TLBI VAE3 TLB
Invalidate by
VA, EL3

0b01 0b110 0b1000 0b0111 0b101 - TLBI VALE3 TLB
Invalidate by
VA, Last
level, EL3

09/12/2019 19:23

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

System Register index by instruction and encoding

Page 3124

System Register index by functional group
Below are indexes for registers with the following main functional groups:

• ID
• Memory
• Other
• Exception
• Special
• PSTATE
• Cache
• Address
• TLB
• PMU
• Reset
• Thread
• IMP DEF
• Timer
• Debug
• CTI
• Virt
• Secure
• Float
• Legacy
• Trace
• GIC
• GICD
• GICR
• GICC
• GICV
• GICH
• GITS
• RAS
• MPAM
• Pointer authentication
• GIC ITS registers

In the ID functional group:
Exec state Name Description
AArch32 CCSIDR Current Cache Size ID Register
AArch32 CCSIDR2 Current Cache Size ID Register 2
AArch32 CLIDR Cache Level ID Register
AArch32 CSSELR Cache Size Selection Register
AArch32 CTR Cache Type Register
AArch32 ID_AFR0 Auxiliary Feature Register 0
AArch32 ID_DFR0 Debug Feature Register 0
AArch32 ID_DFR1 Debug Feature Register 1
AArch32 ID_ISAR0 Instruction Set Attribute Register 0
AArch32 ID_ISAR1 Instruction Set Attribute Register 1
AArch32 ID_ISAR2 Instruction Set Attribute Register 2
AArch32 ID_ISAR3 Instruction Set Attribute Register 3
AArch32 ID_ISAR4 Instruction Set Attribute Register 4
AArch32 ID_ISAR5 Instruction Set Attribute Register 5
AArch32 ID_ISAR6 Instruction Set Attribute Register 6
AArch32 ID_MMFR0 Memory Model Feature Register 0
AArch32 ID_MMFR1 Memory Model Feature Register 1
AArch32 ID_MMFR2 Memory Model Feature Register 2
AArch32 ID_MMFR3 Memory Model Feature Register 3
AArch32 ID_MMFR4 Memory Model Feature Register 4
AArch32 ID_MMFR5 Memory Model Feature Register 5
AArch32 ID_PFR0 Processor Feature Register 0
AArch32 ID_PFR1 Processor Feature Register 1
AArch32 ID_PFR2 Processor Feature Register 2

System Register index by functional group

Page 3125

Exec state Name Description
AArch32 MIDR Main ID Register
AArch32 MPIDR Multiprocessor Affinity Register
AArch32 REVIDR Revision ID Register
AArch32 TCMTR TCM Type Register
AArch32 TLBTR TLB Type Register
AArch64 CCSIDR2_EL1 Current Cache Size ID Register 2
AArch64 CCSIDR_EL1 Current Cache Size ID Register
AArch64 CLIDR_EL1 Cache Level ID Register
AArch64 CSSELR_EL1 Cache Size Selection Register
AArch64 CTR_EL0 Cache Type Register
AArch64 DCZID_EL0 Data Cache Zero ID register
AArch64 GMID_EL1 Multiple tag transfer ID register
AArch64 ID_AA64AFR0_EL1 AArch64 Auxiliary Feature Register 0
AArch64 ID_AA64AFR1_EL1 AArch64 Auxiliary Feature Register 1
AArch64 ID_AA64DFR0_EL1 AArch64 Debug Feature Register 0
AArch64 ID_AA64DFR1_EL1 AArch64 Debug Feature Register 1
AArch64 ID_AA64ISAR0_EL1 AArch64 Instruction Set Attribute Register 0
AArch64 ID_AA64ISAR1_EL1 AArch64 Instruction Set Attribute Register 1
AArch64 ID_AA64MMFR0_EL1 AArch64 Memory Model Feature Register 0
AArch64 ID_AA64MMFR1_EL1 AArch64 Memory Model Feature Register 1
AArch64 ID_AA64MMFR2_EL1 AArch64 Memory Model Feature Register 2
AArch64 ID_AA64PFR0_EL1 AArch64 Processor Feature Register 0
AArch64 ID_AA64PFR1_EL1 AArch64 Processor Feature Register 1
AArch64 ID_AA64ZFR0_EL1 SVE Feature ID register 0
AArch64 ID_AFR0_EL1 AArch32 Auxiliary Feature Register 0
AArch64 ID_DFR0_EL1 AArch32 Debug Feature Register 0
AArch64 ID_DFR1_EL1 Debug Feature Register 1
AArch64 ID_ISAR0_EL1 AArch32 Instruction Set Attribute Register 0
AArch64 ID_ISAR1_EL1 AArch32 Instruction Set Attribute Register 1
AArch64 ID_ISAR2_EL1 AArch32 Instruction Set Attribute Register 2
AArch64 ID_ISAR3_EL1 AArch32 Instruction Set Attribute Register 3
AArch64 ID_ISAR4_EL1 AArch32 Instruction Set Attribute Register 4
AArch64 ID_ISAR5_EL1 AArch32 Instruction Set Attribute Register 5
AArch64 ID_ISAR6_EL1 AArch32 Instruction Set Attribute Register 6
AArch64 ID_MMFR0_EL1 AArch32 Memory Model Feature Register 0
AArch64 ID_MMFR1_EL1 AArch32 Memory Model Feature Register 1
AArch64 ID_MMFR2_EL1 AArch32 Memory Model Feature Register 2
AArch64 ID_MMFR3_EL1 AArch32 Memory Model Feature Register 3
AArch64 ID_MMFR4_EL1 AArch32 Memory Model Feature Register 4
AArch64 ID_MMFR5_EL1 AArch32 Memory Model Feature Register 5
AArch64 ID_PFR0_EL1 AArch32 Processor Feature Register 0
AArch64 ID_PFR1_EL1 AArch32 Processor Feature Register 1
AArch64 ID_PFR2_EL1 AArch32 Processor Feature Register 2
AArch64 MIDR_EL1 Main ID Register
AArch64 MPAMIDR_EL1 MPAM ID Register (EL1)
AArch64 MPIDR_EL1 Multiprocessor Affinity Register
AArch64 REVIDR_EL1 Revision ID Register
External EDAA32PFR External Debug AArch32 Processor Feature Register
External EDDFR External Debug Feature Register
External EDPFR External Debug Processor Feature Register
External MIDR_EL1 Main ID Register

In the Memory functional group:
Exec state Name Description
AArch32 AMAIR0 Auxiliary Memory Attribute Indirection Register 0
AArch32 AMAIR1 Auxiliary Memory Attribute Indirection Register 1
AArch32 CONTEXTIDR Context ID Register
AArch32 DACR Domain Access Control Register
AArch32 HAMAIR0 Hyp Auxiliary Memory Attribute Indirection Register 0
AArch32 HAMAIR1 Hyp Auxiliary Memory Attribute Indirection Register 1
AArch32 HMAIR0 Hyp Memory Attribute Indirection Register 0
AArch32 HMAIR1 Hyp Memory Attribute Indirection Register 1

System Register index by functional group

Page 3126

Exec state Name Description
AArch32 HTCR Hyp Translation Control Register
AArch32 HTTBR Hyp Translation Table Base Register
AArch32 MAIR0 Memory Attribute Indirection Register 0
AArch32 MAIR1 Memory Attribute Indirection Register 1
AArch32 NMRR Normal Memory Remap Register
AArch32 PRRR Primary Region Remap Register
AArch32 TTBCR Translation Table Base Control Register
AArch32 TTBCR2 Translation Table Base Control Register 2
AArch32 TTBR0 Translation Table Base Register 0
AArch32 TTBR1 Translation Table Base Register 1
AArch32 VTCR Virtualization Translation Control Register
AArch32 VTTBR Virtualization Translation Table Base Register
AArch64 AMAIR_EL1 Auxiliary Memory Attribute Indirection Register (EL1)
AArch64 AMAIR_EL2 Auxiliary Memory Attribute Indirection Register (EL2)
AArch64 AMAIR_EL3 Auxiliary Memory Attribute Indirection Register (EL3)
AArch64 CONTEXTIDR_EL1 Context ID Register (EL1)
AArch64 CONTEXTIDR_EL2 Context ID Register (EL2)
AArch64 DACR32_EL2 Domain Access Control Register
AArch64 LORC_EL1 LORegion Control (EL1)
AArch64 LOREA_EL1 LORegion End Address (EL1)
AArch64 LORID_EL1 LORegionID (EL1)
AArch64 LORN_EL1 LORegion Number (EL1)
AArch64 LORSA_EL1 LORegion Start Address (EL1)
AArch64 MAIR_EL1 Memory Attribute Indirection Register (EL1)
AArch64 MAIR_EL2 Memory Attribute Indirection Register (EL2)
AArch64 MAIR_EL3 Memory Attribute Indirection Register (EL3)
AArch64 TCR_EL1 Translation Control Register (EL1)
AArch64 TCR_EL2 Translation Control Register (EL2)
AArch64 TCR_EL3 Translation Control Register (EL3)
AArch64 TTBR0_EL1 Translation Table Base Register 0 (EL1)
AArch64 TTBR0_EL2 Translation Table Base Register 0 (EL2)
AArch64 TTBR0_EL3 Translation Table Base Register 0 (EL3)
AArch64 TTBR1_EL1 Translation Table Base Register 1 (EL1)
AArch64 TTBR1_EL2 Translation Table Base Register 1 (EL2)
AArch64 VTCR_EL2 Virtualization Translation Control Register
AArch64 VTTBR_EL2 Virtualization Translation Table Base Register

In the Other functional group:
Exec state Name Description
AArch32 CPACR Architectural Feature Access Control Register
AArch32 SCTLR System Control Register
AArch64 CPACR_EL1 Architectural Feature Access Control Register
AArch64 SCTLR_EL1 System Control Register (EL1)
AArch64 SCTLR_EL3 System Control Register (EL3)
AArch64 ZCR_EL1 SVE Control Register for EL1
AArch64 ZCR_EL2 SVE Control Register for EL2
AArch64 ZCR_EL3 SVE Control Register for EL3

In the Exception functional group:
Exec state Name Description
AArch32 ADFSR Auxiliary Data Fault Status Register
AArch32 AIFSR Auxiliary Instruction Fault Status Register
AArch32 DFAR Data Fault Address Register
AArch32 DFSR Data Fault Status Register
AArch32 HADFSR Hyp Auxiliary Data Fault Status Register
AArch32 HAIFSR Hyp Auxiliary Instruction Fault Status Register
AArch32 HDFAR Hyp Data Fault Address Register
AArch32 HIFAR Hyp Instruction Fault Address Register
AArch32 HPFAR Hyp IPA Fault Address Register
AArch32 HSR Hyp Syndrome Register

System Register index by functional group

Page 3127

Exec state Name Description
AArch32 HVBAR Hyp Vector Base Address Register
AArch32 IFAR Instruction Fault Address Register
AArch32 IFSR Instruction Fault Status Register
AArch32 ISR Interrupt Status Register
AArch32 MVBAR Monitor Vector Base Address Register
AArch32 VBAR Vector Base Address Register
AArch64 AFSR0_EL1 Auxiliary Fault Status Register 0 (EL1)
AArch64 AFSR0_EL2 Auxiliary Fault Status Register 0 (EL2)
AArch64 AFSR0_EL3 Auxiliary Fault Status Register 0 (EL3)
AArch64 AFSR1_EL1 Auxiliary Fault Status Register 1 (EL1)
AArch64 AFSR1_EL2 Auxiliary Fault Status Register 1 (EL2)
AArch64 AFSR1_EL3 Auxiliary Fault Status Register 1 (EL3)
AArch64 ESR_EL1 Exception Syndrome Register (EL1)
AArch64 ESR_EL2 Exception Syndrome Register (EL2)
AArch64 ESR_EL3 Exception Syndrome Register (EL3)
AArch64 FAR_EL1 Fault Address Register (EL1)
AArch64 FAR_EL2 Fault Address Register (EL2)
AArch64 FAR_EL3 Fault Address Register (EL3)
AArch64 HPFAR_EL2 Hypervisor IPA Fault Address Register
AArch64 IFSR32_EL2 Instruction Fault Status Register (EL2)
AArch64 ISR_EL1 Interrupt Status Register
AArch64 VBAR_EL1 Vector Base Address Register (EL1)
AArch64 VBAR_EL2 Vector Base Address Register (EL2)
AArch64 VBAR_EL3 Vector Base Address Register (EL3)

In the Special functional group:
Exec state Name Description
AArch32 DLR Debug Link Register
AArch32 DSPSR Debug Saved Program Status Register
AArch32 ELR_hyp Exception Link Register (Hyp mode)
AArch32 SPSR Saved Program Status Register
AArch32 SPSR_abt Saved Program Status Register (Abort mode)
AArch32 SPSR_fiq Saved Program Status Register (FIQ mode)
AArch32 SPSR_hyp Saved Program Status Register (Hyp mode)
AArch32 SPSR_irq Saved Program Status Register (IRQ mode)
AArch32 SPSR_mon Saved Program Status Register (Monitor mode)
AArch32 SPSR_svc Saved Program Status Register (Supervisor mode)
AArch32 SPSR_und Saved Program Status Register (Undefined mode)
AArch64 ELR_EL1 Exception Link Register (EL1)
AArch64 ELR_EL2 Exception Link Register (EL2)
AArch64 ELR_EL3 Exception Link Register (EL3)
AArch64 SPSR_EL1 Saved Program Status Register (EL1)
AArch64 SPSR_EL2 Saved Program Status Register (EL2)
AArch64 SPSR_EL3 Saved Program Status Register (EL3)
AArch64 SPSR_abt Saved Program Status Register (Abort mode)
AArch64 SPSR_fiq Saved Program Status Register (FIQ mode)
AArch64 SPSR_irq Saved Program Status Register (IRQ mode)
AArch64 SPSR_und Saved Program Status Register (Undefined mode)
AArch64 SP_EL0 Stack Pointer (EL0)
AArch64 SP_EL1 Stack Pointer (EL1)
AArch64 SP_EL2 Stack Pointer (EL2)
AArch64 SP_EL3 Stack Pointer (EL3)

In the PSTATE functional group:
Exec state Name Description
AArch32 APSR Application Program Status Register
AArch32 CPSR Current Program Status Register
AArch64 CurrentEL Current Exception Level
AArch64 DAIF Interrupt Mask Bits
AArch64 DIT Data Independent Timing

System Register index by functional group

Page 3128

Exec state Name Description
AArch64 NZCV Condition Flags
AArch64 PAN Privileged Access Never
AArch64 SPSel Stack Pointer Select
AArch64 SSBS Speculative Store Bypass Safe
AArch64 TCO Tag Check Override
AArch64 UAO User Access Override

In the Cache functional group:
Exec
state Name Description

AArch32 BPIALL Branch Predictor Invalidate All
AArch32 BPIALLIS Branch Predictor Invalidate All, Inner Shareable
AArch32 BPIMVA Branch Predictor Invalidate by VA
AArch32 DCCIMVAC Data Cache line Clean and Invalidate by VA to PoC
AArch32 DCCISW Data Cache line Clean and Invalidate by Set/Way
AArch32 DCCMVAC Data Cache line Clean by VA to PoC
AArch32 DCCMVAU Data Cache line Clean by VA to PoU
AArch32 DCCSW Data Cache line Clean by Set/Way
AArch32 DCIMVAC Data Cache line Invalidate by VA to PoC
AArch32 DCISW Data Cache line Invalidate by Set/Way
AArch32 ICIALLU Instruction Cache Invalidate All to PoU
AArch32 ICIALLUIS Instruction Cache Invalidate All to PoU, Inner Shareable
AArch32 ICIMVAU Instruction Cache line Invalidate by VA to PoU
AArch64 DC

CGDSW
Data, Allocation Tag or unified Cache line Clean of Data and Allocation Tags by Set/Way

AArch64 DC
CGDVAC

Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoC

AArch64 DC
CGDVADP

Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoDP

AArch64 DC
CGDVAP

Data, Allocation Tag or unified Cache line Clean of Data and Allocation Tags by VA to
PoP

AArch64 DC CGSW Data, Allocation Tag or unified Cache line Clean of Allocation Tags by Set/Way
AArch64 DC CGVAC Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoC
AArch64 DC

CGVADP
Data, Allocation Tag or unified Cache line Clean of Data and Allocation Tags by VA to
PoDP

AArch64 DC CGVAP Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoP
AArch64 DC

CIGDSW
Data, Allocation Tag or unified Cache line Clean and Invalidate of Data and Allocation
Tags by Set/Way

AArch64 DC
CIGDVAC

Data, Allocation Tag or unified Cache line Clean and Invalidate of Data and Allocation
Tags by VA to PoC

AArch64 DC CIGSW Data, Allocation Tag or unified Cache line Clean and Invalidate of Allocation Tags by
Set/Way

AArch64 DC
CIGVAC

Data, Allocation Tag or unified Cache line Clean and Invalidate of Allocation Tags by VA
to PoC

AArch64 DC CISW Data or unified Cache line Clean and Invalidate by Set/Way
AArch64 DC CIVAC Data or unified Cache line Clean and Invalidate by VA to PoC
AArch64 DC CSW Data or unified Cache line Clean by Set/Way
AArch64 DC CVAC Data or unified Cache line Clean by VA to PoC
AArch64 DC CVADP Data or unified Cache line Clean by VA to PoDP
AArch64 DC CVAP Data or unified Cache line Clean by VA to PoP
AArch64 DC CVAU Data or unified Cache line Clean by VA to PoU
AArch64 DC GVA Data Cache set Allocation Tag by VA
AArch64 DC GZVA Data Cache set Allocation Tags and Zero by VA
AArch64 DC IGDSW Data, Allocation Tag or unified Cache line Invalidate of Data and Allocation Tags by Set/

Way
AArch64 DC

IGDVAC
Data, Allocation Tag or unified Cache line Invalidate of Allocation Tags by VA to PoC

AArch64 DC IGSW Data, Allocation Tag or unified Cache line Invalidate of Allocation Tags by Set/Way
AArch64 DC IGVAC Data, Allocation Tag or unified Cache line Invalidate of Allocation Tags by VA to PoC
AArch64 DC ISW Data or unified Cache line Invalidate by Set/Way
AArch64 DC IVAC Data or unified Cache line Invalidate by VA to PoC
AArch64 DC ZVA Data Cache Zero by VA
AArch64 IC IALLU Instruction Cache Invalidate All to PoU

System Register index by functional group

Page 3129

Exec
state Name Description

AArch64 IC IALLUIS Instruction Cache Invalidate All to PoU, Inner Shareable
AArch64 IC IVAU Instruction Cache line Invalidate by VA to PoU

In the Address functional group:
Exec state Name Description
AArch32 ATS12NSOPR Address Translate Stages 1 and 2 Non-secure Only PL1 Read
AArch32 ATS12NSOPW Address Translate Stages 1 and 2 Non-secure Only PL1 Write
AArch32 ATS12NSOUR Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read
AArch32 ATS12NSOUW Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write
AArch32 ATS1CPR Address Translate Stage 1 Current state PL1 Read
AArch32 ATS1CPRP Address Translate Stage 1 Current state PL1 Read PAN
AArch32 ATS1CPW Address Translate Stage 1 Current state PL1 Write
AArch32 ATS1CPWP Address Translate Stage 1 Current state PL1 Write PAN
AArch32 ATS1CUR Address Translate Stage 1 Current state Unprivileged Read
AArch32 ATS1CUW Address Translate Stage 1 Current state Unprivileged Write
AArch32 ATS1HR Address Translate Stage 1 Hyp mode Read
AArch32 ATS1HW Address Translate Stage 1 Hyp mode Write
AArch32 PAR Physical Address Register
AArch64 AT S12E0R Address Translate Stages 1 and 2 EL0 Read
AArch64 AT S12E0W Address Translate Stages 1 and 2 EL0 Write
AArch64 AT S12E1R Address Translate Stages 1 and 2 EL1 Read
AArch64 AT S12E1W Address Translate Stages 1 and 2 EL1 Write
AArch64 AT S1E0R Address Translate Stage 1 EL0 Read
AArch64 AT S1E0W Address Translate Stage 1 EL0 Write
AArch64 AT S1E1R Address Translate Stage 1 EL1 Read
AArch64 AT S1E1RP Address Translate Stage 1 EL1 Read PAN
AArch64 AT S1E1W Address Translate Stage 1 EL1 Write
AArch64 AT S1E1WP Address Translate Stage 1 EL1 Write PAN
AArch64 AT S1E2R Address Translate Stage 1 EL2 Read
AArch64 AT S1E2W Address Translate Stage 1 EL2 Write
AArch64 AT S1E3R Address Translate Stage 1 EL3 Read
AArch64 AT S1E3W Address Translate Stage 1 EL3 Write
AArch64 PAR_EL1 Physical Address Register

In the TLB functional group:
Exec
state Name Description

AArch32 CFPRCTX Control Flow Prediction Restriction by Context
AArch32 CPPRCTX Cache Prefetch Prediction Restriction by Context
AArch32 DTLBIALL Data TLB Invalidate All
AArch32 DTLBIASID Data TLB Invalidate by ASID match
AArch32 DTLBIMVA Data TLB Invalidate by VA
AArch32 DVPRCTX Data Value Prediction Restriction by Context
AArch32 ITLBIALL Instruction TLB Invalidate All
AArch32 ITLBIASID Instruction TLB Invalidate by ASID match
AArch32 ITLBIMVA Instruction TLB Invalidate by VA
AArch32 TLBIALL TLB Invalidate All
AArch32 TLBIALLH TLB Invalidate All, Hyp mode
AArch32 TLBIALLHIS TLB Invalidate All, Hyp mode, Inner Shareable
AArch32 TLBIALLIS TLB Invalidate All, Inner Shareable
AArch32 TLBIALLNSNH TLB Invalidate All, Non-Secure Non-Hyp
AArch32 TLBIALLNSNHIS TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
AArch32 TLBIASID TLB Invalidate by ASID match
AArch32 TLBIASIDIS TLB Invalidate by ASID match, Inner Shareable
AArch32 TLBIIPAS2 TLB Invalidate by Intermediate Physical Address, Stage 2
AArch32 TLBIIPAS2IS TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable
AArch32 TLBIIPAS2L TLB Invalidate by Intermediate Physical Address, Stage 2, Last level
AArch32 TLBIIPAS2LIS TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner

Shareable
AArch32 TLBIMVA TLB Invalidate by VA

System Register index by functional group

Page 3130

Exec
state Name Description

AArch32 TLBIMVAA TLB Invalidate by VA, All ASID
AArch32 TLBIMVAAIS TLB Invalidate by VA, All ASID, Inner Shareable
AArch32 TLBIMVAAL TLB Invalidate by VA, All ASID, Last level
AArch32 TLBIMVAALIS TLB Invalidate by VA, All ASID, Last level, Inner Shareable
AArch32 TLBIMVAH TLB Invalidate by VA, Hyp mode
AArch32 TLBIMVAHIS TLB Invalidate by VA, Hyp mode, Inner Shareable
AArch32 TLBIMVAIS TLB Invalidate by VA, Inner Shareable
AArch32 TLBIMVAL TLB Invalidate by VA, Last level
AArch32 TLBIMVALH TLB Invalidate by VA, Last level, Hyp mode
AArch32 TLBIMVALHIS TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable
AArch32 TLBIMVALIS TLB Invalidate by VA, Last level, Inner Shareable
AArch64 TLBI ALLE1 TLB Invalidate All, EL1
AArch64 TLBI ALLE1IS TLB Invalidate All, EL1, Inner Shareable
AArch64 TLBI ALLE1OS TLB Invalidate All, EL1, Outer Shareable
AArch64 TLBI ALLE2 TLB Invalidate All, EL2
AArch64 TLBI ALLE2IS TLB Invalidate All, EL2, Inner Shareable
AArch64 TLBI ALLE2OS TLB Invalidate All, EL2, Outer Shareable
AArch64 TLBI ALLE3 TLB Invalidate All, EL3
AArch64 TLBI ALLE3IS TLB Invalidate All, EL3, Inner Shareable
AArch64 TLBI ALLE3OS TLB Invalidate All, EL3, Outer Shareable
AArch64 TLBI ASIDE1 TLB Invalidate by ASID, EL1
AArch64 TLBI ASIDE1IS TLB Invalidate by ASID, EL1, Inner Shareable
AArch64 TLBI ASIDE1OS TLB Invalidate by ASID, EL1, Outer Shareable
AArch64 TLBI IPAS2E1 TLB Invalidate by Intermediate Physical Address, Stage 2, EL1
AArch64 TLBI IPAS2E1IS TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable
AArch64 TLBI IPAS2E1OS TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable
AArch64 TLBI IPAS2LE1 TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1
AArch64 TLBI IPAS2LE1IS TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner

Shareable
AArch64 TLBI

IPAS2LE1OS
TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer
Shareable

AArch64 TLBI RIPAS2E1 TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1
AArch64 TLBI RIPAS2E1IS TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner

Shareable
AArch64 TLBI

RIPAS2E1OS
TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer
Shareable

AArch64 TLBI RIPAS2LE1 TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1
AArch64 TLBI

RIPAS2LE1IS
TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1,
Inner Shareable

AArch64 TLBI
RIPAS2LE1OS

TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1,
Outer Shareable

AArch64 TLBI RVAAE1 TLB Range Invalidate by VA, All ASID, EL1
AArch64 TLBI RVAAE1IS TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable
AArch64 TLBI RVAAE1OS TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable
AArch64 TLBI RVAALE1 TLB Range Invalidate by VA, All ASID, Last level, EL1
AArch64 TLBI RVAALE1IS TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable
AArch64 TLBI RVAALE1OS TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable
AArch64 TLBI RVAE1 TLB Range Invalidate by VA, EL1
AArch64 TLBI RVAE1IS TLB Range Invalidate by VA, EL1, Inner Shareable
AArch64 TLBI RVAE1OS TLB Range Invalidate by VA, EL1, Outer Shareable
AArch64 TLBI RVAE2 TLB Range Invalidate by VA, EL2
AArch64 TLBI RVAE2IS TLB Range Invalidate by VA, EL2, Inner Shareable
AArch64 TLBI RVAE2OS TLB Range Invalidate by VA, EL2, Outer Shareable
AArch64 TLBI RVAE3 TLB Range Invalidate by VA, EL3
AArch64 TLBI RVAE3IS TLB Range Invalidate by VA, EL3, Inner Shareable
AArch64 TLBI RVAE3OS TLB Range Invalidate by VA, EL3, Outer Shareable
AArch64 TLBI RVALE1 TLB Range Invalidate by VA, Last level, EL1
AArch64 TLBI RVALE1IS TLB Range Invalidate by VA, Last level, EL1, Inner Shareable
AArch64 TLBI RVALE1OS TLB Range Invalidate by VA, Last level, EL1, Outer Shareable
AArch64 TLBI RVALE2 TLB Range Invalidate by VA, Last level, EL2
AArch64 TLBI RVALE2IS TLB Range Invalidate by VA, Last level, EL2, Inner Shareable
AArch64 TLBI RVALE2OS TLB Range Invalidate by VA, Last level, EL2, Outer Shareable
AArch64 TLBI RVALE3 TLB Range Invalidate by VA, Last level, EL3
AArch64 TLBI RVALE3IS TLB Range Invalidate by VA, Last level, EL3, Inner Shareable

System Register index by functional group

Page 3131

Exec
state Name Description

AArch64 TLBI RVALE3OS TLB Range Invalidate by VA, Last level, EL3, Outer Shareable
AArch64 TLBI VAAE1 TLB Invalidate by VA, All ASID, EL1
AArch64 TLBI VAAE1IS TLB Invalidate by VA, All ASID, EL1, Inner Shareable
AArch64 TLBI VAAE1OS TLB Invalidate by VA, All ASID, EL1, Outer Shareable
AArch64 TLBI VAALE1 TLB Invalidate by VA, All ASID, Last level, EL1
AArch64 TLBI VAALE1IS TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable
AArch64 TLBI VAALE1OS TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable
AArch64 TLBI VAE1 TLB Invalidate by VA, EL1
AArch64 TLBI VAE1IS TLB Invalidate by VA, EL1, Inner Shareable
AArch64 TLBI VAE1OS TLB Invalidate by VA, EL1, Outer Shareable
AArch64 TLBI VAE2 TLB Invalidate by VA, EL2
AArch64 TLBI VAE2IS TLB Invalidate by VA, EL2, Inner Shareable
AArch64 TLBI VAE2OS TLB Invalidate by VA, EL2, Outer Shareable
AArch64 TLBI VAE3 TLB Invalidate by VA, EL3
AArch64 TLBI VAE3IS TLB Invalidate by VA, EL3, Inner Shareable
AArch64 TLBI VAE3OS TLB Invalidate by VA, EL3, Outer Shareable
AArch64 TLBI VALE1 TLB Invalidate by VA, Last level, EL1
AArch64 TLBI VALE1IS TLB Invalidate by VA, Last level, EL1, Inner Shareable
AArch64 TLBI VALE1OS TLB Invalidate by VA, Last level, EL1, Outer Shareable
AArch64 TLBI VALE2 TLB Invalidate by VA, Last level, EL2
AArch64 TLBI VALE2IS TLB Invalidate by VA, Last level, EL2, Inner Shareable
AArch64 TLBI VALE2OS TLB Invalidate by VA, Last level, EL2, Outer Shareable
AArch64 TLBI VALE3 TLB Invalidate by VA, Last level, EL3
AArch64 TLBI VALE3IS TLB Invalidate by VA, Last level, EL3, Inner Shareable
AArch64 TLBI VALE3OS TLB Invalidate by VA, Last level, EL3, Outer Shareable
AArch64 TLBI VMALLE1 TLB Invalidate by VMID, All at stage 1, EL1
AArch64 TLBI VMALLE1IS TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable
AArch64 TLBI

VMALLE1OS
TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable

AArch64 TLBI
VMALLS12E1

TLB Invalidate by VMID, All at Stage 1 and 2, EL1

AArch64 TLBI
VMALLS12E1IS

TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable

AArch64 TLBI
VMALLS12E1OS

TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Outer Shareable

In the PMU functional group:
Exec state Name Description
AArch32 PMCCFILTR Performance Monitors Cycle Count Filter Register
AArch32 PMCCNTR Performance Monitors Cycle Count Register
AArch32 PMCEID0 Performance Monitors Common Event Identification register 0
AArch32 PMCEID1 Performance Monitors Common Event Identification register 1
AArch32 PMCEID2 Performance Monitors Common Event Identification register 2
AArch32 PMCEID3 Performance Monitors Common Event Identification register 3
AArch32 PMCNTENCLR Performance Monitors Count Enable Clear register
AArch32 PMCNTENSET Performance Monitors Count Enable Set register
AArch32 PMCR Performance Monitors Control Register
AArch32 PMEVCNTR<n> Performance Monitors Event Count Registers
AArch32 PMEVTYPER<n> Performance Monitors Event Type Registers
AArch32 PMINTENCLR Performance Monitors Interrupt Enable Clear register
AArch32 PMINTENSET Performance Monitors Interrupt Enable Set register
AArch32 PMMIR Performance Monitors Machine Identification Register
AArch32 PMOVSR Performance Monitors Overflow Flag Status Register
AArch32 PMOVSSET Performance Monitors Overflow Flag Status Set register
AArch32 PMSELR Performance Monitors Event Counter Selection Register
AArch32 PMSWINC Performance Monitors Software Increment register
AArch32 PMUSERENR Performance Monitors User Enable Register
AArch32 PMXEVCNTR Performance Monitors Selected Event Count Register
AArch32 PMXEVTYPER Performance Monitors Selected Event Type Register
AArch64 PMCCFILTR_EL0 Performance Monitors Cycle Count Filter Register
AArch64 PMCCNTR_EL0 Performance Monitors Cycle Count Register
AArch64 PMCEID0_EL0 Performance Monitors Common Event Identification register 0

System Register index by functional group

Page 3132

Exec state Name Description
AArch64 PMCEID1_EL0 Performance Monitors Common Event Identification register 1
AArch64 PMCNTENCLR_EL0 Performance Monitors Count Enable Clear register
AArch64 PMCNTENSET_EL0 Performance Monitors Count Enable Set register
AArch64 PMCR_EL0 Performance Monitors Control Register
AArch64 PMEVCNTR<n>_EL0 Performance Monitors Event Count Registers
AArch64 PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers
AArch64 PMINTENCLR_EL1 Performance Monitors Interrupt Enable Clear register
AArch64 PMINTENSET_EL1 Performance Monitors Interrupt Enable Set register
AArch64 PMMIR_EL1 Performance Monitors Machine Identification Register
AArch64 PMOVSCLR_EL0 Performance Monitors Overflow Flag Status Clear Register
AArch64 PMOVSSET_EL0 Performance Monitors Overflow Flag Status Set register
AArch64 PMSELR_EL0 Performance Monitors Event Counter Selection Register
AArch64 PMSWINC_EL0 Performance Monitors Software Increment register
AArch64 PMUSERENR_EL0 Performance Monitors User Enable Register
AArch64 PMXEVCNTR_EL0 Performance Monitors Selected Event Count Register
AArch64 PMXEVTYPER_EL0 Performance Monitors Selected Event Type Register
External PMAUTHSTATUS Performance Monitors Authentication Status register
External PMCCFILTR_EL0 Performance Monitors Cycle Counter Filter Register
External PMCCNTR_EL0 Performance Monitors Cycle Counter
External PMCEID0 Performance Monitors Common Event Identification register 0
External PMCEID1 Performance Monitors Common Event Identification register 1
External PMCEID2 Performance Monitors Common Event Identification register 2
External PMCEID3 Performance Monitors Common Event Identification register 3
External PMCFGR Performance Monitors Configuration Register
External PMCID1SR CONTEXTIDR_EL1 Sample Register
External PMCID2SR CONTEXTIDR_EL2 Sample Register
External PMCIDR0 Performance Monitors Component Identification Register 0
External PMCIDR1 Performance Monitors Component Identification Register 1
External PMCIDR2 Performance Monitors Component Identification Register 2
External PMCIDR3 Performance Monitors Component Identification Register 3
External PMCNTENCLR_EL0 Performance Monitors Count Enable Clear register
External PMCNTENSET_EL0 Performance Monitors Count Enable Set register
External PMCR_EL0 Performance Monitors Control Register
External PMDEVAFF0 Performance Monitors Device Affinity register 0
External PMDEVAFF1 Performance Monitors Device Affinity register 1
External PMDEVARCH Performance Monitors Device Architecture register
External PMDEVID Performance Monitors Device ID register
External PMDEVTYPE Performance Monitors Device Type register
External PMEVCNTR<n>_EL0 Performance Monitors Event Count Registers
External PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers
External PMINTENCLR_EL1 Performance Monitors Interrupt Enable Clear register
External PMINTENSET_EL1 Performance Monitors Interrupt Enable Set register
External PMITCTRL Performance Monitors Integration mode Control register
External PMLAR Performance Monitors Lock Access Register
External PMLSR Performance Monitors Lock Status Register
External PMMIR Performance Monitors Machine Identification Register
External PMOVSCLR_EL0 Performance Monitors Overflow Flag Status Clear register
External PMOVSSET_EL0 Performance Monitors Overflow Flag Status Set register
External PMPCSR Program Counter Sample Register
External PMPIDR0 Performance Monitors Peripheral Identification Register 0
External PMPIDR1 Performance Monitors Peripheral Identification Register 1
External PMPIDR2 Performance Monitors Peripheral Identification Register 2
External PMPIDR3 Performance Monitors Peripheral Identification Register 3
External PMPIDR4 Performance Monitors Peripheral Identification Register 4
External PMSWINC_EL0 Performance Monitors Software Increment register
External PMVIDSR VMID Sample Register

In the Reset functional group:
Exec state Name Description
AArch32 HRMR Hyp Reset Management Register
AArch32 RMR Reset Management Register
AArch32 RVBAR Reset Vector Base Address Register

System Register index by functional group

Page 3133

Exec state Name Description
AArch64 RMR_EL1 Reset Management Register (EL1)
AArch64 RMR_EL2 Reset Management Register (EL2)
AArch64 RMR_EL3 Reset Management Register (EL3)
AArch64 RVBAR_EL1 Reset Vector Base Address Register (if EL2 and EL3 not implemented)
AArch64 RVBAR_EL2 Reset Vector Base Address Register (if EL3 not implemented)
AArch64 RVBAR_EL3 Reset Vector Base Address Register (if EL3 implemented)

In the Thread functional group:
Exec state Name Description
AArch32 HTPIDR Hyp Software Thread ID Register
AArch32 TPIDRPRW PL1 Software Thread ID Register
AArch32 TPIDRURO PL0 Read-Only Software Thread ID Register
AArch32 TPIDRURW PL0 Read/Write Software Thread ID Register
AArch64 SCXTNUM_EL0 EL0 Read/Write Software Context Number
AArch64 SCXTNUM_EL1 EL1 Read/Write Software Context Number
AArch64 SCXTNUM_EL2 EL2 Read/Write Software Context Number
AArch64 SCXTNUM_EL3 EL3 Read/Write Software Context Number
AArch64 TPIDRRO_EL0 EL0 Read-Only Software Thread ID Register
AArch64 TPIDR_EL0 EL0 Read/Write Software Thread ID Register
AArch64 TPIDR_EL1 EL1 Software Thread ID Register
AArch64 TPIDR_EL2 EL2 Software Thread ID Register
AArch64 TPIDR_EL3 EL3 Software Thread ID Register

In the IMP DEF functional group:
Exec state Name Description
AArch32 ACTLR Auxiliary Control Register
AArch32 ACTLR2 Auxiliary Control Register 2
AArch32 ADFSR Auxiliary Data Fault Status Register
AArch32 AIDR Auxiliary ID Register
AArch32 AIFSR Auxiliary Instruction Fault Status Register
AArch32 AMAIR0 Auxiliary Memory Attribute Indirection Register 0
AArch32 AMAIR1 Auxiliary Memory Attribute Indirection Register 1
AArch32 HACTLR Hyp Auxiliary Control Register
AArch32 HACTLR2 Hyp Auxiliary Control Register 2
AArch32 HADFSR Hyp Auxiliary Data Fault Status Register
AArch32 HAIFSR Hyp Auxiliary Instruction Fault Status Register
AArch32 HAMAIR0 Hyp Auxiliary Memory Attribute Indirection Register 0
AArch32 HAMAIR1 Hyp Auxiliary Memory Attribute Indirection Register 1
AArch64 ACTLR_EL1 Auxiliary Control Register (EL1)
AArch64 ACTLR_EL2 Auxiliary Control Register (EL2)
AArch64 ACTLR_EL3 Auxiliary Control Register (EL3)
AArch64 AFSR0_EL1 Auxiliary Fault Status Register 0 (EL1)
AArch64 AFSR0_EL2 Auxiliary Fault Status Register 0 (EL2)
AArch64 AFSR0_EL3 Auxiliary Fault Status Register 0 (EL3)
AArch64 AFSR1_EL1 Auxiliary Fault Status Register 1 (EL1)
AArch64 AFSR1_EL2 Auxiliary Fault Status Register 1 (EL2)
AArch64 AFSR1_EL3 Auxiliary Fault Status Register 1 (EL3)
AArch64 AIDR_EL1 Auxiliary ID Register
AArch64 AMAIR_EL1 Auxiliary Memory Attribute Indirection Register (EL1)
AArch64 AMAIR_EL2 Auxiliary Memory Attribute Indirection Register (EL2)
AArch64 AMAIR_EL3 Auxiliary Memory Attribute Indirection Register (EL3)
AArch64 HACR_EL2 Hypervisor Auxiliary Control Register
AArch64 S1_<op1>_<Cn>_<Cm>_<op2> IMPLEMENTATION DEFINED maintenance instructions
AArch64 S3_<op1>_<Cn>_<Cm>_<op2> IMPLEMENTATION DEFINED registers

In the Timer functional group:
Exec state Name Description
AArch32 CNTFRQ Counter-timer Frequency register

System Register index by functional group

Page 3134

Exec state Name Description
AArch32 CNTHPS_CTL Counter-timer Secure Physical Timer Control Register (EL2)
AArch32 CNTHPS_CVAL Counter-timer Secure Physical Timer CompareValue Register (EL2)
AArch32 CNTHPS_TVAL Counter-timer Secure Physical Timer TimerValue Register (EL2)
AArch32 CNTHP_CTL Counter-timer Hyp Physical Timer Control register
AArch32 CNTHVS_CTL Counter-timer Secure Virtual Timer Control Register (EL2)
AArch32 CNTHVS_CVAL Counter-timer Secure Virtual Timer CompareValue Register (EL2)
AArch32 CNTHVS_TVAL Counter-timer Secure Virtual Timer TimerValue Register (EL2)
AArch32 CNTHV_CTL Counter-timer Virtual Timer Control register (EL2)
AArch32 CNTHV_CVAL Counter-timer Virtual Timer CompareValue register (EL2)
AArch32 CNTHV_TVAL Counter-timer Virtual Timer TimerValue register (EL2)
AArch32 CNTKCTL Counter-timer Kernel Control register
AArch32 CNTPCT Counter-timer Physical Count register
AArch32 CNTPCTSS Counter-timer Self-Synchronized Physical Count register
AArch32 CNTP_CTL Counter-timer Physical Timer Control register
AArch32 CNTP_CVAL Counter-timer Physical Timer CompareValue register
AArch32 CNTP_TVAL Counter-timer Physical Timer TimerValue register
AArch32 CNTVCT Counter-timer Virtual Count register
AArch32 CNTVCTSS Counter-timer Self-Synchronized Virtual Count register
AArch32 CNTV_CTL Counter-timer Virtual Timer Control register
AArch32 CNTV_CVAL Counter-timer Virtual Timer CompareValue register
AArch32 CNTV_TVAL Counter-timer Virtual Timer TimerValue register
AArch64 CNTFRQ_EL0 Counter-timer Frequency register
AArch64 CNTHVS_CTL_EL2 Counter-timer Secure Virtual Timer Control register (EL2)
AArch64 CNTHVS_CVAL_EL2 Counter-timer Secure Virtual Timer CompareValue register (EL2)
AArch64 CNTHVS_TVAL_EL2 Counter-timer Secure Virtual Timer TimerValue register (EL2)
AArch64 CNTHV_CTL_EL2 Counter-timer Virtual Timer Control register (EL2)
AArch64 CNTHV_CVAL_EL2 Counter-timer Virtual Timer CompareValue register (EL2)
AArch64 CNTHV_TVAL_EL2 Counter-timer Virtual Timer TimerValue Register (EL2)
AArch64 CNTKCTL_EL1 Counter-timer Kernel Control register
AArch64 CNTPCTSS_EL0 Counter-timer Self-Synchronized Physical Count register
AArch64 CNTPCT_EL0 Counter-timer Physical Count register
AArch64 CNTPOFF_EL2 Counter-timer Physical Offset register
AArch64 CNTPS_CTL_EL1 Counter-timer Physical Secure Timer Control register
AArch64 CNTPS_CVAL_EL1 Counter-timer Physical Secure Timer CompareValue register
AArch64 CNTPS_TVAL_EL1 Counter-timer Physical Secure Timer TimerValue register
AArch64 CNTP_CTL_EL0 Counter-timer Physical Timer Control register
AArch64 CNTP_CVAL_EL0 Counter-timer Physical Timer CompareValue register
AArch64 CNTP_TVAL_EL0 Counter-timer Physical Timer TimerValue register
AArch64 CNTVCTSS_EL0 Counter-timer Self-Synchronized Virtual Count register
AArch64 CNTVCT_EL0 Counter-timer Virtual Count register
AArch64 CNTV_CTL_EL0 Counter-timer Virtual Timer Control register
AArch64 CNTV_CVAL_EL0 Counter-timer Virtual Timer CompareValue register
AArch64 CNTV_TVAL_EL0 Counter-timer Virtual Timer TimerValue register
External CNTACR<n> Counter-timer Access Control Registers
External CNTCR Counter Control Register
External CNTCV Counter Count Value register
External CNTEL0ACR Counter-timer EL0 Access Control Register
External CNTFID0 Counter Frequency ID
External CNTFID<n> Counter Frequency IDs, n > 0
External CNTFRQ Counter-timer Frequency
External CNTID Counter Identification Register
External CNTNSAR Counter-timer Non-secure Access Register
External CNTPCT Counter-timer Physical Count
External CNTP_CTL Counter-timer Physical Timer Control
External CNTP_CVAL Counter-timer Physical Timer CompareValue
External CNTP_TVAL Counter-timer Physical Timer TimerValue
External CNTSCR Counter Scale Register
External CNTSR Counter Status Register
External CNTTIDR Counter-timer Timer ID Register
External CNTVCT Counter-timer Virtual Count
External CNTVOFF Counter-timer Virtual Offset
External CNTVOFF<n> Counter-timer Virtual Offsets
External CNTV_CTL Counter-timer Virtual Timer Control
External CNTV_CVAL Counter-timer Virtual Timer CompareValue

System Register index by functional group

Page 3135

Exec state Name Description
External CNTV_TVAL Counter-timer Virtual Timer TimerValue
External CounterID<n> Counter ID registers

In the Debug functional group:
Exec state Name Description
AArch32 DBGAUTHSTATUS Debug Authentication Status register
AArch32 DBGBCR<n> Debug Breakpoint Control Registers
AArch32 DBGBVR<n> Debug Breakpoint Value Registers
AArch32 DBGBXVR<n> Debug Breakpoint Extended Value Registers
AArch32 DBGCLAIMCLR Debug CLAIM Tag Clear register
AArch32 DBGCLAIMSET Debug CLAIM Tag Set register
AArch32 DBGDCCINT DCC Interrupt Enable Register
AArch32 DBGDEVID Debug Device ID register 0
AArch32 DBGDEVID1 Debug Device ID register 1
AArch32 DBGDEVID2 Debug Device ID register 2
AArch32 DBGDIDR Debug ID Register
AArch32 DBGDRAR Debug ROM Address Register
AArch32 DBGDSAR Debug Self Address Register
AArch32 DBGDSCRext Debug Status and Control Register, External View
AArch32 DBGDSCRint Debug Status and Control Register, Internal View
AArch32 DBGDTRRXext Debug OS Lock Data Transfer Register, Receive, External View
AArch32 DBGDTRRXint Debug Data Transfer Register, Receive
AArch32 DBGDTRTXext Debug OS Lock Data Transfer Register, Transmit
AArch32 DBGDTRTXint Debug Data Transfer Register, Transmit
AArch32 DBGOSDLR Debug OS Double Lock Register
AArch32 DBGOSECCR Debug OS Lock Exception Catch Control Register
AArch32 DBGOSLAR Debug OS Lock Access Register
AArch32 DBGOSLSR Debug OS Lock Status Register
AArch32 DBGPRCR Debug Power Control Register
AArch32 DBGVCR Debug Vector Catch Register
AArch32 DBGWCR<n> Debug Watchpoint Control Registers
AArch32 DBGWFAR Debug Watchpoint Fault Address Register
AArch32 DBGWVR<n> Debug Watchpoint Value Registers
AArch32 TRFCR Trace Filter Control Register
AArch64 DBGAUTHSTATUS_EL1 Debug Authentication Status register
AArch64 DBGBCR<n>_EL1 Debug Breakpoint Control Registers
AArch64 DBGBVR<n>_EL1 Debug Breakpoint Value Registers
AArch64 DBGCLAIMCLR_EL1 Debug CLAIM Tag Clear register
AArch64 DBGCLAIMSET_EL1 Debug CLAIM Tag Set register
AArch64 DBGDTRRX_EL0 Debug Data Transfer Register, Receive
AArch64 DBGDTRTX_EL0 Debug Data Transfer Register, Transmit
AArch64 DBGDTR_EL0 Debug Data Transfer Register, half-duplex
AArch64 DBGPRCR_EL1 Debug Power Control Register
AArch64 DBGVCR32_EL2 Debug Vector Catch Register
AArch64 DBGWCR<n>_EL1 Debug Watchpoint Control Registers
AArch64 DBGWVR<n>_EL1 Debug Watchpoint Value Registers
AArch64 DLR_EL0 Debug Link Register
AArch64 DSPSR_EL0 Debug Saved Program Status Register
AArch64 MDCCINT_EL1 Monitor DCC Interrupt Enable Register
AArch64 MDCCSR_EL0 Monitor DCC Status Register
AArch64 MDRAR_EL1 Monitor Debug ROM Address Register
AArch64 MDSCR_EL1 Monitor Debug System Control Register
AArch64 OSDLR_EL1 OS Double Lock Register
AArch64 OSDTRRX_EL1 OS Lock Data Transfer Register, Receive
AArch64 OSDTRTX_EL1 OS Lock Data Transfer Register, Transmit
AArch64 OSECCR_EL1 OS Lock Exception Catch Control Register
AArch64 OSLAR_EL1 OS Lock Access Register
AArch64 OSLSR_EL1 OS Lock Status Register
AArch64 TRFCR_EL1 Trace Filter Control Register (EL1)
AArch64 TRFCR_EL2 Trace Filter Control Register (EL2)
External DBGAUTHSTATUS_EL1 Debug Authentication Status register
External DBGBCR<n>_EL1 Debug Breakpoint Control Registers

System Register index by functional group

Page 3136

Exec state Name Description
External DBGBVR<n>_EL1 Debug Breakpoint Value Registers
External DBGCLAIMCLR_EL1 Debug CLAIM Tag Clear register
External DBGCLAIMSET_EL1 Debug CLAIM Tag Set register
External DBGDTRRX_EL0 Debug Data Transfer Register, Receive
External DBGDTRTX_EL0 Debug Data Transfer Register, Transmit
External DBGWCR<n>_EL1 Debug Watchpoint Control Registers
External DBGWVR<n>_EL1 Debug Watchpoint Value Registers
External EDACR External Debug Auxiliary Control Register
External EDCIDR0 External Debug Component Identification Register 0
External EDCIDR1 External Debug Component Identification Register 1
External EDCIDR2 External Debug Component Identification Register 2
External EDCIDR3 External Debug Component Identification Register 3
External EDCIDSR External Debug Context ID Sample Register
External EDDEVAFF0 External Debug Device Affinity register 0
External EDDEVAFF1 External Debug Device Affinity register 1
External EDDEVARCH External Debug Device Architecture register
External EDDEVID External Debug Device ID register 0
External EDDEVID1 External Debug Device ID register 1
External EDDEVID2 External Debug Device ID register 2
External EDDEVTYPE External Debug Device Type register
External EDECCR External Debug Exception Catch Control Register
External EDECR External Debug Execution Control Register
External EDESR External Debug Event Status Register
External EDITCTRL External Debug Integration mode Control register
External EDITR External Debug Instruction Transfer Register
External EDLAR External Debug Lock Access Register
External EDLSR External Debug Lock Status Register
External EDPCSR External Debug Program Counter Sample Register
External EDPIDR0 External Debug Peripheral Identification Register 0
External EDPIDR1 External Debug Peripheral Identification Register 1
External EDPIDR2 External Debug Peripheral Identification Register 2
External EDPIDR3 External Debug Peripheral Identification Register 3
External EDPIDR4 External Debug Peripheral Identification Register 4
External EDPRCR External Debug Power/Reset Control Register
External EDPRSR External Debug Processor Status Register
External EDRCR External Debug Reserve Control Register
External EDSCR External Debug Status and Control Register
External EDVIDSR External Debug Virtual Context Sample Register
External EDWAR External Debug Watchpoint Address Register
External OSLAR_EL1 OS Lock Access Register

In the CTI functional group:
Exec state Name Description
External ASICCTL CTI External Multiplexer Control register
External CTIAPPCLEAR CTI Application Trigger Clear register
External CTIAPPPULSE CTI Application Pulse register
External CTIAPPSET CTI Application Trigger Set register
External CTIAUTHSTATUS CTI Authentication Status register
External CTICHINSTATUS CTI Channel In Status register
External CTICHOUTSTATUS CTI Channel Out Status register
External CTICIDR0 CTI Component Identification Register 0
External CTICIDR1 CTI Component Identification Register 1
External CTICIDR2 CTI Component Identification Register 2
External CTICIDR3 CTI Component Identification Register 3
External CTICLAIMCLR CTI CLAIM Tag Clear register
External CTICLAIMSET CTI CLAIM Tag Set register
External CTICONTROL CTI Control register
External CTIDEVAFF0 CTI Device Affinity register 0
External CTIDEVAFF1 CTI Device Affinity register 1
External CTIDEVARCH CTI Device Architecture register
External CTIDEVCTL CTI Device Control register
External CTIDEVID CTI Device ID register 0

System Register index by functional group

Page 3137

Exec state Name Description
External CTIDEVID1 CTI Device ID register 1
External CTIDEVID2 CTI Device ID register 2
External CTIDEVTYPE CTI Device Type register
External CTIGATE CTI Channel Gate Enable register
External CTIINEN<n> CTI Input Trigger to Output Channel Enable registers
External CTIINTACK CTI Output Trigger Acknowledge register
External CTIITCTRL CTI Integration mode Control register
External CTILAR CTI Lock Access Register
External CTILSR CTI Lock Status Register
External CTIOUTEN<n> CTI Input Channel to Output Trigger Enable registers
External CTIPIDR0 CTI Peripheral Identification Register 0
External CTIPIDR1 CTI Peripheral Identification Register 1
External CTIPIDR2 CTI Peripheral Identification Register 2
External CTIPIDR3 CTI Peripheral Identification Register 3
External CTIPIDR4 CTI Peripheral Identification Register 4
External CTITRIGINSTATUS CTI Trigger In Status register
External CTITRIGOUTSTATUS CTI Trigger Out Status register

In the Virt functional group:
Exec
state Name Description

AArch32 ATS1HR Address Translate Stage 1 Hyp mode Read
AArch32 ATS1HW Address Translate Stage 1 Hyp mode Write
AArch32 CNTHCTL Counter-timer Hyp Control register
AArch32 CNTHP_CVAL Counter-timer Hyp Physical CompareValue register
AArch32 CNTHP_TVAL Counter-timer Hyp Physical Timer TimerValue register
AArch32 CNTVOFF Counter-timer Virtual Offset register
AArch32 HACR Hyp Auxiliary Configuration Register
AArch32 HACTLR Hyp Auxiliary Control Register
AArch32 HACTLR2 Hyp Auxiliary Control Register 2
AArch32 HADFSR Hyp Auxiliary Data Fault Status Register
AArch32 HAIFSR Hyp Auxiliary Instruction Fault Status Register
AArch32 HAMAIR0 Hyp Auxiliary Memory Attribute Indirection Register 0
AArch32 HAMAIR1 Hyp Auxiliary Memory Attribute Indirection Register 1
AArch32 HCPTR Hyp Architectural Feature Trap Register
AArch32 HCR Hyp Configuration Register
AArch32 HCR2 Hyp Configuration Register 2
AArch32 HDCR Hyp Debug Control Register
AArch32 HDFAR Hyp Data Fault Address Register
AArch32 HIFAR Hyp Instruction Fault Address Register
AArch32 HMAIR0 Hyp Memory Attribute Indirection Register 0
AArch32 HMAIR1 Hyp Memory Attribute Indirection Register 1
AArch32 HPFAR Hyp IPA Fault Address Register
AArch32 HRMR Hyp Reset Management Register
AArch32 HSCTLR Hyp System Control Register
AArch32 HSR Hyp Syndrome Register
AArch32 HSTR Hyp System Trap Register
AArch32 HTCR Hyp Translation Control Register
AArch32 HTPIDR Hyp Software Thread ID Register
AArch32 HTRFCR Hyp Trace Filter Control Register
AArch32 HTTBR Hyp Translation Table Base Register
AArch32 HVBAR Hyp Vector Base Address Register
AArch32 ICC_HSRE Interrupt Controller Hyp System Register Enable register
AArch32 ICH_AP0R<n> Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch32 ICH_AP1R<n> Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch32 ICH_EISR Interrupt Controller End of Interrupt Status Register
AArch32 ICH_ELRSR Interrupt Controller Empty List Register Status Register
AArch32 ICH_HCR Interrupt Controller Hyp Control Register
AArch32 ICH_LR<n> Interrupt Controller List Registers
AArch32 ICH_LRC<n> Interrupt Controller List Registers
AArch32 ICH_MISR Interrupt Controller Maintenance Interrupt State Register
AArch32 ICH_VMCR Interrupt Controller Virtual Machine Control Register

System Register index by functional group

Page 3138

Exec
state Name Description

AArch32 ICH_VTR Interrupt Controller VGIC Type Register
AArch32 TLBIALLH TLB Invalidate All, Hyp mode
AArch32 TLBIALLHIS TLB Invalidate All, Hyp mode, Inner Shareable
AArch32 TLBIIPAS2 TLB Invalidate by Intermediate Physical Address, Stage 2
AArch32 TLBIIPAS2IS TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable
AArch32 TLBIIPAS2L TLB Invalidate by Intermediate Physical Address, Stage 2, Last level
AArch32 TLBIIPAS2LIS TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner

Shareable
AArch32 TLBIMVAH TLB Invalidate by VA, Hyp mode
AArch32 TLBIMVAHIS TLB Invalidate by VA, Hyp mode, Inner Shareable
AArch32 TLBIMVALH TLB Invalidate by VA, Last level, Hyp mode
AArch32 TLBIMVALHIS TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable
AArch32 VMPIDR Virtualization Multiprocessor ID Register
AArch32 VPIDR Virtualization Processor ID Register
AArch32 VTCR Virtualization Translation Control Register
AArch32 VTTBR Virtualization Translation Table Base Register
AArch64 ACTLR_EL2 Auxiliary Control Register (EL2)
AArch64 AFSR0_EL2 Auxiliary Fault Status Register 0 (EL2)
AArch64 AFSR1_EL2 Auxiliary Fault Status Register 1 (EL2)
AArch64 AMAIR_EL2 Auxiliary Memory Attribute Indirection Register (EL2)
AArch64 CNTHCTL_EL2 Counter-timer Hypervisor Control register
AArch64 CNTHPS_CTL_EL2 Counter-timer Secure Physical Timer Control register (EL2)
AArch64 CNTHPS_CVAL_EL2 Counter-timer Secure Physical Timer CompareValue register (EL2)
AArch64 CNTHPS_TVAL_EL2 Counter-timer Secure Physical Timer TimerValue register (EL2)
AArch64 CNTHP_CTL_EL2 Counter-timer Hypervisor Physical Timer Control register
AArch64 CNTHP_CVAL_EL2 Counter-timer Physical Timer CompareValue register (EL2)
AArch64 CNTHP_TVAL_EL2 Counter-timer Physical Timer TimerValue register (EL2)
AArch64 CNTVOFF_EL2 Counter-timer Virtual Offset register
AArch64 CPTR_EL2 Architectural Feature Trap Register (EL2)
AArch64 ESR_EL2 Exception Syndrome Register (EL2)
AArch64 FAR_EL2 Fault Address Register (EL2)
AArch64 HACR_EL2 Hypervisor Auxiliary Control Register
AArch64 HCR_EL2 Hypervisor Configuration Register
AArch64 HPFAR_EL2 Hypervisor IPA Fault Address Register
AArch64 HSTR_EL2 Hypervisor System Trap Register
AArch64 ICC_SRE_EL2 Interrupt Controller System Register Enable register (EL2)
AArch64 ICH_AP0R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch64 ICH_AP1R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch64 ICH_EISR_EL2 Interrupt Controller End of Interrupt Status Register
AArch64 ICH_ELRSR_EL2 Interrupt Controller Empty List Register Status Register
AArch64 ICH_HCR_EL2 Interrupt Controller Hyp Control Register
AArch64 ICH_LR<n>_EL2 Interrupt Controller List Registers
AArch64 ICH_MISR_EL2 Interrupt Controller Maintenance Interrupt State Register
AArch64 ICH_VMCR_EL2 Interrupt Controller Virtual Machine Control Register
AArch64 ICH_VTR_EL2 Interrupt Controller VGIC Type Register
AArch64 MAIR_EL2 Memory Attribute Indirection Register (EL2)
AArch64 MDCR_EL2 Monitor Debug Configuration Register (EL2)
AArch64 RMR_EL2 Reset Management Register (EL2)
AArch64 SCTLR_EL2 System Control Register (EL2)
AArch64 TCR_EL2 Translation Control Register (EL2)
AArch64 TLBI IPAS2E1 TLB Invalidate by Intermediate Physical Address, Stage 2, EL1
AArch64 TLBI IPAS2E1IS TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner

Shareable
AArch64 TLBI IPAS2E1OS TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer

Shareable
AArch64 TLBI IPAS2LE1 TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1
AArch64 TLBI IPAS2LE1IS TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1,

Inner Shareable
AArch64 TLBI IPAS2LE1OS TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1,

Outer Shareable
AArch64 TLBI RIPAS2E1 TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1
AArch64 TLBI RIPAS2E1IS TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner

Shareable

System Register index by functional group

Page 3139

Exec
state Name Description

AArch64 TLBI RIPAS2E1OS TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer
Shareable

AArch64 TLBI RIPAS2LE1 TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1

AArch64 TLBI RIPAS2LE1IS TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1, Inner Shareable

AArch64 TLBI RIPAS2LE1OS TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1, Outer Shareable

AArch64 TPIDR_EL2 EL2 Software Thread ID Register
AArch64 TTBR0_EL2 Translation Table Base Register 0 (EL2)
AArch64 TTBR1_EL2 Translation Table Base Register 1 (EL2)
AArch64 VBAR_EL2 Vector Base Address Register (EL2)
AArch64 VMPIDR_EL2 Virtualization Multiprocessor ID Register
AArch64 VPIDR_EL2 Virtualization Processor ID Register
AArch64 VTCR_EL2 Virtualization Translation Control Register
AArch64 VTTBR_EL2 Virtualization Translation Table Base Register

In the Secure functional group:
Exec state Name Description
AArch32 ICC_MCTLR Interrupt Controller Monitor Control Register
AArch32 ICC_MSRE Interrupt Controller Monitor System Register Enable register
AArch32 MVBAR Monitor Vector Base Address Register
AArch32 NSACR Non-Secure Access Control Register
AArch32 SCR Secure Configuration Register
AArch32 SDCR Secure Debug Control Register
AArch32 SDER Secure Debug Enable Register
AArch64 ACTLR_EL3 Auxiliary Control Register (EL3)
AArch64 AFSR0_EL3 Auxiliary Fault Status Register 0 (EL3)
AArch64 AFSR1_EL3 Auxiliary Fault Status Register 1 (EL3)
AArch64 AMAIR_EL3 Auxiliary Memory Attribute Indirection Register (EL3)
AArch64 CPTR_EL3 Architectural Feature Trap Register (EL3)
AArch64 ICC_CTLR_EL3 Interrupt Controller Control Register (EL3)
AArch64 ICC_SRE_EL3 Interrupt Controller System Register Enable register (EL3)
AArch64 MDCR_EL3 Monitor Debug Configuration Register (EL3)
AArch64 SCR_EL3 Secure Configuration Register
AArch64 SDER32_EL3 AArch32 Secure Debug Enable Register
AArch64 VBAR_EL3 Vector Base Address Register (EL3)

In the Float functional group:
Exec state Name Description
AArch32 FPEXC Floating-Point Exception Control register
AArch32 FPSCR Floating-Point Status and Control Register
AArch32 FPSID Floating-Point System ID register
AArch32 MVFR0 Media and VFP Feature Register 0
AArch32 MVFR1 Media and VFP Feature Register 1
AArch32 MVFR2 Media and VFP Feature Register 2
AArch64 FPCR Floating-point Control Register
AArch64 FPEXC32_EL2 Floating-Point Exception Control register
AArch64 FPSR Floating-point Status Register
AArch64 MVFR0_EL1 AArch32 Media and VFP Feature Register 0
AArch64 MVFR1_EL1 AArch32 Media and VFP Feature Register 1
AArch64 MVFR2_EL1 AArch32 Media and VFP Feature Register 2

In the Legacy functional group:
Exec state Name Description
AArch32 CP15DMB Data Memory Barrier System instruction
AArch32 CP15DSB Data Synchronization Barrier System instruction
AArch32 CP15ISB Instruction Synchronization Barrier System instruction

System Register index by functional group

Page 3140

Exec state Name Description
AArch32 FCSEIDR FCSE Process ID register
AArch32 JIDR Jazelle ID Register
AArch32 JMCR Jazelle Main Configuration Register
AArch32 JOSCR Jazelle OS Control Register

In the Trace functional group:
Exec state Name Description
AArch64 TRCACATR<n> Address Comparator Access Type Register <n>
AArch64 TRCACVR<n> Address Comparator Value Register <n>
AArch64 TRCAUTHSTATUS Authentication Status Register
AArch64 TRCAUXCTLR Auxillary Control Register
AArch64 TRCBBCTLR Branch Broadcast Control Register
AArch64 TRCCCCTLR Cycle Count Control Register
AArch64 TRCCIDCCTLR0 Context Identifier Comparator Control Register 0
AArch64 TRCCIDCCTLR1 Context Identifier Comparator Control Register 1
AArch64 TRCCIDCVR<n> Context Identifier Comparator Value Registers <n>
AArch64 TRCCLAIMCLR Claim Tag Clear Register
AArch64 TRCCLAIMSET Claim Tag Set Register
AArch64 TRCCNTCTLR<n> Counter Control Register <n>
AArch64 TRCCNTRLDVR<n> Counter Reload Value Register <n>
AArch64 TRCCNTVR<n> Counter Value Register <n>
AArch64 TRCCONFIGR Trace Configuration Register
AArch64 TRCDEVARCH Device Architecture Register
AArch64 TRCDEVID Device Configuration Register
AArch64 TRCEVENTCTL0R Event Control 0 Register
AArch64 TRCEVENTCTL1R Event Control 1 Register
AArch64 TRCEXTINSELR<n> External Input Select Register <n>
AArch64 TRCIDR0 ID Register 0
AArch64 TRCIDR1 ID Register 1
AArch64 TRCIDR10 ID Register 10
AArch64 TRCIDR11 ID Register 11
AArch64 TRCIDR12 ID Register 12
AArch64 TRCIDR13 ID Register 13
AArch64 TRCIDR2 ID Register 2
AArch64 TRCIDR3 ID Register 3
AArch64 TRCIDR4 ID Register 4
AArch64 TRCIDR5 ID Register 5
AArch64 TRCIDR6 ID Register 6
AArch64 TRCIDR7 ID Register 7
AArch64 TRCIDR8 ID Register 8
AArch64 TRCIDR9 ID Register 9
AArch64 TRCIMSPEC0 IMP DEF Register 0
AArch64 TRCIMSPEC<n> IMP DEF Register <n>
AArch64 TRCOSLSR Trace OS Lock Status Register
AArch64 TRCPRGCTLR Programming Control Register
AArch64 TRCQCTLR Q Element Control Register
AArch64 TRCRSCTLR<n> Resource Selection Control Register <n>
AArch64 TRCRSR Resources Status Register
AArch64 TRCSEQEVR<n> Sequencer State Transition Control Register <n>
AArch64 TRCSEQRSTEVR Sequencer Reset Control Register
AArch64 TRCSEQSTR Sequencer State Register
AArch64 TRCSSCCR<n> Single-shot Comparator Control Register <n>
AArch64 TRCSSCSR<n> Single-shot Comparator Control Status Register <n>
AArch64 TRCSSPCICR<n> Single-shot Processing Element Comparator Input Control Register <n>
AArch64 TRCSTALLCTLR Stall Control Register
AArch64 TRCSTATR Trace Status Register
AArch64 TRCSYNCPR Synchronization Period Register
AArch64 TRCTRACEIDR Trace ID Register
AArch64 TRCTSCTLR Timestamp Control Register
AArch64 TRCVICTLR ViewInst Main Control Register
AArch64 TRCVIIECTLR ViewInst Include/Exclude Control Register
AArch64 TRCVIPCSSCTLR ViewInst Start/Stop PE Comparator Control Register

System Register index by functional group

Page 3141

Exec state Name Description
AArch64 TRCVISSCTLR ViewInst Start/Stop Control Register
AArch64 TRCVMIDCCTLR0 Virtual Context Identifier Comparator Control Register 0
AArch64 TRCVMIDCCTLR1 Virtual Context Identifier Comparator Control Register 1
AArch64 TRCVMIDCVR<n> Virtual Context Identifier Comparator Value Register <n>

In the GIC functional group:
Exec state Name Description
AArch32 ICC_AP0R<n> Interrupt Controller Active Priorities Group 0 Registers
AArch32 ICC_AP1R<n> Interrupt Controller Active Priorities Group 1 Registers
AArch32 ICC_ASGI1R Interrupt Controller Alias Software Generated Interrupt Group 1 Register
AArch32 ICC_BPR0 Interrupt Controller Binary Point Register 0
AArch32 ICC_BPR1 Interrupt Controller Binary Point Register 1
AArch32 ICC_CTLR Interrupt Controller Control Register
AArch32 ICC_DIR Interrupt Controller Deactivate Interrupt Register
AArch32 ICC_EOIR0 Interrupt Controller End Of Interrupt Register 0
AArch32 ICC_EOIR1 Interrupt Controller End Of Interrupt Register 1
AArch32 ICC_HPPIR0 Interrupt Controller Highest Priority Pending Interrupt Register 0
AArch32 ICC_HPPIR1 Interrupt Controller Highest Priority Pending Interrupt Register 1
AArch32 ICC_HSRE Interrupt Controller Hyp System Register Enable register
AArch32 ICC_IAR0 Interrupt Controller Interrupt Acknowledge Register 0
AArch32 ICC_IAR1 Interrupt Controller Interrupt Acknowledge Register 1
AArch32 ICC_IGRPEN0 Interrupt Controller Interrupt Group 0 Enable register
AArch32 ICC_IGRPEN1 Interrupt Controller Interrupt Group 1 Enable register
AArch32 ICC_MCTLR Interrupt Controller Monitor Control Register
AArch32 ICC_MGRPEN1 Interrupt Controller Monitor Interrupt Group 1 Enable register
AArch32 ICC_MSRE Interrupt Controller Monitor System Register Enable register
AArch32 ICC_PMR Interrupt Controller Interrupt Priority Mask Register
AArch32 ICC_RPR Interrupt Controller Running Priority Register
AArch32 ICC_SGI0R Interrupt Controller Software Generated Interrupt Group 0 Register
AArch32 ICC_SGI1R Interrupt Controller Software Generated Interrupt Group 1 Register
AArch32 ICC_SRE Interrupt Controller System Register Enable register
AArch32 ICH_AP0R<n> Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch32 ICH_AP1R<n> Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch32 ICH_EISR Interrupt Controller End of Interrupt Status Register
AArch32 ICH_ELRSR Interrupt Controller Empty List Register Status Register
AArch32 ICH_HCR Interrupt Controller Hyp Control Register
AArch32 ICH_LR<n> Interrupt Controller List Registers
AArch32 ICH_LRC<n> Interrupt Controller List Registers
AArch32 ICH_MISR Interrupt Controller Maintenance Interrupt State Register
AArch32 ICH_VMCR Interrupt Controller Virtual Machine Control Register
AArch32 ICH_VTR Interrupt Controller VGIC Type Register
AArch32 ICV_AP0R<n> Interrupt Controller Virtual Active Priorities Group 0 Registers
AArch32 ICV_AP1R<n> Interrupt Controller Virtual Active Priorities Group 1 Registers
AArch32 ICV_BPR0 Interrupt Controller Virtual Binary Point Register 0
AArch32 ICV_BPR1 Interrupt Controller Virtual Binary Point Register 1
AArch32 ICV_CTLR Interrupt Controller Virtual Control Register
AArch32 ICV_DIR Interrupt Controller Deactivate Virtual Interrupt Register
AArch32 ICV_EOIR0 Interrupt Controller Virtual End Of Interrupt Register 0
AArch32 ICV_EOIR1 Interrupt Controller Virtual End Of Interrupt Register 1
AArch32 ICV_HPPIR0 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
AArch32 ICV_HPPIR1 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
AArch32 ICV_IAR0 Interrupt Controller Virtual Interrupt Acknowledge Register 0
AArch32 ICV_IAR1 Interrupt Controller Virtual Interrupt Acknowledge Register 1
AArch32 ICV_IGRPEN0 Interrupt Controller Virtual Interrupt Group 0 Enable register
AArch32 ICV_IGRPEN1 Interrupt Controller Virtual Interrupt Group 1 Enable register
AArch32 ICV_PMR Interrupt Controller Virtual Interrupt Priority Mask Register
AArch32 ICV_RPR Interrupt Controller Virtual Running Priority Register
AArch64 ICC_AP0R<n>_EL1 Interrupt Controller Active Priorities Group 0 Registers
AArch64 ICC_AP1R<n>_EL1 Interrupt Controller Active Priorities Group 1 Registers
AArch64 ICC_ASGI1R_EL1 Interrupt Controller Alias Software Generated Interrupt Group 1 Register
AArch64 ICC_BPR0_EL1 Interrupt Controller Binary Point Register 0
AArch64 ICC_BPR1_EL1 Interrupt Controller Binary Point Register 1

System Register index by functional group

Page 3142

Exec state Name Description
AArch64 ICC_CTLR_EL1 Interrupt Controller Control Register (EL1)
AArch64 ICC_CTLR_EL3 Interrupt Controller Control Register (EL3)
AArch64 ICC_DIR_EL1 Interrupt Controller Deactivate Interrupt Register
AArch64 ICC_EOIR0_EL1 Interrupt Controller End Of Interrupt Register 0
AArch64 ICC_EOIR1_EL1 Interrupt Controller End Of Interrupt Register 1
AArch64 ICC_HPPIR0_EL1 Interrupt Controller Highest Priority Pending Interrupt Register 0
AArch64 ICC_HPPIR1_EL1 Interrupt Controller Highest Priority Pending Interrupt Register 1
AArch64 ICC_IAR0_EL1 Interrupt Controller Interrupt Acknowledge Register 0
AArch64 ICC_IAR1_EL1 Interrupt Controller Interrupt Acknowledge Register 1
AArch64 ICC_IGRPEN0_EL1 Interrupt Controller Interrupt Group 0 Enable register
AArch64 ICC_IGRPEN1_EL1 Interrupt Controller Interrupt Group 1 Enable register
AArch64 ICC_IGRPEN1_EL3 Interrupt Controller Interrupt Group 1 Enable register (EL3)
AArch64 ICC_PMR_EL1 Interrupt Controller Interrupt Priority Mask Register
AArch64 ICC_RPR_EL1 Interrupt Controller Running Priority Register
AArch64 ICC_SGI0R_EL1 Interrupt Controller Software Generated Interrupt Group 0 Register
AArch64 ICC_SGI1R_EL1 Interrupt Controller Software Generated Interrupt Group 1 Register
AArch64 ICC_SRE_EL1 Interrupt Controller System Register Enable register (EL1)
AArch64 ICC_SRE_EL2 Interrupt Controller System Register Enable register (EL2)
AArch64 ICC_SRE_EL3 Interrupt Controller System Register Enable register (EL3)
AArch64 ICH_AP0R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch64 ICH_AP1R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch64 ICH_EISR_EL2 Interrupt Controller End of Interrupt Status Register
AArch64 ICH_ELRSR_EL2 Interrupt Controller Empty List Register Status Register
AArch64 ICH_HCR_EL2 Interrupt Controller Hyp Control Register
AArch64 ICH_LR<n>_EL2 Interrupt Controller List Registers
AArch64 ICH_MISR_EL2 Interrupt Controller Maintenance Interrupt State Register
AArch64 ICH_VMCR_EL2 Interrupt Controller Virtual Machine Control Register
AArch64 ICH_VTR_EL2 Interrupt Controller VGIC Type Register
AArch64 ICV_AP0R<n>_EL1 Interrupt Controller Virtual Active Priorities Group 0 Registers
AArch64 ICV_AP1R<n>_EL1 Interrupt Controller Virtual Active Priorities Group 1 Registers
AArch64 ICV_BPR0_EL1 Interrupt Controller Virtual Binary Point Register 0
AArch64 ICV_BPR1_EL1 Interrupt Controller Virtual Binary Point Register 1
AArch64 ICV_CTLR_EL1 Interrupt Controller Virtual Control Register
AArch64 ICV_DIR_EL1 Interrupt Controller Deactivate Virtual Interrupt Register
AArch64 ICV_EOIR0_EL1 Interrupt Controller Virtual End Of Interrupt Register 0
AArch64 ICV_EOIR1_EL1 Interrupt Controller Virtual End Of Interrupt Register 1
AArch64 ICV_HPPIR0_EL1 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
AArch64 ICV_HPPIR1_EL1 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
AArch64 ICV_IAR0_EL1 Interrupt Controller Virtual Interrupt Acknowledge Register 0
AArch64 ICV_IAR1_EL1 Interrupt Controller Virtual Interrupt Acknowledge Register 1
AArch64 ICV_IGRPEN0_EL1 Interrupt Controller Virtual Interrupt Group 0 Enable register
AArch64 ICV_IGRPEN1_EL1 Interrupt Controller Virtual Interrupt Group 1 Enable register
AArch64 ICV_PMR_EL1 Interrupt Controller Virtual Interrupt Priority Mask Register
AArch64 ICV_RPR_EL1 Interrupt Controller Virtual Running Priority Register

In the GICD functional group:
Exec
state Name Description

External GICD_CLRSPI_NSR Clear Non-secure SPI Pending Register
External GICD_CLRSPI_SR Clear Secure SPI Pending Register
External GICD_CPENDSGIR<n> SGI Clear-Pending Registers
External GICD_CTLR Distributor Control Register
External GICD_ICACTIVER<n> Interrupt Clear-Active Registers
External GICD_ICACTIVER<n>E Interrupt Clear-Active Registers (extended SPI range)
External GICD_ICENABLER<n> Interrupt Clear-Enable Registers
External GICD_ICENABLER<n>E Interrupt Clear-Enable Registers
External GICD_ICFGR<n> Interrupt Configuration Registers
External GICD_ICFGR<n>E Interrupt Configuration Registers (Extended SPI Range)
External GICD_ICPENDR<n> Interrupt Clear-Pending Registers
External GICD_ICPENDR<n>E Interrupt Clear-Pending Registers (extended SPI range)
External GICD_IGROUPR<n> Interrupt Group Registers
External GICD_IGROUPR<n>E Interrupt Group Registers (extended SPI range)

System Register index by functional group

Page 3143

Exec
state Name Description

External GICD_IGRPMODR<n> Interrupt Group Modifier Registers
External GICD_IGRPMODR<n>E Interrupt Group Modifier Registers (extended SPI range)
External GICD_IIDR Distributor Implementer Identification Register
External GICD_IPRIORITYR<n> Interrupt Priority Registers
External GICD_IPRIORITYR<n>E Holds the priority of the corresponding interrupt for each extended SPI

supported by the GIC.
External GICD_IROUTER<n> Interrupt Routing Registers
External GICD_IROUTER<n>E Interrupt Routing Registers (Extended SPI Range)
External GICD_ISACTIVER<n> Interrupt Set-Active Registers
External GICD_ISACTIVER<n>E Interrupt Set-Active Registers (extended SPI range)
External GICD_ISENABLER<n> Interrupt Set-Enable Registers
External GICD_ISENABLER<n>E Interrupt Set-Enable Registers
External GICD_ISPENDR<n> Interrupt Set-Pending Registers
External GICD_ISPENDR<n>E Interrupt Set-Pending Registers (extended SPI range)
External GICD_ITARGETSR<n> Interrupt Processor Targets Registers
External GICD_NSACR<n> Non-secure Access Control Registers
External GICD_NSACR<n>E Non-secure Access Control Registers
External GICD_SETSPI_NSR Set Non-secure SPI Pending Register
External GICD_SETSPI_SR Set Secure SPI Pending Register
External GICD_SGIR Software Generated Interrupt Register
External GICD_SPENDSGIR<n> SGI Set-Pending Registers
External GICD_STATUSR Error Reporting Status Register
External GICD_TYPER Interrupt Controller Type Register
External GICD_TYPER2 Interrupt Controller Type Register 2

In the GICR functional group:
Exec state Name Description
External GICR_CLRLPIR Clear LPI Pending Register
External GICR_CTLR Redistributor Control Register
External GICR_ICACTIVER0 Interrupt Clear-Active Register 0
External GICR_ICACTIVER<n>E Interrupt Clear-Active Registers
External GICR_ICENABLER0 Interrupt Clear-Enable Register 0
External GICR_ICENABLER<n>E Interrupt Clear-Enable Registers
External GICR_ICFGR0 Interrupt Configuration Register 0
External GICR_ICFGR1 Interrupt Configuration Register 1
External GICR_ICFGR<n>E Interrupt configuration registers
External GICR_ICPENDR0 Interrupt Clear-Pending Register 0
External GICR_ICPENDR<n>E Interrupt Clear-Pending Registers
External GICR_IGROUPR0 Interrupt Group Register 0
External GICR_IGROUPR<n>E Interrupt Group Registers
External GICR_IGRPMODR0 Interrupt Group Modifier Register 0
External GICR_IGRPMODR<n>E Interrupt Group Modifier Registers
External GICR_IIDR Redistributor Implementer Identification Register
External GICR_INVALLR Redistributor Invalidate All Register
External GICR_INVLPIR Redistributor Invalidate LPI Register
External GICR_IPRIORITYR<n> Interrupt Priority Registers
External GICR_IPRIORITYR<n>E Interrupt Priority Registers (extended PPI range)
External GICR_ISACTIVER0 Interrupt Set-Active Register 0
External GICR_ISACTIVER<n>E Interrupt Set-Active Registers
External GICR_ISENABLER0 Interrupt Set-Enable Register 0
External GICR_ISENABLER<n>E Interrupt Set-Enable Registers
External GICR_ISPENDR0 Interrupt Set-Pending Register 0
External GICR_ISPENDR<n>E Interrupt Set-Pending Registers
External GICR_MPAMIDR Report maximum PARTID and PMG Register
External GICR_NSACR Non-secure Access Control Register
External GICR_PARTIDR Set PARTID and PMG Register
External GICR_PENDBASER Redistributor LPI Pending Table Base Address Register
External GICR_PROPBASER Redistributor Properties Base Address Register
External GICR_SETLPIR Set LPI Pending Register
External GICR_STATUSR Error Reporting Status Register
External GICR_SYNCR Redistributor Synchronize Register
External GICR_TYPER Redistributor Type Register

System Register index by functional group

Page 3144

Exec state Name Description
External GICR_VPENDBASER Virtual Redistributor LPI Pending Table Base Address Register
External GICR_VPROPBASER Virtual Redistributor Properties Base Address Register
External GICR_VSGIPENDR Redistributor virtual SGI pending state register
External GICR_VSGIR Redistributor virtual SGI pending state request register
External GICR_WAKER Redistributor Wake Register

In the GICC functional group:
Exec state Name Description
External GICC_ABPR CPU Interface Aliased Binary Point Register
External GICC_AEOIR CPU Interface Aliased End Of Interrupt Register
External GICC_AHPPIR CPU Interface Aliased Highest Priority Pending Interrupt Register
External GICC_AIAR CPU Interface Aliased Interrupt Acknowledge Register
External GICC_APR<n> CPU Interface Active Priorities Registers
External GICC_BPR CPU Interface Binary Point Register
External GICC_CTLR CPU Interface Control Register
External GICC_DIR CPU Interface Deactivate Interrupt Register
External GICC_EOIR CPU Interface End Of Interrupt Register
External GICC_HPPIR CPU Interface Highest Priority Pending Interrupt Register
External GICC_IAR CPU Interface Interrupt Acknowledge Register
External GICC_IIDR CPU Interface Identification Register
External GICC_NSAPR<n> CPU Interface Non-secure Active Priorities Registers
External GICC_PMR CPU Interface Priority Mask Register
External GICC_RPR CPU Interface Running Priority Register
External GICC_STATUSR CPU Interface Status Register

In the GICV functional group:
Exec state Name Description
External GICV_ABPR Virtual Machine Aliased Binary Point Register
External GICV_AEOIR Virtual Machine Aliased End Of Interrupt Register
External GICV_AHPPIR Virtual Machine Aliased Highest Priority Pending Interrupt Register
External GICV_AIAR Virtual Machine Aliased Interrupt Acknowledge Register
External GICV_APR<n> Virtual Machine Active Priorities Registers
External GICV_BPR Virtual Machine Binary Point Register
External GICV_CTLR Virtual Machine Control Register
External GICV_DIR Virtual Machine Deactivate Interrupt Register
External GICV_EOIR Virtual Machine End Of Interrupt Register
External GICV_HPPIR Virtual Machine Highest Priority Pending Interrupt Register
External GICV_IAR Virtual Machine Interrupt Acknowledge Register
External GICV_IIDR Virtual Machine CPU Interface Identification Register
External GICV_PMR Virtual Machine Priority Mask Register
External GICV_RPR Virtual Machine Running Priority Register
External GICV_STATUSR Virtual Machine Error Reporting Status Register

In the GICH functional group:
Exec state Name Description
External GICH_APR<n> Active Priorities Registers
External GICH_EISR End Interrupt Status Register
External GICH_ELRSR Empty List Register Status Register
External GICH_HCR Hypervisor Control Register
External GICH_LR<n> List Registers
External GICH_MISR Maintenance Interrupt Status Register
External GICH_VMCR Virtual Machine Control Register
External GICH_VTR Virtual Type Register

System Register index by functional group

Page 3145

In the GITS functional group:
Exec state Name Description
External GITS_BASER<n> ITS Translation Table Descriptors
External GITS_CBASER ITS Command Queue Descriptor
External GITS_CREADR ITS Read Register
External GITS_CTLR ITS Control Register
External GITS_CWRITER ITS Write Register
External GITS_IIDR ITS Identification Register
External GITS_MPAMIDR Report maximum PARTID and PMG Register
External GITS_MPIDR Report ITS's affinity.
External GITS_PARTIDR Set PARTID and PMG Register
External GITS_SGIR ITS SGI Register
External GITS_TRANSLATER ITS Translation Register
External GITS_TYPER ITS Type Register

In the RAS functional group:
Exec state Name Description
AArch32 DISR Deferred Interrupt Status Register
AArch32 ERRIDR Error Record ID Register
AArch32 ERRSELR Error Record Select Register
AArch32 ERXADDR Selected Error Record Address Register
AArch32 ERXADDR2 Selected Error Record Address Register 2
AArch32 ERXCTLR Selected Error Record Control Register
AArch32 ERXCTLR2 Selected Error Record Control Register 2
AArch32 ERXFR Selected Error Record Feature Register
AArch32 ERXFR2 Selected Error Record Feature Register 2
AArch32 ERXMISC0 Selected Error Record Miscellaneous Register 0
AArch32 ERXMISC1 Selected Error Record Miscellaneous Register 1
AArch32 ERXMISC2 Selected Error Record Miscellaneous Register 2
AArch32 ERXMISC3 Selected Error Record Miscellaneous Register 3
AArch32 ERXMISC4 Selected Error Record Miscellaneous Register 4
AArch32 ERXMISC5 Selected Error Record Miscellaneous Register 5
AArch32 ERXMISC6 Selected Error Record Miscellaneous Register 6
AArch32 ERXMISC7 Selected Error Record Miscellaneous Register 7
AArch32 ERXSTATUS Selected Error Record Primary Status Register
AArch32 VDFSR Virtual SError Exception Syndrome Register
AArch32 VDISR Virtual Deferred Interrupt Status Register
AArch64 DISR_EL1 Deferred Interrupt Status Register
AArch64 ERRIDR_EL1 Error Record ID Register
AArch64 ERRSELR_EL1 Error Record Select Register
AArch64 ERXADDR_EL1 Selected Error Record Address Register
AArch64 ERXCTLR_EL1 Selected Error Record Control Register
AArch64 ERXFR_EL1 Selected Error Record Feature Register
AArch64 ERXMISC0_EL1 Selected Error Record Miscellaneous Register 0
AArch64 ERXMISC1_EL1 Selected Error Record Miscellaneous Register 1
AArch64 ERXMISC2_EL1 Selected Error Record Miscellaneous Register 2
AArch64 ERXMISC3_EL1 Selected Error Record Miscellaneous Register 3
AArch64 ERXPFGCDN_EL1 Selected Pseudo-fault Generation Countdown register
AArch64 ERXPFGCTL_EL1 Selected Pseudo-fault Generation Control register
AArch64 ERXPFGF_EL1 Selected Pseudo-fault Generation Feature register
AArch64 ERXSTATUS_EL1 Selected Error Record Primary Status Register
AArch64 VDISR_EL2 Virtual Deferred Interrupt Status Register
AArch64 VSESR_EL2 Virtual SError Exception Syndrome Register
External ERR<n>ADDR Error Record Address Register
External ERR<n>CTLR Error Record Control Register
External ERR<n>FR Error Record Feature Register
External ERR<n>MISC0 Error Record Miscellaneous Register 0
External ERR<n>MISC1 Error Record Miscellaneous Register 1
External ERR<n>MISC2 Error Record Miscellaneous Register 2
External ERR<n>MISC3 Error Record Miscellaneous Register 3
External ERR<n>PFGCDN Pseudo-fault Generation Countdown Register
External ERR<n>PFGCTL Pseudo-fault Generation Control Register

System Register index by functional group

Page 3146

Exec state Name Description
External ERR<n>PFGF Pseudo-fault Generation Feature Register
External ERR<n>STATUS Error Record Primary Status Register
External ERRCIDR0 Component Identification Register 0
External ERRCIDR1 Component Identification Register 1
External ERRCIDR2 Component Identification Register 2
External ERRCIDR3 Component Identification Register 3
External ERRCRICR0 Critical Error Interrupt Configuration Register 0
External ERRCRICR1 Critical Error Interrupt Configuration Register 1
External ERRCRICR2 Critical Error Interrupt Configuration Register 2
External ERRDEVAFF Device Affinity Register
External ERRDEVARCH Device Architecture Register
External ERRDEVID Device Configuration Register
External ERRERICR0 Error Recovery Interrupt Configuration Register 0
External ERRERICR1 Error Recovery Interrupt Configuration Register 1
External ERRERICR2 Error Recovery Interrupt Configuration Register 2
External ERRFHICR0 Fault-Handling Interrupt Configuration Register 0
External ERRFHICR1 Fault-Handling Interrupt Configuration Register 1
External ERRFHICR2 Fault-Handling Interrupt Configuration Register 2
External ERRGSR Error Group Status Register
External ERRIIDR Implementation Identification Register
External ERRIRQCR<n> Generic Error Interrupt Configuration Register
External ERRIRQSR Error Interrupt Status Register
External ERRPIDR0 Peripheral Identification Register 0
External ERRPIDR1 Peripheral Identification Register 1
External ERRPIDR2 Peripheral Identification Register 2
External ERRPIDR3 Peripheral Identification Register 3
External ERRPIDR4 Peripheral Identification Register 4

In the MPAM functional group:
Exec
state Name Description

AArch64 MPAM0_EL1 MPAM0 Register (EL1)
AArch64 MPAM1_EL1 MPAM1 Register (EL1)
AArch64 MPAM2_EL2 MPAM2 Register (EL2)
AArch64 MPAM3_EL3 MPAM3 Register (EL3)
AArch64 MPAMHCR_EL2 MPAM Hypervisor Control Register (EL2)
AArch64 MPAMVPM0_EL2 MPAM Virtual PARTID Mapping Register 0
AArch64 MPAMVPM1_EL2 MPAM Virtual PARTID Mapping Register 1
AArch64 MPAMVPM2_EL2 MPAM Virtual PARTID Mapping Register 2
AArch64 MPAMVPM3_EL2 MPAM Virtual PARTID Mapping Register 3
AArch64 MPAMVPM4_EL2 MPAM Virtual PARTID Mapping Register 4
AArch64 MPAMVPM5_EL2 MPAM Virtual PARTID Mapping Register 5
AArch64 MPAMVPM6_EL2 MPAM Virtual PARTID Mapping Register 6
AArch64 MPAMVPM7_EL2 MPAM Virtual PARTID Mapping Register 7
AArch64 MPAMVPMV_EL2 MPAM Virtual Partition Mapping Valid Register
External MPAMCFG_CMAX MPAM Cache Maximum Capacity Partition Configuration Register
External MPAMCFG_CPBM MPAM Cache Portion Bitmap Partition Configuration Register
External MPAMCFG_INTPARTID MPAM Internal PARTID Narrowing Configuration Register
External MPAMCFG_MBW_MAX MPAM Memory Bandwidth Maximum Partition Configuration Register
External MPAMCFG_MBW_MIN MPAM Cache Maximum Capacity Partition Configuration Register
External MPAMCFG_MBW_PBM MPAM Bandwidth Portion Bitmap Partition Configuration Register
External MPAMCFG_MBW_PROP MPAM Memory Bandwidth Proportional Stride Partition

Configuration Register
External MPAMCFG_MBW_WINWD MPAM Memory Bandwidth Partitioning Window Width Configuration

Register
External MPAMCFG_PART_SEL MPAM Partition Configuration Selection Register
External MPAMCFG_PRI MPAM Priority Partition Configuration Register
External MPAMF_AIDR MPAM Architecture Identification Register
External MPAMF_CCAP_IDR MPAM Features Cache Capacity Partitioning ID register
External MPAMF_CPOR_IDR MPAM Features Cache Portion Partitioning ID register
External MPAMF_CSUMON_IDR MPAM Features Cache Storage Usage Monitoring ID register
External MPAMF_ECR MPAM Error Control Register
External MPAMF_ESR MPAM Error Status Register

System Register index by functional group

Page 3147

Exec
state Name Description

External MPAMF_IDR MPAM Features Identification Register
External MPAMF_IIDR MPAM Implementation Identification Register
External MPAMF_IMPL_IDR MPAM Implementation-Specific Partitioning Feature Identification

Register
External MPAMF_MBWUMON_IDR MPAM Features Memory Bandwidth Usage Monitoring ID register
External MPAMF_MBW_IDR MPAM Memory Bandwidth Partitioning Identification Register
External MPAMF_MSMON_IDR MPAM Resource Monitoring Identification Register
External MPAMF_PARTID_NRW_IDR MPAM PARTID Narrowing ID register
External MPAMF_PRI_IDR MPAM Priority Partitioning Identification Register
External MPAMF_SIDR MPAM Features Secure Identification Register
External MSMON_CAPT_EVNT MPAM Capture Event Generation Register
External MSMON_CFG_CSU_CTL MPAM Memory System Monitor Configure Cache Storage Usage

Monitor Control Register
External MSMON_CFG_CSU_FLT MPAM Memory System Monitor Configure Cache Storage Usage

Monitor Filter Register
External MSMON_CFG_MBWU_CTL MPAM Memory System Monitor Configure Memory Bandwidth Usage

Monitor Control Register
External MSMON_CFG_MBWU_FLT MPAM Memory System Monitor Configure Memory Bandwidth Usage

Monitor Filter Register
External MSMON_CFG_MON_SEL MPAM Monitor Instance Selection Register
External MSMON_CSU MPAM Cache Storage Usage Monitor Register
External MSMON_CSU_CAPTURE MPAM Cache Storage Usage Monitor Capture Register
External MSMON_MBWU MPAM Memory Bandwidth Usage Monitor Register
External MSMON_MBWU_CAPTURE MPAM Memory Bandwidth Usage Monitor Capture Register
External MSMON_MBWU_L MPAM Long Memory Bandwidth Usage Monitor Register
External MSMON_MBWU_L_CAPTURE MPAM Long Memory Bandwidth Usage Monitor Capture Register

In the Pointer authentication functional group:
Exec state Name Description
AArch64 APDAKeyHi_EL1 Pointer Authentication Key A for Data (bits[127:64])
AArch64 APDAKeyLo_EL1 Pointer Authentication Key A for Data (bits[63:0])
AArch64 APDBKeyHi_EL1 Pointer Authentication Key B for Data (bits[127:64])
AArch64 APDBKeyLo_EL1 Pointer Authentication Key B for Data (bits[63:0])
AArch64 APGAKeyHi_EL1 Pointer Authentication Key A for Code (bits[127:64])
AArch64 APGAKeyLo_EL1 Pointer Authentication Key A for Code (bits[63:0])
AArch64 APIAKeyHi_EL1 Pointer Authentication Key A for Instruction (bits[127:64])
AArch64 APIAKeyLo_EL1 Pointer Authentication Key A for Instruction (bits[63:0])
AArch64 APIBKeyHi_EL1 Pointer Authentication Key B for Instruction (bits[127:64])
AArch64 APIBKeyLo_EL1 Pointer Authentication Key B for Instruction (bits[63:0])

In the GIC ITS registers functional group:
Exec state Name Description
External GITS_BASER<n> ITS Translation Table Descriptors
External GITS_CBASER ITS Command Queue Descriptor
External GITS_CREADR ITS Read Register
External GITS_CTLR ITS Control Register
External GITS_CWRITER ITS Write Register
External GITS_IIDR ITS Identification Register
External GITS_MPAMIDR Report maximum PARTID and PMG Register
External GITS_MPIDR Report ITS's affinity.
External GITS_PARTIDR Set PARTID and PMG Register
External GITS_SGIR ITS SGI Register
External GITS_TRANSLATER ITS Translation Register
External GITS_TYPER ITS Type Register

09/12/2019 19:23

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

System Register index by functional group

Page 3148

External System registers
AMCFGR: Activity Monitors Configuration Register

AMCGCR: Activity Monitors Counter Group Configuration Register

AMCIDR0: Activity Monitors Component Identification Register 0

AMCIDR1: Activity Monitors Component Identification Register 1

AMCIDR2: Activity Monitors Component Identification Register 2

AMCIDR3: Activity Monitors Component Identification Register 3

AMCNTENCLR0: Activity Monitors Count Enable Clear Register 0

AMCNTENCLR1: Activity Monitors Count Enable Clear Register 1

AMCNTENSET0: Activity Monitors Count Enable Set Register 0

AMCNTENSET1: Activity Monitors Count Enable Set Register 1

AMCR: Activity Monitors Control Register

AMDEVAFF0: Activity Monitors Device Affinity Register 0

AMDEVAFF1: Activity Monitors Device Affinity Register 1

AMDEVARCH: Activity Monitors Device Architecture Register

AMDEVTYPE: Activity Monitors Device Type Register

AMEVCNTR0<n>: Activity Monitors Event Counter Registers 0

AMEVCNTR1<n>: Activity Monitors Event Counter Registers 1

AMEVTYPER0<n>: Activity Monitors Event Type Registers 0

AMEVTYPER1<n>: Activity Monitors Event Type Registers 1

AMIIDR: Activity Monitors Implementation Identification Register

AMPIDR0: Activity Monitors Peripheral Identification Register 0

AMPIDR1: Activity Monitors Peripheral Identification Register 1

AMPIDR2: Activity Monitors Peripheral Identification Register 2

AMPIDR3: Activity Monitors Peripheral Identification Register 3

AMPIDR4: Activity Monitors Peripheral Identification Register 4

ASICCTL: CTI External Multiplexer Control register

CNTACR<n>: Counter-timer Access Control Registers

CNTCR: Counter Control Register

CNTCV: Counter Count Value register

CNTEL0ACR: Counter-timer EL0 Access Control Register

CNTFID0: Counter Frequency ID

CNTFID<n>: Counter Frequency IDs, n > 0

CNTFRQ: Counter-timer Frequency

CNTID: Counter Identification Register

External System registers

Page 3149

CNTNSAR: Counter-timer Non-secure Access Register

CNTPCT: Counter-timer Physical Count

CNTP_CTL: Counter-timer Physical Timer Control

CNTP_CVAL: Counter-timer Physical Timer CompareValue

CNTP_TVAL: Counter-timer Physical Timer TimerValue

CNTSCR: Counter Scale Register

CNTSR: Counter Status Register

CNTTIDR: Counter-timer Timer ID Register

CNTVCT: Counter-timer Virtual Count

CNTVOFF: Counter-timer Virtual Offset

CNTVOFF<n>: Counter-timer Virtual Offsets

CNTV_CTL: Counter-timer Virtual Timer Control

CNTV_CVAL: Counter-timer Virtual Timer CompareValue

CNTV_TVAL: Counter-timer Virtual Timer TimerValue

CounterID<n>: Counter ID registers

CTIAPPCLEAR: CTI Application Trigger Clear register

CTIAPPPULSE: CTI Application Pulse register

CTIAPPSET: CTI Application Trigger Set register

CTIAUTHSTATUS: CTI Authentication Status register

CTICHINSTATUS: CTI Channel In Status register

CTICHOUTSTATUS: CTI Channel Out Status register

CTICIDR0: CTI Component Identification Register 0

CTICIDR1: CTI Component Identification Register 1

CTICIDR2: CTI Component Identification Register 2

CTICIDR3: CTI Component Identification Register 3

CTICLAIMCLR: CTI CLAIM Tag Clear register

CTICLAIMSET: CTI CLAIM Tag Set register

CTICONTROL: CTI Control register

CTIDEVAFF0: CTI Device Affinity register 0

CTIDEVAFF1: CTI Device Affinity register 1

CTIDEVARCH: CTI Device Architecture register

CTIDEVCTL: CTI Device Control register

CTIDEVID: CTI Device ID register 0

CTIDEVID1: CTI Device ID register 1

CTIDEVID2: CTI Device ID register 2

CTIDEVTYPE: CTI Device Type register

External System registers

Page 3150

CTIGATE: CTI Channel Gate Enable register

CTIINEN<n>: CTI Input Trigger to Output Channel Enable registers

CTIINTACK: CTI Output Trigger Acknowledge register

CTIITCTRL: CTI Integration mode Control register

CTILAR: CTI Lock Access Register

CTILSR: CTI Lock Status Register

CTIOUTEN<n>: CTI Input Channel to Output Trigger Enable registers

CTIPIDR0: CTI Peripheral Identification Register 0

CTIPIDR1: CTI Peripheral Identification Register 1

CTIPIDR2: CTI Peripheral Identification Register 2

CTIPIDR3: CTI Peripheral Identification Register 3

CTIPIDR4: CTI Peripheral Identification Register 4

CTITRIGINSTATUS: CTI Trigger In Status register

CTITRIGOUTSTATUS: CTI Trigger Out Status register

DBGAUTHSTATUS_EL1: Debug Authentication Status register

DBGBCR<n>_EL1: Debug Breakpoint Control Registers

DBGBVR<n>_EL1: Debug Breakpoint Value Registers

DBGCLAIMCLR_EL1: Debug CLAIM Tag Clear register

DBGCLAIMSET_EL1: Debug CLAIM Tag Set register

DBGDTRRX_EL0: Debug Data Transfer Register, Receive

DBGDTRTX_EL0: Debug Data Transfer Register, Transmit

DBGWCR<n>_EL1: Debug Watchpoint Control Registers

DBGWVR<n>_EL1: Debug Watchpoint Value Registers

EDAA32PFR: External Debug AArch32 Processor Feature Register

EDACR: External Debug Auxiliary Control Register

EDCIDR0: External Debug Component Identification Register 0

EDCIDR1: External Debug Component Identification Register 1

EDCIDR2: External Debug Component Identification Register 2

EDCIDR3: External Debug Component Identification Register 3

EDCIDSR: External Debug Context ID Sample Register

EDDEVAFF0: External Debug Device Affinity register 0

EDDEVAFF1: External Debug Device Affinity register 1

EDDEVARCH: External Debug Device Architecture register

EDDEVID: External Debug Device ID register 0

EDDEVID1: External Debug Device ID register 1

EDDEVID2: External Debug Device ID register 2

External System registers

Page 3151

EDDEVTYPE: External Debug Device Type register

EDDFR: External Debug Feature Register

EDECCR: External Debug Exception Catch Control Register

EDECR: External Debug Execution Control Register

EDESR: External Debug Event Status Register

EDITCTRL: External Debug Integration mode Control register

EDITR: External Debug Instruction Transfer Register

EDLAR: External Debug Lock Access Register

EDLSR: External Debug Lock Status Register

EDPCSR: External Debug Program Counter Sample Register

EDPFR: External Debug Processor Feature Register

EDPIDR0: External Debug Peripheral Identification Register 0

EDPIDR1: External Debug Peripheral Identification Register 1

EDPIDR2: External Debug Peripheral Identification Register 2

EDPIDR3: External Debug Peripheral Identification Register 3

EDPIDR4: External Debug Peripheral Identification Register 4

EDPRCR: External Debug Power/Reset Control Register

EDPRSR: External Debug Processor Status Register

EDRCR: External Debug Reserve Control Register

EDSCR: External Debug Status and Control Register

EDVIDSR: External Debug Virtual Context Sample Register

EDWAR: External Debug Watchpoint Address Register

ERR<n>ADDR: Error Record Address Register

ERR<n>CTLR: Error Record Control Register

ERR<n>FR: Error Record Feature Register

ERR<n>MISC0: Error Record Miscellaneous Register 0

ERR<n>MISC1: Error Record Miscellaneous Register 1

ERR<n>MISC2: Error Record Miscellaneous Register 2

ERR<n>MISC3: Error Record Miscellaneous Register 3

ERR<n>PFGCDN: Pseudo-fault Generation Countdown Register

ERR<n>PFGCTL: Pseudo-fault Generation Control Register

ERR<n>PFGF: Pseudo-fault Generation Feature Register

ERR<n>STATUS: Error Record Primary Status Register

ERRCIDR0: Component Identification Register 0

ERRCIDR1: Component Identification Register 1

ERRCIDR2: Component Identification Register 2

External System registers

Page 3152

ERRCIDR3: Component Identification Register 3

ERRCRICR0: Critical Error Interrupt Configuration Register 0

ERRCRICR1: Critical Error Interrupt Configuration Register 1

ERRCRICR2: Critical Error Interrupt Configuration Register 2

ERRDEVAFF: Device Affinity Register

ERRDEVARCH: Device Architecture Register

ERRDEVID: Device Configuration Register

ERRERICR0: Error Recovery Interrupt Configuration Register 0

ERRERICR1: Error Recovery Interrupt Configuration Register 1

ERRERICR2: Error Recovery Interrupt Configuration Register 2

ERRFHICR0: Fault-Handling Interrupt Configuration Register 0

ERRFHICR1: Fault-Handling Interrupt Configuration Register 1

ERRFHICR2: Fault-Handling Interrupt Configuration Register 2

ERRGSR: Error Group Status Register

ERRIIDR: Implementation Identification Register

ERRIRQCR<n>: Generic Error Interrupt Configuration Register

ERRIRQSR: Error Interrupt Status Register

ERRPIDR0: Peripheral Identification Register 0

ERRPIDR1: Peripheral Identification Register 1

ERRPIDR2: Peripheral Identification Register 2

ERRPIDR3: Peripheral Identification Register 3

ERRPIDR4: Peripheral Identification Register 4

GICC_ABPR: CPU Interface Aliased Binary Point Register

GICC_AEOIR: CPU Interface Aliased End Of Interrupt Register

GICC_AHPPIR: CPU Interface Aliased Highest Priority Pending Interrupt Register

GICC_AIAR: CPU Interface Aliased Interrupt Acknowledge Register

GICC_APR<n>: CPU Interface Active Priorities Registers

GICC_BPR: CPU Interface Binary Point Register

GICC_CTLR: CPU Interface Control Register

GICC_DIR: CPU Interface Deactivate Interrupt Register

GICC_EOIR: CPU Interface End Of Interrupt Register

GICC_HPPIR: CPU Interface Highest Priority Pending Interrupt Register

GICC_IAR: CPU Interface Interrupt Acknowledge Register

GICC_IIDR: CPU Interface Identification Register

GICC_NSAPR<n>: CPU Interface Non-secure Active Priorities Registers

GICC_PMR: CPU Interface Priority Mask Register

External System registers

Page 3153

GICC_RPR: CPU Interface Running Priority Register

GICC_STATUSR: CPU Interface Status Register

GICD_CLRSPI_NSR: Clear Non-secure SPI Pending Register

GICD_CLRSPI_SR: Clear Secure SPI Pending Register

GICD_CPENDSGIR<n>: SGI Clear-Pending Registers

GICD_CTLR: Distributor Control Register

GICD_ICACTIVER<n>: Interrupt Clear-Active Registers

GICD_ICACTIVER<n>E: Interrupt Clear-Active Registers (extended SPI range)

GICD_ICENABLER<n>: Interrupt Clear-Enable Registers

GICD_ICENABLER<n>E: Interrupt Clear-Enable Registers

GICD_ICFGR<n>: Interrupt Configuration Registers

GICD_ICFGR<n>E: Interrupt Configuration Registers (Extended SPI Range)

GICD_ICPENDR<n>: Interrupt Clear-Pending Registers

GICD_ICPENDR<n>E: Interrupt Clear-Pending Registers (extended SPI range)

GICD_IGROUPR<n>: Interrupt Group Registers

GICD_IGROUPR<n>E: Interrupt Group Registers (extended SPI range)

GICD_IGRPMODR<n>: Interrupt Group Modifier Registers

GICD_IGRPMODR<n>E: Interrupt Group Modifier Registers (extended SPI range)

GICD_IIDR: Distributor Implementer Identification Register

GICD_IPRIORITYR<n>: Interrupt Priority Registers

GICD_IPRIORITYR<n>E: Holds the priority of the corresponding interrupt for each extended SPI supported by the
GIC.

GICD_IROUTER<n>: Interrupt Routing Registers

GICD_IROUTER<n>E: Interrupt Routing Registers (Extended SPI Range)

GICD_ISACTIVER<n>: Interrupt Set-Active Registers

GICD_ISACTIVER<n>E: Interrupt Set-Active Registers (extended SPI range)

GICD_ISENABLER<n>: Interrupt Set-Enable Registers

GICD_ISENABLER<n>E: Interrupt Set-Enable Registers

GICD_ISPENDR<n>: Interrupt Set-Pending Registers

GICD_ISPENDR<n>E: Interrupt Set-Pending Registers (extended SPI range)

GICD_ITARGETSR<n>: Interrupt Processor Targets Registers

GICD_NSACR<n>: Non-secure Access Control Registers

GICD_NSACR<n>E: Non-secure Access Control Registers

GICD_SETSPI_NSR: Set Non-secure SPI Pending Register

GICD_SETSPI_SR: Set Secure SPI Pending Register

GICD_SGIR: Software Generated Interrupt Register

GICD_SPENDSGIR<n>: SGI Set-Pending Registers

External System registers

Page 3154

GICD_STATUSR: Error Reporting Status Register

GICD_TYPER: Interrupt Controller Type Register

GICD_TYPER2: Interrupt Controller Type Register 2

GICH_APR<n>: Active Priorities Registers

GICH_EISR: End Interrupt Status Register

GICH_ELRSR: Empty List Register Status Register

GICH_HCR: Hypervisor Control Register

GICH_LR<n>: List Registers

GICH_MISR: Maintenance Interrupt Status Register

GICH_VMCR: Virtual Machine Control Register

GICH_VTR: Virtual Type Register

GICR_CLRLPIR: Clear LPI Pending Register

GICR_CTLR: Redistributor Control Register

GICR_ICACTIVER0: Interrupt Clear-Active Register 0

GICR_ICACTIVER<n>E: Interrupt Clear-Active Registers

GICR_ICENABLER0: Interrupt Clear-Enable Register 0

GICR_ICENABLER<n>E: Interrupt Clear-Enable Registers

GICR_ICFGR0: Interrupt Configuration Register 0

GICR_ICFGR1: Interrupt Configuration Register 1

GICR_ICFGR<n>E: Interrupt configuration registers

GICR_ICPENDR0: Interrupt Clear-Pending Register 0

GICR_ICPENDR<n>E: Interrupt Clear-Pending Registers

GICR_IGROUPR0: Interrupt Group Register 0

GICR_IGROUPR<n>E: Interrupt Group Registers

GICR_IGRPMODR0: Interrupt Group Modifier Register 0

GICR_IGRPMODR<n>E: Interrupt Group Modifier Registers

GICR_IIDR: Redistributor Implementer Identification Register

GICR_INVALLR: Redistributor Invalidate All Register

GICR_INVLPIR: Redistributor Invalidate LPI Register

GICR_IPRIORITYR<n>: Interrupt Priority Registers

GICR_IPRIORITYR<n>E: Interrupt Priority Registers (extended PPI range)

GICR_ISACTIVER0: Interrupt Set-Active Register 0

GICR_ISACTIVER<n>E: Interrupt Set-Active Registers

GICR_ISENABLER0: Interrupt Set-Enable Register 0

GICR_ISENABLER<n>E: Interrupt Set-Enable Registers

GICR_ISPENDR0: Interrupt Set-Pending Register 0

External System registers

Page 3155

GICR_ISPENDR<n>E: Interrupt Set-Pending Registers

GICR_MPAMIDR: Report maximum PARTID and PMG Register

GICR_NSACR: Non-secure Access Control Register

GICR_PARTIDR: Set PARTID and PMG Register

GICR_PENDBASER: Redistributor LPI Pending Table Base Address Register

GICR_PROPBASER: Redistributor Properties Base Address Register

GICR_SETLPIR: Set LPI Pending Register

GICR_STATUSR: Error Reporting Status Register

GICR_SYNCR: Redistributor Synchronize Register

GICR_TYPER: Redistributor Type Register

GICR_VPENDBASER: Virtual Redistributor LPI Pending Table Base Address Register

GICR_VPROPBASER: Virtual Redistributor Properties Base Address Register

GICR_VSGIPENDR: Redistributor virtual SGI pending state register

GICR_VSGIR: Redistributor virtual SGI pending state request register

GICR_WAKER: Redistributor Wake Register

GICV_ABPR: Virtual Machine Aliased Binary Point Register

GICV_AEOIR: Virtual Machine Aliased End Of Interrupt Register

GICV_AHPPIR: Virtual Machine Aliased Highest Priority Pending Interrupt Register

GICV_AIAR: Virtual Machine Aliased Interrupt Acknowledge Register

GICV_APR<n>: Virtual Machine Active Priorities Registers

GICV_BPR: Virtual Machine Binary Point Register

GICV_CTLR: Virtual Machine Control Register

GICV_DIR: Virtual Machine Deactivate Interrupt Register

GICV_EOIR: Virtual Machine End Of Interrupt Register

GICV_HPPIR: Virtual Machine Highest Priority Pending Interrupt Register

GICV_IAR: Virtual Machine Interrupt Acknowledge Register

GICV_IIDR: Virtual Machine CPU Interface Identification Register

GICV_PMR: Virtual Machine Priority Mask Register

GICV_RPR: Virtual Machine Running Priority Register

GICV_STATUSR: Virtual Machine Error Reporting Status Register

GITS_BASER<n>: ITS Translation Table Descriptors

GITS_CBASER: ITS Command Queue Descriptor

GITS_CREADR: ITS Read Register

GITS_CTLR: ITS Control Register

GITS_CWRITER: ITS Write Register

GITS_IIDR: ITS Identification Register

External System registers

Page 3156

GITS_MPAMIDR: Report maximum PARTID and PMG Register

GITS_MPIDR: Report ITS's affinity.

GITS_PARTIDR: Set PARTID and PMG Register

GITS_SGIR: ITS SGI Register

GITS_TRANSLATER: ITS Translation Register

GITS_TYPER: ITS Type Register

MIDR_EL1: Main ID Register

MPAMCFG_CMAX: MPAM Cache Maximum Capacity Partition Configuration Register

MPAMCFG_CPBM: MPAM Cache Portion Bitmap Partition Configuration Register

MPAMCFG_INTPARTID: MPAM Internal PARTID Narrowing Configuration Register

MPAMCFG_MBW_MAX: MPAM Memory Bandwidth Maximum Partition Configuration Register

MPAMCFG_MBW_MIN: MPAM Cache Maximum Capacity Partition Configuration Register

MPAMCFG_MBW_PBM: MPAM Bandwidth Portion Bitmap Partition Configuration Register

MPAMCFG_MBW_PROP: MPAM Memory Bandwidth Proportional Stride Partition Configuration Register

MPAMCFG_MBW_WINWD: MPAM Memory Bandwidth Partitioning Window Width Configuration Register

MPAMCFG_PART_SEL: MPAM Partition Configuration Selection Register

MPAMCFG_PRI: MPAM Priority Partition Configuration Register

MPAMF_AIDR: MPAM Architecture Identification Register

MPAMF_CCAP_IDR: MPAM Features Cache Capacity Partitioning ID register

MPAMF_CPOR_IDR: MPAM Features Cache Portion Partitioning ID register

MPAMF_CSUMON_IDR: MPAM Features Cache Storage Usage Monitoring ID register

MPAMF_ECR: MPAM Error Control Register

MPAMF_ESR: MPAM Error Status Register

MPAMF_IDR: MPAM Features Identification Register

MPAMF_IIDR: MPAM Implementation Identification Register

MPAMF_IMPL_IDR: MPAM Implementation-Specific Partitioning Feature Identification Register

MPAMF_MBWUMON_IDR: MPAM Features Memory Bandwidth Usage Monitoring ID register

MPAMF_MBW_IDR: MPAM Memory Bandwidth Partitioning Identification Register

MPAMF_MSMON_IDR: MPAM Resource Monitoring Identification Register

MPAMF_PARTID_NRW_IDR: MPAM PARTID Narrowing ID register

MPAMF_PRI_IDR: MPAM Priority Partitioning Identification Register

MPAMF_SIDR: MPAM Features Secure Identification Register

MSMON_CAPT_EVNT: MPAM Capture Event Generation Register

MSMON_CFG_CSU_CTL: MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register

MSMON_CFG_CSU_FLT: MPAM Memory System Monitor Configure Cache Storage Usage Monitor Filter Register

MSMON_CFG_MBWU_CTL: MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

External System registers

Page 3157

MSMON_CFG_MBWU_FLT: MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Filter
Register

MSMON_CFG_MON_SEL: MPAM Monitor Instance Selection Register

MSMON_CSU: MPAM Cache Storage Usage Monitor Register

MSMON_CSU_CAPTURE: MPAM Cache Storage Usage Monitor Capture Register

MSMON_MBWU: MPAM Memory Bandwidth Usage Monitor Register

MSMON_MBWU_CAPTURE: MPAM Memory Bandwidth Usage Monitor Capture Register

MSMON_MBWU_L: MPAM Long Memory Bandwidth Usage Monitor Register

MSMON_MBWU_L_CAPTURE: MPAM Long Memory Bandwidth Usage Monitor Capture Register

OSLAR_EL1: OS Lock Access Register

PMAUTHSTATUS: Performance Monitors Authentication Status register

PMCCFILTR_EL0: Performance Monitors Cycle Counter Filter Register

PMCCNTR_EL0: Performance Monitors Cycle Counter

PMCEID0: Performance Monitors Common Event Identification register 0

PMCEID1: Performance Monitors Common Event Identification register 1

PMCEID2: Performance Monitors Common Event Identification register 2

PMCEID3: Performance Monitors Common Event Identification register 3

PMCFGR: Performance Monitors Configuration Register

PMCID1SR: CONTEXTIDR_EL1 Sample Register

PMCID2SR: CONTEXTIDR_EL2 Sample Register

PMCIDR0: Performance Monitors Component Identification Register 0

PMCIDR1: Performance Monitors Component Identification Register 1

PMCIDR2: Performance Monitors Component Identification Register 2

PMCIDR3: Performance Monitors Component Identification Register 3

PMCNTENCLR_EL0: Performance Monitors Count Enable Clear register

PMCNTENSET_EL0: Performance Monitors Count Enable Set register

PMCR_EL0: Performance Monitors Control Register

PMDEVAFF0: Performance Monitors Device Affinity register 0

PMDEVAFF1: Performance Monitors Device Affinity register 1

PMDEVARCH: Performance Monitors Device Architecture register

PMDEVID: Performance Monitors Device ID register

PMDEVTYPE: Performance Monitors Device Type register

PMEVCNTR<n>_EL0: Performance Monitors Event Count Registers

PMEVTYPER<n>_EL0: Performance Monitors Event Type Registers

PMINTENCLR_EL1: Performance Monitors Interrupt Enable Clear register

PMINTENSET_EL1: Performance Monitors Interrupt Enable Set register

PMITCTRL: Performance Monitors Integration mode Control register

External System registers

Page 3158

PMLAR: Performance Monitors Lock Access Register

PMLSR: Performance Monitors Lock Status Register

PMMIR: Performance Monitors Machine Identification Register

PMOVSCLR_EL0: Performance Monitors Overflow Flag Status Clear register

PMOVSSET_EL0: Performance Monitors Overflow Flag Status Set register

PMPCSR: Program Counter Sample Register

PMPIDR0: Performance Monitors Peripheral Identification Register 0

PMPIDR1: Performance Monitors Peripheral Identification Register 1

PMPIDR2: Performance Monitors Peripheral Identification Register 2

PMPIDR3: Performance Monitors Peripheral Identification Register 3

PMPIDR4: Performance Monitors Peripheral Identification Register 4

PMSWINC_EL0: Performance Monitors Software Increment register

PMVIDSR: VMID Sample Register

TRCACATR<n>: Address Comparator Access Type Register <n>

TRCACVR<n>: Address Comparator Value Register <n>

TRCAUTHSTATUS: Authentication Status Register

TRCAUXCTLR: Auxillary Control Register

TRCBBCTLR: Branch Broadcast Control Register

TRCCCCTLR: Cycle Count Control Register

TRCCIDCCTLR0: Context Identifier Comparator Control Register 0

TRCCIDCCTLR1: Context Identifier Comparator Control Register 1

TRCCIDCVR<n>: Context Identifier Comparator Value Registers <n>

TRCCIDR0: Component Identification Register 0

TRCCIDR1: Component Identification Register 1

TRCCIDR2: Component Identification Register 2

TRCCIDR3: Component Identification Register 3

TRCCLAIMCLR: Claim Tag Clear Register

TRCCLAIMSET: Claim Tag Set Register

TRCCNTCTLR<n>: Counter Control Register <n>

TRCCNTRLDVR<n>: Counter Reload Value Register <n>

TRCCNTVR<n>: Counter Value Register <n>

TRCCONFIGR: Trace Configuration Register

TRCDEVAFF: Device Affinity Register

TRCDEVARCH: Device Architecture Register

TRCDEVID: Device Configuration Register

TRCDEVID1: Device Configuration Register 1

External System registers

Page 3159

TRCDEVID2: Device Configuration Register 2

TRCDEVTYPE: Device Type Register

TRCEVENTCTL0R: Event Control 0 Register

TRCEVENTCTL1R: Event Control 1 Register

TRCEXTINSELR<n>: External Input Select Register <n>

TRCIDR0: ID Register 0

TRCIDR1: ID Register 1

TRCIDR10: ID Register 10

TRCIDR11: ID Register 11

TRCIDR12: ID Register 12

TRCIDR13: ID Register 13

TRCIDR2: ID Register 2

TRCIDR3: ID Register 3

TRCIDR4: ID Register 4

TRCIDR5: ID Register 5

TRCIDR6: ID Register 6

TRCIDR7: ID Register 7

TRCIDR8: ID Register 8

TRCIDR9: ID Register 9

TRCIMSPEC0: IMP DEF Register 0

TRCIMSPEC<n>: IMP DEF Register <n>

TRCITCTRL: Integration Mode Control Register

TRCLAR: Lock Access Register

TRCLSR: Lock Status Register

TRCOSLSR: Trace OS Lock Status Register

TRCPDCR: PowerDown Control Register

TRCPDSR: PowerDown Status Register

TRCPIDR0: Peripheral Identification Register 0

TRCPIDR1: Peripheral Identification Register 1

TRCPIDR2: Peripheral Identification Register 2

TRCPIDR3: Peripheral Identification Register 3

TRCPIDR4: Peripheral Identification Register 4

TRCPIDR5: Peripheral Identification Register 5

TRCPIDR6: Peripheral Identification Register 6

TRCPIDR7: Peripheral Identification Register 7

TRCPRGCTLR: Programming Control Register

External System registers

Page 3160

TRCQCTLR: Q Element Control Register

TRCRSCTLR<n>: Resource Selection Control Register <n>

TRCRSR: Resources Status Register

TRCSEQEVR<n>: Sequencer State Transition Control Register <n>

TRCSEQRSTEVR: Sequencer Reset Control Register

TRCSEQSTR: Sequencer State Register

TRCSSCCR<n>: Single-shot Comparator Control Register <n>

TRCSSCSR<n>: Single-shot Comparator Control Status Register <n>

TRCSSPCICR<n>: Single-shot Processing Element Comparator Input Control Register <n>

TRCSTALLCTLR: Stall Control Register

TRCSTATR: Trace Status Register

TRCSYNCPR: Synchronization Period Register

TRCTRACEIDR: Trace ID Register

TRCTSCTLR: Timestamp Control Register

TRCVICTLR: ViewInst Main Control Register

TRCVIIECTLR: ViewInst Include/Exclude Control Register

TRCVIPCSSCTLR: ViewInst Start/Stop PE Comparator Control Register

TRCVISSCTLR: ViewInst Start/Stop Control Register

TRCVMIDCCTLR0: Virtual Context Identifier Comparator Control Register 0

TRCVMIDCCTLR1: Virtual Context Identifier Comparator Control Register 1

TRCVMIDCVR<n>: Virtual Context Identifier Comparator Value Register <n>

09/12/2019 19:23

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

External System registers

Page 3161

External register index by offset
Below are indexes for external registers in the following blocks:

• AMU
• CTI
• Debug
• ETE
• GIC CPU interface
• GIC Distributor
• GIC ITS control
• GIC ITS translation
• GIC Redistributor
• GIC Virtual CPU interface
• GIC Virtual interface control
• MPAM
• PMU
• RAS
• Timer

In the AMU block:
Offset Name Description

0x000 + 8n AMEVCNTR0<n>[31:0] Activity Monitors Event Counter Registers 0
0x004 + 8n AMEVCNTR0<n>[63:32] Activity Monitors Event Counter Registers 0
0x100 + 8n AMEVCNTR1<n>[31:0] Activity Monitors Event Counter Registers 1
0x104 + 8n AMEVCNTR1<n>[63:32] Activity Monitors Event Counter Registers 1
0x400 + 4n AMEVTYPER0<n> Activity Monitors Event Type Registers 0
0x480 + 4n AMEVTYPER1<n> Activity Monitors Event Type Registers 1

0xC00 AMCNTENSET0 Activity Monitors Count Enable Set Register 0
0xC04 AMCNTENSET1 Activity Monitors Count Enable Set Register 1
0xC20 AMCNTENCLR0 Activity Monitors Count Enable Clear Register 0
0xC24 AMCNTENCLR1 Activity Monitors Count Enable Clear Register 1
0xCE0 AMCGCR Activity Monitors Counter Group Configuration Register
0xE00 AMCFGR Activity Monitors Configuration Register
0xE04 AMCR Activity Monitors Control Register
0xE08 AMIIDR Activity Monitors Implementation Identification Register
0xFA8 AMDEVAFF0 Activity Monitors Device Affinity Register 0
0xFAC AMDEVAFF1 Activity Monitors Device Affinity Register 1
0xFBC AMDEVARCH Activity Monitors Device Architecture Register
0xFCC AMDEVTYPE Activity Monitors Device Type Register
0xFD0 AMPIDR4 Activity Monitors Peripheral Identification Register 4
0xFE0 AMPIDR0 Activity Monitors Peripheral Identification Register 0
0xFE4 AMPIDR1 Activity Monitors Peripheral Identification Register 1
0xFE8 AMPIDR2 Activity Monitors Peripheral Identification Register 2
0xFEC AMPIDR3 Activity Monitors Peripheral Identification Register 3
0xFF0 AMCIDR0 Activity Monitors Component Identification Register 0
0xFF4 AMCIDR1 Activity Monitors Component Identification Register 1
0xFF8 AMCIDR2 Activity Monitors Component Identification Register 2
0xFFC AMCIDR3 Activity Monitors Component Identification Register 3

External register index by offset

Page 3162

In the CTI block:
Offset Name Description
0x000 CTICONTROL CTI Control register
0x010 CTIINTACK CTI Output Trigger Acknowledge register
0x014 CTIAPPSET CTI Application Trigger Set register
0x018 CTIAPPCLEAR CTI Application Trigger Clear register
0x01C CTIAPPPULSE CTI Application Pulse register

0x020 + 4n CTIINEN<n> CTI Input Trigger to Output Channel Enable registers
0x0A0 + 4n CTIOUTEN<n> CTI Input Channel to Output Trigger Enable registers

0x130 CTITRIGINSTATUS CTI Trigger In Status register
0x134 CTITRIGOUTSTATUS CTI Trigger Out Status register
0x138 CTICHINSTATUS CTI Channel In Status register
0x13C CTICHOUTSTATUS CTI Channel Out Status register
0x140 CTIGATE CTI Channel Gate Enable register
0x144 ASICCTL CTI External Multiplexer Control register
0x150 CTIDEVCTL CTI Device Control register
0xF00 CTIITCTRL CTI Integration mode Control register
0xFA0 CTICLAIMSET CTI CLAIM Tag Set register
0xFA4 CTICLAIMCLR CTI CLAIM Tag Clear register
0xFA8 CTIDEVAFF0 CTI Device Affinity register 0
0xFAC CTIDEVAFF1 CTI Device Affinity register 1
0xFB0 CTILAR CTI Lock Access Register
0xFB4 CTILSR CTI Lock Status Register
0xFB8 CTIAUTHSTATUS CTI Authentication Status register
0xFBC CTIDEVARCH CTI Device Architecture register
0xFC0 CTIDEVID2 CTI Device ID register 2
0xFC4 CTIDEVID1 CTI Device ID register 1
0xFC8 CTIDEVID CTI Device ID register 0
0xFCC CTIDEVTYPE CTI Device Type register
0xFD0 CTIPIDR4 CTI Peripheral Identification Register 4
0xFE0 CTIPIDR0 CTI Peripheral Identification Register 0
0xFE4 CTIPIDR1 CTI Peripheral Identification Register 1
0xFE8 CTIPIDR2 CTI Peripheral Identification Register 2
0xFEC CTIPIDR3 CTI Peripheral Identification Register 3
0xFF0 CTICIDR0 CTI Component Identification Register 0
0xFF4 CTICIDR1 CTI Component Identification Register 1
0xFF8 CTICIDR2 CTI Component Identification Register 2
0xFFC CTICIDR3 CTI Component Identification Register 3

In the Debug block:
Offset Name Description
0x020 EDESR External Debug Event Status Register
0x024 EDECR External Debug Execution Control Register
0x030 EDWAR[31:0] External Debug Watchpoint Address Register
0x034 EDWAR[63:32] External Debug Watchpoint Address Register
0x080 DBGDTRRX_EL0 Debug Data Transfer Register, Receive
0x084 EDITR External Debug Instruction Transfer Register
0x088 EDSCR External Debug Status and Control Register

External register index by offset

Page 3163

Offset Name Description
0x08C DBGDTRTX_EL0 Debug Data Transfer Register, Transmit
0x090 EDRCR External Debug Reserve Control Register
0x094 EDACR External Debug Auxiliary Control Register
0x098 EDECCR External Debug Exception Catch Control Register
0x0A0 EDPCSR[31:0] External Debug Program Counter Sample Register
0x0A4 EDCIDSR External Debug Context ID Sample Register
0x0A8 EDVIDSR External Debug Virtual Context Sample Register
0x0AC EDPCSR[63:32] External Debug Program Counter Sample Register
0x300 OSLAR_EL1 OS Lock Access Register
0x310 EDPRCR External Debug Power/Reset Control Register
0x314 EDPRSR External Debug Processor Status Register

0x400 + 16n DBGBVR<n>_EL1[63:0] Debug Breakpoint Value Registers
0x408 + 16n DBGBCR<n>_EL1 Debug Breakpoint Control Registers
0x800 + 16n DBGWVR<n>_EL1[63:0] Debug Watchpoint Value Registers
0x808 + 16n DBGWCR<n>_EL1 Debug Watchpoint Control Registers

0xD00 MIDR_EL1 Main ID Register
0xD20 EDPFR[31:0] External Debug Processor Feature Register
0xD24 EDPFR[63:32] External Debug Processor Feature Register
0xD28 EDDFR[31:0] External Debug Feature Register
0xD2C EDDFR[63:32] External Debug Feature Register
0xD60 EDAA32PFR External Debug AArch32 Processor Feature Register
0xF00 EDITCTRL External Debug Integration mode Control register
0xFA0 DBGCLAIMSET_EL1 Debug CLAIM Tag Set register
0xFA4 DBGCLAIMCLR_EL1 Debug CLAIM Tag Clear register
0xFA8 EDDEVAFF0 External Debug Device Affinity register 0
0xFAC EDDEVAFF1 External Debug Device Affinity register 1
0xFB0 EDLAR External Debug Lock Access Register
0xFB4 EDLSR External Debug Lock Status Register
0xFB8 DBGAUTHSTATUS_EL1 Debug Authentication Status register
0xFBC EDDEVARCH External Debug Device Architecture register
0xFC0 EDDEVID2 External Debug Device ID register 2
0xFC4 EDDEVID1 External Debug Device ID register 1
0xFC8 EDDEVID External Debug Device ID register 0
0xFCC EDDEVTYPE External Debug Device Type register
0xFD0 EDPIDR4 External Debug Peripheral Identification Register 4
0xFE0 EDPIDR0 External Debug Peripheral Identification Register 0
0xFE4 EDPIDR1 External Debug Peripheral Identification Register 1
0xFE8 EDPIDR2 External Debug Peripheral Identification Register 2
0xFEC EDPIDR3 External Debug Peripheral Identification Register 3
0xFF0 EDCIDR0 External Debug Component Identification Register 0
0xFF4 EDCIDR1 External Debug Component Identification Register 1
0xFF8 EDCIDR2 External Debug Component Identification Register 2
0xFFC EDCIDR3 External Debug Component Identification Register 3

In the ETE block:
Offset Name Description
0x004 TRCPRGCTLR Programming Control Register
0x00C TRCSTATR Trace Status Register

External register index by offset

Page 3164

Offset Name Description
0x010 TRCCONFIGR Trace Configuration Register
0x018 TRCAUXCTLR Auxillary Control Register
0x020 TRCEVENTCTL0R Event Control 0 Register
0x024 TRCEVENTCTL1R Event Control 1 Register
0x028 TRCRSR Resources Status Register
0x02C TRCSTALLCTLR Stall Control Register
0x030 TRCTSCTLR Timestamp Control Register
0x034 TRCSYNCPR Synchronization Period Register
0x038 TRCCCCTLR Cycle Count Control Register
0x03C TRCBBCTLR Branch Broadcast Control Register
0x040 TRCTRACEIDR Trace ID Register
0x044 TRCQCTLR Q Element Control Register
0x080 TRCVICTLR ViewInst Main Control Register
0x084 TRCVIIECTLR ViewInst Include/Exclude Control Register
0x088 TRCVISSCTLR ViewInst Start/Stop Control Register
0x08C TRCVIPCSSCTLR ViewInst Start/Stop PE Comparator Control Register

0x100 + 4n TRCSEQEVR<n> Sequencer State Transition Control Register <n>
0x118 TRCSEQRSTEVR Sequencer Reset Control Register
0x11C TRCSEQSTR Sequencer State Register

0x120 + 4n TRCEXTINSELR<n> External Input Select Register <n>
0x140 + 4n TRCCNTRLDVR<n> Counter Reload Value Register <n>
0x150 + 4n TRCCNTCTLR<n> Counter Control Register <n>
0x160 + 4n TRCCNTVR<n> Counter Value Register <n>

0x180 TRCIDR8 ID Register 8
0x184 TRCIDR9 ID Register 9
0x188 TRCIDR10 ID Register 10
0x18C TRCIDR11 ID Register 11
0x190 TRCIDR12 ID Register 12
0x194 TRCIDR13 ID Register 13
0x1C0 TRCIMSPEC0 IMP DEF Register 0

0x1C0 + 4n TRCIMSPEC<n> IMP DEF Register <n>
0x1E0 TRCIDR0 ID Register 0
0x1E4 TRCIDR1 ID Register 1
0x1E8 TRCIDR2 ID Register 2
0x1EC TRCIDR3 ID Register 3
0x1F0 TRCIDR4 ID Register 4
0x1F4 TRCIDR5 ID Register 5
0x1F8 TRCIDR6 ID Register 6
0x1FC TRCIDR7 ID Register 7

0x200 + 4n TRCRSCTLR<n> Resource Selection Control Register <n>
0x280 + 4n TRCSSCCR<n> Single-shot Comparator Control Register <n>
0x2A0 + 4n TRCSSCSR<n> Single-shot Comparator Control Status Register <n>
0x2C0 + 4n TRCSSPCICR<n> Single-shot Processing Element Comparator Input Control Register

<n>
0x304 TRCOSLSR Trace OS Lock Status Register
0x310 TRCPDCR PowerDown Control Register
0x314 TRCPDSR PowerDown Status Register

0x400 + 8n TRCACVR<n> Address Comparator Value Register <n>
0x480 + 8n TRCACATR<n> Address Comparator Access Type Register <n>

External register index by offset

Page 3165

Offset Name Description
0x600 + 8n TRCCIDCVR<n> Context Identifier Comparator Value Registers <n>
0x640 + 8n TRCVMIDCVR<n> Virtual Context Identifier Comparator Value Register <n>

0x680 TRCCIDCCTLR0 Context Identifier Comparator Control Register 0
0x684 TRCCIDCCTLR1 Context Identifier Comparator Control Register 1
0x688 TRCVMIDCCTLR0 Virtual Context Identifier Comparator Control Register 0
0x68C TRCVMIDCCTLR1 Virtual Context Identifier Comparator Control Register 1
0xF00 TRCITCTRL Integration Mode Control Register
0xFA0 TRCCLAIMSET Claim Tag Set Register
0xFA4 TRCCLAIMCLR Claim Tag Clear Register
0xFA8 TRCDEVAFF Device Affinity Register
0xFB0 TRCLAR Lock Access Register
0xFB4 TRCLSR Lock Status Register
0xFB8 TRCAUTHSTATUS Authentication Status Register
0xFBC TRCDEVARCH Device Architecture Register
0xFC0 TRCDEVID2 Device Configuration Register 2
0xFC4 TRCDEVID1 Device Configuration Register 1
0xFC8 TRCDEVID Device Configuration Register
0xFCC TRCDEVTYPE Device Type Register
0xFD0 TRCPIDR4 Peripheral Identification Register 4
0xFD4 TRCPIDR5 Peripheral Identification Register 5
0xFD8 TRCPIDR6 Peripheral Identification Register 6
0xFDC TRCPIDR7 Peripheral Identification Register 7
0xFE0 TRCPIDR0 Peripheral Identification Register 0
0xFE4 TRCPIDR1 Peripheral Identification Register 1
0xFE8 TRCPIDR2 Peripheral Identification Register 2
0xFEC TRCPIDR3 Peripheral Identification Register 3
0xFF0 TRCCIDR0 Component Identification Register 0
0xFF4 TRCCIDR1 Component Identification Register 1
0xFF8 TRCCIDR2 Component Identification Register 2
0xFFC TRCCIDR3 Component Identification Register 3

In the GIC CPU interface block:
Offset Name Description
0x0000 GICC_CTLR CPU Interface Control Register
0x0004 GICC_PMR CPU Interface Priority Mask Register
0x0008 GICC_BPR CPU Interface Binary Point Register
0x000C GICC_IAR CPU Interface Interrupt Acknowledge Register
0x0010 GICC_EOIR CPU Interface End Of Interrupt Register
0x0014 GICC_RPR CPU Interface Running Priority Register
0x0018 GICC_HPPIR CPU Interface Highest Priority Pending Interrupt Register
0x001C GICC_ABPR CPU Interface Aliased Binary Point Register
0x0020 GICC_AIAR CPU Interface Aliased Interrupt Acknowledge Register
0x0024 GICC_AEOIR CPU Interface Aliased End Of Interrupt Register
0x0028 GICC_AHPPIR CPU Interface Aliased Highest Priority Pending Interrupt Register
0x002C GICC_STATUSR CPU Interface Status Register
0x002C GICC_STATUSR CPU Interface Status Register

0x00D0 + 4n GICC_APR<n> CPU Interface Active Priorities Registers
0x00E0 + 4n GICC_NSAPR<n> CPU Interface Non-secure Active Priorities Registers

External register index by offset

Page 3166

Offset Name Description
0x00FC GICC_IIDR CPU Interface Identification Register
0x1000 GICC_DIR CPU Interface Deactivate Interrupt Register

In the GIC Distributor block:
Offset Name Description
0x0000 GICD_CTLR Distributor Control Register
0x0004 GICD_TYPER Interrupt Controller Type Register
0x0008 GICD_IIDR Distributor Implementer Identification Register
0x000C GICD_TYPER2 Interrupt Controller Type Register 2
0x0010 GICD_STATUSR Error Reporting Status Register
0x0010 GICD_STATUSR Error Reporting Status Register
0x0040 GICD_SETSPI_NSR Set Non-secure SPI Pending Register
0x0048 GICD_CLRSPI_NSR Clear Non-secure SPI Pending Register
0x0050 GICD_SETSPI_SR Set Secure SPI Pending Register
0x0058 GICD_CLRSPI_SR Clear Secure SPI Pending Register

0x0080 + 4n GICD_IGROUPR<n> Interrupt Group Registers
0x0100 + 4n GICD_ISENABLER<n> Interrupt Set-Enable Registers
0x0180 + 4n GICD_ICENABLER<n> Interrupt Clear-Enable Registers
0x0200 + 4n GICD_ISPENDR<n> Interrupt Set-Pending Registers
0x0280 + 4n GICD_ICPENDR<n> Interrupt Clear-Pending Registers
0x0300 + 4n GICD_ISACTIVER<n> Interrupt Set-Active Registers
0x0380 + 4n GICD_ICACTIVER<n> Interrupt Clear-Active Registers
0x0400 + 4n GICD_IPRIORITYR<n> Interrupt Priority Registers
0x0800 + 4n GICD_ITARGETSR<n> Interrupt Processor Targets Registers
0x0C00 + 4n GICD_ICFGR<n> Interrupt Configuration Registers
0x0D00 + 4n GICD_IGRPMODR<n> Interrupt Group Modifier Registers
0x0E00 + 4n GICD_NSACR<n> Non-secure Access Control Registers

0x0F00 GICD_SGIR Software Generated Interrupt Register
0x0F10 + 4n GICD_CPENDSGIR<n> SGI Clear-Pending Registers
0x0F20 + 4n GICD_SPENDSGIR<n> SGI Set-Pending Registers
0x1000 + 4n GICD_IGROUPR<n>E Interrupt Group Registers (extended SPI range)
0x1200 + 4n GICD_ISENABLER<n>E Interrupt Set-Enable Registers
0x1400 + 4n GICD_ICENABLER<n>E Interrupt Clear-Enable Registers
0x1600 + 4n GICD_ISPENDR<n>E Interrupt Set-Pending Registers (extended SPI range)
0x1800 + 4n GICD_ICPENDR<n>E Interrupt Clear-Pending Registers (extended SPI range)
0x1A00 + 4n GICD_ISACTIVER<n>E Interrupt Set-Active Registers (extended SPI range)
0x1C00 + 4n GICD_ICACTIVER<n>E Interrupt Clear-Active Registers (extended SPI range)
0x2000 + 4n GICD_IPRIORITYR<n>E Holds the priority of the corresponding interrupt for each

extended SPI supported by the GIC.
0x3000 + 4n GICD_ICFGR<n>E Interrupt Configuration Registers (Extended SPI Range)
0x3400 + 4n GICD_IGRPMODR<n>E Interrupt Group Modifier Registers (extended SPI range)
0x3600 + 4n GICD_NSACR<n>E Non-secure Access Control Registers
0x6000 + 8n GICD_IROUTER<n> Interrupt Routing Registers
0x8000 + 8n GICD_IROUTER<n>E Interrupt Routing Registers (Extended SPI Range)

In the GIC ITS control block:
Offset Name Description
0x0000 GITS_CTLR ITS Control Register

External register index by offset

Page 3167

Offset Name Description
0x0004 GITS_IIDR ITS Identification Register
0x0008 GITS_TYPER ITS Type Register
0x0010 GITS_MPAMIDR Report maximum PARTID and PMG Register
0x0014 GITS_PARTIDR Set PARTID and PMG Register
0x0018 GITS_MPIDR Report ITS's affinity.
0x0080 GITS_CBASER ITS Command Queue Descriptor
0x0088 GITS_CWRITER ITS Write Register
0x0090 GITS_CREADR ITS Read Register

0x0100 + 8n GITS_BASER<n> ITS Translation Table Descriptors
0x20020 GITS_SGIR ITS SGI Register

In the GIC ITS translation block:
Offset Name Description
0x0040 GITS_TRANSLATER ITS Translation Register

In the GIC Redistributor block:
Frame Offset Name Description

RD_base 0x0000 GICR_CTLR Redistributor Control Register
RD_base 0x0004 GICR_IIDR Redistributor Implementer Identification Register
RD_base 0x0008 GICR_TYPER Redistributor Type Register
RD_base 0x0010 GICR_STATUSR Error Reporting Status Register
RD_base 0x0010 GICR_STATUSR Error Reporting Status Register
RD_base 0x0014 GICR_WAKER Redistributor Wake Register
RD_base 0x0018 GICR_MPAMIDR Report maximum PARTID and PMG Register
RD_base 0x001C GICR_PARTIDR Set PARTID and PMG Register
RD_base 0x0040 GICR_SETLPIR Set LPI Pending Register
RD_base 0x0048 GICR_CLRLPIR Clear LPI Pending Register
RD_base 0x0070 GICR_PROPBASER Redistributor Properties Base Address Register
RD_base 0x0078 GICR_PENDBASER Redistributor LPI Pending Table Base Address

Register
RD_base 0x00A0 GICR_INVLPIR Redistributor Invalidate LPI Register
RD_base 0x00B0 GICR_INVALLR Redistributor Invalidate All Register
RD_base 0x00C0 GICR_SYNCR Redistributor Synchronize Register
SGI_base 0x0080 GICR_IGROUPR0 Interrupt Group Register 0
SGI_base 0x0080 + 4n GICR_IGROUPR<n>E Interrupt Group Registers
SGI_base 0x0100 GICR_ISENABLER0 Interrupt Set-Enable Register 0
SGI_base 0x0100 + 4n GICR_ISENABLER<n>E Interrupt Set-Enable Registers
SGI_base 0x0180 GICR_ICENABLER0 Interrupt Clear-Enable Register 0
SGI_base 0x0180 + 4n GICR_ICENABLER<n>E Interrupt Clear-Enable Registers
SGI_base 0x0200 GICR_ISPENDR0 Interrupt Set-Pending Register 0
SGI_base 0x0200 + 4n GICR_ISPENDR<n>E Interrupt Set-Pending Registers
SGI_base 0x0280 GICR_ICPENDR0 Interrupt Clear-Pending Register 0
SGI_base 0x0280 + 4n GICR_ICPENDR<n>E Interrupt Clear-Pending Registers
SGI_base 0x0300 GICR_ISACTIVER0 Interrupt Set-Active Register 0
SGI_base 0x0300 + 4n GICR_ISACTIVER<n>E Interrupt Set-Active Registers
SGI_base 0x0380 GICR_ICACTIVER0 Interrupt Clear-Active Register 0
SGI_base 0x0380 + 4n GICR_ICACTIVER<n>E Interrupt Clear-Active Registers
SGI_base 0x0400 + 4n GICR_IPRIORITYR<n> Interrupt Priority Registers

External register index by offset

Page 3168

Frame Offset Name Description
SGI_base 0x0400 + 4n GICR_IPRIORITYR<n>E Interrupt Priority Registers (extended PPI range)
SGI_base 0x0C00 GICR_ICFGR0 Interrupt Configuration Register 0
SGI_base 0x0C00 + 4n GICR_ICFGR<n>E Interrupt configuration registers
SGI_base 0x0C04 GICR_ICFGR1 Interrupt Configuration Register 1
SGI_base 0x0D00 GICR_IGRPMODR0 Interrupt Group Modifier Register 0
SGI_base 0x0D00 + 4n GICR_IGRPMODR<n>E Interrupt Group Modifier Registers
SGI_base 0x0E00 GICR_NSACR Non-secure Access Control Register
VLPI_base 0x0070 GICR_VPROPBASER Virtual Redistributor Properties Base Address

Register
VLPI_base 0x0078 GICR_VPENDBASER Virtual Redistributor LPI Pending Table Base

Address Register
VLPI_base 0x0080 GICR_VSGIR Redistributor virtual SGI pending state request

register
VLPI_base 0x0088 GICR_VSGIPENDR Redistributor virtual SGI pending state register

In the GIC Virtual CPU interface block:
Offset Name Description
0x0000 GICV_CTLR Virtual Machine Control Register
0x0004 GICV_PMR Virtual Machine Priority Mask Register
0x0008 GICV_BPR Virtual Machine Binary Point Register
0x000C GICV_IAR Virtual Machine Interrupt Acknowledge Register
0x0010 GICV_EOIR Virtual Machine End Of Interrupt Register
0x0014 GICV_RPR Virtual Machine Running Priority Register
0x0018 GICV_HPPIR Virtual Machine Highest Priority Pending Interrupt Register
0x001C GICV_ABPR Virtual Machine Aliased Binary Point Register
0x0020 GICV_AIAR Virtual Machine Aliased Interrupt Acknowledge Register
0x0024 GICV_AEOIR Virtual Machine Aliased End Of Interrupt Register
0x0028 GICV_AHPPIR Virtual Machine Aliased Highest Priority Pending Interrupt Register
0x002C GICV_STATUSR Virtual Machine Error Reporting Status Register

0x00D0 + 4n GICV_APR<n> Virtual Machine Active Priorities Registers
0x00FC GICV_IIDR Virtual Machine CPU Interface Identification Register
0x1000 GICV_DIR Virtual Machine Deactivate Interrupt Register

In the GIC Virtual interface control block:
Offset Name Description
0x0000 GICH_HCR Hypervisor Control Register
0x0004 GICH_VTR Virtual Type Register
0x0008 GICH_VMCR Virtual Machine Control Register
0x0010 GICH_MISR Maintenance Interrupt Status Register
0x0020 GICH_EISR End Interrupt Status Register
0x0030 GICH_ELRSR Empty List Register Status Register

0x00F0 + 4n GICH_APR<n> Active Priorities Registers
0x0100 + 4n GICH_LR<n> List Registers

In the MPAM block:
Frame Offset Name Description

MPAMF_BASE_ns 0x0000 MPAMF_IDR MPAM Features Identification Register

External register index by offset

Page 3169

Frame Offset Name Description
MPAMF_BASE_ns 0x0018 MPAMF_IIDR MPAM Implementation Identification Register
MPAMF_BASE_ns 0x0020 MPAMF_AIDR MPAM Architecture Identification Register
MPAMF_BASE_ns 0x0028 MPAMF_IMPL_IDR MPAM Implementation-Specific Partitioning

Feature Identification Register
MPAMF_BASE_ns 0x0030 MPAMF_CPOR_IDR MPAM Features Cache Portion Partitioning ID

register
MPAMF_BASE_ns 0x0038 MPAMF_CCAP_IDR MPAM Features Cache Capacity Partitioning

ID register
MPAMF_BASE_ns 0x0040 MPAMF_MBW_IDR MPAM Memory Bandwidth Partitioning

Identification Register
MPAMF_BASE_ns 0x0048 MPAMF_PRI_IDR MPAM Priority Partitioning Identification

Register
MPAMF_BASE_ns 0x0050 MPAMF_PARTID_NRW_IDR MPAM PARTID Narrowing ID register
MPAMF_BASE_ns 0x0080 MPAMF_MSMON_IDR MPAM Resource Monitoring Identification

Register
MPAMF_BASE_ns 0x0088 MPAMF_CSUMON_IDR MPAM Features Cache Storage Usage

Monitoring ID register
MPAMF_BASE_ns 0x0090 MPAMF_MBWUMON_IDR MPAM Features Memory Bandwidth Usage

Monitoring ID register
MPAMF_BASE_ns 0x00F0 MPAMF_ECR MPAM Error Control Register
MPAMF_BASE_ns 0x00F8 MPAMF_ESR MPAM Error Status Register
MPAMF_BASE_ns 0x0100 MPAMCFG_PART_SEL MPAM Partition Configuration Selection

Register
MPAMF_BASE_ns 0x0108 MPAMCFG_CMAX MPAM Cache Maximum Capacity Partition

Configuration Register
MPAMF_BASE_ns 0x0200 MPAMCFG_MBW_MIN MPAM Cache Maximum Capacity Partition

Configuration Register
MPAMF_BASE_ns 0x0208 MPAMCFG_MBW_MAX MPAM Memory Bandwidth Maximum

Partition Configuration Register
MPAMF_BASE_ns 0x0220 MPAMCFG_MBW_WINWD MPAM Memory Bandwidth Partitioning

Window Width Configuration Register
MPAMF_BASE_ns 0x0400 MPAMCFG_PRI MPAM Priority Partition Configuration

Register
MPAMF_BASE_ns 0x0500 MPAMCFG_MBW_PROP MPAM Memory Bandwidth Proportional

Stride Partition Configuration Register
MPAMF_BASE_ns 0x0600 MPAMCFG_INTPARTID MPAM Internal PARTID Narrowing

Configuration Register
MPAMF_BASE_ns 0x0800 MSMON_CFG_MON_SEL MPAM Monitor Instance Selection Register
MPAMF_BASE_ns 0x0808 MSMON_CAPT_EVNT MPAM Capture Event Generation Register
MPAMF_BASE_ns 0x0810 MSMON_CFG_CSU_FLT MPAM Memory System Monitor Configure

Cache Storage Usage Monitor Filter Register
MPAMF_BASE_ns 0x0818 MSMON_CFG_CSU_CTL MPAM Memory System Monitor Configure

Cache Storage Usage Monitor Control
Register

MPAMF_BASE_ns 0x0820 MSMON_CFG_MBWU_FLT MPAM Memory System Monitor Configure
Memory Bandwidth Usage Monitor Filter
Register

MPAMF_BASE_ns 0x0828 MSMON_CFG_MBWU_CTL MPAM Memory System Monitor Configure
Memory Bandwidth Usage Monitor Control
Register

MPAMF_BASE_ns 0x0840 MSMON_CSU MPAM Cache Storage Usage Monitor
Register

MPAMF_BASE_ns 0x0848 MSMON_CSU_CAPTURE MPAM Cache Storage Usage Monitor
Capture Register

MPAMF_BASE_ns 0x0860 MSMON_MBWU MPAM Memory Bandwidth Usage Monitor
Register

MPAMF_BASE_ns 0x0868 MSMON_MBWU_CAPTURE MPAM Memory Bandwidth Usage Monitor
Capture Register

External register index by offset

Page 3170

Frame Offset Name Description
MPAMF_BASE_ns 0x0880 MSMON_MBWU_L MPAM Long Memory Bandwidth Usage

Monitor Register
MPAMF_BASE_ns 0x0890 MSMON_MBWU_L_CAPTURE MPAM Long Memory Bandwidth Usage

Monitor Capture Register
MPAMF_BASE_ns 0x1000 MPAMCFG_CPBM MPAM Cache Portion Bitmap Partition

Configuration Register
MPAMF_BASE_ns 0x2000 MPAMCFG_MBW_PBM MPAM Bandwidth Portion Bitmap Partition

Configuration Register
MPAMF_BASE_s 0x0000 MPAMF_IDR MPAM Features Identification Register
MPAMF_BASE_s 0x0008 MPAMF_SIDR MPAM Features Secure Identification

Register
MPAMF_BASE_s 0x0018 MPAMF_IIDR MPAM Implementation Identification Register
MPAMF_BASE_s 0x0020 MPAMF_AIDR MPAM Architecture Identification Register
MPAMF_BASE_s 0x0028 MPAMF_IMPL_IDR MPAM Implementation-Specific Partitioning

Feature Identification Register
MPAMF_BASE_s 0x0030 MPAMF_CPOR_IDR MPAM Features Cache Portion Partitioning ID

register
MPAMF_BASE_s 0x0038 MPAMF_CCAP_IDR MPAM Features Cache Capacity Partitioning

ID register
MPAMF_BASE_s 0x0040 MPAMF_MBW_IDR MPAM Memory Bandwidth Partitioning

Identification Register
MPAMF_BASE_s 0x0048 MPAMF_PRI_IDR MPAM Priority Partitioning Identification

Register
MPAMF_BASE_s 0x0050 MPAMF_PARTID_NRW_IDR MPAM PARTID Narrowing ID register
MPAMF_BASE_s 0x0080 MPAMF_MSMON_IDR MPAM Resource Monitoring Identification

Register
MPAMF_BASE_s 0x0088 MPAMF_CSUMON_IDR MPAM Features Cache Storage Usage

Monitoring ID register
MPAMF_BASE_s 0x0090 MPAMF_MBWUMON_IDR MPAM Features Memory Bandwidth Usage

Monitoring ID register
MPAMF_BASE_s 0x00F0 MPAMF_ECR MPAM Error Control Register
MPAMF_BASE_s 0x00F8 MPAMF_ESR MPAM Error Status Register
MPAMF_BASE_s 0x0100 MPAMCFG_PART_SEL MPAM Partition Configuration Selection

Register
MPAMF_BASE_s 0x0108 MPAMCFG_CMAX MPAM Cache Maximum Capacity Partition

Configuration Register
MPAMF_BASE_s 0x0200 MPAMCFG_MBW_MIN MPAM Cache Maximum Capacity Partition

Configuration Register
MPAMF_BASE_s 0x0208 MPAMCFG_MBW_MAX MPAM Memory Bandwidth Maximum

Partition Configuration Register
MPAMF_BASE_s 0x0220 MPAMCFG_MBW_WINWD MPAM Memory Bandwidth Partitioning

Window Width Configuration Register
MPAMF_BASE_s 0x0400 MPAMCFG_PRI MPAM Priority Partition Configuration

Register
MPAMF_BASE_s 0x0500 MPAMCFG_MBW_PROP MPAM Memory Bandwidth Proportional

Stride Partition Configuration Register
MPAMF_BASE_s 0x0600 MPAMCFG_INTPARTID MPAM Internal PARTID Narrowing

Configuration Register
MPAMF_BASE_s 0x0800 MSMON_CFG_MON_SEL MPAM Monitor Instance Selection Register
MPAMF_BASE_s 0x0808 MSMON_CAPT_EVNT MPAM Capture Event Generation Register
MPAMF_BASE_s 0x0810 MSMON_CFG_CSU_FLT MPAM Memory System Monitor Configure

Cache Storage Usage Monitor Filter Register
MPAMF_BASE_s 0x0818 MSMON_CFG_CSU_CTL MPAM Memory System Monitor Configure

Cache Storage Usage Monitor Control
Register

MPAMF_BASE_s 0x0820 MSMON_CFG_MBWU_FLT MPAM Memory System Monitor Configure
Memory Bandwidth Usage Monitor Filter
Register

External register index by offset

Page 3171

Frame Offset Name Description
MPAMF_BASE_s 0x0828 MSMON_CFG_MBWU_CTL MPAM Memory System Monitor Configure

Memory Bandwidth Usage Monitor Control
Register

MPAMF_BASE_s 0x0840 MSMON_CSU MPAM Cache Storage Usage Monitor
Register

MPAMF_BASE_s 0x0848 MSMON_CSU_CAPTURE MPAM Cache Storage Usage Monitor
Capture Register

MPAMF_BASE_s 0x0860 MSMON_MBWU MPAM Memory Bandwidth Usage Monitor
Register

MPAMF_BASE_s 0x0868 MSMON_MBWU_CAPTURE MPAM Memory Bandwidth Usage Monitor
Capture Register

MPAMF_BASE_s 0x0880 MSMON_MBWU_L MPAM Long Memory Bandwidth Usage
Monitor Register

MPAMF_BASE_s 0x0890 MSMON_MBWU_L_CAPTURE MPAM Long Memory Bandwidth Usage
Monitor Capture Register

MPAMF_BASE_s 0x1000 MPAMCFG_CPBM MPAM Cache Portion Bitmap Partition
Configuration Register

MPAMF_BASE_s 0x2000 MPAMCFG_MBW_PBM MPAM Bandwidth Portion Bitmap Partition
Configuration Register

In the PMU block:
Offset Name Description

0x000 + 8n PMEVCNTR<n>_EL0 Performance Monitors Event Count Registers
0x0F8 PMCCNTR_EL0[31:0] Performance Monitors Cycle Counter
0x0FC PMCCNTR_EL0[63:32] Performance Monitors Cycle Counter
0x200 PMPCSR[31:0] Program Counter Sample Register
0x204 PMPCSR[63:32] Program Counter Sample Register
0x208 PMCID1SR CONTEXTIDR_EL1 Sample Register
0x20C PMVIDSR VMID Sample Register
0x220 PMPCSR[31:0] Program Counter Sample Register
0x224 PMPCSR[63:32] Program Counter Sample Register
0x228 PMCID1SR CONTEXTIDR_EL1 Sample Register
0x22C PMCID2SR CONTEXTIDR_EL2 Sample Register

0x400 + 4n PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers
0x47C PMCCFILTR_EL0 Performance Monitors Cycle Counter Filter Register
0xC00 PMCNTENSET_EL0 Performance Monitors Count Enable Set register
0xC20 PMCNTENCLR_EL0 Performance Monitors Count Enable Clear register
0xC40 PMINTENSET_EL1 Performance Monitors Interrupt Enable Set register
0xC60 PMINTENCLR_EL1 Performance Monitors Interrupt Enable Clear register
0xC80 PMOVSCLR_EL0 Performance Monitors Overflow Flag Status Clear register
0xCA0 PMSWINC_EL0 Performance Monitors Software Increment register
0xCC0 PMOVSSET_EL0 Performance Monitors Overflow Flag Status Set register
0xE00 PMCFGR Performance Monitors Configuration Register
0xE04 PMCR_EL0 Performance Monitors Control Register
0xE20 PMCEID0 Performance Monitors Common Event Identification register 0
0xE24 PMCEID1 Performance Monitors Common Event Identification register 1
0xE28 PMCEID2 Performance Monitors Common Event Identification register 2
0xE2C PMCEID3 Performance Monitors Common Event Identification register 3
0xE40 PMMIR Performance Monitors Machine Identification Register
0xF00 PMITCTRL Performance Monitors Integration mode Control register
0xFA8 PMDEVAFF0 Performance Monitors Device Affinity register 0

External register index by offset

Page 3172

Offset Name Description
0xFAC PMDEVAFF1 Performance Monitors Device Affinity register 1
0xFB0 PMLAR Performance Monitors Lock Access Register
0xFB4 PMLSR Performance Monitors Lock Status Register
0xFB8 PMAUTHSTATUS Performance Monitors Authentication Status register
0xFBC PMDEVARCH Performance Monitors Device Architecture register
0xFC8 PMDEVID Performance Monitors Device ID register
0xFCC PMDEVTYPE Performance Monitors Device Type register
0xFD0 PMPIDR4 Performance Monitors Peripheral Identification Register 4
0xFE0 PMPIDR0 Performance Monitors Peripheral Identification Register 0
0xFE4 PMPIDR1 Performance Monitors Peripheral Identification Register 1
0xFE8 PMPIDR2 Performance Monitors Peripheral Identification Register 2
0xFEC PMPIDR3 Performance Monitors Peripheral Identification Register 3
0xFF0 PMCIDR0 Performance Monitors Component Identification Register 0
0xFF4 PMCIDR1 Performance Monitors Component Identification Register 1
0xFF8 PMCIDR2 Performance Monitors Component Identification Register 2
0xFFC PMCIDR3 Performance Monitors Component Identification Register 3

In the RAS block:
Offset Name Description

0x000 + 64n ERR<n>FR Error Record Feature Register
0x008 + 64n ERR<n>CTLR Error Record Control Register
0x010 + 64n ERR<n>STATUS Error Record Primary Status Register
0x018 + 64n ERR<n>ADDR Error Record Address Register
0x020 + 64n ERR<n>MISC0 Error Record Miscellaneous Register 0
0x028 + 64n ERR<n>MISC1 Error Record Miscellaneous Register 1
0x030 + 64n ERR<n>MISC2 Error Record Miscellaneous Register 2
0x038 + 64n ERR<n>MISC3 Error Record Miscellaneous Register 3
0x800 + 64n ERR<n>PFGF Pseudo-fault Generation Feature Register
0x808 + 64n ERR<n>PFGCTL Pseudo-fault Generation Control Register
0x810 + 64n ERR<n>PFGCDN Pseudo-fault Generation Countdown Register

0xE00 ERRGSR Error Group Status Register
0xE10 ERRIIDR Implementation Identification Register
0xE80 ERRFHICR0 Fault-Handling Interrupt Configuration Register 0

0xE80 + 8n ERRIRQCR<n> Generic Error Interrupt Configuration Register
0xE88 ERRFHICR1 Fault-Handling Interrupt Configuration Register 1
0xE8C ERRFHICR2 Fault-Handling Interrupt Configuration Register 2
0xE90 ERRERICR0 Error Recovery Interrupt Configuration Register 0
0xE98 ERRERICR1 Error Recovery Interrupt Configuration Register 1
0xE9C ERRERICR2 Error Recovery Interrupt Configuration Register 2
0xEA0 ERRCRICR0 Critical Error Interrupt Configuration Register 0
0xEA8 ERRCRICR1 Critical Error Interrupt Configuration Register 1
0xEAC ERRCRICR2 Critical Error Interrupt Configuration Register 2
0xEF8 ERRIRQSR Error Interrupt Status Register
0xFA8 ERRDEVAFF Device Affinity Register
0xFBC ERRDEVARCH Device Architecture Register
0xFC8 ERRDEVID Device Configuration Register
0xFD0 ERRPIDR4 Peripheral Identification Register 4
0xFE0 ERRPIDR0 Peripheral Identification Register 0

External register index by offset

Page 3173

Offset Name Description
0xFE4 ERRPIDR1 Peripheral Identification Register 1
0xFE8 ERRPIDR2 Peripheral Identification Register 2
0xFEC ERRPIDR3 Peripheral Identification Register 3
0xFF0 ERRCIDR0 Component Identification Register 0
0xFF4 ERRCIDR1 Component Identification Register 1
0xFF8 ERRCIDR2 Component Identification Register 2
0xFFC ERRCIDR3 Component Identification Register 3

In the Timer block:
Frame Offset Name Description

CNTBaseN 0x000 CNTPCT[31:0] Counter-timer Physical Count
CNTBaseN 0x004 CNTPCT[63:32] Counter-timer Physical Count
CNTBaseN 0x008 CNTVCT[31:0] Counter-timer Virtual Count
CNTBaseN 0x00C CNTVCT[63:32] Counter-timer Virtual Count
CNTBaseN 0x010 CNTFRQ Counter-timer Frequency
CNTBaseN 0x014 CNTEL0ACR Counter-timer EL0 Access Control Register
CNTBaseN 0x018 CNTVOFF[31:0] Counter-timer Virtual Offset
CNTBaseN 0x01C CNTVOFF[63:32] Counter-timer Virtual Offset
CNTBaseN 0x020 CNTP_CVAL[31:0] Counter-timer Physical Timer CompareValue
CNTBaseN 0x024 CNTP_CVAL[63:32] Counter-timer Physical Timer CompareValue
CNTBaseN 0x028 CNTP_TVAL Counter-timer Physical Timer TimerValue
CNTBaseN 0x02C CNTP_CTL Counter-timer Physical Timer Control
CNTBaseN 0x030 CNTV_CVAL[31:0] Counter-timer Virtual Timer CompareValue
CNTBaseN 0x034 CNTV_CVAL[63:32] Counter-timer Virtual Timer CompareValue
CNTBaseN 0x038 CNTV_TVAL Counter-timer Virtual Timer TimerValue
CNTBaseN 0x03C CNTV_CTL Counter-timer Virtual Timer Control
CNTBaseN 0xFD0 + 4n CounterID<n> Counter ID registers
CNTCTLBase 0x000 CNTFRQ Counter-timer Frequency
CNTCTLBase 0x004 CNTNSAR Counter-timer Non-secure Access Register
CNTCTLBase 0x008 CNTTIDR Counter-timer Timer ID Register
CNTCTLBase 0x040 + 4n CNTACR<n> Counter-timer Access Control Registers
CNTCTLBase 0x080 + 8n CNTVOFF<n>[31:0] Counter-timer Virtual Offsets
CNTCTLBase 0x084 + 8n CNTVOFF<n>[63:32] Counter-timer Virtual Offsets
CNTCTLBase 0xFD0 + 4n CounterID<n> Counter ID registers
CNTControlBase 0x000 CNTCR Counter Control Register
CNTControlBase 0x004 CNTSR Counter Status Register
CNTControlBase 0x008 CNTCV[63:0] Counter Count Value register
CNTControlBase 0x020 CNTFID0 Counter Frequency ID
CNTControlBase 0x020 + 4n CNTFID<n> Counter Frequency IDs, n > 0
CNTControlBase 0x10 CNTSCR Counter Scale Register
CNTControlBase 0x1C CNTID Counter Identification Register
CNTControlBase 0xFD0 + 4n CounterID<n> Counter ID registers
CNTEL0BaseN 0x000 CNTPCT[31:0] Counter-timer Physical Count
CNTEL0BaseN 0x004 CNTPCT[63:32] Counter-timer Physical Count
CNTEL0BaseN 0x008 CNTVCT[31:0] Counter-timer Virtual Count
CNTEL0BaseN 0x00C CNTVCT[63:32] Counter-timer Virtual Count
CNTEL0BaseN 0x010 CNTFRQ Counter-timer Frequency
CNTEL0BaseN 0x020 CNTP_CVAL[31:0] Counter-timer Physical Timer CompareValue

External register index by offset

Page 3174

Frame Offset Name Description
CNTEL0BaseN 0x024 CNTP_CVAL[63:32] Counter-timer Physical Timer CompareValue
CNTEL0BaseN 0x028 CNTP_TVAL Counter-timer Physical Timer TimerValue
CNTEL0BaseN 0x02C CNTP_CTL Counter-timer Physical Timer Control
CNTEL0BaseN 0x030 CNTV_CVAL[31:0] Counter-timer Virtual Timer CompareValue
CNTEL0BaseN 0x034 CNTV_CVAL[63:32] Counter-timer Virtual Timer CompareValue
CNTEL0BaseN 0x038 CNTV_TVAL Counter-timer Virtual Timer TimerValue
CNTEL0BaseN 0x03C CNTV_CTL Counter-timer Virtual Timer Control
CNTEL0BaseN 0xFD0 + 4n CounterID<n> Counter ID registers
CNTReadBase 0x000 CNTCV[63:0] Counter Count Value register
CNTReadBase 0xFD0 + 4n CounterID<n> Counter ID registers

09/12/2019 19:23

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

External register index by offset

Page 3175

AMCFGR, Activity Monitors Configuration Register
The AMCFGR characteristics are:

Purpose
Global configuration register for the activity monitors.

Provides information on supported features, the number of counter groups implemented, the total number of activity
monitor event counters implemented, and the size of the counters. AMCFGR is applicable to both the architected and
the auxiliary counter groups.

Configuration
External register AMCFGR bits [31:0] are architecturally mapped to AArch64 System register AMCFGR_EL0[31:0] .

External register AMCFGR bits [31:0] are architecturally mapped to AArch32 System register AMCFGR[31:0] .

The power domain of AMCFGR is IMPLEMENTATION DEFINED.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCFGR are RES0.

Attributes
AMCFGR is a 32-bit register.

Field descriptions
The AMCFGR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NCG RES0 HDBG RAZ SIZE N

NCG, bits [31:28]

Defines the number of counter groups.

The number of implemented counter groups is defined as [AMCFGR.NCG + 1].

If the number of implemented auxiliary activity monitor event counters is zero, this field has a value of 0b0000.
Otherwise, this field has a value of 0b0001.

Bits [27:25]

Reserved, RES0.

HDBG, bit [24]

Halt-on-debug supported.

From Armv8, this feature must be supported, and so this bit is 0b1.

HDBG Meaning
0b0 AMCR.HDBG is RES0.
0b1 AMCR.HDBG is read/write.

AMCFGR, Activity Monitors Configuration Register

Page 3176

Bits [23:14]

Reserved, RAZ.

SIZE, bits [13:8]

Defines the size of activity monitor event counters.

The size of the activity monitor event counters implemented by the Activity Monitors Extension is defined as
[AMCFGR.SIZE + 1].

From Armv8, the counters are 64-bit, and so this field is 0b111111.

Note

Software also uses this field to determine the spacing of counters in the
memory-map. From Armv8, the counters are at doubleword-aligned addresses.

N, bits [7:0]

Defines the number of activity monitor event counters.

The total number of counters implemented in all groups by the Activity Monitors Extension is defined as [AMCFGR.N
+ 1].

Accessing the AMCFGR

AMCFGR can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xE00 AMCFGR

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCFGR, Activity Monitors Configuration Register

Page 3177

AMCGCR, Activity Monitors Counter Group
Configuration Register

The AMCGCR characteristics are:

Purpose
Provides information on the number of activity monitor event counters implemented within each counter group.

Configuration
External register AMCGCR bits [31:0] are architecturally mapped to AArch64 System register AMCGCR_EL0[31:0] .

External register AMCGCR bits [31:0] are architecturally mapped to AArch32 System register AMCGCR[31:0] .

The power domain of AMCGCR is IMPLEMENTATION DEFINED.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCGCR are RES0.

Attributes
AMCGCR is a 32-bit register.

Field descriptions
The AMCGCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CG1NC CG0NC

Bits [31:16]

Reserved, RES0.

CG1NC, bits [15:8]

Counter Group 1 Number of Counters. The number of counters in the auxiliary counter group.

In AMUv1, the permitted range of values is 0 to 16.

CG0NC, bits [7:0]

Counter Group 0 Number of Counters. The number of counters in the architected counter group.

In AMUv1, the value of this field is 4.

Accessing the AMCGCR

AMCGCR can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xCE0 AMCGCR

Accesses on this interface are RO.

AMCGCR, Activity Monitors Counter Group Configuration Register

Page 3178

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCGCR, Activity Monitors Counter Group Configuration Register

Page 3179

AMCIDR0, Activity Monitors Component Identification
Register 0

The AMCIDR0 characteristics are:

Purpose
Provides information to identify an activity monitors component.

For more information, see About the Component identification scheme in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Configuration
The power domain of AMCIDR0 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCIDR0 are RES0.

Attributes
AMCIDR0 is a 32-bit register.

Field descriptions
The AMCIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_0

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble. Must read as 0x0D.

Accessing the AMCIDR0

AMCIDR0 can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xFF0 AMCIDR0

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCIDR0, Activity Monitors Component Identification Register 0

Page 3180

AMCIDR1, Activity Monitors Component Identification
Register 1

The AMCIDR1 characteristics are:

Purpose
Provides information to identify an activity monitors component.

For more information, see About the Component identification scheme in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Configuration
The power domain of AMCIDR1 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCIDR1 are RES0.

Attributes
AMCIDR1 is a 32-bit register.

Field descriptions
The AMCIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CLASS PRMBL_1

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class. Reads as 0x9, CoreSight component.

PRMBL_1, bits [3:0]

Preamble. Reads as 0x0.

Accessing the AMCIDR1

AMCIDR1 can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xFF4 AMCIDR1

Accesses on this interface are RO.

AMCIDR1, Activity Monitors Component Identification Register 1

Page 3181

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCIDR1, Activity Monitors Component Identification Register 1

Page 3182

AMCIDR2, Activity Monitors Component Identification
Register 2

The AMCIDR2 characteristics are:

Purpose
Provides information to identify an activity monitors component.

For more information, see About the Component identification scheme in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Configuration
The power domain of AMCIDR2 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCIDR2 are RES0.

Attributes
AMCIDR2 is a 32-bit register.

Field descriptions
The AMCIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_2

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble. Reads as 0x05.

Accessing the AMCIDR2

AMCIDR2 can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xFF8 AMCIDR2

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCIDR2, Activity Monitors Component Identification Register 2

Page 3183

AMCIDR3, Activity Monitors Component Identification
Register 3

The AMCIDR3 characteristics are:

Purpose
Provides information to identify an activity monitors component.

For more information, see About the Component identification scheme in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Configuration
The power domain of AMCIDR3 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCIDR3 are RES0.

Attributes
AMCIDR3 is a 32-bit register.

Field descriptions
The AMCIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_3

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble. Reads as 0xB1.

Accessing the AMCIDR3

AMCIDR3 can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xFFC AMCIDR3

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCIDR3, Activity Monitors Component Identification Register 3

Page 3184

AMCNTENCLR0, Activity Monitors Count Enable Clear
Register 0

The AMCNTENCLR0 characteristics are:

Purpose
Disable control bits for the architected s event counters, AMEVCNTR0<n>.

Configuration
External register AMCNTENCLR0 bits [31:0] are architecturally mapped to AArch64 System register
AMCNTENCLR0_EL0[31:0] .

External register AMCNTENCLR0 bits [31:0] are architecturally mapped to AArch32 System register
AMCNTENCLR0[31:0] .

The power domain of AMCNTENCLR0 is IMPLEMENTATION DEFINED.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCNTENCLR0 are RES0.

Attributes
AMCNTENCLR0 is a 32-bit register.

Field descriptions
The AMCNTENCLR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P<n>, bit [n]

P<n>, bit [n], for n = 0 to 31

Activity monitor event counter disable bit for AMEVCNTR0<n>.

Bits [31:N] are RAZ/WI. N is the value in AMCGCR.CG0NC.

Possible values of each bit are:

P<n> Meaning
0b0 When read, means that AMEVCNTR0<n> is disabled. When

written, has no effect.
0b1 When read, means that AMEVCNTR0<n> is enabled. When

written, disables AMEVCNTR0<n>.

On a Cold reset, this field resets to 0.

Accessing the AMCNTENCLR0

AMCNTENCLR0 can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xC20 AMCNTENCLR0

Accesses on this interface are RO.

AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0

Page 3185

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0

Page 3186

AMCNTENCLR1, Activity Monitors Count Enable Clear
Register 1

The AMCNTENCLR1 characteristics are:

Purpose
Disable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>.

Configuration
External register AMCNTENCLR1 bits [31:0] are architecturally mapped to AArch64 System register
AMCNTENCLR1_EL0[31:0] .

External register AMCNTENCLR1 bits [31:0] are architecturally mapped to AArch32 System register
AMCNTENCLR1[31:0] .

The power domain of AMCNTENCLR1 is IMPLEMENTATION DEFINED.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCNTENCLR1 are RES0.

Attributes
AMCNTENCLR1 is a 32-bit register.

Field descriptions
The AMCNTENCLR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P<n>, bit [n]

P<n>, bit [n], for n = 0 to 31

Activity monitor event counter disable bit for AMEVCNTR1<n>.

Bits [31:N] are RAZ/WI. N is the value in AMCGCR.CG1NC.

Possible values of each bit are:

P<n> Meaning
0b0 When read, means that AMEVCNTR1<n> is disabled. When

written, has no effect.
0b1 When read, means that AMEVCNTR1<n> is enabled. When

written, disables AMEVCNTR1<n>.

On a Cold reset, this field resets to 0.

Accessing the AMCNTENCLR1
If the number of auxiliary activity monitor event counters implemented is zero, reads and writes of AMCNTENCLR1
are CONSTRAINED UNPREDICTABLE, and accesses to the register behave as RAZ/WI.

Note

The number of auxiliary activity monitor event counters implemented is zero
exactly when AMCFGR.NCG == 0b0000.

AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1

Page 3187

AMCNTENCLR1 can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xC24 AMCNTENCLR1

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1

Page 3188

AMCNTENSET0, Activity Monitors Count Enable Set
Register 0

The AMCNTENSET0 characteristics are:

Purpose
Enable control bits for the architected activity monitors event counters, AMEVCNTR0<n>.

Configuration
External register AMCNTENSET0 bits [31:0] are architecturally mapped to AArch64 System register
AMCNTENSET0_EL0[31:0] .

External register AMCNTENSET0 bits [31:0] are architecturally mapped to AArch32 System register
AMCNTENSET0[31:0] .

The power domain of AMCNTENSET0 is IMPLEMENTATION DEFINED.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCNTENSET0 are RES0.

Attributes
AMCNTENSET0 is a 32-bit register.

Field descriptions
The AMCNTENSET0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P<n>, bit [n]

P<n>, bit [n], for n = 0 to 31

Activity monitor event counter enable bit for AMEVCNTR0<n>.

Bits [31:N] are RAZ/WI. N is the value in AMCGCR.CG0NC.

Possible values of each bit are:

P<n> Meaning
0b0 When read, means that AMEVCNTR0<n> is disabled. When

written, has no effect.
0b1 When read, means that AMEVCNTR0<n> is enabled. When

written, enables AMEVCNTR0<n>.

On a Cold reset, this field resets to 0.

Accessing the AMCNTENSET0

AMCNTENSET0 can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xC00 AMCNTENSET0

Accesses on this interface are RO.

AMCNTENSET0, Activity Monitors Count Enable Set Register 0

Page 3189

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCNTENSET0, Activity Monitors Count Enable Set Register 0

Page 3190

AMCNTENSET1, Activity Monitors Count Enable Set
Register 1

The AMCNTENSET1 characteristics are:

Purpose
Enable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>.

Configuration
External register AMCNTENSET1 bits [31:0] are architecturally mapped to AArch64 System register
AMCNTENSET1_EL0[31:0] .

External register AMCNTENSET1 bits [31:0] are architecturally mapped to AArch32 System register
AMCNTENSET1[31:0] .

The power domain of AMCNTENSET1 is IMPLEMENTATION DEFINED.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCNTENSET1 are RES0.

Attributes
AMCNTENSET1 is a 32-bit register.

Field descriptions
The AMCNTENSET1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P<n>, bit [n]

P<n>, bit [n], for n = 0 to 31

Activity monitor event counter enable bit for AMEVCNTR1<n>.

Bits [31:N] are RAZ/WI. N is the value in AMCGCR.CG1NC.

Possible values of each bit are:

P<n> Meaning
0b0 When read, means that AMEVCNTR1<n> is disabled. When

written, has no effect.
0b1 When read, means that AMEVCNTR1<n> is enabled. When

written, enables AMEVCNTR1<n>.

On a Cold reset, this field resets to 0.

Accessing the AMCNTENSET1
If the number of auxiliary activity monitor event counters implemented is zero, reads and writes of AMCNTENSET1
are CONSTRAINED UNPREDICTABLE, and accesses to the register behave as RAZ/WI.

Note

The number of auxiliary activity monitor counters implemented is zero exactly
when AMCFGR.NCG == 0b0000.

AMCNTENSET1, Activity Monitors Count Enable Set Register 1

Page 3191

AMCNTENSET1 can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xC04 AMCNTENSET1

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCNTENSET1, Activity Monitors Count Enable Set Register 1

Page 3192

AMCR, Activity Monitors Control Register
The AMCR characteristics are:

Purpose
Global control register for the activity monitors implementation. AMCR is applicable to both the architected and the
auxiliary counter groups.

Configuration
External register AMCR bits [31:0] are architecturally mapped to AArch64 System register AMCR_EL0[31:0] .

External register AMCR bits [31:0] are architecturally mapped to AArch32 System register AMCR[31:0] .

The power domain of AMCR is IMPLEMENTATION DEFINED.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCR are RES0.

Attributes
AMCR is a 32-bit register.

Field descriptions
The AMCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 HDBG RAZ/WI

Bits [31:11]

Reserved, RES0.

HDBG, bit [10]

This bit controls whether activity monitor counting is halted when the PE is halted in Debug state.

HDBG Meaning
0b0 Activity monitors do not halt counting when the PE is halted in

Debug state.
0b1 Activity monitors halt counting when the PE is halted in Debug

state.

Bits [9:0]

Reserved, RAZ/WI.

Accessing the AMCR

AMCR can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xE04 AMCR

Accesses on this interface are RO.

AMCR, Activity Monitors Control Register

Page 3193

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMCR, Activity Monitors Control Register

Page 3194

AMDEVAFF0, Activity Monitors Device Affinity Register
0

The AMDEVAFF0 characteristics are:

Purpose
Copy of the low half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor
system the AMU component relates to.

Configuration
The power domain of AMDEVAFF0 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMDEVAFF0 are RES0.

Attributes
AMDEVAFF0 is a 32-bit register.

Field descriptions
The AMDEVAFF0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MPIDR_EL1lo

MPIDR_EL1lo, bits [31:0]

MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest implemented Exception
level.

Accessing the AMDEVAFF0

AMDEVAFF0 can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xFA8 AMDEVAFF0

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMDEVAFF0, Activity Monitors Device Affinity Register 0

Page 3195

AMDEVAFF1, Activity Monitors Device Affinity Register
1

The AMDEVAFF1 characteristics are:

Purpose
Copy of the high half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor
system the AMU component relates to.

Configuration
The power domain of AMDEVAFF1 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMDEVAFF1 are RES0.

Attributes
AMDEVAFF1 is a 32-bit register.

Field descriptions
The AMDEVAFF1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MPIDR_EL1hi

MPIDR_EL1hi, bits [31:0]

MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest implemented Exception
level.

Accessing the AMDEVAFF1

AMDEVAFF1 can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xFAC AMDEVAFF1

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMDEVAFF1, Activity Monitors Device Affinity Register 1

Page 3196

AMDEVARCH, Activity Monitors Device Architecture
Register

The AMDEVARCH characteristics are:

Purpose
Identifies the programmers' model architecture of the AMU component.

Configuration
The power domain of AMDEVARCH is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMDEVARCH are RES0.

Attributes
AMDEVARCH is a 32-bit register.

Field descriptions
The AMDEVARCH bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARCHITECT PRESENT REVISION ARCHID

ARCHITECT, bits [31:21]

Defines the architecture of the component. For AMU, this is Arm Limited.

Bits [31:28] are the JEP106 continuation code, 0x4.

Bits [27:21] are the JEP106 ID code, 0x3B.

PRESENT, bit [20]

When set to 1, indicates that the DEVARCH is present.

This field is 1 in Armv8.

REVISION, bits [19:16]

Defines the architecture revision. For architectures defined by Arm this is the minor revision.

REVISION Meaning
0b0000 Architecture revision is AMUv1.

All other values are reserved.

ARCHID, bits [15:0]

Defines this part to be an AMU component. For architectures defined by Arm this is further subdivided.

For AMU:

AMDEVARCH, Activity Monitors Device Architecture Register

Page 3197

• Bits [15:12] are the architecture version, 0x0.
• Bits [11:0] are the architecture part number, 0xA66.

This corresponds to AMU architecture version AMUv1.

Accessing the AMDEVARCH

AMDEVARCH can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xFBC AMDEVARCH

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMDEVARCH, Activity Monitors Device Architecture Register

Page 3198

AMDEVTYPE, Activity Monitors Device Type Register
The AMDEVTYPE characteristics are:

Purpose
Indicates to a debugger that this component is part of a PE's performance monitor interface.

Configuration
The power domain of AMDEVTYPE is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMDEVTYPE are RES0.

Attributes
AMDEVTYPE is a 32-bit register.

Field descriptions
The AMDEVTYPE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SUB MAJOR

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Subtype. Reads as 0x1, to indicate this is a component within a PE.

MAJOR, bits [3:0]

Major type. Reads as 0x6, to indicate this is a performance monitor component.

Accessing the AMDEVTYPE

AMDEVTYPE can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xFCC AMDEVTYPE

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMDEVTYPE, Activity Monitors Device Type Register

Page 3199

AMEVCNTR0<n>, Activity Monitors Event Counter
Registers 0, n = 0 - 15

The AMEVCNTR0<n> characteristics are:

Purpose
Provides access to the architected activity monitor event counters.

Configuration
External register AMEVCNTR0<n> bits [63:0] are architecturally mapped to AArch64 System register
AMEVCNTR0<n>_EL0[63:0] .

External register AMEVCNTR0<n> bits [63:0] are architecturally mapped to AArch32 System register
AMEVCNTR0<n>[63:0] .

The power domain of AMEVCNTR0<n> is IMPLEMENTATION DEFINED.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMEVCNTR0<n> are RES0.

Attributes
AMEVCNTR0<n> is a 64-bit register.

Field descriptions
The AMEVCNTR0<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ACNT
ACNT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACNT, bits [63:0]

Architected activity monitor event counter n.

Value of architected activity monitor event counter n, where n is the number of this register and is a number from 0 to
15.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

On a Cold reset, this field resets to 0.

Accessing the AMEVCNTR0<n>
If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of
AMEVCNTR0<n> are CONSTRAINED UNPREDICTABLE, and accesses to the register behave as RAZ/WI.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event
counters.

AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 15

Page 3200

AMEVCNTR0<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance Range
AMU 0x000 +

8n
AMEVCNTR0<n> 31:0

Accesses on this interface are RO.

Component Offset Instance Range
AMU 0x004 +

8n
AMEVCNTR0<n> 63:32

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 15

Page 3201

AMEVCNTR1<n>, Activity Monitors Event Counter
Registers 1, n = 0 - 15

The AMEVCNTR1<n> characteristics are:

Purpose
Provides access to the auxiliary activity monitor event counters.

Configuration
External register AMEVCNTR1<n> bits [63:0] are architecturally mapped to AArch64 System register
AMEVCNTR1<n>_EL0[63:0] .

External register AMEVCNTR1<n> bits [63:0] are architecturally mapped to AArch32 System register
AMEVCNTR1<n>[63:0] .

The power domain of AMEVCNTR1<n> is IMPLEMENTATION DEFINED.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMEVCNTR1<n> are RES0.

Attributes
AMEVCNTR1<n> is a 64-bit register.

Field descriptions
The AMEVCNTR1<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ACNT
ACNT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACNT, bits [63:0]

Auxiliary activity monitor event counter n.

Value of auxiliary activity monitor event counter n, where n is the number of this register and is a number from 0 to
15.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

On a Cold reset, this field resets to 0.

Accessing the AMEVCNTR1<n>
If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of
AMEVCNTR1<n> are CONSTRAINED UNPREDICTABLE, and accesses to the register behave as RAZ/WI.

Note

AMCGCR.CG1NC identifies the number of auxiliary activity monitor event
counters.

AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15

Page 3202

AMEVCNTR1<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance Range
AMU 0x100 +

8n
AMEVCNTR1<n> 31:0

Accesses on this interface are RO.

Component Offset Instance Range
AMU 0x104 +

8n
AMEVCNTR1<n> 63:32

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15

Page 3203

AMEVTYPER0<n>, Activity Monitors Event Type
Registers 0, n = 0 - 15

The AMEVTYPER0<n> characteristics are:

Purpose
Provides information on the events that an architected activity monitor event counter AMEVCNTR0<n> counts.

Configuration
External register AMEVTYPER0<n> bits [31:0] are architecturally mapped to AArch64 System register
AMEVTYPER0<n>_EL0[31:0] .

External register AMEVTYPER0<n> bits [31:0] are architecturally mapped to AArch32 System register
AMEVTYPER0<n>[31:0] .

The power domain of AMEVTYPER0<n> is IMPLEMENTATION DEFINED.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMEVTYPER0<n> are RES0.

Attributes
AMEVTYPER0<n> is a 32-bit register.

Field descriptions
The AMEVTYPER0<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAZ RES0 evtCount

Bits [31:25]

Reserved, RAZ.

Bits [24:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the architected activity monitor event counter
AMEVCNTR0<n>. The value of this field is architecturally mandated for each architected counter.

The following table shows the mapping between required event numbers and the corresponding counters:

evtCount Meaning Applies when
0x0011 Processor frequency cycles When n == 0
0x4004 Constant frequency cycles When n == 1
0x0008 Instructions retired When n == 2
0x4005 Memory stall cycles When n == 3

AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 15

Page 3204

Accessing the AMEVTYPER0<n>
If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of
AMEVTYPER0<n> are CONSTRAINED UNPREDICTABLE, and accesses to the register behave as RAZ/WI.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event
counters.

AMEVTYPER0<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0x400 + 4n AMEVTYPER0<n>

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 15

Page 3205

AMEVTYPER1<n>, Activity Monitors Event Type
Registers 1, n = 0 - 15

The AMEVTYPER1<n> characteristics are:

Purpose
Provides information on the events that an auxiliary activity monitor event counter AMEVCNTR1<n> counts.

Configuration
External register AMEVTYPER1<n> bits [31:0] are architecturally mapped to AArch64 System register
AMEVTYPER1<n>_EL0[31:0] .

External register AMEVTYPER1<n> bits [31:0] are architecturally mapped to AArch32 System register
AMEVTYPER1<n>[31:0] .

The power domain of AMEVTYPER1<n> is IMPLEMENTATION DEFINED.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMEVTYPER1<n> are RES0.

Attributes
AMEVTYPER1<n> is a 32-bit register.

Field descriptions
The AMEVTYPER1<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAZ RES0 evtCount

Bits [31:25]

Reserved, RAZ.

Bits [24:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the auxiliary activity monitor event counter
AMEVCNTR1<n>.

It is IMPLEMENTATION DEFINED what values are supported by each counter.

If software writes a value to this field which is not supported by the corresponding counter AMEVCNTR1<n>, then:

• It is UNPREDICTABLE which event will be counted.
• The value read back is UNKNOWN.

Note

The event counted by AMEVCNTR1<n> might be fixed at implementation. In
this case, the field is read-only and writes are UNDEFINED.

AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15

Page 3206

If the corresponding counter AMEVCNTR1<n> is enabled, writes to this register have UNPREDICTABLE results.

Accessing the AMEVTYPER1<n>
If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of
AMEVTYPER1<n> are CONSTRAINED UNPREDICTABLE, and accesses to the register behave as RAZ/WI.

Note

AMCGCR.CG1NC identifies the number of auxiliary activity monitor event
counters.

AMEVTYPER1<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0x480 + 4n AMEVTYPER1<n>

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15

Page 3207

AMIIDR, Activity Monitors Implementation
Identification Register

The AMIIDR characteristics are:

Purpose
Defines the implementer and revisions of the AMU.

Configuration
The power domain of AMIIDR is IMPLEMENTATION DEFINED.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMIIDR are RES0.

Attributes
AMIIDR is a 32-bit register.

Field descriptions
The AMIIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ProductID Variant Revision Implementer

ProductID, bits [31:20]

This field is an AMU part identifier.

The value of this field is IMPLEMENTATION DEFINED.

If AMPIDR0 is implemented, AMPIDR0.PART_0 matches bits [27:20] of this field.

If AMPIDR1 is implemented, AMPIDR1.PART_1 matches bits [31:28] of this field.

Variant, bits [19:16]

This field distinguishes product variants or major revisions of the product.

The value of this field is IMPLEMENTATION DEFINED.

If AMPIDR2 is implemented, AMPIDR2.REVISION matches AMIIDR.Variant.

Revision, bits [15:12]

This field distinguishes minor revisions of the product.

The value of this field is IMPLEMENTATION DEFINED.

If AMPIDR3 is implemented, AMPIDR3.REVAND matches AMIIDR.Revision.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the AMU.

For an Arm implementation, this field reads as 0x43B.

AMIIDR, Activity Monitors Implementation Identification Register

Page 3208

Bits [11:8] contain the JEP106 continuation code of the implementer.

Bit 7 is RES0

Bits [6:0] contain the JEP106 identity code of the implementer.

If AMPIDR4 is implemented, AMPIDR4.DES_2 matches bits [11:8] of this field.

If AMPIDR2 is implemented, AMPIDR2.DES_1 matches bits [6:4] of this field.

If AMPIDR1 is implemented, AMPIDR1.DES_0 matches bits [3:0] of this field.

Accessing the AMIIDR

AMIIDR can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xE08 AMIIDR

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMIIDR, Activity Monitors Implementation Identification Register

Page 3209

AMPIDR0, Activity Monitors Peripheral Identification
Register 0

The AMPIDR0 characteristics are:

Purpose
Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Configuration
The power domain of AMPIDR0 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMPIDR0 are RES0.

Attributes
AMPIDR0 is a 32-bit register.

Field descriptions
The AMPIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PART_0

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, least significant byte.

The value of this field is IMPLEMENTATION DEFINED.

Accessing the AMPIDR0

AMPIDR0 can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xFE0 AMPIDR0

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMPIDR0, Activity Monitors Peripheral Identification Register 0

Page 3210

AMPIDR1, Activity Monitors Peripheral Identification
Register 1

The AMPIDR1 characteristics are:

Purpose
Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Configuration
The power domain of AMPIDR1 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMPIDR1 are RES0.

Attributes
AMPIDR1 is a 32-bit register.

Field descriptions
The AMPIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 DES_0 PART_1

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, least significant nibble of JEP106 ID code.

The value of this field is IMPLEMENTATION DEFINED. For Arm Limited, this field is 0b1011.

PART_1, bits [3:0]

Part number, most significant nibble.

The value of this field is IMPLEMENTATION DEFINED.

Accessing the AMPIDR1

AMPIDR1 can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xFE4 AMPIDR1

Accesses on this interface are RO.

AMPIDR1, Activity Monitors Peripheral Identification Register 1

Page 3211

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMPIDR1, Activity Monitors Peripheral Identification Register 1

Page 3212

AMPIDR2, Activity Monitors Peripheral Identification
Register 2

The AMPIDR2 characteristics are:

Purpose
Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Configuration
The power domain of AMPIDR2 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMPIDR2 are RES0.

Attributes
AMPIDR2 is a 32-bit register.

Field descriptions
The AMPIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 REVISION JEDEC DES_1

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Part major revision. Parts can also use this field to extend Part number to 16-bits.

The value of this field is IMPLEMENTATION DEFINED.

JEDEC, bit [3]

RAO. Indicates a JEP106 identity code is used.

DES_1, bits [2:0]

Designer, most significant bits of JEP106 ID code.

The value of this field is IMPLEMENTATION DEFINED. For Arm Limited, this field is 0b011.

AMPIDR2, Activity Monitors Peripheral Identification Register 2

Page 3213

Accessing the AMPIDR2

AMPIDR2 can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xFE8 AMPIDR2

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMPIDR2, Activity Monitors Peripheral Identification Register 2

Page 3214

AMPIDR3, Activity Monitors Peripheral Identification
Register 3

The AMPIDR3 characteristics are:

Purpose
Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Configuration
The power domain of AMPIDR3 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMPIDR3 are RES0.

Attributes
AMPIDR3 is a 32-bit register.

Field descriptions
The AMPIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 REVAND CMOD

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Part minor revision. Parts using AMPIDR2.REVISION as an extension to the Part number must use this field as a major
revision number.

The value of this field is IMPLEMENTATION DEFINED.

CMOD, bits [3:0]

Customer modified. Indicates someone other than the Designer has modified the component.

The value of this field is IMPLEMENTATION DEFINED.

Accessing the AMPIDR3

AMPIDR3 can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xFEC AMPIDR3

AMPIDR3, Activity Monitors Peripheral Identification Register 3

Page 3215

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMPIDR3, Activity Monitors Peripheral Identification Register 3

Page 3216

AMPIDR4, Activity Monitors Peripheral Identification
Register 4

The AMPIDR4 characteristics are:

Purpose
Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

Configuration
The power domain of AMPIDR4 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMPIDR4 are RES0.

Attributes
AMPIDR4 is a 32-bit register.

Field descriptions
The AMPIDR4 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SIZE DES_2

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component. Log2 of the number of 4KB pages from the start of the component to the end of the component
ID registers.

This field reads as 0b0000.

DES_2, bits [3:0]

Designer. JEP106 continuation code, least significant nibble.

The value of this field is IMPLEMENTATION DEFINED. For Arm Limited, this field is 0b0100.

Accessing the AMPIDR4

AMPIDR4 can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xFD0 AMPIDR4

AMPIDR4, Activity Monitors Peripheral Identification Register 4

Page 3217

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMPIDR4, Activity Monitors Peripheral Identification Register 4

Page 3218

ASICCTL, CTI External Multiplexer Control register
The ASICCTL characteristics are:

Purpose
Can be used to provide IMPLEMENTATION DEFINED controls for the CTI. For example, the register might be used to
control multiplexors for additional IMPLEMENTATION DEFINED triggers. The IMPLEMENTATION DEFINED controls provided by
this register might modify the architecturally defined behavior of the CTI.

Note

The architecturally-defined triggers must not be multiplexed.

Configuration
It is IMPLEMENTATION DEFINED whether ASICCTL is implemented in the Core power domain or in the Debug power
domain.

If it is implemented in the Core power domain then it is IMPLEMENTATION DEFINED whether it is in the Cold reset domain
or the Warm reset domain.

This register must reset to a value that supports the architecturally-defined behavior of the CTI. Changing the value of
the register from its reset value causes IMPLEMENTATION DEFINED behavior that might differ from the architecturally-
defined behavior of the CTI.

Other than the requirements listed in this register description, all aspects of the reset behavior of the ASICCTL are
IMPLEMENTATION DEFINED.

Attributes
ASICCTL is a 32-bit register.

Field descriptions
The ASICCTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ASICCTL

ASICCTL can be accessed through the external debug interface:

Component Offset Instance
CTI 0x144 ASICCTL

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are IMPDEF.

ASICCTL, CTI External Multiplexer Control register

Page 3219

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASICCTL, CTI External Multiplexer Control register

Page 3220

CNTACR<n>, Counter-timer Access Control Registers,
n = 0 - 7

The CNTACR<n> characteristics are:

Purpose
Provides top-level access controls for the elements of a timer frame. CNTACR<n> provides the controls for frame
CNTBaseN.

In addition to the CNTACR<n> control:

• CNTNSAR controls whether CNTACR<n> is accessible by Non-secure accesses.
• If frame CNTEL0BaseN is implemented, the CNTEL0ACR in frame CNTBaseN provides additional control of

accesses to frame CNTEL0BaseN.

Configuration
The power domain of CNTACR<n> is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Implemented only if the value of CNTTIDR.Frame<n> is 1.

An implementation of the counters might not provide configurable access to some or all of the features. In this case,
the associated field in the CNTACR<n> register is:

• RAZ/WI if access is always denied.
• RAO/WI if access is always permitted.

Attributes
CNTACR<n> is a 32-bit register.

Field descriptions
The CNTACR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 RWPTRWVTRVOFFRFRQRVCTRPCT

Bits [31:6]

Reserved, RES0.

RWPT, bit [5]

Read/write access to the EL1 Physical Timer registers CNTP_CVAL, CNTP_TVAL, and CNTP_CTL, in frame <n>. The
possible values of this bit are:

RWPT Meaning
0b0 No access to the EL1 Physical Timer registers in frame <n>.

The registers are RES0.
0b1 Read/write access to the EL1 Physical Timer registers in frame

<n>.

This field resets to an architecturally UNKNOWN value.

CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7

Page 3221

RWVT, bit [4]

Read/write access to the Virtual Timer register CNTV_CVAL, CNTV_TVAL, and CNTV_CTL, in frame <n>. The possible
values of this bit are:

RWVT Meaning
0b0 No access to the Virtual Timer registers in frame <n>. The

registers are RES0.
0b1 Read/write access to the Virtual Timer registers in frame <n>.

This field resets to an architecturally UNKNOWN value.

RVOFF, bit [3]

Read-only access to CNTVOFF, in frame <n>. The possible values of this bit are:

RVOFF Meaning
0b0 No access to CNTVOFF in frame <n>. The register is RES0.
0b1 Read-only access to CNTVOFF in frame <n>.

This field resets to an architecturally UNKNOWN value.

RFRQ, bit [2]

Read-only access to CNTFRQ, in frame <n>. The possible values of this bit are:

RFRQ Meaning
0b0 No access to CNTFRQ in frame <n>. The register is RES0.
0b1 Read-only access to CNTFRQ in frame <n>.

This field resets to an architecturally UNKNOWN value.

RVCT, bit [1]

Read-only access to CNTVCT, in frame <n>. The possible values of this bit are:

RVCT Meaning
0b0 No access to CNTVCT in frame <n>. The register is RES0.
0b1 Read-only access to CNTVCT in frame <n>.

This field resets to an architecturally UNKNOWN value.

RPCT, bit [0]

Read-only access to CNTPCT, in frame <n>. The possible values of this bit are:

RPCT Meaning
0b0 No access to CNTPCT in frame <n>. The register is RES0.
0b1 Read-only access to CNTPCT in frame <n>.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTACR<n>
In a system that recognizes two Security states:

• CNTACR<n> is always accessible by Secure accesses.
• CNTNSAR.NS<n> determines whether CNTACR<n> is accessible by Non-secure accesses.

CNTACR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance

CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7

Page 3222

Timer CNTCTLBase 0x040 + 4n CNTACR<n>

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7

Page 3223

CNTCR, Counter Control Register
The CNTCR characteristics are:

Purpose
Enables the counter, controls the counter frequency setting, and controls counter behavior during debug.

Configuration
The power domain of CNTCR is IMPLEMENTATION DEFINED.

Attributes
CNTCR is a 32-bit register.

Field descriptions
The CNTCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 FCREQ RES0 SCENHDBGEN

Bits [31:18]

Reserved, RES0.

FCREQ, bits [17:8]

Frequency change request. Indicates the number of the entry in the Frequency modes table to select.

Selecting an unimplemented entry, or an entry that contains 0, has no effect on the counter.

The maximum number of entries in the Frequency modes table is IMPLEMENTATION DEFINED up to a maximum of 1004
entries, see 'The Frequency modes table' in Chapter I1 of the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile. An implementation is only required to implement an FCREQ field that can hold values
from 0 to the highest supported Frequency modes table entry. Any unrequired most-significant bits of FCREQ can be
implemented as RES0.

This field resets to 0.

Bits [7:3]

Reserved, RES0.

SCEN, bit [2]

When ARMv8.4-CNTSC is implemented:

Scale Enable.

SCEN Meaning
0b0 Scaling is not enabled. The counter value is incremented by

0x1.0000000 for each counter tick.
0b1 Scaling is enabled. The counter is incremented by

CNTSCR.ScaleVal for each counter tick.

The SCEN bit can only be changed when the counter is disabled, when CNTCR.EN == 0.

CNTCR, Counter Control Register

Page 3224

If the value of CNTCR.SCEN changes when CNTCR.EN == 1 then:

• The counter value becomes UNKNOWN.
• The counter value remains UNKNOWN on future ticks of the clock.

When the CNTCV register in the CNTControlBase frame of the memory mapped counter module is written to, the
accumulated fraction information is reset to zero.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HDBG, bit [1]

Halt-on-debug. Controls whether a Halt-on-debug signal halts the system counter:

HDBG Meaning
0b0 System counter ignores Halt-on-debug.
0b1 Asserted Halt-on-debug signal halts system counter update.

This field resets to an architecturally UNKNOWN value.

EN, bit [0]

Enables the counter:

EN Meaning
0b0 System counter disabled.
0b1 System counter enabled.

This field resets to 0.

Accessing the CNTCR
In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes this
register, is implemented only in the Secure memory map.

CNTCR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTControlBase 0x000 CNTCR

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTCR, Counter Control Register

Page 3225

CNTCV, Counter Count Value register
The CNTCV characteristics are:

Purpose
Indicates the current count value.

Configuration
The power domain of CNTCV is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Attributes
CNTCV is a 64-bit register.

Field descriptions
The CNTCV bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CountValue
CountValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CountValue, bits [63:0]

Indicates the counter value.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTCV

Frame Accessibility
CNTControlBase RW
CNTReadBase RO

A write to CNTCV must be visible in the CNTPCT register of each running processor in a finite time.

For the instance of the register in the CNTControlBase frame:

• In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, and therefore this
register instance, is implemented only in the Secure memory map.

• If the counter is enabled, the effect of writing to the register is UNKNOWN.

In an implementation that supports 64-bit atomic memory accesses, this register must be accessible using a 64-bit
atomic access.

CNTCV can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance Range
Timer CNTControlBase 0x008 CNTCV 63:0

Accesses on this interface are RW.

CNTCV, Counter Count Value register

Page 3226

Component Frame Offset Instance Range
Timer CNTReadBase 0x000 CNTCV 63:0

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTCV, Counter Count Value register

Page 3227

CNTEL0ACR, Counter-timer EL0 Access Control
Register

The CNTEL0ACR characteristics are:

Purpose
An implementation of CNTEL0ACR in the frame at CNTBaseN controls whether the CNTPCT, CNTVCT, CNTFRQ, EL1
Physical Timer, and Virtual Timer registers are visible in the frame at CNTEL0BaseN.

Configuration
The power domain of CNTEL0ACR is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Attributes
CNTEL0ACR is a 32-bit register.

Field descriptions
The CNTEL0ACR bit assignments are:

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
RES0 EL0PTENEL0VTEN RES0 EL0VCTENEL0PCTEN

Bits [31:10]

Reserved, RES0.

EL0PTEN, bit [9]

Second view read/write access control for the EL1 Physical Timer registers. This bit controls whether the CNTP_CVAL,
CNTP_TVAL, and CNTP_CTL registers in the current CNTBaseN frame are also accessible in the corresponding
CNTEL0BaseN frame. The possible values of this bit are:

EL0PTEN Meaning
0b0 No access. Registers are RES0 in the second view.
0b1 Access permitted. If the registers are accessible in the

current frame then they are accessible in the second view.

This field resets to an architecturally UNKNOWN value.

EL0VTEN, bit [8]

Second view read/write access control for the Virtual Timer registers. This bit controls whether the CNTV_CVAL,
CNTV_TVAL, and CNTV_CTL registers in the current CNTBaseN frame are also accessible in the corresponding
CNTEL0BaseN frame. The possible values of this bit are:

EL0VTEN Meaning
0b0 No access. Registers are RES0 in the second view.
0b1 Access permitted. If the registers are accessible in the

current frame then they are accessible in the second view.

CNTEL0ACR, Counter-timer EL0 Access Control Register

Page 3228

The definition of this bit means that, if the Virtual Timer registers are not implemented in the current CNTBaseN
frame, then the Virtual Timer register addresses are RES0 in the corresponding CNTEL0BaseN frame, regardless of
the value of this bit.

This field resets to an architecturally UNKNOWN value.

Bits [7:2]

Reserved, RES0.

EL0VCTEN, bit [1]

Second view read access control for CNTVCT and CNTFRQ. The possible values of this bit are:

EL0VCTEN Meaning
0b0 CNTVCT is not visible in the second view.

If EL0PCTEN is set to 0, CNTFRQ is not visible in the
second view.

0b1 Access permitted. If CNTVCT and CNTFRQ are visible in
the current frame then they are visible in the second view.

This field resets to an architecturally UNKNOWN value.

EL0PCTEN, bit [0]

Second view read access control for CNTPCT and CNTFRQ. The possible values of this bit are:

EL0PCTEN Meaning
0b0 CNTPCT is not visible in the second view.

If EL0VCTEN is set to 0, CNTFRQ is not visible in the
second view.

0b1 Access permitted. If CNTPCT and CNTFRQ are visible in
the current frame then they are visible in the second view.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTEL0ACR
CNTEL0ACR can be implemented in any implemented CNTBaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile describes the status fields that identify
whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any

corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

If CNTEL0ACR is not implemented in an implemented CNTBaseN frame:

• The register location in that frame is RAZ/WI.
• If the corresponding CNTEL0BaseN frame is implemented, the registers CNTFRQ, CNTP_CTL, CNTP_CVAL,

CNTP_TVAL, CNTPCT, CNTV_CTL, CNTV_CVAL, CNTV_TVAL, and CNTVCT are not visible in that frame.

CNTEL0ACR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTBaseN 0x014 CNTEL0ACR

Accesses on this interface are RW.

CNTEL0ACR, Counter-timer EL0 Access Control Register

Page 3229

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTEL0ACR, Counter-timer EL0 Access Control Register

Page 3230

CNTFID0, Counter Frequency ID
The CNTFID0 characteristics are:

Purpose
Indicates the base frequency of the system counter.

Configuration
The power domain of CNTFID0 is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

The possible frequencies for the system counter are stored in the Frequency modes table as 32-bit words starting with
the base frequency, CNTFID0. For more information see 'The Frequency modes table' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile.

The final entry in the Frequency modes table must be followed by a 32-bit word of zero value, to mark the end of the
table.

Typically, the Frequency modes table will be in read-only memory. However, a system implementation might use read/
write memory for the table, and initialize the table entries as part of its start-up sequence.

If the Frequency modes table is in read/write memory, Arm strongly recommends that the table is not updated once
the system is running.

Attributes
CNTFID0 is a 32-bit register.

Field descriptions
The CNTFID0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Frequency

Frequency, bits [31:0]

The base frequency of the system counter, in Hz.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTFID0
It is IMPLEMENTATION DEFINED whether this register is RO or RW

In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes this
register, is implemented only in the Secure memory map.

CNTFID0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTControlBase 0x020 CNTFID0

Accesses on this interface are RO or RW.

CNTFID0, Counter Frequency ID

Page 3231

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTFID0, Counter Frequency ID

Page 3232

CNTFID<n>, Counter Frequency IDs, n > 0, n = 1 -
1003

The CNTFID<n> characteristics are:

Purpose
Indicates alternative system counter update frequencies.

Configuration
The power domain of CNTFID<n> is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

The possible frequencies for the system counter are stored in the Frequency modes table as 32-bit words starting with
the base frequency, CNTFID0, see 'The Frequency modes table' in the Arm® Architecture Reference Manual, Armv8,
for Armv8-A architecture profile.

The number of CNTFID<n> registers is IMPLEMENTATION DEFINED, and the only required CNTFID<n> register is
CNTFID0.

The final entry in the Frequency modes table must be followed by a 32-bit word of zero value, to mark the end of the
table.

The architecture can support up to 1004 entries in the Frequency modes table, including the zero-word end marker,
and the number of entries is IMPLEMENTATION DEFINED up to this limit. For an implementation that includes registers in
the IMPLEMENTATION DEFINED register space 0x0C0-0x0FC, the maximum number of entries in the Frequency modes
table is 40, including the zero-word end marker.

Typically, the Frequency modes table will be in read-only memory. However, a system implementation might use read/
write memory for the table, and initialize the table entries as part of its start-up sequence.

If the Frequency modes table is in read/write memory, Arm strongly recommends that the table is not updated once
the system is running.

Attributes
CNTFID<n> is a 32-bit register.

Field descriptions
The CNTFID<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Frequency

Frequency, bits [31:0]

A system counter update frequency, in Hz. Must be an exact divisor of the base frequency. Arm strongly recommends
that all frequency values in the Frequency modes table are integer power-of-two divisors of the base frequency.

When the system timer is operating at a lower frequency than the base frequency, the increment applied at each
counter update is given by:

increment = (base frequency) / (selected frequency)

This field resets to an architecturally UNKNOWN value.

CNTFID<n>, Counter Frequency IDs, n > 0, n = 1 - 1003

Page 3233

Accessing the CNTFID<n>
It is IMPLEMENTATION DEFINED whether this register is RO or RW

In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes these
registers, is implemented only in the Secure memory map.

CNTFID<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTControlBase 0x020 +

4n
CNTFID<n>

Accesses on this interface are RO or RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTFID<n>, Counter Frequency IDs, n > 0, n = 1 - 1003

Page 3234

CNTFRQ, Counter-timer Frequency
The CNTFRQ characteristics are:

Purpose
This register is provided so that software can discover the frequency of the system counter. The instance of the
register in the CNTCTLBase frame must be programmed with this value as part of system initialization. The value of
the register is not interpreted by hardware.

Configuration
The power domain of CNTFRQ is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Attributes
CNTFRQ is a 32-bit register.

Field descriptions
The CNTFRQ bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clock frequency

Bits [31:0]

Clock frequency. Indicates the system counter clock frequency, in Hz.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTFRQ
CNTFRQ must be implemented as an RW register in the CNTCTLBase frame.

In a system that recognizes two Security states, the instance of the register in the CNTCTLBase frame is only
accessible by Secure accesses.

CNTFRQ can be implemented as a RO register in any implemented CNTBaseN frame, and in the corresponding
CNTEL0BaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I2 of the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile describes the status fields that identify
whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any

corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTFRQ is accessible in that frame, as a RO register, if the value of CNTACR<n>.RFRQ is 1.
• Otherwise, the CNTFRQ address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

CNTFRQ, Counter-timer Frequency

Page 3235

• CNTFRQ is accessible as a RO register in that frame if both:
◦ CNTFRQ is accessible in the corresponding CNTBaseN frame.
◦ Either the value of CNTEL0ACR.EL0VCTEN is 1 or the value of CNTEL0ACR.EL0PCTEN is 1.

• Otherwise, the CNTFRQ address in that frame is RAZ/WI.

CNTFRQ can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTBaseN 0x010 CNTFRQ

Accesses on this interface are RO.

Component Frame Offset Instance
Timer CNTEL0BaseN 0x010 CNTFRQ

Accesses on this interface are RO.

Component Frame Offset Instance
Timer CNTCTLBase 0x000 CNTFRQ

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTFRQ, Counter-timer Frequency

Page 3236

CNTID, Counter Identification Register
The CNTID characteristics are:

Purpose
Indicates whether counter scaling is implemented.

Configuration
The power domain of CNTID is IMPLEMENTATION DEFINED.

This register is present only when ARMv8.4-CNTSC is implemented. Otherwise, direct accesses to CNTID are RES0.

Attributes
CNTID is a 32-bit register.

Field descriptions
The CNTID bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CNTSC

Bits [31:4]

Reserved, RES0.

CNTSC, bits [3:0]

Indicates whether Counter Scaling is implemented

CNTSC Meaning
0b0000 Counter scaling is not implemented.
0b0001 Counter scaling is implemented.

All other values are reserved.

Accessing the CNTID
In a system that supports Secure and Non-secure memory maps, the CNTControlBase frame, that includes this
register, is implemented only in the Secure memory map.

CNTID can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTControlBase 0x1C CNTID

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTID, Counter Identification Register

Page 3237

CNTNSAR, Counter-timer Non-secure Access Register
The CNTNSAR characteristics are:

Purpose
Provides the highest-level control of whether frames CNTBaseN and CNTEL0BaseN are accessible by Non-secure
accesses.

Configuration
The power domain of CNTNSAR is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Attributes
CNTNSAR is a 32-bit register.

Field descriptions
The CNTNSAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 NS7NS6NS5NS4NS3NS2NS1NS0

Bits [31:8]

Reserved, RES0.

NS<n>, bit [n], for n = 0 to 7

Non-secure access to frame n. The possible values of this bit are:

NS<n> Meaning
0b0 Secure access only. Behaves as RES0 to Non-secure accesses.
0b1 Secure and Non-secure accesses permitted.

This bit also determines whether, in the CNTCTLBase frame, CNTACR<n> and CNTVOFF<n> are accessible to Non-
secure accesses.

If frame CNTBase<n>:

• Is not implemented, then NS<n> is RES0.
• Is not Configurable access, and is accessible only by Secure accesses, then NS<n> is RES0.
• Is not Configurable access, and is accessible by both Secure and Non-secure accesses, then NS<n> is RES1.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTNSAR
In a system that recognizes two Security states, this register is only accessible by Secure accesses.

CNTNSAR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance

CNTNSAR, Counter-timer Non-secure Access Register

Page 3238

Timer CNTCTLBase 0x004 CNTNSAR

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTNSAR, Counter-timer Non-secure Access Register

Page 3239

CNTP_CTL, Counter-timer Physical Timer Control
The CNTP_CTL characteristics are:

Purpose
Control register for the EL1 physical timer.

Configuration
The power domain of CNTP_CTL is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Attributes
CNTP_CTL is a 32-bit register.

Field descriptions
The CNTP_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views
of the timers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter D6.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

CNTP_CTL, Counter-timer Physical Timer Control

Page 3240

This field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTP_TVAL continues to
count down.

Note

Disabling the output signal might be a power-saving option.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTP_CTL
CNTP_CTL can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN
frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile describes the status fields that identify
whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any

corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTP_CTL is accessible in that frame if the value of CNTACR<n>.RWPT is 1.
• Otherwise, the CNTP_CTL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTP_CTL is accessible in that frame if both:
◦ CNTP_CTL is accessible in the corresponding CNTBaseN frame:
◦ The value of CNTEL0ACR.EL0PTEN is 1.

• Otherwise, the CNTP_CTL address in that frame is RAZ/WI.

CNTP_CTL can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTBaseN 0x02C CNTP_CTL

Accesses on this interface are RW.

Component Frame Offset Instance
Timer CNTEL0BaseN 0x02C CNTP_CTL

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP_CTL, Counter-timer Physical Timer Control

Page 3241

CNTP_CVAL, Counter-timer Physical Timer
CompareValue

The CNTP_CVAL characteristics are:

Purpose
Holds the 64-bit compare value for the EL1 physical timer.

Configuration
The power domain of CNTP_CVAL is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Attributes
CNTP_CVAL is a 64-bit register.

Field descriptions
The CNTP_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL1 physical timer CompareValue.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is greater than or equal to
zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.
• An interrupt is generated if CNTP_CTL.IMASK is 0.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTP_CVAL
CNTP_CVAL can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN
frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile describes the status fields that identify
whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any

corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

CNTP_CVAL, Counter-timer Physical Timer CompareValue

Page 3242

• CNTP_CVAL is accessible in that frame if the value of CNTACR<n>.RWPT is 1.
• Otherwise, the CNTP_CVAL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTP_CVAL is accessible in that frame if both:
◦ CNTP_CVAL is accessible in the corresponding CNTBaseN frame:
◦ The value of CNTEL0ACR.EL0PTEN is 1.

• Otherwise, the CNTP_CVAL address in that frame is RAZ/WI.

If the implementation supports 64-bit atomic accesses, then the CNTP_CVAL register must be accessible as an atomic
64-bit value.

CNTP_CVAL can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance Range
Timer CNTBaseN 0x020 CNTP_CVAL 31:0

Accesses on this interface are RW.

Component Frame Offset Instance Range
Timer CNTBaseN 0x024 CNTP_CVAL 63:32

Accesses on this interface are RW.

Component Frame Offset Instance Range
Timer CNTEL0BaseN 0x020 CNTP_CVAL 31:0

Accesses on this interface are RW.

Component Frame Offset Instance Range
Timer CNTEL0BaseN 0x024 CNTP_CVAL 63:32

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP_CVAL, Counter-timer Physical Timer CompareValue

Page 3243

CNTP_TVAL, Counter-timer Physical Timer TimerValue
The CNTP_TVAL characteristics are:

Purpose
Holds the timer value for the EL1 physical timer.

Configuration
The power domain of CNTP_TVAL is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Attributes
CNTP_TVAL is a 32-bit register.

Field descriptions
The CNTP_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:

• If CNTP_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTP_CTL.ENABLE is 1, the value returned is (CompareValue - CNTPCT).

On a write of this register, CompareValue is set to (CNTPCT + TimerValue), where TimerValue is treated as a signed
32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is greater than or equal to
zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.
• If CNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count, so the TimerValue view
appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTP_TVAL
CNTP_TVAL can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN
frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile describes the status fields that identify
whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.

CNTP_TVAL, Counter-timer Physical Timer TimerValue

Page 3244

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTP_TVAL is accessible in that frame if the value of CNTACR<n>.RWPT is 1.
• Otherwise, the CNTP_TVAL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTP_TVAL is accessible in that frame if both:
◦ CNTP_TVAL is accessible in the corresponding CNTBaseN frame:
◦ The value of CNTEL0ACR.EL0PTEN is 1.

• Otherwise, the CNTP_TVAL address in that frame is RAZ/WI.

CNTP_TVAL can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTBaseN 0x028 CNTP_TVAL

Accesses on this interface are RW.

Component Frame Offset Instance
Timer CNTEL0BaseN 0x028 CNTP_TVAL

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP_TVAL, Counter-timer Physical Timer TimerValue

Page 3245

CNTPCT, Counter-timer Physical Count
The CNTPCT characteristics are:

Purpose
Holds the 64-bit physical count value.

Configuration
The power domain of CNTPCT is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Attributes
CNTPCT is a 64-bit register.

Field descriptions
The CNTPCT bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Physical count value
Physical count value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Physical count value.

Accessing the CNTPCT
CNTPCT can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN frame,
as a RO register.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile describes the status fields that identify
whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any

corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTPCT is accessible in that frame, as a RO register, if the value of CNTACR<n>.RPCT is 1.
• Otherwise, the CNTPCT address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTPCT is accessible in that frame if both:
◦ CNTPCT is accessible in the corresponding CNTBaseN frame.
◦ The value of CNTEL0ACR.EL0PCTEN is 1.

• Otherwise, the CNTPCT address in that frame is RAZ/WI.

CNTPCT, Counter-timer Physical Count

Page 3246

If the implementation supports 64-bit atomic accesses, then the CNTPCT register must be accessible as an atomic
64-bit value.

CNTPCT can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance Range
Timer CNTBaseN 0x000 CNTPCT 31:0

Accesses on this interface are RO.

Component Frame Offset Instance Range
Timer CNTBaseN 0x004 CNTPCT 63:32

Accesses on this interface are RO.

Component Frame Offset Instance Range
Timer CNTEL0BaseN 0x000 CNTPCT 31:0

Accesses on this interface are RO.

Component Frame Offset Instance Range
Timer CNTEL0BaseN 0x004 CNTPCT 63:32

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTPCT, Counter-timer Physical Count

Page 3247

CNTSCR, Counter Scale Register
The CNTSCR characteristics are:

Purpose
Enables the counter, controls the counter frequency setting, and controls counter behavior during debug.

Configuration
The power domain of CNTSCR is IMPLEMENTATION DEFINED.

This register is present only when ARMv8.4-CNTSC is implemented. Otherwise, direct accesses to CNTSCR are RES0.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Attributes
CNTSCR is a 32-bit register.

Field descriptions
The CNTSCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ScaleVal

ScaleVal, bits [31:0]

Scale Value

When counter scaling is enabled, ScaleVal is the amount added to the counter value for every counter tick.

Counter tick is defined as one period of the current operating frequency of the Generic counter.

ScaleVal is expressed as an unsigned fixed point number with an 8-bit integer value and a 24-bit fractional value.

CNTSCR.ScaleVal can only be changed when CNTCR.EN == 0. If the value of this field is changed when CNTCR.EN
== 1:

• The counter value becomes UNKNOWN.
• The counter value remains UNKNOWN on future ticks of the clock.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTSCR
In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes this
register, is implemented only in the Secure memory map.

CNTSCR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTControlBase 0x10 CNTSCR

Accesses on this interface are RW.

CNTSCR, Counter Scale Register

Page 3248

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTSCR, Counter Scale Register

Page 3249

CNTSR, Counter Status Register
The CNTSR characteristics are:

Purpose
Provides counter frequency status information.

Configuration
The power domain of CNTSR is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Attributes
CNTSR is a 32-bit register.

Field descriptions
The CNTSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FCACK RES0 DBGHRES0

FCACK, bits [31:8]

Frequency change acknowledge. Indicates the currently selected entry in the Frequency modes table, see 'The
Frequency modes table' in Chapter I1 of the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture
profile.

This field resets to 0.

Bits [7:2]

Reserved, RES0.

DBGH, bit [1]

Indicates whether the counter is halted because the Halt-on-debug signal is asserted:

DBGH Meaning
0b0 Counter is not halted.
0b1 Counter is halted.

This field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.

Accessing the CNTSR
In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes this
register, is implemented only in the Secure memory map.

CNTSR, Counter Status Register

Page 3250

CNTSR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTControlBase 0x004 CNTSR

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTSR, Counter Status Register

Page 3251

CNTTIDR, Counter-timer Timer ID Register
The CNTTIDR characteristics are:

Purpose
Indicates the implemented timers in the memory map, and their features. For each value of N from 0 to 7 it indicates
whether:

• Frame CNTBaseN is a view of an implemented timer.
• Frame CNTBaseN has a second view, CNTEL0BaseN.
• Frame CNTBaseN has a virtual timer capability.

Configuration
The power domain of CNTTIDR is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Attributes
CNTTIDR is a 32-bit register.

Field descriptions
The CNTTIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Frame7 Frame6 Frame5 Frame4 Frame3 Frame2 Frame1 Frame0

Frame<n>, bits [4n+3:4n], for n = 0 to 7

A 4-bit field indicating the features of frame CNTBase<n>.

Bit[3] of the field is RES0.

Bit[2], the FEL0 subfield, indicates whether frame CNTBase<n> has a second view, CNTEL0Base<n>. The possible
values of this bit are:

Bit[2] Meaning
0b0 Frame<n> does not have a second view. The CNTEL0ACR

register in the first view of the frame is RES0
0b1 Frame<n> has a second view, CNTEL0Base<n>.

If bit[0] is 0, bit[2] is RES0.

Bit[1], the FVI subfield, indicates whether both:

• Frame CNTBase<n> implements the virtual timer registers CNTV_CVAL, CNTV_TVAL, and CNTV_CTL.
• This CNTCTLBase frame implements the virtual timer offset register CNTVOFF<n>.

The possible values of bit[1] are:

Bit[1] Meaning
0b0 Frame<n> does not have virtual capability. The virtual time and

offset registers are RES0.
0b1 Frame<n> has virtual capability. The virtual time and offset

registers are implemented

If bit[0] is 0, bit[1] is RES0.

CNTTIDR, Counter-timer Timer ID Register

Page 3252

Bit[0], the FI subfield, indicates whether frame CNTBase<n> is implemented. The possible values of this bit are:

Bit[0] Meaning
0b0 Frame<n> is not implemented. All registers associated with the

frame are RES0.
0b1 Frame<n> is implemented

Accessing the CNTTIDR
In a system that recognizes two Security states this register is accessible by both Secure and Non-secure accesses.

CNTTIDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTCTLBase 0x008 CNTTIDR

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTTIDR, Counter-timer Timer ID Register

Page 3253

CNTV_CTL, Counter-timer Virtual Timer Control
The CNTV_CTL characteristics are:

Purpose
Control register for the virtual timer.

Configuration
The power domain of CNTV_CTL is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Attributes
CNTV_CTL is a 32-bit register.

Field descriptions
The CNTV_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views
of the timers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter D6.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

CNTV_CTL, Counter-timer Virtual Timer Control

Page 3254

This field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTV_TVAL continues to
count down.

Note

Disabling the output signal might be a power-saving option.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTV_CTL
CNTV_CTL can be implemented in any implemented CNTBaseN frame that has virtual timer capability, and in the
corresponding CNTEL0BaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile describes the status fields that identify
whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any

corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

• CNTV_CTL is accessible in that frame if the value of CNTACR<n>.RWVT is 1.
• Otherwise, the CNTV_CTL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTV_CTL is accessible in that frame if both:
◦ CNTV_CTL is accessible in the corresponding CNTBaseN frame:
◦ The value of CNTEL0ACR.EL0VTEN is 1.

• Otherwise, the CNTV_CTL address in that frame is RAZ/WI.

CNTV_CTL can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTBaseN 0x03C CNTV_CTL

Accesses on this interface are RW.

Component Frame Offset Instance
Timer CNTEL0BaseN 0x03C CNTV_CTL

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTV_CTL, Counter-timer Virtual Timer Control

Page 3255

CNTV_CVAL, Counter-timer Virtual Timer
CompareValue

The CNTV_CVAL characteristics are:

Purpose
Holds the 64-bit compare value for the virtual timer.

Configuration
The power domain of CNTV_CVAL is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Attributes
CNTV_CVAL is a 64-bit register.

Field descriptions
The CNTV_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the virtual timer CompareValue.

When CNTV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than or equal to
zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.
• An interrupt is generated if CNTV_CTL.IMASK is 0.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTV_CVAL
CNTV_CVAL can be implemented in any implemented CNTBaseN frame that has virtual timer capability, and in the
corresponding CNTEL0BaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile describes the status fields that identify
whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any

corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

CNTV_CVAL, Counter-timer Virtual Timer CompareValue

Page 3256

• CNTV_CVAL is accessible in that frame if the value of CNTACR<n>.RWVT is 1.
• Otherwise, the CNTV_CVAL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTV_CVAL is accessible in that frame if both:
◦ CNTV_CVAL is accessible in the corresponding CNTBaseN frame:
◦ The value of CNTEL0ACR.EL0VTEN is 1.

• Otherwise, the CNTV_CVAL address in that frame is RAZ/WI.

If the implementation supports 64-bit atomic accesses, then the CNTV_CVAL register must be accessible as an atomic
64-bit value.

CNTV_CVAL can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance Range
Timer CNTBaseN 0x030 CNTV_CVAL 31:0

Accesses on this interface are RW.

Component Frame Offset Instance Range
Timer CNTBaseN 0x034 CNTV_CVAL 63:32

Accesses on this interface are RW.

Component Frame Offset Instance Range
Timer CNTEL0BaseN 0x030 CNTV_CVAL 31:0

Accesses on this interface are RW.

Component Frame Offset Instance Range
Timer CNTEL0BaseN 0x034 CNTV_CVAL 63:32

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTV_CVAL, Counter-timer Virtual Timer CompareValue

Page 3257

CNTV_TVAL, Counter-timer Virtual Timer TimerValue
The CNTV_TVAL characteristics are:

Purpose
Holds the timer value for the virtual timer.

Configuration
The power domain of CNTV_TVAL is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Attributes
CNTV_TVAL is a 32-bit register.

Field descriptions
The CNTV_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TimerValue

TimerValue, bits [31:0]

The TimerValue view of the virtual timer.

On a read of this register:

• If CNTV_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTV_CTL.ENABLE is 1, the value returned is (CompareValue - CNTVCT).

On a write of this register, CompareValue is set to (CNTVCT + TimerValue), where TimerValue is treated as a signed
32-bit integer.

When CNTV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than or equal to
zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.
• If CNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count, so the TimerValue
view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTV_TVAL
CNTV_TVAL can be implemented in any implemented CNTBaseN frame that has virtual timer capability, and in the
corresponding CNTEL0BaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile describes the status fields that identify
whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.

CNTV_TVAL, Counter-timer Virtual Timer TimerValue

Page 3258

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

• CNTV_TVAL is accessible in that frame if the value of CNTACR<n>.RWVT is 1.
• Otherwise, the CNTV_TVAL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTV_TVAL is accessible in that frame if both:
◦ CNTV_TVAL is accessible in the corresponding CNTBaseN frame:
◦ The value of CNTEL0ACR.EL0VTEN is 1.

• Otherwise, the CNTV_TVAL address in that frame is RAZ/WI.

CNTV_TVAL can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTBaseN 0x038 CNTV_TVAL

Accesses on this interface are RW.

Component Frame Offset Instance
Timer CNTEL0BaseN 0x038 CNTV_TVAL

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTV_TVAL, Counter-timer Virtual Timer TimerValue

Page 3259

CNTVCT, Counter-timer Virtual Count
The CNTVCT characteristics are:

Purpose
Holds the 64-bit virtual count value.

Configuration
The power domain of CNTVCT is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Attributes
CNTVCT is a 64-bit register.

Field descriptions
The CNTVCT bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual count value
Virtual count value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual count value.

Accessing the CNTVCT
CNTVCT can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN frame,
as a RO register.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile describes the status fields that identify
whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any

corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTVCT is accessible in that frame, as a RO register, if the value of CNTACR<n>.RVCT is 1.
• Otherwise, the CNTVCT address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTVCT is accessible in that frame if both:
◦ CNTVCT is accessible in the corresponding CNTBaseN frame.
◦ The value of CNTEL0ACR.EL0VCTEN is 1.

• Otherwise, the CNTVCT address in that frame is RAZ/WI.

CNTVCT, Counter-timer Virtual Count

Page 3260

If the implementation supports 64-bit atomic accesses, then the CNTVCT register must be accessible as an atomic
64-bit value.

CNTVCT can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance Range
Timer CNTBaseN 0x008 CNTVCT 31:0

Accesses on this interface are RO.

Component Frame Offset Instance Range
Timer CNTBaseN 0x00C CNTVCT 63:32

Accesses on this interface are RO.

Component Frame Offset Instance Range
Timer CNTEL0BaseN 0x008 CNTVCT 31:0

Accesses on this interface are RO.

Component Frame Offset Instance Range
Timer CNTEL0BaseN 0x00C CNTVCT 63:32

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTVCT, Counter-timer Virtual Count

Page 3261

CNTVOFF, Counter-timer Virtual Offset
The CNTVOFF characteristics are:

Purpose
Holds the 64-bit virtual offset for a CNTBaseN frame that has virtual timer capability. This is the offset between real
time and virtual time.

Configuration
The power domain of CNTVOFF is IMPLEMENTATION DEFINED.

Attributes
CNTVOFF is a 64-bit register.

Field descriptions
The CNTVOFF bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual offset
Virtual offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual offset.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTVOFF
CNTVOFF is implemented, as a RO register, in any implemented CNTBaseN frame that has virtual timer capability.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile describes the status fields that identify
whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any

corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

• CNTVOFF is accessible in that frame, as a RO register, if the value of CNTACR<n>.RVOFF is 1.
• Otherwise, the CNTVOFF address in that frame is RAZ/WI.

Note

CNTVOFF is never visible in any CNTEL0BaseN frame. This means that the
CNTVOFF address in any implemented CNTEL0BaseN frame is RAZ/WI.

In an implementation that supports 64-bit atomic accesses, a CNTVOFF{<n>} register must be accessible as an
atomic 64-bit value.

CNTVOFF, Counter-timer Virtual Offset

Page 3262

CNTVOFF can be accessed through the memory-mapped interfaces:

Component Frame Offset Range
Timer CNTBaseN 0x018 31:0

Accesses on this interface are RO.

Component Frame Offset Range
Timer CNTBaseN 0x01C 63:32

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTVOFF, Counter-timer Virtual Offset

Page 3263

CNTVOFF<n>, Counter-timer Virtual Offsets, n = 0 - 7
The CNTVOFF<n> characteristics are:

Purpose
Holds the 64-bit virtual offset for frame CNTBase<n>. This is the offset between real time and virtual time.

Configuration
The power domain of CNTVOFF<n> is IMPLEMENTATION DEFINED.

Attributes
CNTVOFF<n> is a 64-bit register.

Field descriptions
The CNTVOFF<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual offset
Virtual offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual offset.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTVOFF<n>
In the CNTCTLBase frame a CNTVOFF<n> register must be implemented, as a RW register, for each CNTBaseN
frame that has virtual timer capability.

Note

The value of <n> in an instance of CNTVOFF<n> specifies the value of N for
the associated CNTBaseN frame.

In a system that recognizes two Security states, for any CNTVOFF<n> register in the CNTCTLBase frame:

• CNTVOFF<n> is always accessible by Secure accesses.
• CNTNSAR.NS<n> determines whether CNTVOFF<n> is accessible by Non-secure accesses.

The register location of any unimplemented CNTVOFF<n> register in the CNTCTLBase frame is RAZ/WI.

The CNTVOFF<n> register is accessible in the CNTBaseN frame using CNTVOFF.

In an implementation that supports 64-bit atomic accesses, then the CNTVOFF<n> registers must be accessible as
atomic 64-bit values.

CNTVOFF<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Range

CNTVOFF<n>, Counter-timer Virtual Offsets, n = 0 - 7

Page 3264

Timer CNTCTLBase 0x080 + 8n 31:0

Accesses on this interface are RW.

Component Frame Offset Range
Timer CNTCTLBase 0x084 + 8n 63:32

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTVOFF<n>, Counter-timer Virtual Offsets, n = 0 - 7

Page 3265

CounterID<n>, Counter ID registers, n = 0 - 11
The CounterID<n> characteristics are:

Purpose
IMPLEMENTATION DEFINED identification registers 0 to 11 for the memory-mapped Generic Timer.

Configuration
The power domain of CounterID<n> is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

These registers are implemented independently in each of the implemented Generic Timer memory-mapped frames.

If the implementation of the Counter ID registers requires an architecture version, the value for this version of the
Arm Generic Timer is version 0.

The Counter ID registers can be implemented as a set of CoreSight ID registers, comprising Peripheral ID Registers
and Component ID Registers. An implementation of these registers for the Generic Timer must use a Component class
value of 0xF.

Attributes
CounterID<n> is a 32-bit register.

Field descriptions
The CounterID<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the CounterID<n>
These registers must be implemented, as RO registers, in every implemented Generic Timer memory-mapped frame.

For the CNTCTLBase frame, in a system that recognizes two Security states these registers are accessible by both
Secure and Non-secure accesses.

For the CNTControlBase frame, in a system that supports Secure and Non-secure memory maps the frame is
implemented only in the Secure memory map, meaning these registers are implemented only in the Secure memory
map.

For the CNTBaseN frames, 'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in
Chapter I1 of the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile describes the status
fields that identify whether a frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any

corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

CounterID<n>, Counter ID registers, n = 0 - 11

Page 3266

CounterID<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTControlBase 0xFD0

+ 4n
CounterID<n>

Accesses on this interface are RO.

Component Frame Offset Instance
Timer CNTReadBase 0xFD0 +

4n
CounterID<n>

Accesses on this interface are RO.

Component Frame Offset Instance
Timer CNTBaseN 0xFD0 + 4n CounterID<n>

Accesses on this interface are RO.

Component Frame Offset Instance
Timer CNTEL0BaseN 0xFD0 +

4n
CounterID<n>

Accesses on this interface are RO.

Component Frame Offset Instance
Timer CNTCTLBase 0xFD0 +

4n
CounterID<n>

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CounterID<n>, Counter ID registers, n = 0 - 11

Page 3267

CTIAPPCLEAR, CTI Application Trigger Clear register
The CTIAPPCLEAR characteristics are:

Purpose
Clears bits of the Application Trigger register.

Configuration
CTIAPPCLEAR is in the Debug power domain.

Attributes
CTIAPPCLEAR is a 32-bit register.

Field descriptions
The CTIAPPCLEAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
APPCLEAR<x>, bit [x]

APPCLEAR<x>, bit [x], for x = 0 to 31

Application trigger <x> disable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

Writing to this bit has the following effect:

APPCLEAR<x> Meaning
0b0 No effect.
0b1 Clear corresponding bit in CTIAPPTRIG to 0 and clear

the corresponding channel event.

If the ECT does not support multicycle channel events, use of CTIAPPCLEAR is deprecated and the debugger must
only use CTIAPPPULSE.

Accessing the CTIAPPCLEAR

CTIAPPCLEAR can be accessed through the external debug interface:

Component Offset Instance
CTI 0x018 CTIAPPCLEAR

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are WI.
• When !SoftwareLockStatus() accesses to this register are WO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIAPPCLEAR, CTI Application Trigger Clear register

Page 3268

CTIAPPPULSE, CTI Application Pulse register
The CTIAPPPULSE characteristics are:

Purpose
Causes event pulses to be generated on ECT channels.

Configuration
CTIAPPPULSE is in the Debug power domain.

Attributes
CTIAPPPULSE is a 32-bit register.

Field descriptions
The CTIAPPPULSE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
APPPULSE<x>, bit [x]

APPPULSE<x>, bit [x], for x = 0 to 31

Generate event pulse on ECT channel <x>.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

Writing to this bit has the following effect:

APPPULSE<x> Meaning
0b0 No effect.
0b1 Channel <x> event pulse generated.

Note
• The CTIAPPPULSE operation does not affect the state of the Application

Trigger register, CTIAPPTRIG. If the channel is active, either because of
an earlier event or from the application trigger, then the value written to
CTIAPPPULSE might have no effect.

• Multiple pulse events that occur close together might be merged into a
single pulse event.

Accessing the CTIAPPPULSE
It is CONSTRAINED UNPREDICTABLE whether a write to CTIAPPPULSE generates an event on a channel if
CTICONTROL.GLBEN is 0.

CTIAPPPULSE can be accessed through the external debug interface:

Component Offset Instance
CTI 0x01C CTIAPPPULSE

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are WI.
• When !SoftwareLockStatus() accesses to this register are WO.

CTIAPPPULSE, CTI Application Pulse register

Page 3269

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIAPPPULSE, CTI Application Pulse register

Page 3270

CTIAPPSET, CTI Application Trigger Set register
The CTIAPPSET characteristics are:

Purpose
Sets bits of the Application Trigger register.

Configuration
CTIAPPSET is in the Debug power domain.

Attributes
CTIAPPSET is a 32-bit register.

Field descriptions
The CTIAPPSET bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
APPSET<x>, bit [x]

APPSET<x>, bit [x], for x = 0 to 31

Application trigger <x> enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

Possible values of this bit are:

APPSET<x> Meaning
0b0 Reading this means the application trigger is inactive.

Writing this has no effect.
0b1 Reading this means the application trigger is active.

Writing this sets the corresponding bit in CTIAPPTRIG to
1 and generates a channel event.

If the ECT does not support multicycle channel events, use of CTIAPPSET is deprecated and the debugger must only
use CTIAPPPULSE.

On a External debug reset, this field resets to an architecturally UNKNOWN value.

Accessing the CTIAPPSET

CTIAPPSET can be accessed through the external debug interface:

Component Offset Instance
CTI 0x014 CTIAPPSET

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.
• When !SoftwareLockStatus() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

CTIAPPSET, CTI Application Trigger Set register

Page 3271

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIAPPSET, CTI Application Trigger Set register

Page 3272

CTIAUTHSTATUS, CTI Authentication Status register
The CTIAUTHSTATUS characteristics are:

Purpose
Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for CTI.

Configuration
CTIAUTHSTATUS is in the Debug power domain.

This register is OPTIONAL, and is required for CoreSight compliance.

Attributes
CTIAUTHSTATUS is a 32-bit register.

Field descriptions
The CTIAUTHSTATUS bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 RAZ NSNID NSID

Bits [31:8]

Reserved, RES0.

Bits [7:4]

Reserved, RAZ.

NSNID, bits [3:2]

If EL3 is implemented, this field holds the same value as DBGAUTHSTATUS_EL1.NSNID.

If EL3 is not implemented and the implemented Security state is Secure state, this field holds the same value as
DBGAUTHSTATUS_EL1.SNID.

NSID, bits [1:0]

If EL3 is implemented, this field holds the same value as DBGAUTHSTATUS_EL1.NSID.

If EL3 is not implemented and the implemented Security state is Secure state, this field holds the same value as
DBGAUTHSTATUS_EL1.SID.

Accessing the CTIAUTHSTATUS

CTIAUTHSTATUS can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFB8 CTIAUTHSTATUS

Accesses on this interface are RO.

CTIAUTHSTATUS, CTI Authentication Status register

Page 3273

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIAUTHSTATUS, CTI Authentication Status register

Page 3274

CTICHINSTATUS, CTI Channel In Status register
The CTICHINSTATUS characteristics are:

Purpose
Provides the raw status of the ECT channel inputs to the CTI.

Configuration
CTICHINSTATUS is in the Debug power domain.

Attributes
CTICHINSTATUS is a 32-bit register.

Field descriptions
The CTICHINSTATUS bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CHIN<n>, bit [n]

CHIN<n>, bit [n], for n = 0 to 31

Input channel <n> status.

Bits [31:N] are RAZ. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

Possible values of this bit are:

CHIN<n> Meaning
0b0 Input channel <n> is inactive.
0b1 Input channel <n> is active.

If the ECT channels do not support multicycle events then it is IMPLEMENTATION DEFINED whether an input channel can
be observed as active.

Accessing the CTICHINSTATUS

CTICHINSTATUS can be accessed through the external debug interface:

Component Offset Instance
CTI 0x138 CTICHINSTATUS

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTICHINSTATUS, CTI Channel In Status register

Page 3275

CTICHOUTSTATUS, CTI Channel Out Status register
The CTICHOUTSTATUS characteristics are:

Purpose
Provides the status of the ECT channel outputs from the CTI.

Configuration
CTICHOUTSTATUS is in the Debug power domain.

Attributes
CTICHOUTSTATUS is a 32-bit register.

Field descriptions
The CTICHOUTSTATUS bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CHOUT<n>, bit [n]

CHOUT<n>, bit [n], for n = 0 to 31

Output channel <n> status.

Bits [31:N] are RAZ. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

Possible values of this bit are:

CHOUT<n> Meaning
0b0 Output channel <n> is inactive.
0b1 Output channel <n> is active.

If the ECT channels do not support multicycle events then it is IMPLEMENTATION DEFINED whether an output channel
can be observed as active.

Note

The value in CTICHOUTSTATUS is after gating by the channel gate. For more
information, see CTIGATE.

Accessing the CTICHOUTSTATUS

CTICHOUTSTATUS can be accessed through the external debug interface:

Component Offset Instance
CTI 0x13C CTICHOUTSTATUS

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

CTICHOUTSTATUS, CTI Channel Out Status register

Page 3276

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTICHOUTSTATUS, CTI Channel Out Status register

Page 3277

CTICIDR0, CTI Component Identification Register 0
The CTICIDR0 characteristics are:

Purpose
Provides information to identify a CTI component.

For more information see 'About the Component identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
CTICIDR0 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes
CTICIDR0 is a 32-bit register.

Field descriptions
The CTICIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_0

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble. Must read as 0x0D.

Accessing the CTICIDR0

CTICIDR0 can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFF0 CTICIDR0

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTICIDR0, CTI Component Identification Register 0

Page 3278

CTICIDR1, CTI Component Identification Register 1
The CTICIDR1 characteristics are:

Purpose
Provides information to identify a CTI component.

For more information see 'About the Component identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
CTICIDR1 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes
CTICIDR1 is a 32-bit register.

Field descriptions
The CTICIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CLASS PRMBL_1

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class. Reads as 0x9, debug component.

PRMBL_1, bits [3:0]

Preamble. RAZ.

Accessing the CTICIDR1

CTICIDR1 can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFF4 CTICIDR1

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

CTICIDR1, CTI Component Identification Register 1

Page 3279

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTICIDR1, CTI Component Identification Register 1

Page 3280

CTICIDR2, CTI Component Identification Register 2
The CTICIDR2 characteristics are:

Purpose
Provides information to identify a CTI component.

For more information see 'About the Component identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
CTICIDR2 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes
CTICIDR2 is a 32-bit register.

Field descriptions
The CTICIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_2

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble. Must read as 0x05.

Accessing the CTICIDR2

CTICIDR2 can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFF8 CTICIDR2

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTICIDR2, CTI Component Identification Register 2

Page 3281

CTICIDR3, CTI Component Identification Register 3
The CTICIDR3 characteristics are:

Purpose
Provides information to identify a CTI component.

For more information see 'About the Component identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
CTICIDR3 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes
CTICIDR3 is a 32-bit register.

Field descriptions
The CTICIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_3

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble. Must read as 0xB1.

Accessing the CTICIDR3

CTICIDR3 can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFFC CTICIDR3

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTICIDR3, CTI Component Identification Register 3

Page 3282

CTICLAIMCLR, CTI CLAIM Tag Clear register
The CTICLAIMCLR characteristics are:

Purpose
Used by software to read the values of the CLAIM bits, and to clear CLAIM tag bits to 0.

Configuration
CTICLAIMCLR is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes
CTICLAIMCLR is a 32-bit register.

Field descriptions
The CTICLAIMCLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CLAIM[<x>], bit [x]

CLAIM[<x>], bit [x], for x = 0 to 31

CLAIM tag clear bit.

For values of x greater than or equal to the IMPLEMENTATION DEFINED number of CLAIM tags, this bit is RAZ/SBZ.
Software can rely on these bits reading as zero, and must use a Should-Be-Zero policy on writes. Implementations
must ignore writes.

For other values of x, reads return the value of CLAIM[x] and the behavior on writes is:

CLAIM[<x>] Meaning
0b0 No action.
0b1 Indirectly clear CLAIM[x] to 0.

A single write to CTICLAIMCLR can clear multiple tags to 0.

An External Debug reset clears the CLAIM tag bits to 0.

Accessing the CTICLAIMCLR

CTICLAIMCLR can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFA4 CTICLAIMCLR

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.
• When !SoftwareLockStatus() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

CTICLAIMCLR, CTI CLAIM Tag Clear register

Page 3283

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTICLAIMCLR, CTI CLAIM Tag Clear register

Page 3284

CTICLAIMSET, CTI CLAIM Tag Set register
The CTICLAIMSET characteristics are:

Purpose
Used by software to set CLAIM bits to 1.

Configuration
CTICLAIMSET is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes
CTICLAIMSET is a 32-bit register.

Field descriptions
The CTICLAIMSET bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CLAIM[<x>], bit [x]

CLAIM[<x>], bit [x], for x = 0 to 31

CLAIM tag set bit.

For values of x greater than or equal to the IMPLEMENTATION DEFINED number of CLAIM tags, this bit is RAZ/SBZ.
Software can rely on these bits reading as zero, and must use a Should-Be-Zero policy on writes. Implementations
must ignore writes.

For other values of x, the bit is RAO and the behavior on writes is:

CLAIM[<x>] Meaning
0b0 No action.
0b1 Indirectly set CLAIM[x] tag to 1.

A single write to CTICLAIMSET can set multiple tags to 1.

An External Debug reset clears the CLAIM tag bits to 0.

Accessing the CTICLAIMSET

CTICLAIMSET can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFA0 CTICLAIMSET

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.
• When !SoftwareLockStatus() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

CTICLAIMSET, CTI CLAIM Tag Set register

Page 3285

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTICLAIMSET, CTI CLAIM Tag Set register

Page 3286

CTICONTROL, CTI Control register
The CTICONTROL characteristics are:

Purpose
Controls whether the CTI is enabled.

Configuration
CTICONTROL is in the Debug power domain.

Attributes
CTICONTROL is a 32-bit register.

Field descriptions
The CTICONTROL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 GLBEN

Bits [31:1]

Reserved, RES0.

GLBEN, bit [0]

Enables or disables the CTI mapping functions. Possible values of this field are:

GLBEN Meaning
0b0 CTI mapping functions and application trigger disabled.
0b1 CTI mapping functions and application trigger enabled.

When GLBEN is 0, the input channel to output trigger, input trigger to output channel, and application trigger
functions are disabled and do not signal new events on either output triggers or output channels. If a previously
asserted output trigger has not been acknowledged, it remains asserted after the mapping functions are disabled. All
output triggers are disabled by CTI reset.

If the ECT supports multicycle channel events any existing output channel events will be terminated.

The following resets apply:

• On a Cold reset, the value of this field is unchanged.

• On an External debug reset, this field resets to 0.

• On a Warm reset, the value of this field is unchanged.

Accessing the CTICONTROL

CTICONTROL can be accessed through the external debug interface:

Component Offset Instance
CTI 0x000 CTICONTROL

CTICONTROL, CTI Control register

Page 3287

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.
• When !SoftwareLockStatus() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTICONTROL, CTI Control register

Page 3288

CTIDEVAFF0, CTI Device Affinity register 0
The CTIDEVAFF0 characteristics are:

Purpose
Copy of the low half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor
system the CTI component relates to.

If the CTI is CTIv1, this register is OPTIONAL. If the CTI is CTIv2, this register is mandatory.

Arm recommends that the CTI is CTIv2.

In an Armv8.5 compliant implementation the CTI must be CTIv2.

If this register is implemented, then CTIDEVAFF1 must also be implemented. If the CTI of a PE does not implement
the CTI Device Affinity registers, the CTI block of the external debug memory map must be located 64KB above the
debug registers in the external debug interface.

Configuration
CTIDEVAFF0 is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes
CTIDEVAFF0 is a 32-bit register.

Field descriptions
The CTIDEVAFF0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MPIDR_EL1lo

MPIDR_EL1lo, bits [31:0]

MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest implemented Exception
level.

Accessing the CTIDEVAFF0

CTIDEVAFF0 can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFA8 CTIDEVAFF0

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIDEVAFF0, CTI Device Affinity register 0

Page 3289

CTIDEVAFF1, CTI Device Affinity register 1
The CTIDEVAFF1 characteristics are:

Purpose
Copy of the high half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor
system the CTI component relates to.

If the CTI is CTIv1, this register is OPTIONAL. If the CTI is CTIv2, this register is mandatory.

Arm recommends that the CTI is CTIv2.

In an Armv8.5 compliant implementation the CTI must be CTIv2.

If this register is implemented, then CTIDEVAFF0 must also be implemented. If the CTI of a PE does not implement
the CTI Device Affinity registers, the CTI block of the external debug memory map must be located 64KB above the
debug registers in the external debug interface.

Configuration
CTIDEVAFF1 is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes
CTIDEVAFF1 is a 32-bit register.

Field descriptions
The CTIDEVAFF1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MPIDR_EL1hi

MPIDR_EL1hi, bits [31:0]

MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest implemented Exception
level.

Accessing the CTIDEVAFF1

CTIDEVAFF1 can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFAC CTIDEVAFF1

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIDEVAFF1, CTI Device Affinity register 1

Page 3290

CTIDEVARCH, CTI Device Architecture register
The CTIDEVARCH characteristics are:

Purpose
Identifies the programmers' model architecture of the CTI component.

If the CTI is CTIv1, this register is OPTIONAL. If the CTI is CTIv2, this register is mandatory.

Arm recommends that the CTI is CTIv2.

In an Armv8.5 compliant implementation the CTI must be CTIv2.

If this register is not implemented, CTIDEVAFF0 and CTIDEVAFF1 are also not implemented.

Configuration
CTIDEVARCH is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes
CTIDEVARCH is a 32-bit register.

Field descriptions
The CTIDEVARCH bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARCHITECT PRESENT REVISION ARCHID

ARCHITECT, bits [31:21]

Defines the architecture of the component. For CTI, this is Arm Limited.

Bits [31:28] are the JEP106 continuation code, 0x4.

Bits [27:21] are the JEP106 ID code, 0x3B.

PRESENT, bit [20]

When set to 1, indicates that the DEVARCH is present.

This field is 1 in Armv8.

REVISION, bits [19:16]

Revision.

Defines the architecture revision of the component.

REVISION Meaning Applies when
0b0000 First revision.
0b0001 As 0b0000, and also adds

support for CTIDEVCTL.
When ARMv8.3-DoPD
is implemented

All other values are reserved.

CTIDEVARCH, CTI Device Architecture register

Page 3291

ARCHID, bits [15:0]

Defines this part to be an Armv8 debug component. For architectures defined by Arm this is further subdivided.

For CTI:

• Bits [15:12] are the architecture version, 0x1.
• Bits [11:0] are the architecture part number, 0xA14.

This corresponds to CTI architecture version CTIv2.

Accessing the CTIDEVARCH

CTIDEVARCH can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFBC CTIDEVARCH

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIDEVARCH, CTI Device Architecture register

Page 3292

CTIDEVCTL, CTI Device Control register
The CTIDEVCTL characteristics are:

Purpose
Provides target-specific device controls

Configuration
CTIDEVCTL is in the Debug power domain.

This register is present only when ARMv8.3-DoPD is implemented. Otherwise, direct accesses to CTIDEVCTL are RES0.

Attributes
CTIDEVCTL is a 32-bit register.

Field descriptions
The CTIDEVCTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 RCEOSUCE

Bits [31:2]

Reserved, RES0.

RCE, bit [1]

Reset Catch Enable.

RCE Meaning
0b0 Reset Catch debug event disabled.
0b1 Reset Catch debug event enabled.

The following resets apply:

• On a Cold reset, the value of this field is unchanged.

• On an External debug reset, this field resets to 0.

• On a Warm reset, the value of this field is unchanged.

OSUCE, bit [0]

OS Unlock Catch Enable

OSUCE Meaning
0b0 OS Unlock Catch debug event disabled.
0b1 OS Unlock Catch debug event enabled.

The following resets apply:

• On a Cold reset, the value of this field is unchanged.

• On an External debug reset, this field resets to 0.

CTIDEVCTL, CTI Device Control register

Page 3293

• On a Warm reset, the value of this field is unchanged.

Accessing the CTIDEVCTL

CTIDEVCTL can be accessed through the external debug interface:

Component Offset Instance
CTI 0x150 CTIDEVCTL

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.
• When !SoftwareLockStatus() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIDEVCTL, CTI Device Control register

Page 3294

CTIDEVID, CTI Device ID register 0
The CTIDEVID characteristics are:

Purpose
Describes the CTI component to the debugger.

Configuration
CTIDEVID is in the Debug power domain.

Attributes
CTIDEVID is a 32-bit register.

Field descriptions
The CTIDEVID bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INOUT RES0 NUMCHAN RES0 NUMTRIG RES0 EXTMUXNUM

Bits [31:26]

Reserved, RES0.

INOUT, bits [25:24]

Input/output options. Indicates presence of the input gate. If the CTM is not implemented or CTIv2 is not
implemented, this field is RAZ.

INOUT Meaning
0b00 CTIGATE does not mask propagation of input events from

external channels.
0b01 CTIGATE masks propagation of input events from external

channels.

All other values are reserved.

Bits [23:22]

Reserved, RES0.

NUMCHAN, bits [21:16]

Number of ECT channels implemented. IMPLEMENTATION DEFINED. For Armv8, valid values are:

NUMCHAN Meaning
0b000011 3 channels (0..2) implemented.
0b000100 4 channels (0..3) implemented.
0b000101 5 channels (0..4) implemented.
0b000110 6 channels (0..5) implemented.

and so on up to 0b100000, 32 channels (0..31) implemented.

All other values are reserved.

CTIDEVID, CTI Device ID register 0

Page 3295

Bits [15:14]

Reserved, RES0.

NUMTRIG, bits [13:8]

Number of triggers implemented. IMPLEMENTATION DEFINED. This is one more than the index of the largest trigger,
rather than the actual number of triggers.

For Armv8, valid values are:

NUMTRIG Meaning
0b000011 Up to 3 triggers (0..2) implemented.
0b001000 Up to 8 triggers (0..7) implemented.
0b001001 Up to 9 triggers (0..8) implemented.
0b001010 Up to 10 triggers (0..9) implemented.

and so on up to 0b100000, 32 triggers (0..31) implemented.

All other values are reserved. If the PE contains a Trace extension, this field must be at least 0b001000. There is no
guarantee that any of the implemented triggers, including the highest numbered, are connected to any components.

Bits [7:5]

Reserved, RES0.

EXTMUXNUM, bits [4:0]

Number of multiplexors available on triggers. This value is used in conjunction with External Control register,
ASICCTL.

Accessing the CTIDEVID

CTIDEVID can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFC8 CTIDEVID

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIDEVID, CTI Device ID register 0

Page 3296

CTIDEVID1, CTI Device ID register 1
The CTIDEVID1 characteristics are:

Purpose
Reserved for future information about the CTI component to the debugger.

Configuration
CTIDEVID1 is in the Debug power domain.

Attributes
CTIDEVID1 is a 32-bit register.

Field descriptions
The CTIDEVID1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [31:0]

Reserved, RES0.

Accessing the CTIDEVID1

CTIDEVID1 can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFC4 CTIDEVID1

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIDEVID1, CTI Device ID register 1

Page 3297

CTIDEVID2, CTI Device ID register 2
The CTIDEVID2 characteristics are:

Purpose
Reserved for future information about the CTI component to the debugger.

Configuration
CTIDEVID2 is in the Debug power domain.

Attributes
CTIDEVID2 is a 32-bit register.

Field descriptions
The CTIDEVID2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [31:0]

Reserved, RES0.

Accessing the CTIDEVID2

CTIDEVID2 can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFC0 CTIDEVID2

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIDEVID2, CTI Device ID register 2

Page 3298

CTIDEVTYPE, CTI Device Type register
The CTIDEVTYPE characteristics are:

Purpose
Indicates to a debugger that this component is part of a PEs cross-trigger interface.

Configuration
CTIDEVTYPE is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes
CTIDEVTYPE is a 32-bit register.

Field descriptions
The CTIDEVTYPE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SUB MAJOR

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Subtype. Must read as 0x1 to indicate this is a component within a PE.

MAJOR, bits [3:0]

Major type. Must read as 0x4 to indicate this is a cross-trigger component.

Accessing the CTIDEVTYPE

CTIDEVTYPE can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFCC CTIDEVTYPE

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIDEVTYPE, CTI Device Type register

Page 3299

CTIGATE, CTI Channel Gate Enable register
The CTIGATE characteristics are:

Purpose
Determines whether events on channels propagate through the CTM to other ECT components, or from the CTM into
the CTI.

Configuration
CTIGATE is in the Debug power domain.

Attributes
CTIGATE is a 32-bit register.

Field descriptions
The CTIGATE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
GATE<x>, bit [x]

GATE<x>, bit [x], for x = 0 to 31

Channel <x> gate enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

Possible values of this bit are:

GATE<x> Meaning
0b0 Disable output and, if CTIDEVID.INOUT == 0b01, input

channel <x> propagation.
0b1 Enable output and, if CTIDEVID.INOUT == 0b01, input

channel <x> propagation.

If GATE[x] is set to 0, no new events will be propagated to the ECT, and if the ECT supports multicycle channel events
any existing output channel events will be terminated.

On a External debug reset, this field resets to an architecturally UNKNOWN value.

Accessing the CTIGATE

CTIGATE can be accessed through the external debug interface:

Component Offset Instance
CTI 0x140 CTIGATE

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.
• When !SoftwareLockStatus() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

CTIGATE, CTI Channel Gate Enable register

Page 3300

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIGATE, CTI Channel Gate Enable register

Page 3301

CTIINEN<n>, CTI Input Trigger to Output Channel
Enable registers, n = 0 - 31

The CTIINEN<n> characteristics are:

Purpose
Enables the signaling of an event on output channels when input trigger event n is received by the CTI.

Configuration
CTIINEN<n> is in the Debug power domain.

If input trigger n is not connected, the behavior of CTIINEN<n> is IMPLEMENTATION DEFINED.

Attributes
CTIINEN<n> is a 32-bit register.

Field descriptions
The CTIINEN<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
INEN<x>, bit [x]

INEN<x>, bit [x], for x = 0 to 31

Input trigger <n> to output channel <x> enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

Possible values of this bit are:

INEN<x> Meaning
0b0 Input trigger <n> will not generate an event on output

channel <x>.
0b1 Input trigger <n> will generate an event on output channel

<x>.

On a External debug reset, this field resets to an architecturally UNKNOWN value.

Accessing the CTIINEN<n>

CTIINEN<n> can be accessed through the external debug interface:

Component Offset Instance
CTI 0x020 + 4n CTIINEN<n>

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.
• When !SoftwareLockStatus() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

CTIINEN<n>, CTI Input Trigger to Output Channel Enable registers, n = 0 - 31

Page 3302

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIINEN<n>, CTI Input Trigger to Output Channel Enable registers, n = 0 - 31

Page 3303

CTIINTACK, CTI Output Trigger Acknowledge register
The CTIINTACK characteristics are:

Purpose
Can be used to deactivate the output triggers.

Configuration
CTIINTACK is in the Debug power domain.

Attributes
CTIINTACK is a 32-bit register.

Field descriptions
The CTIINTACK bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ACK<n>, bit [n]

ACK<n>, bit [n], for n = 0 to 31

Acknowledge for output trigger <n>.

Bits [31:N] are RAZ/WI. N is the number of CTI triggers implemented as defined by the CTIDEVID.NUMTRIG field.

If any of the following is true, writes to ACK<n> are ignored:

• n >= CTIDEVID.NUMTRIG, the number of implemented triggers.
• Output trigger n is not active.
• The channel mapping function output, as controlled by CTIOUTEN<n>, is still active.

Otherwise, if any of the following are true, it is IMPLEMENTATION DEFINED whether writes to ACK<n> are ignored:

• Output trigger n is not implemented.
• Output trigger n is not connected.
• Output trigger n is self-acknowledging and does not require software acknowledge.

Otherwise, the behavior on writes to ACK<n> is as follows:

ACK<n> Meaning
0b0 No effect
0b1 Deactivate the trigger.

Accessing the CTIINTACK
A debugger must read CTITRIGOUTSTATUS to confirm that the output trigger has been acknowledged before
generating any event that must be ordered after the write to CTIINTACK, such as a write to CTIAPPPULSE to activate
another trigger.

CTIINTACK can be accessed through the external debug interface:

Component Offset Instance
CTI 0x010 CTIINTACK

CTIINTACK, CTI Output Trigger Acknowledge register

Page 3304

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are WI.
• When !SoftwareLockStatus() accesses to this register are WO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIINTACK, CTI Output Trigger Acknowledge register

Page 3305

CTIITCTRL, CTI Integration mode Control register
The CTIITCTRL characteristics are:

Purpose
Enables the CTI to switch from its default mode into integration mode, where test software can control directly the
inputs and outputs of the PE, for integration testing or topology detection.

Configuration
It is IMPLEMENTATION DEFINED whether CTIITCTRL is implemented in the Core power domain or in the Debug power
domain.

Implementation of this register is OPTIONAL.

Some or all RW fields of this register have defined reset values, and:

• The register is not affected by a Warm reset.
• If the register is implemented in the Core power domain, the reset values apply on a Cold reset, and the

register is not affected by an External debug reset.
• If the register is implemented in the Debug power domain, the reset values apply on an External debug reset,

and the register is not affected by a Cold reset.

Attributes
CTIITCTRL is a 32-bit register.

Field descriptions
The CTIITCTRL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IME

Bits [31:1]

Reserved, RES0.

IME, bit [0]

Integration mode enable. When IME == 1, the device reverts to an integration mode to enable integration testing or
topology detection. The integration mode behavior is IMPLEMENTATION DEFINED.

IME Meaning
0b0 Normal operation.
0b1 Integration mode enabled.

On a Implementation reset, this field resets to 0.

Accessing the CTIITCTRL

CTIITCTRL can be accessed through the external debug interface:

Component Offset Instance
CTI 0xF00 CTIITCTRL

CTIITCTRL, CTI Integration mode Control register

Page 3306

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register are IMPDEF.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIITCTRL, CTI Integration mode Control register

Page 3307

CTILAR, CTI Lock Access Register
The CTILAR characteristics are:

Purpose
Allows or disallows access to the CTI registers through a memory-mapped interface.

The optional Software Lock provides a lock to prevent memory-mapped writes to the Cross-Trigger Interface registers.
Use of this lock mechanism reduces the risk of accidental damage to the contents of the Cross-Trigger Interface
registers. It does not, and cannot, prevent all accidental or malicious damage.

Configuration
CTILAR is in the Debug power domain.

If ARMv8.4-Debug is implemented, the Software Lock is not implemented.

Software uses CTILAR to set or clear the lock, and CTILSR to check the current status of the lock.

Attributes
CTILAR is a 32-bit register.

Field descriptions
The CTILAR bit assignments are:

When the Software Lock is implemented.:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
KEY

KEY, bits [31:0]

Lock Access control. Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to this
component's registers through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to this component's registers through a
memory mapped interface.

Otherwise:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Otherwise

Bits [31:0]

Reserved, RES0.

CTILAR, CTI Lock Access Register

Page 3308

Accessing the CTILAR

CTILAR can be accessed through a memory-mapped access to the external debug interface:

Component Offset Instance
CTI 0xFB0 CTILAR

Accesses on this interface are WO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTILAR, CTI Lock Access Register

Page 3309

CTILSR, CTI Lock Status Register
The CTILSR characteristics are:

Purpose
Indicates the current status of the Software Lock for CTI registers.

The optional Software Lock provides a lock to prevent memory-mapped writes to the Cross-Trigger Interface registers.
Use of this lock mechanism reduces the risk of accidental damage to the contents of the Cross-Trigger Interface
registers. It does not, and cannot, prevent all accidental or malicious damage.

Configuration
CTILSR is in the Debug power domain.

If ARMv8.4-Debug is implemented, the Software Lock is not implemented.

Software uses CTILAR to set or clear the lock, and CTILSR to check the current status of the lock.

Attributes
CTILSR is a 32-bit register.

Field descriptions
The CTILSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 nTTSLKSLI

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Not thirty-two bit access required. RAZ.

SLK, bit [1]

When the Software Lock is implemented.:

Software Lock status for this component. For an access to LSR that is not a memory-mapped access, or when the
Software Lock is not implemented, this field is RES0.

For memory-mapped accesses when the Software Lock is implemented, possible values of this field are:

SLK Meaning
0b0 Lock clear. Writes are permitted to this component's registers.
0b1 Lock set. Writes to this component's registers are ignored, and

reads have no side effects.

On a External debug reset, this field resets to 1.

CTILSR, CTI Lock Status Register

Page 3310

Otherwise:

Reserved, RAZ.

SLI, bit [0]

Software Lock implemented. For an access to LSR that is not a memory-mapped access, this field is RAZ. For memory-
mapped accesses, the value of this field is IMPLEMENTATION DEFINED. Permitted values are:

SLI Meaning
0b0 Software Lock not implemented or not memory-mapped access.
0b1 Software Lock implemented and memory-mapped access.

Accessing the CTILSR

CTILSR can be accessed through a memory-mapped access to the external debug interface:

Component Offset Instance
CTI 0xFB4 CTILSR

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTILSR, CTI Lock Status Register

Page 3311

CTIOUTEN<n>, CTI Input Channel to Output Trigger
Enable registers, n = 0 - 31

The CTIOUTEN<n> characteristics are:

Purpose
Defines which input channels generate output trigger n.

Configuration
CTIOUTEN<n> is in the Debug power domain.

If output trigger n is not connected, the behavior of CTIOUTEN<n> is IMPLEMENTATION DEFINED.

Attributes
CTIOUTEN<n> is a 32-bit register.

Field descriptions
The CTIOUTEN<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OUTEN<x>, bit [x]

OUTEN<x>, bit [x], for x = 0 to 31

Input channel <x> to output trigger <n> enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

Possible values of this bit are:

OUTEN<x> Meaning
0b0 An event on input channel <x> will not cause output

trigger <n> to be asserted.
0b1 An event on input channel <x> will cause output trigger

<n> to be asserted.

On a External debug reset, this field resets to an architecturally UNKNOWN value.

Accessing the CTIOUTEN<n>

CTIOUTEN<n> can be accessed through the external debug interface:

Component Offset Instance
CTI 0x0A0 + 4n CTIOUTEN<n>

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.
• When !SoftwareLockStatus() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable registers, n = 0 - 31

Page 3312

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable registers, n = 0 - 31

Page 3313

CTIPIDR0, CTI Peripheral Identification Register 0
The CTIPIDR0 characteristics are:

Purpose
Provides information to identify a CTI component.

For more information see 'About the Peripheral identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
CTIPIDR0 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes
CTIPIDR0 is a 32-bit register.

Field descriptions
The CTIPIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PART_0

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, least significant byte.

Accessing the CTIPIDR0

CTIPIDR0 can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFE0 CTIPIDR0

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIPIDR0, CTI Peripheral Identification Register 0

Page 3314

CTIPIDR1, CTI Peripheral Identification Register 1
The CTIPIDR1 characteristics are:

Purpose
Provides information to identify a CTI component.

For more information see 'About the Peripheral identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
CTIPIDR1 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes
CTIPIDR1 is a 32-bit register.

Field descriptions
The CTIPIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 DES_0 PART_1

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.

PART_1, bits [3:0]

Part number, most significant nibble.

Accessing the CTIPIDR1

CTIPIDR1 can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFE4 CTIPIDR1

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

CTIPIDR1, CTI Peripheral Identification Register 1

Page 3315

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIPIDR1, CTI Peripheral Identification Register 1

Page 3316

CTIPIDR2, CTI Peripheral Identification Register 2
The CTIPIDR2 characteristics are:

Purpose
Provides information to identify a CTI component.

For more information see 'About the Peripheral identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
CTIPIDR2 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes
CTIPIDR2 is a 32-bit register.

Field descriptions
The CTIPIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 REVISION JEDEC DES_1

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Part major revision. Parts can also use this field to extend Part number to 16-bits.

JEDEC, bit [3]

RAO. Indicates a JEP106 identity code is used.

DES_1, bits [2:0]

Designer, most significant bits of JEP106 ID code. For Arm Limited, this field is 0b011.

Accessing the CTIPIDR2

CTIPIDR2 can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFE8 CTIPIDR2

Accesses on this interface are RO.

CTIPIDR2, CTI Peripheral Identification Register 2

Page 3317

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIPIDR2, CTI Peripheral Identification Register 2

Page 3318

CTIPIDR3, CTI Peripheral Identification Register 3
The CTIPIDR3 characteristics are:

Purpose
Provides information to identify a CTI component.

For more information see 'About the Peripheral identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
CTIPIDR3 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes
CTIPIDR3 is a 32-bit register.

Field descriptions
The CTIPIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 REVAND CMOD

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Part minor revision. Parts using CTIPIDR2.REVISION as an extension to the Part number must use this field as a major
revision number.

CMOD, bits [3:0]

Customer modified. Indicates someone other than the Designer has modified the component.

Accessing the CTIPIDR3

CTIPIDR3 can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFEC CTIPIDR3

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

CTIPIDR3, CTI Peripheral Identification Register 3

Page 3319

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIPIDR3, CTI Peripheral Identification Register 3

Page 3320

CTIPIDR4, CTI Peripheral Identification Register 4
The CTIPIDR4 characteristics are:

Purpose
Provides information to identify a CTI component.

For more information see 'About the Peripheral identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
CTIPIDR4 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes
CTIPIDR4 is a 32-bit register.

Field descriptions
The CTIPIDR4 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SIZE DES_2

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component. RAZ. Log2 of the number of 4KB pages from the start of the component to the end of the
component ID registers.

DES_2, bits [3:0]

Designer, JEP106 continuation code, least significant nibble. For Arm Limited, this field is 0b0100.

Accessing the CTIPIDR4

CTIPIDR4 can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFD0 CTIPIDR4

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

CTIPIDR4, CTI Peripheral Identification Register 4

Page 3321

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIPIDR4, CTI Peripheral Identification Register 4

Page 3322

CTITRIGINSTATUS, CTI Trigger In Status register
The CTITRIGINSTATUS characteristics are:

Purpose
Provides the status of the trigger inputs.

Configuration
CTITRIGINSTATUS is in the Debug power domain.

Attributes
CTITRIGINSTATUS is a 32-bit register.

Field descriptions
The CTITRIGINSTATUS bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TRIN<n>, bit [n]

TRIN<n>, bit [n], for n = 0 to 31

Trigger input <n> status.

Bits [31:N] are RAZ. N is the number of CTI triggers implemented as defined by the CTIDEVID.NUMTRIG field.

Possible values of this bit are:

TRIN<n> Meaning
0b0 Input trigger n is inactive.
0b1 Input trigger n is active.

Not implemented and not-connected input triggers are always inactive.

It is IMPLEMENTATION DEFINED whether an input trigger that does not support multicycle events can be observed as
active.

Accessing the CTITRIGINSTATUS

CTITRIGINSTATUS can be accessed through the external debug interface:

Component Offset Instance
CTI 0x130 CTITRIGINSTATUS

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTITRIGINSTATUS, CTI Trigger In Status register

Page 3323

CTITRIGOUTSTATUS, CTI Trigger Out Status register
The CTITRIGOUTSTATUS characteristics are:

Purpose
Provides the raw status of the trigger outputs, after processing by any IMPLEMENTATION DEFINED trigger interface logic.
For output triggers that are self-acknowledging, this is only meaningful if the CTI implements multicycle channel
events.

Configuration
CTITRIGOUTSTATUS is in the Debug power domain.

Attributes
CTITRIGOUTSTATUS is a 32-bit register.

Field descriptions
The CTITRIGOUTSTATUS bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TROUT<n>, bit [n]

TROUT<n>, bit [n], for n = 0 to 31

Trigger output <n> status.

Bits [31:N] are RAZ. N is the value in CTIDEVID.NUMTRIG.

If n < N, and output trigger <n> is implemented and connected, and either the trigger is not self-acknowledging or
the CTI implements multicycle channel events, then permitted values for TROUT<n> are:

TROUT<n> Meaning
0b0 Output trigger n is inactive.
0b1 Output trigger n is active.

Otherwise when n < N it is IMPLEMENTATION DEFINED whether TROUT<n> behaves as described here or is RAZ.

Accessing the CTITRIGOUTSTATUS

CTITRIGOUTSTATUS can be accessed through the external debug interface:

Component Offset Instance
CTI 0x134 CTITRIGOUTSTATUS

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTITRIGOUTSTATUS, CTI Trigger Out Status register

Page 3324

DBGAUTHSTATUS_EL1, Debug Authentication Status
register

The DBGAUTHSTATUS_EL1 characteristics are:

Purpose
Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for debug.

Configuration
External register DBGAUTHSTATUS_EL1 bits [31:0] are architecturally mapped to AArch64 System register
DBGAUTHSTATUS_EL1[31:0] .

External register DBGAUTHSTATUS_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGAUTHSTATUS[31:0] .

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

Attributes
DBGAUTHSTATUS_EL1 is a 32-bit register.

Field descriptions
The DBGAUTHSTATUS_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SNID SID NSNID NSID

Bits [31:8]

Reserved, RES0.

SNID, bits [7:6]

When ARMv8.4-Debug is implemented:

Secure non-invasive debug.

ExternalSecureNoninvasiveDebugEnabled() == ExternalSecureInvasiveDebugEnabled().

This field has the same value as DBGAUTHSTATUS_EL1.SID.

Otherwise:

Secure non-invasive debug.

SNID Meaning
0b00 Not implemented. EL3 is not implemented and the Effective

value of SCR_EL3.NS is 1.
0b10 Implemented and disabled.

ExternalSecureNoninvasiveDebugEnabled() == FALSE.
0b11 Implemented and enabled.

ExternalSecureNoninvasiveDebugEnabled() == TRUE.

DBGAUTHSTATUS_EL1, Debug Authentication Status register

Page 3325

All other values are reserved.

SID, bits [5:4]

Secure invasive debug.

SID Meaning
0b00 Not implemented. EL3 is not implemented and the Effective value

of SCR_EL3.NS is 1.
0b10 Implemented and disabled.

ExternalSecureInvasiveDebugEnabled() == FALSE.
0b11 Implemented and enabled.

ExternalSecureInvasiveDebugEnabled() == TRUE.

All other values are reserved.

NSNID, bits [3:2]

When ARMv8.4-Debug is implemented:

Non-secure non-invasive debug.

NSNID Meaning
0b00 Not implemented. EL3 is not implemented and the Effective

value of SCR_EL3.NS is 0.
0b11 Implemented and enabled.

ExternalNoninvasiveDebugEnabled() == TRUE.

If the Effective value of SCR_EL3.NS is 1, or if EL3 is implemented and EL2 is not implemented, this field reads as
0b11.

All other values are reserved.

Otherwise:

Non-secure non-invasive debug.

NSNID Meaning
0b00 Not implemented. EL3 is not implemented and the Effective

value of SCR_EL3.NS is 0.
0b10 Implemented and disabled.

ExternalNoninvasiveDebugEnabled() == FALSE.
0b11 Implemented and enabled.

ExternalNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.

NSID, bits [1:0]

Non-secure invasive debug.

NSID Meaning
0b00 Not implemented. EL3 is not implemented and the Effective

value of SCR_EL3.NS is 0.
0b10 Implemented and disabled. ExternalInvasiveDebugEnabled() ==

FALSE.
0b11 Implemented and enabled. ExternalInvasiveDebugEnabled() ==

TRUE.

All other values are reserved.

DBGAUTHSTATUS_EL1, Debug Authentication Status register

Page 3326

Accessing the DBGAUTHSTATUS_EL1

DBGAUTHSTATUS_EL1 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFB8 DBGAUTHSTATUS_EL1

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGAUTHSTATUS_EL1, Debug Authentication Status register

Page 3327

DBGBCR<n>_EL1, Debug Breakpoint Control
Registers, n = 0 - 15

The DBGBCR<n>_EL1 characteristics are:

Purpose
Holds control information for a breakpoint. Forms breakpoint n together with value register DBGBVR<n>_EL1.

Configuration
External register DBGBCR<n>_EL1 bits [31:0] are architecturally mapped to AArch64 System register
DBGBCR<n>_EL1[31:0] .

External register DBGBCR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGBCR<n>[31:0] .

DBGBCR<n>_EL1 is in the Core power domain.

If breakpoint n is not implemented then accesses to this register are:

• RES0 when IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalDebugAccess().
• A CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR otherwise.

Attributes
DBGBCR<n>_EL1 is a 32-bit register.

Field descriptions
The DBGBCR<n>_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BT LBN SSC HMC RES0 BAS RES0 PMC E

When the E field is zero, all the other fields in the register are ignored.

Bits [31:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 3328

BT Meaning
0b0000 Unlinked instruction address match. DBGBVR<n>_EL1 is the

address of an instruction.
0b0001 As 0b0000 but linked to a Context matching breakpoint.
0b0010 Unlinked Context ID match. When ARMv8.1-VHE is

implemented, EL2 is using AArch64, and the Effective value of
HCR_EL2.E2H is 1, if either the PE is executing at EL0 with
HCR_EL2.TGE set to 1 or the PE is executing at EL2, then
DBGBVR<n>_EL1.ContextID must match the
CONTEXTIDR_EL2 value. Otherwise,
DBGBVR<n>_EL1.ContextID must match the
CONTEXTIDR_EL1 value.

0b0011 As 0b0010, with linking enabled.
0b0100 Unlinked instruction address mismatch. DBGBVR<n>_EL1 is

the address of an instruction to be stepped.
0b0101 As 0b0100, with linking enabled.
0b0110 Unlinked CONTEXTIDR_EL1 match.

DBGBVR<n>_EL1.ContextID is a Context ID compared against
CONTEXTIDR_EL1.

0b0111 As 0b0110, with linking enabled.
0b1000 Unlinked VMID match. DBGBVR<n>_EL1.VMID is a VMID

compared against VTTBR_EL2.VMID.
0b1001 As 0b1000, with linking enabled.
0b1010 Unlinked VMID and Context ID match.

DBGBVR<n>_EL1.ContextID is a Context ID compared against
CONTEXTIDR_EL1, and DBGBVR<n>_EL1.VMID is a VMID
compared against VTTBR_EL2.VMID.

0b1011 As 0b1010, with linking enabled.
0b1100 Unlinked CONTEXTIDR_EL2 match.

DBGBVR<n>_EL1.ContextID2 is a Context ID compared
against CONTEXTIDR_EL2.

0b1101 As 0b1100, with linking enabled.
0b1110 Unlinked Full Context ID match. DBGBVR<n>_EL1.ContextID

is compared against CONTEXTIDR_EL1, and
DBGBVR<n>_EL1.ContextID2 is compared against
CONTEXTIDR_EL2.

0b1111 As 0b1110, with linking enabled.

Constraints on breakpoint programming mean some values are reserved under certain conditions.

For more information on the operation of the SSC, HMC, and PMC fields, and on the effect of programming this field to
a reserved value, see 'Execution conditions for which a breakpoint generates Breakpoint exceptions' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section D2 (AArch64 Self-hosted Debug) and
'Reserved DBGBCR<n>_EL1.BT values' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section D2 (AArch64 Self-hosted Debug).

On a Cold reset, this field resets to an architecturally UNKNOWN value.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the Context-matching
breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN value.

This field is ignored when the value of DBGBCR<n>_EL1.E is 0.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for breakpoint n is
generated. This field must be interpreted along with the HMC and PMC fields, and there are constraints on the
permitted values of the {HMC, SSC, PMC} fields. For more information, including the effect of programming the fields
to a reserved set of values, see 'Reserved DBGBCR<n>_EL1.{SSC, HMC, PMC} values' in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile, section D2 (AArch64 Self-hosted Debug).

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 3329

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a
breakpoint generates Breakpoint exceptions' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section D2 (AArch64 Self-hosted Debug).

On a Cold reset, this field resets to an architecturally UNKNOWN value.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug event for breakpoint n
is generated. This field must be interpreted along with the SSC and PMC fields, and there are constraints on the
permitted values of the {HMC, SSC, PMC} fields. For more information see DBGBCR<n>_EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a
breakpoint generates Breakpoint exceptions' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section D2 (AArch64 Self-hosted Debug).

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

When AArch32 is supported at any Exception level:

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless of the instruction
set and Execution state.

The permitted values depend on the breakpoint type.

For Address match breakpoints in either AArch32 or AArch64 state, the permitted values are:

BAS Match instruction at Constraint for debuggers
0b0011 DBGBVR<n>_EL1 Use for T32 instructions
0b1100 DBGBVR<n>_EL1 + 2 Use for T32 instructions
0b1111 DBGBVR<n>_EL1 Use for A64 and A32 instructions

All other values are reserved.

For more information, see 'Using the BAS field in Address Match breakpoints' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile, section G2 (AArch32 Self-hosted Debug).

For Address mismatch breakpoints in an AArch32 stage 1 translation regime, the permitted values are:

BAS Match instruction
at Constraint for debuggers

0b0000 - Use for a match anywhere breakpoint
0b0011 DBGBVR<n>_EL1 Use for stepping T32 instructions
0b1100 DBGBVR<n>_EL1 +

2
Use for stepping T32 instructions

0b1111 DBGBVR<n>_EL1 Use for stepping A64 and A32
instructions

For more information, see 'Using the BAS field in Address Match breakpoints' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile, section G2 (AArch32 Self-hosted Debug).

For Context matching breakpoints, this field is RES1 and ignored.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 3330

Bits [4:3]

Reserved, RES0.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event for breakpoint n is
generated. This field must be interpreted along with the SSC and HMC fields, and there are constraints on the
permitted values of the {HMC, SSC, PMC} fields. For more information see the DBGBCR<n>_EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a
breakpoint generates Breakpoint exceptions' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section D2 (AArch64 Self-hosted Debug).

On a Cold reset, this field resets to an architecturally UNKNOWN value.

E, bit [0]

Enable breakpoint DBGBVR<n>_EL1. Possible values are:

E Meaning
0b0 Breakpoint disabled.
0b1 Breakpoint enabled.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGBCR<n>_EL1

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalDebugAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

DBGBCR<n>_EL1 can be accessed through the external debug interface:

Component Offset Instance
Debug 0x408 + 16n DBGBCR<n>_EL1

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 3331

DBGBVR<n>_EL1, Debug Breakpoint Value Registers,
n = 0 - 15

The DBGBVR<n>_EL1 characteristics are:

Purpose
Holds a virtual address, or a VMID and/or a context ID, for use in breakpoint matching. Forms breakpoint n together
with control register DBGBCR<n>_EL1.

Configuration
External register DBGBVR<n>_EL1 bits [63:0] are architecturally mapped to AArch64 System register
DBGBVR<n>_EL1[63:0] .

External register DBGBVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGBVR<n>[31:0] .

External register DBGBVR<n>_EL1 bits [63:32] are architecturally mapped to AArch32 System register
DBGBXVR<n>[31:0] .

DBGBVR<n>_EL1 is in the Core power domain.

If breakpoint n is not implemented then accesses to this register are:

• RES0 when IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalDebugAccess().
• A CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR otherwise.

Attributes
How this register is interpreted depends on the value of DBGBCR<n>_EL1.BT.

• When DBGBCR<n>_EL1.BT is 0b0x0x, this register holds a virtual address.
• When DBGBCR<n>_EL1.BT is 0b001x, 0b011x, or 0b110x, this register holds a Context ID.
• When DBGBCR<n>_EL1.BT is 0b100x, this register holds a VMID.
• When DBGBCR<n>_EL1.BT is 0b101x, this register holds a VMID and a Context ID.
• When DBGBCR<n>_EL1.BT is 0b111x, this register holds two Context ID values.

For other values of DBGBCR<n>_EL1.BT, this register is RES0.

Field descriptions
The DBGBVR<n>_EL1 bit assignments are:

When DBGBCR<n>_EL1.BT == 0b0x0x:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RESS[14:4] VA[52:49] VA[48:2]

VA[48:2] RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESS[14:4], bits [63:53]

Reserved, Sign extended. Software must treat this field as RES0 if the most significant bit of VA is 0 or RES0, and as
RES1 if the most significant bit of VA is 1.

Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 3332

• The bits are hardwired to a copy of the most significant bit of VA, meaning writes to these bits are ignored,
and reads to the bits always return the hardwired value.

• The value in those bits can be written, and reads will return the last value written. The value held in those bits
is ignored by hardware.

VA[52:49], bits [52:49]

When ARMv8.2-LVA is implemented:

Extension to VA[48:2]. See VA[48:2] for more details.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Extension to RESS[14:4]. See RESS[14:4] for more details.

VA[48:2], bits [48:2]

If the address is being matched in an AArch64 stage 1 translation regime:

• This field contains bits[48:2] of the address for comparison.
• When ARMv8.2-LVA is implemented, VA[52:49] forms the upper part of the address value. Otherwise,

VA[52:49] are RESS.

If the address is being matched in an AArch32 stage 1 translation regime, the first 20 bits of this field are RES0, and
the rest of the field contains bits[31:2] of the address for comparison.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT == 0b001x:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

ContextID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison.

The value is compared against CONTEXTIDR_EL2 when ARMv8.1-VHE is implemented, EL2 is using AArch64,
HCR_EL2.E2H is 1, and either:

• The PE is executing at EL2.
• HCR_EL2.TGE is 1, the PE is executing at EL0, and EL2 is enabled in the current Security state.

Otherwise, the value is compared against the following:

• CONTEXTIDR when the PE is executing at AArch32

• CONTEXTIDR_EL1 when the PE is executing at AArch64.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 3333

When DBGBCR<n>_EL1.BT == 0b011x, EL2 is implemented and (ARMv8.1-VHE is
implemented or ARMv8.2-Debug is implemented):

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

ContextID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>_EL1.BT == 0b100x and EL2 is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 VMID[15:8] VMID[7:0]

RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]

When ARMv8.1-VHE is implemented and VTCR_EL2.VS == 1:

Extension to VMID[7:0]. See DBGBVR<n>_EL1.VMID[7:0] for more details.

If EL2 is using AArch32, this field is RES0.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.
• VTCR_EL2.VS is 0.
• ARMv8.1-VMID16 is not implemented.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

Reserved, RES0.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 3334

When DBGBCR<n>_EL1.BT == 0b101x and EL2 is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 VMID[15:8] VMID[7:0]

ContextID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]

When ARMv8.1-VMID16 is implemented and VTCR_EL2.VS == 1:

Extension to VMID[7:0]. See DBGBVR<n>_EL1.VMID[7:0] for more details.

If EL2 is using AArch32, or if the implementation has an 8-bit VMID, this field is RES0.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.
• VTCR_EL2.VS is 0.
• ARMv8.1-VMID16 is not implemented.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>_EL1.BT == 0b110x, EL2 is implemented and (ARMv8.1-VHE is
implemented or ARMv8.2-Debug is implemented):

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ContextID2

RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

Reserved, RES0.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 3335

When DBGBCR<n>_EL1.BT == 0b111x, EL2 is implemented and (ARMv8.1-VHE is
implemented or ARMv8.2-Debug is implemented):

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ContextID2
ContextID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGBVR<n>_EL1

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalDebugAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

DBGBVR<n>_EL1 can be accessed through the external debug interface:

Component Offset Instance Range
Debug 0x400 +

16n
DBGBVR<n>_EL1 63:0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 3336

DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register
The DBGCLAIMCLR_EL1 characteristics are:

Purpose
Used by software to read the values of the CLAIM tag bits, and to clear CLAIM tag bits to 0.

The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and
target software.

Used in conjunction with the DBGCLAIMSET_EL1 register.

Configuration
External register DBGCLAIMCLR_EL1 bits [31:0] are architecturally mapped to AArch64 System register
DBGCLAIMCLR_EL1[31:0] .

External register DBGCLAIMCLR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGCLAIMCLR[31:0] .

DBGCLAIMCLR_EL1 is in the Core power domain.

An implementation must include eight CLAIM tag bits.

Attributes
DBGCLAIMCLR_EL1 is a 32-bit register.

Field descriptions
The DBGCLAIMCLR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAZ/SBZ CLAIM

Bits [31:8]

Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes.
Implementations must ignore writes.

CLAIM, bits [7:0]

Read or clear CLAIM tag bits. Reading this field returns the current value of the CLAIM tag bits.

Writing a 1 to one of these bits clears the corresponding CLAIM tag bit to 0. This is an indirect write to the CLAIM tag
bits. A single write operation can clear multiple CLAIM tag bits to 0.

Writing 0 to one of these bits has no effect.

On a Cold reset, this field resets to 0.

DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register

Page 3337

Accessing the DBGCLAIMCLR_EL1

DBGCLAIMCLR_EL1 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFA4 DBGCLAIMCLR_EL1

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register

Page 3338

DBGCLAIMSET_EL1, Debug CLAIM Tag Set register
The DBGCLAIMSET_EL1 characteristics are:

Purpose
Used by software to set the CLAIM tag bits to 1.

The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and
target software.

Used in conjunction with the DBGCLAIMCLR_EL1 register.

Configuration
External register DBGCLAIMSET_EL1 bits [31:0] are architecturally mapped to AArch64 System register
DBGCLAIMSET_EL1[31:0] .

External register DBGCLAIMSET_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGCLAIMSET[31:0] .

DBGCLAIMSET_EL1 is in the Core power domain.

An implementation must include eight CLAIM tag bits.

Attributes
DBGCLAIMSET_EL1 is a 32-bit register.

Field descriptions
The DBGCLAIMSET_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAZ/SBZ CLAIM

Bits [31:8]

Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes.
Implementations must ignore writes.

CLAIM, bits [7:0]

Set CLAIM tag bits.

This field is RAO.

Writing a 1 to one of these bits sets the corresponding CLAIM tag bit to 1. This is an indirect write to the CLAIM tag
bits. A single write operation can set multiple CLAIM tag bits to 1.

Writing 0 to one of these bits has no effect.

DBGCLAIMSET_EL1, Debug CLAIM Tag Set register

Page 3339

Accessing the DBGCLAIMSET_EL1

DBGCLAIMSET_EL1 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFA0 DBGCLAIMSET_EL1

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGCLAIMSET_EL1, Debug CLAIM Tag Set register

Page 3340

DBGDTRRX_EL0, Debug Data Transfer Register,
Receive

The DBGDTRRX_EL0 characteristics are:

Purpose
Transfers data from an external debugger to the PE. For example, it is used by a debugger transferring commands and
data to a debug target. See DBGDTR_EL0 for additional architectural mappings. It is a component of the Debug
Communications Channel.

Configuration
External register DBGDTRRX_EL0 bits [31:0] are architecturally mapped to AArch64 System register
DBGDTRRX_EL0[31:0] .

External register DBGDTRRX_EL0 bits [31:0] are architecturally mapped to AArch32 System register
DBGDTRRXint[31:0] .

DBGDTRRX_EL0 is in the Core power domain.

Attributes
DBGDTRRX_EL0 is a 32-bit register.

Field descriptions
The DBGDTRRX_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Update DTRRX

Bits [31:0]

Update DTRRX.

Writes to this register:

• If RXfull is set to 1, set DTRRX to UNKNOWN.

• If RXfull is set to 0, update the value in DTRRX.

After the write, RXfull is set to 1.

Reads of this register:

• If RXfull is set to 1, return the last value written to DTRRX.

• If RXfull is set to 0, return an UNKNOWN value.

After the read, RXfull remains unchanged.

For the full behavior of the Debug Communications Channel, see The Debug Communication Channel and Instruction
Transfer Register4.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

DBGDTRRX_EL0, Debug Data Transfer Register, Receive

Page 3341

Accessing the DBGDTRRX_EL0
If EDSCR.ITE == 0 when the PE exits Debug state on receiving a Restart request trigger event, the behavior of any
operation issued by a DTR access in memory access mode that has not completed execution is CONSTRAINED
UNPREDICTABLE, and must do one of the following:

• It must complete execution in Debug state before the PE executes the restart sequence.
• It must complete execution in Non-debug state before the PE executes the restart sequence.
• It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed by

the instruction are left in an UNKNOWN state.

DBGDTRRX_EL0 can be accessed through the external debug interface:

Component Offset Instance
Debug 0x080 DBGDTRRX_EL0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDTRRX_EL0, Debug Data Transfer Register, Receive

Page 3342

DBGDTRTX_EL0, Debug Data Transfer Register,
Transmit

The DBGDTRTX_EL0 characteristics are:

Purpose
Transfers data from the PE to an external debugger. For example, it is used by a debug target to transfer data to the
debugger. See DBGDTR_EL0 for additional architectural mappings. It is a component of the Debug Communication
Channel.

Configuration
External register DBGDTRTX_EL0 bits [31:0] are architecturally mapped to AArch64 System register
DBGDTRTX_EL0[31:0] .

External register DBGDTRTX_EL0 bits [31:0] are architecturally mapped to AArch32 System register
DBGDTRTXint[31:0] .

DBGDTRTX_EL0 is in the Core power domain.

Attributes
DBGDTRTX_EL0 is a 32-bit register.

Field descriptions
The DBGDTRTX_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Return DTRTX

Bits [31:0]

Return DTRTX.

Reads of this register:

• If TXfull is set to 1, return the last value written to DTRTX.

• If TXfull is set to 0, return an UNKNOWN value.

After the read, TXfull is cleared to 0.

Writes to this register:

• If TXfull is set to 1, set DTRTX to UNKNOWN.

• If TXfull is set to 0, update the value in DTRTX.

After the write, TXfull remains unchanged.

For the full behavior of the Debug Communications Channel, see The Debug Communication Channel and Instruction
Transfer Register.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

DBGDTRTX_EL0, Debug Data Transfer Register, Transmit

Page 3343

Accessing the DBGDTRTX_EL0
If EDSCR.ITE == 0 when the PE exits Debug state on receiving a Restart request trigger event, the behavior of any
operation issued by a DTR access in memory access mode that has not completed execution is CONSTRAINED
UNPREDICTABLE, and must do one of the following:

• It must complete execution in Debug state before the PE executes the restart sequence.
• It must complete execution in Non-debug state before the PE executes the restart sequence.
• It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed by

the instruction are left in an UNKNOWN state.

DBGDTRTX_EL0 can be accessed through the external debug interface:

Component Offset Instance
Debug 0x08C DBGDTRTX_EL0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDTRTX_EL0, Debug Data Transfer Register, Transmit

Page 3344

DBGWCR<n>_EL1, Debug Watchpoint Control
Registers, n = 0 - 15

The DBGWCR<n>_EL1 characteristics are:

Purpose
Holds control information for a watchpoint. Forms watchpoint n together with value register DBGWVR<n>_EL1.

Configuration
External register DBGWCR<n>_EL1 bits [31:0] are architecturally mapped to AArch64 System register
DBGWCR<n>_EL1[31:0] .

External register DBGWCR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGWCR<n>[31:0] .

DBGWCR<n>_EL1 is in the Core power domain.

If watchpoint n is not implemented then accesses to this register are:

• When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalDebugAccess(), RES0.
• Otherwise, a CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR.

Attributes
DBGWCR<n>_EL1 is a 32-bit register.

Field descriptions
The DBGWCR<n>_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 MASK RES0 WT LBN SSC HMC BAS LSC PAC E

When the E field is zero, all the other fields in the register are ignored.

Bits [31:29]

Reserved, RES0.

MASK, bits [28:24]

Address mask. Only objects up to 2GB can be watched using a single mask.

MASK Meaning
0b00000 No mask.
0b00001 Reserved.
0b00010 Reserved.

If programmed with a reserved value, a watchpoint must behave as if either:

• MASK has been programmed with a defined value, which might be 0 (no mask), other than for a direct read of
DBGWCRn_EL1.

• The watchpoint is disabled.

Software must not rely on this property because the behavior of reserved values might change in a future revision of
the architecture.

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 3345

Other values mask the corresponding number of address bits, from 0b00011 masking 3 address bits (0x00000007 mask
for address) to 0b11111 masking 31 address bits (0x7FFFFFFF mask for address).

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [23:21]

Reserved, RES0.

WT, bit [20]

Watchpoint type. Possible values are:

WT Meaning
0b0 Unlinked data address match.
0b1 Linked data address match.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

LBN, bits [19:16]

Linked breakpoint number. For Linked data address watchpoints, this specifies the index of the Context-matching
breakpoint linked to.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Watchpoint debug event for watchpoint n is
generated. This field must be interpreted along with the HMC and PAC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a
watchpoint generates Watchpoint exceptions' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section D2 (AArch64 Self-hosted Debug).

On a Cold reset, this field resets to an architecturally UNKNOWN value.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug event for watchpoint n
is generated. This field must be interpreted along with the SSC and PAC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a
watchpoint generates Watchpoint exceptions' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section D2 (AArch64 Self-hosted Debug).

On a Cold reset, this field resets to an architecturally UNKNOWN value.

BAS, bits [12:5]

Byte address select. Each bit of this field selects whether a byte from within the word or double-word addressed by
DBGWVR<n>_EL1 is being watched.

BAS Description
xxxxxxx1 Match byte at DBGWVR<n>_EL1
xxxxxx1x Match byte at DBGWVR<n>_EL1 + 1
xxxxx1xx Match byte at DBGWVR<n>_EL1 + 2
xxxx1xxx Match byte at DBGWVR<n>_EL1 + 3

In cases where DBGWVR<n>_EL1 addresses a double-word:

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 3346

BAS Description, if DBGWVR<n>_EL1[2] == 0
xxx1xxxx Match byte at DBGWVR<n>_EL1 + 4
xx1xxxxx Match byte at DBGWVR<n>_EL1 + 5
x1xxxxxx Match byte at DBGWVR<n>_EL1 + 6
1xxxxxxx Match byte at DBGWVR<n>_EL1 + 7

If DBGWVR<n>_EL1[2] == 1, only BAS[3:0] is used. Arm deprecates setting DBGWVR<n>_EL1[2] == 1.

The valid values for BAS are non-zero binary number all of whose set bits are contiguous. All other values are reserved
and must not be used by software. See 'Reserved DBGWCR<n>.BAS values' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile, section G2 (AArch32 Self-hosted Debug).

On a Cold reset, this field resets to an architecturally UNKNOWN value.

LSC, bits [4:3]

Load/store control. This field enables watchpoint matching on the type of access being made. Possible values of this
field are:

LSC Meaning
0b01 Match instructions that load from a watchpointed address.
0b10 Match instructions that store to a watchpointed address.
0b11 Match instructions that load from or store to a watchpointed

address.

All other values are reserved, but must behave as if the watchpoint is disabled. Software must not rely on this property
as the behavior of reserved values might change in a future revision of the architecture.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

PAC, bits [2:1]

Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug event for watchpoint
n is generated. This field must be interpreted along with the SSC and HMC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a
watchpoint generates Watchpoint exceptions' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section D2 (AArch64 Self-hosted Debug).

On a Cold reset, this field resets to an architecturally UNKNOWN value.

E, bit [0]

Enable watchpoint n. Possible values are:

E Meaning
0b0 Watchpoint disabled.
0b1 Watchpoint enabled.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGWCR<n>_EL1

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalDebugAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

DBGWCR<n>_EL1 can be accessed through the external debug interface:

Component Offset Instance
Debug 0x808 + 16n DBGWCR<n>_EL1

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 3347

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 3348

DBGWVR<n>_EL1, Debug Watchpoint Value Registers,
n = 0 - 15

The DBGWVR<n>_EL1 characteristics are:

Purpose
Holds a data address value for use in watchpoint matching. Forms watchpoint n together with control register
DBGWCR<n>_EL1.

Configuration
External register DBGWVR<n>_EL1 bits [63:0] are architecturally mapped to AArch64 System register
DBGWVR<n>_EL1[63:0] .

External register DBGWVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGWVR<n>[31:0] .

DBGWVR<n>_EL1 is in the Core power domain.

If watchpoint n is not implemented then accesses to this register are:

• When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalDebugAccess(), RES0.
• Otherwise, a CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR.

Attributes
DBGWVR<n>_EL1 is a 64-bit register.

Field descriptions
The DBGWVR<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RESS[14:4] VA[52:49] VA[48:2]

VA[48:2] RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESS[14:4], bits [63:53]

Reserved, Sign extended. Hardware and software must treat this field as RES0 if the most significant bit of VA is 0 or
RES0, and as RES1 if the most significant bit of VA is 1.

Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:

• The bits are hardwired to a copy of the most significant bit of VA, meaning writes to these bits are ignored,
and reads to the bits always return the hardwired value.

• The value in those bits can be written, and reads will return the last value written. The value held in those bits
is ignored by hardware.

VA[52:49], bits [52:49]

When ARMv8.2-LVA is implemented:

Extension to VA[48:2]. See VA[48:2] for more details.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

Page 3349

Otherwise:

Extension to RESS[14:4]. See RESS[14:4] for more details.

VA[48:2], bits [48:2]

Bits[48:2] of the address value for comparison.

When ARMv8.2-LVA is implemented, VA[52:49] forms the upper part of the address value. Otherwise, VA[52:49] are
RESS.

Arm deprecates setting DBGWVR<n>_EL1[2] == 1.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

Accessing the DBGWVR<n>_EL1

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalDebugAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

DBGWVR<n>_EL1 can be accessed through the external debug interface:

Component Offset Instance Range
Debug 0x800 +

16n
DBGWVR<n>_EL1 63:0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

Page 3350

EDAA32PFR, External Debug AArch32 Processor
Feature Register

The EDAA32PFR characteristics are:

Purpose
Provides information about implemented PE features.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section D10.4.1.

Configuration
It is IMPLEMENTATION DEFINED whether EDAA32PFR is implemented in the Core power domain or in the Debug power
domain.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
EDAA32PFR are RES0.

Attributes
EDAA32PFR is a 64-bit register.

Field descriptions
The EDAA32PFR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 EL3 EL2 PMSA VMSA
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

EL3, bits [15:12]

AArch32 EL3 Exception level handling. Defined values are:

EL3 Meaning
0b0000 EL3 is not implemented or can be executed in AArch64 state.
0b0001 EL3 can be executed in AArch32 state only.

When the value of EDPFR.EL3 is non-zero, this field must be 0b0000.

All other values are reserved.

Note

EDPFR.{EL1, EL0} indicate whether EL1 and EL0 can only be executed in
AArch32 state.

EDAA32PFR, External Debug AArch32 Processor Feature Register

Page 3351

EL2, bits [11:8]

AArch32 EL2 Exception level handling. Defined values are:

EL2 Meaning
0b0000 EL2 is not implemented or can be executed in AArch64 state.
0b0001 EL2 can be executed in AArch32 state only.

When the value of EDPFR.EL2 is non-zero, this field must be 0b0000.

All other values are reserved.

Note

EDPFR.{EL1, EL0} indicate whether EL1 and EL0 can only be executed in
AArch32 state.

PMSA, bits [7:4]

Indicates support for a PMSA. Defined values are:

PMSA Meaning
0b0000 PMSA not supported.
0b0100 Support for an Armv8-R PMSAv8-32.

All other values are reserved. In Armv8-A, the only permitted value is 0b0000.

VMSA, bits [3:0]

Indicates support for a VMSA. When the PMSA field is nonzero, determines support for a VMSA. When the PMSA field
is 0b0000, VMSA is supported. Defined values are:

VMSA Meaning
0b0000 VMSA not supported.

All other values are reserved. In Armv8-A, the only permitted value is 0b0000.

Accessing the EDAA32PFR

EDAA32PFR can be accessed through the external debug interface:

Component Offset Instance
Debug 0xD60 EDAA32PFR

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to this register are RO.
• Otherwise accesses to this register are IMPDEF.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDAA32PFR, External Debug AArch32 Processor Feature Register

Page 3352

EDACR, External Debug Auxiliary Control Register
The EDACR characteristics are:

Purpose
Allows implementations to support IMPLEMENTATION DEFINED controls.

Configuration
It is IMPLEMENTATION DEFINED whether EDACR is implemented in the Core power domain or in the Debug power
domain.

Changing this register from its reset value causes IMPLEMENTATION DEFINED behavior, including possible deviation from
the architecturally-defined behavior.

If the EDACR contains any control bits that must be preserved over power down, then these bits must be accessible by
the external debug interface when the OS Lock is locked, OSLSR_EL1.OSLK == 1, and when the Core is powered off.

Attributes
EDACR is a 32-bit register.

Field descriptions
The EDACR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the EDACR

EDACR can be accessed through the external debug interface:

Component Offset Instance
Debug 0x094 EDACR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register are IMPDEF.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDACR, External Debug Auxiliary Control Register

Page 3353

EDCIDR0, External Debug Component Identification
Register 0

The EDCIDR0 characteristics are:

Purpose
Provides information to identify an external debug component.

For more information see 'About the Component identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
EDCIDR0 is a 32-bit register.

Field descriptions
The EDCIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_0

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble.

Reads as 0x0D.

Accessing the EDCIDR0

EDCIDR0 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFF0 EDCIDR0

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

EDCIDR0, External Debug Component Identification Register 0

Page 3354

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDCIDR0, External Debug Component Identification Register 0

Page 3355

EDCIDR1, External Debug Component Identification
Register 1

The EDCIDR1 characteristics are:

Purpose
Provides information to identify an external debug component.

For more information see 'About the Component identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
EDCIDR1 is a 32-bit register.

Field descriptions
The EDCIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CLASS PRMBL_1

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class. Debug component.

Reads as 0b1001.

PRMBL_1, bits [3:0]

Preamble.

Reads as 0b0000.

Accessing the EDCIDR1

EDCIDR1 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFF4 EDCIDR1

EDCIDR1, External Debug Component Identification Register 1

Page 3356

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDCIDR1, External Debug Component Identification Register 1

Page 3357

EDCIDR2, External Debug Component Identification
Register 2

The EDCIDR2 characteristics are:

Purpose
Provides information to identify an external debug component.

For more information see 'About the Component identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
EDCIDR2 is a 32-bit register.

Field descriptions
The EDCIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_2

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble.

Reads as 0x05.

Accessing the EDCIDR2

EDCIDR2 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFF8 EDCIDR2

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

EDCIDR2, External Debug Component Identification Register 2

Page 3358

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDCIDR2, External Debug Component Identification Register 2

Page 3359

EDCIDR3, External Debug Component Identification
Register 3

The EDCIDR3 characteristics are:

Purpose
Provides information to identify an external debug component.

For more information see 'About the Component identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
EDCIDR3 is a 32-bit register.

Field descriptions
The EDCIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_3

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble.

Reads as 0xB1.

Accessing the EDCIDR3

EDCIDR3 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFFC EDCIDR3

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

EDCIDR3, External Debug Component Identification Register 3

Page 3360

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDCIDR3, External Debug Component Identification Register 3

Page 3361

EDCIDSR, External Debug Context ID Sample Register
The EDCIDSR characteristics are:

Purpose
Contains the sampled value of the Context ID, captured on reading EDPCSR[31:0].

Configuration
EDCIDSR is in the Core power domain.

This register is present only when ARMv8.0-PCSample is implemented and ARMv8.2-PCSample is not implemented.
Otherwise, direct accesses to EDCIDSR are RES0.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented in the external debug registers
space.

Note

ARMv8.2-PCSample implements the PC Sample-based Profiling Extension in
the Performance Monitors registers space.

Attributes
EDCIDSR is a 32-bit register.

Field descriptions
The EDCIDSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CONTEXTIDR

CONTEXTIDR, bits [31:0]

Context ID. The value of CONTEXTIDR that is associated with the most recent EDPCSR sample. When the most recent
EDPCSR sample was generated:

• If EL1 is using AArch64, then the Context ID is sampled from CONTEXTIDR_EL1.
• If EL1 is using AArch32, then the Context ID is sampled from CONTEXTIDR.
• If EL3 is implemented and is using AArch32, then CONTEXTIDR is a banked register, and EDCIDSR samples

the current banked copy of CONTEXTIDR for the Security state that is associated with the most recent
EDPCSR sample.

Because the value written to EDCIDSR is an indirect read of CONTEXTIDR, it is CONSTRAINED UNPREDICTABLE whether
EDCIDSR is set to the original or new value if EDPCSR samples:

• An instruction that writes to CONTEXTIDR.
• The next Context synchronization event.
• Any instruction executed between these two instructions.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the EDCIDSR
IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see 'Permitted
behavior that might make the PC Sample-based profiling registers UNKNOWN' in chapter H7.

EDCIDSR, External Debug Context ID Sample Register

Page 3362

EDCIDSR can be accessed through the external debug interface:

Component Offset Instance
Debug 0x0A4 EDCIDSR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDCIDSR, External Debug Context ID Sample Register

Page 3363

EDDEVAFF0, External Debug Device Affinity register 0
The EDDEVAFF0 characteristics are:

Purpose
Copy of the low half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor
system the external debug component relates to.

Configuration
If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

Attributes
EDDEVAFF0 is a 32-bit register.

Field descriptions
The EDDEVAFF0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MPIDR_EL1lo

MPIDR_EL1lo, bits [31:0]

MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest implemented Exception
level.

Accessing the EDDEVAFF0

EDDEVAFF0 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFA8 EDDEVAFF0

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDDEVAFF0, External Debug Device Affinity register 0

Page 3364

EDDEVAFF1, External Debug Device Affinity register 1
The EDDEVAFF1 characteristics are:

Purpose
Copy of the high half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor
system the external debug component relates to.

Configuration
If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

Attributes
EDDEVAFF1 is a 32-bit register.

Field descriptions
The EDDEVAFF1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MPIDR_EL1hi

MPIDR_EL1hi, bits [31:0]

MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest implemented Exception
level.

Accessing the EDDEVAFF1

EDDEVAFF1 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFAC EDDEVAFF1

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDDEVAFF1, External Debug Device Affinity register 1

Page 3365

EDDEVARCH, External Debug Device Architecture
register

The EDDEVARCH characteristics are:

Purpose
Identifies the programmers' model architecture of the external debug component.

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

Attributes
EDDEVARCH is a 32-bit register.

Field descriptions
The EDDEVARCH bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARCHITECT PRESENT REVISION ARCHVER ARCHPART

ARCHITECT, bits [31:21]

Defines the architecture of the component. For debug, this is Arm Limited.

Bits [31:28] are the JEP106 continuation code, 0x4.

Bits [27:21] are the JEP106 ID code, 0x3B.

PRESENT, bit [20]

When set to 1, indicates that the DEVARCH is present.

This field is 1 in Armv8.

REVISION, bits [19:16]

Defines the architecture revision. For architectures defined by Arm this is the minor revision.

For debug, the revision defined by Armv8-A is 0x0.

All other values are reserved.

ARCHVER, bits [15:12]

Defines the architecture version of the component. This is the same value as ID_AA64DFR0_EL1.DebugVer and
DBGDIDR.Version. The defined values of this field are:

EDDEVARCH, External Debug Device Architecture register

Page 3366

ARCHVER Meaning
0b0110 Armv8.0 Debug architecture.
0b0111 Armv8.0 Debug architecture with Virtualization Host

Extensions.
0b1000 Armv8.2 Debug architecture.
0b1001 Armv8.4 Debug architecture.

ARMv8.4-Debug adds the functionality indicated by the value 0b1001. ARMv8.2-Debug adds the functionality indicated
by the value 0b1000. If ARMv8.1-VHE is not implemented, the only permitted value is 0b0110.

The fields ARCHVER and ARCHPART together form the field ARCHID, so that ARCHVER is ARCHID[15:12].

ARCHPART, bits [11:0]

ARCHPART Meaning
0xA15 The part number of the Armv8-A debug component.

The fields ARCHVER and ARCHPART together form the field ARCHID, so that ARCHPART is ARCHID[11:0].

Accessing the EDDEVARCH

EDDEVARCH can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFBC EDDEVARCH

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDDEVARCH, External Debug Device Architecture register

Page 3367

EDDEVID, External Debug Device ID register 0
The EDDEVID characteristics are:

Purpose
Provides extra information for external debuggers about features of the debug implementation.

Configuration
If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

Attributes
EDDEVID is a 32-bit register.

Field descriptions
The EDDEVID bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 AuxRegs RES0 DebugPower PCSample

Bits [31:28]

Reserved, RES0.

AuxRegs, bits [27:24]

Indicates support for Auxiliary registers. Permitted values for this field are:

AuxRegs Meaning
0b0000 None supported.
0b0001 Support for External Debug Auxiliary Control Register,

EDACR.

All other values are reserved.

Bits [23:8]

Reserved, RES0.

DebugPower, bits [7:4]

From Armv8.3:

Indicates support for the ARMv8.3-DoPD feature. Defined values of this field are:

DebugPower Meaning
0b0000 ARMv8.3-DoPD not implemented. Registers in the

external debug interface register map are implemented
in a mix of the Debug and Core power domains.

0b0001 ARMv8.3-DoPD implemented. All registers in the
external debug interface register map are implemented
in the Core power domain.

ARMv8.3-DoPD implements the functionality added by the value 0b0001.

EDDEVID, External Debug Device ID register 0

Page 3368

All other values are reserved.

Otherwise:

Reserved, RES0.

PCSample, bits [3:0]

Indicates the level of PC Sample-based Profiling support using external debug registers. Permitted values of this field
are:

PCSample Meaning
0b0000 PC Sample-based Profiling Extension is not implemented in

the external debug registers space.
0b0010 Only EDPCSR and EDCIDSR are implemented. This option

is only permitted if EL3 and EL2 are not implemented.
0b0011 EDPCSR, EDCIDSR, and EDVIDSR are implemented.

All other values are reserved.

When ARMv8.2-PCSample is implemented, the only permitted value is 0b0000.

Note

ARMv8.2-PCSample implements the PC Sample-based Profiling Extension in
the Performance Monitors register space, as indicated by the value of
PMDEVID.PCSample.

Accessing the EDDEVID

EDDEVID can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFC8 EDDEVID

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDDEVID, External Debug Device ID register 0

Page 3369

EDDEVID1, External Debug Device ID register 1
The EDDEVID1 characteristics are:

Purpose
Provides extra information for external debuggers about features of the debug implementation.

Configuration
If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

Attributes
EDDEVID1 is a 32-bit register.

Field descriptions
The EDDEVID1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PCSROffset

Bits [31:4]

Reserved, RES0.

PCSROffset, bits [3:0]

This field indicates the offset applied to PC samples returned by reads of EDPCSR. Permitted values of this field in
Armv8 are:

PCSROffset Meaning
0b0000 EDPCSR not implemented.
0b0010 EDPCSR implemented, and samples have no offset

applied and do not sample the instruction set state in
AArch32 state.

When ARMv8.2-PCSample is implemented, the only permitted value is 0b0000.

Note

ARMv8.2-PCSample implements the PC Sample-based Profiling Extension in
the Performance Monitors register space, as indicated by the value of
PMDEVID.PCSample.

Accessing the EDDEVID1

EDDEVID1 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFC4 EDDEVID1

This interface is accessible as follows:

EDDEVID1, External Debug Device ID register 1

Page 3370

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDDEVID1, External Debug Device ID register 1

Page 3371

EDDEVID2, External Debug Device ID register 2
The EDDEVID2 characteristics are:

Purpose
Reserved for future descriptions of features of the debug implementation.

Configuration
If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

Attributes
EDDEVID2 is a 32-bit register.

Field descriptions
The EDDEVID2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [31:0]

Reserved, RES0.

Accessing the EDDEVID2

EDDEVID2 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFC0 EDDEVID2

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDDEVID2, External Debug Device ID register 2

Page 3372

EDDEVTYPE, External Debug Device Type register
The EDDEVTYPE characteristics are:

Purpose
Indicates to a debugger that this component is part of a PEs debug logic.

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

Attributes
EDDEVTYPE is a 32-bit register.

Field descriptions
The EDDEVTYPE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SUB MAJOR

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Subtype. Must read as 0x1 to indicate this is a component within a PE.

MAJOR, bits [3:0]

Major type. Must read as 0x5 to indicate this is a debug logic component.

Accessing the EDDEVTYPE

EDDEVTYPE can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFCC EDDEVTYPE

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDDEVTYPE, External Debug Device Type register

Page 3373

EDDFR, External Debug Feature Register
The EDDFR characteristics are:

Purpose
Provides top level information about the debug system.

Note

Debuggers must use EDDEVARCH to determine the Debug architecture
version.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Configuration
It is IMPLEMENTATION DEFINED whether EDDFR is implemented in the Core power domain or in the Debug power
domain.

Attributes
EDDFR is a 64-bit register.

Field descriptions
The EDDFR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TraceFilt UNKNOWN

CTX_CMPs RES0 WRPs RES0 BRPs PMUVer TraceVer UNKNOWN
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:44]

Reserved, RES0.

TraceFilt, bits [43:40]

Armv8.4 Self-hosted Trace Extension version. Defined values are:

TraceFilt Meaning
0b0000 Armv8.4 Self-hosted Trace Extension is not implemented.
0b0001 Armv8.4 Self-hosted Trace Extension is implemented.

All other values are reserved.

ARMv8.4-Trace implements the functionality added by 0b0001.

From Armv8.4, the permitted values are 0b0000 and 0b0001.

Bits [39:32]

Reserved, UNKNOWN.

EDDFR, External Debug Feature Register

Page 3374

CTX_CMPs, bits [31:28]

Number of breakpoints that are context-aware, minus 1. These are the highest numbered breakpoints.

In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value
of ID_AA64DFR0_EL1.CTX_CMPs.

Bits [27:24]

Reserved, RES0.

WRPs, bits [23:20]

Number of watchpoints, minus 1. The value of 0b0000 is reserved.

In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value
of ID_AA64DFR0_EL1.WRPs.

Bits [19:16]

Reserved, RES0.

BRPs, bits [15:12]

Number of breakpoints, minus 1. The value of 0b0000 is reserved.

In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value
of ID_AA64DFR0_EL1.BRPs.

PMUVer, bits [11:8]

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the Alternative ID scheme described in 'Alternative ID
scheme used for the Performance Monitors Extension version' in the Arm® Architecture Reference Manual, Armv8,
for Armv8-A architecture profile, section D10.1.4.

Defined values are:

PMUVer Meaning
0b0000 Performance Monitors Extension not implemented.
0b0001 Performance Monitors Extension implemented, PMUv3.
0b0100 PMUv3 for Armv8.1. As 0b0001, and also includes support

for:
• Extended 16-bit PMEVTYPER<n>_EL0.evtCount field.
• If EL2 is implemented, the MDCR_EL2.HPMD control

bit.
0b0101 PMUv3 for Armv8.4. As 0b0100, and also includes support for

the PMMIR register.
0b0110 PMUv3 for Armv8.5. As 0b0101, and also includes support

for:
• 64-bit event counters.
• If EL2 is implemented, the MDCR_EL2.HCCD control

bit.
• If EL3 is implemented, the MDCR_EL3.SCCD control bit.

0b1111 IMPLEMENTATION DEFINED form of performance monitors
supported, PMUv3 not supported. Arm does not recommend
this value in new implementations.

ARMv8.1-PMU implements the functionality added by the value 0b0100.

ARMv8.4-PMU implements the functionality added by the value 0b0101.

ARMv8.5-PMU implements the functionality added by the value 0b0110.

EDDFR, External Debug Feature Register

Page 3375

All other values are reserved.

From Armv8.1, the value 0b0001 is not permitted.

From Armv8.4, the value 0b0100 is not permitted.

From Armv8.5, the value 0b0101 is not permitted.

In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value
of ID_AA64DFR0_EL1.PMUVer.

TraceVer, bits [7:4]

Trace support. Indicates whether System register interface to a PE trace unit is implemented. Defined values are:

TraceVer Meaning
0b0000 PE trace unit System registers not implemented.
0b0001 PE trace unit System registers implemented.

All other values are reserved.

A value of 0b0000 only indicates that no System register interface to a PE trace unit is implemented. A PE trace unit
might nevertheless be implemented without a System register interface.

In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value
of ID_AA64DFR0_EL1.TraceVer.

Bits [3:0]

Reserved, UNKNOWN.

Accessing the EDDFR

EDDFR can be accessed through the external debug interface:

Component Offset Instance Range
Debug 0xD28 EDDFR 31:0

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to this register are RO.
• Otherwise accesses to this register are IMPDEF.

Component Offset Instance Range
Debug 0xD2C EDDFR 63:32

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to this register are RO.
• Otherwise accesses to this register are IMPDEF.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDDFR, External Debug Feature Register

Page 3376

EDECCR, External Debug Exception Catch Control
Register

The EDECCR characteristics are:

Purpose
Controls Exception Catch debug events.

Configuration
External register EDECCR bits [31:0] are architecturally mapped to AArch64 System register OSECCR_EL1[31:0] .

External register EDECCR bits [31:0] are architecturally mapped to AArch32 System register DBGOSECCR[31:0] .

EDECCR is in the Core power domain.

Attributes
EDECCR is a 32-bit register.

Field descriptions
The EDECCR bit assignments are:

When ARMv8.2-Debug is implemented:

31302928272625242322212019181716 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 NSR3NSR2NSR1NSR0SR3SR2SR1SR0NSE3NSE2NSE1NSE0SE3SE2SE1SE0

Bits [31:16]

Reserved, RES0.

NSR<n>, bit [n+12], for n = 0 to 3

Controls Non-secure exception catch on exception return to EL<n> in conjunction with NSE<n>. See the summary of
Exception Catch debug event control for information.

NSR<n> Meaning
0b0 If the corresponding NSE<n> bit is 0, then Exception Catch

debug events are disabled for Non-secure Exception level
<n>.
If the corresponding NSE<n> bit is 1, then Exception Catch
debug events are enabled for exception entry, reset entry
and exception return to Non-secure Exception level <n>.

0b1 If the corresponding NSE<n> bit is 0, then Exception Catch
debug events are enabled for exception returns to Non-
secure Exception level <n>.
If the corresponding NSE<n> bit is 1, then Exception Catch
debug events are enabled for exception entry and reset entry
to Non-secure Exception level <n>.

If EL3 is not implemented and the PE behaves as if SCR_EL3.NS is set to 0, this field is reserved, RES0.

Note

EDECCR, External Debug Exception Catch Control Register

Page 3377

It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level is
permitted to generate an Exception Catch debug event.

A value of the NSR field that enables an Exception Catch debug event for an Exception level that is not implemented is
reserved. If the NSR field is programmed with a reserved value then:

• The PE behaves as if it is programmed with a defined value, other than for a read of EDECCR.
• The value returned for NSR by a read of EDECCR is UNKNOWN.

On a Cold reset, this field resets to 0.

SR<n>, bit [n+8], for n = 0 to 3

Controls Secure exception catch on exception return to EL<n> in conjunction with SE<n>. See the summary of
Exception Catch debug event control for information.

SR<n> Meaning
0b0 If the corresponding SE<n> bit is 0, then Exception Catch

debug events are disabled for Secure Exception level <n>.
If the corresponding SE<n> bit is 1, then Exception Catch
debug events are enabled for exception entry, reset entry and
exception return to Secure Exception level <n>.

0b1 If the corresponding SE<n> bit is 0, then Exception Catch
debug events are enabled for exception returns to Secure
Exception level <n>.
If the corresponding SE<n> bit is 1, then Exception Catch
debug events are enabled for exception entry and reset entry
to Secure Exception level <n>.

If EL3 is not implemented and the PE behaves as if SCR_EL3.NS is set to 1, this field is reserved, RES0.

Note

It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level is
permitted to generate an Exception Catch debug event.

A value of the SR field that enables an Exception Catch debug event for an Exception level that is not implemented is
reserved. If the SR field is programmed with a reserved value then:

• The PE behaves as if it is programmed with a defined value, other than for a read of EDECCR.
• The value returned for SR by a read of EDECCR is UNKNOWN.

On a Cold reset, this field resets to 0.

NSE<n>, bit [n+4], for n = 0 to 3

Coarse-grained Non-secure exception catch for EL<n>. This controls whether Exception Catch debug events are
enabled for Non-secure EL<n>. This also controls:

• The behavior of exception catch on exception entry to EL<n>.
• The behavior of exception catch on exception return to EL<n> in conjunction with NSR<n>.

NSE<n> Meaning
0b0 If the corresponding NSR<n> bit is 0, then Exception Catch

debug events are disabled for Non-secure Exception level
<n>.
If the corresponding NSR<n> bit is 1, then Exception Catch
debug events are enabled for exception returns to Non-
secure Exception level <n>.

0b1 If the corresponding NSR<n> bit is 0, then Exception Catch
debug events are enabled for exception entry, reset entry and
exception return to Non-secure Exception level <n>.
If the corresponding NSR<n> bit is 1, then Exception Catch
debug events are enabled for exception entry and reset entry
to Non-secure Exception level <n>.

EDECCR, External Debug Exception Catch Control Register

Page 3378

If EL3 is not implemented and the PE behaves as if SCR_EL3.NS is set to 0, this field is reserved, RES0.

A value of the NSE field that enables an Exception Catch debug event for an Exception level that is not implemented is
reserved. If the NSE field is programmed with a reserved value then:

• The PE behaves as if it is programmed with a defined value, other than for a read of EDECCR.
• The value returned for NSE by a read of EDECCR is UNKNOWN.

On a Cold reset, this field resets to 0.

SE<n>, bit [n], for n = 0 to 3

Coarse-grained Secure exception catch for EL<n>. This field controls whether Exception Catch debug events are
enabled for Secure EL<n>.

• The behavior of exception catch on exception entry to EL<n>.
• The behavior of exception catch on exception return to EL<n> in conjunction with SR<n>.

SE<n> Meaning
0b0 If the corresponding SR<n> bit is 0, then Exception Catch

debug events are disabled for Secure Exception level <n>.
If the corresponding SR<n> bit is 1, then Exception Catch
debug events are enabled for exception returns to Secure
Exception level <n>.

0b1 If the corresponding SR<n> bit is 0, then Exception Catch
debug events are enabled for exception entry, reset entry and
exception return to Secure Exception level <n>.
If the corresponding SR<n> bit is 1, then Exception Catch
debug events are enabled for exception entry and reset entry
to Secure Exception level <n>.

If EL3 is not implemented and the PE behaves as if SCR_EL3.NS is set to 1, this field is reserved, RES0.

A value of the SE field that enables an Exception Catch debug event for an Exception level that is not implemented is
reserved. If the SE field is programmed with a reserved value then:

• The PE behaves as if it is programmed with a defined value, other than for a read of EDECCR.
• The value returned for SE by a read of EDECCR is UNKNOWN.

On a Cold reset, this field resets to 0.

Otherwise:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 NSE3NSE2NSE1NSE0SE3SE2SE1SE0

Bits [31:8]

Reserved, RES0.

NSE<n>, bit [n+4], for n = 0 to 3

Coarse-grained Non-secure exception catch. If EL3 and EL2 are not implemented and the PE behaves as if
SCR_EL3.NS is set to 0, this field is reserved, RES0. Otherwise, possible values for this field are:

NSE<n> Meaning
0b0 Exception Catch debug events are disabled for Non-secure

Exception level <n>.
0b1 Exception Catch debug events are enabled for Non-secure

Exception level <n>.

A value of the NSE field that enables an Exception Catch debug event for an Exception level that is not implemented is
reserved. If the NSE field is programmed with a reserved value then:

• The PE behaves as if it is programmed with a defined value, other than for a read of EDECCR.
• The value returned for NSE by a read of EDECCR is UNKNOWN.

EDECCR, External Debug Exception Catch Control Register

Page 3379

SE<n>, bit [n], for n = 0 to 3

Coarse-grained Secure exception catch.

SE<n> Meaning
0b0 Exception Catch debug events are disabled for Secure

Exception level <n>.
0b1 Exception Catch debug events are enabled for Secure

Exception level <n>.

If EL3 is not implemented and the PE behaves as if SCR_EL3.NS is set to 1, this field is reserved, RES0.

A value of the SE field that enables an Exception Catch debug event for an Exception level that is not implemented is
reserved. If the SE field is programmed with a reserved value then:

• The PE behaves as if it is programmed with a defined value, other than for a read of EDECCR.
• The value returned for SE by a read of EDECCR is UNKNOWN.

Accessing the EDECCR

EDECCR can be accessed through the external debug interface:

Component Offset Instance
Debug 0x098 EDECCR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDECCR, External Debug Exception Catch Control Register

Page 3380

EDECR, External Debug Execution Control Register
The EDECR characteristics are:

Purpose
Controls Halting debug events.

Configuration
If ARMv8.3-DoPD is implemented, this register is in the Core power domain.

If ARMv8.3-DoPD is not implemented, this register is in the Debug power domain.

Attributes
EDECR is a 32-bit register.

Field descriptions
The EDECR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SS RCEOSUCE

Bits [31:3]

Reserved, RES0.

SS, bit [2]

Halting step enable. Possible values of this field are:

SS Meaning
0b0 Halting step debug event disabled.
0b1 Halting step debug event enabled.

If the value of EDECR.SS is changed when the PE is in Non-debug state, behavior is CONSTRAINED UNPREDICTABLE as
described in 'Changing the value of EDECR.SS when not in Debug state' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile.

The following resets apply:

• On a Cold reset, this field resets to:

◦ If ARMv8.3-DoPD is implemented, 0.

• On an External debug reset, this field resets to:

◦ If ARMv8.3-DoPD is not implemented, 0.

• On a Warm reset, this field resets to:

◦ If ARMv8.3-DoPD is implemented, an unchanged value.

EDECR, External Debug Execution Control Register

Page 3381

RCE, bit [1]

When ARMv8.3-DoPD is not implemented:

Reset Catch Enable.

RCE Meaning
0b0 Reset Catch debug event disabled.
0b1 Reset Catch debug event enabled.

The following resets apply:

• On an External debug reset, this field resets to 0.

• On a Warm reset, the value of this field is unchanged.

Otherwise:

Reserved, RES0.

OSUCE, bit [0]

When ARMv8.3-DoPD is not implemented:

OS Unlock Catch Enable.

OSUCE Meaning
0b0 OS Unlock Catch debug event disabled.
0b1 OS Unlock Catch debug event enabled.

The following resets apply:

• On an External debug reset, this field resets to 0.

• On a Warm reset, the value of this field is unchanged.

Otherwise:

Reserved, RES0.

Accessing the EDECR

EDECR can be accessed through the external debug interface:

Component Offset Instance
Debug 0x024 EDECR

This interface is accessible as follows:

• When (ARMv8.3-DoPD is not implemented or IsCorePowered()) and SoftwareLockStatus() accesses to this
register are RO.

• When (ARMv8.3-DoPD is not implemented or IsCorePowered()) and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDECR, External Debug Execution Control Register

Page 3382

EDESR, External Debug Event Status Register
The EDESR characteristics are:

Purpose
Indicates the status of internally pending Halting debug events.

Configuration
EDESR is in the Core power domain.

Attributes
EDESR is a 32-bit register.

Field descriptions
The EDESR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SS RC OSUC

Bits [31:3]

Reserved, RES0.

SS, bit [2]

When ARMv8.3-DoPD is implemented:

Halting step debug event pending. Possible values of this field are:

SS Meaning
0b0 Reading this means that a Halting step debug event is not pending.

Writing this means no action.
0b1 Reading this means that a Halting step debug event is pending.

Writing this clears the pending Halting step debug event.

On a Cold reset, this field resets to 0.

Otherwise:

Halting step debug event pending. Possible values of this field are:

SS Meaning
0b0 Reading this means that a Halting step debug event is not pending.

Writing this means no action.
0b1 Reading this means that a Halting step debug event is pending.

Writing this clears the pending Halting step debug event.

On a Warm reset, this field resets to the value in EDECR.SS.

RC, bit [1]

Reset Catch debug event pending. Possible values of this field are:

EDESR, External Debug Event Status Register

Page 3383

RC Meaning
0b0 Reading this means that a Reset Catch debug event is not pending.

Writing this means no action.
0b1 Reading this means that a Reset Catch debug event is pending.

Writing this clears the pending Reset Catch debug event.

On a Warm reset, this field resets to:

• If ARMv8.3-DoPD is implemented, the value in CTIDEVCTL.RCE.
• If ARMv8.3-DoPD is not implemented, the value in EDECR.RCE.

OSUC, bit [0]

OS Unlock Catch debug event pending. Possible values of this field are:

OSUC Meaning
0b0 Reading this means that an OS Unlock Catch debug event is not

pending. Writing this means no action.
0b1 Reading this means that an OS Unlock Catch debug event is

pending. Writing this clears the pending OS Unlock Catch
debug event.

On a Warm reset, this field resets to 0.

Accessing the EDESR
If a request to clear a pending Halting debug event is received at or about the time when halting becomes allowed, it
is CONSTRAINED UNPREDICTABLE whether the event is taken.

If Core power is removed while a Halting debug event is pending, it is lost. However, it might become pending again
when the Core is powered back on and Cold reset.

EDESR can be accessed through the external debug interface:

Component Offset Instance
Debug 0x020 EDESR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and SoftwareLockStatus() accesses to this register are RO.
• When IsCorePowered(), !DoubleLockStatus() and !SoftwareLockStatus() accesses to this register are RW.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDESR, External Debug Event Status Register

Page 3384

EDITCTRL, External Debug Integration mode Control
register

The EDITCTRL characteristics are:

Purpose
Enables the external debug to switch from its default mode into integration mode, where test software can control
directly the inputs and outputs of the PE, for integration testing or topology detection.

Configuration
It is IMPLEMENTATION DEFINED whether EDITCTRL is implemented in the Core power domain or in the Debug power
domain.

Implementation of this register is OPTIONAL.

Attributes
EDITCTRL is a 32-bit register.

Field descriptions
The EDITCTRL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IME

Bits [31:1]

Reserved, RES0.

IME, bit [0]

Integration mode enable. When IME == 1, the device reverts to an integration mode to enable integration testing or
topology detection. The integration mode behavior is IMPLEMENTATION DEFINED.

IME Meaning
0b0 Normal operation.
0b1 Integration mode enabled.

On a Implementation reset, this field resets to 0.

Accessing the EDITCTRL

EDITCTRL can be accessed through the external debug interface:

Component Offset Instance
Debug 0xF00 EDITCTRL

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

EDITCTRL, External Debug Integration mode Control register

Page 3385

• Otherwise accesses to this register are IMPDEF.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDITCTRL, External Debug Integration mode Control register

Page 3386

EDITR, External Debug Instruction Transfer Register
The EDITR characteristics are:

Purpose
Used in Debug state for passing instructions to the PE for execution.

Configuration
EDITR is in the Core power domain.

Attributes
EDITR is a 32-bit register.

Field descriptions
The EDITR bit assignments are:

When AArch32 is supported at any Exception level and in AArch32 state:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T32Second T32First

T32Second, bits [31:16]

Second halfword of the T32 instruction to be executed on the PE. When EDITR contains a 16-bit T32 instruction, this
field is ignored. For more information see 'Behavior in Debug state' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H2, Debug State.

T32First, bits [15:0]

First halfword of the T32 instruction to be executed on the PE.

When AArch64 is supported at any Exception level and in AArch64 state:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A64 instruction to be executed on the PE

Bits [31:0]

A64 instruction to be executed on the PE.

Accessing the EDITR
If EDSCR.ITE == 0 when the PE exits Debug state on receiving a Restart request trigger event, the behavior of any
instruction issued through the ITR in Normal access mode that has not completed execution is CONSTRAINED
UNPREDICTABLE, and must do one of the following:

• It must complete execution in Debug state before the PE executes the restart sequence.
• It must complete execution in Non-debug state before the PE executes the restart sequence.
• It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed by

the instruction are left in an UNKNOWN state.

EDITR, External Debug Instruction Transfer Register

Page 3387

EDITR ignores writes if the PE is in Non-debug state.

EDITR can be accessed through the external debug interface:

Component Offset Instance
Debug 0x084 EDITR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are WI.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are WO.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDITR, External Debug Instruction Transfer Register

Page 3388

EDLAR, External Debug Lock Access Register
The EDLAR characteristics are:

Purpose
Allows or disallows access to the external debug registers through a memory-mapped interface.

The optional Software Lock provides a lock to prevent memory-mapped writes to the debug registers. Use of this lock
mechanism reduces the risk of accidental damage to the contents of the debug registers. It does not, and cannot,
prevent all accidental or malicious damage.

Configuration
If ARMv8.3-DoPD is implemented, then ARMv8.0-SoftwareLock is not implemented by the architecturally-defined
debug components of the PE in the Core power domain.

If ARMv8.3-DoPD is not implemented, then this register is in the Debug power domain.

Software uses EDLAR to set or clear the lock, and EDLSR to check the current status of the lock.

Attributes
EDLAR is a 32-bit register.

Field descriptions
The EDLAR bit assignments are:

When the Software Lock is implemented.:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
KEY

KEY, bits [31:0]

Lock Access control. Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to this
component's registers through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to this component's registers through a
memory mapped interface.

Otherwise:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Otherwise

Bits [31:0]

Reserved, RES0.

EDLAR, External Debug Lock Access Register

Page 3389

Accessing the EDLAR

EDLAR can be accessed through the memory-mapped interfaces:

Component Offset Instance
Debug 0xFB0 EDLAR

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are WO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDLAR, External Debug Lock Access Register

Page 3390

EDLSR, External Debug Lock Status Register
The EDLSR characteristics are:

Purpose
Indicates the current status of the software lock for external debug registers.

The optional Software Lock provides a lock to prevent memory-mapped writes to the debug registers. Use of this lock
mechanism reduces the risk of accidental damage to the contents of the debug registers. It does not, and cannot,
prevent all accidental or malicious damage.

Configuration
If ARMv8.3-DoPD is implemented, then ARMv8.0-SoftwareLock is not implemented by the architecturally-defined
debug components of the PE in the Core power domain.

If ARMv8.3-DoPD is not implemented, then this register is in the Debug power domain.

Software uses EDLAR to set or clear the lock, and EDLSR to check the current status of the lock.

Attributes
EDLSR is a 32-bit register.

Field descriptions
The EDLSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 nTTSLKSLI

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Not thirty-two bit access required. RAZ.

SLK, bit [1]

When the Software Lock is implemented.:

Software Lock status for this component. For an access to LSR that is not a memory-mapped access, or when the
Software Lock is not implemented, this field is RES0.

For memory-mapped accesses when the Software Lock is implemented, possible values of this field are:

SLK Meaning
0b0 Lock clear. Writes are permitted to this component's registers.
0b1 Lock set. Writes to this component's registers are ignored, and

reads have no side effects.

The following resets apply:

• If Armv8.3-DoPD is implemented, this register is reset by Cold reset and not affected by External debug
reset. If Armv8.3-DoPD is not implemented, this register is reset by External debug reset and not affected by
Cold reset.

EDLSR, External Debug Lock Status Register

Page 3391

• This field resets to 1.

Otherwise:

Reserved, RAZ.

SLI, bit [0]

Software Lock implemented. For an access to LSR that is not a memory-mapped access, this field is RAZ. For memory-
mapped accesses, the value of this field is IMPLEMENTATION DEFINED. Permitted values are:

SLI Meaning
0b0 Software Lock not implemented or not memory-mapped access.
0b1 Software Lock implemented and memory-mapped access.

Accessing the EDLSR

EDLSR can be accessed through the memory-mapped interfaces:

Component Offset Instance
Debug 0xFB4 EDLSR

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDLSR, External Debug Lock Status Register

Page 3392

EDPCSR, External Debug Program Counter Sample
Register

The EDPCSR characteristics are:

Purpose
Holds a sampled instruction address value.

Configuration
EDPCSR is in the Core power domain.

This register is present only when ARMv8.0-PCSample is implemented and ARMv8.2-PCSample is not implemented.
Otherwise, direct accesses to EDPCSR are RES0.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented in the external debug registers
space.

Note

ARMv8.2-PCSample implements the PC Sample-based Profiling Extension in
the Performance Monitors registers space.

Attributes
EDPCSR is a pair of 32-bit registers.

If ARMv8.1-VHE is implemented, the format of this register differs depending on the value of EDSCR.SC2.

Field descriptions
The EDPCSR bit assignments are:

When ARMv8.1-VHE is not implemented or EDSCR.SC2 == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
PC Sample high word, EDPCSRhi

PC Sample low word
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

PC Sample high word, EDPCSRhi. If EDVIDSR.HV == 0 then this field is RAZ, otherwise bits [63:32] of the sampled
instruction address value. The translation regime that EDPCSR samples can be determined from
EDVIDSR.{NS,E2,E3}.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

PC Sample low word. EDPCSRlo, bits[31:0] of the sampled instruction address value.

EDPCSRlo reads as 0xFFFFFFFF when any of the following are true:

• The PE is in Debug state.

EDPCSR, External Debug Program Counter Sample Register

Page 3393

• PC Sample-based profiling is prohibited.

If an instruction has retired since the PE left Reset state, then the first read of EDPCSR[31:0] is permitted but not
required to return 0xFFFFFFFF.

EDPCSRlo reads as an UNKNOWN value when any of the following are true:

• The PE is in Reset state.
• No instruction has retired since the PE left Reset state, Debug state, or a state where PC Sample-based

Profiling is prohibited.
• No instruction has retired since the last read of EDPCSR[31:0].

For the cases where a read of EDPCSR[31:0] returns 0xFFFFFFFF or an UNKNOWN value, the read has the side-effect of
setting EDPCSRhi, EDCIDSR, and EDVIDSR to UNKNOWN values.

Otherwise, a read of EDPCSR[31:0] returns bits [31:0] of the sampled instruction address value and has the side-effect
of indirectly writing to EDPCSRhi, EDCIDSR, and EDVIDSR. The translation regime that EDPCSR samples can be
determined from EDVIDSR.{NS,E2,E3}.

For a read of EDPCSR[31:0] from the memory-mapped interface, if EDLSR.SLK == 1, meaning the OPTIONAL Software
Lock is locked, then the side-effect of the access does not occur and EDPCSRhi, EDCIDSR, and EDVIDSR are
unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ARMv8.1-VHE is implemented and EDSCR.SC2 == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS EL RES0 PC Sample high word, EDPCSRhi

PC Sample low word
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

Non-secure state sample. Indicates the Security state that is associated with the most recent EDPCSR sample or, when
it is read as a single atomic 64-bit read, the current EDPCSR sample. The translation regime that EDPCSR samples
can be determined from EDPCSR.{NS,EL}.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

NS Meaning
0b0 Sample is from Secure state.
0b1 Sample is from Non-secure state.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

EL, bits [62:61]

Exception level status sample. Indicates the Exception level that is associated with the most recent EDPCSR sample or,
when it is read as a single atomic 64-bit read, the current EDPCSR sample. The translation regime that EDPCSR
samples can be determined from EDPCSR.{NS,EL}.

EL Meaning
0b00 Sample is from EL0.
0b01 Sample is from EL1.
0b10 Sample is from EL2.
0b11 Sample is from EL3.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [60:56]

Reserved, RES0.

EDPCSR, External Debug Program Counter Sample Register

Page 3394

Bits [55:32]

PC Sample high word, EDPCSRhi. Bits [55:32] of the sampled instruction address value. The translation regime that
EDPCSR samples can be determined from EDPCSR.{NS,EL}.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

PC Sample low word. EDPCSRlo, bits[31:0] of the sampled instruction address value.

EDPCSRlo reads as 0xFFFFFFFF when any of the following are true:

• The PE is in Debug state.
• PC Sample-based profiling is prohibited.

If an instruction has retired since the PE left Reset state, then the first read of EDPCSR[31:0] is permitted but not
required to return 0xFFFFFFFF.

EDPCSRlo reads as an UNKNOWN value when any of the following are true:

• The PE is in Reset state.
• No instruction has retired since the PE left Reset state, Debug state, or a state where PC Sample-based

Profiling is prohibited.
• No instruction has retired since the last read of EDPCSR[31:0].

For the cases where a read of EDPCSR[31:0] returns 0xFFFFFFFF or an UNKNOWN value, the read has the side-effect of
setting EDPCSRhi, EDCIDSR, and EDVIDSR to UNKNOWN values.

Otherwise, a read of EDPCSR[31:0] returns bits [31:0] of the sampled instruction address value and has the side-effect
of indirectly writing to EDPCSRhi, EDCIDSR, and EDVIDSR. The translation regime that EDPCSR samples can be
determined from EDPCSR.{NS,EL}.

For a read of EDPCSR[31:0] from the memory-mapped interface, if EDLSR.SLK == 1, meaning the OPTIONAL Software
Lock is locked, then the side-effect of the access does not occur and EDPCSRhi, EDCIDSR, and EDVIDSR are
unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the EDPCSR
IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see 'Permitted
behavior that might make the PC Sample-based profiling registers UNKNOWN' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile

EDPCSR can be accessed through the memory-mapped interfaces:

Component Offset Instance Range
Debug 0x0A0 EDPCSR 31:0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

Component Offset Instance Range
Debug 0x0AC EDPCSR 63:32

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

EDPCSR, External Debug Program Counter Sample Register

Page 3395

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDPCSR, External Debug Program Counter Sample Register

Page 3396

EDPFR, External Debug Processor Feature Register
The EDPFR characteristics are:

Purpose
Provides information about implemented PE features.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Configuration
It is IMPLEMENTATION DEFINED whether EDPFR is implemented in the Core power domain or in the Debug power
domain.

Attributes
EDPFR is a 64-bit register.

Field descriptions
The EDPFR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
UNKNOWN UNKNOWN RES0 UNKNOWN AMU UNKNOWN SEL2 SVE
UNKNOWN GIC AdvSIMD FP EL3 EL2 EL1 EL0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:60]

From Armv8.5:

Reserved, UNKNOWN.

Otherwise:

Reserved, RES0.

Bits [59:56]

From Armv8.5:

Reserved, UNKNOWN.

Otherwise:

Reserved, RES0.

Bits [55:52]

Reserved, RES0.

EDPFR, External Debug Processor Feature Register

Page 3397

Bits [51:48]

From Armv8.4:

Reserved, UNKNOWN.

Otherwise:

Reserved, RES0.

AMU, bits [47:44]

Activity Monitors Extension. Defined values are:

AMU Meaning
0b0000 Activity Monitors Extension is not implemented.
0b0001 Activity Monitors Extension version 1 is implemented.

All other values are reserved.

AMUv1 implements the functionality identified by the value 0b0001.

In Armv8.0, Armv8.1, Armv8.2, and Armv8.3, the only permitted value is 0b0000.

From Armv8.4, the permitted values are 0b0000 and 0b0001.

Bits [43:40]

From Armv8.2:

Reserved, UNKNOWN.

Otherwise:

Reserved, RES0.

SEL2, bits [39:36]

Secure EL2. Defined values are:

SEL2 Meaning
0b0000 Secure EL2 is not implemented.
0b0001 Secure EL2 is implemented.

All other values are reserved.

SVE, bits [35:32]

Scalable Vector Extension. Defined values are:

SVE Meaning
0b0000 SVE is not implemented.
0b0001 SVE is implemented.

All other values are reserved.

Bits [31:28]

From Armv8.2:

Reserved, UNKNOWN.

EDPFR, External Debug Processor Feature Register

Page 3398

Otherwise:

Reserved, RES0.

GIC, bits [27:24]

System register GIC interface support. Defined values are:

GIC Meaning
0b0000 GIC CPU interface system registers not implemented.
0b0001 System register interface to versions 3.0 and 4.0 of the GIC

CPU interface is supported.
0b0011 System register interface to version 4.1 of the GIC CPU

interface is supported.

All other values are reserved.

In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value
of ID_AA64PFR0_EL1.GIC.

AdvSIMD, bits [23:20]

Advanced SIMD. Defined values are:

AdvSIMD Meaning
0b0000 Advanced SIMD is implemented, including support for the

following SISD and SIMD operations:
• Integer byte, halfword, word and doubleword element

operations.
• Single-precision and double-precision floating-point

arithmetic.
• Conversions between single-precision and half-

precision data types, and double-precision and half-
precision data types.

0b0001 As for 0b0000, and also includes support for half-precision
floating-point arithmetic.

0b1111 Advanced SIMD is not implemented.

All other values are reserved.

This field must have the same value as the FP field.

The permitted values are:

• 0b0000 in an implementation with Advanced SIMD support, that does not include the ARMv8.2-FP16
extension.

• 0b0001 in an implementation with Advanced SIMD support, that includes the ARMv8.2-FP16 extension.
• 0b1111 in an implementation without Advanced SIMD support.

In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value
of ID_AA64PFR0_EL1.AdvSIMD.

FP, bits [19:16]

Floating-point. Defined values are:

FP Meaning
0b0000 Floating-point is implemented, and includes support for:

• Single-precision and double-precision floating-point types.
• Conversions between single-precision and half-precision

data types, and double-precision and half-precision data
types.

0b0001 As for 0b0000, and also includes support for half-precision
floating-point arithmetic.

0b1111 Floating-point is not implemented.

EDPFR, External Debug Processor Feature Register

Page 3399

All other values are reserved.

This field must have the same value as the AdvSIMD field.

The permitted values are:

• 0b0000 in an implementation with floating-point support, that does not include the ARMv8.2-FP16 extension.
• 0b0001 in an implementation with floating-point support, that includes the ARMv8.2-FP16 extension.
• 0b1111 in an implementation without floating-point support.

In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value
of ID_AA64PFR0_EL1.FP.

EL3, bits [15:12]

AArch64 EL3 Exception level handling. Defined values are:

EL3 Meaning
0b0000 EL3 is not implemented or cannot be executed in AArch64

state.
0b0001 EL3 can be executed in AArch64 state only.
0b0010 EL3 can be executed in both Execution states.

When the value of EDAA32PFR.EL3 is non-zero, this field must be 0b0000.

All other values are reserved.

In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value
of ID_AA64PFR0_EL1.EL3.

EL2, bits [11:8]

AArch64 EL2 Exception level handling. Defined values are:

EL2 Meaning
0b0000 EL2 is not implemented or cannot be executed in AArch64

state.
0b0001 EL2 can be executed in AArch64 state only.
0b0010 EL2 can be executed in both Execution states.

When the value of EDAA32PFR.EL2 is non-zero, this field must be 0b0000.

All other values are reserved.

In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value
of ID_AA64PFR0_EL1.EL2.

EL1, bits [7:4]

AArch64 EL1 Exception level handling. Defined values are:

EL1 Meaning
0b0000 EL1 cannot be executed in AArch64 state.

EL1 can be executed in AArch32 state only.
0b0001 EL1 can be executed in AArch64 state only.
0b0010 EL1 can be executed in both Execution states.

All other values are reserved.

In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value
of ID_AA64PFR0_EL1.EL1.

EL0, bits [3:0]

AArch64 EL0 Exception level handling. Defined values are:

EDPFR, External Debug Processor Feature Register

Page 3400

EL0 Meaning
0b0000 EL0 cannot be executed in AArch64 state.

EL0 can be executed in AArch32 state only.
0b0001 EL0 can be executed in AArch64 state only.
0b0010 EL0 can be executed in both Execution states.

All other values are reserved.

In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value
of ID_AA64PFR0_EL1.EL0.

Accessing the EDPFR

EDPFR can be accessed through the external debug interface:

Component Offset Instance Range
Debug 0xD20 EDPFR 31:0

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to this register are RO.
• Otherwise accesses to this register are IMPDEF.

Component Offset Instance Range
Debug 0xD24 EDPFR 63:32

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to this register are RO.
• Otherwise accesses to this register are IMPDEF.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDPFR, External Debug Processor Feature Register

Page 3401

EDPIDR0, External Debug Peripheral Identification
Register 0

The EDPIDR0 characteristics are:

Purpose
Provides information to identify an external debug component.

For more information see 'About the Peripheral identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
EDPIDR0 is a 32-bit register.

Field descriptions
The EDPIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PART_0

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, least significant byte.

Accessing the EDPIDR0

EDPIDR0 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFE0 EDPIDR0

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

EDPIDR0, External Debug Peripheral Identification Register 0

Page 3402

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDPIDR0, External Debug Peripheral Identification Register 0

Page 3403

EDPIDR1, External Debug Peripheral Identification
Register 1

The EDPIDR1 characteristics are:

Purpose
Provides information to identify an external debug component.

For more information see 'About the Peripheral identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
EDPIDR1 is a 32-bit register.

Field descriptions
The EDPIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 DES_0 PART_1

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.

PART_1, bits [3:0]

Part number, most significant nibble.

Accessing the EDPIDR1

EDPIDR1 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFE4 EDPIDR1

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

EDPIDR1, External Debug Peripheral Identification Register 1

Page 3404

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDPIDR1, External Debug Peripheral Identification Register 1

Page 3405

EDPIDR2, External Debug Peripheral Identification
Register 2

The EDPIDR2 characteristics are:

Purpose
Provides information to identify an external debug component.

For more information see 'About the Peripheral identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
EDPIDR2 is a 32-bit register.

Field descriptions
The EDPIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 REVISION JEDEC DES_1

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Part major revision. Parts can also use this field to extend Part number to 16-bits.

JEDEC, bit [3]

RAO. Indicates a JEP106 identity code is used.

DES_1, bits [2:0]

Designer, most significant bits of JEP106 ID code. For Arm Limited, this field is 0b011.

Accessing the EDPIDR2

EDPIDR2 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFE8 EDPIDR2

EDPIDR2, External Debug Peripheral Identification Register 2

Page 3406

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDPIDR2, External Debug Peripheral Identification Register 2

Page 3407

EDPIDR3, External Debug Peripheral Identification
Register 3

The EDPIDR3 characteristics are:

Purpose
Provides information to identify an external debug component.

For more information see 'About the Peripheral identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
EDPIDR3 is a 32-bit register.

Field descriptions
The EDPIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 REVAND CMOD

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Part minor revision. Parts using EDPIDR2.REVISION as an extension to the Part number must use this field as a major
revision number.

CMOD, bits [3:0]

Customer modified. Indicates someone other than the Designer has modified the component.

Accessing the EDPIDR3

EDPIDR3 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFEC EDPIDR3

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.

EDPIDR3, External Debug Peripheral Identification Register 3

Page 3408

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDPIDR3, External Debug Peripheral Identification Register 3

Page 3409

EDPIDR4, External Debug Peripheral Identification
Register 4

The EDPIDR4 characteristics are:

Purpose
Provides information to identify an external debug component.

For more information see 'About the Peripheral identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
EDPIDR4 is a 32-bit register.

Field descriptions
The EDPIDR4 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SIZE DES_2

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component. RAZ. Log2 of the number of 4KB pages from the start of the component to the end of the
component ID registers.

DES_2, bits [3:0]

Designer, JEP106 continuation code, least significant nibble. For Arm Limited, this field is 0b0100.

Accessing the EDPIDR4

EDPIDR4 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFD0 EDPIDR4

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.

EDPIDR4, External Debug Peripheral Identification Register 4

Page 3410

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDPIDR4, External Debug Peripheral Identification Register 4

Page 3411

EDPRCR, External Debug Power/Reset Control
Register

The EDPRCR characteristics are:

Purpose
Controls the PE functionality related to powerup, reset, and powerdown.

Configuration
EDPRCR contains fields that are in the Core power domain and fields that are in the Debug power domain.

If ARMv8.3-DoPD is implemented then all fields in this register are in the Core power domain.

CORENPDRQ is the only field that is mapped between the EDPRCR and DBGPRCR and DBGPRCR_EL1.

Attributes
EDPRCR is a 32-bit register.

Field descriptions
The EDPRCR bit assignments are:

When ARMv8.3-DoPD is implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CWRRCORENPDRQ

Bits [31:2]

Reserved, RES0.

CWRR, bit [1]

Warm reset request. Write-only bit that reads as zero.

The extent of the reset is IMPLEMENTATION DEFINED, but must be one of:

• The request is ignored.
• Only this PE is Warm reset.
• This PE and other components of the system, possibly including other PEs, are Warm reset.

Arm deprecates use of this bit, and recommends that implementations ignore the request.

CWRR Meaning
0b0 No action.
0b1 Request Warm reset.

This field is in the Core power domain

The PE ignores writes to this bit if any of the following are true:

• ExternalInvasiveDebugEnabled() == FALSE, EL3 is not implemented, and the implemented Security state is
Non-secure state.

• ExternalSecureInvasiveDebugEnabled() == FALSE, EL3 is not implemented, and the implemented Security
state is Secure state.

EDPRCR, External Debug Power/Reset Control Register

Page 3412

• ExternalSecureInvasiveDebugEnabled() == FALSE and EL3 is implemented.

In an implementation that includes the recommended external debug interface, this bit drives the DBGRSTREQ signal.

On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

• When !IsCorePowered(), or DoubleLockStatus(), or OSLockStatus() or SoftwareLockStatus(), access to this
field is WI.

• Otherwise, access to this field is WO.

CORENPDRQ, bit [0]

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request causes power up is
dependent on the IMPLEMENTATION DEFINED nature of the system. The power controller must not allow the Core power
domain to switch off while this bit is 1.

CORENPDRQ Meaning
0b0 If the system responds to a powerdown request, it

powers down Core power domain.
0b1 If the system responds to a powerdown request, it does

not powerdown the Core power domain, but instead
emulates a powerdown of that domain.

When this bit reads as UNKNOWN, the PE ignores writes to this bit.

This field is in the Core power domain, and permitted accesses to this field map to the DBGPRCR.CORENPDRQ and
DBGPRCR_EL1.CORENPDRQ fields.

In an implementation that includes the recommended external debug interface, this bit drives the DBGNOPWRDWN
signal.

It is IMPLEMENTATION DEFINED whether this bit is reset the Cold reset value on exit from an IMPLEMENTATION DEFINED
software-visible retention state. For more information about retention states see Core power domain power states.

Note

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED
authentication interface. This means that a debugger can request emulation of
powerdown regardless of whether invasive debug is permitted.

The following resets apply:

• On a Cold reset, this field is set to 1 if the powerup request is implemented and the powerup request has
been asserted, and is set to 0 otherwise.

• On a Warm reset, the value of this field is unchanged.

Accessing this field has the following behavior:

• When !IsCorePowered(), or DoubleLockStatus() or OSLockStatus(), access to this field is UNKNOWN.
• When SoftwareLockStatus(), access to this field is RO.
• Otherwise, access to this field is RW.

Otherwise:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 COREPURQRES0CWRRCORENPDRQ

Bits [31:4]

Reserved, RES0.

EDPRCR, External Debug Power/Reset Control Register

Page 3413

COREPURQ, bit [3]

Core powerup request. Allows a debugger to request that the power controller power up the core, enabling access to
the debug register in the Core power domain, and that the power controller emulates powerdown.

This request is typically passed to an external power controller. This means that whether a request causes power up is
dependent on the IMPLEMENTATION DEFINED nature of the system. The power controller must not allow the Core power
domain to switch off while this bit is 1.

COREPURQ Meaning
0b0 Do not request power up of the Core power domain.
0b1 Request power up of the Core power domain, and

emulation of powerdown.

In an implementation that includes the recommended external debug interface, this bit drives the DBGPWRUPREQ
signal.

This field is in the Debug power domain and can be read and written when the Core power domain is powered off.

Note

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED
authentication interface. This means that a debugger can request emulation of
powerdown regardless of whether invasive debug is permitted.

On a External debug reset, this field resets to 0.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.
• Otherwise, access to this field is RW.

Bit [2]

Reserved, RES0.

CWRR, bit [1]

Warm reset request. Write-only bit that reads as zero.

The extent of the reset is IMPLEMENTATION DEFINED, but must be one of:

• The request is ignored.
• Only this PE is Warm reset.
• This PE and other components of the system, possibly including other PEs, are Warm reset.

Arm deprecates use of this bit, and recommends that implementations ignore the request.

CWRR Meaning
0b0 No action.
0b1 Request Warm reset.

This field is in the Core power domain

The PE ignores writes to this bit if any of the following are true:

• ExternalInvasiveDebugEnabled() == FALSE, EL3 is not implemented, and the implemented Security state is
Non-secure state.

• ExternalSecureInvasiveDebugEnabled() == FALSE, EL3 is not implemented, and the implemented Security
state is Secure state.

• ExternalSecureInvasiveDebugEnabled() == FALSE and EL3 is implemented.

In an implementation that includes the recommended external debug interface, this bit drives the DBGRSTREQ signal.

On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

EDPRCR, External Debug Power/Reset Control Register

Page 3414

• When !IsCorePowered(), or DoubleLockStatus(), or OSLockStatus() or SoftwareLockStatus(), access to this
field is WI.

• Otherwise, access to this field is WO.

CORENPDRQ, bit [0]

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request causes power up is
dependent on the IMPLEMENTATION DEFINED nature of the system. The power controller must not allow the Core power
domain to switch off while this bit is 1.

CORENPDRQ Meaning
0b0 If the system responds to a powerdown request, it

powers down Core power domain.
0b1 If the system responds to a powerdown request, it does

not powerdown the Core power domain, but instead
emulates a powerdown of that domain.

When this bit reads as UNKNOWN, the PE ignores writes to this bit.

This field is in the Core power domain, and permitted accesses to this field map to the DBGPRCR.CORENPDRQ and
DBGPRCR_EL1.CORENPDRQ fields.

In an implementation that includes the recommended external debug interface, this bit drives the DBGNOPWRDWN
signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to the value of EDPRCR.COREPURQ on exit from an
IMPLEMENTATION DEFINED software-visible retention state. For more information about retention states see Core power
domain power states.

Note

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED
authentication interface. This means that a debugger can request emulation of
powerdown regardless of whether invasive debug is permitted.

The following resets apply:

• On a Cold reset, this field resets to the value in EDPRCR.COREPURQ.

• On a Warm reset, the value of this field is unchanged.

Accessing this field has the following behavior:

• When !IsCorePowered(), or DoubleLockStatus() or OSLockStatus(), access to this field is UNKNOWN.
• When SoftwareLockStatus(), access to this field is RO.
• Otherwise, access to this field is RW.

Accessing the EDPRCR
On permitted accesses to the register, other access controls affect the behavior of some fields. See the field
descriptions for more information.

EDPRCR can be accessed through the external debug interface:

Component Offset Instance
Debug 0x310 EDPRCR

This interface is accessible as follows:

• When (ARMv8.3-DoPD is not implemented or IsCorePowered()) and SoftwareLockStatus() accesses to this
register are RO.

• When (ARMv8.3-DoPD is not implemented or IsCorePowered()) and !SoftwareLockStatus() accesses to this
register are RW.

EDPRCR, External Debug Power/Reset Control Register

Page 3415

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDPRCR, External Debug Power/Reset Control Register

Page 3416

EDPRSR, External Debug Processor Status Register
The EDPRSR characteristics are:

Purpose
Holds information about the reset and powerdown state of the PE.

Configuration
EDPRSR contains fields that are in the Core power domain and fields that are in the Debug power domain.

If ARMv8.3-DoPD is implemented then all fields in this register are in the Core power domain.

Attributes
EDPRSR is a 32-bit register.

Field descriptions
The EDPRSR bit assignments are:

313029282726252423222120191817161514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 STADETADSDRSPMADEPMADSDADEDADDLKOSLKHALTEDSRRSPDPU

Bits [31:14]

Reserved, RES0.

STAD, bit [13]

When TRBE is implemented:

Sticky ETAD error. Set to 1 when a Non-secure external debug interface access to an external PE Trace Unit register
returns an error because AllowExternalTraceAccess() == FALSE for the access.

STAD Meaning
0b0 No Non-secure external debug interface accesses to the PE

Trace Unit registers have failed because
AllowExternalTraceAccess() == FALSE for the access since
EDPRSR was last read.

0b1 At least one Non-secure external debug interface access to the
PE Trace Unit registers has failed and returned an error
because AllowExternalTraceAccess() == FALSE for the access
since EDPRSR was last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If ARMv8.0-DoubleLock is not implemented or DoubleLockStatus() == FALSE then this bit clears to 0.
• If ARMv8.0-DoubleLock is implemented and DoubleLockStatus() == TRUE then it is CONSTRAINED

UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This bit is in the Core power domain.

On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

• When !IsCorePowered(), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
• Otherwise, access to this field is RO.

EDPRSR, External Debug Processor Status Register

Page 3417

Otherwise:

Reserved, RES0.

ETAD, bit [12]

When TRBE is implemented:

External Trace Access Disable status.

ETAD Meaning
0b0 External Non-secure PE Trace Unit accesses enabled.

AllowExternalTraceAccess() == TRUE for a Non-secure access.
0b1 External Non-secure PE Trace Unit accesses disabled.

AllowExternalTraceAccess() == FALSE for a Non-secure access.

This field is in the Core power domain.

Accessing this field has the following behavior:

• When !IsCorePowered(), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
• Otherwise, access to this field is RO.

Otherwise:

Reserved, RES0.

SDR, bit [11]

Sticky Debug Restart. Set to 1 when the PE exits Debug state.

Permitted values are:

SDR Meaning
0b0 The PE has not restarted since EDPRSR was last read.
0b1 The PE has restarted since EDPRSR was last read.

Note

If a reset occurs when the PE is in Debug state, the PE exits Debug state. SDR
is UNKNOWN on Warm reset, meaning a debugger must also use the SR bit to
determine whether the PE has left Debug state.

If The Core power domain is powered up, then following a read of EDPRSR:

• If ARMv8.0-DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to 0.
• If ARMv8.0-DoubleLock is implemented and DoubleLockStatus() == TRUE, it is CONSTRAINED UNPREDICTABLE

whether this bit clears to 0 or is unchanged.

This field is in the Core power domain and the Warm reset domain.

This field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When !IsCorePowered(), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
• When SoftwareLockStatus(), access to this field is RO.
• Otherwise, access to this field is RC.

SPMAD, bit [10]

When ARMv8.4-Debug is implemented:

Sticky EPMAD error. Set to 1 if an external debug interface access to a Performance Monitors register returns an
error because AllowExternalPMUAccess() == FALSE.

EDPRSR, External Debug Processor Status Register

Page 3418

Permitted values are:

SPMAD Meaning
0b0 No Non-secure external debug interface accesses to the

external Performance Monitors registers have failed because
AllowExternalPMUAccess() == FALSE for the access since
EDPRSR was last read.

0b1 At least one Non-secure external debug interface access to the
external Performance Monitors register has failed and
returned an error because AllowExternalPMUAccess() ==
FALSE for the access since EDPRSR was last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If ARMv8.0-DoubleLock is not implemented or DoubleLockStatus() == FALSE, this bit clears to 0.
• If ARMv8.0-DoubleLock is implemented, and DoubleLockStatus() == TRUE, it is CONSTRAINED UNPREDICTABLE

whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

• When !IsCorePowered(), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
• When SoftwareLockStatus(), access to this field is RO.
• Otherwise, access to this field is RC.

Otherwise:

Sticky EPMAD error.

SPMAD Meaning
0b0 No external debug interface accesses to the Performance

Monitors registers have failed because
AllowExternalPMUAccess() == FALSE since EDPRSR was last
read.

0b1 At least one external debug interface access to the
Performance Monitors registers has failed and returned an
error because AllowExternalPMUAccess() == FALSE since
EDPRSR was last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If ARMv8.0-DoubleLock is not implemented or DoubleLockStatus() == FALSE, this bit clears to 0.
• If ARMv8.0-DoubleLock is implemented, and DoubleLockStatus() == TRUE, it is CONSTRAINED UNPREDICTABLE

whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

• When !IsCorePowered(), or OSLockStatus(), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is
UNKNOWN.

• When SoftwareLockStatus(), access to this field is RO.
• Otherwise, access to this field is RC.

EPMAD, bit [9]

When ARMv8.4-Debug is implemented:

External Performance Monitors Access Disable status.

EDPRSR, External Debug Processor Status Register

Page 3419

EPMAD Meaning
0b0 External Non-secure Performance Monitors access enabled.

AllowExternalPMUAccess() == TRUE for a Non-secure
access.

0b1 External Non-secure Performance Monitors access disabled.
AllowExternalPMUAccess() == FALSE for a Non-secure
access.

This field is in the Core power domain.

Accessing this field has the following behavior:

• When !IsCorePowered(), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
• Otherwise, access to this field is RO.

Otherwise:

External Performance Monitors access disable status.

EPMAD Meaning
0b0 External Performance Monitors access enabled.

AllowExternalPMUAccess() == TRUE.
0b1 External Performance Monitors access disabled.

AllowExternalPMUAccess() == FALSE.

This field is in the Core power domain.

Accessing this field has the following behavior:

• When !IsCorePowered(), or OSLockStatus(), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is
UNKNOWN.

• Otherwise, access to this field is RO.

SDAD, bit [8]

When ARMv8.4-Debug is implemented:

Sticky EDAD error. Set to 1 if an external debug interface access to a debug register returns an error because
AllowExternalDebugAccess() == FALSE.

SDAD Meaning
0b0 No Non-secure external debug interface accesses to the debug

registers have failed because AllowExternalDebugAccess() ==
FALSE for the access since EDPRSR was last read.

0b1 At least one Non-secure external debug interface access to the
debug registers has failed and returned an error because
AllowExternalDebugAccess() == FALSE for the access since
EDPRSR was last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If ARMv8.0-DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to 0.
• If ARMv8.0-DoubleLock is implemented and DoubleLockStatus() == TRUE, it is CONSTRAINED UNPREDICTABLE

whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

• When !IsCorePowered(), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
• Otherwise, access to this field is RO.

EDPRSR, External Debug Processor Status Register

Page 3420

Otherwise:

Sticky EDAD error. Set to 1 if an external debug interface access to a debug register returns an error because
AllowExternalDebugAccess() == FALSE.

SDAD Meaning
0b0 No external debug interface accesses to the debug registers

have failed because AllowExternalDebugAccess() == FALSE
since EDPRSR was last read.

0b1 At least one external debug interface access to the debug
registers has failed and returned an error because
AllowExternalDebugAccess() == FALSE since EDPRSR was last
read.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If ARMv8.0-DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to 0.
• If ARMv8.0-DoubleLock is implemented and DoubleLockStatus() == TRUE, it is CONSTRAINED UNPREDICTABLE

whether this bit clears to 0 or is unchanged.

This bit is UNKNOWN on reads if OSLockStatus() == TRUE and external debug writes to OSLAR_EL1 do not return an
error when AllowExternalDebugAccess() == FALSE.

This field is in the Core power domain.

On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

• When !IsCorePowered(), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
• Otherwise, access to this field is RO.

EDAD, bit [7]

When ARMv8.4-Debug is implemented:

External Debug Access Disable status.

EDAD Meaning
0b0 External Non-secure access to breakpoint registers, watchpoint

registers, and OSLAR_EL1 enabled.
AllowExternalDebugAccess() == TRUE for a Non-secure access.

0b1 External Non-secure access to breakpoint registers, watchpoint
registers, and OSLAR_EL1 disabled.
AllowExternalDebugAccess() == FALSE for a Non-secure
access.

This field is in the Core power domain.

Accessing this field has the following behavior:

• When !IsCorePowered(), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
• Otherwise, access to this field is RO.

When ARMv8.2-Debug is implemented:

External Debug Access Disable status.

EDAD Meaning
0b0 External access to breakpoint registers, watchpoint registers,

and OSLAR_EL1 enabled. AllowExternalDebugAccess() ==
TRUE.

0b1 External access to breakpoint registers, watchpoint registers,
and OSLAR_EL1 disabled. AllowExternalDebugAccess() ==
FALSE.

EDPRSR, External Debug Processor Status Register

Page 3421

This bit is not valid and reads UNKNOWN if OSLockStatus() == TRUE and external debug writes to OSLAR_EL1 do not
return an error when AllowExternalDebugAccess() == FALSE.

This field is in the Core power domain.

Accessing this field has the following behavior:

• When !IsCorePowered(), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
• Otherwise, access to this field is RO.

Otherwise:

External Debug Access Disable status.

EDAD Meaning
0b0 External access to breakpoint registers, watchpoint registers,

and OSLAR_EL1 enabled. AllowExternalDebugAccess() ==
TRUE.

0b1 External access to breakpoint registers, watchpoint registers
disabled. It is IMPLEMENTATION DEFINED whether accesses to
OSLAR_EL1 are enabled or disabled.
AllowExternalDebugAccess() == FALSE.

This field is in the Core power domain.

Accessing this field has the following behavior:

• When !IsCorePowered(), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
• Otherwise, access to this field is RO.

DLK, bit [6]

When ARMv8.4-Debug is implemented:

This field is RES0.

When ARMv8.2-Debug is implemented and ARMv8.0-DoubleLock is implemented:

Double Lock.

From Armv8.2, this field is deprecated.

This field is in the Core power domain.

Accessing this field has the following behavior:

• When IsCorePowered() and !DoubleLockStatus(), access to this field is RAZ.
• Otherwise, access to this field is UNKNOWN.

When ARMv8.0-DoubleLock is implemented:

Double Lock.

This field returns the result of the pseudocode function DoubleLockStatus().

If the Core power domain is powered up and DoubleLockStatus() == TRUE, it is IMPLEMENTATION DEFINED whether:

• EDPRSR.PU reads as 1, EDPRSR.DLK reads as 1, and EDPRSR.SPD is UNKNOWN.
• EDPRSR.PU reads as 0, EDPRSR.DLK is UNKNOWN, and EDPRSR.SPD reads as 0.

This field is in the Core power domain.

EDPRSR, External Debug Processor Status Register

Page 3422

DLK Meaning
0b0 DoubleLockStatus() returns FALSE.
0b1 DoubleLockStatus() returns TRUE and the Core power domain is

powered up.

Accessing this field has the following behavior:

• When !IsCorePowered(), access to this field is UNKNOWN.
• Otherwise, access to this field is RO.

Otherwise:

Reserved, RES0.

OSLK, bit [5]

OS Lock status bit.

A read of this bit returns the value of OSLSR_EL1.OSLK.

This field is in the Core power domain.

Accessing this field has the following behavior:

• When !IsCorePowered(), DoubleLockStatus() and EDPRSR.R == 1, access to this field is UNKNOWN.
• Otherwise, access to this field is RO.

HALTED, bit [4]

Halted status bit.

HALTED Meaning
0b0 PE is in Non-debug state.
0b1 PE is in Debug state.

This field is in the Core power domain.

Accessing this field has the following behavior:

• When !IsCorePowered(), access to this field is UNKNOWN.
• Otherwise, access to this field is RO.

SR, bit [3]

Sticky core Reset status bit.

Permitted values are:

SR Meaning
0b0 The non-debug logic of the PE is not in reset state and has not

been reset since the last time EDPRSR was read.
0b1 The non-debug logic of the PE is in reset state or has been reset

since the last time EDPRSR was read.

If EDPRSR.PU reads as 1 and EDPRSR.R reads as 0, which means that the Core power domain is in a powerup state
and that the non-debug logic of the PE is not in reset state, then following a read of EDPRSR:

• If ARMv8.0-DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to 0.
• If ARMv8.0-DoubleLock is implemented and DoubleLockStatus() == TRUE, it is UNPREDICTABLE whether this

bit clears to 0 or is unchanged.

This field is in the Core power domain and the Warm reset domain.

This field resets to 1.

Accessing this field has the following behavior:

EDPRSR, External Debug Processor Status Register

Page 3423

• When !IsCorePowered() or DoubleLockStatus(), access to this field is UNKNOWN.
• When SoftwareLockStatus(), access to this field is RO.
• Otherwise, access to this field is RC.

R, bit [2]

PE Reset status bit.

Permitted values are:

R Meaning
0b0 The non-debug logic of the PE is not in reset state.
0b1 The non-debug logic of the PE is in reset state.

If ARMv8.0-DoubleLock is implemented, the PE is in reset state, and the PE entered reset state with the OS Double
Lock locked this bit has a CONSTRAINED UNPREDICTABLE value. For more information see 'EDPRSR.{DLK, R} and reset
state' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section H6 (Debug Reset
and Powerdown Support)

This field is in the Core power domain.

Accessing this field has the following behavior:

• When !IsCorePowered() or DoubleLockStatus(), access to this field is UNKNOWN.
• Otherwise, access to this field is RO.

SPD, bit [1]

Sticky core Powerdown status bit.

If ARMv8.0-DoubleLock is implemented and DoubleLockStatus() == TRUE, then:

• If ARMv8.2-Debug is implemented, this bit reads as 0.
• If ARMv8.2-Debug is not implemented, this bit might read as 0 or 1.

For more information, see EDPRSR.{DLK, SPD, PU} and the Core power domain.

SPD Meaning
0b0 If EDPRSR.PU is 0, it is not known whether the state of the debug

registers in the Core power domain is lost.
If EDPRSR.PU is 1, the state of the debug registers in the Core
power domain has not been lost.

0b1 The state of the debug registers in the Core power domain has
been lost.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If ARMv8.0-DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to 0.
• If ARMv8.0-DoubleLock is implemented and DoubleLockStatus() == TRUE, it is CONSTRAINED UNPREDICTABLE

whether this bit clears to 0 or is unchanged.

When the Core power domain is in either retention or powerdown state, the value of EDPRSR.SPD is IMPLEMENTATION
DEFINED. For more information, see 'EDPRSR.SPD when the Core domain is in either retention or powerdown state' in
the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section H6 (Debug Reset and
Powerdown Support).

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed, and whether their
state has been lost since the last time the register was read. For more information, see 'EDPRSR.{DLK, SPD, PU} bits
record accessibility and lost of state in Core power domain' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section H6 (Debug Reset and Powerdown Support).

This field is in the Core power domain and the Cold reset domain.

On a Cold reset, this field resets to 1.

Accessing this field has the following behavior:

• When !IsCorePowered(), access to this field is RAZ.
• When IsCorePowered() and DoubleLockStatus(), access to this field is UNKNOWN.

EDPRSR, External Debug Processor Status Register

Page 3424

• Otherwise, access to this field is RO.

PU, bit [0]

When ARMv8.3-DoPD is implemented:

Core powerup status bit.

Access to this field is RAO.

When ARMv8.2-Debug is implemented:

Core Powerup status bit. Indicates whether the debug registers in the Core power domain can be accessed.

PU Meaning
0b0 Either the Core power domain is in a low-power or powerdown

state, or ARMv8.0-DoubleLock is implemented and
DoubleLockStatus() == TRUE, meaning the debug registers in the
Core power domain cannot be accessed.

0b1 The Core power domain is in a powerup state, and either
ARMv8.0-DoubleLock is not implemented or DoubleLockStatus()
== FALSE, meaning the debug registers in the Core power domain
can be accessed.

If ARMv8.0-DoubleLock is implemented, the PE is in reset state, and the PE entered reset state with the OS Double
Lock locked this bit has a CONSTRAINED UNPREDICTABLE value. For more information see 'EDPRSR.{DLK, R} and reset
state' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section H6 (Debug Reset
and Powerdown Support)

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed, and whether their
state has been lost since the last time the register was read. For more information, see 'EDPRSR.{DLK, SPD, PU} bits
record accessibility and lost of state in Core power domain' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section H6 (Debug Reset and Powerdown Support)

Access to this field is RO.

Otherwise:

Core Powerup status bit. Indicates whether the debug registers in the Core power domain can be accessed.

When the Core power domain is powered-up and DoubleLockStatus() == TRUE, then the value of EDPRSR.PU is
IMPLEMENTATION DEFINED. See the description of the DLK bit for more information.

Otherwise, permitted values are:

PU Meaning
0b0 Core power domain is in a low-power or powerdown state where

the debug registers in the Core power domain cannot be accessed.
0b1 Core power domain is in a powerup state where the debug

registers in the Core power domain can be accessed.

If ARMv8.0-DoubleLock is implemented, the Core power domain is powered up, and DoubleLockStatus() == TRUE, it
is IMPLEMENTATION DEFINED whether this bit reads as 0 or 1.

If ARMv8.0-DoubleLock is implemented, the PE is in reset state, and the PE entered reset state with the OS Double
Lock locked this bit has a CONSTRAINED UNPREDICTABLE value. For more information see 'EDPRSR.{DLK, R} and reset
state' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section H6 (Debug Reset
and Powerdown Support)

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed, and whether their
state has been lost since the last time the register was read. For more information, see 'EDPRSR.{DLK, SPD, PU} bits
record accessibility and lost of state in Core power domain' in the Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section H6 (Debug Reset and Powerdown Support)

Access to this field is RO.

EDPRSR, External Debug Processor Status Register

Page 3425

Accessing the EDPRSR
On permitted accesses to the register, other access controls affect the behavior of some fields. See the field
descriptions for more information.

If the Core power domain is powered up (EDPRSR.PU == 1), then following a read of EDPRSR:

• If ARMv8.0-DoubleLock is not implemented or DoubleLockStatus() == FALSE, then:
◦ EDPRSR.{SDR, SPMAD, SDAD, SPD} are cleared to 0.
◦ EDPRSR.SR is cleared to 0 if the non-debug logic of the PE is not in reset state (EDPRSR.R == 0).

• Otherwise it is CONSTRAINED UNPREDICTABLE whether or not this clearing occurs.

If the Core power domain is powered down (EDPRSR.PU == 0), then:

• EDPRSR.{SDR, SPMAD, SDAD, SR} are all UNKNOWN, and are either reset or restored on being powered up.
• EDPRSR.SPD is not cleared following a read of EDPRSR. See the SPD bit description for more information.

The clearing of bits is an indirect write to EDPRSR.

EDPRSR can be accessed through the external debug interface:

Component Offset Instance
Debug 0x314 EDPRSR

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDPRSR, External Debug Processor Status Register

Page 3426

EDRCR, External Debug Reserve Control Register
The EDRCR characteristics are:

Purpose
This register is used to allow imprecise entry to Debug state and clear sticky bits in EDSCR.

Configuration
EDRCR is in the Core power domain.

Attributes
EDRCR is a 32-bit register.

Field descriptions
The EDRCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CBRRQCSPACSE RES0

Bits [31:5]

Reserved, RES0.

CBRRQ, bit [4]

Allow imprecise entry to Debug state. The actions on writing to this bit are:

CBRRQ Meaning
0b0 No action.
0b1 Allow imprecise entry to Debug state, for example by

canceling pending bus accesses.

Setting this bit to 1 allows a debugger to request imprecise entry to Debug state. An External Debug Request debug
event must be pending before the debugger sets this bit to 1.

This feature is optional. If this feature is not implemented, writes to this bit are ignored.

CSPA, bit [3]

Clear Sticky Pipeline Advance. This bit is used to clear the EDSCR.PipeAdv bit to 0. The actions on writing to this bit
are:

CSPA Meaning
0b0 No action.
0b1 Clear the EDSCR.PipeAdv bit to 0.

CSE, bit [2]

Clear Sticky Error. Used to clear the EDSCR cumulative error bits to 0. The actions on writing to this bit are:

EDRCR, External Debug Reserve Control Register

Page 3427

CSE Meaning
0b0 No action.
0b1 Clear the EDSCR.{TXU, RXO, ERR} bits, and, if the PE is in

Debug state, the EDSCR.ITO bit, to 0.

Bits [1:0]

Reserved, RES0.

Accessing the EDRCR

EDRCR can be accessed through the external debug interface:

Component Offset Instance
Debug 0x090 EDRCR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are WI.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are WO.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDRCR, External Debug Reserve Control Register

Page 3428

EDSCR, External Debug Status and Control Register
The EDSCR characteristics are:

Purpose
Main control register for the debug implementation.

Configuration
External register EDSCR bits [30:29] are architecturally mapped to AArch64 System register MDCCSR_EL0[30:29] .

EDSCR is in the Core power domain.

Attributes
EDSCR is a 32-bit register.

Field descriptions
The EDSCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 131211109 8 7 6 5 4 3 2 1 0
TFORXfullTXfullITORXOTXUPipeAdvITEINTdisTDAMASC2NSRES0SDDRES0HDE RW EL AERR STATUS

TFO, bit [31]

When ARMv8.4-Trace is implemented:

Trace Filter Override. Overrides the Trace Filter controls allowing the external debugger to trace any visible
Exception level.

TFO Meaning
0b0 Trace Filter controls are not affected.
0b1 Trace Filter controls in TRFCR_EL1, TRFCR_EL2 are ignored.

Trace Filter controls TRFCR and HTRFCR are ignored.

When OSLSR_EL1.OSLK == 1, this bit can be indirectly read and written through the MDSCR_EL1 and DBGDSCRext
System registers.

This bit is ignored by the PE when ExternalSecureNoninvasiveDebugEnabled() == FALSE and the Effective value of
MDCR_EL3.STE == 1.

On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

RXfull, bit [30]

DTRRX full.

On a Cold reset, this field resets to 0.

Access to this field is RO.

EDSCR, External Debug Status and Control Register

Page 3429

TXfull, bit [29]

DTRTX full.

On a Cold reset, this field resets to 0.

Access to this field is RO.

ITO, bit [28]

ITR overrun.

If the PE is in Non-debug state, this bit is UNKNOWN. ITO is set to 0 on entry to Debug state.

Access to this field is RO.

RXO, bit [27]

DTRRX overrun.

On a Cold reset, this field resets to 0.

Access to this field is RO.

TXU, bit [26]

DTRTX underrun.

On a Cold reset, this field resets to 0.

Access to this field is RO.

PipeAdv, bit [25]

Pipeline advance. Set to 1 every time the PE pipeline retires one or more instructions. Cleared to 0 by a write to
EDRCR.CSPA.

The architecture does not define precisely when this bit is set to 1. It requires only that this happen periodically in
Non-debug state to indicate that software execution is progressing.

Access to this field is RO.

ITE, bit [24]

ITR empty.

If the PE is in Non-debug state, this bit is UNKNOWN. It is always valid in Debug state.

Access to this field is RO.

INTdis, bits [23:22]

When ARMv8.4-Debug is implemented:

Interrupt disable. Disables taking interrupts in Non-Debug state.

INTdis Meaning
0b0 Masking of interrupts is controlled by PSTATE and interrupt

routing controls.
0b1 If ExternalSecureDebugEnabled() == TRUE, then all

interrupts, including virtual and SError interrupts, are masked.
If ExternalSecureDebugEnabled() == FALSE, then all
interrupts targetting Non-secure state are masked.

EDSCR, External Debug Status and Control Register

Page 3430

When OSLSR_EL1.OSLK == 1, this field can be indirectly read and written through the MDSCR_EL1 and
DBGDSCRext System registers.

This field is ignored by the PE and treated as zero when ExternalDebugEnabled() == FALSE.

On a Cold reset, this field resets to 0.

Otherwise:

Interrupt disable.

When OSLSR_EL1.OSLK == 1, this field can be indirectly read and written through the MDSCR_EL1 and
DBGDSCRext System registers.

INTdis Meaning
0b00 Do not disable interrupts.
0b01 Disable interrupts taken to Non-secure EL1.
0b10 Disable interrupts taken only to Non-secure EL1 and Non-

secure EL2. If ExternalSecureInvasiveDebugEnabled() ==
TRUE, also disable interrupts taken to Secure EL1.

0b11 Disable interrupts taken only to Non-secure EL1 and Non-
secure EL2. If ExternalSecureInvasiveDebugEnabled() ==
TRUE, also disable all other interrupts.

On a Cold reset, this field resets to 0.

TDA, bit [21]

Traps accesses to the following debug System registers:

• AArch64: DBGBCR<n>_EL1, DBGBVR<n>_EL1, DBGWCR<n>_EL1, DBGWVR<n>_EL1.
• AArch32: DBGBCR<n>, DBGBVR<n>, DBGBXVR<n>, DBGWCR<n>, DBGWVR<n>.

The possible values of this field are:

TDA Meaning
0b0 Accesses to debug System registers do not generate a Software

Access Debug event.
0b1 Accesses to debug System registers generate a Software Access

Debug event, if OSLSR_EL1.OSLK is 0 and if halting is allowed.

On a Cold reset, this field resets to 0.

MA, bit [20]

Memory access mode. Controls the use of memory-access mode for accessing ITR and the DCC. This bit is ignored if in
Non-debug state and set to zero on entry to Debug state.

Possible values of this field are:

MA Meaning
0b0 Normal access mode.
0b1 Memory access mode.

On a Cold reset, this field resets to 0.

SC2, bit [19]

When ARMv8.0-PCSample is implemented, (ARMv8.1-VHE is implemented or ARMv8.2-Debug is implemented) and
ARMv8.2-PCSample is not implemented:

Sample CONTEXTIDR_EL2. Controls whether the PC Sample-based Profiling Extension samples CONTEXTIDR_EL2 or
VTTBR_EL2.VMID.

EDSCR, External Debug Status and Control Register

Page 3431

SC2 Meaning
0b0 Sample VTTBR_EL2.VMID.
0b1 Sample CONTEXTIDR_EL2.

On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NS, bit [18]

Non-secure status. When in Debug state, gives the current Security state:

NS Meaning
0b0 Secure state, IsSecure() == TRUE.
0b1 Non-secure state, IsSecure() == FALSE.

In Non-debug state, this bit is UNKNOWN.

Access to this field is RO.

Bit [17]

Reserved, RES0.

SDD, bit [16]

Secure debug disabled.

On entry to Debug state:

• If entering in Secure state, SDD is set to 0.
• If entering in Non-secure state, SDD is set to the inverse of ExternalSecureInvasiveDebugEnabled().

In Debug state, the value of the SDD bit does not change, even if ExternalSecureInvasiveDebugEnabled() changes.

In Non-debug state:

• SDD returns the inverse of ExternalSecureInvasiveDebugEnabled(). If the authentication signals that control
ExternalSecureInvasiveDebugEnabled() change, a context synchronization event is required to guarantee their
effect.

• This bit is unaffected by the Security state of the PE.

If EL3 is not implemented and the implementation is Non-secure, this bit is RES1.

Access to this field is RO.

Bit [15]

Reserved, RES0.

HDE, bit [14]

Halting debug enable. The possible values of this field are:

HDE Meaning
0b0 Halting disabled for Breakpoint, Watchpoint and Halt Instruction

debug events.
0b1 Halting enabled for Breakpoint, Watchpoint and Halt Instruction

debug events.

On a Cold reset, this field resets to 0.

EDSCR, External Debug Status and Control Register

Page 3432

RW, bits [13:10]

Exception level Execution state status. In Debug state, each bit gives the current Execution state of each Exception
level.

RW Meaning Applies when
0b1111 All Exception levels are using AArch64 or

the PE is in Non-debug state.
0b1110 The PE is in Debug state. EL0 is using

AArch32. All other Exception levels are
using AArch64. Only permitted if the PE
is executing at EL0.

When AArch32 is
supported at any
Exception level

0b110x The PE is in Debug state. EL0 and EL1
are using AArch32. EL2 and EL3 are
using AArch64. Only permitted if EL2 is
implemented and enabled in the current
Security state.

When AArch32 is
supported at any
Exception level

0b10xx The PE is in Debug state. EL0, EL1, and,
if implemented in the current Security
state, EL2 are using AArch32. EL3 is
using AArch64.

When AArch32 is
supported at any
Exception level
and EL3 is
implemented

0b0xxx The PE is in Debug state. All Exception
levels are using AArch32.

In Non-debug state, this field is RAO.

Access to this field is RO.

EL, bits [9:8]

Exception level. In Debug state, this gives the current Exception level of the PE.

In Non-debug state, this field is RAZ.

Access to this field is RO.

A, bit [7]

SError interrupt pending. In Debug state, indicates whether an SError interrupt is pending:

• If HCR_EL2.{AMO, TGE} = {1, 0}, EL2 is enabled in the current Security state, and the PE is executing at
EL0 or EL1, a virtual SError interrupt.

• Otherwise, a physical SError interrupt.
A Meaning
0b0 No SError interrupt pending.
0b1 SError interrupt pending.

A debugger can read EDSCR to check whether an SError interrupt is pending without having to execute further
instructions. A pending SError might indicate data from target memory is corrupted.

UNKNOWN in Non-debug state.

Access to this field is RO.

ERR, bit [6]

Cumulative error flag. This bit is set to 1 following exceptions in Debug state and on any signaled overrun or underrun
on the DTR or EDITR.

On a Cold reset, this field resets to 0.

Access to this field is RO.

EDSCR, External Debug Status and Control Register

Page 3433

STATUS, bits [5:0]

Debug status flags.

STATUS Meaning
0b000001 PE is restarting, exiting Debug state.
0b000010 PE is in Non-debug state.
0b000111 Breakpoint.
0b010011 External debug request.
0b011011 Halting step, normal.
0b011111 Halting step, exclusive.
0b100011 OS Unlock Catch.
0b100111 Reset Catch.
0b101011 Watchpoint.
0b101111 HLT instruction.
0b110011 Software access to debug register.
0b110111 Exception Catch.
0b111011 Halting step, no syndrome.

All other values of STATUS are reserved.

Access to this field is RO.

Accessing the EDSCR

EDSCR can be accessed through the external debug interface:

Component Offset Instance
Debug 0x088 EDSCR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDSCR, External Debug Status and Control Register

Page 3434

EDVIDSR, External Debug Virtual Context Sample
Register

The EDVIDSR characteristics are:

Purpose
Contains sampled values captured on reading EDPCSR[31:0].

Configuration
EDVIDSR is in the Core power domain.

This register is present only when ARMv8.0-PCSample is implemented and ARMv8.2-PCSample is not implemented.
Otherwise, direct accesses to EDVIDSR are RES0.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented in the external debug registers
space.

When the PC Sample-based Profiling Extension is implemented in the external debug registers space, if EL2 is not
implemented and EL3 is not implemented, it is IMPLEMENTATION DEFINED whether EDVIDSR is implemented.

Note

ARMv8.2-PCSample implements the PC Sample-based Profiling Extension in
the Performance Monitors registers space.

Attributes
If ARMv8.1-VHE is implemented, the format of this register differs depending on the value of EDSCR.SC2.

Field descriptions
The EDVIDSR bit assignments are:

When ARMv8.1-VHE is not implemented or EDSCR.SC2 == 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NS E2 E3 HV RES0 VMID[15:8] VMID

This format applies in all Armv8.0 implementations.

NS, bit [31]

Non-secure state sample. Indicates the Security state associated with the most recent EDPCSR sample.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

NS Meaning
0b0 Sample is from Secure state.
0b1 Sample is from Non-secure state.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

EDVIDSR, External Debug Virtual Context Sample Register

Page 3435

E2, bit [30]

When EL2 is implemented:

Exception level 2 status sample. Indicates whether the most recent EDPCSR sample was associated with EL2.

E2 Meaning
0b0 Sample is not from EL2.
0b1 Sample is from EL2.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E3, bit [29]

When EL3 is implemented and the highest implemented Exception level is using AArch64 state:

Exception level 3 status sample. Indicates whether the most recent EDPCSR sample was associated with EL3 using
AArch64.

E3 Meaning
0b0 Sample is not from EL3 using AArch64.
0b1 Sample is from EL3 using AArch64.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HV, bit [28]

EDPCSRhi (EDPCSR[63:32]) valid. Indicates whether bits [63:32] of the most recent EDPCSR sample might be
nonzero:

HV Meaning
0b0 Bits[63:32] of the most recent EDPCSR sample are zero.
0b1 Bits[63:32] of the most recent EDPCSR sample might be nonzero.

An EDVIDSR.HV value of 1 does not mean that the value of EDPCSRhi is nonzero. An EDVIDSR.HV value of 0 is a hint
that EDPCSRhi (EDPCSR[63:32]) does not need to be read.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [27:16]

Reserved, RES0.

VMID[15:8], bits [15:8]

When ARMv8.1-VMID16 is implemented and EL2 is implemented:

Extension to VMID[7:0]. See VMID[7:0] for more details.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EDVIDSR, External Debug Virtual Context Sample Register

Page 3436

VMID, bits [7:0]

When EL2 is implemented:

VMID sample. The VMID associated with the most recent EDPCSRlo (EDPCSR[31:0]) sample. When the most recent
EDPCSR sample was generated:

• This field is RES0 if any of the following apply:
◦ The PE is executing in Secure state.
◦ The PE is executing at EL2.

• Otherwise:
◦ If EL2 is using AArch64 and either ARMv8.1-VMID16 is not implemented or VTCR_EL2.VS is 1, this

field is set to VTTBR_EL2.VMID.
◦ If EL2 is using AArch64, ARMv8.1-VMID16 is implemented, and VTCR_EL2.VS is 0,

PMVIDSR.VMID[7:0] is set to VTTBR_EL2.VMID[7:0] and PMVIDSR.VMID[15:8] is RES0.
◦ If EL2 is using AArch32, this field is set to VTTBR.VMID.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

When (ARMv8.1-VHE is implemented or ARMv8.2-Debug is implemented) and
EDSCR.SC2 == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CONTEXTIDR_EL2

CONTEXTIDR_EL2, bits [31:0]

Context ID. The value of CONTEXTIDR_EL2 that is associated with the most recent EDPCSR sample. When the most
recent EDPCSR sample was generated:

• If EL2 was using AArch64 and the PE was executing in Non-secure state, then this field is set to the Context ID
sampled from CONTEXTIDR_EL2.

• If EL2 was using AArch32 or the PE was executing in Secure state, then this field is set to an UNKNOWN value.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the EDVIDSR
IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see 'Permitted
behavior that might make the PC Sample-based profiling registers UNKNOWN' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile

EDVIDSR can be accessed through the external debug interface:

Component Offset Instance
Debug 0x0A8 EDVIDSR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDVIDSR, External Debug Virtual Context Sample Register

Page 3437

EDWAR, External Debug Watchpoint Address Register
The EDWAR characteristics are:

Purpose
Returns the virtual data address being accessed when a Watchpoint Debug Event was triggered.

Configuration
EDWAR is in the Core power domain.

Attributes
EDWAR is a 64-bit register.

Field descriptions
The EDWAR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Watchpoint address
Watchpoint address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Watchpoint address. The data virtual address being accessed when a Watchpoint Debug Event was triggered and
caused entry to Debug state. This address must be within a naturally-aligned block of memory of power-of-two size no
larger than the DC ZVA block size.

The value of this register is UNKNOWN if the PE is in Non-debug state, or if Debug state was entered other than for a
Watchpoint debug event.

The value of EDWAR[63:32] is UNKNOWN if Debug state was entered for a Watchpoint debug event taken from AArch32
state.

The EDWAR is subject to the same alignment rules as the reporting of a watchpointed address in the FAR. See
'Determining the memory location that caused a Watchpoint exception' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section D2 (AArch64 Self-hosted Debug)

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the EDWAR

EDWAR can be accessed through the external debug interface:

Component Offset Instance Range
Debug 0x030 EDWAR 31:0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

Component Offset Instance Range
Debug 0x034 EDWAR 63:32

EDWAR, External Debug Watchpoint Address Register

Page 3438

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDWAR, External Debug Watchpoint Address Register

Page 3439

ERRCIDR0, Component Identification Register 0
The ERRCIDR0 characteristics are:

Purpose
Provides discovery information about the component.

For more information, see 'About the Peripheral identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

Attributes
ERRCIDR0 is a 32-bit register.

Field descriptions
The ERRCIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_0

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Component identification preamble, segment 0.

This field reads as 0x0D.

Accessing the ERRCIDR0

ERRCIDR0 can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xFF0

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRCIDR0, Component Identification Register 0

Page 3440

ERRCIDR1, Component Identification Register 1
The ERRCIDR1 characteristics are:

Purpose
Provides discovery information about the component.

For more information, see 'About the Peripheral identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

Attributes
ERRCIDR1 is a 32-bit register.

Field descriptions
The ERRCIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CLASS PRMBL_1

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

CLASS Meaning
0b1111 Generic peripheral with IMPLEMENTATION DEFINED register

layout.

Other values are defined by the CoreSight Architecture.

This field reads as 0xF.

PRMBL_1, bits [3:0]

Component identification preamble, segment 1.

This field reads as 0x0.

Accessing the ERRCIDR1

ERRCIDR1 can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xFF4

Accesses on this interface are RO.

ERRCIDR1, Component Identification Register 1

Page 3441

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRCIDR1, Component Identification Register 1

Page 3442

ERRCIDR2, Component Identification Register 2
The ERRCIDR2 characteristics are:

Purpose
Provides discovery information about the component.

For more information, see 'About the Peripheral identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

Attributes
ERRCIDR2 is a 32-bit register.

Field descriptions
The ERRCIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_2

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Component identification preamble, segment 2.

This field reads as 0x05.

Accessing the ERRCIDR2

ERRCIDR2 can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xFF8

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRCIDR2, Component Identification Register 2

Page 3443

ERRCIDR3, Component Identification Register 3
The ERRCIDR3 characteristics are:

Purpose
Provides discovery information about the component.

For more information, see 'About the Peripheral identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

Attributes
ERRCIDR3 is a 32-bit register.

Field descriptions
The ERRCIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_3

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Component identification preamble, segment 3.

This field reads as 0xB1.

Accessing the ERRCIDR3

ERRCIDR3 can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xFFC

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRCIDR3, Component Identification Register 3

Page 3444

ERRCRICR0, Critical Error Interrupt Configuration
Register 0

The ERRCRICR0 characteristics are:

Purpose
Interrupt configuration register.

Configuration
External register ERRCRICR0 is architecturally mapped to External register ERRIRQCR4.

This register is present only when ARMv8.4-RAS is implemented. Otherwise, direct accesses to ERRCRICR0 are RES0.

Present only if interrupt configuration registers use the recommended format. Otherwise, this register is RES0.

Attributes
ERRCRICR0 is a 64-bit register.

Field descriptions
The ERRCRICR0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 ADDR

ADDR RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

ADDR, bits [55:2]

Message Signaled Interrupt address.

Specifies the address that the component writes to when signaling an interrupt.

The size of a physical address is IMPLEMENTATION DEFINED. Unimplemented high-order physical address bits are RES0.

The following resets apply:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

ERRCRICR0, Critical Error Interrupt Configuration Register 0

Page 3445

Accessing the ERRCRICR0

ERRCRICR0 can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0xEA0 ERRCRICR0

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRCRICR0, Critical Error Interrupt Configuration Register 0

Page 3446

ERRCRICR1, Critical Error Interrupt Configuration
Register 1

The ERRCRICR1 characteristics are:

Purpose
Interrupt configuration register.

Configuration
External register ERRCRICR1 bits [31:0] are architecturally mapped to External register ERRIRQCR5[31:0] .

This register is present only when ARMv8.4-RAS is implemented. Otherwise, direct accesses to ERRCRICR1 are RES0.

Present only if interrupt configuration registers use the recommended format. Otherwise, this register is RES0.

Attributes
ERRCRICR1 is a 32-bit register.

Field descriptions
The ERRCRICR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DATA

DATA, bits [31:0]

Payload for a message signaled interrupt.

The following resets apply:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the ERRCRICR1

ERRCRICR1 can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0xEA8 ERRCRICR1

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRCRICR1, Critical Error Interrupt Configuration Register 1

Page 3447

ERRCRICR2, Critical Error Interrupt Configuration
Register 2

The ERRCRICR2 characteristics are:

Purpose
Interrupt configuration register.

Configuration
External register ERRCRICR2 bits [31:0] are architecturally mapped to External register ERRIRQCR5[63:32] .

This register is present only when ARMv8.4-RAS is implemented. Otherwise, direct accesses to ERRCRICR2 are RES0.

Present only if interrupt configuration registers use the recommended format. Otherwise, this register is RES0.

Attributes
ERRCRICR2 is a 32-bit register.

Field descriptions
The ERRCRICR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IRQENNSMSI SH MemAttr

Bits [31:8]

Reserved, RES0.

IRQEN, bit [7]

Message Signaled Interrupt enable.

Enables generation of message signaled interrupts.

IRQEN Meaning
0b0 Message signaled interrupts are disabled.
0b1 Message signaled interrupts are enabled.

If the component does not support disabling message signaled interrupts, this bit is RES0.

The following resets apply:

• On an Error recovery reset, this field resets to 0.

• On a Cold reset, this field resets to 0.

NSMSI, bit [6]

Security attribute.

Defines the physical address space for message signaled interrupts.

ERRCRICR2, Critical Error Interrupt Configuration Register 2

Page 3448

NSMSI Meaning
0b0 Physical address space for message signaled interrupts is

Secure.
0b1 Physical address space for message signaled interrupts is Non-

secure.

If the component prohibits Non-secure writes and does not support configuring the Security attribute, then the
Security attribute for message signaled interrupts is IMPLEMENTATION DEFINED.

If the component allows Non-secure writes, then the Security attribute used for message signaled interrupts is Non-
secure.

This bit is RES0 if any of the following are true:

• The component allows Non-secure writes.

• The component does not support configuring the Security attribute.

On a Cold reset, this field resets to an IMPLEMENTATION DEFINED value.

SH, bits [5:4]

Shareability.

Defines the Shareability domain for message signaled interrupts.

SH Meaning
0b00 Message signaled interrupts are in the Not shared Shareability

domain.
0b10 Message signaled interrupts are in the Outer Shareable

Shareability domain.
0b11 Message signaled interrupts are in the Inner Shareable

Shareability domain.

If the component does not support configuring the Shareability domain, this field is RES0, meaning the Shareability
domain for message signaled interrupts is IMPLEMENTATION DEFINED.

The following resets apply:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

MemAttr, bits [3:0]

Memory type.

Defines the memory type for message signaled interrupts. The values which correspond to each memory type are:

MemAttr Meaning
0b0000 Device-nGnRnE.
0b0001 Device-nGnRE.
0b0010 Device-nGRE.
0b0011 Device-GRE.
0b0101 Outer Non-cacheable, Inner Non-cacheable.
0b0110 Outer Non-cacheable, Inner Write-Through Cacheable.
0b0111 Outer Non-cacheable, Inner Write-Back Cacheable.
0b1001 Outer Write-Through Cacheable, Inner Non-cacheable.
0b1010 Outer Write-Through Cacheable, Inner Write-Through

Cacheable.
0b1011 Outer Write-Through Cacheable, Inner Write-Back

Cacheable.
0b1101 Outer Write-Back Cacheable, Inner Non-cacheable.
0b1110 Outer Write-Back Cacheable, Inner Write-Through

Cacheable.
0b1111 Outer Write-Back Cacheable, Inner Write-Back Cacheable.

ERRCRICR2, Critical Error Interrupt Configuration Register 2

Page 3449

If the component does not support configuring the memory type, this field is RES0, meaning the memory type used for
message signaled interrupts is IMPLEMENTATION DEFINED.

Note

This is the same format as the VMSAv8-64 stage 2 memory region attributes.

The following resets apply:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the ERRCRICR2

ERRCRICR2 can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0xEAC ERRCRICR2

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRCRICR2, Critical Error Interrupt Configuration Register 2

Page 3450

ERRDEVAFF, Device Affinity Register
The ERRDEVAFF characteristics are:

Purpose
If RAS System Architecture v1.1 is not implemented, a group of error records that is associated with a PE or group or
PEs must have affinity with either a single PE or all the PEs at an affinity level.

For a group of error records that has affinity with a single PE or a group of PEs, ERRDEVAFF is a copy of MPIDR_EL1
or part of MPIDR_EL1:

• If the group of error records has affinity with a single PE, the affinity level is 0, ERRDEVAFF reads the same
value as MPIDR_EL1, and ERRDEVAFF.F0V reads-as-one to indicate affinity level 0.

• If the group of error records has affinity with a group of PEs, the affinity level is 1, 2, or 3, parts of
ERRDEVAFF reads the same value as parts of MPIDR_EL1, and the rest of ERRDEVAFF indicates the level.

For example, if the group of PEs is a subset of the PEs at affinity level 1 then all of the following are true:

• All the PEs in the group have the same values in MPIDR_EL1.{Aff3,Aff2}, and these values are equal to
ERRDEVAFF.{Aff3,Aff2}.

• ERRDEVAFF.Aff1 is nonzero and not 0x80, and ERRDEVAFF.{Aff0,F0V} read-as-zero, to indicate at least
affinity level 1. The subset of PEs at level 1 that the group of error records has affinity with is indicated by the
least-significant set bit in ERRDEVAFF.Aff1. In this example, if ERRDEVAFF.Aff1[2:0] is 0b100, then the group
of error records has affinity with the up-to 8 PEs that have MPIDR_EL1.Aff1[7:3] == ERRDEVAFF.Aff1[7:3].

Configuration
This register is present only when the group of error records has affinity with a PE or cluster of PEs. Otherwise, direct
accesses to ERRDEVAFF are RES0.

Attributes
ERRDEVAFF is a 64-bit register.

Field descriptions
The ERRDEVAFF bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 Aff3

F0V U RES0 MT Aff2 Aff1 Aff0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

PE affinity level 3. The MPIDR_EL1.Aff3 field, viewed from the highest Exception level of the associated PE or PEs.

F0V, bit [31]

Indicates that the ERRDEVAFF.Aff0 field is valid.

ERRDEVAFF, Device Affinity Register

Page 3451

F0V Meaning
0b0 ERRDEVAFF.Aff0 is not valid, and the PE affinity is above level 0

or a subset of level 0.
0b1 ERRDEVAFF.Aff0 is valid, and the PE affinity is at level 0.

U, bit [30]

When ERRDEVAFF.F0V == 0b1:

Uniprocessor. The MPIDR_EL1.U bit, viewed from the highest Exception level of the associated PE.

Otherwise:

Reserved, UNKNOWN.

Bits [29:25]

Reserved, RES0.

MT, bit [24]

When ERRDEVAFF.F0V == 0b1:

Multithreaded. The MPIDR_EL1.MT bit, viewed from the highest Exception level of the associated PE.

Otherwise:

Reserved, UNKNOWN.

Aff2, bits [23:16]

When affine with a PE or PEs at affinity level 2 or below:

PE affinity level 2. The MPIDR_EL1.Aff2 field, viewed from the highest Exception level of the associated PE or PEs.

When affine with a sub-set of PEs at affinity level 2:

PE affinity level 2. Defines part of the MPIDR_EL1.Aff2 field, viewed from the highest Exception level of the associated
PEs.

Aff2 Meaning
0bxxxxxxx1 ERRDEVAFF.Aff2[7:1] is the value of MPIDR_EL1.Aff2[7:1],

viewed from the highest Exception level of the associated
PEs.

0bxxxxxx10 ERRDEVAFF.Aff2[7:2] is the value of MPIDR_EL1.Aff2[7:2],
viewed from the highest Exception level of the associated
PEs.

0bxxxxx100 ERRDEVAFF.Aff2[7:3] is the value of MPIDR_EL1.Aff2[7:3],
viewed from the highest Exception level of the associated
PEs.

0bxxxx1000 ERRDEVAFF.Aff2[7:4] is the value of MPIDR_EL1.Aff2[7:4],
viewed from the highest Exception level of the associated
PEs.

0bxxx10000 ERRDEVAFF.Aff2[7:5] is the value of MPIDR_EL1.Aff2[7:5],
viewed from the highest Exception level of the associated
PEs.

0bxx100000 ERRDEVAFF.Aff2[7:6] is the value of MPIDR_EL1.Aff2[7:6],
viewed from the highest Exception level of the associated
PEs.

0bx1000000 ERRDEVAFF.Aff2[7] is the value of MPIDR_EL1.Aff2[7],
viewed from the highest Exception level of the associated
PEs.

ERRDEVAFF, Device Affinity Register

Page 3452

Otherwise:

PE affinity level 2. Indicates whether the PE affinity is at level 3.

Aff2 Meaning
0x80 PE affinity is at level 3.

All other values are reserved.

Aff1, bits [15:8]

When affine with a PE or PEs at affinity level 1 or below:

PE affinity level 1. The MPIDR_EL1.Aff1 field, viewed from the highest Exception level of the associated PE or PEs.

When affine with a sub-set of PEs at affinity level 1:

PE affinity level 1. Defines part of the MPIDR_EL1.Aff1 field, viewed from the highest Exception level of the associated
PEs.

Aff1 Meaning
0bxxxxxxx1 ERRDEVAFF.Aff1[7:1] is the value of MPIDR_EL1.Aff1[7:1],

viewed from the highest Exception level of the associated
PEs.

0bxxxxxx10 ERRDEVAFF.Aff1[7:2] is the value of MPIDR_EL1.Aff1[7:2],
viewed from the highest Exception level of the associated
PEs.

0bxxxxx100 ERRDEVAFF.Aff1[7:3] is the value of MPIDR_EL1.Aff1[7:3],
viewed from the highest Exception level of the associated
PEs.

0bxxxx1000 ERRDEVAFF.Aff1[7:4] is the value of MPIDR_EL1.Aff1[7:4],
viewed from the highest Exception level of the associated
PEs.

0bxxx10000 ERRDEVAFF.Aff1[7:5] is the value of MPIDR_EL1.Aff1[7:5],
viewed from the highest Exception level of the associated
PEs.

0bxx100000 ERRDEVAFF.Aff1[7:6] is the value of MPIDR_EL1.Aff1[7:6],
viewed from the highest Exception level of the associated
PEs.

0bx1000000 ERRDEVAFF.Aff1[7] is the value of MPIDR_EL1.Aff1[7],
viewed from the highest Exception level of the associated
PEs.

Otherwise:

PE affinity level 1. Indicates whether the PE affinity is at level 2.

Aff1 Meaning
0x00 PE affinity is above level 2 or a subset of level 2.
0x80 PE affinity is at level 2.

Aff0, bits [7:0]

When affine with a PE at affinity level 0:

PE affinity level 0. The MPIDR_EL1.Aff0 field, viewed from the highest Exception level of the associated PE.

When affine with a sub-set of PEs at affinity level 0:

PE affinity level 0. Defines part of the MPIDR_EL1.Aff0 field, viewed from the highest Exception level of the associated
PEs.

ERRDEVAFF, Device Affinity Register

Page 3453

Aff0 Meaning
0bxxxxxxx1 ERRDEVAFF.Aff0[7:1] is the value of MPIDR_EL1.Aff0[7:1],

viewed from the highest Exception level of the associated
PEs.

0bxxxxxx10 ERRDEVAFF.Aff0[7:2] is the value of MPIDR_EL1.Aff0[7:2],
viewed from the highest Exception level of the associated
PEs.

0bxxxxx100 ERRDEVAFF.Aff0[7:3] is the value of MPIDR_EL1.Aff0[7:3],
viewed from the highest Exception level of the associated
PEs.

0bxxxx1000 ERRDEVAFF.Aff0[7:4] is the value of MPIDR_EL1.Aff0[7:4],
viewed from the highest Exception level of the associated
PEs.

0bxxx10000 ERRDEVAFF.Aff0[7:5] is the value of MPIDR_EL1.Aff0[7:5],
viewed from the highest Exception level of the associated
PEs.

0bxx100000 ERRDEVAFF.Aff0[7:6] is the value of MPIDR_EL1.Aff0[7:6],
viewed from the highest Exception level of the associated
PEs.

0bx1000000 ERRDEVAFF.Aff0[7] is the value of MPIDR_EL1.Aff0[7],
viewed from the highest Exception level of the associated
PEs.

Otherwise:

PE affinity level 0. Indicates whether the PE affinity is at level 1.

Aff0 Meaning
0x00 PE affinity is above level 1 or a subset of level 1.
0x80 PE affinity is at level 1.

Accessing the ERRDEVAFF

ERRDEVAFF can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xFA8

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRDEVAFF, Device Affinity Register

Page 3454

ERRDEVARCH, Device Architecture Register
The ERRDEVARCH characteristics are:

Purpose
Provides discovery information for the component.

Configuration
There are no configuration notes.

Attributes
ERRDEVARCH is a 32-bit register.

Field descriptions
The ERRDEVARCH bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARCHITECT PRESENT REVISION ARCHVER ARCHPART

ARCHITECT, bits [31:21]

Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106 bank ID,
minus 1) and bits [27:21] are the JEP106 ID code.

ARCHITECT Meaning
0b01000111011 JEP106 continuation code 0x4, ID code 0x3B. Arm

Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

PRESENT, bit [20]

DEVARCH Present. Defines that the DEVARCH register is present.

PRESENT Meaning
0b0 Device Architecture information not present.
0b1 Device Architecture information present.

This bit reads as 0b1.

REVISION, bits [19:16]

Revision. Defines the architecture revision of the component.

ERRDEVARCH, Device Architecture Register

Page 3455

REVISION Meaning
0b0000 RAS System Architecture v1.0.
0b0001 RAS System Architecture v1.1. As 0b0000 and also:

• Simplifies ERR<n>STATUS.
• Adds support for additional ERR<n>MISC<m>

registers.
• Adds support for the optional RAS Timestamp

Extension.
• Adds support for the optional RAS Common Fault

Injection Model Extension.

All other values are reserved.

ARCHVER, bits [15:12]

Architecture Version. Defines the architecture version of the component.

ARCHVER Meaning
0b0000 RAS System Architecture v1.

All other values are reserved.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is ARCHID[15:12].

This field reads as 0b0000.

ARCHPART, bits [11:0]

Architecture Part. Defines the architecture of the component.

ARCHPART Meaning
0xA00 RAS System Architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is ARCHID[11:0].

This field reads as 0xA00.

Accessing the ERRDEVARCH

ERRDEVARCH can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xFBC

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRDEVARCH, Device Architecture Register

Page 3456

ERRDEVID, Device Configuration Register
The ERRDEVID characteristics are:

Purpose
Provides discovery information for the component.

Configuration
There are no configuration notes.

Attributes
ERRDEVID is a 32-bit register.

Field descriptions
The ERRDEVID bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 NUM

Bits [31:16]

Reserved, RES0.

NUM, bits [15:0]

IMPLEMENTATION DEFINED.

Highest numbered index of the error records in this group, plus one. Each implemented record is owned by a node. A
node might own multiple records.

This manual describes a group of error records accessed via a standard 4KB memory-mapped peripheral. For a 4KB
peripheral, up to 24 error records can be accessed if the Common Fault Injection Model is implemented, and up to 56
otherwise.

Accessing the ERRDEVID

ERRDEVID can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xFC8

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRDEVID, Device Configuration Register

Page 3457

ERRERICR0, Error Recovery Interrupt Configuration
Register 0

The ERRERICR0 characteristics are:

Purpose
Interrupt configuration register.

Configuration
External register ERRERICR0 is architecturally mapped to External register ERRIRQCR2.

This register is present only when RAS is implemented. Otherwise, direct accesses to ERRERICR0 are RES0.

Present only if interrupt configuration registers use the recommended format. Otherwise, this register is RES0.

Attributes
ERRERICR0 is a 64-bit register.

Field descriptions
The ERRERICR0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 ADDR

ADDR RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

ADDR, bits [55:2]

Message Signaled Interrupt address.

Specifies the address that the component writes to when signaling an interrupt.

The size of a physical address is IMPLEMENTATION DEFINED. Unimplemented high-order physical address bits are RES0.

The following resets apply:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

ERRERICR0, Error Recovery Interrupt Configuration Register 0

Page 3458

Accessing the ERRERICR0

ERRERICR0 can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0xE90 ERRERICR0

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRERICR0, Error Recovery Interrupt Configuration Register 0

Page 3459

ERRERICR1, Error Recovery Interrupt Configuration
Register 1

The ERRERICR1 characteristics are:

Purpose
Interrupt configuration register.

Configuration
External register ERRERICR1 bits [31:0] are architecturally mapped to External register ERRIRQCR3[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERRERICR1 are RES0.

Present only if interrupt configuration registers use the recommended format. Otherwise, this register is RES0.

Attributes
ERRERICR1 is a 32-bit register.

Field descriptions
The ERRERICR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DATA

DATA, bits [31:0]

Payload for a message signaled interrupt.

The following resets apply:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the ERRERICR1

ERRERICR1 can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0xE98 ERRERICR1

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRERICR1, Error Recovery Interrupt Configuration Register 1

Page 3460

ERRERICR2, Error Recovery Interrupt Configuration
Register 2

The ERRERICR2 characteristics are:

Purpose
Interrupt configuration register.

Configuration
External register ERRERICR2 bits [31:0] are architecturally mapped to External register ERRIRQCR3[63:32] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERRERICR2 are RES0.

Present only if interrupt configuration registers use the recommended format. Otherwise, this register is RES0.

Attributes
ERRERICR2 is a 32-bit register.

Field descriptions
The ERRERICR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IRQENNSMSI SH MemAttr

Bits [31:8]

Reserved, RES0.

IRQEN, bit [7]

Message Signaled Interrupt enable.

Enables generation of message signaled interrupts.

IRQEN Meaning
0b0 Message signaled interrupts are disabled.
0b1 Message signaled interrupts are enabled.

If the component does not support disabling message signaled interrupts, this bit is RES0.

The following resets apply:

• On an Error recovery reset, this field resets to 0.

• On a Cold reset, this field resets to 0.

NSMSI, bit [6]

Security attribute.

Defines the physical address space for message signaled interrupts.

ERRERICR2, Error Recovery Interrupt Configuration Register 2

Page 3461

NSMSI Meaning
0b0 Physical address space for message signaled interrupts is

Secure.
0b1 Physical address space for message signaled interrupts is Non-

secure.

If the component prohibits Non-secure writes and does not support configuring the Security attribute, then the
Security attribute for message signaled interrupts is IMPLEMENTATION DEFINED.

If the component allows Non-secure writes, then the Security attribute used for message signaled interrupts is Non-
secure.

This bit is RES0 if any of the following are true:

• The component allows Non-secure writes.

• The component does not support configuring the Security attribute.

On a Cold reset, this field resets to an IMPLEMENTATION DEFINED value.

SH, bits [5:4]

Shareability.

Defines the Shareability domain for message signaled interrupts.

SH Meaning
0b00 Message signaled interrupts are in the Not shared Shareability

domain.
0b10 Message signaled interrupts are in the Outer Shareable

Shareability domain.
0b11 Message signaled interrupts are in the Inner Shareable

Shareability domain.

If the component does not support configuring the Shareability domain, this field is RES0, meaning the Shareability
domain for message signaled interrupts is IMPLEMENTATION DEFINED.

The following resets apply:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

MemAttr, bits [3:0]

Memory type.

Defines the memory type for message signaled interrupts. The values which correspond to each memory type are:

MemAttr Meaning
0b0000 Device-nGnRnE.
0b0001 Device-nGnRE.
0b0010 Device-nGRE.
0b0011 Device-GRE.
0b0101 Outer Non-cacheable, Inner Non-cacheable.
0b0110 Outer Non-cacheable, Inner Write-Through Cacheable.
0b0111 Outer Non-cacheable, Inner Write-Back Cacheable.
0b1001 Outer Write-Through Cacheable, Inner Non-cacheable.
0b1010 Outer Write-Through Cacheable, Inner Write-Through

Cacheable.
0b1011 Outer Write-Through Cacheable, Inner Write-Back

Cacheable.
0b1101 Outer Write-Back Cacheable, Inner Non-cacheable.
0b1110 Outer Write-Back Cacheable, Inner Write-Through

Cacheable.
0b1111 Outer Write-Back Cacheable, Inner Write-Back Cacheable.

ERRERICR2, Error Recovery Interrupt Configuration Register 2

Page 3462

If the component does not support configuring the memory type, this field is RES0, meaning the memory type used for
message signaled interrupts is IMPLEMENTATION DEFINED.

Note

This is the same format as the VMSAv8-64 stage 2 memory region attributes.

The following resets apply:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the ERRERICR2

ERRERICR2 can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0xE9C ERRERICR2

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRERICR2, Error Recovery Interrupt Configuration Register 2

Page 3463

ERRFHICR0, Fault-Handling Interrupt Configuration
Register 0

The ERRFHICR0 characteristics are:

Purpose
Interrupt configuration register.

Configuration
External register ERRFHICR0 is architecturally mapped to External register ERRIRQCR0.

This register is present only when RAS is implemented. Otherwise, direct accesses to ERRFHICR0 are RES0.

Present only if interrupt configuration registers use the recommended format. Otherwise, this register is RES0.

Attributes
ERRFHICR0 is a 64-bit register.

Field descriptions
The ERRFHICR0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 ADDR

ADDR RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

ADDR, bits [55:2]

Message Signaled Interrupt address.

Specifies the address that the component writes to when signaling an interrupt.

The size of a physical address is IMPLEMENTATION DEFINED. Unimplemented high-order physical address bits are RES0.

The following resets apply:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

ERRFHICR0, Fault-Handling Interrupt Configuration Register 0

Page 3464

Accessing the ERRFHICR0

ERRFHICR0 can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0xE80 ERRFHICR0

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRFHICR0, Fault-Handling Interrupt Configuration Register 0

Page 3465

ERRFHICR1, Fault-Handling Interrupt Configuration
Register 1

The ERRFHICR1 characteristics are:

Purpose
Interrupt configuration register.

Configuration
External register ERRFHICR1 bits [31:0] are architecturally mapped to External register ERRIRQCR1[31:0] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERRFHICR1 are RES0.

Present only if interrupt configuration registers use the recommended format. Otherwise, this register is RES0.

Attributes
ERRFHICR1 is a 32-bit register.

Field descriptions
The ERRFHICR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DATA

DATA, bits [31:0]

Payload for a message signaled interrupt.

The following resets apply:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the ERRFHICR1

ERRFHICR1 can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0xE88 ERRFHICR1

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRFHICR1, Fault-Handling Interrupt Configuration Register 1

Page 3466

ERRFHICR2, Fault-Handling Interrupt Configuration
Register 2

The ERRFHICR2 characteristics are:

Purpose
Interrupt configuration register.

Configuration
External register ERRFHICR2 bits [31:0] are architecturally mapped to External register ERRIRQCR1[63:32] .

This register is present only when RAS is implemented. Otherwise, direct accesses to ERRFHICR2 are RES0.

Present only if interrupt configuration registers use the recommended format. Otherwise, this register is RES0.

Attributes
ERRFHICR2 is a 32-bit register.

Field descriptions
The ERRFHICR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IRQENNSMSI SH MemAttr

Bits [31:8]

Reserved, RES0.

IRQEN, bit [7]

Message Signaled Interrupt enable.

Enables generation of message signaled interrupts.

IRQEN Meaning
0b0 Message signaled interrupts are disabled.
0b1 Message signaled interrupts are enabled.

If the component does not support disabling message signaled interrupts, this bit is RES0.

The following resets apply:

• On an Error recovery reset, this field resets to 0.

• On a Cold reset, this field resets to 0.

NSMSI, bit [6]

Security attribute.

Defines the physical address space for message signaled interrupts.

ERRFHICR2, Fault-Handling Interrupt Configuration Register 2

Page 3467

NSMSI Meaning
0b0 Physical address space for message signaled interrupts is

Secure.
0b1 Physical address space for message signaled interrupts is Non-

secure.

If the component prohibits Non-secure writes and does not support configuring the Security attribute, then the
Security attribute for message signaled interrupts is IMPLEMENTATION DEFINED.

If the component allows Non-secure writes, then the Security attribute used for message signaled interrupts is Non-
secure.

This bit is RES0 if any of the following are true:

• The component allows Non-secure writes.

• The component does not support configuring the Security attribute.

On a Cold reset, this field resets to an IMPLEMENTATION DEFINED value.

SH, bits [5:4]

Shareability.

Defines the Shareability domain for message signaled interrupts.

SH Meaning
0b00 Message signaled interrupts are in the Not shared Shareability

domain.
0b10 Message signaled interrupts are in the Outer Shareable

Shareability domain.
0b11 Message signaled interrupts are in the Inner Shareable

Shareability domain.

If the component does not support configuring the Shareability domain, this field is RES0, meaning the Shareability
domain for message signaled interrupts is IMPLEMENTATION DEFINED.

The following resets apply:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

MemAttr, bits [3:0]

Memory type.

Defines the memory type for message signaled interrupts. The values which correspond to each memory type are:

MemAttr Meaning
0b0000 Device-nGnRnE.
0b0001 Device-nGnRE.
0b0010 Device-nGRE.
0b0011 Device-GRE.
0b0101 Outer Non-cacheable, Inner Non-cacheable.
0b0110 Outer Non-cacheable, Inner Write-Through Cacheable.
0b0111 Outer Non-cacheable, Inner Write-Back Cacheable.
0b1001 Outer Write-Through Cacheable, Inner Non-cacheable.
0b1010 Outer Write-Through Cacheable, Inner Write-Through

Cacheable.
0b1011 Outer Write-Through Cacheable, Inner Write-Back

Cacheable.
0b1101 Outer Write-Back Cacheable, Inner Non-cacheable.
0b1110 Outer Write-Back Cacheable, Inner Write-Through

Cacheable.
0b1111 Outer Write-Back Cacheable, Inner Write-Back Cacheable.

ERRFHICR2, Fault-Handling Interrupt Configuration Register 2

Page 3468

If the component does not support configuring the memory type, this field is RES0, meaning the memory type used for
message signaled interrupts is IMPLEMENTATION DEFINED.

Note

This is the same format as the VMSAv8-64 stage 2 memory region attributes.

The following resets apply:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the ERRFHICR2

ERRFHICR2 can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0xE8C ERRFHICR2

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRFHICR2, Fault-Handling Interrupt Configuration Register 2

Page 3469

ERRGSR, Error Group Status Register
The ERRGSR characteristics are:

Purpose
Shows the status for the records in the group.

Configuration
This manual describes a group of error records accessed via a standard 4KB memory-mapped peripheral. For a 4KB
peripheral, up to 24 error records can be accessed if the Common Fault Injection Model is implemented, and up to 56
otherwise.

Attributes
ERRGSR is a 64-bit register.

Field descriptions
The ERRGSR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 S<m>, bit [m]

S<m>, bit [m]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

S<m>, bit [m], for m = 0 to 55

The status for Error Record <m>. A read-only copy of ERR<m>STATUS.V.

S<m> Meaning
0b0 No error.
0b1 One or more errors.

If the Common Fault Injection Model is implemented, up-to 24 records can be implemented meaning bits [55:24] are
RES0.

This bit is RES0 if any of the following are true:

• The record is not implemented.
• The record does not support this type of reporting.

Accessing the ERRGSR

ERRGSR can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xE00

Accesses on this interface are RO.

ERRGSR, Error Group Status Register

Page 3470

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRGSR, Error Group Status Register

Page 3471

ERRIIDR, Implementation Identification Register
The ERRIIDR characteristics are:

Purpose
Defines the implementer of the component.

Configuration
Implementation of this register is OPTIONAL.

This register is present only when ARMv8.4-RAS is implemented. Otherwise, direct accesses to ERRIIDR are RES0.

Attributes
ERRIIDR is a 32-bit register.

Field descriptions
The ERRIIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ProductID Variant Revision Implementer

ProductID, bits [31:20]

IMPLEMENTATION DEFINED.

Part number, bits [11:0]. The part number is selected by the designer of the component.

If ERRPIDR0 and ERRPIDR1 are implemented, ERRPIDR0.PART_0 matches bits [7:0] of ERRIIDR.ProductID and
ERRPIDR1.PART_1 matches bits [11:8] of ERRIIDR.ProductID.

Variant, bits [19:16]

IMPLEMENTATION DEFINED.

Component major revision.

This field distinguishes product variants or major revisions of the product.

If ERRPIDR2 is implemented, ERRPIDR2.REVISION matches ERRIIDR.Variant.

Revision, bits [15:12]

IMPLEMENTATION DEFINED.

Component minor revision.

This field distinguishes minor revisions of the product.

If ERRPIDR3 is implemented, ERRPIDR3.REVAND matches ERRIIDR.Revision.

Implementer, bits [11:0]

IMPLEMENTATION DEFINED.

ERRIIDR, Implementation Identification Register

Page 3472

Contains the JEP106 code of the company that implemented the RAS component. For an Arm implementation, this
field has the value 0x43B.

Bits [11:8] contain the JEP106 continuation code of the implementer, and bits [6:0] contain the JEP106 identity code of
the implementer. Bit 7 is RES0.

If ERRPIDR4 is implemented, ERRPIDR2 is implemented, and ERRPIDR1 is implemented, ERRPIDR4.DES_2 matches
bits [11:8] of ERRIIDR.Implementer, ERRPIDR2.DES_1 matches bits [6:4] of ERRIIDR.Implementer, and
ERRPIDR1.DES_0 matches bits [3:0] of ERRIIDR.Implementer.

Accessing the ERRIIDR

ERRIIDR can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xE10

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRIIDR, Implementation Identification Register

Page 3473

ERRIRQCR<n>, Generic Error Interrupt Configuration
Register, n = 0 - 15

The ERRIRQCR<n> characteristics are:

Purpose
The ERRIRQCR<n> registers are IMPLEMENTATION DEFINED interrupt configuration registers.

The architecture provides a recommended format for the ERRIRQCR<n> registers. The registers provided by the
recommended layout are:

• ERRFHICR0, ERRFHICR1, and ERRFHICR2, the fault-handling interrupt configuration registers.
ERRFHICR<m> maps to ERRIRQCR0 and ERRIRQCR1.

• ERRERICR0, ERRERICR1, and ERRERICR2, the error recovery interrupt configuration registers.
ERRERICR<m> maps to ERRIRQCR2 and ERRIRQCR3.

• If ARMv8.4-RAS is implemented, ERRCRICR0, ERRCRICR1, and ERRCRICR2, the critical error interrupt
configuration registers. ERRFHICR<m> maps to ERRIRQCR4 and ERRIRQCR5.

• ERRIRQSR, the error interrupt status register. ERRIRQSR maps to ERRIRQCR15.

This register describes the generic IMPLEMENTATION DEFINED format of the interrupt configuration registers, when the
recommended layout is not used.

Configuration
This register is present only when the interrupt configuration registers are implemented. Otherwise, direct accesses to
ERRIRQCR<n> are RES0.

Attributes
ERRIRQCR<n> is a 64-bit register.

Field descriptions
The ERRIRQCR<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED controls. The content of these registers is IMPLEMENTATION DEFINED.

Accessing the ERRIRQCR<n>

ERRIRQCR<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0xE80 + 8n ERRIRQCR<n>

ERRIRQCR<n>, Generic Error Interrupt Configuration Register, n = 0 - 15

Page 3474

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRIRQCR<n>, Generic Error Interrupt Configuration Register, n = 0 - 15

Page 3475

ERRIRQSR, Error Interrupt Status Register
The ERRIRQSR characteristics are:

Purpose
Interrupt status register.

Configuration
External register ERRIRQSR is architecturally mapped to External register ERRIRQCR15.

This register is present only when interrupt configuration registers use the recommended format. Otherwise, direct
accesses to ERRIRQSR are RES0.

Attributes
ERRIRQSR is a 64-bit register.

Field descriptions
The ERRIRQSR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 CRIERRCRIERIERRERIFHIERRFHI
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:6]

Reserved, RES0.

CRIERR, bit [5]

When Critical Error Interrupt is implemented:

Critical Error Interrupt error.

CRIERR Meaning
0b0 Critical Error Interrupt write has not returned an error since

this bit was last cleared to zero.
0b1 Critical Error Interrupt write has returned an error since this

bit was last cleared to zero.

This bit is read/write-one-to-clear.

The following resets apply:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CRI, bit [4]

ERRIRQSR, Error Interrupt Status Register

Page 3476

When Critical Error Interrupt is implemented:

Critical Error Interrupt write in progress.

CRI Meaning
0b0 Critical Error Interrupt write not in progress.
0b1 Critical Error Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.

Note

This bit does not indicate whether an interrupt is active, but rather whether a
write triggered by the interrupt is in progress.

To determine whether an interrupt is active, software must examine the
individual ERR<n>STATUS registers.

Access to this field is RO.

Otherwise:

Reserved, RES0.

ERIERR, bit [3]

When Error Recovery Interrupt is implemented:

Error Recovery Interrupt error.

ERIERR Meaning
0b0 Error Recovery Interrupt write has not returned an error

since this bit was last cleared to zero.
0b1 Error Recovery Interrupt write has returned an error since

this bit was last cleared to zero.

This bit is read/write-one-to-clear.

The following resets apply:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ERI, bit [2]

When Error Recovery Interrupt is implemented:

Error Recovery Interrupt write in progress.

ERI Meaning
0b0 Error Recovery Interrupt write not in progress.
0b1 Error Recovery Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.

Note

ERRIRQSR, Error Interrupt Status Register

Page 3477

This bit does not indicate whether an interrupt is active, but rather whether a
write triggered by the interrupt is in progress.

To determine whether an interrupt is active, software must examine the
individual ERR<n>STATUS registers.

Access to this field is RO.

Otherwise:

Reserved, RES0.

FHIERR, bit [1]

When Fault Handling Interrupt is implemented:

Fault Handling Interrupt error.

FHIERR Meaning
0b0 Fault Handling Interrupt write has not returned an error

since this bit was last cleared to zero.
0b1 Fault Handling Interrupt write has returned an error since

this bit was last cleared to zero.

This bit is read/write-one-to-clear.

The following resets apply:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FHI, bit [0]

When Fault Handling Interrupt is implemented:

Fault Handling Interrupt write in progress.

FHI Meaning
0b0 Fault Handling Interrupt write not in progress.
0b1 Fault Handling Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.

Note

This bit does not indicate whether an interrupt is active, but rather whether a
write triggered by the interrupt is in progress.

To determine whether an interrupt is active, software must examine the
individual ERR<n>STATUS registers.

Access to this field is RO.

Otherwise:

Reserved, RES0.

ERRIRQSR, Error Interrupt Status Register

Page 3478

Accessing the ERRIRQSR

ERRIRQSR can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xEF8

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRIRQSR, Error Interrupt Status Register

Page 3479

ERR<n>ADDR, Error Record Address Register, n = 0 -
65534

The ERR<n>ADDR characteristics are:

Purpose
If an address is associated with a detected error, then this must be written to the address register when the error is
recorded. It is IMPLEMENTATION DEFINED how the recorded addresses map to the software-visible physical addresses.
Software might have to reconstruct the actual physical addresses using the identity of the node and knowledge of the
system.

Configuration
This register is present only when error record <n> is implemented and the error record includes an address
associated with an error. Otherwise, direct accesses to ERR<n>ADDR are RES0.

ERR<q>FR describes the features implemented by the node that owns error record <n>. <q> is the index of the first
error record owned by the same node as error record <n>. If the node owns a single record, then q = n.

Attributes
ERR<n>ADDR is a 64-bit register.

Field descriptions
The ERR<n>ADDR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS SI AI VA RES0 PADDR

PADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

Non-secure attribute.

NS Meaning
0b0 The address is Secure.
0b1 The address is Non-secure.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

SI, bit [62]

Secure Incorrect. Indicates whether the NS bit is valid.

SI Meaning
0b0 The NS bit is correct. That is, it matches the programmers' view of

the Non-secure attribute for this recorded location.
0b1 The NS bit might not be correct, and might not match the

programmers' view of the Non-secure attribute for the recorded
location.

ERR<n>ADDR, Error Record Address Register, n = 0 - 65534

Page 3480

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

AI, bit [61]

Address Incorrect. Indicates whether the PADDR field is a valid physical address that is known to match the
programmers' view of the physical address for the recorded location.

AI Meaning
0b0 The PADDR field is a valid physical address. That is, it matches the

programmers' view of the physical address for the recorded
location.

0b1 The PADDR field might not be a valid physical address, and might
not match the programmers' view of the physical address for the
recorded location.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

VA, bit [60]

Virtual Address. Indicates whether the PADDR field is a virtual address.

VA Meaning
0b0 The PADDR field is not a virtual address.
0b1 The PADDR field is a virtual address.

No context information is provided for the virtual address. When ERR<n>ADDR.VA == 0b1,
ERR<n>ADDR.{NS,SI,AI} must read as {0,1,1}.

Support for this bit is optional. If this bit is not implemented and the PADDR field is a virtual address, then
ERR<n>ADDR.{NS,SI,AI} must read as {0,1,1}.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [59:56]

Reserved, RES0.

PADDR, bits [55:0]

Physical Address. Address of the recorded location. If the physical address size implemented by this component is
smaller than the size of this field, then high-order bits are unimplemented and either RES0 or have a fixed read-only
IMPLEMENTATION DEFINED value. Low-order address bits might also be unimplemented and RES0, for example, if the
physical address is always aligned to the size of a protection granule.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

ERR<n>ADDR, Error Record Address Register, n = 0 - 65534

Page 3481

Accessing the ERR<n>ADDR
ERR<n>ADDR ignores writes if ERR<n>STATUS.AV == 0b1.

ERR<n>ADDR can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0x018 + 64n ERR<n>ADDR

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERR<n>ADDR, Error Record Address Register, n = 0 - 65534

Page 3482

ERR<n>CTLR, Error Record Control Register, n = 0 -
65534

The ERR<n>CTLR characteristics are:

Purpose
The error control register contains enable bits for the node that writes to this record:

• Enabling error detection and correction.
• Enabling the critical error, error recovery, and fault handling interrupts.
• Enabling in-band error response for Uncorrected errors.

For each bit, if the selected node does not support the feature, then the bit is RES0. The definition of each record is
IMPLEMENTATION DEFINED.

Configuration
This register is present only when error record <n> is implemented and error record <n> is the first error record
owned by a node. Otherwise, direct accesses to ERR<n>CTLR are RES0.

ERR<n>FR describes the features implemented by the node.

Attributes
ERR<n>CTLR is a 64-bit register.

Field descriptions
The ERR<n>CTLR bit assignments are:

63626160595857565554535251504948474645 44 43 42 41 40 39 38 37 36 3534 33 32
IMPLEMENTATION DEFINED

RES0 CIRES0WDUIDUIWCFICFIWUEWFIWUIUEFIUIIMPLEMENTATION
DEFINED ED

31302928272625242322212019181716151413 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:32]

IMPLEMENTATION DEFINED.

Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software.

Bits [31:14]

Reserved, RES0.

CI, bit [13]

When ERR<n>FR.CI == 0b10:

Critical error interrupt enable. When enabled, the critical error interrupt is generated for a critical error condition.

CI Meaning
0b0 Critical error interrupt not generated for critical errors. Critical

errors are treated as Uncontained errors.
0b1 Critical error interrupt generated for critical errors.

ERR<n>CTLR, Error Record Control Register, n = 0 - 65534

Page 3483

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [12]

Reserved, RES0.

WDUI, bit [11]

When ERR<n>FR.DUI == 0b11:

Error recovery interrupt for deferred errors on writes enable.

When enabled, the error recovery interrupt is generated for detected Deferred errors on writes.

WDUI Meaning
0b0 Error recovery interrupt not generated for deferred errors on

writes.
0b1 Error recovery interrupt generated for deferred errors on

writes.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DUI, bit [10]

When ERR<n>FR.DUI == 0b10:

Error recovery interrupt for deferred errors enable.

When ERR<n>FR.DUI == 0b10, this control applies to errors arising from both reads and writes.

When enabled, the error recovery interrupt is generated for all detected Deferred errors.

DUI Meaning
0b0 Error recovery interrupt not generated for deferred errors.
0b1 Error recovery interrupt generated for deferred errors.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

ERR<n>CTLR, Error Record Control Register, n = 0 - 65534

Page 3484

When ERR<n>FR.DUI == 0b11:

Error recovery interrupt for deferred errors on reads enable.

When ERR<n>FR.DUI == 0b11, this bit is named RDUI.

When enabled, the error recovery interrupt is generated for detected Deferred errors on reads.

RDUI Meaning
0b0 Error recovery interrupt not generated for deferred errors on

reads.
0b1 Error recovery interrupt generated for deferred errors on reads.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WCFI, bit [9]

When ERR<n>FR.CFI == 0b11:

Fault handling interrupt for Corrected errors on writes enable.

When enabled:

• If the node implements Corrected error counters for writes, then the fault handling interrupt is generated
when a counter overflows and the overflow bit for the counter is set to 0b1. For more information, see
ERR<n>MISC0.

• Otherwise, the fault handling interrupt is also generated for detected Corrected errors onwrites.
WCFI Meaning
0b0 Fault handling interrupt not generated for Corrected errors on

writes.
0b1 Fault handling interrupt generated for Corrected errors on

writes.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CFI, bit [8]

When ERR<n>FR.CFI == 0b10:

Fault handling interrupt for Corrected errors enable.

When ERR<n>FR.CFI == 0b10, this control applies to errors arising from both reads and writes.

ERR<n>CTLR, Error Record Control Register, n = 0 - 65534

Page 3485

When enabled:

• If the node implements Corrected error counters, then the fault handling interrupt is generated when a
counter overflows and the overflow bit for the counter is set to 0b1. For more information, see ERR<n>MISC0.

• Otherwise, the fault handling interrupt is also generated for all detected Corrected errors.
CFI Meaning
0b0 Fault handling interrupt not generated for Corrected errors.
0b1 Fault handling interrupt generated for Corrected errors.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.CFI == 0b11:

Fault handling interrupt for Corrected errors on reads enable.

When ERR<n>FR.CFI == 0b11, this bit is named RCFI.

When enabled:

• If the node implements Corrected error counters for reads, then the fault handling interrupt is generated
when a counter overflows and the overflow bit for the counter is set to 0b1. For more information, see
ERR<n>MISC0.

• Otherwise, the fault handling interrupt is also generated for detected Corrected errors onreads.
RCFI Meaning
0b0 Fault handling interrupt not generated for Corrected errors on

reads.
0b1 Fault handling interrupt generated for Corrected errors on

reads.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WUE, bit [7]

When ERR<n>FR.UE == 0b11:

In-band Uncorrected error reporting on writes enable.

When enabled, responses to writes that detect an Uncorrected error that cannot be deferred are signaled in-band as a
detected Uncorrected error (External Abort).

WUE Meaning
0b0 External Abort response for Uncorrected errors on writes

disabled.
0b1 External Abort response for Uncorrected errors on writes

enabled.

The following resets apply:

ERR<n>CTLR, Error Record Control Register, n = 0 - 65534

Page 3486

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WFI, bit [6]

When ERR<n>FR.FI == 0b11:

Fault handling interrupt on writes enable.

When enabled:

• The fault handling interrupt is generated for detected Deferred errors and Uncorrected errors.
• If the corresponding fault handling interrupt for Corrected errors control is not implemented:

◦ If the node implements Corrected error counters for writes, then the fault handling interrupt is also
generated when a counter overflows and the overflow bit for the counter is set to 0b1.

◦ Otherwise, the fault handling interrupt is also generated for detected Corrected errors on writes.
WFI Meaning
0b0 Fault handling interrupt on writes disabled.
0b1 Fault handling interrupt on writes enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WUI, bit [5]

When ERR<n>FR.UI == 0b11:

Uncorrected error recovery interrupt on writes enable.

When enabled, the error recovery interrupt is generated for detected Uncorrected errors on writes that are not
deferred.

WUI Meaning
0b0 Error recovery interrupt on writes disabled.
0b1 Error recovery interrupt on writes enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ERR<n>CTLR, Error Record Control Register, n = 0 - 65534

Page 3487

UE, bit [4]

When ERR<n>FR.UE == 0b10:

In-band Uncorrected error reporting enable.

When ERR<n>FR.UE == 0b10, this control applies to errors arising from both reads and writes.

When enabled, responses to transactions that detect an Uncorrected error that cannot be deferred are signaled in-
band as a detected Uncorrected error (External Abort).

UE Meaning
0b0 External Abort response for Uncorrected errors disabled.
0b1 External Abort response for Uncorrected errors enabled.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.UE == 0b11:

In-band Uncorrected error reporting on reads enable.

When ERR<n>FR.UE == 0b11, this bit is named RUE.

When enabled, responses to reads that detect an Uncorrected error that cannot be deferred are signaled in-band as a
detected Uncorrected error (External Abort).

RUE Meaning
0b0 External Abort response for Uncorrected errors on reads

disabled.
0b1 External Abort response for Uncorrected errors on reads enabled.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FI, bit [3]

When ERR<n>FR.FI == 0b10:

Fault handling interrupt enable.

When ERR<n>FR.FI == 0b10, this control applies to errors arising from both reads and writes.

When enabled:

• The fault handling interrupt is generated for all detected Deferred errors and Uncorrected errors.
• If the fault handling interrupt for Corrected errors control is not implemented:

◦ If the node implements Corrected error counters, then the fault handling interrupt is also generated
when a counter overflows and the overflow bit for the counter is set to 0b1.

◦ Otherwise, the fault handling interrupt is also generated for all detected Corrected errors.
FI Meaning
0b0 Fault handling interrupt disabled.
0b1 Fault handling interrupt enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

ERR<n>CTLR, Error Record Control Register, n = 0 - 65534

Page 3488

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.FI == 0b11:

Fault handling interrupt on reads enable.

When ERR<n>FR.FI == 0b11, this bit is named RFI.

When enabled:

• The fault handling interrupt is generated for detected Deferred errors and Uncorrected errors.
• If the corresponding fault handling interrupt for Corrected errors control is not implemented:

◦ If the node implements Corrected error counters for reads, then the fault handling interrupt is also
generated when a counter overflows and the overflow bit for the counter is set to 0b1.

◦ Otherwise, the fault handling interrupt is also generated for detected Corrected errors on reads.
RFI Meaning
0b0 Fault handling interrupt on reads disabled.
0b1 Fault handling interrupt on reads enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UI, bit [2]

When ERR<n>FR.UI == 0b10:

Uncorrected error recovery interrupt enable.

When ERR<n>FR.UI == 0b10, this control applies to errors arising from both reads and writes.

When enabled, the error recovery interrupt is generated for all detected Uncorrected errors that are not deferred.

UI Meaning
0b0 Error recovery interrupt disabled.
0b1 Error recovery interrupt enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.UI == 0b11:

Uncorrected error recovery interrupt on reads enable.

When ERR<n>FR.UI == 0b11, this bit is named RUI.

ERR<n>CTLR, Error Record Control Register, n = 0 - 65534

Page 3489

When enabled, the error recovery interrupt is generated for detected Uncorrected errors on reads that are not
deferred.

RUI Meaning
0b0 Error recovery interrupt on reads disabled.
0b1 Error recovery interrupt on reads enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IMPLEMENTATION DEFINED, bit [1]

IMPLEMENTATION DEFINED.

Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software.

ED, bit [0]

When ERR<n>FR.ED == 0b10:

Error reporting and logging enable. When disabled, the node behaves as if error detection and correction are disabled,
and no errors are recorded or signaled by the node. Arm recommends that, when disabled, correct error detection and
correction codes are written for writes, unless disabled by an IMPLEMENTATION DEFINED control for error injection.

ED Meaning
0b0 Error reporting disabled.
0b1 Error reporting enabled.

It is IMPLEMENTATION DEFINED whether the node fully disables error detection and correction when reporting is
disabled. That is, even with error reporting disabled, the node might continue to silently correct errors. Uncorrectable
errors might result in corrupt data being silently propagated by the node.

Note

If this node requires initialization after Cold reset to prevent signaling false
errors, then Arm recommends this bit is set to 0b0 on Cold reset, meaning
errors are not reported from Cold reset. This allows boot software to initialize
a node without signaling errors. Software can enable error reporting after the
node is initialized. Otherwise, the Cold reset value is IMPLEMENTATION DEFINED.
If the Cold reset value is 0b1, the reset values of other controls in this register
are also IMPLEMENTATION DEFINED and should not be UNKNOWN.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

ERR<n>CTLR, Error Record Control Register, n = 0 - 65534

Page 3490

Accessing the ERR<n>CTLR

ERR<n>CTLR can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0x008 + 64n ERR<n>CTLR

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERR<n>CTLR, Error Record Control Register, n = 0 - 65534

Page 3491

ERR<n>FR, Error Record Feature Register, n = 0 -
65534

The ERR<n>FR characteristics are:

Purpose
Defines whether <n> is the first record owned by a node:

• If <n> is the first error record owned by a node, then ERR<n>FR.ED != 0b00.
• If <n> is not the first error record owned by a node, then ERR<n>FR.ED == 0b00.

If <n> is the first record owned by the node, defines which of the common architecturally-defined features are
implemented by the node and, of the implemented features, which are software programmable.

Configuration
This register is present only when error record <n> is implemented. Otherwise, direct accesses to ERR<n>FR are
RES0.

Attributes
ERR<n>FR is a 64-bit register.

Field descriptions
The ERR<n>FR bit assignments are:

When ERR<n>FR.ED != 0b00:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION

DEFINED CE DEUEOUERUEUUC IMPLEMENTATION DEFINED

FRX RES0 TS CI INJ CEO DUI RP CEC CFI UE FI UI IMPLEMENTATION
DEFINED ED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:55]

When ERR<n>FR.FRX == 0b0:

IMPLEMENTATION DEFINED.

Reserved for identifying IMPLEMENTATION DEFINED controls.

Otherwise:

Reserved, RES0.

CE, bits [54:53]

When ERR<n>FR.FRX == 0b1:

Corrected Error recording. Describes the types of Corrected Error the node can record.

ERR<n>FR, Error Record Feature Register, n = 0 - 65534

Page 3492

CE Meaning
0b00 The node does not record any type of Corrected Error.
0b01 The node can record transient or persistent Corrected Errors

(Corrected Errors that are recorded as ERR<n>STATUS.CE ==
0b01 and 0b11).

0b10 The node can record of a non-specific Corrected Error (a
Corrected Error that is recorded as ERR<n>STATUS.CE ==
0b10).

0b11 The node can record any type of Corrected Error.

When ERR<n>FR.FRX == 0b0:

IMPLEMENTATION DEFINED.

Reserved for identifying IMPLEMENTATION DEFINED controls.

Otherwise:

Reserved, RES0.

DE, bit [52]

When ERR<n>FR.FRX == 0b1:

Deferred Error recording. Describes whether the node can record this type of error.

DE Meaning
0b0 The node does not record this type of error.
0b1 The node can record this type of error.

When ERR<n>FR.FRX == 0b0:

IMPLEMENTATION DEFINED.

Reserved for identifying IMPLEMENTATION DEFINED controls.

Otherwise:

Reserved, RES0.

UEO, bit [51]

When ERR<n>FR.FRX == 0b1:

Latent or Restartable Error recording. Describes whether the node can record this type of error.

UEO Meaning
0b0 The node does not record this type of error.
0b1 The node can record this type of error.

When ERR<n>FR.FRX == 0b0:

IMPLEMENTATION DEFINED.

Reserved for identifying IMPLEMENTATION DEFINED controls.

Otherwise:

Reserved, RES0.

ERR<n>FR, Error Record Feature Register, n = 0 - 65534

Page 3493

UER, bit [50]

When ERR<n>FR.FRX == 0b1:

Signaled or Recoverable Error recording. Describes whether the node can record this type of error.

UER Meaning
0b0 The node does not record this type of error.
0b1 The node can record this type of error.

When ERR<n>FR.FRX == 0b0:

IMPLEMENTATION DEFINED.

Reserved for identifying IMPLEMENTATION DEFINED controls.

Otherwise:

Reserved, RES0.

UEU, bit [49]

When ERR<n>FR.FRX == 0b1:

Unrecoverable Error recording. Describes whether the node can record this type of error.

UEU Meaning
0b0 The node does not record this type of error.
0b1 The node can record this type of error.

When ERR<n>FR.FRX == 0b0:

IMPLEMENTATION DEFINED.

Reserved for identifying IMPLEMENTATION DEFINED controls.

Otherwise:

Reserved, RES0.

UC, bit [48]

When ERR<n>FR.FRX == 0b1:

Uncontainable Error recording. Describes whether the node can record this type of error.

UC Meaning
0b0 The node does not record this type of error.
0b1 The node can record this type of error.

When ERR<n>FR.FRX == 0b0:

IMPLEMENTATION DEFINED.

Reserved for identifying IMPLEMENTATION DEFINED controls.

Otherwise:

Reserved, RES0.

ERR<n>FR, Error Record Feature Register, n = 0 - 65534

Page 3494

IMPLEMENTATION DEFINED, bits [47:32]

IMPLEMENTATION DEFINED.

Reserved for identifying IMPLEMENTATION DEFINED controls.

FRX, bit [31]

Feature Register extension. Defines whether ERR<n>FR[63:48] are architecturally defined.

FRX Meaning
0b0 ERR<n>FR[63:48] are IMPLEMENTATION DEFINED.
0b1 ERR<n>FR[63:48] are defined by the architecture.

Bits [30:26]

Reserved, RES0.

TS, bits [25:24]

Timestamp Extension. Indicates whether, for each error record <m> owned by this node, ERR<m>MISC3 is used as
the timestamp register, and, if it is, the timebase used by the timestamp.

TS Meaning
0b00 The node does not support a timestamp register.
0b01 The node implements a timestamp register. The timestamp uses

the same timebase as the system Generic Timer.

Note
For an error record which has an affinity
to a PE, this is the same timer that is
visible through CNTPCT_EL0 at the
highest Exception level on that PE.

0b10 The node implements a timestamp register. The timebase for the
timestamp is IMPLEMENTATION DEFINED.

All other values are reserved.

CI, bits [23:22]

Critical error interrupt. Indicates whether the critical error interrupt and associated controls are implemented.

CI Meaning
0b00 Does not support the critical error interrupt. ERR<n>CTLR.CI is

RES0.
0b01 Critical error interrupt is supported and always enabled.

ERR<n>CTLR.CI is RES0.
0b10 Critical error interrupt is supported and controllable using

ERR<n>CTLR.CI.

All other values are reserved.

INJ, bits [21:20]

Fault Injection Extension. Indicates whether the RAS Common Fault Injection Model Extension is implemented.

INJ Meaning
0b00 The node does not support the RAS Common Fault Injection

Model Extension.
0b01 The node implements the RAS Common Fault Injection Model

Extension. See ERR<n>PFGF for more information.

All other values are reserved.

ERR<n>FR, Error Record Feature Register, n = 0 - 65534

Page 3495

CEO, bits [19:18]

When ERR<n>FR.CEC != 0b00:

Corrected Error overwrite. Indicates the behavior when a second Corrected error is detected after a first Corrected
error has been recorded by an error record <m> owned by the node.

CEO Meaning
0b00 Counts Corrected errors if a counter is implemented. Keeps the

previous error syndrome. If the counter overflows, or no counter
is implemented, then ERR<m>STATUS.OF is set to 0b1.

0b01 Counts Corrected errors. If ERR<m>STATUS.OF == 0b1 before
the Corrected error is counted, then keeps the previous
syndrome. Otherwise the previous syndrome is overwritten. If the
counter overflows, then ERR<m>STATUS.OF is set to 0b1.

All other values are reserved.

Otherwise:

Reserved, RES0.

DUI, bits [17:16]

When ERR<n>FR.UI != 0b00:

Error recovery interrupt for deferred errors control. Indicates whether the control for enabling error recovery
interrupts on deferred errors are implemented.

DUI Meaning
0b00 Does not support the control for enabling error recovery

interrupts on deferred errors. ERR<n>CTLR.DUI is RES0.
0b10 Control for enabling error recovery interrupts on deferred errors

is supported and controllable using ERR<n>CTLR.DUI.
0b11 Control for enabling error recovery interrupts on deferred errors

is supported and controllable using ERR<n>CTLR.WDUI for
writes and ERR<n>CTLR.RDUI for reads.

All other values are reserved.

Otherwise:

Reserved, RES0.

RP, bit [15]

When ERR<n>FR.CEC != 0b00:

Repeat counter. Indicates whether the node implements the repeat Corrected error counter in ERR<m>MISC0 for
each error record <m> owned by the node that implements the standard Corrected error counter.

RP Meaning
0b0 A single CE counter is implemented.
0b1 A first (repeat) counter and a second (other) counter are

implemented. The repeat counter is the same size as the primary
error counter.

Otherwise:

Reserved, RES0.

ERR<n>FR, Error Record Feature Register, n = 0 - 65534

Page 3496

CEC, bits [14:12]

Corrected Error Counter. Indicates whether the node implements the standard Corrected error counter (CE counter)
mechanisms in ERR<m>MISC0 for each error record <m> owned by the node that can record countable errors.

CEC Meaning
0b000 Does not implement the standard Corrected error counter

model.
0b010 Implements an 8-bit Corrected error counter in

ERR<m>MISC0[39:32].
0b100 Implements a 16-bit Corrected error counter in

ERR<m>MISC0[47:32].

All other values are reserved.

Note

Implementations might include other error counter models, or might include
the standard model and not indicate this in ERR<n>FR.

CFI, bits [11:10]

When ERR<n>FR.FI != 0b00:

Fault handling interrupt for corrected errors. Indicates whether the control for enabling fault handling interrupts on
corrected errors are implemented.

CFI Meaning
0b00 Does not support the control for enabling fault handling

interrupts on corrected errors. ERR<n>CTLR.CFI is RES0.
0b10 Control for enabling fault handling interrupts on corrected errors

is supported and controllable using ERR<n>CTLR.CFI.
0b11 Control for enabling fault handling interrupts on corrected errors

is supported and controllable using ERR<n>CTLR.WCFI for
writes and ERR<n>CTLR.RCFI for reads.

All other values are reserved.

Otherwise:

Reserved, RES0.

UE, bits [9:8]

In-band uncorrected error reporting. Indicates whether the in-band uncorrected error reporting (External Aborts) and
associated controls are implemented.

UE Meaning
0b00 Does not support the in-band uncorrected error reporting

(External Aborts). ERR<n>CTLR.UE is RES0.
0b01 In-band uncorrected error reporting (External Aborts) is

supported and always enabled. ERR<n>CTLR.UE is RES0.
0b10 In-band uncorrected error reporting (External Aborts) is

supported and controllable using ERR<n>CTLR.UE.
0b11 In-band uncorrected error reporting (External Aborts) is

supported and controllable using ERR<n>CTLR.WUE for writes
and ERR<n>CTLR.RUE for reads.

FI, bits [7:6]

Fault handling interrupt. Indicates whether the fault handling interrupt and associated controls are implemented.

ERR<n>FR, Error Record Feature Register, n = 0 - 65534

Page 3497

FI Meaning
0b00 Does not support the fault handling interrupt. ERR<n>CTLR.FI is

RES0.
0b01 Fault handling interrupt is supported and always enabled.

ERR<n>CTLR.FI is RES0.
0b10 Fault handling interrupt is supported and controllable using

ERR<n>CTLR.FI.
0b11 Fault handling interrupt is supported and controllable using

ERR<n>CTLR.WFI for writes and ERR<n>CTLR.RFI for reads.

UI, bits [5:4]

Error recovery interrupt for uncorrected errors. Indicates whether the error handling interrupt and associated
controls are implemented.

UI Meaning
0b00 Does not support the error handling interrupt. ERR<n>CTLR.UI

is RES0.
0b01 Error handling interrupt is supported and always enabled.

ERR<n>CTLR.UI is RES0.
0b10 Error handling interrupt is supported and controllable using

ERR<n>CTLR.UI.
0b11 Error handling interrupt is supported and controllable using

ERR<n>CTLR.WUI for writes and ERR<n>CTLR.RUI for reads.

IMPLEMENTATION DEFINED, bits [3:2]

IMPLEMENTATION DEFINED.

ED, bits [1:0]

Error reporting and logging. Indicates whether error record <n> is the first record owned the node, and, if so,
whether it implements the controls for enabling and disabling error reporting and logging.

ED Meaning
0b01 Error reporting and logging always enabled. ERR<n>CTLR.ED is

RES0.
0b10 Error reporting and logging is controllable using

ERR<n>CTLR.ED.

All other values are reserved.

When ERR<n>FR.ED == 0b00:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 ED
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

ED, bits [1:0]

Error reporting and logging. Indicates error record <n> is not the first record owned the node.

ED Meaning
0b00 Error record <n> is not the first record owned by the node.

This field reads as 0b00.

ERR<n>FR, Error Record Feature Register, n = 0 - 65534

Page 3498

Accessing the ERR<n>FR

ERR<n>FR can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0x000 + 64n ERR<n>FR

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERR<n>FR, Error Record Feature Register, n = 0 - 65534

Page 3499

ERR<n>MISC0, Error Record Miscellaneous Register 0,
n = 0 - 65534

The ERR<n>MISC0 characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might contain:

• Information to identify the FRU in which the error was detected, and might contain enough information to
locate the error within that FRU.

• A Corrected error counter or counters.
• Other state information not present in the corresponding status and address registers.

If the node that owns error record <n> implements architecturally-defined error counters (ERR<q>FR.CEC !=
0b000), and error record <n> can record countable errors, then ERR<n>MISC0 implements the architecturally-
defined error counter or counters.

Configuration
This register is present only when error record <n> is implemented. Otherwise, direct accesses to ERR<n>MISC0 are
RES0.

ERR<q>FR describes the features implemented by the node that owns error record <n>. <q> is the index of the first
error record owned by the same node as error record <n>. If the node owns a single record, then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC0, writing zero must always be supported to return the error
record to an initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or Error Recovery
Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome fields that can
generate a Fault Handling, Error Recovery, Critical, or IMPLEMENTATION
DEFINED, interrupt request are disabled at Cold reset and are enabled by
software writing an IMPLEMENTATION DEFINED non-zero value to an
IMPLEMENTATION DEFINED field in ERR<q>CTRL.

Attributes
ERR<n>MISC0 is a 64-bit register.

Field descriptions
The ERR<n>MISC0 bit assignments are:

When ERR<q>FR.CEC == 0b000:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ERR<n>MISC0, Error Record Miscellaneous Register 0, n = 0 - 65534

Page 3500

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED syndrome.

When ERR<q>FR.CEC == 0b100 and ERR<q>FR.RP == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED OF CEC

IMPLEMENTATION DEFINED
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:48]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED syndrome.

OF, bit [47]

Sticky overflow bit. Set to 1 when the Corrected error count field is incremented and wraps through zero.

OF Meaning
0b0 Counter has not overflowed.
0b1 Counter has overflowed.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and a direct write
to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CEC, bits [46:32]

Corrected error count. Incremented for each Corrected error. It is IMPLEMENTATION DEFINED and might be
UNPREDICTABLE whether Deferred and Uncorrected errors are counted.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED syndrome.

When ERR<q>FR.CEC == 0b010 and ERR<q>FR.RP == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED OF CEC

IMPLEMENTATION DEFINED
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:40]

IMPLEMENTATION DEFINED.

ERR<n>MISC0, Error Record Miscellaneous Register 0, n = 0 - 65534

Page 3501

IMPLEMENTATION DEFINED syndrome.

OF, bit [39]

Sticky overflow bit. Set to 1 when the Corrected error count field is incremented and wraps through zero.

OF Meaning
0b0 Counter has not overflowed.
0b1 Counter has overflowed.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and a direct write
to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CEC, bits [38:32]

Corrected error count. Incremented for each Corrected error. It is IMPLEMENTATION DEFINED and might be
UNPREDICTABLE whether Deferred and Uncorrected errors are counted.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED syndrome.

When ERR<q>FR.CEC == 0b100 and ERR<q>FR.RP == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
OFO CECO OFR CECR

IMPLEMENTATION DEFINED
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OFO, bit [63]

Sticky overflow bit, other. Set to 1 when the Corrected error count, other, field is incremented and wraps through zero.

OFO Meaning
0b0 Other counter has not overflowed.
0b1 Other counter has overflowed.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and a direct write
to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CECO, bits [62:48]

Corrected error count, other. Incremented for each countable error that is not accounted for by incrementing CECR.

The following resets apply:

ERR<n>MISC0, Error Record Miscellaneous Register 0, n = 0 - 65534

Page 3502

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

OFR, bit [47]

Sticky overflow bit, repeat. Set to 1 when the Corrected error count, repeat, field is incremented and wraps through
zero.

OFR Meaning
0b0 Repeat counter has not overflowed.
0b1 Repeat counter has overflowed.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and a direct write
to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CECR, bits [46:32]

Corrected error count, repeat. Incremented for the first countable error, which also records other syndrome for the
error, and subsequently for each countable error that matches the recorded other syndrome. Corrected errors are
countable errors. It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether Deferred and Uncorrected errors
are countable errors.

Note

For example, the other syndrome might include the set and way information
for an error detected in a cache. This might be recorded in the
IMPLEMENTATION DEFINED ERR<n>MISC<m> fields on a first Corrected error.
CECR is then incremented for each subsequent Corrected Error in the same
set and way.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED syndrome.

When ERR<q>FR.CEC == 0b010 and ERR<q>FR.RP == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED OFO CECO OFR CECR

IMPLEMENTATION DEFINED
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:48]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED syndrome.

ERR<n>MISC0, Error Record Miscellaneous Register 0, n = 0 - 65534

Page 3503

OFO, bit [47]

Sticky overflow bit, other. Set to 1 when the Corrected error count, other, field is incremented and wraps through zero.

OFO Meaning
0b0 Other counter has not overflowed.
0b1 Other counter has overflowed.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and a direct write
to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CECO, bits [46:40]

Corrected error count, other. Incremented for each countable error that is not accounted for by incrementing CECR.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

OFR, bit [39]

Sticky overflow bit, repeat. Set to 1 when the Corrected error count, repeat, field is incremented and wraps through
zero.

OFR Meaning
0b0 Repeat counter has not overflowed.
0b1 Repeat counter has overflowed.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and a direct write
to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CECR, bits [38:32]

Corrected error count, repeat. Incremented for the first countable error, which also records other syndrome for the
error, and subsequently for each countable error that matches the recorded other syndrome. Corrected errors are
countable errors. It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether Deferred and Uncorrected errors
are countable errors.

Note

For example, the other syndrome might include the set and way information
for an error detected in a cache. This might be recorded in the
IMPLEMENTATION DEFINED ERR<n>MISC<m> fields on a first Corrected error.
CECR is then incremented for each subsequent Corrected Error in the same
set and way.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

ERR<n>MISC0, Error Record Miscellaneous Register 0, n = 0 - 65534

Page 3504

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED syndrome.

Accessing the ERR<n>MISC0
Reads from ERR<n>MISC0 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED
behavior.

Arm recommends that miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.

When ERR<n>STATUS.MV == 0b1, the miscellaneous syndrome specific to the most recently recorded error should
ignore writes.

Note

These recommendations allow a counter to be reset in the presence of a
persistent error, while preventing specific information, such as that identifying
a FRU, from being lost if an error is detected while the previous error is being
logged.

ERR<n>MISC0 can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0x020 + 64n ERR<n>MISC0

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERR<n>MISC0, Error Record Miscellaneous Register 0, n = 0 - 65534

Page 3505

ERR<n>MISC1, Error Record Miscellaneous Register 1,
n = 0 - 65534

The ERR<n>MISC1 characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might contain:

• Information to identify the FRU in which the error was detected, and might contain enough information to
locate the error within that FRU.

• A Corrected error counter or counters.
• Other state information not present in the corresponding status and address registers.

Configuration
This register is present only when error record <n> is implemented. Otherwise, direct accesses to ERR<n>MISC1 are
RES0.

ERR<q>FR describes the features implemented by the node that owns error record <n>. <q> is the index of the first
error record owned by the same node as error record <n>. If the node owns a single record, then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC1, writing zero must always be supported to return the error
record to an initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or Error Recovery
Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome fields that can
generate a Fault Handling, Error Recovery, Critical, or IMPLEMENTATION
DEFINED, interrupt request are disabled at Cold reset and are enabled by
software writing an IMPLEMENTATION DEFINED non-zero value to an
IMPLEMENTATION DEFINED field in ERR<q>CTRL.

Attributes
ERR<n>MISC1 is a 64-bit register.

Field descriptions
The ERR<n>MISC1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED syndrome.

ERR<n>MISC1, Error Record Miscellaneous Register 1, n = 0 - 65534

Page 3506

Accessing the ERR<n>MISC1
Reads from ERR<n>MISC1 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED
behavior.

Arm recommends that miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.

When ERR<n>STATUS.MV == 0b1, the miscellaneous syndrome specific to the most recently recorded error should
ignore writes.

Note

These recommendations allow a counter to be reset in the presence of a
persistent error, while preventing specific information, such as that identifying
a FRU, from being lost if an error is detected while the previous error is being
logged.

ERR<n>MISC1 can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0x028 + 64n ERR<n>MISC1

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERR<n>MISC1, Error Record Miscellaneous Register 1, n = 0 - 65534

Page 3507

ERR<n>MISC2, Error Record Miscellaneous Register 2,
n = 0 - 65534

The ERR<n>MISC2 characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might contain:

• Information to identify the FRU in which the error was detected, and might contain enough information to
locate the error within that FRU.

• A Corrected error counter or counters.
• Other state information not present in the corresponding status and address registers.

Configuration
This register is present only when error record <n> is implemented. Otherwise, direct accesses to ERR<n>MISC2 are
RES0.

ERR<q>FR describes the features implemented by the node that owns error record <n>. <q> is the index of the first
error record owned by the same node as error record <n>. If the node owns a single record, then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC2, writing zero must always be supported to return the error
record to an initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or Error Recovery
Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

If RAS System Architecture v1.1 is not implemented, Arm recommendeds that ERR<n>MISC2 does not require
zeroing to return the record to a quiescent state.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome fields that can
generate a Fault Handling, Error Recovery, Critical, or IMPLEMENTATION
DEFINED, interrupt request are disabled at Cold reset and are enabled by
software writing an IMPLEMENTATION DEFINED non-zero value to an
IMPLEMENTATION DEFINED field in ERR<q>CTRL.

It is IMPLEMENTATION DEFINED whether ERR<n>MISC2 is present if RAS System Architecture v1.1 is not implemented.
ERR<n>MISC2 is RES0 if not present.

Attributes
ERR<n>MISC2 is a 64-bit register.

Field descriptions
The ERR<n>MISC2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ERR<n>MISC2, Error Record Miscellaneous Register 2, n = 0 - 65534

Page 3508

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED syndrome.

Accessing the ERR<n>MISC2
Reads from ERR<n>MISC2 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED
behavior.

Arm recommends that miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.

When ERR<n>STATUS.MV == 0b1, the miscellaneous syndrome specific to the most recently recorded error should
ignore writes.

Note

These recommendations allow a counter to be reset in the presence of a
persistent error, while preventing specific information, such as that identifying
a FRU, from being lost if an error is detected while the previous error is being
logged.

ERR<n>MISC2 can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0x030 + 64n ERR<n>MISC2

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERR<n>MISC2, Error Record Miscellaneous Register 2, n = 0 - 65534

Page 3509

ERR<n>MISC3, Error Record Miscellaneous Register 3,
n = 0 - 65534

The ERR<n>MISC3 characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might contain:

• Information to identify the FRU in which the error was detected, and might contain enough information to
locate the error within that FRU.

• A Corrected error counter or counters.
• Other state information not present in the corresponding status and address registers.

If the node that owns error record n supports the RAS Timestamp Extension (ERR<q>FR.TS != 0b00), then
ERR<n>MISC3 contains the timestamp value for error record n when the error was detected. Otherwise the contents
of ERR<n>MISC3 are IMPLEMENTATION DEFINED.

Configuration
This register is present only when error record <n> is implemented. Otherwise, direct accesses to ERR<n>MISC3 are
RES0.

ERR<q>FR describes the features implemented by the node that owns error record <n>. <q> is the index of the first
error record owned by the same node as error record <n>. If the node owns a single record, then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC3, writing zero must always be supported to return the error
record to an initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or Error Recovery
Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

If RAS System Architecture v1.1 is not implemented, Arm recommendeds that ERR<n>MISC3 does not require
zeroing to return the record to a quiescent state.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome fields that can
generate a Fault Handling, Error Recovery, Critical, or IMPLEMENTATION
DEFINED, interrupt request are disabled at Cold reset and are enabled by
software writing an IMPLEMENTATION DEFINED non-zero value to an
IMPLEMENTATION DEFINED field in ERR<q>CTRL.

It is IMPLEMENTATION DEFINED whether ERR<n>MISC3 is present if RAS System Architecture v1.1 is not implemented.
ERR<n>MISC3 is RES0 if not present.

Attributes
ERR<n>MISC3 is a 64-bit register.

Field descriptions
The ERR<n>MISC3 bit assignments are:

ERR<n>MISC3, Error Record Miscellaneous Register 3, n = 0 - 65534

Page 3510

When ERR<q>FR.TS != 0b00:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
TS
TS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TS, bits [63:0]

Timestamp. Timestamp value recorded when the error was detected. Valid only if ERR<n>STATUS.V == 0b1.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO or RW.

When ERR<q>FR.TS == 0b00:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED syndrome.

Accessing the ERR<n>MISC3
Reads from ERR<n>MISC3 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED
behavior.

Arm recommends that miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.

When ERR<n>STATUS.MV == 0b1, the miscellaneous syndrome specific to the most recently recorded error should
ignore writes.

Note

These recommendations allow a counter to be reset in the presence of a
persistent error, while preventing specific information, such as that identifying
a FRU, from being lost if an error is detected while the previous error is being
logged.

ERR<n>MISC3 can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0x038 + 64n ERR<n>MISC3

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERR<n>MISC3, Error Record Miscellaneous Register 3, n = 0 - 65534

Page 3511

ERR<n>PFGCDN, Pseudo-fault Generation Countdown
Register, n = 0 - 65534

The ERR<n>PFGCDN characteristics are:

Purpose
Generates one of the errors enabled in the corresponding ERR<n>PFGCTL register.

Configuration
This register is present only when error record <n> is implemented, the node implements the RAS Common Fault
Injection Model Extension (ERR<n>FR.INJ != 0b00) and error record <n> is the first error record owned by a node.
Otherwise, direct accesses to ERR<n>PFGCDN are RES0.

ERR<n>FR describes the features implemented by the node.

Attributes
ERR<n>PFGCDN is a 64-bit register.

Field descriptions
The ERR<n>PFGCDN bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0
CDN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

CDN, bits [31:0]

Countdown value.

This field is copied to Error Generation Counter when either:

• Software writes ERR<n>PFGCTL.CDNEN with 1.
• The Error Generation Counter decrements to zero and ERR<n>PFGCTL.R == 0b1.

While ERR<n>PFGCTL.CDNEN == 0b1 and the Error Generation Counter is nonzero, the counter decrements by 1
for each cycle at an IMPLEMENTATION DEFINED clock rate. When the counter reaches 0, one of the errors enabled in the
ERR<n>PFGCTL register is generated.

Note

The current Error Generation Counter value is not visible to software.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

ERR<n>PFGCDN, Pseudo-fault Generation Countdown Register, n = 0 - 65534

Page 3512

Accessing the ERR<n>PFGCDN

ERR<n>PFGCDN can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0x810 + 64n ERR<n>PFGCDN

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERR<n>PFGCDN, Pseudo-fault Generation Countdown Register, n = 0 - 65534

Page 3513

ERR<n>PFGCTL, Pseudo-fault Generation Control
Register, n = 0 - 65534

The ERR<n>PFGCTL characteristics are:

Purpose
Enables controlled fault generation.

Configuration
This register is present only when error record <n> is implemented, the node implements the RAS Common Fault
Injection Model Extension (ERR<n>FR.INJ != 0b00) and error record <n> is the first error record owned by a node.
Otherwise, direct accesses to ERR<n>PFGCTL are RES0.

ERR<n>FR describes the features implemented by the node.

Attributes
ERR<n>PFGCTL is a 64-bit register.

Field descriptions
The ERR<n>PFGCTL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

CDNEN R RES0 MVAV PN ER CI CE DEUEOUERUEUUCOF
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

CDNEN, bit [31]

Countdown Enable. Controls transfers from the value that is held in the ERR<n>PFGCDN into the Error Generation
Counter and enables this counter.

CDNEN Meaning
0b0 The Error Generation Counter is disabled.
0b1 The Error Generation Counter is enabled. On a write of 0b1 to

this bit, the Error Generation Counter is set to
ERR<n>PFGCDN.CDN.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to 0.

R, bit [30]

Restart. Controls whether, upon reaching zero, the Error Generation Counter restarts from the ERR<n>PFGCDN
value or stops.

ERR<n>PFGCTL, Pseudo-fault Generation Control Register, n = 0 - 65534

Page 3514

R Meaning
0b0 On reaching 0, the Error Generation Counter will stop.
0b1 On reaching 0, the Error Generation Counter is set to

ERR<n>PFGCDN.CDN.

This bit is RES0 if the node does not support this control.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [29:13]

Reserved, RES0.

MV, bit [12]

Miscellaneous syndrome. The value that is written to ERR<n>STATUS.MV when an injected error is recorded.

MV Meaning
0b0 ERR<n>STATUS.MV is set to 0b0 when an injected error is

recorded.
0b1 ERR<n>STATUS.MV is set to 0b1 when an injected error is

recorded.

This bit reads-as-one if the node always records some syndrome in ERR<n>MISC<m>, setting ERR<n>STATUS.MV
to 1, when an injected error is recorded. This bit is RES0 if the node does not support this control.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

AV, bit [11]

Address syndrome. The value that is written to ERR<n>STATUS.AV when an injected error is recorded.

AV Meaning
0b0 ERR<n>STATUS.AV is set to 0b0 when an injected error is

recorded.
0b1 ERR<n>STATUS.AV is set to 0b1 when an injected error is

recorded.

This bit reads-as-one if the node always sets ERR<n>STATUS.AV to 0b1 when an injected error is recorded. This bit is
RES0 if the node does not support this control.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

PN, bit [10]

Poison flag. The value that is written to ERR<n>STATUS.PN when an injected error is recorded.

PN Meaning
0b0 ERR<n>STATUS.PN is set to 0b0 when an injected error is

recorded.
0b1 ERR<n>STATUS.PN is set to 0b1 when an injected error is

recorded.

This bit is RES0 if the node does not support this control.

ERR<n>PFGCTL, Pseudo-fault Generation Control Register, n = 0 - 65534

Page 3515

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

ER, bit [9]

Error Reported flag. The value that is written to ERR<n>STATUS.ER when an injected error is recorded.

ER Meaning
0b0 ERR<n>STATUS.ER is set to 0b0 when an injected error is

recorded.
0b1 ERR<n>STATUS.ER is set to 0b1 when an injected error is

recorded.

This bit is RES0 if the node does not support this control.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CI, bit [8]

Critical Error flag. The value that is written to ERR<n>STATUS.CI when an injected error is recorded.

CI Meaning
0b0 ERR<n>STATUS.CI is set to 0b0 when an injected error is

recorded.
0b1 ERR<n>STATUS.CI is set to 0b1 when an injected error is

recorded.

This bit is RES0 if the node does not support this control.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CE, bits [7:6]

Corrected Error generation enable. Controls the type of Corrected Error condition that might be generated.

CE Meaning
0b00 No error of this type will be generated.
0b01 A non-specific Corrected Error, that is, a Corrected Error that is

recorded as ERR<n>STATUS.CE == 0b10, might be generated
when the Error Generation Counter decrements to zero.

0b10 A transient Corrected Error, that is, a Corrected Error that is
recorded as ERR<n>STATUS.CE == 0b01, might be generated
when the Error Generation Counter decrements to zero.

0b11 A persistent Corrected Error, that is, a Corrected Error that is
recorded as ERR<n>STATUS.CE == 0b11, might be generated
when the Error Generation Counter decrements to zero.

The set of permitted values for this field is defined by ERR<n>PFGF.CE.

This field is RES0 if the node does not support this control.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

ERR<n>PFGCTL, Pseudo-fault Generation Control Register, n = 0 - 65534

Page 3516

DE, bit [5]

Deferred Error generation enable. Controls whether this type of error condition might be generated. It is
IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed.

DE Meaning
0b0 No error of this type will be generated.
0b1 An error of this type might be generated when the Error

Generation Counter decrements to zero.

This bit is RES0 if the node does not support this control.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

UEO, bit [4]

Latent or Restartable Error generation enable. Controls whether this type of error condition might be generated. It is
IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed.

UEO Meaning
0b0 No error of this type will be generated.
0b1 An error of this type might be generated when the Error

Generation Counter decrements to zero.

This bit is RES0 if the node does not support this control.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

UER, bit [3]

Signaled or Recoverable Error generation enable. Controls whether this type of error condition might be generated. It
is IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed.

UER Meaning
0b0 No error of this type will be generated.
0b1 An error of this type might be generated when the Error

Generation Counter decrements to zero.

This bit is RES0 if the node does not support this control.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

UEU, bit [2]

Unrecoverable Error generation enable. Controls whether this type of error condition might be generated. It is
IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed.

UEU Meaning
0b0 No error of this type will be generated.
0b1 An error of this type might be generated when the Error

Generation Counter decrements to zero.

This bit is RES0 if the node does not support this control.

The following resets apply:

ERR<n>PFGCTL, Pseudo-fault Generation Control Register, n = 0 - 65534

Page 3517

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

UC, bit [1]

Uncontainable Error generation enable. Controls whether this type of error condition might be generated. It is
IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed.

UC Meaning
0b0 No error of this type will be generated.
0b1 An error of this type might be generated when the Error

Generation Counter decrements to zero.

This bit is RES0 if the node does not support this control.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

OF, bit [0]

Overflow flag. The value that is written to ERR<n>STATUS.OF when an injected error is recorded.

OF Meaning
0b0 ERR<n>STATUS.OF is set to 0b0 when an injected error is

recorded.
0b1 ERR<n>STATUS.OF is set to 0b1 when an injected error is

recorded.

This bit is RES0 if the node does not support this control.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the ERR<n>PFGCTL

ERR<n>PFGCTL can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0x808 + 64n ERR<n>PFGCTL

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERR<n>PFGCTL, Pseudo-fault Generation Control Register, n = 0 - 65534

Page 3518

ERR<n>PFGF, Pseudo-fault Generation Feature
Register, n = 0 - 65534

The ERR<n>PFGF characteristics are:

Purpose
Defines which common architecturally-defined fault generation features are implemented.

Configuration
This register is present only when error record <n> is implemented, the node implements the RAS Common Fault
Injection Model Extension (ERR<n>FR.INJ != 0b00) and error record <n> is the first error record owned by a node.
Otherwise, direct accesses to ERR<n>PFGF are RES0.

ERR<n>FR describes the features implemented by the node.

Attributes
ERR<n>PFGF is a 64-bit register.

Field descriptions
The ERR<n>PFGF bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 R SYN RES0 MVAV PN ER CI CE DEUEOUERUEUUCOF
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:31]

Reserved, RES0.

R, bit [30]

Restartable. Support for Error Generation Counter restart mode.

R Meaning
0b0 The node does not support this feature.
0b1 Feature controllable.

SYN, bit [29]

Syndrome. Fault syndrome injection.

SYN Meaning
0b0 When an injected error is recorded, the node sets

ERR<n>STATUS.{IERR, SERR} to IMPLEMENTATION DEFINED
values. ERR<n>STATUS.{IERR, SERR} are UNKNOWN when
ERR<n>STATUS.V == 0b0.

0b1 When an injected error is recorded, the node does not update the
ERR<n>STATUS.{IERR, SERR} fields. ERR<n>STATUS.{IERR,
SERR} are writable when ERR<n>STATUS.V == 0b0.

Note

ERR<n>PFGF, Pseudo-fault Generation Feature Register, n = 0 - 65534

Page 3519

If ERR<n>PFGF.SYN == 0b1, software can write specific values into the
ERR<n>STATUS.{IERR, SERR} fields when setting up a fault injection event.
The sets of values that can be written to these fields is IMPLEMENTATION
DEFINED.

Bits [28:13]

Reserved, RES0.

MV, bit [12]

Miscellaneous syndrome.

Additional syndrome injection. Defines whether software can control all or part of the syndrome recorded in the
ERR<n>MISC<m> registers when an injected error is recorded.

It is IMPLEMENTATION DEFINED which syndrome fields in ERR<n>MISC<m> this refers to, as some fields might always
be recorded by an error. For example, a Corrected Error counter.

MV Meaning
0b0 When an injected error is recorded, the node might record

IMPLEMENTATION DEFINED additional syndrome in
ERR<n>MISC<m>. If any syndrome is recorded in
ERR<n>MISC<m>, then ERR<n>STATUS.MV is set to 0b1.

0b1 When an injected error is recorded, the node does not update all
the syndrome fields in the ERR<n>MISC<m> and does one of:

• The node does not update any fields in ERR<n>MISC<m>
and sets ERR<n>STATUS.MV to ERR<n>PFGCTL.MV.

• The node records some syndrome in ERR<n>MISC<m> and
sets ERR<n>STATUS.MV to 0b1. ERR<n>PGFCTL.MV is
RAO.

The syndrome fields that the node does not update are unchanged
and must be writable when ERR<n>STATUS.MV == 0b0.

Note

If ERR<n>PFGF.MV == 0b1, software can write specific values into the
ERR<n>MISC<m> registers when setting up a fault injection event. The
values that can be written to these registers are IMPLEMENTATION DEFINED.

AV, bit [11]

Address syndrome. Address syndrome injection.

AV Meaning
0b0 When an injected error is recorded, the node either sets

ERR<n>ADDR and ERR<n>STATUS.AV for the access, or leaves
these unchanged.

0b1 When an injected error is recorded, the node does not update
ERR<n>ADDR and does one of:

• Sets ERR<n>STATUS.AV to ERR<n>PFGCTL.AV.
• Sets ERR<n>STATUS.AV to 0b1. ERR<n>PFGCTL.AV is RAO.

ERR<n>ADDR must be writable when ERR<n>STATUS.AV ==
0b0.

Note

If ERR<n>PFGF.AV == 0b1, software can write a specific value into
ERR<n>ADDR when setting up a fault injection event.

ERR<n>PFGF, Pseudo-fault Generation Feature Register, n = 0 - 65534

Page 3520

PN, bit [10]

Poison flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.PN status flag.

PN Meaning
0b0 When an injected error is recorded, it is IMPLEMENTATION DEFINED

whether the node sets ERR<n>STATUS.PN to 0b1.
0b1 When an injected error is recorded, ERR<n>STATUS.PN is set to

ERR<n>PFGCTL.PN.

This behavior replaces the architecture-defined rules for setting the PN bit.

This bit reads-as-zero if the node does not support this flag.

ER, bit [9]

Error Reported flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.ER status flag.

ER Meaning
0b0 When an injected error is recorded, the node sets

ERR<n>STATUS.ER according to the architecture-defined rules
for setting the ER bit.

0b1 When an injected error is recorded, ERR<n>STATUS.ER is set to
ERR<n>PFGCTL.ER. This behavior replaces the architecture-
defined rules for setting the ER bit.

This bit reads-as-zero if the node does not support this flag.

CI, bit [8]

Critical Error flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.CI status flag.

CI Meaning
0b0 When an injected error is recorded, it is IMPLEMENTATION DEFINED

whether the node sets ERR<n>STATUS.CI to 0b1.
0b1 When an injected error is recorded, ERR<n>STATUS.CI is set to

ERR<n>PFGCTL.CI.

This behavior replaces the architecture-defined rules for setting the CI bit.

This bit reads-as-zero if the node does not support this flag.

CE, bits [7:6]

Corrected Error generation. Describes the types of Corrected Error that the fault generation feature of the node can
generate.

CE Meaning
0b00 The fault generation feature of the node cannot generate this type

of error.
0b01 The fault generation feature of the node allows generation of a

non-specific Corrected Error, that is, a Corrected Error that is
recorded as ERR<n>STATUS.CE == 0b10.

0b11 The fault generation feature of the node allows generation of
transient or persistent Corrected Errors, that is, Corrected Errors
that are recorded as ERR<n>STATUS.CE == 0b01 and 0b11.

All other values are reserved.

This field reads-as-zeros if the node does not support this type of error.

DE, bit [5]

Deferred Error generation. Describes whether the fault generation feature of the node can generate this type of error.

ERR<n>PFGF, Pseudo-fault Generation Feature Register, n = 0 - 65534

Page 3521

DE Meaning
0b0 The fault generation feature of the node cannot generate this type

of error.
0b1 The fault generation feature of the node allows generation of this

type of error.

This bit reads-as-zero if the node does not support this type of error.

UEO, bit [4]

Latent or Restartable Error generation. Describes whether the fault generation feature of the node can generate this
type of error.

UEO Meaning
0b0 The fault generation feature of the node cannot generate this

type of error.
0b1 The fault generation feature of the node allows generation of this

type of error.

This bit reads-as-zero if the node does not support this type of error.

UER, bit [3]

Signaled or Recoverable Error generation. Describes whether the fault generation feature of the node can generate
this type of error.

UER Meaning
0b0 The fault generation feature of the node cannot generate this

type of error.
0b1 The fault generation feature of the node allows generation of this

type of error.

This bit reads-as-zero if the node does not support this type of error.

UEU, bit [2]

Unrecoverable Error generation. Describes whether the fault generation feature of the node can generate this type of
error.

UEU Meaning
0b0 The fault generation feature of the node cannot generate this

type of error.
0b1 The fault generation feature of the node allows generation of this

type of error.

This bit reads-as-zero if the node does not support this type of error.

UC, bit [1]

Uncontainable Error generation. Describes whether the fault generation feature of the node can generate this type of
error.

UC Meaning
0b0 The fault generation feature of the node cannot generate this type

of error.
0b1 The fault generation feature of the node allows generation of this

type of error.

This bit reads-as-zero if the node does not support this type of error.

OF, bit [0]

Overflow flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.OF status flag.

ERR<n>PFGF, Pseudo-fault Generation Feature Register, n = 0 - 65534

Page 3522

OF Meaning
0b0 When an injected error is recorded, the node sets

ERR<n>STATUS.OF according to the architecture-defined rules
for setting the OF bit.

0b1 When an injected error is recorded, ERR<n>STATUS.OF is set to
ERR<n>PFGCTL.OF. This behavior replaces the architecture-
defined rules for setting the OF bit.

This bit reads-as-zero if the node does not support this flag.

Accessing the ERR<n>PFGF

ERR<n>PFGF can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0x800 + 64n ERR<n>PFGF

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERR<n>PFGF, Pseudo-fault Generation Feature Register, n = 0 - 65534

Page 3523

ERR<n>STATUS, Error Record Primary Status Register,
n = 0 - 65534

The ERR<n>STATUS characteristics are:

Purpose
Contains status information for the error record, including:

• Whether any error has been detected (valid).
• Whether any detected error was not corrected, and returned to a master.
• Whether any detected error was not corrected and deferred.
• Whether an error record has been discarded because additional errors have been detected before the first

error was handled by software (overflow).
• Whether any error has been reported.
• Whether the other error record registers contain valid information.
• Whether the error was reported because poison data was detected or because a corrupt value was detected by

an error detection code.
• A primary error code.
• An IMPLEMENTATION DEFINED extended error code.

Within this register:

• The {AV, V, MV} bits are valid bits that define whether the error record registers are valid.
• The {UE, OF, CE, DE, UET} bits encode the types of error or errors recorded.
• The {CI, ER, PN, IERR, SERR} fields are syndrome fields.

Configuration
This register is present only when error record <n> is implemented. Otherwise, direct accesses to ERR<n>STATUS
are RES0.

ERR<q>FR describes the features implemented by the node that owns error record <n>. <q> is the index of the first
error record owned by the same node as error record <n>. If the node owns a single record, then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>STATUS, writing zero must always be supported to return the error
record to an initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or Error Recovery
Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome fields that can
generate a Fault Handling, Error Recovery, Critical, or IMPLEMENTATION
DEFINED, interrupt request are disabled at Cold reset and are enabled by
software writing an IMPLEMENTATION DEFINED non-zero value to an
IMPLEMENTATION DEFINED field in ERR<q>CTRL.

Attributes
ERR<n>STATUS is a 64-bit register.

Field descriptions
The ERR<n>STATUS bit assignments are:

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 3524

When RAS System Architecture v1.1 is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

AV V UE ER OF MV CE DE PN UET CI RES0 IERR SERR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

AV, bit [31]

When the error record includes an address associated with an error:

Address Valid.

AV Meaning
0b0 ERR<n>ADDR not valid.
0b1 ERR<n>ADDR contains an address associated with the highest

priority error recorded by this record.

This bit is read/write-one-to-clear.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

V, bit [30]

Status Register Valid.

V Meaning
0b0 ERR<n>STATUS not valid.
0b1 ERR<n>STATUS valid. At least one error has been recorded.

This bit is read/write-one-to-clear.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to 0.

UE, bit [29]

Uncorrected Error.

UE Meaning
0b0 No errors have been detected, or all detected errors have been

either corrected or deferred.
0b1 At least one detected error was not corrected and not deferred.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then software must write 0b1 to this bit to clear this bit
to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 3525

This bit is read/write-one-to-clear.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

ER, bit [28]

Error Reported.

ER Meaning
0b0 No in-band error (External Abort) reported.
0b1 An External Abort was signaled by the node to the master making

the access or other transaction. This can be because any of the
following are true:

• The applicable one of the ERR<q>CTLR.{WUE,RUE,UE} bits
is implemented and was set to 0b1 when an Uncorrected
error was detected.

• The applicable one of the ERR<q>CTLR.{WUE,RUE,UE} bits
is not implemented and the node always reports errors.

It is IMPLEMENTATION DEFINED whether this bit can be set to 0b1 by a Deferred error.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then software must write 0b1 to this bit to clear this bit
to zero.

This bit is not valid and reads UNKNOWN if any of the following are true:

• ERR<n>STATUS.V == 0b0.
• ERR<n>STATUS.UE == 0b0 and this bit is never set to 0b1 by a Deferred error.
• ERR<n>STATUS.{UE,DE} == {0,0} and this bit can be set to 0b1 by a Deferred error.

This bit is read/write-one-to-clear.

Note

An External Abort signaled by the node might be masked and not generate
any exception.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

OF, bit [27]

Overflow.

Indicates that multiple errors have been detected. This bit is set to 0b1 when one of the following occurs:

• A Corrected error counter is implemented, an error is counted, and the counter overflows.
• ERR<n>STATUS.V was previously set to 0b1, a Corrected error counter is not implemented, and a Corrected

error is recorded.
• ERR<n>STATUS.V was previously set to 0b1, and a type of error other than a Corrected error is recorded.

Otherwise, this bit is unchanged when an error is recorded.

If a Corrected error counter is implemented:

• A direct write that modifies the counter overflow flag indirectly might set this bit to an UNKNOWN value.
• A direct write to this bit that clears this bit to zero might indirectly set the counter overflow flag to an

UNKNOWN value.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 3526

OF Meaning
0b0 Since this bit was last cleared to zero, no error syndrome has been

discarded and, if a Corrected error counter is implemented, it has
not overflowed.

0b1 Since this bit was last cleared to zero, at least one error syndrome
has been discarded or, if a Corrected error counter is
implemented, it might have overflowed.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then software must write 0b1 to this bit to clear this bit
to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.

This bit is read/write-one-to-clear.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

MV, bit [26]

When the error record includes an additional information for an error:

Miscellaneous Registers Valid.

MV Meaning
0b0 ERR<n>MISC<m> not valid.
0b1 The IMPLEMENTATION DEFINED contents of the ERR<n>MISC<m>

registers contains additional information for an error recorded by
this record.

This bit is read/write-one-to-clear.

Note

If the ERR<n>MISC<m> registers can contain additional information for a
previously recorded error, then the contents must be self-describing to
software or a user. For example, certain fields might relate only to Corrected
errors, and other fields only to the most recent error that was not discarded.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

CE, bits [25:24]

Corrected Error.

CE Meaning
0b00 No errors were corrected.
0b01 At least one transient error was corrected.
0b10 At least one error was corrected.
0b11 At least one persistent error was corrected.

The mechanism by which a node detects whether a correctable error is transient or persistent is IMPLEMENTATION
DEFINED. If no such mechanism is implemented, then the node sets this field to 0b10 when an error is corrected.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 3527

When clearing ERR<n>STATUS.V to 0b0, if this field is nonzero, then software must write ones to this field to clear
this field to zero.

This field is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an UNKNOWN
value.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

DE, bit [23]

Deferred Error.

DE Meaning
0b0 No errors were deferred.
0b1 At least one error was not corrected and deferred.

Support for deferring errors is IMPLEMENTATION DEFINED.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then software must write 0b1 to this bit to clear this bit
to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.

This bit is read/write-one-to-clear.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

PN, bit [22]

Poison.

PN Meaning
0b0 Uncorrected error or Deferred error recorded because a corrupt

value was detected, for example, by an error detection code (EDC).

Note
If a producer node detects a corrupt value
and defers the error by producing a
poison value, then this bit is set to 0b0 at
the producer node.

0b1 Uncorrected error or Deferred error recorded because a poison
value was detected.

Note
This might only be an indication of poison,
because, in some EDC schemes, a poison
value is encoded as an unlikely form of
corrupt data, meaning it is possible to
mistake a corrupt value as a poison value.

It is IMPLEMENTATION DEFINED whether a node can distinguish a poison value from a corrupt value.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then software must write 0b1 to this bit to clear this bit
to zero.

This bit is not valid and reads UNKNOWN if any of the following are true:

• ERR<n>STATUS.V == 0b0.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 3528

• ERR<n>STATUS.{DE,UE} == {0,0}.

This bit is read/write-one-to-clear.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

UET, bits [21:20]

Uncorrected Error Type. Describes the state of the component after detecting or consuming an Uncorrected error.

UET Meaning
0b00 Uncorrected error, Uncontainable error (UC).
0b01 Uncorrected error, Unrecoverable error (UEU).
0b10 Uncorrected error, Latent or Restartable error (UEO).
0b11 Uncorrected error, Signaled or Recoverable error (UER).

When clearing ERR<n>STATUS.V to 0b0, if this field is nonzero, then software must write ones to this field to clear
this field to zero.

This field is not valid and reads UNKNOWN if any of the following are true:

• ERR<n>STATUS.V == 0b0.
• ERR<n>STATUS.UE == 0b0.

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an UNKNOWN
value.

Note

Software might use the information in the error record registers to determine
what recovery is necessary.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CI, bit [19]

Critical Error. Indicates whether a critical error condition has been recorded.

CI Meaning
0b0 No critical error condition.
0b1 Critical error condition.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then software must write 0b1 to this bit to clear this bit
to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.

This bit is read/write-one-to-clear.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [18:16]

Reserved, RES0.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 3529

IERR, bits [15:8]

IMPLEMENTATION DEFINED error code. Used with any primary error code SERR value. Further IMPLEMENTATION DEFINED
information can be placed in the MISC registers.

This field is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

SERR, bits [7:0]

Architecturally-defined primary error code. The primary error code might be used by a fault handling agent to triage
an error without requiring device-specific code. For example, to count and threshold corrected errors in software, or
generate a short log entry.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 3530

SERR Meaning
0x00 No error.
0x01 IMPLEMENTATION DEFINED error.
0x02 Data value from (non-associative) internal memory. For example,

ECC from on-chip SRAM or buffer.
0x03 IMPLEMENTATION DEFINED pin. For example, nSEI pin.
0x04 Assertion failure. For example, consistency failure.
0x05 Error detected on internal data path. For example, parity on

ALU result.
0x06 Data value from associative memory. For example, ECC error on

cache data.
0x07 Address/control value from associative memory. For example,

ECC error on cache tag.
0x08 Data value from a TLB. For example, ECC error on TLB data.
0x09 Address/control value from a TLB. For example, ECC error on

TLB tag.
0x0A Data value from producer. For example, parity error on write

data bus.
0x0B Address/control value from producer. For example, parity error

on address bus.
0x0C Data value from (non-associative) external memory. For

example, ECC error in SDRAM.
0x0D Illegal address (software fault). For example, access to

unpopulated memory.
0x0E Illegal access (software fault). For example, byte write to word

register.
0x0F Illegal state (software fault). For example, device not ready.
0x10 Internal data register. For example, parity on a SIMD&FP

register. For a PE, all general-purpose, stack pointer, SIMD&FP,
and SVE registers are data registers.

0x11 Internal control register. For example, Parity on a System
register. For a PE, all registers other than general-purpose,
stack pointer, SIMD&FP, and SVE registers are control
registers.

0x12 Error response from slave. For example, error response from
cache write-back.

0x13 External timeout. For example, timeout on interaction with
another node.

0x14 Internal timeout. For example, timeout on interface within the
node.

0x15 Deferred error from slave not supported at master. For example,
poisoned data received from a slave by a master that cannot
defer the error further.

0x16 Deferred error from master not supported at slave. For example,
poisoned data received from a master by a slave that cannot
defer the error further.

0x17 Deferred error from slave passed through. For example,
poisoned data received from a slave and returned to a master.

0x18 Deferred error from master passed through. For example,
poisoned data received from a master and deferred to a slave.

0x19 Error recorded by PCIe error logs. Indicates that the node has
recorded an error in a PCIe error log. This might be the PCIe
device status register, AER, DVSEC, or other mechanisms
defined by PCIe.

All other values are reserved.

This field is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 3531

When RAS System Architecture v1.0 is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

AV V UE ER OF MV CE DE PN UET RES0 IERR SERR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

AV, bit [31]

When the error record includes an address associated with an error:

Address Valid.

AV Meaning
0b0 ERR<n>ADDR not valid.
0b1 ERR<n>ADDR contains an address associated with the highest

priority error recorded by this record.

This bit ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0b00,0,0}, and the highest priority of these is not being
cleared to zero in the same write.

This bit is read/write-one-to-clear.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

V, bit [30]

Status Register Valid.

V Meaning
0b0 ERR<n>STATUS not valid.
0b1 ERR<n>STATUS valid. At least one error has been recorded.

This bit ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0b00,0,0}, and is not being cleared to 0b0 in the same
write.

This bit is read/write-one-to-clear.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to 0.

UE, bit [29]

Uncorrected Error.

UE Meaning
0b0 No errors have been detected, or all detected errors have been

either corrected or deferred.
0b1 At least one detected error was not corrected and not deferred.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 3532

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then software must write 0b1 to this bit to clear this bit
to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0. This bit ignores writes if ERR<n>STATUS.OF
== 0b1 and is not being cleared to 0b0 in the same write.

This bit is read/write-one-to-clear.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

ER, bit [28]

Error Reported.

ER Meaning
0b0 No in-band error (External Abort) reported.
0b1 An External Abort was signaled by the node to the master making

the access or other transaction. This can be because any of the
following are true:

• The applicable one of the ERR<q>CTLR.{WUE,RUE,UE} bits
is implemented and was set to 0b1 when an Uncorrected
error was detected.

• The applicable one of the ERR<q>CTLR.{WUE,RUE,UE} bits
is not implemented and the node always reports errors.

It is IMPLEMENTATION DEFINED whether this bit can be set to 0b1 by a Deferred error.

If this bit is nonzero, then software must write 0b1 to this bit to clear this bit to zero, when any of:

• Clearing ERR<n>STATUS.V to 0b0.
• Clearing ERR<n>STATUS.UE to 0b0, if this bit is never set to 0b1 by a Deferred error.
• Clearing ERR<n>STATUS.{UE,DE} to {0,0}, if this bit can be set to 0b1 by a Deferred error.

This bit is not valid and reads UNKNOWN if any of the following are true:

• ERR<n>STATUS.V == 0b0.
• ERR<n>STATUS.UE == 0b0 and this bit is never set to 0b1 by a Deferred error.
• ERR<n>STATUS.{UE,DE} == {0,0} and this bit can be set to 0b1 by a Deferred error.

This bit ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0b00,0,0}, and the highest priority of these is not being
cleared to zero in the same write.

This bit is read/write-one-to-clear.

Note

An External Abort signaled by the node might be masked and not generate
any exception.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

OF, bit [27]

Overflow.

Indicates that multiple errors have been detected. This bit is set to 0b1 when one of the following occurs:

• An Uncorrected error is detected and ERR<n>STATUS.UE == 0b1.
• A Deferred error is detected, ERR<n>STATUS.UE == 0b0 and ERR<n>STATUS.DE == 0b1.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 3533

• A Corrected error is detected, no Corrected error counter is implemented, ERR<n>STATUS.UE == 0b0,
ERR<n>STATUS.DE == 0b0, and ERR<n>STATUS.CE != 0b00. ERR<n>STATUS.CE might be updated for the
new Corrected error.

• A Corrected error counter is implemented, ERR<n>STATUS.UE == 0b0, ERR<n>STATUS.DE == 0b0, and the
counter overflows.

It is IMPLEMENTATION DEFINED whether this bit is set to 0b1 when one of the following occurs:

• A Deferred error is detected and ERR<n>STATUS.UE == 0b1.
• A Corrected error is detected, no Corrected error counter is implemented, and either or both the

ERR<n>STATUS.UE or ERR<n>STATUS.DE bits are set to 0b1.
• A Corrected error counter is implemented, either or both the ERR<n>STATUS.UE or ERR<n>STATUS.DE bits

are set to 0b1, and the counter overflows.

It is IMPLEMENTATION DEFINED whether this bit is cleared to 0b0 when one of the following occurs:

• An Uncorrected error is detected and ERR<n>STATUS.UE == 0b0.
• A Deferred error is detected, ERR<n>STATUS.UE == 0b0 and ERR<n>STATUS.DE == 0b0.
• A Corrected error is detected, ERR<n>STATUS.UE == 0b0, ERR<n>STATUS.DE == 0b0 and

ERR<n>STATUS.CE == 0b00.

The IMPLEMENTATION DEFINED clearing of this bit might also depend on the value of the other error status bits.

If a Corrected error counter is implemented:

• A direct write that modifies the counter overflow flag indirectly might set this bit to an UNKNOWN value.
• A direct write to this bit that clears this bit to 0b0 might indirectly set the counter overflow flag to an

UNKNOWN value.
OF Meaning
0b0 If ERR<n>STATUS.UE == 0b1, then no error syndrome for an

Uncorrected error has been discarded.
If ERR<n>STATUS.UE == 0b0 and ERR<n>STATUS.DE == 0b1,
then no error syndrome for a Deferred error has been discarded.
If ERR<n>STATUS.UE == 0b0, ERR<n>STATUS.DE == 0b0, and
a Corrected error counter is implemented, then the counter has
not overflowed.
If ERR<n>STATUS.UE == 0b0, ERR<n>STATUS.DE == 0b0,
ERR<n>STATUS.CE != 0b00, and no Corrected error counter is
implemented, then no error syndrome for a Corrected error has
been discarded.

Note
This bit might have been set to 0b1 when
an error syndrome was discarded and
later cleared to 0b0 when a higher priority
syndrome was recorded.

0b1 At least one error syndrome has been discarded or, if a Corrected
error counter is implemented, it might have overflowed.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then software must write 0b1 to this bit to clear this bit
to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.

This bit is read/write-one-to-clear.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

MV, bit [26]

When the error record includes an additional information for an error:

Miscellaneous Registers Valid.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 3534

MV Meaning
0b0 ERR<n>MISC<m> not valid.
0b1 The IMPLEMENTATION DEFINED contents of the ERR<n>MISC<m>

registers contains additional information for an error recorded by
this record.

This bit ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0b00,0,0}, and the highest priority of these is not being
cleared to zero in the same write.

This bit is read/write-one-to-clear.

Note

If the ERR<n>MISC<m> registers can contain additional information for a
previously recorded error, then the contents must be self-describing to
software or a user. For example, certain fields might relate only to Corrected
errors, and other fields only to the most recent error that was not discarded.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

CE, bits [25:24]

Corrected Error.

CE Meaning
0b00 No errors were corrected.
0b01 At least one transient error was corrected.
0b10 At least one error was corrected.
0b11 At least one persistent error was corrected.

The mechanism by which a node detects whether a correctable error is transient or persistent is IMPLEMENTATION
DEFINED. If no such mechanism is implemented, then the node sets this field to 0b10 when an error is corrected.

When clearing ERR<n>STATUS.V to 0b0, if this field is nonzero, then software must write ones to this field to clear
this field to zero.

This field is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0. This field ignores writes if
ERR<n>STATUS.OF == 0b1 and is not being cleared to 0b0 in the same write.

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an UNKNOWN
value.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

DE, bit [23]

Deferred Error.

DE Meaning
0b0 No errors were deferred.
0b1 At least one error was not corrected and deferred.

Support for deferring errors is IMPLEMENTATION DEFINED.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 3535

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then software must write 0b1 to this bit to clear this bit
to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0. This bit ignores writes if ERR<n>STATUS.OF
== 0b1 and is not being cleared to 0b0 in the same write.

This bit is read/write-one-to-clear.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

PN, bit [22]

Poison.

PN Meaning
0b0 Uncorrected error or Deferred error recorded because a corrupt

value was detected, for example, by an error detection code (EDC).

Note
If a producer node detects a corrupt value
and defers the error by producing a
poison value, then this bit is set to 0b0 at
the producer node.

0b1 Uncorrected error or Deferred error recorded because a poison
value was detected.

Note
This might only be an indication of poison,
because, in some EDC schemes, a poison
value is encoded as an unlikely form of
corrupt data, meaning it is possible to
mistake a corrupt value as a poison value.

It is IMPLEMENTATION DEFINED whether a node can distinguish a poison value from a corrupt value.

If this bit is nonzero, then software must write 0b1 to this bit to clear this bit to zero, when any of:

• Clearing ERR<n>STATUS.V to 0b0.
• Clearing both ERR<n>STATUS.{DE, UE} to 0b0.

This bit is not valid and reads UNKNOWN if any of the following are true:

• ERR<n>STATUS.V == 0b0.
• ERR<n>STATUS.{DE,UE} == {0,0}.

This bit ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0b00,0,0}, and the highest priority of these is not being
cleared to zero in the same write.

This bit is read/write-one-to-clear.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

UET, bits [21:20]

Uncorrected Error Type. Describes the state of the component after detecting or consuming an Uncorrected error.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 3536

UET Meaning
0b00 Uncorrected error, Uncontainable error (UC).
0b01 Uncorrected error, Unrecoverable error (UEU).
0b10 Uncorrected error, Latent or Restartable error (UEO).
0b11 Uncorrected error, Signaled or Recoverable error (UER).

If this field is nonzero, then software must write ones to this field to clear this field to zero, when any of:

• Clearing ERR<n>STATUS.V to 0b0.
• Clearing ERR<n>STATUS.UE to 0b0.

This field is not valid and reads UNKNOWN if any of the following are true:

• ERR<n>STATUS.V == 0b0.
• ERR<n>STATUS.UE == 0b0.

This field ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0b00,0,0}, and the highest priority of these is not being
cleared to zero in the same write.

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an UNKNOWN
value.

Note

Software might use the information in the error record registers to determine
what recovery is necessary.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [19:16]

Reserved, RES0.

IERR, bits [15:8]

IMPLEMENTATION DEFINED error code. Used with any primary error code SERR value. Further IMPLEMENTATION DEFINED
information can be placed in the MISC registers.

This field is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0. This field ignores writes if
ERR<n>STATUS.{CE,DE,UE} != {0b00,0,0}, and the highest priority of these is not being cleared to zero in the same
write.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

SERR, bits [7:0]

Architecturally-defined primary error code. The primary error code might be used by a fault handling agent to triage
an error without requiring device-specific code. For example, to count and threshold corrected errors in software, or
generate a short log entry.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 3537

SERR Meaning
0x00 No error.
0x01 IMPLEMENTATION DEFINED error.
0x02 Data value from (non-associative) internal memory. For example,

ECC from on-chip SRAM or buffer.
0x03 IMPLEMENTATION DEFINED pin. For example, nSEI pin.
0x04 Assertion failure. For example, consistency failure.
0x05 Error detected on internal data path. For example, parity on

ALU result.
0x06 Data value from associative memory. For example, ECC error on

cache data.
0x07 Address/control value from associative memory. For example,

ECC error on cache tag.
0x08 Data value from a TLB. For example, ECC error on TLB data.
0x09 Address/control value from a TLB. For example, ECC error on

TLB tag.
0x0A Data value from producer. For example, parity error on write

data bus.
0x0B Address/control value from producer. For example, parity error

on address bus.
0x0C Data value from (non-associative) external memory. For

example, ECC error in SDRAM.
0x0D Illegal address (software fault). For example, access to

unpopulated memory.
0x0E Illegal access (software fault). For example, byte write to word

register.
0x0F Illegal state (software fault). For example, device not ready.
0x10 Internal data register. For example, parity on a SIMD&FP

register. For a PE, all general-purpose, stack pointer, SIMD&FP,
and SVE registers are data registers.

0x11 Internal control register. For example, Parity on a System
register. For a PE, all registers other than general-purpose,
stack pointer, SIMD&FP, and SVE registers are control
registers.

0x12 Error response from slave. For example, error response from
cache write-back.

0x13 External timeout. For example, timeout on interaction with
another node.

0x14 Internal timeout. For example, timeout on interface within the
node.

0x15 Deferred error from slave not supported at master. For example,
poisoned data received from a slave by a master that cannot
defer the error further.

0x16 Deferred error from master not supported at slave. For example,
poisoned data received from a master by a slave that cannot
defer the error further.

0x17 Deferred error from slave passed through. For example,
poisoned data received from a slave and returned to a master.

0x18 Deferred error from master passed through. For example,
poisoned data received from a master and deferred to a slave.

0x19 Error recorded by PCIe error logs. Indicates that the node has
recorded an error in a PCIe error log. This might be the PCIe
device status register, AER, DVSEC, or other mechanisms
defined by PCIe.

All other values are reserved.

This field is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0. This field ignores writes if
ERR<n>STATUS.{CE,DE,UE} != {0b00,0,0}, and the highest priority of these is not being cleared to zero in the same
write.

The following resets apply:

• On an Error recovery reset, the value of this field is unchanged.

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 3538

Accessing the ERR<n>STATUS
The {AV, V, UE, ER, OF, MV, CE, DE, PN, UET, CI} fields are write-one-to-clear, meaning writes of zero are ignored, and
a write of one or all-ones to the field clears the field to zero. The {IERR, SERR} fields are read/write fields, although
the set of permitted values that can be written to the fields is IMPLEMENTATION DEFINED.

After reading ERR<n>STATUS, software must clear the valid bits in the register to allow new errors to be recorded.
However, between reading the register and clearing the valid bits, a new error might have overwritten the register. To
prevent this error being lost by software, the register prevents updates to fields that might have been updated by a
new error.

When RAS System Architecture v1.0 is implemented:

• Writes to the {UE, DE, CE} fields are ignored if the OF bit is set and is not being cleared.
• Writes to the V bit are ignored if any of the {UE, DE, CE} fields are nonzero and are not being cleared.
• Writes to the {AV, MV} bits and {ER, PN, UET, IERR, SERR} syndrome fields are ignored if the highest

priority error status field is nonzero and not being cleared. The error status fields in priority order from
highest to lowest, are UE, DE, and CE.

When RAS System Architecture v1.1 is implemented, a write to the register is ignored if all of:

• Any of {V, UE, OF, CE, DE} fields are nonzero before the write.
• The write does not clear the nonzero {V, UE, OF, CE, DE} fields to zero by writing ones to the applicable field

or fields.

To ensure correct and portable operation, when software is clearing the valid bits in the register to allow new errors to
be recorded, software must:

• Determine which fields must be cleared to zero by reading ERR<n>STATUS.
• Write ones to all the write-one-to-clear fields that are nonzero.
• Write zero to all the read/write fields.
• Write zero to all the write-one-to-clear fields that are zero.

ERR<n>STATUS can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0x010 + 64n ERR<n>STATUS

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 3539

ERRPIDR0, Peripheral Identification Register 0
The ERRPIDR0 characteristics are:

Purpose
Provides discovery information about the component.

For more information, see 'About the Peripheral identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

Attributes
ERRPIDR0 is a 32-bit register.

Field descriptions
The ERRPIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PART_0

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

IMPLEMENTATION DEFINED.

Part number, bits [7:0].

The part number is selected by the designer of the component. The designer chooses whether to use a 12-bit or a
16-bit part number:

• If a 12-bit part number is used, it is stored in ERRPIDR1.PART_1 and ERRPIDR0.PART_0. There are 8 bits,
ERRPIDR2.REVISION and ERRPIDR3.REVAND, available to define the revision of the component.

• If a 16-bit part number is used, it is stored in ERRPIDR2.PART_2, ERRPIDR1.PART_1 and ERRPIDR0.PART_0.
There are 4 bits, ERRPIDR3.REVISION, available to define the revision of the component.

Accessing the ERRPIDR0

ERRPIDR0 can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xFE0

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

ERRPIDR0, Peripheral Identification Register 0

Page 3540

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRPIDR0, Peripheral Identification Register 0

Page 3541

ERRPIDR1, Peripheral Identification Register 1
The ERRPIDR1 characteristics are:

Purpose
Provides discovery information about the component.

For more information, see 'About the Peripheral identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

Attributes
ERRPIDR1 is a 32-bit register.

Field descriptions
The ERRPIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 DES_0 PART_1

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

IMPLEMENTATION DEFINED.

Designer, JEP106 identification code, bits [3:0]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1 together form the JEDEC-
assigned JEP106 identification code for the designer of the component. The parity bit in the JEP106 identification code
is not included. The code identifies the designer of the component, which might not be not the same as the
implementer of the device containing the component. To obtain a number, or to see the assignment of these codes,
contact JEDEC http://www.jedec.org.

Note

For a component designed by Arm Limited, the JEP106 identification code is
0x3B.

PART_1, bits [3:0]

IMPLEMENTATION DEFINED.

Part number, bits [11:8].

The part number is selected by the designer of the component. The designer chooses whether to use a 12-bit or a
16-bit part number:

• If a 12-bit part number is used, it is stored in ERRPIDR1.PART_1 and ERRPIDR0.PART_0. There are 8 bits,
ERRPIDR2.REVISION and ERRPIDR3.REVAND, available to define the revision of the component.

• If a 16-bit part number is used, it is stored in ERRPIDR2.PART_2, ERRPIDR1.PART_1 and ERRPIDR0.PART_0.
There are 4 bits, ERRPIDR3.REVISION, available to define the revision of the component.

ERRPIDR1, Peripheral Identification Register 1

Page 3542

Accessing the ERRPIDR1

ERRPIDR1 can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xFE4

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRPIDR1, Peripheral Identification Register 1

Page 3543

ERRPIDR2, Peripheral Identification Register 2
The ERRPIDR2 characteristics are:

Purpose
Provides discovery information about the component.

For more information, see 'About the Peripheral identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

Attributes
ERRPIDR2 is a 32-bit register.

Field descriptions
The ERRPIDR2 bit assignments are:

When the component uses a 12-bit part number:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 REVISION JEDEC DES_1

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

IMPLEMENTATION DEFINED.

Component major revision. ERRPIDR2.REVISION and ERRPIDR3.REVAND together form the revision number of the
component, with ERRPIDR2.REVISION being the most significant part and ERRPIDR3.REVAND the least significant
part. When a component is changed, ERRPIDR2.REVISION or ERRPIDR3.REVAND must be increased to ensure that
software can differentiate the different revisions of the component. If ERRPIDR2.REVISION is increased then
ERRPIDR3.REVAND should be set to 0b0000.

JEDEC, bit [3]

JEDEC-assigned JEP106 implementer code is used.

This bit reads as one.

DES_1, bits [2:0]

IMPLEMENTATION DEFINED.

Designer, JEP106 identification code, bits [6:4]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1 together form the JEDEC-
assigned JEP106 identification code for the designer of the component. The parity bit in the JEP106 identification code
is not included. The code identifies the designer of the component, which might not be not the same as the
implementer of the device containing the component. To obtain a number, or to see the assignment of these codes,
contact JEDEC http://www.jedec.org.

ERRPIDR2, Peripheral Identification Register 2

Page 3544

Note

For a component designed by Arm Limited, the JEP106 identification code is
0x3B.

When the component uses a 16-bit part number:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PART_2 JEDEC DES_1

Bits [31:8]

Reserved, RES0.

PART_2, bits [7:4]

IMPLEMENTATION DEFINED.

Part number, bits [15:12].

The part number is selected by the designer of the component. The designer chooses whether to use a 12-bit or a
16-bit part number:

• If a 12-bit part number is used, it is stored in ERRPIDR1.PART_1 and ERRPIDR0.PART_0. There are 8 bits,
ERRPIDR2.REVISION and ERRPIDR3.REVAND, available to define the revision of the component.

• If a 16-bit part number is used, it is stored in ERRPIDR2.PART_2, ERRPIDR1.PART_1 and ERRPIDR0.PART_0.
There are 4 bits, ERRPIDR3.REVISION, available to define the revision of the component.

JEDEC, bit [3]

JEDEC-assigned JEP106 implementer code is used.

This bit reads as one.

DES_1, bits [2:0]

IMPLEMENTATION DEFINED.

Designer, JEP106 identification code, bits [6:4]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1 together form the JEDEC-
assigned JEP106 identification code for the designer of the component. The parity bit in the JEP106 identification code
is not included. The code identifies the designer of the component, which might not be not the same as the
implementer of the device containing the component. To obtain a number, or to see the assignment of these codes,
contact JEDEC http://www.jedec.org.

Note

For a component designed by Arm Limited, the JEP106 identification code is
0x3B.

Accessing the ERRPIDR2

ERRPIDR2 can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xFE8

Accesses on this interface are RO.

ERRPIDR2, Peripheral Identification Register 2

Page 3545

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRPIDR2, Peripheral Identification Register 2

Page 3546

ERRPIDR3, Peripheral Identification Register 3
The ERRPIDR3 characteristics are:

Purpose
Provides discovery information about the component.

For more information, see 'About the Peripheral identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

Attributes
ERRPIDR3 is a 32-bit register.

Field descriptions
The ERRPIDR3 bit assignments are:

When the component uses a 12-bit part number:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 REVAND CMOD

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

IMPLEMENTATION DEFINED.

Component minor revision. ERRPIDR2.REVISION and ERRPIDR3.REVAND together form the revision number of the
component, with ERRPIDR2.REVISION being the most significant part and ERRPIDR3.REVAND the least significant
part. When a component is changed, ERRPIDR2.REVISION or ERRPIDR3.REVAND must be increased to ensure that
software can differentiate the different revisions of the component. If ERRPIDR2.REVISION is increased then
ERRPIDR3.REVAND should be set to 0b0000.

CMOD, bits [3:0]

IMPLEMENTATION DEFINED.

Customer Modified.

Indicates the component has been modified.

A value of 0b0000 means the component is not modified from the original design.

Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.

For any two components with the same Unique Component Identifier:

• If the value of the CMOD fields of both components equals zero, the components are identical.
• If the CMOD fields of both components have the same non-zero value, it does not necessarily mean that they

have the same modifications.

ERRPIDR3, Peripheral Identification Register 3

Page 3547

• If the value of the CMOD field of either of the two components is non-zero, they might not be identical, even
though they have the same Unique Component Identifier.

When the component uses a 16-bit part number:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 REVISION CMOD

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

IMPLEMENTATION DEFINED.

Component revision. When a component is changed, ERRPIDR3.REVISION must be increased to ensure that software
can differentiate the different revisions of the component.

CMOD, bits [3:0]

IMPLEMENTATION DEFINED.

Customer Modified.

Indicates the component has been modified.

A value of 0b0000 means the component is not modified from the original design.

Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.

For any two components with the same Unique Component Identifier:

• If the value of the CMOD fields of both components equals zero, the components are identical.
• If the CMOD fields of both components have the same non-zero value, it does not necessarily mean that they

have the same modifications.
• If the value of the CMOD field of either of the two components is non-zero, they might not be identical, even

though they have the same Unique Component Identifier.

Accessing the ERRPIDR3

ERRPIDR3 can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xFEC

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRPIDR3, Peripheral Identification Register 3

Page 3548

ERRPIDR4, Peripheral Identification Register 4
The ERRPIDR4 characteristics are:

Purpose
Provides discovery information about the component.

For more information, see 'About the Peripheral identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

Attributes
ERRPIDR4 is a 32-bit register.

Field descriptions
The ERRPIDR4 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SIZE DES_2

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

IMPLEMENTATION DEFINED.

Size of the component.

The distance from the start of the address space used by this component to the end of the component identification
registers.

A value of 0b0000 means one of the following is true:

• The component uses a single 4KB block.
• The component uses an IMPLEMENTATION DEFINED number of 4KB blocks.

Any other value means the component occupies 2ERRPIDR4.SIZE 4KB blocks.

Using this field to indicate the size of the component is deprecated. This field might not correctly indicate the size of
the component. Arm recommends that software determine the size of the component from the Unique Component
Identifier fields, and other IMPLEMENTATION DEFINED registers in the component.

DES_2, bits [3:0]

IMPLEMENTATION DEFINED.

Designer, JEP106 continuation code. This is the JEDEC-assigned JEP106 bank identifier for the designer of the
component, minus 1. The code identifies the designer of the component, which might not be not the same as the
implementer of the device containing the component. To obtain a number, or to see the assignment of these codes,
contact JEDEC http://www.jedec.org.

ERRPIDR4, Peripheral Identification Register 4

Page 3549

Note

For a component designed by Arm Limited, the JEP106 bank is 5, meaning this
field has the value 0x4.

Accessing the ERRPIDR4

ERRPIDR4 can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xFD0

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRPIDR4, Peripheral Identification Register 4

Page 3550

GICC_ABPR, CPU Interface Aliased Binary Point
Register

The GICC_ABPR characteristics are:

Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field.
The group priority field determines Group 1 interrupt preemption.

Configuration
In systems that support two Security states:

• This register is an alias of the Non-secure copy of GICC_BPR.
• Non-secure accesses to this register return a shifted value of the binary point.
• If ICC_CTLR_EL3.CBPR_EL1NS == 1, Secure accesses to this register access ICC_BPR0_EL1.

Attributes
The reset value of this register is defined as (minimum GICC_BPR.Binary_Point + 1), resulting in a permitted range of
0x1-0x4.

Field descriptions
The GICC_ABPR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Binary_Point

Bits [31:3]

Reserved, RES0.

Binary_Point, bits [2:0]

Controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption,
and a subpriority field. The following list describes how this field determines the interrupt priority bits assigned to the
group priority field:

• Priority grouping for Group 1 interrupts when CBPR==0, for the processing of Group 1 interrupts in a GIC
implementation that supports interrupt grouping, when GICC_CTLR.CBPR == 0.

• Priority grouping for Group 0 interrupts, or Group 1 interrupts when CBPR==1, for all other cases.

This field resets to an architecturally UNKNOWN value.

Accessing the GICC_ABPR
This register is used only when System register access is not enabled. When System register access is enabled, the
System registers ICC_BPR0_EL1 and ICC_BPR1_EL1 provide equivalent functionality.

GICC_ABPR can be accessed through the memory-mapped interfaces:

Component Offset Instance

GICC_ABPR, CPU Interface Aliased Binary Point Register

Page 3551

GIC CPU
interface

0x001C GICC_ABPR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_ABPR, CPU Interface Aliased Binary Point Register

Page 3552

GICC_AEOIR, CPU Interface Aliased End Of Interrupt
Register

The GICC_AEOIR characteristics are:

Purpose
A write to this register performs priority drop for the specified Group 1 interrupt and, if the appropriate
GICC_CTLR.EOImodeS or GICC_CTLR.EOImodeNS field == 0, also deactivates the interrupt.

Configuration
When GICD_CTLR.DS==0, this register is an alias of the Non-secure view of GICC_EOIR. A Secure access to this
register is identical to a Non-secure access to GICC_EOIR.

Attributes
GICC_AEOIR is a 32-bit register.

Field descriptions
The GICC_AEOIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as
spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these

bits are RES0.

Accessing the GICC_AEOIR
A write to this register must correspond to the most recently acknowledged Group 1 interrupt. If a value other than
the last value read from GICC_AIAR is written to this register, the effect is UNPREDICTABLE.

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_EOIR1 provides equivalent functionality.
• For AArch64 implementations, ICC_EOIR1_EL1 provides equivalent functionality.

GICC_AEOIR, CPU Interface Aliased End Of Interrupt Register

Page 3553

When affinity routing is enabled for a Security state, it is a programming error to use memory-mapped registers to
access the GIC.

GICC_AEOIR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC CPU
interface

0x0024 GICC_AEOIR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are WO.
• When IsAccessSecure() accesses to this register are WO.
• When !IsAccessSecure() accesses to this register are WO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_AEOIR, CPU Interface Aliased End Of Interrupt Register

Page 3554

GICC_AHPPIR, CPU Interface Aliased Highest Priority
Pending Interrupt Register

The GICC_AHPPIR characteristics are:

Purpose
If the highest priority pending interrupt is in Group 1, this register provides the INTID of the highest priority pending
interrupt on the CPU interface.

Configuration
If GICD_CTLR.DS==0, this register is an alias of the Non-secure view of GICC_HPPIR. A Secure access to this register
is identical to a Non-secure access to GICC_HPPIR.

Attributes
GICC_AHPPIR is a 32-bit register.

Field descriptions
The GICC_AHPPIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as
spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these

bits are RES0.

Accessing the GICC_AHPPIR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_HPPIR1 provides equivalent functionality.
• For AArch64 implementations, ICC_HPPIR1_EL1 provides equivalent functionality.

If the highest priority pending interrupt is in Group 0, a read of this register returns the special INTID 1023.

Interrupt identifiers corresponding to an interrupt group that is not enabled are ignored.

GICC_AHPPIR, CPU Interface Aliased Highest Priority Pending Interrupt Register

Page 3555

If the highest priority pending interrupt is a direct interrupt that is both individually enabled in the Distributor and
part of an interrupt group that is enabled in the Distributor, and the interrupt group is disabled in the CPU interface
for this PE, this register returns the special INTID 1023.

See Preemption for more information about pending interrupts that are not considered when determining the highest
priority pending interrupt.

When affinity routing is enabled for a Security state, it is a programming error to use memory-mapped registers to
access the GIC.

GICC_AHPPIR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC CPU
interface

0x0028 GICC_AHPPIR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_AHPPIR, CPU Interface Aliased Highest Priority Pending Interrupt Register

Page 3556

GICC_AIAR, CPU Interface Aliased Interrupt
Acknowledge Register

The GICC_AIAR characteristics are:

Purpose
Provides the INTID of the signaled Group 1 interrupt. A read of this register by the PE acts as an acknowledge for the
interrupt.

Configuration
When GICD_CTLR.DS==0, this register is an alias of the Non-secure view of GICC_IAR. A Secure access to this
register is identical to a Non-secure access to GICC_IAR.

Attributes
GICC_AIAR is a 32-bit register.

Field descriptions
The GICC_AIAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as
spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these

bits are RES0.

Accessing the GICC_AIAR
When affinity routing is enabled for a Security state, it is a programming error to use memory-mapped registers to
access the GIC.

GICC_AIAR can be accessed through the memory-mapped interfaces:

Component Offset Instance

GICC_AIAR, CPU Interface Aliased Interrupt Acknowledge Register

Page 3557

GIC CPU
interface

0x0020 GICC_AIAR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_AIAR, CPU Interface Aliased Interrupt Acknowledge Register

Page 3558

GICC_APR<n>, CPU Interface Active Priorities
Registers, n = 0 - 3

The GICC_APR<n> characteristics are:

Purpose
Provides information about interrupt active priorities.

Configuration
The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

When GICD_CTLR.DS == 0, these registers are Banked, and Non-secure accesses do not affect Secure operation. The
Secure copies of these registers hold active priorities for Group 0 interrupts, and the Non-secure copies provide a
Non-secure view of the active priorities for Group 1 interrupts.

GICC_APR1 is only implemented in implementations that support 6 or more bits of priority. GICC_APR2 and
GICC_APR3 are only implemented in implementations that support 7 bits of priority.

When GICD_CTLR.DS==1, these registers hold the active priorities for Group 0 interrupts, and the active priorities
for Group 1 interrupts are held by the GICC_NSAPR<n> registers.

Attributes
GICC_APR<n> is a 32-bit register.

Field descriptions
The GICC_APR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to 0.

Accessing the GICC_APR<n>
These registers are used only when System register access is not enabled. When System register access is enabled the
following registers provide equivalent functionality:

• In AArch64:
◦ For Group 0, ICC_AP0R<n>_EL1.
◦ For Group 1, ICC_AP1R<n>_EL1.

• In AArch32:
◦ For Group 0, ICC_AP0R<n>.
◦ For Group 1, ICC_AP1R<n>.

GICC_APR<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance

GICC_APR<n>, CPU Interface Active Priorities Registers, n = 0 - 3

Page 3559

GIC CPU
interface

0x00D0 + 4n GICC_APR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_APR<n>, CPU Interface Active Priorities Registers, n = 0 - 3

Page 3560

GICC_BPR, CPU Interface Binary Point Register
The GICC_BPR characteristics are:

Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field.

Configuration
In systems that support two Security states:

• This register is Banked.
• The Secure instance of this register determines Group 0 interrupt preemption.
• The Non-secure instance of this register determines Group 1 interrupt preemption.

In systems that support only one Security state, when GICC_CTLR.CBPR == 0, this register determines only Group 0
interrupt preemption.

When GICC_CTLR.CBPR == 1, this register determines interrupt preemption for both Group 0 and Group 1 interrupts.

Attributes
GICC_BPR is a 32-bit register.

Field descriptions
The GICC_BPR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Binary_Point

Bits [31:3]

Reserved, RES0.

Binary_Point, bits [2:0]

Controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption,
and a subpriority field. The following list describes how this field determines the interrupt priority bits assigned to the
group priority field:

• Priority grouping for Group 1 interrupts when CBPR==0, for the processing of Group 1 interrupts in a GIC
implementation that supports interrupt grouping, when GICC_CTLR.CBPR == 0.

• Priority grouping for Group 0 interrupts, or Group 1 interrupts when CBPR==1, for all other cases.

This field resets to an architecturally UNKNOWN value.

Note

Aliasing the Non-secure GICC_BPR as GICC_ABPR in a multiprocessor system
permits a PE that can make only Secure accesses to configure the preemption
setting for Group 1 interrupts by accessing GICC_ABPR.

GICC_BPR, CPU Interface Binary Point Register

Page 3561

Accessing the GICC_BPR
This register is used only when System register access is not enabled. When System register access is enabled this
register is RAZ/WI, and the System registers ICC_BPR0_EL1 and ICC_BPR1_EL1 provide equivalent functionality.

GICC_BPR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC CPU
interface

0x0008 GICC_BPR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_BPR, CPU Interface Binary Point Register

Page 3562

GICC_CTLR, CPU Interface Control Register
The GICC_CTLR characteristics are:

Purpose
Controls the CPU interface, including enabling of interrupt groups, interrupt signal bypass, binary point registers
used, and separation of priority drop and interrupt deactivation.

Note

If the GIC implementation supports two Security states, independent EOI
controls are provided for accesses from each Security state. Secure accesses
handle both Group 0 and Group 1 interrupts, and Non-secure accesses handle
Group 1 interrupts only.

Configuration
In a GIC implementation that supports two Security states:

• This register is Banked.
• The register bit assignments are different in the Secure and Non-secure copies.

Attributes
GICC_CTLR is a 32-bit register.

Field descriptions
The GICC_CTLR bit assignments are:

When GICD_CTLR.DS==0, Non-secure access:

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
RES0 EOImodeNSRES0IRQBypDisGrp1FIQBypDisGrp1RES0EnableGrp1

Bits [31:10]

Reserved, RES0.

EOImodeNS, bit [9]

Controls the behavior of Non-secure accesses to GICC_EOIR, GICC_AEOIR, and GICC_DIR.

EOImodeNS Meaning
0b0 GICC_EOIR and GICC_AEOIR provide both priority drop

and interrupt deactivation functionality. Accesses to
GICC_DIR are UNPREDICTABLE.

0b1 GICC_EOIR and GICC_AEOIR provide priority drop
functionality only. GICC_DIR provides interrupt
deactivation functionality.

Note

An implementation is permitted to make this bit RAO/WI.

GICC_CTLR, CPU Interface Control Register

Page 3563

This field resets to 0.

Bits [8:7]

Reserved, RES0.

IRQBypDisGrp1, bit [6]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the bypass IRQ signal is
signaled to the PE for Group 1:

IRQBypDisGrp1 Meaning
0b0 The bypass IRQ signal is signaled to the PE.
0b1 The bypass IRQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

This field resets to 0.

FIQBypDisGrp1, bit [5]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the bypass FIQ signal is
signaled to the PE for Group 1:

FIQBypDisGrp1 Meaning
0b0 The bypass FIQ signal is signaled to the PE.
0b1 The bypass FIQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DFB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

This field resets to 0.

Bits [4:1]

Reserved, RES0.

EnableGrp1, bit [0]

This Non-secure field enables the signaling of Group 1 interrupts by the CPU interface to a target PE:

EnableGrp1 Meaning
0b0 Group 1 interrupt signaling is disabled.
0b1 Group 1 interrupt signaling is enabled.

This field resets to 0.

When GICD_CTLR.DS==0, Secure access:

313029282726252423222120191817161514131211 10 9 8 7 6 5 4 3 2 1 0
RES0 EOImodeNSEOImodeSIRQBypDisGrp1FIQBypDisGrp1IRQBypDisGrp0FIQBypDisGrp0CBPRFIQEnRES0EnableGrp1EnableGrp0

GICC_CTLR, CPU Interface Control Register

Page 3564

Bits [31:11]

Reserved, RES0.

EOImodeNS, bit [10]

Controls the behavior of Non-secure accesses to GICC_EOIR, GICC_AEOIR, and GICC_DIR.

EOImodeNS Meaning
0b0 GICC_EOIR and GICC_AEOIR provide both priority drop

and interrupt deactivation functionality. Accesses to
GICC_DIR are UNPREDICTABLE.

0b1 GICC_EOIR and GICC_AEOIR provide priority drop
functionality only. GICC_DIR provides interrupt
deactivation functionality.

Note

An implementation is permitted to make this bit RAO/WI.

This field resets to 0.

EOImodeS, bit [9]

Controls the behavior of Secure accesses to GICC_EOIR, GICC_AEOIR, and GICC_DIR.

EOImodeS Meaning
0b0 GICC_EOIR and GICC_AEOIR provide both priority drop

and interrupt deactivation functionality. Accesses to
GICC_DIR are UNPREDICTABLE.

0b1 GICC_EOIR and GICC_AEOIR provide priority drop
functionality only. GICC_DIR provides interrupt
deactivation functionality.

Note

An implementation is permitted to make this bit RAO/WI.

This field shares state with GICC_CTLR.EOImode.

This field resets to 0.

IRQBypDisGrp1, bit [8]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the bypass IRQ signal is
signaled to the PE for Group 1:

IRQBypDisGrp1 Meaning
0b0 The bypass IRQ signal is signaled to the PE.
0b1 The bypass IRQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

This field resets to 0.

GICC_CTLR, CPU Interface Control Register

Page 3565

FIQBypDisGrp1, bit [7]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the bypass FIQ signal is
signaled to the PE for Group 1:

FIQBypDisGrp1 Meaning
0b0 The bypass FIQ signal is signaled to the PE.
0b1 The bypass FIQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DFB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

This field resets to 0.

IRQBypDisGrp0, bit [6]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the bypass IRQ signal is
signaled to the PE for Group 0:

IRQBypDisGrp0 Meaning
0b0 The bypass IRQ signal is signaled to the PE.
0b1 The bypass IRQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

This field resets to 0.

FIQBypDisGrp0, bit [5]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the bypass FIQ signal is
signaled to the PE for Group 0:

FIQBypDisGrp0 Meaning
0b0 The bypass FIQ signal is signaled to the PE.
0b1 The bypass FIQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

This field resets to 0.

CBPR, bit [4]

Controls whether GICC_BPR provides common control of preemption to Group 0 and Group 1 interrupts:

CBPR Meaning
0b0 GICC_BPR determines preemption for Group 0 interrupts only.

GICC_ABPR determines preemption for Group 1 interrupts.
0b1 GICC_BPR determines preemption for both Group 0 and Group

1 interrupts.

GICC_CTLR, CPU Interface Control Register

Page 3566

This field is an alias of ICC_CTLR_EL3.CBPR_EL1NS.

In a GIC that supports two Security states, when CBPR == 1:

• A Non-secure read of GICC_BPR returns the value of Secure GICC_BPR.Binary_Point, incremented by 1, and
saturated to 0b111.

• Non-secure writes of GICC_BPR are ignored.

This field resets to 0.

FIQEn, bit [3]

Controls whether the CPU interface signals Group 0 interrupts to a target PE using the FIQ or IRQ signal:

FIQEn Meaning
0b0 Group 0 interrupts are signaled using the IRQ signal.
0b1 Group 0 interrupts are signaled using the FIQ signal.

Group 1 interrupts are signaled using the IRQ signal only.

If an implementation supports two Security states, this bit is permitted to be RAO/WI.

This field resets to 0.

Bit [2]

Reserved, RES0.

EnableGrp1, bit [1]

This Non-secure field enables the signaling of Group 1 interrupts by the CPU interface to a target PE:

EnableGrp1 Meaning
0b0 Group 1 interrupt signaling is disabled.
0b1 Group 1 interrupt signaling is enabled.

This field resets to 0.

EnableGrp0, bit [0]

Enables the signaling of Group 0 interrupts by the CPU interface to a target PE:

EnableGrp0 Meaning
0b0 Group 0 interrupt signaling is disabled.
0b1 Group 0 interrupt signaling is enabled.

This field resets to 0.

When GICD_CTLR.DS == 0b1:

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
RES0 EOImodeIRQBypDisGrp1FIQBypDisGrp1IRQBypDisGrp0FIQBypDisGrp0CBPRFIQEnRES0EnableGrp1EnableGrp0

Bits [31:10]

Reserved, RES0.

EOImode, bit [9]

Controls the behavior of accesses to GICC_EOIR, GICC_AEOIR, and GICC_DIR.

GICC_CTLR, CPU Interface Control Register

Page 3567

EOImode Meaning
0b0 GICC_EOIR and GICC_AEOIR provide both priority drop and

interrupt deactivation functionality. Accesses to GICC_DIR
are UNPREDICTABLE.

0b1 GICC_EOIR and GICC_AEOIR provide priority drop
functionality only. GICC_DIR provides interrupt deactivation
functionality.

Note

An implementation is permitted to make this bit RAO/WI.

This field shares state with GICC_CTLR.EOImodeS.

This field resets to 0.

IRQBypDisGrp1, bit [8]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the bypass IRQ signal is
signaled to the PE for Group 1:

IRQBypDisGrp1 Meaning
0b0 The bypass IRQ signal is signaled to the PE.
0b1 The bypass IRQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

This field resets to 0.

FIQBypDisGrp1, bit [7]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the bypass FIQ signal is
signaled to the PE for Group 1:

FIQBypDisGrp1 Meaning
0b0 The bypass FIQ signal is signaled to the PE.
0b1 The bypass FIQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DFB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

This field resets to 0.

IRQBypDisGrp0, bit [6]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the bypass IRQ signal is
signaled to the PE for Group 0:

IRQBypDisGrp0 Meaning
0b0 The bypass IRQ signal is signaled to the PE.
0b1 The bypass IRQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

GICC_CTLR, CPU Interface Control Register

Page 3568

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

This field resets to 0.

FIQBypDisGrp0, bit [5]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the bypass FIQ signal is
signaled to the PE for Group 0:

FIQBypDisGrp0 Meaning
0b0 The bypass FIQ signal is signaled to the PE.
0b1 The bypass FIQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

This field resets to 0.

CBPR, bit [4]

Controls whether GICC_BPR provides common control of preemption to Group 0 and Group 1 interrupts:

CBPR Meaning
0b0 GICC_BPR determines preemption for Group 0 interrupts only.

GICC_ABPR determines preemption for Group 1 interrupts.
0b1 GICC_BPR determines preemption for both Group 0 and Group

1 interrupts.

This field is an alias of ICC_CTLR_EL3.CBPR_EL1NS.

In a GIC that supports two Security states, when CBPR == 1:

• A Non-secure read of GICC_BPR returns the value of Secure GICC_BPR.Binary_Point, incremented by 1, and
saturated to 0b111.

• Non-secure writes of GICC_BPR are ignored.

This field resets to 0.

FIQEn, bit [3]

Controls whether the CPU interface signals Group 0 interrupts to a target PE using the FIQ or IRQ signal:

FIQEn Meaning
0b0 Group 0 interrupts are signaled using the IRQ signal.
0b1 Group 0 interrupts are signaled using the FIQ signal.

Group 1 interrupts are signaled using the IRQ signal only.

If an implementation supports two Security states, this bit is permitted to be RAO/WI.

This field resets to 0.

Bit [2]

Reserved, RES0.

EnableGrp1, bit [1]

This Non-secure field enables the signaling of Group 1 interrupts by the CPU interface to a target PE:

GICC_CTLR, CPU Interface Control Register

Page 3569

EnableGrp1 Meaning
0b0 Group 1 interrupt signaling is disabled.
0b1 Group 1 interrupt signaling is enabled.

This field resets to 0.

EnableGrp0, bit [0]

Enables the signaling of Group 0 interrupts by the CPU interface to a target PE:

EnableGrp0 Meaning
0b0 Group 0 interrupt signaling is disabled.
0b1 Group 0 interrupt signaling is enabled.

This field resets to 0.

Accessing the GICC_CTLR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_CTLR and ICC_MCTLR provide equivalent functionality.
• For AArch64 implementations, ICC_CTLR_EL1 and ICC_CTLR_EL3 provide equivalent functionality.

GICC_CTLR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC CPU
interface

0x0000 GICC_CTLR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_CTLR, CPU Interface Control Register

Page 3570

GICC_DIR, CPU Interface Deactivate Interrupt Register
The GICC_DIR characteristics are:

Purpose
When interrupt priority drop is separated from interrupt deactivation, a write to this register deactivates the specified
interrupt.

Configuration

Attributes
GICC_DIR is a 32-bit register.

Field descriptions
The GICC_DIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as
spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these

bits are RES0.

Accessing the GICC_DIR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_DIR provides equivalent functionality.
• For AArch64 implementations, ICC_DIR_EL1 provides equivalent functionality.

Writes to this register have an effect only in the following cases:

• When GICD_CTLR.DS == 1, if GICC_CTLR.EOImode == 1.
• In GIC implementations that support two Security states:

◦ If the access is Secure and GICC_CTLR.EOImodeS == 1.
◦ If the access is Non-secure and GICC_CTLR.EOImodeNS == 1.

The following writes must be ignored:

GICC_DIR, CPU Interface Deactivate Interrupt Register

Page 3571

• Writes to this register when the corresponding EOImode field in GICC_CTLR == 0. In systems that support
system error generation, an implementation might generate a system error.

• Writes to this register when the corresponding EOImode field in GICC_CTLR == 0 and the corresponding
interrupt is not active. In systems that support system error generation, an implementation might generate a
system error. In implementations using the GIC Stream Protocol Interface these writes correspond to a
Deactivate packet for an interrupt that is not active.

If the corresponding EOImode field in GICC_CTLR is 1 and this register is written to without a corresponding write to
GICC_EOIR or GICC_AEOIR, the interrupt is deactivated but the bit corresponding to it in the active priorities
registers remains set.

When affinity routing is enabled for a Security state, it is a programming error to use memory-mapped registers to
access the GIC.

GICC_DIR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC CPU
interface

0x1000 GICC_DIR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are WO.
• When IsAccessSecure() accesses to this register are WO.
• When !IsAccessSecure() accesses to this register are WO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_DIR, CPU Interface Deactivate Interrupt Register

Page 3572

GICC_EOIR, CPU Interface End Of Interrupt Register
The GICC_EOIR characteristics are:

Purpose
A write to this register performs priority drop for the specified interrupt and, if the appropriate GICC_CTLR.EOImodeS
or GICC_CTLR.EOImodeNS field == 0, also deactivates the interrupt.

Configuration
If GICD_CTLR.DS==0:

• This register is Common.
• GICC_AEOIR is an alias of the Non-secure view of this register.

For Secure writes when GICD_CTLR.DS==0, or for Secure and Non-secure writes when GICD_CTLR.DS==1, the
register provides functionality for Group 0 interrupts.

For Non-secure writes when GICD_CTLR.DS==1, the register provides functionality for Group 1 interrupts.

Attributes
GICC_EOIR is a 32-bit register.

Field descriptions
The GICC_EOIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as
spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these

bits are RES0.

For every read of a valid INTID from GICC_IAR, the connected PE must perform a matching write to GICC_EOIR. The
value written to GICC_EOIR must be the INTID from GICC_IAR. Reads of INTIDs 1020-1023 do not require matching
writes.

Note

GICC_EOIR, CPU Interface End Of Interrupt Register

Page 3573

Arm recommends that software preserves the entire register value read from
GICC_IAR, and writes that value back to GICC_EOIR on completion of
interrupt processing.

For nested interrupts, the order of writes to this register must be the reverse of the order of interrupt
acknowledgement. Behavior is UNPREDICTABLE if:

• This ordering constraint is not maintained.
• The value written to this register does not match an active interrupt, or the ID of a spurious interrupt.
• The value written to this register does not match the last valid interrupt value read from GICC_IAR.

See Interrupt lifecycle for general information about the effect of writes to end of interrupt registers, and about the
possible separation of the priority drop and interrupt deactivate operations.

If GICD_CTLR.DS==0:

• GICC_CTLR.EOImodeS controls the behavior of Secure accesses to GICC_EOIR and GICC_AEOIR.
• GICC_CTLR.EOImodeNS controls the behavior of Non-secure accesses to GICC_EOIR and GICC_AEOIR.

Accessing the GICC_EOIR
The following writes must be ignored:

• Writes of INTIDs 1020-1023.
• Secure writes corresponding to Group 1 interrupts. In systems that support system error generation, an

implementation might generate a system error. In this case, GIC behavior is predictable, and the highest
Secure active priority (in the Secure copy of GICC_APR<n>) will be reset if the highest active priority is
Secure. System behavior is UNPREDICTABLE.

• Non-secure writes corresponding to Group 0 interrupts when GICC_CTLR.EOImodeS == 1. In systems that
support system error generation, an implementation might generate a system error. In this case, GIC behavior
is predictable, and the highest Non-secure active priority (in the Non-secure copy of GICC_APR<n>) will be
reset if the highest active priority is Non-secure. System behavior is UNPREDICTABLE.

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_EOIR0 and ICC_EOIR1 provide equivalent functionality.
• For AArch64 implementations, ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide equivalent functionality.

When affinity routing is enabled for a Security state, it is a programming error to use memory-mapped registers to
access the GIC.

GICC_EOIR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC CPU
interface

0x0010 GICC_EOIR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are WO.
• When IsAccessSecure() accesses to this register are WO.
• When !IsAccessSecure() accesses to this register are WO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_EOIR, CPU Interface End Of Interrupt Register

Page 3574

GICC_HPPIR, CPU Interface Highest Priority Pending
Interrupt Register

The GICC_HPPIR characteristics are:

Purpose
Provides the INTID of the highest priority pending interrupt on the CPU interface.

Configuration
If GICD_CTLR.DS==0:

• This register is Common.
• GICC_AHPPIR is an alias of the Non-secure view of this register.

Attributes
GICC_HPPIR is a 32-bit register.

Field descriptions
The GICC_HPPIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as
spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these

bits are RES0.

Accessing the GICC_HPPIR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_HPPIR0 and ICC_HPPIR1 provide equivalent functionality.
• For AArch64 implementations, ICC_HPPIR0_EL1 and ICC_HPPIR1_EL1 provide equivalent functionality.

If the highest priority pending interrupt is in Group 0, a Non-secure read of this register returns the special INTID
1023.

GICC_HPPIR, CPU Interface Highest Priority Pending Interrupt Register

Page 3575

For Secure reads when GICD_CTLR.DS==0, or for Secure and Non-secure reads when GICD_CTLR.DS==1, returns
the special INTID 1022 if the highest priority pending interrupt is in Group 1.

If no interrupts are in the pending state, a read of this register returns the special INTID 1023.

Interrupt identifiers corresponding to an interrupt group that is not enabled are ignored.

If the highest priority pending interrupt is a direct interrupt that is both individually enabled in the Distributor and
part of an interrupt group that is enabled in the Distributor, and the interrupt group is disabled in the CPU interface
for this PE, this register returns the special INTID 1023.

See Preemption for more information about pending interrupts that are not considered when determining the highest
priority pending interrupt.

When affinity routing is enabled for a Security state, it is a programming error to use memory-mapped registers to
access the GIC.

GICC_HPPIR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC CPU
interface

0x0018 GICC_HPPIR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_HPPIR, CPU Interface Highest Priority Pending Interrupt Register

Page 3576

GICC_IAR, CPU Interface Interrupt Acknowledge
Register

The GICC_IAR characteristics are:

Purpose
Provides the INTID of the signaled interrupt. A read of this register by the PE acts as an acknowledge for the
interrupt.

Configuration
This register is available in all configurations of the GIC. If GICD_CTLR.DS==0:

• This register is Common.
• GICC_AIAR is an alias of the Non-secure view of this register.

The format of the INTID is governed by whether affinity routing is enabled for a Security state.

Attributes
GICC_IAR is a 32-bit register.

Field descriptions
The GICC_IAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as
spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these

bits are RES0.

A read of this register returns the INTID of the highest priority pending interrupt for the CPU interface. The read
returns a spurious INTID of 1023 if any of the following apply:

• Forwarding of interrupts by the Distributor to the CPU interface is disabled.
• Signaling of interrupts by the CPU interface to the connected PE is disabled.
• There are no pending interrupts on the CPU interface with sufficient priority for the interface to signal it to

the PE.

GICC_IAR, CPU Interface Interrupt Acknowledge Register

Page 3577

When the GIC returns a valid INTID to a read of this register it treats the read as an acknowledge of that interrupt. In
addition, it changes the interrupt status from pending to active, or to active and pending if the pending state of the
interrupt persists. Normally, the pending state of an interrupt persists only if the interrupt is level-sensitive and
remains asserted.

For every read of a valid INTID from GICC_IAR, the connected PE must perform a matching write to GICC_EOIR.

Note
• Arm recommends that software preserves the entire register value read

from this register, and writes that value back to GICC_EOIR on
completion of interrupt processing.

• For SPIs, although multiple target PEs might attempt to read this
register at any time, only one PE can obtain a valid INTID. See
'Interrupt acknowledgement', section 4.7.1 of the GICv3 Architecture
Specification, for more information.

Accessing the GICC_IAR
When GICD_CTLR.DS==1, if the highest priority pending interrupt is in Group 1, the special INTID 1022 is returned.

In GIC implementations that support two Security states, if the highest priority pending interrupt is in Group 0, Non-
secure reads return the special INTID 1023.

In GIC implementations that support two Security states, if the highest priority pending interrupt is in Group 1, Secure
reads return the special INTID 1022.

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_IAR0 and ICC_IAR1 provide equivalent functionality.
• For AArch64 implementations, ICC_IAR0_EL1 and ICC_IAR1_EL1 provide equivalent functionality.

When affinity routing is enabled for a Security state, it is a programming error to use memory-mapped registers to
access the GIC.

GICC_IAR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC CPU
interface

0x000C GICC_IAR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_IAR, CPU Interface Interrupt Acknowledge Register

Page 3578

GICC_IIDR, CPU Interface Identification Register
The GICC_IIDR characteristics are:

Purpose
Provides information about the implementer and revision of the CPU interface.

Configuration

Attributes
GICC_IIDR is a 32-bit register.

Field descriptions
The GICC_IIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ProductID Architecture_version Revision Implementer

ProductID, bits [31:20]

An IMPLEMENTATION DEFINED product identifier.

Architecture_version, bits [19:16]

The version of the GIC architecture that is implemented.

Architecture_version Meaning
0b0001 GICv1.
0b0010 GICv2.
0b0011 GICv3 memory-mapped interface supported.

Support for the System register interface is
discoverable from PE registers ID_PFR1 and
ID_AA64PFR0_EL1.

0b0100 GICv4 memory-mapped interface supported.
Support for the System register interface is
discoverable from PE registers ID_PFR1 and
ID_AA64PFR0_EL1.

Other values are reserved.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number for the CPU interface.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the CPU interface.

• Bits [11:8] are the JEP106 continuation code of the implementer. For an Arm implementation, this field is 0x4.
• Bit [7] is always 0.
• Bits [6:0] are the JEP106 identity code of the implementer. For an Arm implementation, bits [7:0] are therefore

0x3B.

GICC_IIDR, CPU Interface Identification Register

Page 3579

Accessing the GICC_IIDR

GICC_IIDR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC CPU
interface

0x00FC GICC_IIDR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_IIDR, CPU Interface Identification Register

Page 3580

GICC_NSAPR<n>, CPU Interface Non-secure Active
Priorities Registers, n = 0 - 3

The GICC_NSAPR<n> characteristics are:

Purpose
Provides information about Group 1 interrupt active priorities.

Configuration
The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

When GICD_CTLR.DS==0, these registers are RAZ/WI to Non-secure accesses.

GICC_NSAPR1 is only implemented in implementations that support 6 or more bits of priority. GICC_NSAPR2 and
GICC_NSAPR3 are only implemented in implementations that support 7 bits of priority.

Attributes
GICC_NSAPR<n> is a 32-bit register.

Field descriptions
The GICC_NSAPR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to 0.

Accessing the GICC_NSAPR<n>

GICC_NSAPR<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC CPU
interface

0x00E0 + 4n GICC_NSAPR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_NSAPR<n>, CPU Interface Non-secure Active Priorities Registers, n = 0 - 3

Page 3581

GICC_PMR, CPU Interface Priority Mask Register
The GICC_PMR characteristics are:

Purpose
This register provides an interrupt priority filter. Only interrupts with a higher priority than the value in this register
are signaled to the PE.

Note

Higher interrupt priority corresponds to a lower value of the Priority field.

Configuration
This register is available in all configurations of the GIC. If the GIC implementation supports two Security states this
register is Common.

Attributes
GICC_PMR is a 32-bit register.

Field descriptions
The GICC_PMR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Priority

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The priority mask level for the CPU interface. If the priority of the interrupt is higher than the value indicated by this
field, the interface signals the interrupt to the PE.

If the GIC implementation supports fewer than 256 priority levels some bits might be RAZ/WI, as follows:

• For 128 supported levels, bit [0] = 0b0.
• For 64 supported levels, bits [1:0] = 0b00.
• For 32 supported levels, bits [2:0] = 0b000.
• For 16 supported levels, bits [3:0] = 0b0000.

See Interrupt prioritization for more information.

This field resets to an architecturally UNKNOWN value.

Accessing the GICC_PMR
If the GIC implementation supports two Security states:

• Non-secure accesses to this register can only read or write values corresponding to the lower half of the
priority range.

• If a Secure write has programmed the register with a value that corresponds to a value in the upper half of the
priority range then:

GICC_PMR, CPU Interface Priority Mask Register

Page 3582

◦ Any Non-secure read of the register returns 0x00, regardless of the value held in the register.
◦ Non-secure writes are ignored.

See 'Priority control of Secure and Non-secure interrupts' in the GICv3 Architecture Specification for more
information.

GICC_PMR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC CPU
interface

0x0004 GICC_PMR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_PMR, CPU Interface Priority Mask Register

Page 3583

GICC_RPR, CPU Interface Running Priority Register
The GICC_RPR characteristics are:

Purpose
This register indicates the running priority of the CPU interface.

Configuration
This register is available in all configurations of the GIC. If the GIC implementation supports two Security states this
register is Common.

Attributes
GICC_RPR is a 32-bit register.

Field descriptions
The GICC_RPR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Priority

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the CPU interface. This is the group priority of the current active interrupt.

If there are no active interrupts on the CPU interface, or all active interrupts have undergone a priority drop, the value
returned is the Idle priority.

The priority returned is the group priority as if the BPR was set to the minimum value.

Accessing the GICC_RPR
If there is no active interrupt on the CPU interface, the idle priority value is returned.

If the GIC implementation supports two Security states, a Non-secure read of the Priority field returns:

• 0x00 if the field value is less than 0x80.
• The Non-secure view of the Priority value if the field value is 0x80 or more.

See 'Priority control of Secure and Non-secure interrupts' in the GICv3 Architecture Specification for more
information.

Note

Software cannot determine the number of implemented priority bits from this
register.

GICC_RPR, CPU Interface Running Priority Register

Page 3584

GICC_RPR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC CPU
interface

0x0014 GICC_RPR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_RPR, CPU Interface Running Priority Register

Page 3585

GICC_STATUSR, CPU Interface Status Register
The GICC_STATUSR characteristics are:

Purpose
Provides software with a mechanism to detect:

• Accesses to reserved locations.
• Writes to read-only locations.
• Reads of write-only locations.

Configuration
If the GIC implementation supports two Security states this register is Banked to provide Secure and Non-secure
copies.

This register is used only when System register access is not enabled. If System register access is enabled, this
register is not updated. Equivalent functionality might be provided by appropriate traps and exceptions.

Attributes
GICC_STATUSR is a 32-bit register.

Field descriptions
The GICC_STATUSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ASVWRODRWODWRDRRD

Bits [31:5]

Reserved, RES0.

ASV, bit [4]

Attempted security violation.

ASV Meaning
0b0 Normal operation.
0b1 A Non-secure access to a Secure register has been detected.

Note

This bit is not set to 1 for registers where any of the fields are Non-secure.

WROD, bit [3]

Write to an RO location.

WROD Meaning
0b0 Normal operation.
0b1 A write to an RO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

GICC_STATUSR, CPU Interface Status Register

Page 3586

RWOD, bit [2]

Read of a WO location.

RWOD Meaning
0b0 Normal operation.
0b1 A read of a WO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

WRD, bit [1]

Write to a reserved location.

WRD Meaning
0b0 Normal operation.
0b1 A write to a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RRD, bit [0]

Read of a reserved location.

RRD Meaning
0b0 Normal operation.
0b1 A read of a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

Accessing the GICC_STATUSR
This is an optional register. If the register is not implemented, the location is RAZ/WI.

If this register is implemented, GICV_STATUSR must also be implemented.

GICC_STATUSR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC CPU
interface

0x002C GICC_STATUSR
(S)

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.

Component Offset Instance
GIC CPU
interface

0x002C GICC_STATUSR
(NS)

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_STATUSR, CPU Interface Status Register

Page 3587

GICD_CLRSPI_NSR, Clear Non-secure SPI Pending
Register

The GICD_CLRSPI_NSR characteristics are:

Purpose
Removes the pending state from a valid SPI if permitted by the Security state of the access and the GICD_NSACR<n>
value for that SPI.

A write to this register changes the state of a pending SPI to inactive, and the state of an active and pending SPI to
active.

Configuration
If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS==1, this register provides functionality for all SPIs.

Attributes
GICD_CLRSPI_NSR is a 32-bit register.

Field descriptions
The GICD_CLRSPI_NSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

The INTID of the SPI.

The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or level-
sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will stop being pending on activation, or if the pending state is removed by a write to
GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or GICD_ICPENDR<n>.

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or
GICD_CLRSPI_SR. If the interrupt is activated between having the pending state added and being deactivated,
then the interrupt will be active and pending.

Accessing the GICD_CLRSPI_NSR
Writes to this register have no effect if:

• The value written specifies a Secure SPI, the value is written by a Non-secure access, and the value of the
corresponding GICD_NSACR<n> register is less than 0b10.

• The value written specifies an invalid SPI.
• The SPI is not pending.

GICD_CLRSPI_NSR, Clear Non-secure SPI Pending Register

Page 3588

16-bit accesses to bits [15:0] of this register must be supported.

Note

A Secure access to this register can clear the pending state of any valid SPI.

GICD_CLRSPI_NSR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x0048 GICD_CLRSPI_NSR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are WO.
• When IsAccessSecure() accesses to this register are WO.
• When !IsAccessSecure() accesses to this register are WO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_CLRSPI_NSR, Clear Non-secure SPI Pending Register

Page 3589

GICD_CLRSPI_SR, Clear Secure SPI Pending Register
The GICD_CLRSPI_SR characteristics are:

Purpose
Removes the pending state from a valid SPI.

A write to this register changes the state of a pending SPI to inactive, and the state of an active and pending SPI to
active.

Configuration
If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS==1, this register is WI.

Attributes
GICD_CLRSPI_SR is a 32-bit register.

Field descriptions
The GICD_CLRSPI_SR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

The INTID of the SPI.

The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or level-
sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will stop being pending on activation, or if the pending state is removed by a write to
GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or GICD_ICPENDR<n>.

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or
GICD_CLRSPI_SR. If the interrupt is activated between having the pending state added and being deactivated,
then the interrupt will be active and pending.

Accessing the GICD_CLRSPI_SR
Writes to this register have no effect if:

• The value is written by a Non-secure access.
• The value written specifies an invalid SPI.
• The SPI is not pending.

16-bit accesses to bits [15:0] of this register must be supported.

GICD_CLRSPI_SR, Clear Secure SPI Pending Register

Page 3590

GICD_CLRSPI_SR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x0058 GICD_CLRSPI_SR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are WI.
• When IsAccessSecure() accesses to this register are WO.
• When !IsAccessSecure() accesses to this register are WI.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_CLRSPI_SR, Clear Secure SPI Pending Register

Page 3591

GICD_CPENDSGIR<n>, SGI Clear-Pending Registers, n
= 0 - 3

The GICD_CPENDSGIR<n> characteristics are:

Purpose
Removes the pending state from an SGI.

A write to this register changes the state of a pending SGI to inactive, and the state of an active and pending SGI to
active.

Configuration
Four SGI clear-pending registers are implemented. Each register contains eight clear-pending bits for each of four
SGIs, for a total of 16 possible SGIs.

In multiprocessor implementations, each PE has a copy of these registers.

Attributes
GICD_CPENDSGIR<n> is a 32-bit register.

Field descriptions
The GICD_CPENDSGIR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SGI_clear_pending_bits<x>, bits [8x+7:8x], for x = 0 to 3

SGI_clear_pending_bits<x>, bits [8x+7:8x], for x = 0 to 3

Removes the pending state from SGI number 4n + x for the PE corresponding to the bit number written to.

Reads and writes have the following behavior:

SGI_clear_pending_bits<x> Meaning
0x00 If read, indicates that the SGI from the

corresponding PE is not pending and is
not active and pending.
If written, has no effect.

0x01 If read, indicates that the SGI from the
corresponding PE is pending or is active
and pending.
If written, removes the pending state
from the SGI for the corresponding PE.

This field resets to 0.

For SGI ID m, generated by processing element C writing to the corresponding GICD_SGIR field, where DIV and MOD
are the integer division and modulo operations:

• The corresponding GICD_CPENDSGIR<n> number is given by n = m DIV 4.
• The offset of the required register is (0xF10 + (4n)).
• The offset of the required field within the register GICD_CPENDSGIR<n> is given by m MOD 4.
• The required bit in the 8-bit SGI clear-pending field m is bit C.

GICD_CPENDSGIR<n>, SGI Clear-Pending Registers, n = 0 - 3

Page 3592

Accessing the GICD_CPENDSGIR<n>
These registers are used only when affinity routing is not enabled. When affinity routing is enabled, this register is
RES0. An implementation is permitted to make the register RAZ/WI in this case.

A register bit that corresponds to an unimplemented SGI is RAZ/WI.

These registers are byte-accessible.

If the GIC implementation supports two Security states:

• A register bit that corresponds to a Group 0 interrupt is RAZ/WI to Non-secure accesses.
• Register bits corresponding to unimplemented PEs are RAZ/WI.

GICD_CPENDSGIR<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC

Distributor
0x0F10 + 4n GICD_CPENDSGIR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_CPENDSGIR<n>, SGI Clear-Pending Registers, n = 0 - 3

Page 3593

GICD_CTLR, Distributor Control Register
The GICD_CTLR characteristics are:

Purpose
Enables interrupts and affinity routing.

Configuration
The format of this register depends on the Security state of the access and the number of Security states supported,
which is specified by GICD_CTLR.DS.

Attributes
GICD_CTLR is a 32-bit register.

Field descriptions
The GICD_CTLR bit assignments are:

When access is Secure, in a system that supports two Security states:

31 30292827262524232221201918171615141312111098 7 6 5 4 3 2 1 0
RWP RES0 E1NWFDSARE_NSARE_SRES0EnableGrp1SEnableGrp1NSEnableGrp0

RWP, bit [31]

Register Write Pending. Read only. Indicates whether a register write is in progress or not:

RWP Meaning
0b0 No register write in progress. The effects of previous register

writes to the affected register fields are visible to all logical
components of the GIC architecture, including the CPU
interfaces.

0b1 Register write in progress. The effects of previous register writes
to the affected register fields are not guaranteed to be visible to
all logical components of the GIC architecture, including the CPU
interfaces, as the effects of the changes are still being
propagated.

This field tracks writes to:

• GICD_CTLR[2:0], the Group Enables, for transitions from 1 to 0 only.
• GICD_CTLR[7:4], the ARE bits, E1NWF bit and DS bit.
• GICD_ICENABLER<n>.

Updates to other register fields are not tracked by this field.

This field resets to an architecturally UNKNOWN value.

Bits [30:8]

Reserved, RES0.

GICD_CTLR, Distributor Control Register

Page 3594

E1NWF, bit [7]

Enable 1 of N Wakeup Functionality.

It is IMPLEMENTATION DEFINED whether this bit is programmable, or RAZ/WI.

If it is implemented, then it has the following behavior:

E1NWF Meaning
0b0 A PE that is asleep cannot be picked for 1 of N interrupts.
0b1 A PE that is asleep can be picked for 1 of N interrupts as

determined by IMPLEMENTATION DEFINED controls.

This field resets to an architecturally UNKNOWN value.

DS, bit [6]

Disable Security.

DS Meaning
0b0 Non-secure accesses are not permitted to access and modify

registers that control Group 0 interrupts.
0b1 Non-secure accesses are permitted to access and modify registers

that control Group 0 interrupts.

If DS is written from 0 to 1 when GICD_CTLR.ARE_S == 1, then GICD_CTLR.ARE for the single Security state is RAO/
WI.

If the Distributor only supports a single Security state, this bit is RAO/WI.

If the Distributor supports two Security states, it IMPLEMENTATION DEFINED whether this bit is programmable or
implemented as RAZ/WI.

When this field is set to 1, all accesses to GICD_CTLR access the single Security state view, and all bits are accessible.

When set to 1, this field can only be cleared by a hardware reset.

Writing this bit from 0 to 1 is UNPREDICTABLE if any of the following is true:

• GICD_CTLR.EnableGrp0==1.
• GICD_CTLR.EnableGrp1S==1.
• GICD_CTLR.EnableGrp1NS==1.
• One or more INTID is in the Active or Active and Pending state.

This field resets to 0.

ARE_NS, bit [5]

Affinity Routing Enable, Non-secure state.

ARE_NS Meaning
0b0 Affinity routing disabled for Non-secure state.
0b1 Affinity routing enabled for Non-secure state.

When affinity routing is enabled for the Secure state, this field is RAO/WI.

Changing the ARE_NS settings from 0 to 1 is UNPREDICTABLE except when GICD_CTLR.EnableGrp1 Non-secure == 0.

Changing the ARE_NS settings from 1 to 0 is UNPREDICTABLE.

If GICv2 backwards compatibility for Non-secure state is not implemented, this field is RAO/WI.

This field resets to 0.

ARE_S, bit [4]

Affinity Routing Enable, Secure state.

GICD_CTLR, Distributor Control Register

Page 3595

ARE_S Meaning
0b0 Affinity routing disabled for Secure state.
0b1 Affinity routing enabled for Secure state.

Changing the ARE_S setting from 0 to 1 is UNPREDICTABLE except when all of the following apply:

• GICD_CTLR.EnableGrp0==0.
• GICD_CTLR.EnableGrp1S==0.
• GICD_CTLR.EnableGrp1NS==0.

Changing the ARE_S settings from 1 to 0 is UNPREDICTABLE.

If GICv2 backwards compatibility for Secure state is not implemented, this field is RAO/WI.

This field resets to 0.

Bit [3]

Reserved, RES0.

EnableGrp1S, bit [2]

Enable Secure Group 1 interrupts.

EnableGrp1S Meaning
0b0 Secure Group 1 interrupts are disabled.
0b1 Secure Group 1 interrupts are enabled.

If GICD_CTLR.ARE_S == 0, this field is RES0.

This field resets to an architecturally UNKNOWN value.

EnableGrp1NS, bit [1]

Enable Non-secure Group 1 interrupts.

EnableGrp1NS Meaning
0b0 Non-secure Group 1 interrupts are disabled.
0b1 Non-secure Group 1 interrupts are enabled.

Note

This field also controls whether LPIs are forwarded to the PE.

This field resets to an architecturally UNKNOWN value.

EnableGrp0, bit [0]

Enable Group 0 interrupts.

EnableGrp0 Meaning
0b0 Group 0 interrupts are disabled.
0b1 Group 0 interrupts are enabled.

This field resets to an architecturally UNKNOWN value.

When access is Non-secure, in a system that supports two Security states:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RWP RES0 ARE_NSRES0EnableGrp1AEnableGrp1

GICD_CTLR, Distributor Control Register

Page 3596

RWP, bit [31]

This bit is a read-only alias of the Secure GICD_CTLR.RWP bit.

Bits [30:5]

Reserved, RES0.

ARE_NS, bit [4]

This bit is a read-write alias of the Secure GICD_CTLR.ARE_NS bit.

If GICv2 backwards compatibility for Non-secure state is not implemented, this field is RAO/WI.

Bits [3:2]

Reserved, RES0.

EnableGrp1A, bit [1]

If ARE_NS == 1, then this bit is a read-write alias of the Secure GICD_CTLR.EnableGrp1NS bit.

If ARE_NS == 0, then this bit is RES0.

EnableGrp1, bit [0]

If ARE_NS == 0, then this bit is a read-write alias of the Secure GICD_CTLR.EnableGrp1NS bit.

If ARE_NS == 1, then this bit is RES0.

When in a system that supports only a single Security state:

31 302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
RWP RES0 E1NWFDSRES0ARERES0EnableGrp1EnableGrp0

RWP, bit [31]

Register Write Pending. Read only. Indicates whether a register write is in progress or not:

RWP Meaning
0b0 No register write in progress. The effects of previous register

writes to the affected register fields are visible to all logical
components of the GIC architecture, including the CPU
interfaces.

0b1 Register write in progress. The effects of previous register writes
to the affected register fields are not guaranteed to be visible to
all logical components of the GIC architecture, including the CPU
interfaces, as the effects of the changes are still being
propagated.

This field tracks updates to:

• GICD_CTLR[2:0], the Group Enables, for transitions from 1 to 0 only.
• GICD_CTLR[7:4], the ARE bits, E1NWF bit and DS bit.
• GICD_ICENABLER<n>, the bits that allow disabling of SPIs.

Updates to other register fields are not tracked by this field.

This field resets to an architecturally UNKNOWN value.

GICD_CTLR, Distributor Control Register

Page 3597

Bits [30:8]

Reserved, RES0.

E1NWF, bit [7]

Enable 1 of N Wakeup Functionality.

It is IMPLEMENTATION DEFINED whether this bit is programmable, or RAZ/WI.

If it is implemented, then it has the following behavior:

E1NWF Meaning
0b0 A PE that is asleep cannot be picked for 1 of N interrupts.
0b1 A PE that is asleep can be picked for 1 of N interrupts as

determined by IMPLEMENTATION DEFINED controls.

This field resets to an architecturally UNKNOWN value.

DS, bit [6]

Disable Security. This field is RAO/WI.

Bit [5]

Reserved, RES0.

ARE, bit [4]

Affinity Routing Enable.

ARE Meaning
0b0 Affinity routing disabled.
0b1 Affinity routing enabled.

Changing the ARE settings from 0 to 1 is UNPREDICTABLE except when all of the following apply:

• GICD_CTLR.EnableGrp1==0.
• GICD_CTLR.EnableGrp0==0.

Changing ARE from 1 to 0 is UNPREDICTABLE.

If GICv2 backwards compatibility is not implemented, this field is RAO/WI.

This field resets to 0.

Bits [3:2]

Reserved, RES0.

EnableGrp1, bit [1]

Enable Group 1 interrupts.

EnableGrp1 Meaning
0b0 Group 1 interrupts disabled.
0b1 Group 1 interrupts enabled.

This field resets to an architecturally UNKNOWN value.

EnableGrp0, bit [0]

Enable Group 0 interrupts.

GICD_CTLR, Distributor Control Register

Page 3598

EnableGrp0 Meaning
0b0 Group 0 interrupts are disabled.
0b1 Group 0 interrupts are enabled.

This field resets to an architecturally UNKNOWN value.

Accessing the GICD_CTLR
If an interrupt is pending within a CPU interface when the corresponding GICD_CTLR.EnableGrpX bit is written from
1 to 0 the interrupt must be retrieved from the CPU interface.

Note

This might have no effect on the forwarded interrupt if it has already been
activated. When a write changes the value of ARE for a Security state or the
value of the DS bit, the format used for interpreting the remaining bits
provided in the write data is the format that applied before the write takes
effect.

GICD_CTLR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x0000 GICD_CTLR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_CTLR, Distributor Control Register

Page 3599

GICD_ICACTIVER<n>, Interrupt Clear-Active Registers,
n = 0 - 31

The GICD_ICACTIVER<n> characteristics are:

Purpose
Deactivates the corresponding interrupt. These registers are used when saving and restoring GIC state.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ICACTIVER<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ICACTIVER0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ICACTIVER0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ICACTIVER<n> is a 32-bit register.

Field descriptions
The GICD_ICACTIVER<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clear_active_bit<x>, bit [x], for x = 0 to 31

Clear_active_bit<x>, bit [x], for x = 0 to 31

Removes the active state from interrupt number 32n + x. Reads and writes have the following behavior:

Clear_active_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not active, and is not active and
pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is active, or is active and pending.
If written, deactivates the corresponding
interrupt, if the interrupt is active. If the
interrupt is already deactivated, the write has no
effect.

This field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICACTIVER<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_ICACTIVER is (0x380 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

GICD_ICACTIVER<n>, Interrupt Clear-Active Registers, n = 0 - 31

Page 3600

Accessing the GICD_ICACTIVER<n>
When affinity routing is enabled for the Security state of an interrupt, the bits corresponding to SGIs and PPIs in that
Security state are RAZ/WI, and equivalent functionality for SGIs and PPIs is provided by GICR_ICACTIVER0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and
Secure Group 1 interrupts, any bits that correspond to Group 0 or Secure Group 1 interrupts are accessible only by
Secure accesses and are RAZ/WI to Non-secure accesses.

GICD_ICACTIVER<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x0380 + 4n GICD_ICACTIVER<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ICACTIVER<n>, Interrupt Clear-Active Registers, n = 0 - 31

Page 3601

GICD_ICACTIVER<n>E, Interrupt Clear-Active
Registers (extended SPI range), n = 0 - 31

The GICD_ICACTIVER<n>E characteristics are:

Purpose
Removes the active state from the corresponding SPI in the extended SPI range.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICD_ICACTIVER<n>E are
RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ICACTIVER<n>E registers is
(GICD_TYPER.ESPI_range+1). Registers are numbered from 0.

Attributes
GICD_ICACTIVER<n>E is a 32-bit register.

Field descriptions
The GICD_ICACTIVER<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clear_active_bit<x>, bit [x], for x = 0 to 31

Clear_active_bit<x>, bit [x], for x = 0 to 31

For the extended SPIs, removes the active state to interrupt number x. Reads and writes have the following behavior:

Clear_active_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not active, and is not active and
pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is active, or is active and pending.
If written, deactivates the corresponding
interrupt, if the interrupt is active. If the
interrupt is already deactivated, the write has no
effect.

This field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICACTIVER<n>E number, n, is given by n = (m-4096) DIV 32.
• The offset of the required GICD_ICACTIVER<n>E is (0x1C00 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

Accessing the GICD_ICACTIVER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ICACTIVER<n>E, the
corresponding bit is RES0.

GICD_ICACTIVER<n>E, Interrupt Clear-Active Registers (extended SPI range), n = 0 - 31

Page 3602

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ICACTIVER<n>E can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC

Distributor
0x1C00 + 4n GICD_ICACTIVER<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ICACTIVER<n>E, Interrupt Clear-Active Registers (extended SPI range), n = 0 - 31

Page 3603

GICD_ICENABLER<n>, Interrupt Clear-Enable
Registers, n = 0 - 31

The GICD_ICENABLER<n> characteristics are:

Purpose
Disables forwarding of the corresponding interrupt to the CPU interfaces.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ICENABLER<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ICENABLER0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ICENABLER0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ICENABLER<n> is a 32-bit register.

Field descriptions
The GICD_ICENABLER<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clear_enable_bit<x>, bit [x], for x = 0 to 31

Clear_enable_bit<x>, bit [x], for x = 0 to 31

For SPIs and PPIs, controls the forwarding of interrupt number 32n + x to the CPU interfaces. Reads and writes have
the following behavior:

Clear_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, disables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent read
of this bit returns 0.

For SGIs, the behavior of this bit is IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICENABLER<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_ICENABLER is (0x180 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

GICD_ICENABLER<n>, Interrupt Clear-Enable Registers, n = 0 - 31

Page 3604

Note

Writing a 1 to a GICD_ICENABLER<n> bit only disables the forwarding of the
corresponding interrupt from the Distributor to any CPU interface. It does not
prevent the interrupt from changing state, for example becoming pending or
active and pending if it is already active.

Accessing the GICD_ICENABLER<n>
For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and an implementation
is permitted to make the field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_ICENABLER0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

When GICD_CTLR.DS==0, bits corresponding to Group 0 and Secure Group 1 interrupts are RAZ/WI to Non-secure
accesses.

It is IMPLEMENTATION DEFINED whether implemented SGIs are permanently enabled, or can be enabled and disabled by
writes to GICD_ISENABLER<n> and GICD_ICENABLER<n> where n=0.

Completion of a write to this register does not guarantee that the effects of the write are visible throughout the affinity
hierarchy. To ensure an enable has been cleared, software must write to the register with bits set to 1 to clear the
required enables. Software must then poll GICD_CTLR.RWP until it has the value zero.

GICD_ICENABLER<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC

Distributor
0x0180 + 4n GICD_ICENABLER<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ICENABLER<n>, Interrupt Clear-Enable Registers, n = 0 - 31

Page 3605

GICD_ICENABLER<n>E, Interrupt Clear-Enable
Registers, n = 0 - 31

The GICD_ICENABLER<n>E characteristics are:

Purpose
Disables forwarding of the corresponding SPI in the extended SPI range to the CPU interfaces.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICD_ICENABLER<n>E are
RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ICENABLER<n>E registers is
(GICD_TYPER.ESPI_range+1). Registers are numbered from 0.

Attributes
GICD_ICENABLER<n>E is a 32-bit register.

Field descriptions
The GICD_ICENABLER<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clear_enable_bit<x>, bit [x], for x = 0 to 31

Clear_enable_bit<x>, bit [x], for x = 0 to 31

For the extended SPI range, controls the forwarding of interrupt number x to the CPU interface. Reads and writes
have the following behavior:

Clear_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, enables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent read
of this bit returns 0.

This field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICENABLER<n>E number, n, is given by n = (m-4096) DIV 32.

• The offset of the required GICD_ICENABLER<n>E is (0x1400 + (4*n)).

• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

GICD_ICENABLER<n>E, Interrupt Clear-Enable Registers, n = 0 - 31

Page 3606

Accessing the GICD_ICENABLER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ICENABLER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ICENABLER<n>E can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC

Distributor
0x1400 + 4n GICD_ICENABLER<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ICENABLER<n>E, Interrupt Clear-Enable Registers, n = 0 - 31

Page 3607

GICD_ICFGR<n>, Interrupt Configuration Registers, n
= 0 - 63

The GICD_ICFGR<n> characteristics are:

Purpose
Determines whether the corresponding interrupt is edge-triggered or level-sensitive.

Configuration
These registers are available in all GIC configurations. If the GIC implementation supports two Security states, these
registers are Common.

GICD_ICFGR1 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ICFGR1 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and an implementation
is permitted to make the field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_ICFGR<n>

For each supported PPI, it is IMPLEMENTATION DEFINED whether software can program the corresponding Int_config
field.

For SGIs, Int_config fields are RO, meaning that GICD_ICFGR0 is RO.

Changing Int_config when the interrupt is individually enabled is UNPREDICTABLE.

Changing the interrupt configuration between level-sensitive and edge-triggered (in either direction) at a time when
there is a pending interrupt will leave the interrupt in an UNKNOWN pending state.

Fields corresponding to unimplemented interrupts are RAZ/WI.

Attributes
GICD_ICFGR<n> is a 32-bit register.

Field descriptions
The GICD_ICFGR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Int_config<x>, bits [2x+1:2x], for x = 0 to 15

Int_config<x>, bits [2x+1:2x], for x = 0 to 15

Indicates whether the interrupt with ID 16n + x is level-sensitive or edge-triggered.

Int_config[0] (bit [2x]) is RES0.

Possible values of Int_config[1] (bit [2x+1]) are:

GICD_ICFGR<n>, Interrupt Configuration Registers, n = 0 - 63

Page 3608

Int_config<x> Meaning
0b00 Corresponding interrupt is level-sensitive.
0b01 Corresponding interrupt is edge-triggered.

For SGIs, Int_config[1] is RAO/WI.

For SPIs and PPIs, Int_config[1] is programmable unless the implementation supports two Security states and the bit
corresponds to a Group 0 or Secure Group 1 interrupt, in which case the bit is RAZ/WI to Non-secure accesses.

This field resets to an architecturally UNKNOWN value.

Accessing the GICD_ICFGR<n>

GICD_ICFGR<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x0C00 + 4n GICD_ICFGR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ICFGR<n>, Interrupt Configuration Registers, n = 0 - 63

Page 3609

GICD_ICFGR<n>E, Interrupt Configuration Registers
(Extended SPI Range), n = 0 - 63

The GICD_ICFGR<n>E characteristics are:

Purpose
Determines whether the corresponding SPI in the extended SPI range is edge-triggered or level-sensitive.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICD_ICFGR<n>E are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ICFGR<n>E registers is
((GICD_TYPER.ESPI_range+1)*2). Registers are numbered from 0.

Attributes
GICD_ICFGR<n>E is a 32-bit register.

Field descriptions
The GICD_ICFGR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Int_config<x>, bits [2x+1:2x], for x = 0 to 15

Int_config<x>, bits [2x+1:2x], for x = 0 to 15

Indicates whether the interrupt with ID 16n + x is level-sensitive or edge-triggered.

Int_config[0] (bit[2x]) is RES0.

Possible values of Int_config[1] (bit[2x+1]) are:

Int_config<x> Meaning
0b00 Corresponding interrupt is level-sensitive.
0b01 Corresponding interrupt is edge-triggered.

This field resets to an architecturally UNKNOWN value.

Accessing the GICD_ICFGR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ICFGR<n>E, the corresponding bit
is RES0.

When GICD_CTLR.DS==0, a register bit that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-
secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ICFGR<n>E can be accessed through the memory-mapped interfaces:

Component Offset Instance

GICD_ICFGR<n>E, Interrupt Configuration Registers (Extended SPI Range), n = 0 - 63

Page 3610

GIC Distributor 0x3000 + 4n GICD_ICFGR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ICFGR<n>E, Interrupt Configuration Registers (Extended SPI Range), n = 0 - 63

Page 3611

GICD_ICPENDR<n>, Interrupt Clear-Pending Registers,
n = 0 - 31

The GICD_ICPENDR<n> characteristics are:

Purpose
Removes the pending state from the corresponding interrupt.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ICPENDR<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ICPENDR0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ICPENDR0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ICPENDR<n> is a 32-bit register.

Field descriptions
The GICD_ICPENDR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clear_pending_bit<x>, bit [x], for x = 0 to 31

Clear_pending_bit<x>, bit [x], for x = 0 to 31

For SPIs and PPIs, removes the pending state from interrupt number 32n + x. Reads and writes have the following
behavior:

GICD_ICPENDR<n>, Interrupt Clear-Pending Registers, n = 0 - 31

Page 3612

Clear_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending on any PE.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is pending, or active and pending:

• On this PE if the interrupt is an SGI or
PPI.

• On at least one PE if the interrupt is an
SPI.

If written, changes the state of the
corresponding interrupt from pending to
inactive, or from active and pending to active.
This has no effect in the following cases:

• If the interrupt is an SGI. In this case, the
write is ignored. The pending state of an
SGI can be cleared using
GICD_CPENDSGIR<n>.

• If the interrupt is not pending and is not
active and pending.

• If the interrupt is a level-sensitive
interrupt that is pending or active and
pending for a reason other than a write to
GICD_ISPENDR<n>. In this case, if the
interrupt signal continues to be asserted,
the interrupt remains pending or active
and pending.

This field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICPENDR<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_ICPENDR is (0x200 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

Accessing the GICD_ICPENDR<n>
Clear-pending bits for SGIs are RO/WI.

When affinity routing is enabled for the Security state of an interrupt:

• Bits corresponding to SGIs and PPIs are RAZ/WI, and equivalent functionality for SGIs and PPIs is provided by
GICR_ICPENDR0.

• Bits corresponding to Group 0 and Group 1 Secure interrupts can only be cleared by Secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and
Secure Group 1 interrupts, any bits that correspond to Group 0 or Secure Group 1 interrupts are accessible only by
Secure accesses and are RAZ/WI to Non-secure accesses.

GICD_ICPENDR<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x0280 + 4n GICD_ICPENDR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ICPENDR<n>, Interrupt Clear-Pending Registers, n = 0 - 31

Page 3613

GICD_ICPENDR<n>E, Interrupt Clear-Pending
Registers (extended SPI range), n = 0 - 31

The GICD_ICPENDR<n>E characteristics are:

Purpose
Removes the pending state to the corresponding SPI in the extended SPI range.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICD_ICPENDR<n>E are
RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ICPENDR<n>E registers is
(GICD_TYPER.ESPI_range+1). Registers are numbered from 0.

Attributes
GICD_ICPENDR<n>E is a 32-bit register.

Field descriptions
The GICD_ICPENDR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clear_pending_bit<x>, bit [x], for x = 0 to 31

Clear_pending_bit<x>, bit [x], for x = 0 to 31

For the extended PPIs, removes the pending state to interrupt number x. Reads and writes have the following
behavior:

Clear_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is pending, or active and pending.
If written, changes the state of the
corresponding interrupt from pending to
inactive, or from active and pending to active.
This has no effect in the following cases:

• If the interrupt is not pending and is not
active and pending.

• If the interrupt is a level-sensitive
interrupt that is pending or active and
pending for a reason other than a write
to GICD_ISPENDR<n>E. In this case, if
the interrupt signal continues to be
asserted, the interrupt remains pending
or active and pending.

This field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

GICD_ICPENDR<n>E, Interrupt Clear-Pending Registers (extended SPI range), n = 0 - 31

Page 3614

• The corresponding GICD_ICPENDR<n>E number, n, is given by n = (m-4096) DIV 32.
• The offset of the required GICD_ICPENDR<n>E is (0x1800 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

Accessing the GICD_ICPENDR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ICPENDR<n>E, the corresponding
bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ICPENDR<n>E can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x1800 + 4n GICD_ICPENDR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ICPENDR<n>E, Interrupt Clear-Pending Registers (extended SPI range), n = 0 - 31

Page 3615

GICD_IGROUPR<n>, Interrupt Group Registers, n = 0 -
31

The GICD_IGROUPR<n> characteristics are:

Purpose
Controls whether the corresponding interrupt is in Group 0 or Group 1.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Secure.

The number of implemented GICD_IGROUPR<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_IGROUPR0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_IGROUPR0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_IGROUPR<n> is a 32-bit register.

Field descriptions
The GICD_IGROUPR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Group_status_bit<x>, bit [x], for x = 0 to 31

Group_status_bit<x>, bit [x], for x = 0 to 31

Group status bit.

Group_status_bit<x> Meaning
0b0 When GICD_CTLR.DS==1, the corresponding

interrupt is Group 0.
When GICD_CTLR.DS==0, the corresponding
interrupt is Secure.

0b1 When GICD_CTLR.DS==1, the corresponding
interrupt is Group 1.
When GICD_CTLR.DS==0, the corresponding
interrupt is Non-secure Group 1.

If affinity routing is enabled for the Security state of an interrupt, the bit that corresponds to the interrupt is
concatenated with the equivalent bit in GICD_IGRPMODR<n> to form a 2-bit field that defines an interrupt group. The
encoding of this field is described in GICD_IGRPMODR<n>.

If affinity routing is disabled for the Security state of an interrupt, then:

• The corresponding GICD_IGRPMODR<n> bit is RES0.
• For Secure interrupts, the interrupt is Secure Group 0.
• For Non-secure interrupts, the interrupt is Non-secure Group 1.

This field resets to:

GICD_IGROUPR<n>, Interrupt Group Registers, n = 0 - 31

Page 3616

• If n == 0, an UNKNOWN value.
• If n > 0, 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IGROUP<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_IGROUP is (0x080 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

Accessing the GICD_IGROUPR<n>
For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and an implementation
is permitted to make the field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_IGROUPR0.

When GICD_CTLR.DS==0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note

Accesses to GICD_IGROUPR0 when affinity routing is not enabled for a
Security state access the same state as GICR_IGROUPR0, and must update
Redistributor state associated with the PE performing the accesses.
Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than one time. The effect of the
change must be visible in finite time.

GICD_IGROUPR<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x0080 + 4n GICD_IGROUPR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_IGROUPR<n>, Interrupt Group Registers, n = 0 - 31

Page 3617

GICD_IGROUPR<n>E, Interrupt Group Registers
(extended SPI range), n = 0 - 31

The GICD_IGROUPR<n>E characteristics are:

Purpose
Controls whether the corresponding SPI in the extended SPI range is in Group 0 or Group 1.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICD_IGROUPR<n>E are
RES0.

GICD_IGROUPR<n>E resets to 0x00000000.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1:

• The number of implemented GICD_IGROUPR<n>E registers is (GICD_TYPER.ESPI_range+1). Registers are
numbered from 0.

• When GICD_CTLR.DS==0, this register is Secure.

Attributes
GICD_IGROUPR<n>E is a 32-bit register.

Field descriptions
The GICD_IGROUPR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Group_status_bit<x>, bit [x], for x = 0 to 31

Group_status_bit<x>, bit [x], for x = 0 to 31

Group status bit.

Group_status_bit<x> Meaning
0b0 When GICD_CTLR.DS==1, the corresponding

interrupt is Group 0.
When GICD_CTLR.DS==0, the corresponding
interrupt is Secure.

0b1 When GICD_CTLR.DS==1, the corresponding
interrupt is Group 1.
When GICD_CTLR.DS==0, the corresponding
interrupt is Non-secure Group 1.

If affinity routing is enabled for the Security state of an interrupt, the bit that corresponds to the interrupt is
concatenated with the equivalent bit in GICD_IGRPMODR<n>E to form a 2-bit field that defines an interrupt group.
The encoding of this field is described in GICD_IGRPMODR<n>E.

If affinity routing is disabled for the Security state of an interrupt, the bit is RES0:

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IGROUPR<n>E number, n, is given by n = (m-4096) DIV 32.
• The offset of the required GICD_IGROUPR<n>E is (0x1000 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

GICD_IGROUPR<n>E, Interrupt Group Registers (extended SPI range), n = 0 - 31

Page 3618

Accessing the GICD_IGROUPR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_IGROUPR<n>E, the corresponding
bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_IGROUPR<n>E can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x1000 + 4n GICD_IGROUPR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_IGROUPR<n>E, Interrupt Group Registers (extended SPI range), n = 0 - 31

Page 3619

GICD_IGRPMODR<n>, Interrupt Group Modifier
Registers, n = 0 - 31

The GICD_IGRPMODR<n> characteristics are:

Purpose
When GICD_CTLR.DS==0, this register together with the GICD_IGROUPR<n> registers, controls whether the
corresponding interrupt is in:

• Secure Group 0.
• Non-secure Group 1.
• Secure Group 1.

Configuration
When GICD_CTLR.DS==0, these registers are Secure.

The number of implemented GICD_IGROUPR<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

When GICD_CTLR.ARE_S==0 or GICD_CTLR.DS==1, the GICD_IGRPMODR<n> registers are RES0. An
implementation can make these registers RAZ/WI in this case.

Attributes
GICD_IGRPMODR<n> is a 32-bit register.

Field descriptions
The GICD_IGRPMODR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Group_modifier_bit<x>, bit [x], for x = 0 to 31

Group_modifier_bit<x>, bit [x], for x = 0 to 31

Group modifier bit. When affinity routing is enabled for the Security state of an interrupt, the bit that corresponds to
the interrupt is concatenated with the equivalent bit in GICD_IGROUPR<n> to form a 2-bit field that defines an
interrupt group:

Group
modifier bit

Group
status bit Definition Short

name
0b0 0b0 Secure Group 0 G0S
0b0 0b1 Non-secure Group 1 G1NS
0b1 0b0 Secure Group 1 G1S
0b1 0b1 Reserved, treated as Non-

secure Group 1
-

This field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IGRPMODR<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_IGRPMODR is (0x080 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

See GICD_IGROUPR<n> for information about the GICD_IGRPMODR0 reset value.

GICD_IGRPMODR<n>, Interrupt Group Modifier Registers, n = 0 - 31

Page 3620

Accessing the GICD_IGRPMODR<n>
When affinity routing is enabled for Secure state, GICD_IGRPMODR0 is RES0 and equivalent functionality is proved by
GICR_IGRPMODR0.

When GICD_CTLR.DS==0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than one time. The effect of the
change must be visible in finite time.

GICD_IGRPMODR<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC

Distributor
0x0D00 + 4n GICD_IGRPMODR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_IGRPMODR<n>, Interrupt Group Modifier Registers, n = 0 - 31

Page 3621

GICD_IGRPMODR<n>E, Interrupt Group Modifier
Registers (extended SPI range), n = 0 - 31

The GICD_IGRPMODR<n>E characteristics are:

Purpose
When GICD_CTLR.DS==0, this register together with the GICD_IGROUPR<n>E registers, controls whether the
corresponding interrupt is in:

• Secure Group 0.
• Non-secure Group 1.
• When System register access is enabled, Secure Group 1.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICD_IGRPMODR<n>E are
RES0.

GICD_IGRPMODR<n>E resets to 0x00000000.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1:

• The number of implemented GICD_IGRPMODR<n>E registers is (GICD_TYPER.ESPI_range+1). Registers are
numbered from 0.

• When GICD_CTLR.DS==0, this register is Secure.

Attributes
GICD_IGRPMODR<n>E is a 32-bit register.

Field descriptions
The GICD_IGRPMODR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Group_modifier_bit<x>, bit [x], for x = 0 to 31

Group_modifier_bit<x>, bit [x], for x = 0 to 31

Group modifier bit. In implementations where affinity routing is enabled for the Security state of an interrupt, the bit
that corresponds to the interrupt is concatenated with the equivalent bit in GICD_IGROUPR<n>E to form a 2-bit field
that defines an interrupt group:

Group
modifier bit

Group
status bit Definition Short

name
0b0 0b0 Secure Group 0 G0S
0b0 0b1 Non-secure Group 1 G1NS
0b1 0b0 Secure Group 1 G1S
0b1 0b1 Reserved, treated as Non-

secure Group 1
-

This field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IGRPMODR<n>E number, n, is given by n = (m-4096) DIV 32.
• The offset of the required GICD_IGRPMODR<n>E is (0x3400 + (4*n)).

GICD_IGRPMODR<n>E, Interrupt Group Modifier Registers (extended SPI range), n = 0 - 31

Page 3622

• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

Accessing the GICD_IGRPMODR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_IGRPMODR<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_IGRPMODR<n>E can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC

Distributor
0x3400 + 4n GICD_IGRPMODR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_IGRPMODR<n>E, Interrupt Group Modifier Registers (extended SPI range), n = 0 - 31

Page 3623

GICD_IIDR, Distributor Implementer Identification
Register

The GICD_IIDR characteristics are:

Purpose
Provides information about the implementer and revision of the Distributor.

Configuration
This register is available in all configurations of the GIC. If the GIC implementation supports two Security states, this
register is Common.

Attributes
GICD_IIDR is a 32-bit register.

Field descriptions
The GICD_IIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ProductID RES0 Variant Revision Implementer

ProductID, bits [31:24]

An IMPLEMENTATION DEFINED product identifier.

Bits [23:20]

Reserved, RES0.

Variant, bits [19:16]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish product variants, or major
revisions of a product.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number. Typically, this field is used to distinguish minor revisions of a product.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the Distributor:

• Bits [11:8] are the JEP106 continuation code of the implementer. For an Arm implementation, this field is 0x4.
• Bit [7] is always 0.
• Bits [6:0] are the JEP106 identity code of the implementer. For an Arm implementation, bits [7:0] are therefore

0x3B.

GICD_IIDR, Distributor Implementer Identification Register

Page 3624

Accessing the GICD_IIDR

GICD_IIDR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x0008 GICD_IIDR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_IIDR, Distributor Implementer Identification Register

Page 3625

GICD_IPRIORITYR<n>, Interrupt Priority Registers, n =
0 - 254

The GICD_IPRIORITYR<n> characteristics are:

Purpose
Holds the priority of the corresponding interrupt.

Configuration
These registers are available in all configurations of the GIC. When GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_IPRIORITYR<n> registers is 8*(GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_IPRIORITYR0 to GICD_IPRIORITYR7 are Banked for each connected PE with GICR_TYPER.Processor_Number <
8.

Accessing GICD_IPRIORITYR0 to GICD_IPRIORITYR7 from a PE with GICR_TYPER.Processor_Number > 7 is
CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_IPRIORITYR<n> is a 32-bit register.

Field descriptions
The GICD_IPRIORITYR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Priority_offset_3B Priority_offset_2B Priority_offset_1B Priority_offset_0B

Priority_offset_3B, bits [31:24]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 3. Lower priority values correspond to
greater priority of the interrupt.

This field resets to 0.

Priority_offset_2B, bits [23:16]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 2. Lower priority values correspond to
greater priority of the interrupt.

This field resets to 0.

Priority_offset_1B, bits [15:8]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 1. Lower priority values correspond to
greater priority of the interrupt.

This field resets to 0.

GICD_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 254

Page 3626

Priority_offset_0B, bits [7:0]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 0. Lower priority values correspond to
greater priority of the interrupt.

This field resets to 0.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IPRIORITYR<n> number, n, is given by n = m DIV 4.
• The offset of the required GICD_IPRIORITYR<n> register is (0x400 + (4*n)).
• The byte offset of the required Priority field in this register is m MOD 4, where:

◦ Byte offset 0 refers to register bits [7:0].
◦ Byte offset 1 refers to register bits [15:8].
◦ Byte offset 2 refers to register bits [23:16].
◦ Byte offset 3 refers to register bits [31:24].

Accessing the GICD_IPRIORITYR<n>
These registers are always used when affinity routing is not enabled. When affinity routing is enabled for the Security
state of an interrupt:

• GICR_IPRIORITYR<n> is used instead of GICD_IPRIORITYR<n> where n = 0 to 7 (that is, for SGIs and PPIs).
• GICD_IPRIORITYR<n> is RAZ/WI where n = 0 to 7.

These registers are byte-accessible.

A register field corresponding to an unimplemented interrupt is RAZ/WI.

A GIC might implement fewer than eight priority bits, but must implement at least bits [7:4] of each field. In each field,
unimplemented bits are RAZ/WI, see Interrupt prioritization.

When GICD_CTLR.DS==0:

• A register bit that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-secure accesses.
• A Non-secure access to a field that corresponds to a Non-secure Group 1 interrupt behaves as described in

Software views of interrupt priority.

It is IMPLEMENTATION DEFINED whether changing the value of a priority field changes the priority of an active interrupt.

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than one time. The effect of the
change must be visible in finite time.

GICD_IPRIORITYR<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC

Distributor
0x0400 + 4n GICD_IPRIORITYR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 254

Page 3627

GICD_IPRIORITYR<n>E, Holds the priority of the
corresponding interrupt for each extended SPI

supported by the GIC., n = 0 - 255
The GICD_IPRIORITYR<n>E characteristics are:

Purpose
Holds the priority of the corresponding interrupt for each extended SPI supported by the GIC.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICD_IPRIORITYR<n>E are
RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_IPRIORITYR<n>E registers is
((GICD_TYPER.ESPI_range+1)*8). Registers are numbered from 0.

Attributes
GICD_IPRIORITYR<n>E is a 32-bit register.

Field descriptions
The GICD_IPRIORITYR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Priority_offset_3B Priority_offset_2B Priority_offset_1B Priority_offset_0B

Priority_offset_3B, bits [31:24]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 3. Lower priority values correspond to
greater priority of the interrupt.

This field resets to an architecturally UNKNOWN value.

Priority_offset_2B, bits [23:16]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 2. Lower priority values correspond to
greater priority of the interrupt.

This field resets to an architecturally UNKNOWN value.

Priority_offset_1B, bits [15:8]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 1. Lower priority values correspond to
greater priority of the interrupt.

This field resets to an architecturally UNKNOWN value.

Priority_offset_0B, bits [7:0]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 0. Lower priority values correspond to
greater priority of the interrupt.

GICD_IPRIORITYR<n>E, Holds the priority of the corresponding interrupt for each extended SPI supported by the GIC.,
n = 0 - 255

Page 3628

This field resets to an architecturally UNKNOWN value.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IPRIORITYR<n> number, n, is given by n = (m-4096) DIV 4.
• The offset of the required GICD_IPRIORITYR<n>E register is (0x2000 + (4*n)).
• The byte offset of the required Priority field in this register is m MOD 4, where:

◦ Byte offset 0 refers to register bits [7:0].
◦ Byte offset 1 refers to register bits [15:8].
◦ Byte offset 2 refers to register bits [23:16].
◦ Byte offset 3 refers to register bits [31:24].

Accessing the GICD_IPRIORITYR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ISACTIVER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0:

• A field that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-secure accesses.
• A Non-secure access to a field that corresponds to a Non-secure Group 1 interrupt behaves as described in

Software accesses of interrupt priority.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than once. The effect of the change
must be visible in finite time.

GICD_IPRIORITYR<n>E can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC

Distributor
0x2000 + 4n GICD_IPRIORITYR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_IPRIORITYR<n>E, Holds the priority of the corresponding interrupt for each extended SPI supported by the GIC.,
n = 0 - 255

Page 3629

GICD_IROUTER<n>, Interrupt Routing Registers, n =
32 - 1019

The GICD_IROUTER<n> characteristics are:

Purpose
When affinity routing is enabled, provides routing information for the SPI with INTID n.

Configuration
These registers are available in all configurations of the GIC. If the GIC implementation supports two Security states,
these registers are Common.

The maximum value of n is given by (32*(GICD_TYPER.ITLinesNumber+1) - 1). GICD_IROUTER<n> registers where
n=0 to 31 are reserved.

Attributes
GICD_IROUTER<n> is a 64-bit register.

Field descriptions
The GICD_IROUTER<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 Aff3

Interrupt_Routing_Mode RES0 Aff2 Aff1 Aff0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

Affinity level 3, the least significant affinity level field.

This field resets to an architecturally UNKNOWN value.

Interrupt_Routing_Mode, bit [31]

Interrupt Routing Mode. Defines how SPIs are routed in an affinity hierarchy:

Interrupt_Routing_Mode Meaning
0b0 Interrupts routed to the PE specified by

a.b.c.d. In this routing, a, b, c, and d are
the values of fields Aff3, Aff2, Aff1, and Aff0
respectively.

0b1 Interrupts routed to any PE defined as a
participating node.

If GICD_IROUTER<n>.IRM == 0 and the affinity path does not correspond to an implemented PE, then if the
corresponding interrupt becomes pending it will not be forwarded to any PE and will remain pending.

In implementations that do not require 1 of N distribution of SPIs, this bit might be RAZ/WI.

GICD_IROUTER<n>, Interrupt Routing Registers, n = 32 - 1019

Page 3630

When this bit is set to 1, GICD_IROUTER<n>.{Aff3, Aff2, Aff1, Aff0} are UNKNOWN.

Note

An implementation might choose to make the Aff<n> fields RO when this field
is 1.

This field resets to an architecturally UNKNOWN value.

Bits [30:24]

Reserved, RES0.

Aff2, bits [23:16]

Affinity level 2, an intermediate affinity level field.

This field resets to an architecturally UNKNOWN value.

Aff1, bits [15:8]

Affinity level 1, an intermediate affinity level field.

This field resets to an architecturally UNKNOWN value.

Aff0, bits [7:0]

Affinity level 0, the most significant affinity level field.

This field resets to an architecturally UNKNOWN value.

For an SPI with INTID m:

• The corresponding GICD_IROUTER<n> register number, n, is given by n = m.
• The offset of the GICD_IROUTER<n> register is 0x6000 + 8n.

Accessing the GICD_IROUTER<n>
These registers are used only when affinity routing is enabled. When affinity routing is not enabled:

• These registers are RES0. An implementation is permitted to make the register RAZ/WI in this case.
• The GICD_ITARGETSR<n> registers provide interrupt routing information.

Note

When affinity routing becomes enabled for a Security state (for example,
following a reset or following a write to GICD_CTLR) the value of all writeable
fields in this register is UNKNOWN for that Security state. When the group of an
interrupt changes so the ARE setting for the interrupt changes to 1, the value
of this register is UNKNOWN for that interrupt.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and
Secure Group 1 interrupts, any GICD_IROUTER<n> registers that correspond to Group 0 or Secure Group 1
interrupts are accessible only by Secure accesses and are RAZ/WI to Non-secure accesses.

Note

For each interrupt, a GIC implementation might support fewer than 256
values for an affinity level. In this case, some bits of the corresponding affinity
level field might be RO. Implementations must ensure that an interrupt that is
pending at the time of the write uses either the old value or the new value and

GICD_IROUTER<n>, Interrupt Routing Registers, n = 32 - 1019

Page 3631

must ensure that the interrupt is neither lost nor handled more than one time.
The effect of the change must be visible in finite time.

GICD_IROUTER<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x6000 + 8n GICD_IROUTER<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_IROUTER<n>, Interrupt Routing Registers, n = 32 - 1019

Page 3632

GICD_IROUTER<n>E, Interrupt Routing Registers
(Extended SPI Range), n = 0 - 1023

The GICD_IROUTER<n>E characteristics are:

Purpose
When affinity routing is enabled, provides routing information for the corresponding SPI in the extended SPI range.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICD_IROUTER<n>E are
RES0.

RW fields in this register reset to architecturally UNKNOWN values.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_IROUTER<n>E registers is
(((GICD_TYPER.ESPI_range+1)*32)-1). Registers are numbered from 0.

Attributes
GICD_IROUTER<n>E is a 32-bit register.

Field descriptions
The GICD_IROUTER<n>E bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 Aff3

Interrupt_Routing_Mode RES0 Aff2 Aff1 Aff0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

Affinity level 3, the least significant affinity level field.

Interrupt_Routing_Mode, bit [31]

Interrupt Routing Mode. Defines how SPIs are routed in an affinity hierarchy:

Interrupt_Routing_Mode Meaning
0b0 Interrupts routed to the PE specified by

a.b.c.d. In this routing, a, b, c, and d are
the values of fields Aff3, Aff2, Aff1, and Aff0
respectively.

0b1 Interrupts routed to any PE defined as a
participating node.

If GICD_IROUTER<n>E.IRM == 0 and the affinity path does not correspond to an implemented PE, then if the
corresponding interrupt becomes pending it will not be forwarded to any PE and will remain pending.

GICD_IROUTER<n>E, Interrupt Routing Registers (Extended SPI Range), n = 0 - 1023

Page 3633

In implementations that do not require 1 of N distribution of SPIs, this bit might be RAZ/WI.

When this bit is set to 1, GICD_IROUTER<n>E.{Aff3, Aff2, Aff1, Aff0} are UNKNOWN.

Note

An implementation might choose to make the Aff<n> fields RO when this field
is 1.

Bits [30:24]

Reserved, RES0.

Aff2, bits [23:16]

Affinity level 2, an intermediate affinity level field.

Aff1, bits [15:8]

Affinity level 1, an intermediate affinity level field.

Aff0, bits [7:0]

Affinity level 0, the most significant affinity level field.

For an SPI with INTID m:

• The corresponding GICD_IROUTER<n>E register number, n, is given by n = m.
• The offset of the GICD_IROUTER<n>E register is 0x6000 + 8n.

Accessing the GICD_IROUTER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_IROUTER<n>E, the register is
RES0.

When GICD_CTLR.DS==0, a register that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-
secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_IROUTER<n>E can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x8000 + 8n GICD_IROUTER<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_IROUTER<n>E, Interrupt Routing Registers (Extended SPI Range), n = 0 - 1023

Page 3634

GICD_ISACTIVER<n>, Interrupt Set-Active Registers, n
= 0 - 31

The GICD_ISACTIVER<n> characteristics are:

Purpose
Activates the corresponding interrupt. These registers are used when saving and restoring GIC state.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ISACTIVER<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ISACTIVER0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ISACTIVER0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ISACTIVER<n> is a 32-bit register.

Field descriptions
The GICD_ISACTIVER<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Set_active_bit<x>, bit [x], for x = 0 to 31

Set_active_bit<x>, bit [x], for x = 0 to 31

Adds the active state to interrupt number 32n + x. Reads and writes have the following behavior:

Set_active_bit<x> Meaning
0b0 If read, indicates that the corresponding interrupt

is not active, and is not active and pending.
If written, has no effect.

0b1 If read, indicates that the corresponding interrupt
is active, or is active and pending.
If written, activates the corresponding interrupt, if
the interrupt is not already active. If the interrupt
is already active, the write has no effect.
After a write of 1 to this bit, a subsequent read of
this bit returns 1.

This field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ISACTIVER<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_ISACTIVER is (0x300 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

GICD_ISACTIVER<n>, Interrupt Set-Active Registers, n = 0 - 31

Page 3635

Accessing the GICD_ISACTIVER<n>
When affinity routing is enabled for the Security state of an interrupt, bits corresponding to SGIs and PPIs are RAZ/
WI, and equivalent functionality for SGIs and PPIs is provided by GICR_ISACTIVER0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and
Secure Group 1 interrupts, any bits that correspond to Group 0 or Secure Group 1 interrupts are accessible only by
Secure accesses and are RAZ/WI to Non-secure accesses.

The bit reads as one if the status of the interrupt is active or active and pending. GICD_ISPENDR<n> and
GICD_ICPENDR<n> provide the pending status of the interrupt.

GICD_ISACTIVER<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x0300 + 4n GICD_ISACTIVER<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ISACTIVER<n>, Interrupt Set-Active Registers, n = 0 - 31

Page 3636

GICD_ISACTIVER<n>E, Interrupt Set-Active Registers
(extended SPI range), n = 0 - 31

The GICD_ISACTIVER<n>E characteristics are:

Purpose
Adds the active state to the corresponding SPI in the extended SPI range.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICD_ISACTIVER<n>E are
RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ISACTIVER<n>E registers is
(GICD_TYPER.ESPI_range+1). Registers are numbered from 0.

Attributes
GICD_ISACTIVER<n>E is a 32-bit register.

Field descriptions
The GICD_ISACTIVER<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Set_active_bit<x>, bit [x], for x = 0 to 31

Set_active_bit<x>, bit [x], for x = 0 to 31

For the extended SPIs, adds the active state to interrupt number x. Reads and writes have the following behavior:

Set_active_bit<x> Meaning
0b0 If read, indicates that the corresponding interrupt

is not active, and is not active and pending.
If written, has no effect.

0b1 If read, indicates that the corresponding interrupt
is active, or active and pending on this PE.
If written, activates the corresponding interrupt, if
the interrupt is not already active. If the interrupt
is already active, the write has no effect.
After a write of 1 to this bit, a subsequent read of
this bit returns 1.

This field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ISACTIVER<n>E number, n, is given by n = (m-4096) DIV 32.
• The offset of the required GICD_ISACTIVER<n>E is (0x1A00 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

Accessing the GICD_ISACTIVER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ISACTIVER<n>E, the
corresponding bit is RES0.

GICD_ISACTIVER<n>E, Interrupt Set-Active Registers (extended SPI range), n = 0 - 31

Page 3637

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ISACTIVER<n>E can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC

Distributor
0x1A00 + 4n GICD_ISACTIVER<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ISACTIVER<n>E, Interrupt Set-Active Registers (extended SPI range), n = 0 - 31

Page 3638

GICD_ISENABLER<n>, Interrupt Set-Enable Registers,
n = 0 - 31

The GICD_ISENABLER<n> characteristics are:

Purpose
Enables forwarding of the corresponding interrupt to the CPU interfaces.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ISENABLER<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ISENABLER0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ISENABLER0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ISENABLER<n> is a 32-bit register.

Field descriptions
The GICD_ISENABLER<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Set_enable_bit<x>, bit [x], for x = 0 to 31

Set_enable_bit<x>, bit [x], for x = 0 to 31

For SPIs and PPIs, controls the forwarding of interrupt number 32n + x to the CPU interfaces. Reads and writes have
the following behavior:

Set_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, enables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent read of
this bit returns 1.

For SGIs, the behavior of this bit is IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ISENABLER<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_ISENABLER is (0x100 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

GICD_ISENABLER<n>, Interrupt Set-Enable Registers, n = 0 - 31

Page 3639

At start-up, and after a reset, a PE can use this register to discover which peripheral INTIDs the GIC supports. If
GICD_CTLR.DS==0 in a system that supports EL3, the PE must do this for the Secure view of the available interrupts,
and Non-secure software running on the PE must do this discovery after the Secure software has configured interrupts
as Group 0/Secure Group 1 and Non-secure Group 1.

Accessing the GICD_ISENABLER<n>
For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and an implementation
is permitted to make the field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_ISENABLER0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

When GICD_CTLR.DS==0, bits corresponding to Group 0 or Secure Group 1 interrupts are RAZ/WI to Non-secure
accesses.

It is IMPLEMENTATION DEFINED whether implemented SGIs are permanently enabled, or can be enabled and disabled by
writes to GICD_ISENABLER<n> and GICD_ICENABLER<n> where n=0.

For SPIs and PPIs, each bit controls the forwarding of the corresponding interrupt from the Distributor to the CPU
interfaces.

GICD_ISENABLER<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC

Distributor
0x0100 + 4n GICD_ISENABLER<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ISENABLER<n>, Interrupt Set-Enable Registers, n = 0 - 31

Page 3640

GICD_ISENABLER<n>E, Interrupt Set-Enable
Registers, n = 0 - 31

The GICD_ISENABLER<n>E characteristics are:

Purpose
Enables forwarding of the corresponding SPI in the extended SPI range to the CPU interfaces.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICD_ISENABLER<n>E are
RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ISENABLER<n>E registers is
(GICD_TYPER.ESPI_range+1). Registers are numbered from 0.

Attributes
GICD_ISENABLER<n>E is a 32-bit register.

Field descriptions
The GICD_ISENABLER<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Set_enable_bit<x>, bit [x], for x = 0 to 31

Set_enable_bit<x>, bit [x], for x = 0 to 31

For the extended SPI range, controls the forwarding of interrupt number x to the CPU interface. Reads and writes
have the following behavior:

Set_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, enables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent read of
this bit returns 1.

This field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ISENABLER<n>E number, n, is given by n = (m-4096) DIV 32.

• The offset of the required GICD_ISENABLER<n>E is (0x1200 + (4*n)).

• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

GICD_ISENABLER<n>E, Interrupt Set-Enable Registers, n = 0 - 31

Page 3641

Accessing the GICD_ISENABLER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ISENABLER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ISENABLER<n>E can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC

Distributor
0x1200 + 4n GICD_ISENABLER<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ISENABLER<n>E, Interrupt Set-Enable Registers, n = 0 - 31

Page 3642

GICD_ISPENDR<n>, Interrupt Set-Pending Registers, n
= 0 - 31

The GICD_ISPENDR<n> characteristics are:

Purpose
Adds the pending state to the corresponding interrupt.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ISPENDR<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ISPENDR0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ISPENDR0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ISPENDR<n> is a 32-bit register.

Field descriptions
The GICD_ISPENDR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Set_pending_bit<x>, bit [x], for x = 0 to 31

Set_pending_bit<x>, bit [x], for x = 0 to 31

For SPIs and PPIs, adds the pending state to interrupt number 32n + x. Reads and writes have the following behavior:

GICD_ISPENDR<n>, Interrupt Set-Pending Registers, n = 0 - 31

Page 3643

Set_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending on any PE.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is pending, or active and pending:

• On this PE if the interrupt is an SGI or PPI.
• On at least one PE if the interrupt is an SPI.

If written, changes the state of the
corresponding interrupt from inactive to
pending, or from active to active and pending.
This has no effect in the following cases:

• If the interrupt is an SGI. The pending state
of an SGI can be set using
GICD_SPENDSGIR<n>.

• If the interrupt is not inactive and is not
active.

• If the interrupt is already pending because
of a write to GICD_ISPENDR<n>.

• If the interrupt is already pending because
the corresponding interrupt signal is
asserted. In this case, the interrupt remains
pending if the interrupt signal is
deasserted.

This field resets to 0.

Accessing the GICD_ISPENDR<n>
Set-pending bits for SGIs are read-only and ignore writes. The Set-pending bits for SGIs are provided as
GICD_SPENDSGIR<n>.

When affinity routing is enabled for the Security state of an interrupt:

• Bits corresponding to SGIs and PPIs are RAZ/WI, and equivalent functionality for SGIs and PPIs is provided by
GICR_ISPENDR0.

• Bits corresponding to Group 0 and Group 1 Secure interrupts can only be set by Secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and
Secure Group 1 interrupts, any bits that correspond to Group 0 or Secure Group 1 interrupts are accessible only by
Secure accesses and are RAZ/WI to Non-secure accesses.

GICD_ISPENDR<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x0200 + 4n GICD_ISPENDR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ISPENDR<n>, Interrupt Set-Pending Registers, n = 0 - 31

Page 3644

GICD_ISPENDR<n>E, Interrupt Set-Pending Registers
(extended SPI range), n = 0 - 31

The GICD_ISPENDR<n>E characteristics are:

Purpose
Adds the pending state to the corresponding SPI in the extended SPI range.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICD_ISPENDR<n>E are
RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ISPENDR<n>E registers is
(GICD_TYPER.ESPI_range+1). Registers are numbered from 0.

Attributes
GICD_ISPENDR<n>E is a 32-bit register.

Field descriptions
The GICD_ISPENDR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Set_pending_bit<x>, bit [x], for x = 0 to 31

Set_pending_bit<x>, bit [x], for x = 0 to 31

For the extended SPIs, adds the pending state to interrupt number x. Reads and writes have the following behavior:

Set_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is pending, or active and pending.
If written, changes the state of the
corresponding interrupt from inactive to
pending, or from active to active and pending.
This has no effect in the following cases:

• If the interrupt is already pending
because of a write to
GICD_ISPENDR<n>E.

• If the interrupt is already pending
because the corresponding interrupt
signal is asserted. In this case, the
interrupt remains pending if the interrupt
signal is deasserted.

This field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ISPENDR<n>E number, n, is given by n = (m-4096) DIV 32.
• The offset of the required GICD_ISPENDR<n>E is (0x1600 + (4*n)).

GICD_ISPENDR<n>E, Interrupt Set-Pending Registers (extended SPI range), n = 0 - 31

Page 3645

• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

Accessing the GICD_ISPENDR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ISPENDR<n>E, the corresponding
bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ISPENDR<n>E can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x1600 + 4n GICD_ISPENDR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ISPENDR<n>E, Interrupt Set-Pending Registers (extended SPI range), n = 0 - 31

Page 3646

GICD_ITARGETSR<n>, Interrupt Processor Targets
Registers, n = 0 - 254

The GICD_ITARGETSR<n> characteristics are:

Purpose
When affinity routing is not enabled, holds the list of target PEs for the interrupt. That is, it holds the list of CPU
interfaces to which the Distributor forwards the interrupt if it is asserted and has sufficient priority.

Configuration
These registers are available in all configurations of the GIC. When GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ITARGETSR<n> registers is 8*(GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ITARGETSR0 to GICD_ITARGETSR7 are Banked for each connected PEwith GICR_TYPER.Processor_Number <
8.

Accessing GICD_ITARGETSR0 to GICD_ITARGETSR7 from a PE with GICR_TYPER.Processor_Number > 7 is
CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ITARGETSR<n> is a 32-bit register.

Field descriptions
The GICD_ITARGETSR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CPU_targets_offset_3B CPU_targets_offset_2B CPU_targets_offset_1B CPU_targets_offset_0B

PEs in the system number from 0, and each bit in a PE targets field refers to the corresponding PE. For example, a
value of 0x3 means that the Pending interrupt is sent to PEs 0 and 1. For GICD_ITARGETSR0-GICD_ITARGETSR7, a
read of any targets field returns the number of the PE performing the read.

CPU_targets_offset_3B, bits [31:24]

PE targets for an interrupt, at byte offset 3.

This field resets to an architecturally UNKNOWN value.

CPU_targets_offset_2B, bits [23:16]

PE targets for an interrupt, at byte offset 2.

This field resets to an architecturally UNKNOWN value.

CPU_targets_offset_1B, bits [15:8]

PE targets for an interrupt, at byte offset 1.

This field resets to an architecturally UNKNOWN value.

GICD_ITARGETSR<n>, Interrupt Processor Targets Registers, n = 0 - 254

Page 3647

CPU_targets_offset_0B, bits [7:0]

PE targets for an interrupt, at byte offset 0.

This field resets to an architecturally UNKNOWN value.

The bits that are set to 1 in the PE targets field determine which PEs are targeted:

Value of PE targets field Interrupt targets
0bxxxxxxx1 CPU interface 0
0bxxxxxx1x CPU interface 1
0bxxxxx1xx CPU interface 2
0bxxxx1xxx CPU interface 3
0bxxx1xxxx CPU interface 4
0bxx1xxxxx CPU interface 5
0bx1xxxxxx CPU interface 6
0b1xxxxxxx CPU interface 7

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ITARGETSR<n> number, n, is given by n = m DIV 4.
• The offset of the required GICD_ITARGETSR<n> register is (0x800 + (4*n)).
• The byte offset of the required Priority field in this register is m MOD 4, where:

◦ Byte offset 0 refers to register bits [7:0].
◦ Byte offset 1 refers to register bits [15:8].
◦ Byte offset 2 refers to register bits [23:16].
◦ Byte offset 3 refers to register bits [31:24].

Software can write to these registers at any time. Any change to a targets field value:

• Has no effect on any active interrupt. This means that removing a CPU interface from a targets list does not
cancel an active state for interrupts on that CPU interface. There is no effect on interrupts that are active and
pending until the active status is cleared, at which time it is treated as a pending interrupt.

• Has an effect on any pending interrupts. This means:
◦ Enables the CPU interface to be chosen as a target for the pending interrupt using an

IMPLEMENTATION DEFINED mechanism.
◦ Removing a CPU interface from the target list of a pending interrupt removes the pending state of

the interrupt on that CPU interface.

Accessing the GICD_ITARGETSR<n>
These registers are used when affinity routing is not enabled. When affinity routing is enabled for the Security state of
an interrupt, the target PEs for an interrupt are defined by GICD_IROUTER<n> and the associated byte in
GICD_ITARGETSR<n> is RES0. An implementation is permitted to make the byte RAZ/WI in this case.

• These registers are byte-accessible.
• A register field corresponding to an unimplemented interrupt is RAZ/WI.
• A field bit corresponding to an unimplemented CPU interface is RAZ/WI.
• GICD_ITARGETSR0-GICD_ITARGETSR7 are read-only. Each field returns a value that corresponds only to the

PE reading the register.
• It is IMPLEMENTATION DEFINED which, if any, SPIs are statically configured in hardware. The field for such an SPI

is read-only, and returns a value that indicates the PE targets for the interrupt.
• If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0

and Secure Group 1 interrupts, any bits that correspond to Group 0 or Secure Group 1 interrupts are
accessible only by Secure accesses and are RAZ/WI to Non-secure accesses.

In a single connected PE implementation, all interrupts target one PE, and these registers are RAZ/WI.

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than one time. The effect of the
change must be visible in finite time.

GICD_ITARGETSR<n>, Interrupt Processor Targets Registers, n = 0 - 254

Page 3648

GICD_ITARGETSR<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC

Distributor
0x0800 + 4n GICD_ITARGETSR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ITARGETSR<n>, Interrupt Processor Targets Registers, n = 0 - 254

Page 3649

GICD_NSACR<n>, Non-secure Access Control
Registers, n = 0 - 63

The GICD_NSACR<n> characteristics are:

Purpose
Enables Secure software to permit Non-secure software on a particular PE to create and control Group 0 interrupts.

Configuration
The concept of selective enabling of Non-secure access to Group 0 and Secure Group 1 interrupts applies to SGIs and
SPIs.

GICD_NSACR0 is a Banked register used for SGIs. A copy is provided for every PE that has a CPU interface and that
supports this feature.

Attributes
GICD_NSACR<n> is a 32-bit register.

Field descriptions
The GICD_NSACR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NS_access<x>, bits [2x+1:2x], for x = 0 to 15

NS_access<x>, bits [2x+1:2x], for x = 0 to 15

Controls Non-secure access of the interrupt with ID 16n + x.

If the corresponding interrupt does not support configurable Non-secure access, the field is RAZ/WI.

Otherwise, the field is RW and determines the level of Non-secure control permitted if the interrupt is a Secure
interrupt. If the interrupt is a Non-secure interrupt, this field is ignored.

The possible values of each 2-bit field are:

GICD_NSACR<n>, Non-secure Access Control Registers, n = 0 - 63

Page 3650

NS_access<x> Meaning
0b00 No Non-secure access is permitted to fields associated

with the corresponding interrupt.
0b01 Non-secure read and write access is permitted to set-

pending bits in GICD_ISPENDR<n> associated with
the corresponding interrupt. A Non-secure write
access to GICD_SETSPI_NSR is permitted to set the
pending state of the corresponding interrupt. A Non-
secure write access to GICD_SGIR is permitted to
generate a Secure SGI for the corresponding interrupt.
An implementation might also provide read access to
clear-pending bits in GICD_ICPENDR<n> associated
with the corresponding interrupt.

0b10 As 0b01, but adds Non-secure read and write access
permission to fields associated with the corresponding
interrupt in the GICD_ICPENDR<n> registers. A Non-
secure write access to GICD_CLRSPI_NSR is permitted
to clear the pending state of the corresponding
interrupt. Also adds Non-secure read access
permission to fields associated with the corresponding
interrupt in the GICD_ISACTIVER<n> and
GICD_ICACTIVER<n> registers.

0b11 For GICD_NSACR0 this encoding is reserved and
treated as 10.
For all other GICD_NSACR<n> registers this encoding
is treated as 0b10, but adds Non-secure read and write
access permission to GICD_ITARGETSR<n> and
GICD_IROUTER<n> fields associated with the
corresponding interrupt.

This field resets to 0.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_NSACR<n> number, n, is given by n = m DIV 16.
• The offset of the required GICD_NSACR<n> register is (0xE00 + (4*n)).

Note

Because each field in this register comprises two bits, GICD_NSACR0 controls
access rights to SGI registers, GICD_NSACR1 controls access to PPI registers
(and is always RAZ/WI), and all other GICD_NSACR<n> registers control
access to SPI registers.

For compatibility with GICv2, writes to GICD_NSACR0 for a particular PE must be coordinated within the Distributor
and must update GICR_NSACR for the Redistributor associated with that PE.

Accessing the GICD_NSACR<n>
When GICD_CTLR.DS==1, this register is RAZ/WI.

These registers are Secure, and are RAZ/WI to Non-secure accesses.

These registers are always used when affinity routing is not enabled. When affinity routing is enabled for the Secure
state, GICD_NSACR0 is RES0 and GICR_NSACR provides equivalent functionality for SGIs.

These registers do not support PPIs, therefore GICD_NSACR1 is RAZ/WI.

GICD_NSACR<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x0E00 + 4n GICD_NSACR<n>

When When IsAccessSecure() access on this interface are RW.

GICD_NSACR<n>, Non-secure Access Control Registers, n = 0 - 63

Page 3651

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_NSACR<n>, Non-secure Access Control Registers, n = 0 - 63

Page 3652

GICD_NSACR<n>E, Non-secure Access Control
Registers, n = 0 - 63

The GICD_NSACR<n>E characteristics are:

Purpose
Enables Secure software to permit Non-secure software on a particular PE to create and control Group 0 interrupts.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICD_NSACR<n>E are
RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ICFGR<n>E registers is
((GICD_TYPER.ESPI_range+1)*2). Registers are numbered from 0.

Attributes
GICD_NSACR<n>E is a 32-bit register.

Field descriptions
The GICD_NSACR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NS_access<x>, bits [2x+1:2x], for x = 0 to 15

NS_access<x>, bits [2x+1:2x], for x = 0 to 15

Controls Non-secure access of the interrupt with ID 16n + x.

If the corresponding interrupt does not support configurable Non-secure access, the field is RAZ/WI.

Otherwise, the field is RW and determines the level of Non-secure control permitted if the interrupt is a Secure
interrupt. If the interrupt is a Non-secure interrupt, this field is ignored.

The possible values of each 2-bit field are:

GICD_NSACR<n>E, Non-secure Access Control Registers, n = 0 - 63

Page 3653

NS_access<x> Meaning
0b00 No Non-secure access is permitted to fields associated

with the corresponding interrupt.
0b01 Non-secure read and write access is permitted to set-

pending bits in GICD_ISPENDR<n>E associated with
the corresponding interrupt. A Non-secure write
access to GICD_SETSPI_NSR is permitted to set the
pending state of the corresponding interrupt.

0b10 As 0b01, but adds Non-secure read and write access
permission to fields associated with the corresponding
interrupt in the GICD_ICPENDR<n>E registers. A
Non-secure write access to GICD_CLRSPI_NSR is
permitted to clear the pending state of the
corresponding interrupt. Also adds Non-secure read
access permission to fields associated with the
corresponding interrupt in the GICD_ISACTIVER<n>E
and GICD_ICACTIVER<n>E registers.

0b11 This encoding is treated as 0b10, but adds Non-secure
read and write access permission to
GICD_IROUTER<n>E fields associated with the
corresponding interrupt.

This field resets to 0.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_NSACR<n>E number, n, is given by n = (m - 4096) DIV 16.
• The offset of the required GICD_NSACR<n>E register is (0x3600 + (4*n)).

Accessing the GICD_NSACR<n>E

GICD_NSACR<n>E can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x3600 + 4n GICD_NSACR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RAZ/WI.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RAZ/WI.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_NSACR<n>E, Non-secure Access Control Registers, n = 0 - 63

Page 3654

GICD_SETSPI_NSR, Set Non-secure SPI Pending
Register

The GICD_SETSPI_NSR characteristics are:

Purpose
Adds the pending state to a valid SPI if permitted by the Security state of the access and the GICD_NSACR<n> value
for that SPI.

A write to this register changes the state of an inactive SPI to pending, and the state of an active SPI to active and
pending.

Configuration
If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS==1, this register provides functionality for all SPIs.

Attributes
GICD_SETSPI_NSR is a 32-bit register.

Field descriptions
The GICD_SETSPI_NSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

The INTID of the SPI.

The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or level-
sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will stop being pending on activation, or if the pending state is removed by a write to
GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or GICD_ICPENDR<n>.

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or
GICD_CLRSPI_SR. If the interrupt is activated between having the pending state added and being deactivated,
then the interrupt will be active and pending.

Accessing the GICD_SETSPI_NSR
Writes to this register have no effect if:

• The value written specifies a Secure SPI, the value is written by a Non-secure access, and the value of the
corresponding GICD_NSACR<n> register is 0.

• The value written specifies an invalid SPI.
• The SPI is already pending.

GICD_SETSPI_NSR, Set Non-secure SPI Pending Register

Page 3655

16-bit accesses to bits [15:0] of this register must be supported.

Note

A Secure access to this register can set the pending state of any valid SPI.

GICD_SETSPI_NSR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x0040 GICD_SETSPI_NSR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are WO.
• When IsAccessSecure() accesses to this register are WO.
• When !IsAccessSecure() accesses to this register are WO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_SETSPI_NSR, Set Non-secure SPI Pending Register

Page 3656

GICD_SETSPI_SR, Set Secure SPI Pending Register
The GICD_SETSPI_SR characteristics are:

Purpose
Adds the pending state to a valid SPI.

A write to this register changes the state of an inactive SPI to pending, and the state of an active SPI to active and
pending.

Configuration
If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS==1, this register is WI.

Attributes
GICD_SETSPI_SR is a 32-bit register.

Field descriptions
The GICD_SETSPI_SR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

The INTID of the SPI.

The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or level-
sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will stop being pending on activation, or if the pending state is removed by a write to
GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or GICD_ICPENDR<n>.

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or
GICD_CLRSPI_SR. If the interrupt is activated between having the pending state added and being deactivated,
then the interrupt will be active and pending.

Accessing the GICD_SETSPI_SR
Writes to this register have no effect if:

• The value is written by a Non-secure access.
• The value written specifies an invalid SPI.
• The SPI is already pending.

16-bit accesses to bits [15:0] of this register must be supported.

GICD_SETSPI_SR, Set Secure SPI Pending Register

Page 3657

GICD_SETSPI_SR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x0050 GICD_SETSPI_SR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are WI.
• When IsAccessSecure() accesses to this register are WO.
• When !IsAccessSecure() accesses to this register are WI.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_SETSPI_SR, Set Secure SPI Pending Register

Page 3658

GICD_SGIR, Software Generated Interrupt Register
The GICD_SGIR characteristics are:

Purpose
Controls the generation of SGIs.

Configuration
This register is available in all configurations of the GIC. If the GIC supports two Security states this register is
Common.

Attributes
GICD_SGIR is a 32-bit register.

Field descriptions
The GICD_SGIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 TargetListFilter CPUTargetList NSATT RES0 INTID

Bits [31:26]

Reserved, RES0.

TargetListFilter, bits [25:24]

Determines how the Distributor processes the requested SGI.

TargetListFilter Meaning
0b00 Forward the interrupt to the CPU interfaces specified

by GICD_SGIR.CPUTargetList.
0b01 Forward the interrupt to all CPU interfaces except

that of the PE that requested the interrupt.
0b10 Forward the interrupt only to the CPU interface of

the PE that requested the interrupt.
0b11 Reserved.

CPUTargetList, bits [23:16]

When GICD_SGIR.TargetListFilter is 0b00, this field defines the CPU interfaces to which the Distributor must forward
the interrupt.

Each bit of the field refers to the corresponding CPU interface. For example, CPUTargetList[0] corresponds to
interface 0. Setting a bit to 1 indicates that the interrupt must be forwarded to the corresponding interface.

If this field is 0b00000000 when GICD_SGIR.TargetListFilter is 0b00, the Distributor does not forward the interrupt to
any CPU interface.

NSATT, bit [15]

Specifies the required group of the SGI.

GICD_SGIR, Software Generated Interrupt Register

Page 3659

NSATT Meaning
0b0 Forward the SGI specified in the INTID field to a specified CPU

interface only if the SGI is configured as Group 0 on that
interface.

0b1 Forward the SGI specified in the INTID field to a specified CPU
interface only if the SGI is configured as Group 1 on that
interface.

This field is writable only by a Secure access. Non-secure accesses can also generate Group 0 interrupts, if allowed to
do so by GICD_NSACR0. Otherwise, Non-secure writes to GICD_SGIR generate an SGI only if the specified SGI is
programmed as Group 1, regardless of the value of bit [15] of the write.

Bits [14:4]

Reserved, RES0.

INTID, bits [3:0]

The INTID of the SGI to forward to the specified CPU interfaces.

Accessing the GICD_SGIR
This register is used only when affinity routing is not enabled. When affinity routing is enabled, this register is RES0.

It is IMPLEMENTATION DEFINED whether this register has any effect when the forwarding of interrupts by the Distributor
is disabled by GICD_CTLR.

GICD_SGIR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x0F00 GICD_SGIR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are WO.
• When IsAccessSecure() accesses to this register are WO.
• When !IsAccessSecure() accesses to this register are WO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_SGIR, Software Generated Interrupt Register

Page 3660

GICD_SPENDSGIR<n>, SGI Set-Pending Registers, n =
0 - 3

The GICD_SPENDSGIR<n> characteristics are:

Purpose
Adds the pending state to an SGI.

A write to this register changes the state of an inactive SGI to pending, and the state of an active SGI to active and
pending.

Configuration
Four SGI set-pending registers are implemented. Each register contains eight set-pending bits for each of four SGIs,
for a total of 16 possible SGIs.

In multiprocessor implementations, each PE has a copy of these registers.

Attributes
GICD_SPENDSGIR<n> is a 32-bit register.

Field descriptions
The GICD_SPENDSGIR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SGI_set_pending_bits<x>, bits [8x+7:8x], for x = 0 to 3

SGI_set_pending_bits<x>, bits [8x+7:8x], for x = 0 to 3

Adds the pending state to SGI number 4n + x for the PE corresponding to the bit number written to.

Reads and writes have the following behavior:

SGI_set_pending_bits<x> Meaning
0x00 If read, indicates that the SGI from the

corresponding PE is not pending and is not
active and pending.
If written, has no effect.

0x01 If read, indicates that the SGI from the
corresponding PE is pending or is active
and pending.
If written, adds the pending state to the
SGI for the corresponding PE.

This field resets to 0.

For SGI ID m, generated by processing element C writing to the corresponding GICD_SGIR field, where DIV and MOD
are the integer division and modulo operations:

• The corresponding GICD_SPENDSGIR<n> number is given by n = m DIV 4.
• The offset of the required register is (0xF20 + (4n)).
• The offset of the required field within the register GICD_SPENDSGIR<n> is given by m MOD 4.
• The required bit in the 8-bit SGI set-pending field m is bit C.

GICD_SPENDSGIR<n>, SGI Set-Pending Registers, n = 0 - 3

Page 3661

Accessing the GICD_SPENDSGIR<n>
These registers are used only when affinity routing is not enabled. When affinity routing is enabled for the Security
state of an interrupt then the bit associated with SGI in that Security state is RES0. An implementation is permitted to
make the register RAZ/WI in this case.

A register bit that corresponds to an unimplemented SGI is RAZ/WI.

These registers are byte-accessible.

If the GIC implementation supports two Security states:

• A register bit that corresponds to a Group 0 interrupt is RAZ/WI to Non-secure accesses.
• Register bits corresponding to unimplemented PEs are RAZ/WI.

GICD_SPENDSGIR<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC

Distributor
0x0F20 + 4n GICD_SPENDSGIR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_SPENDSGIR<n>, SGI Set-Pending Registers, n = 0 - 3

Page 3662

GICD_STATUSR, Error Reporting Status Register
The GICD_STATUSR characteristics are:

Purpose
Provides software with a mechanism to detect:

• Accesses to reserved locations.
• Writes to read-only locations.
• Reads of write-only locations.

Configuration
If the GIC implementation supports two Security states this register is Banked to provide Secure and Non-secure
copies.

Attributes
GICD_STATUSR is a 32-bit register.

Field descriptions
The GICD_STATUSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 WRODRWODWRDRRD

Bits [31:4]

Reserved, RES0.

WROD, bit [3]

Write to an RO location.

WROD Meaning
0b0 Normal operation.
0b1 A write to an RO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RWOD, bit [2]

Read of a WO location.

RWOD Meaning
0b0 Normal operation.
0b1 A read of a WO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

WRD, bit [1]

Write to a reserved location.

GICD_STATUSR, Error Reporting Status Register

Page 3663

WRD Meaning
0b0 Normal operation.
0b1 A write to a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RRD, bit [0]

Read of a reserved location.

RRD Meaning
0b0 Normal operation.
0b1 A read of a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

Accessing the GICD_STATUSR
This is an optional register. If the register is not implemented, the location is RAZ/WI.

GICD_STATUSR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x0010 GICD_STATUSR

(S)

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.

Component Offset Instance
GIC Distributor 0x0010 GICD_STATUSR

(NS)

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_STATUSR, Error Reporting Status Register

Page 3664

GICD_TYPER, Interrupt Controller Type Register
The GICD_TYPER characteristics are:

Purpose
Provides information about what features the GIC implementation supports. It indicates:

• Whether the GIC implementation supports two Security states.
• The maximum number of INTIDs that the GIC implementation supports.
• The number of PEs that can be used as interrupt targets.

Configuration
This register is available in all configurations of the GIC. When GICD_CTLR.DS==0, this register is Common.

Attributes
GICD_TYPER is a 32-bit register.

Field descriptions
The GICD_TYPER bit assignments are:

3130292827 26 25 24 2322212019 18 17 16 1514131211 10 9 8 7 6 5 4 3 2 1 0
ESPI_rangeRSSNo1NA3V IDbits DVISLPISMBIS num_LPIs SecurityExtnRES0ESPICPUNumberITLinesNumber

ESPI_range, bits [31:27]

When GICD_TYPER.ESPI == 1:

Indicates the maximum INTID in the Extended SPI range.

• Maximum Extended SPI INTID is (32*(ESPI_range + 1) + 4095)

Otherwise:

Reserved, RES0.

RSS, bit [26]

Range Selector Support.

RSS Meaning
0b0 The IRI supports targeted SGIs with affinity level 0 values of 0 -

15.
0b1 The IRI supports targeted SGIs with affinity level 0 values of 0 -

255.

No1N, bit [25]

Indicates whether 1 of N SPI interrupts are supported.

No1N Meaning
0b0 1 of N SPI interrupts are supported.
0b1 1 of N SPI interrupts are not supported.

GICD_TYPER, Interrupt Controller Type Register

Page 3665

A3V, bit [24]

Affinity 3 valid. Indicates whether the Distributor supports nonzero values of Affinity level 3.

A3V Meaning
0b0 The Distributor only supports zero values of Affinity level 3.
0b1 The Distributor supports nonzero values of Affinity level 3.

IDbits, bits [23:19]

The number of interrupt identifier bits supported, minus one.

DVIS, bit [18]

Indicates whether the implementation supports Direct Virtual LPI injection.

DVIS Meaning
0b0 The implementation does not support Direct Virtual LPI

injection.
0b1 The implementation supports Direct Virtual LPI injection.

For GICv3, this field is RES0.

LPIS, bit [17]

Indicates whether the implementation supports LPIs.

LPIS Meaning
0b0 The implementation does not support LPIs.
0b1 The implementation supports LPIs.

MBIS, bit [16]

Indicates whether the implementation supports message-based interrupts by writing to Distributor registers.

MBIS Meaning
0b0 The implementation does not support message-based interrupts

by writing to Distributor registers.
The GICD_CLRSPI_NSR, GICD_SETSPI_NSR, GICD_CLRSPI_SR,
and GICD_SETSPI_SR registers are reserved.

0b1 The implementation supports message-based interrupts by
writing to the GICD_CLRSPI_NSR, GICD_SETSPI_NSR,
GICD_CLRSPI_SR, or GICD_SETSPI_SR registers.

num_LPIs, bits [15:11]

Number of supported LPIs.

• 0b00000 Number of LPIs as indicated by GICD_TYPER.IDbits.

• All other values Number of LPIs supported is 2^(num_LPIs+1) .

◦ Available LPI INTIDs are 8192..(8192 + 2^(num_LPIs+1) - 1).

◦ This field cannot indicate a maximum LPI INTID greater than that indicated by
GICD_TYPER.IDbits.

When the supported INTID width is less than 14 bits, this field is RES0 and no LPIs are supported.

SecurityExtn, bit [10]

Indicates whether the GIC implementation supports two Security states:

When GICD_CTLR.DS == 1, this field is RAZ.

GICD_TYPER, Interrupt Controller Type Register

Page 3666

SecurityExtn Meaning
0b0 The GIC implementation supports only a single Security

state.
0b1 The GIC implementation supports two Security states.

Bit [9]

Reserved, RES0.

ESPI, bit [8]

Extended SPI

ESPI Meaning
0b0 Extended SPI range not implemented.
0b1 Extended SPI range implemented.

CPUNumber, bits [7:5]

Reports the number of PEs that can be used when affinity routing is not enabled, minus 1.

These PEs must be numbered contiguously from zero, but the relationship between this number and the affinity
hierarchy from MPIDR is IMPLEMENTATION DEFINED. If the implementation does not support ARE being zero, this field is
000.

ITLinesNumber, bits [4:0]

Indicates the maximum SPI INTID that the GIC implementation supports. If the value of this field is N, the maximum
SPI INTID is 32(N+1)-1. For example, 00011 specifies that the maximum SPI INTID is 127.

The maximum SPI INTID an implementation might support is 1019 (field value 11111). Regardless of the range of
INTIDs defined by this field, interrupt IDs 1020-1023 are reserved for special purposes.

A value of 0 indicates no SPIs are support.

Note

The value derived from this field specifies the maximum number of SPIs that
the GIC implementation might support. An implementation might not
implement all SPIs up to this maximum.

The ITLinesNumber field only indicates the maximum number of SPIs that the GIC implementation might support. This
value determines the number of instances of the following interrupt registers:

• GICD_IGROUPR<n>.
• GICD_ISENABLER<n>.
• GICD_ICENABLER<n>.
• GICD_ISPENDR<n>.
• GICD_ICPENDR<n>.
• GICD_ISACTIVER<n>.
• GICD_ICACTIVER<n>.
• GICD_IPRIORITYR<n>.
• GICD_ITARGETSR<n>.
• GICD_ICFGR<n>.

The GIC architecture does not require a GIC implementation to support a continuous range of SPI interrupt IDs.
Software must check which SPI INTIDs are supported, up to the maximum value indicated by
GICD_TYPER.ITLinesNumber.

GICD_TYPER, Interrupt Controller Type Register

Page 3667

Accessing the GICD_TYPER

GICD_TYPER can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x0004 GICD_TYPER

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_TYPER, Interrupt Controller Type Register

Page 3668

GICD_TYPER2, Interrupt Controller Type Register 2
The GICD_TYPER2 characteristics are:

Purpose
Provides information about which features the GIC implementation supports.

Configuration
This register is present only when GICv4.1 is implemented. Otherwise, direct accesses to GICD_TYPER2 are RES0.

When GICD_CTLR.DS == 0, this register is Common.

Attributes
GICD_TYPER2 is a 32-bit register.

Field descriptions
The GICD_TYPER2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 VIL RES0 VID

Bits [31:8]

Reserved, RES0.

VIL, bit [7]

Indicates whether 16 bits of vPEID are implemented.

VIL Meaning
0b0 GIC supports 16-bit vPEID.
0b1 GIC supports GICD_TYPER2.VID + 1 bits of vPEID.

Bits [6:5]

Reserved, RES0.

VID, bits [4:0]

When GICD_TYPER2.VIL == 1, the number of bits is equal to the bits of vPEID minus one.

When GICD_TYPER2.VIL == 0, this field is RES0.

Accessing the GICD_TYPER2

GICD_TYPER2 can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Distributor 0x000C GICD_TYPER2

This interface is accessible as follows:

GICD_TYPER2, Interrupt Controller Type Register 2

Page 3669

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_TYPER2, Interrupt Controller Type Register 2

Page 3670

GICH_APR<n>, Active Priorities Registers, n = 0 - 3
The GICH_APR<n> characteristics are:

Purpose
These registers track which preemption levels are active in the virtual CPU interface, and indicate the current active
priority. Corresponding bits are set to 1 in this register when an interrupt is acknowledged, based on
GICH_LR<n>.Priority, and the least significant bit set is cleared on EOI.

Configuration
This register is available when the GIC implementation supports interrupt virtualization.

The number of registers required depends on how many bits are implemented in GICH_LR<n>.Priority:

• When 5 priority bits are implemented, 1 register is required (GICH_APR0).
• When 6 priority bits are implemented, 2 registers are required (GICH_APR0, GICH_APR1).
• When 7 priority bits are implemented, 4 registers are required (GICH_APR0, GICH_APR1, GICH_APR2,

GICH_APR3).

Unimplemented registers are RAZ/WI.

Attributes
GICH_APR<n> is a 32-bit register.

Field descriptions
The GICH_APR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P31P30P29P28P27P26P25P24P23P22P21P20P19P18P17P16P15P14P13P12P11P10P9P8P7P6P5P4P3P2P1P0

P<x>, bit [x], for x = 0 to 31

Active priorities. Possible values of each bit are:

P<x> Meaning
0b0 There is no interrupt active at the priority corresponding to that

bit.
0b1 There is an interrupt active at the priority corresponding to that

bit.

The correspondence between priorities and bits depends on the number of bits of priority that are implemented.

If 5 bits of priority are implemented (bits [7:3] of priority), then there are 32 priority groups, and the active state of
these priorities are held in GICH_APR0 in the bits corresponding to Priority[7:3].

If 6 bits of priority are implemented (bits [7:2] of priority), then there are 64 priority groups, and:

• The active state of priorities 0 - 124 are held in GICH_APR0 in the bits corresponding to 0:Priority[6:2].
• The active state of priorities 128 - 252 are held in GICH_APR1 in the bits corresponding to 1:Priority[6:2].

If 7 bits of priority are implemented (bits [7:1] of priority), then there are 128 priority groups, and:

• The active state of priorities 0 - 62 are held in GICH_APR0 in the bits corresponding to 00:Priority[5:1].
• The active state of priorities 64 - 126 are held in GICH_APR1 in the bits corresponding to 01:Priority[5:1].
• The active state of priorities 128 - 190 are held in GICH_APR2 in the bits corresponding to 10:Priority[5:1].
• The active state of priorities 192 - 254 are held in GICH_APR3 in the bits corresponding to 11:Priority[5:1].

GICH_APR<n>, Active Priorities Registers, n = 0 - 3

Page 3671

This field resets to 0.

Accessing the GICH_APR<n>
These registers are used only when System register access is not enabled. When System register access is enabled the
following registers provide equivalent functionality:

• In AArch64:
◦ For Group 0, ICH_AP0R<n>_EL2.
◦ For Group 1, ICH_AP1R<n>_EL2.

• In AArch32:
◦ For Group 0, ICH_AP0R<n>.
◦ For Group 1, ICH_AP1R<n>.

GICH_APR<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual

interface control
0x00F0 + 4n GICH_APR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICH_APR<n>, Active Priorities Registers, n = 0 - 3

Page 3672

GICH_EISR, End Interrupt Status Register
The GICH_EISR characteristics are:

Purpose
Indicates which List registers have outstanding EOI maintenance interrupts.

Configuration
This register is available when the GIC implementation supports interrupt virtualization.

Attributes
GICH_EISR is a 32-bit register.

Field descriptions
The GICH_EISR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Status<n>, bit [n], for n = 0 to 15

Bits [31:16]

Reserved, RES0.

Status<n>, bit [n], for n = 0 to 15

EOI maintenance interrupt status for List register <n>:

Status<n> Meaning
0b0 GICH_LR<n> does not have an EOI maintenance

interrupt.
0b1 GICH_LR<n> has an EOI maintenance interrupt that has

not been handled.

For any GICH_LR<n> register, the corresponding status bit is set to 1 if all of the following are true:

• GICH_LR<n>.State is 0b00.
• GICH_LR<n>.HW == 0.
• GICH_LR<n>.EOI == 1.

This field resets to an architecturally UNKNOWN value.

Accessing the GICH_EISR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICH_EISR provides equivalent functionality.
• For AArch64 implementations, ICH_EISR_EL2 provides equivalent functionality.

Bits corresponding to unimplemented List registers are RAZ.

GICH_EISR can be accessed through the memory-mapped interfaces:

Component Offset Instance

GICH_EISR, End Interrupt Status Register

Page 3673

GIC Virtual
interface control

0x0020 GICH_EISR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICH_EISR, End Interrupt Status Register

Page 3674

GICH_ELRSR, Empty List Register Status Register
The GICH_ELRSR characteristics are:

Purpose
Indicates which List registers contain valid interrupts.

Configuration
This register is available when the GIC implementation supports interrupt virtualization.

Attributes
GICH_ELRSR is a 32-bit register.

Field descriptions
The GICH_ELRSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Status<n>, bit [n], for n = 0 to 15

Bits [31:16]

Reserved, RES0.

Status<n>, bit [n], for n = 0 to 15

Status bit for List register <n>:

Status<n> Meaning
0b0 GICH_LR<n>, if implemented, contains a valid interrupt.

Using this List register can result in overwriting a valid
interrupt.

0b1 GICH_LR<n> does not contain a valid interrupt. The List
register is empty and can be used without overwriting a
valid interrupt or losing an EOI maintenance interrupt.

For any GICH_LR<n> register, the corresponding status bit is set to 1 if GICH_LR<n>.State is 0b00 and either:

• GICH_LR<n>.HW == 1.
• GICH_LR<n>.EOI == 0.

This field resets to 1.

Accessing the GICH_ELRSR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICH_ELRSR provides equivalent functionality.
• For AArch64 implementations, ICH_ELRSR_EL2 provides equivalent functionality.

Bits corresponding to unimplemented List registers are RES0.

GICH_ELRSR, Empty List Register Status Register

Page 3675

GICH_ELRSR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual

interface control
0x0030 GICH_ELRSR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICH_ELRSR, Empty List Register Status Register

Page 3676

GICH_HCR, Hypervisor Control Register
The GICH_HCR characteristics are:

Purpose
Controls the virtual CPU interface.

Configuration
This register is available when the GIC implementation supports interrupt virtualization.

Attributes
GICH_HCR is a 32-bit register.

Field descriptions
The GICH_HCR bit assignments are:

3130292827262524232221201918171615141312111098 7 6 5 4 3 2 1 0
EOICount RES0 VGrp1DIEVGrp1EIEVGrp0DIEVGrp0EIENPIELRENPIEUIEEn

EOICount, bits [31:27]

Counts the number of EOIs received that do not have a corresponding entry in the List registers. The virtual CPU
interface increments this field automatically when a matching EOI is received. EOIs that do not clear a bit in
GICH_APR<n> do not cause an increment. If an EOI occurs when the value of this field is 31, then the field wraps to
0.

The maintenance interrupt is asserted whenever this field is nonzero and GICH_HCR.LRENPIE == 1.

This field resets to an architecturally UNKNOWN value.

Bits [26:8]

Reserved, RES0.

VGrp1DIE, bit [7]

VM Group 1 Disabled Interrupt Enable.

Enables the signaling of a maintenance interrupt while signaling of Group 1 interrupts from the virtual CPU interface
to the connected virtual machine is disabled:

VGrp1DIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt signaled when

GICV_CTLR.EnableGrp1 == 0.

This field resets to an architecturally UNKNOWN value.

VGrp1EIE, bit [6]

VM Group 1 Enabled Interrupt Enable.

Enables the signaling of a maintenance interrupt while signaling of Group 1 interrupts from the virtual CPU interface
to the connected virtual machine is enabled:

GICH_HCR, Hypervisor Control Register

Page 3677

VGrp1EIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt signaled when

GICV_CTLR.EnableGrp1 == 1.

This field resets to an architecturally UNKNOWN value.

VGrp0DIE, bit [5]

VM Group 0 Disabled Interrupt Enable.

Enables the signaling of a maintenance interrupt while signaling of Group 0 interrupts from the virtual CPU interface
to the connected virtual machine is disabled:

VGrp0DIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt signaled when

GICV_CTLR.EnableGrp0 == 0.

This field resets to an architecturally UNKNOWN value.

VGrp0EIE, bit [4]

VM Group 0 Enabled Interrupt Enable.

Enables the signaling of a maintenance interrupt while signaling of Group 0 interrupts from the virtual CPU interface
to the connected virtual machine is enabled:

VGrp0EIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt signaled when

GICV_CTLR.EnableGrp0 == 1.

This field resets to an architecturally UNKNOWN value.

NPIE, bit [3]

No Pending Interrupt Enable.

Enables the signaling of a maintenance interrupt while no pending interrupts are present in the List registers:

NPIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt signaled while the List registers contain

no interrupts in the pending state.

This field resets to an architecturally UNKNOWN value.

LRENPIE, bit [2]

List Register Entry Not Present Interrupt Enable.

Enables the signaling of a maintenance interrupt while the virtual CPU interface does not have a corresponding valid
List register for an EOI request:

LRENPIE Meaning
0b0 Maintenance interrupt disabled.
0b1 Maintenance interrupt signaled while GICH_HCR.EOICount

is not 0.

This field resets to an architecturally UNKNOWN value.

UIE, bit [1]

Underflow Interrupt Enable.

GICH_HCR, Hypervisor Control Register

Page 3678

Enables the signaling of a maintenance interrupt when the List registers are either empty or hold only one valid entry.

UIE Meaning
0b0 Maintenance interrupt disabled.
0b1 A maintenance interrupt is signaled if zero or one of the List

register entries are marked as a valid interrupt.

This field resets to an architecturally UNKNOWN value.

En, bit [0]

Enable.

Global enable bit for the virtual CPU interface.

En Meaning
0b0 Virtual CPU interface operation is disabled.
0b1 Virtual CPU interface operation is enabled.

When this field is 0:

• The virtual CPU interface does not signal any maintenance interrupts.
• The virtual CPU interface does not signal any virtual interrupts.
• A read of GICV_IAR or GICV_AIAR returns a spurious interrupt ID.

This field resets to an architecturally UNKNOWN value.

The VGrp1DIE, VGrp1EIE, VGrp0DIE, and VGrp0EIE fields permit the hypervisor to track the virtual CPU interfaces
that are enabled. The hypervisor can then route interrupts that have multiple targets correctly and efficiently, without
having to read the virtual CPU interface status.

See Maintenance interrupts and GICH_MISR for more information.

Accessing the GICH_HCR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICH_HCR provides equivalent functionality.
• For AArch64 implementations, ICH_HCR_EL2 provides equivalent functionality.

GICH_HCR.En must be set to 1 for any virtual or maintenance interrupt to be asserted.

GICH_HCR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual

interface control
0x0000 GICH_HCR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICH_HCR, Hypervisor Control Register

Page 3679

GICH_LR<n>, List Registers, n = 0 - 15
The GICH_LR<n> characteristics are:

Purpose
These registers provide context information for the virtual CPU interface.

Configuration
This register is available when the GIC implementation supports interrupt virtualization.

A maximum of 16 List registers can be provided. GICH_VTR.ListRegs defines the number implemented.
Unimplemented List registers are RAZ/WI.

Attributes
GICH_LR<n> is a 32-bit register.

Field descriptions
The GICH_LR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HWGroup State Priority RES0 pINTID vINTID

HW, bit [31]

Indicates whether this virtual interrupt is a hardware interrupt, meaning that it corresponds to a physical interrupt.
Deactivation of the virtual interrupt also causes the deactivation of the physical interrupt corresponding to the INTID:

HW Meaning
0b0 This interrupt is triggered entirely in software. No notification is

sent to the Distributor when the virtual interrupt is deactivated.
0b1 A hardware interrupt. A deactivate interrupt request is sent to the

Distributor when the virtual interrupt is deactivated, using
GICH_LR<n>.pINTID to indicate the physical interrupt identifier.
If GICV_CTLR.EOImode == 0, this request corresponds to a write
to GICV_EOIR or GICV_AEOIR, otherwise it corresponds to a write
to GICV_DIR.

This field resets to an architecturally UNKNOWN value.

Group, bit [30]

Indicates whether the interrupt is Group 0 or Group 1:

Group Meaning
0b0 Group 0 virtual interrupt. GICV_CTLR.FIQEn determines

whether it is signaled as a virtual IRQ or as a virtual FIQ, and
GICV_CTLR.EnableGrp0 enables signaling of this interrupt to
the virtual machine.

0b1 Group 1 virtual interrupt, signaled as a virtual IRQ.
GICV_CTLR.EnableGrp1 enables signaling of this interrupt to
the virtual machine.

Note

GICH_LR<n>, List Registers, n = 0 - 15

Page 3680

GICV_CTLR.CBPR controls whether GICV_BPR or GICV_ABPR determines if a
pending Group 1 interrupt has sufficient priority to preempt current
execution.

This field resets to an architecturally UNKNOWN value.

State, bits [29:28]

The state of the interrupt. This field has one of the following values:

State Meaning
0b00 Inactive
0b01 Pending
0b10 Active
0b11 Active and pending

The GIC updates these state bits as virtual interrupts proceed through the interrupt life cycle. Entries in the inactive
state are ignored, except for the purpose of generating virtual maintenance interrupts.

Note

For hardware interrupts, the active and pending state is held in the
Distributor rather than the virtual CPU interface. A hypervisor must only use
the active and pending state for software originated interrupts, which are
typically associated with virtual devices, or for SGIs.

This field resets to an architecturally UNKNOWN value.

Priority, bits [27:23]

The priority of this interrupt.

This field resets to an architecturally UNKNOWN value.

Bits [22:20]

Reserved, RES0.

pINTID, bits [19:10]

The function of this field depends on the value of GICH_LR<n>.HW.

When GICH_LR<n>.HW == 0:

• Bit [19] indicates whether the interrupt triggers an EOI maintenance interrupt. If this bit is 1, then when the
interrupt identified by vINTID is deactivated, an EOI maintenance interrupt is asserted.

• Bits [18:13] are reserved, SBZ.
• If the vINTID field value corresponds to an SGI (that is, 0-15), bits [12:10] contain the number of the

requesting PE. This appears in the corresponding field of GICV_IAR or GICV_AIAR. If the vINTID field value is
not 0-15, this field must be cleared to 0.

When GICH_LR<n>.HW == 1:

• This field indicates the pINTID that the hypervisor forwards to the Distributor. This field is only required to
implement enough bits to hold a valid value for the ID configuration. Any unused higher order bits are RAZ/
WI.

• If the value of pINTID is 0-15 or 1020-1023, behavior is UNPREDICTABLE. If the value of pINTID is 16-31, this
field applies to the PPI associated with this same PE as the virtual CPU interface requesting the deactivation.

This field resets to an architecturally UNKNOWN value.

GICH_LR<n>, List Registers, n = 0 - 15

Page 3681

vINTID, bits [9:0]

This INTID is returned to the VM when the interrupt is acknowledged through GICV_IAR. Each valid interrupt stored
in the List registers must have a unique vINTID for that virtual CPU interface. If the value of vINTID is 1020-1023,
behavior is UNPREDICTABLE.

This field resets to an architecturally UNKNOWN value.

Accessing the GICH_LR<n>
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICH_LR<n> provides equivalent functionality.
• For AArch64 implementations, ICH_LR<n>_EL2 provides equivalent functionality.

GICH_LR<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual

interface control
0x0100 + 4n GICH_LR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICH_LR<n>, List Registers, n = 0 - 15

Page 3682

GICH_MISR, Maintenance Interrupt Status Register
The GICH_MISR characteristics are:

Purpose
Indicates which maintenance interrupts are asserted.

Configuration
This register is available when the GIC implementation supports interrupt virtualization.

Attributes
GICH_MISR is a 32-bit register.

Field descriptions
The GICH_MISR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 VGrp1DVGrp1EVGrp0DVGrp0ENPLRENP U EOI

Bits [31:8]

Reserved, RES0.

VGrp1D, bit [7]

vPE Group 1 Disabled.

VGrp1D Meaning
0b0 vPE Group 1 Disabled maintenance interrupt not asserted.
0b1 vPE Group 1 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.VGrp1DIE == 1 and GICH_VMCR.VENG1 == 0.

This field resets to 0.

VGrp1E, bit [6]

vPE Group 1 Enabled.

VGrp1E Meaning
0b0 vPE Group 1 Enabled maintenance interrupt not asserted.
0b1 vPE Group 1 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.VGrp1EIE == 1 and GICH_VMCR.VENG1 == 1.

This field resets to 0.

VGrp0D, bit [5]

vPE Group 0 Disabled.

GICH_MISR, Maintenance Interrupt Status Register

Page 3683

VGrp0D Meaning
0b0 vPE Group 0 Disabled maintenance interrupt not asserted.
0b1 vPE Group 0 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.VGrp0DIE == 1 and GICH_VMCR.VENG0 == 0.

This field resets to 0.

VGrp0E, bit [4]

vPE Group 0 Enabled.

VGrp0E Meaning
0b0 vPE Group 0 Enabled maintenance interrupt not asserted.
0b1 vPE Group 0 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.VGrp0EIE == 1 and GICH_VMCR.VENG0 == 1.

This field resets to 0.

NP, bit [3]

No Pending.

NP Meaning
0b0 No Pending maintenance interrupt not asserted.
0b1 No Pending maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.NPIE == 1 and no List register is in the pending state.

This field resets to 0.

LRENP, bit [2]

List Register Entry Not Present.

LRENP Meaning
0b0 List Register Entry Not Present maintenance interrupt not

asserted.
0b1 List Register Entry Not Present maintenance interrupt

asserted.

This maintenance interrupt is asserted when GICH_HCR.LRENPIE == 1 and GICH_HCR.EOICount is nonzero.

This field resets to 0.

U, bit [1]

Underflow.

U Meaning
0b0 Underflow maintenance interrupt not asserted.
0b1 Underflow maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.UIE == 1 and zero or one of the List register entries are
marked as a valid interrupt.

This field resets to 0.

EOI, bit [0]

End Of Interrupt.

GICH_MISR, Maintenance Interrupt Status Register

Page 3684

EOI Meaning
0b0 End Of Interrupt maintenance interrupt not asserted.
0b1 End Of Interrupt maintenance interrupt asserted.

This maintenance interrupt is asserted when at least one bit in GICH_EISR == 1.

This field resets to 0.

Note

A List register is in the pending state only if the corresponding GICH_LR<n>
value is 0b01, that is, pending. The active and pending state is not included.

Accessing the GICH_MISR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICH_MISR provides equivalent functionality.
• For AArch64 implementations, ICH_MISR_EL2 provides equivalent functionality.

A maintenance interrupt is asserted only if at least one bit is set to 1 in this register and if GICH_HCR.En == 1.

GICH_MISR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual

interface control
0x0010 GICH_MISR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICH_MISR, Maintenance Interrupt Status Register

Page 3685

GICH_VMCR, Virtual Machine Control Register
The GICH_VMCR characteristics are:

Purpose
Enables the hypervisor to save and restore the virtual machine view of the GIC state. This register is updated when a
virtual machine updates the virtual CPU interface registers.

Configuration
This register is available when the GIC implementation supports interrupt virtualization.

Attributes
GICH_VMCR is a 32-bit register.

Field descriptions
The GICH_VMCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VPMR VBPR0 VBPR1 RES0 VEOIM RES0 VCBPRVFIQEnVAckCtlVENG1VENG0

VPMR, bits [31:24]

Virtual priority mask. The priority mask level for the CPU interface. If the priority of an interrupt is higher than the
value indicated by this field, the interface signals the interrupt to the PE.

This alias field is updated when a VM updates GICV_PMR.Priority.

This field resets to an architecturally UNKNOWN value.

VBPR0, bits [23:21]

Virtual Binary Point Register, Group 0. Defines the point at which the priority value fields split into two parts, the
Group priority field and the subpriority field. The Group priority field determines Group 0 interrupt preemption, and
also determines Group 1 interrupt preemption if GICH_VMCR.VCBPR == 1.

This alias field is updated when a VM updates GICV_BPR.Binary_Point.

This field resets to an architecturally UNKNOWN value.

VBPR1, bits [20:18]

Virtual Binary Point Register, Group 1. Defines the point at which the priority value fields split into two parts, the
Group priority field and the subpriority field. The Group priority field determines Group 1 interrupt preemption if
GICH_VMCR.VCBPR == 0.

This alias field is updated when a VM updates GICV_ABPR.Binary_Point.

This field resets to an architecturally UNKNOWN value.

Bits [17:10]

Reserved, RES0.

GICH_VMCR, Virtual Machine Control Register

Page 3686

VEOIM, bit [9]

Virtual EOImode. Possible values of this bit are:

VEOIM Meaning
0b0 A write of an INTID to GICV_EOIR or GICV_AEOIR drops the

priority of the interrupt with that INTID, and also deactivates
that interrupt.

0b1 A write of an INTID to GICV_EOIR or GICV_AEOIR only drops
the priority of the interrupt with that INTID. Software must
write to GICV_DIR to deactivate the interrupt.

This alias field is updated when a VM updates GICV_CTLR.EOImode.

This field resets to an architecturally UNKNOWN value.

Bits [8:5]

Reserved, RES0.

VCBPR, bit [4]

Virtual Common Binary Point Register. Possible values of this bit are:

VCBPR Meaning
0b0 GICV_ABPR determines the preemption group for Group 1

interrupts.
0b1 GICV_BPR determines the preemption group for Group 1

interrupts.

This alias field is updated when a VM updates GICV_CTLR.CBPR.

This field resets to an architecturally UNKNOWN value.

VFIQEn, bit [3]

Virtual FIQ enable. Possible values of this bit are:

VFIQEn Meaning
0b0 Group 0 virtual interrupts are presented as virtual IRQs.
0b1 Group 0 virtual interrupts are presented as virtual FIQs.

This alias field is updated when a VM updates GICV_CTLR.FIQEn.

This field resets to an architecturally UNKNOWN value.

VAckCtl, bit [2]

Virtual AckCtl. Possible values of this bit are:

VAckCtl Meaning
0b0 If the highest priority pending interrupt is Group 1, a read of

GICV_IAR or GICV_HPPIR returns an INTID of 1022.
0b1 If the highest priority pending interrupt is Group 1, a read of

GICV_IAR or GICV_HPPIR returns the INTID of the
corresponding interrupt.

This alias field is updated when a VM updates GICV_CTLR.AckCtl.

This field is supported for backwards compatibility with GICv2. Arm deprecates the use of this field.

This field resets to an architecturally UNKNOWN value.

GICH_VMCR, Virtual Machine Control Register

Page 3687

VENG1, bit [1]

Virtual interrupt enable, Group 1. Possible values of this bit are:

VENG1 Meaning
0b0 Group 1 virtual interrupts are disabled.
0b1 Group 1 virtual interrupts are enabled.

This alias field is updated when a VM updates GICV_CTLR.EnableGrp1.

This field resets to an architecturally UNKNOWN value.

VENG0, bit [0]

Virtual interrupt enable, Group 0. Possible values of this bit are:

VENG0 Meaning
0b0 Group 0 virtual interrupts are disabled.
0b1 Group 0 virtual interrupts are enabled.

This alias field is updated when a VM updates GICV_CTLR.EnableGrp0.

This field resets to an architecturally UNKNOWN value.

Note

A List register is in the pending state only if the corresponding GICH_LR<n>
value is 0b01, that is, pending. The active and pending state is not included.

Accessing the GICH_VMCR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICH_VMCR provides equivalent functionality.
• For AArch64 implementations, ICH_VMCR_EL2 provides equivalent functionality.

GICH_VMCR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual

interface control
0x0008 GICH_VMCR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICH_VMCR, Virtual Machine Control Register

Page 3688

GICH_VTR, Virtual Type Register
The GICH_VTR characteristics are:

Purpose
Indicates the number of implemented virtual priority bits and List registers.

Configuration
This register is available when the GIC implementation supports interrupt virtualization.

Attributes
GICH_VTR is a 32-bit register.

Field descriptions
The GICH_VTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PRIbits PREbits IDbits SEISA3V RES0 ListRegs

PRIbits, bits [31:29]

The number of virtual priority bits implemented, minus one.

An implementation must implement at least 32 levels of virtual priority (5 priority bits).

PREbits, bits [28:26]

The number of virtual preemption bits implemented, minus one.

An implementation must implement at least 32 levels of virtual preemption priority (5 preemption bits).

The value of this field must be less than or equal to the value of GICH_VTR.PRIbits.

IDbits, bits [25:23]

The number of virtual interrupt identifier bits supported:

IDbits Meaning
0b000 16 bits.
0b001 24 bits.

All other values are reserved.

SEIS, bit [22]

SEI support. Indicates whether the virtual CPU interface supports generation of SEIs:

SEIS Meaning
0b0 The virtual CPU interface logic does not support generation of

SEIs.
0b1 The virtual CPU interface logic supports generation of SEIs.

GICH_VTR, Virtual Type Register

Page 3689

A3V, bit [21]

Affinity 3 valid. Possible values are:

A3V Meaning
0b0 The virtual CPU interface logic only supports zero values of the

Aff3 field in ICC_SGI0R_EL1, ICC_SGI1R_EL1, and
ICC_ASGI1R_EL1.

0b1 The virtual CPU interface logic supports nonzero values of the
Aff3 field in ICC_SGI0R_EL1, ICC_SGI1R_EL1, and
ICC_ASGI1R_EL1.

Bits [20:5]

Reserved, RES0.

ListRegs, bits [4:0]

The number of implemented List registers, minus one.

Accessing the GICH_VTR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICH_VTR provides equivalent functionality.
• For AArch64 implementations, ICH_VTR_EL2 provides equivalent functionality.

GICH_VTR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual

interface control
0x0004 GICH_VTR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICH_VTR, Virtual Type Register

Page 3690

GICR_CLRLPIR, Clear LPI Pending Register
The GICR_CLRLPIR characteristics are:

Purpose
Clears the pending state of the specified LPI.

Configuration
This register is present only when GICv4.1 is implemented. Otherwise, direct accesses to GICR_CLRLPIR are RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_CLRLPIR is a 64-bit register.

Field descriptions
The GICR_CLRLPIR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

pINTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

pINTID, bits [31:0]

The INTID of the physical LPI.

Note

The size of this field is IMPLEMENTATION DEFINED, and is specified by the
GICD_TYPER.IDbits field. Unimplemented bits are RES0.

Accessing the GICR_CLRLPIR
When written with a 32-bit write the data is zero-extended to 64 bits.

This register is mandatory in an implementation that supports LPIs and does not include an ITS. The functionality of
this register is IMPLEMENTATION DEFINED in an implementation that does include an ITS.

Writes to this register have no effect if any of the following apply:

• GICR_CTLR.EnableLPIs == 0.
• The pINTID value specifies an unimplemented LPI.
• The pINTID value specifies an LPI that is not pending.

GICR_CLRLPIR, Clear LPI Pending Register

Page 3691

GICR_CLRLPIR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0048 GICR_CLRLPIR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are WO.
• When IsAccessSecure() accesses to this register are WO.
• When !IsAccessSecure() accesses to this register are WO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_CLRLPIR, Clear LPI Pending Register

Page 3692

GICR_CTLR, Redistributor Control Register
The GICR_CTLR characteristics are:

Purpose
Controls the operation of a Redistributor, and enables the signaling of LPIs by the Redistributor to the connected PE.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_CTLR is a 32-bit register.

Field descriptions
The GICR_CTLR bit assignments are:

31 30292827 26 25 24 2322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
UWP RES0 DPG1SDPG1NSDPG0 RES0 RWPRES0CESEnableLPIs

UWP, bit [31]

Upstream Write Pending. Read-only. Indicates whether all upstream writes have been communicated to the
Distributor.

UWP Meaning
0b0 The effects of all upstream writes have been communicated to

the Distributor, including any Generate SGI packets.
0b1 Not all the effects of upstream writes, including any Generate

SGI packets, have been communicated to the Distributor.

Bits [30:27]

Reserved, RES0.

DPG1S, bit [26]

Disable Processor selection for Group 1 Secure interrupts. When GICR_TYPER.DPGS == 1:

DPG1S Meaning
0b0 A Group 1 Secure SPI configured to use the 1 of N distribution

model can select this PE, if the PE is not asleep and if Secure
Group 1 interrupts are enabled.

0b1 A Group 1 Secure SPI configured to use the 1 of N distribution
model cannot select this PE.

When GICR_TYPER.DPGS == 0 this bit is RAZ/WI.

When GICD_CTLR.DS==1, this field is RAZ/WI. In GIC implementations that support two Security states, this field is
only accessible by Secure accesses, and is RAZ/WI to Non-secure accesses.

It is IMPLEMENTATION DEFINED whether these bits affect the selection of PEs for interrupts using the 1 of N distribution
model when GICD_CTLR.ARE_S==0.

This field resets to 0.

GICR_CTLR, Redistributor Control Register

Page 3693

DPG1NS, bit [25]

Disable Processor selection for Group 1 Non-secure interrupts. When GICR_TYPER.DPGS == 1:

DPG1NS Meaning
0b0 A Group 1 Non-secure SPI configured to use the 1 of N

distribution model can select this PE, if the PE is not asleep
and if Non-secure Group 1 interrupts are enabled.

0b1 A Group 1 Non-secure SPI configured to use the 1 of N
distribution model cannot select this PE.

When GICR_TYPER.DPGS == 0 this bit is RAZ/WI.

It is IMPLEMENTATION DEFINED whether these bits affect the selection of PEs for interrupts using the 1 of N distribution
model when GICD_CTLR.ARE_NS==0.

This field resets to 0.

DPG0, bit [24]

Disable Processor selection for Group 0 interrupts. When GICR_TYPER.DPGS == 1:

DPG0 Meaning
0b0 A Group 0 SPI configured to use the 1 of N distribution model

can select this PE, if the PE is not asleep and if Group 0
interrupts are enabled.

0b1 A Group 0 SPI configured to use the 1 of N distribution model
cannot select this PE.

When GICR_TYPER.DPGS == 0 this bit is RAZ/WI.

When GICD_CTLR.DS == 1, this field is always accessible. In GIC implementations that support two Security states,
this field is RAZ/WI to Non-secure accesses.

It is IMPLEMENTATION DEFINED whether these bits affect the selection of PEs for interrupts using the 1 of N distribution
model when GICD_CTLR.ARE_S == 0.

This field resets to 0.

Bits [23:4]

Reserved, RES0.

RWP, bit [3]

Register Write Pending. This bit indicates whether a register write for the current Security state is in progress or not.

RWP Meaning
0b0 The effect of all previous writes to the following registers are

visible to all agents in the system:
• GICR_ICENABLER0
• GICR_CTLR.DPG1S
• GICR_CTLR.DPG1NS
• GICR_CTLR.DPG0
• GICR_CTLR, which clears EnableLPIs from 1 to 0.
• In GICv4.1, GICR_VPROPBASER, which clears Valid from 1

to 0.
0b1 The effect of all previous writes to the following registers are not

guaranteed by the architecture to be visible to all agents in the
system while the changes are still being propagated:

• GICR_ICENABLER0
• GICR_CTLR.DPG1S
• GICR_CTLR.DPG1NS
• GICR_CTLR.DPG0
• GICR_CTLR, which clears EnableLPIs from 1 to 0.
• In GICv4.1, GICR_VPROPBASER, which clears Valid from 1

to 0.

GICR_CTLR, Redistributor Control Register

Page 3694

Bit [2]

Reserved, RES0.

CES, bit [1]

Clear Enable Supported.

This bit is read-only.

CES Meaning
0b0 The IRI does not indicate whether GICR_CTLR.EnableLPIs is RES1

once set.
0b1 GICR_CTLR.EnableLPIs is not RES1 once set.

Implementing GICR_CTLR.EnableLPIs as programmable and not reporting GICR_CLTR.CES == 1 is deprecated.

Implementing GICR_CTLR.EnableLPIs as RES1 once set is deprecated.

When GICR_CLTR.CES == 0, software cannot assume that GICR_CTLR.EnableLPIs is programmable without
observing the bit being cleared.

EnableLPIs, bit [0]

In implementations where affinity routing is enabled for the Security state:

EnableLPIs Meaning
0b0 LPI support is disabled. Any doorbell interrupt generated

as a result of a write to a virtual LPI register must be
discarded, and any ITS translation requests or commands
involving LPIs in this Redistributor are ignored.

0b1 LPI support is enabled.

Note

If GICR_TYPER.PLPIS == 0, this field is RES0. If GICD_CTLR.ARE_NS is
written from 1 to 0 when this bit is 1, behavior is an IMPLEMENTATION DEFINED
choice between clearing GICR_CTLR.EnableLPIs to 0 or maintaining its
current value.

When affinity routing is not enabled for the Non-secure state, this bit is RES0.

When written from 0 to 1, the Redistributor loads the LPI Pending table from memory to check for any pending
interrupts.

After it has been written to 1, it is IMPLEMENTATION DEFINED whether the bit becomes RES1 or can be cleared by to 0.

Where the bit remains programmable:

• Software must observe GICR_CTLR.RWP==0 after clearing GICR_CTLR.EnableLPIs from 1 to 0 before writing
GICR_PENDBASER or GICR_PROPBASER, otherwise behavior is UNPREDICTABLE.

• Software must observe GICR_CTLR.RWP==0 after clearing GICR_CTLR.EnableLPIs from 1 to 0 before setting
GICR_CTLR.EnableLPIs to 1, otherwise behavior is UNPREDICTABLE.

Note

If one or more ITS is implemented, Arm strongly recommends that all LPIs are
mapped to another Redistributor before GICR_CTLR.EnableLPIs is cleared to
0.

This field resets to 0.

The participation of a PE in the 1 of N distribution model for a given interrupt group is governed by the concatenation
of GICR_WAKER.ProcessorSleep, the appropriate GICR_CTLR.DPG{1, 0} bit, and the PE interrupt group enable. The
behavior options are:

GICR_CTLR, Redistributor Control Register

Page 3695

PS DPG{1S,
1NS, 0} Enable PE Behavior

0b0 0b0 0b0 The PE cannot be selected.
0b0 0b0 0b1 The PE can be selected.
0b0 0b1 * The PE cannot be selected.
0b1 * * The PE cannot be selected when

GICD_CTLR.E1NWF == 0. When
GICD_CTLR.E1NWF == 1, the mechanism
by which PEs are selected is
IMPLEMENTATION DEFINED.

If an SPI using the 1 of N distribution model has been forwarded to the PE, and a write to GICR_CTLR occurs that
changes the DPG bit for the interrupt group of the SPI, the IRI must attempt to select a different target PE for the SPI.
This might have no effect on the forwarded SPI if it has already been activated.

Accessing the GICR_CTLR

GICR_CTLR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0000 GICR_CTLR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_CTLR, Redistributor Control Register

Page 3696

GICR_ICACTIVER0, Interrupt Clear-Active Register 0
The GICR_ICACTIVER0 characteristics are:

Purpose
Deactivates the corresponding SGI or PPI. These registers are used when saving and restoring GIC state.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_ICACTIVER0 is a 32-bit register.

Field descriptions
The GICR_ICACTIVER0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clear_active_bit<x>, bit [x], for x = 0 to 31

Clear_active_bit<x>, bit [x], for x = 0 to 31

Removes the active state from interrupt number x. Reads and writes have the following behavior:

Clear_active_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not active, and is not active and
pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is active, or is active and pending.
If written, deactivates the corresponding
interrupt, if the interrupt is active. If the
interrupt is already deactivated, the write has no
effect.

This field resets to an architecturally UNKNOWN value.

Accessing the GICR_ICACTIVER0
When affinity routing is not enabled for the Security state of an interrupt in GICR_ICACTIVER0, the corresponding bit
is RAZ/WI and equivalent functionality is provided by GICD_ICACTIVER<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by
GICD_ICACTIVER<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to Non-secure accesses.

GICR_ICACTIVER0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0380 GICR_ICACTIVER0

GICR_ICACTIVER0, Interrupt Clear-Active Register 0

Page 3697

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ICACTIVER0, Interrupt Clear-Active Register 0

Page 3698

GICR_ICACTIVER<n>E, Interrupt Clear-Active
Registers, n = 1 - 2

The GICR_ICACTIVER<n>E characteristics are:

Purpose
Removes the active state from the corresponding PPI.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICR_ICACTIVER<n>E are
RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_ICACTIVER<n>E is a 32-bit register.

Field descriptions
The GICR_ICACTIVER<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clear_active_bit<x>, bit [x], for x = 0 to 31

Clear_active_bit<x>, bit [x], for x = 0 to 31

For the extended PPIs, removes the active state to interrupt number x. Reads and writes have the following behavior:

Clear_active_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not active, and is not active and
pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is active, or is active and pending.
If written, deactivates the corresponding
interrupt, if the interrupt is active. If the
interrupt is already deactivated, the write has no
effect.

This field resets to an architecturally UNKNOWN value.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICR_ICACTIVER<n>E number, n, is given by n = (m-1024) DIV 32.
• The offset of the required GICR_ICACTIVER<n>E is (0x200 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-1024) MOD 32.

Accessing the GICR_ICACTIVER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_ICACTIVER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure PPIs are RAZ/WI to Non-secure accesses.

GICR_ICACTIVER<n>E, Interrupt Clear-Active Registers, n = 1 - 2

Page 3699

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_ICACTIVER<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0380

+ 4n
GICR_ICACTIVER<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ICACTIVER<n>E, Interrupt Clear-Active Registers, n = 1 - 2

Page 3700

GICR_ICENABLER0, Interrupt Clear-Enable Register 0
The GICR_ICENABLER0 characteristics are:

Purpose
Disables forwarding of the corresponding SGI or PPI to the CPU interfaces.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_ICENABLER0 is a 32-bit register.

Field descriptions
The GICR_ICENABLER0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clear_enable_bit<x>, bit [x], for x = 0 to 31

Clear_enable_bit<x>, bit [x], for x = 0 to 31

For PPIs and SGIs, controls the forwarding of interrupt number x to the CPU interfaces. Reads and writes have the
following behavior:

Clear_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, disables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent read
of this bit returns 0.

This field resets to an architecturally UNKNOWN value.

Accessing the GICR_ICENABLER0
When affinity routing is not enabled for the Security state of an interrupt in GICR_ICENABLER0, the corresponding bit
is RAZ/WI and equivalent functionality is provided by GICD_ICENABLER<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by
GICD_ICENABLER<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to Non-secure accesses.

GICR_ICENABLER0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0180 GICR_ICENABLER0

GICR_ICENABLER0, Interrupt Clear-Enable Register 0

Page 3701

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ICENABLER0, Interrupt Clear-Enable Register 0

Page 3702

GICR_ICENABLER<n>E, Interrupt Clear-Enable
Registers, n = 1 - 2

The GICR_ICENABLER<n>E characteristics are:

Purpose
Disables forwarding of the corresponding PPI to the CPU interfaces.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICR_ICENABLER<n>E are
RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_ICENABLER<n>E is a 32-bit register.

Field descriptions
The GICR_ICENABLER<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clear_enable_bit<x>, bit [x], for x = 0 to 31

Clear_enable_bit<x>, bit [x], for x = 0 to 31

For the extended PPI range, controls the forwarding of interrupt number x to the CPU interface. Reads and writes
have the following behavior:

Clear_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, disables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent read
of this bit returns 0.

This field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICR_ICENABLER<n>E number, n, is given by n = (m-1024) DIV 32.
• The offset of the required GICR_ICENABLER<n>E is (0x180 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-1024) MOD 32.

Accessing the GICR_ICENABLER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_ICENABLER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure PPIs are RAZ/WI to Non-secure accesses.

GICR_ICENABLER<n>E, Interrupt Clear-Enable Registers, n = 1 - 2

Page 3703

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_ICENABLER<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0180

+ 4n
GICR_ICENABLER<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ICENABLER<n>E, Interrupt Clear-Enable Registers, n = 1 - 2

Page 3704

GICR_ICFGR0, Interrupt Configuration Register 0
The GICR_ICFGR0 characteristics are:

Purpose
Determines whether the corresponding SGI is edge-triggered or level-sensitive.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_ICFGR0 is a 32-bit register.

Field descriptions
The GICR_ICFGR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Int_config<x>, bits [2x+1:2x], for x = 0 to 15

Int_config<x>, bits [2x+1:2x], for x = 0 to 15

Indicates whether the interrupt with ID 16n + x is level-sensitive or edge-triggered.

Int_config[0] (bit [2x]) is RES0.

Possible values of Int_config[1] (bit [2x+1]) are:

Int_config<x> Meaning
0b00 Corresponding interrupt is level-sensitive.
0b01 Corresponding interrupt is edge-triggered.

For SGIs, Int_config[1] is RAO/WI.

A read of this bit always returns the correct value to indicate the interrupt triggering method.

This field resets to an architecturally UNKNOWN value.

Accessing the GICR_ICFGR0
This register is used when affinity routing is enabled.

When affinity routing is disabled for the Security state of an interrupt, the field for that interrupt is RES0 and an
implementation is permitted to make the field RAZ/WI in this case. Equivalent functionality is provided by
GICD_ICFGR<n> with n=0.

When GICD_CTLR.DS==0, a register bit that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-
secure accesses.

GICR_ICFGR0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0C00 GICR_ICFGR0

GICR_ICFGR0, Interrupt Configuration Register 0

Page 3705

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ICFGR0, Interrupt Configuration Register 0

Page 3706

GICR_ICFGR1, Interrupt Configuration Register 1
The GICR_ICFGR1 characteristics are:

Purpose
Determines whether the corresponding PPI is edge-triggered or level-sensitive.

Configuration
A copy of this register is provided for each Redistributor.

For each supported PPI, it is IMPLEMENTATION DEFINED whether software can program the corresponding Int_config
field.

Changing Int_config when the interrupt is individually enabled is UNPREDICTABLE.

Changing the interrupt configuration between level-sensitive and edge-triggered (in either direction) at a time when
there is a pending interrupt will leave the interrupt in an UNKNOWN pending state.

Attributes
GICR_ICFGR1 is a 32-bit register.

Field descriptions
The GICR_ICFGR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Int_config<x>, bits [2x+1:2x], for x = 0 to 15

Int_config<x>, bits [2x+1:2x], for x = 0 to 15

Indicates whether the interrupt with ID 16n + x is level-sensitive or edge-triggered.

Int_config[0] (bit [2x]) is RES0.

Possible values of Int_config[1] (bit [2x+1]) are:

Int_config<x> Meaning
0b00 Corresponding interrupt is level-sensitive.
0b01 Corresponding interrupt is edge-triggered.

A read of this bit always returns the correct value to indicate the interrupt triggering method.

For PPIs, Int_config[1] is programmable unless the implementation supports two Security states and the bit
corresponds to a Group 0 or Secure Group 1 interrupt, in which case the bit is RAZ/WI to Non-secure accesses.

This field resets to an architecturally UNKNOWN value.

Accessing the GICR_ICFGR1
This register is used when affinity routing is enabled.

When affinity routing is disabled for the Security state of an interrupt, the field for that interrupt is RES0 and an
implementation is permitted to make the field RAZ/WI in this case. Equivalent functionality is provided by
GICD_ICFGR<n> with n=1 .

GICR_ICFGR1, Interrupt Configuration Register 1

Page 3707

GICR_ICFGR1 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0C04 GICR_ICFGR1

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ICFGR1, Interrupt Configuration Register 1

Page 3708

GICR_ICFGR<n>E, Interrupt configuration registers, n
= 2 - 5

The GICR_ICFGR<n>E characteristics are:

Purpose
Determines whether the corresponding PPI in the extended PPI range is edge-triggered or level-sensitive.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICR_ICFGR<n>E are RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_ICFGR<n>E is a 32-bit register.

Field descriptions
The GICR_ICFGR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Int_config<x>, bit [x], for x = 0 to 31

Int_config<x>, bit [x], for x = 0 to 31

Indicates whether the interrupt with ID 16n + x is level-sensitive or edge-triggered.

Int_config[0] (bit [2x]) is RES0.

Possible values of Int_config[1] (bit [2x+1]) are:

Int_config<x> Meaning
0b0 The corresponding interrupt is level-sensitive.
0b1 The corresponding interrupt is edge-triggered.

This field resets to an architecturally UNKNOWN value.

For each supported extended PPI, it is IMPLEMENTATION DEFINED whether software can program the corresponding
Int_config field.

Accessing the GICR_ICFGR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_ICFGR<n>E, the corresponding bit
is RES0.

When GICD_CTLR.DS==0, a register bit that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-
secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_ICFGR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance

GICR_ICFGR<n>E, Interrupt configuration registers, n = 2 - 5

Page 3709

GIC
Redistributor

SGI_base 0x0C00 +
4n

GICR_ICFGR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ICFGR<n>E, Interrupt configuration registers, n = 2 - 5

Page 3710

GICR_ICPENDR0, Interrupt Clear-Pending Register 0
The GICR_ICPENDR0 characteristics are:

Purpose
Removes the pending state from the corresponding SGI or PPI.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_ICPENDR0 is a 32-bit register.

Field descriptions
The GICR_ICPENDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clear_pending_bit<x>, bit [x], for x = 0 to 31

Clear_pending_bit<x>, bit [x], for x = 0 to 31

Removes the pending state from interrupt number x. Reads and writes have the following behavior:

Clear_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is pending, or active and pending.
If written, changes the state of the
corresponding interrupt from pending to
inactive, or from active and pending to active.
This has no effect in the following cases:

• If the interrupt is not pending and is not
active and pending.

• If the interrupt is a level-sensitive
interrupt that is pending or active and
pending for a reason other than a write to
GICD_ISPENDR<n>. In this case, if the
interrupt signal continues to be asserted,
the interrupt remains pending or active
and pending.

This field resets to an architecturally UNKNOWN value.

Accessing the GICR_ICPENDR0
When affinity routing is not enabled for the Security state of an interrupt in GICR_ICPENDR0, the corresponding bit is
RAZ/WI and equivalent functionality is provided by GICD_ICPENDR<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by
GICD_ICENABLER<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to Non-secure accesses.

GICR_ICPENDR0, Interrupt Clear-Pending Register 0

Page 3711

GICR_ICPENDR0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0280 GICR_ICPENDR0

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ICPENDR0, Interrupt Clear-Pending Register 0

Page 3712

GICR_ICPENDR<n>E, Interrupt Clear-Pending
Registers, n = 1 - 2

The GICR_ICPENDR<n>E characteristics are:

Purpose
Removes the pending state from the corresponding PPI.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICR_ICPENDR<n>E are
RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_ICPENDR<n>E is a 32-bit register.

Field descriptions
The GICR_ICPENDR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clear_pending_bit<x>, bit [x], for x = 0 to 31

Clear_pending_bit<x>, bit [x], for x = 0 to 31

For the extended PPIs, removes the pending state to interrupt number x. Reads and writes have the following
behavior:

Clear_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending on this PE.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is pending, or active and pending on
this PE.
If written, changes the state of the
corresponding interrupt from pending to
inactive, or from active and pending to active.
This has no effect in the following cases:

• If the interrupt is not pending and is not
active and pending.

• If the interrupt is a level-sensitive
interrupt that is pending or active and
pending for a reason other than a write
to GICR_ISPENDR<n>E. In this case, if
the interrupt signal continues to be
asserted, the interrupt remains pending
or active and pending.

This field resets to an architecturally UNKNOWN value.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICR_ICPENDR<n>E number, n, is given by n = (m-1024) DIV 32.
• The offset of the required GICR_ICPENDR<n>E is (0x200 + (4*n)).

GICR_ICPENDR<n>E, Interrupt Clear-Pending Registers, n = 1 - 2

Page 3713

• The bit number of the required group modifier bit in this register is (m-1024) MOD 32.

Accessing the GICR_ICPENDR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_ICPENDR<n>E, the corresponding
bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure PPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_ICPENDR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0280

+ 4n
GICR_ICPENDR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ICPENDR<n>E, Interrupt Clear-Pending Registers, n = 1 - 2

Page 3714

GICR_IGROUPR0, Interrupt Group Register 0
The GICR_IGROUPR0 characteristics are:

Purpose
Controls whether the corresponding SGI or PPI is in Group 0 or Group 1.

Configuration
This register is available in all GIC configurations. If the GIC implementation supports two Security states, this
register is Secure.

A copy of this register is provided for each Redistributor.

Attributes
GICR_IGROUPR0 is a 32-bit register.

Field descriptions
The GICR_IGROUPR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Redistributor_group_status_bit<x>, bit [x], for x = 0 to 31

Redistributor_group_status_bit<x>, bit [x], for x = 0 to 31

Group status bit. In this register:

• Bits [31:16] are group status bits for PPIs.
• Bits [15:0] are group status bits for SGIs.

Redistributor_group_status_bit<x> Meaning
0b0 When GICD_CTLR.DS==1, the

corresponding interrupt is
Group 0.
When GICD_CTLR.DS==0, the
corresponding interrupt is
Secure.

0b1 When GICD_CTLR.DS==1, the
corresponding interrupt is
Group 1.
When GICD_CTLR.DS==0, the
corresponding interrupt is Non-
secure Group 1.

When GICD_CTLR.DS == 0, the bit that corresponds to the interrupt is concatenated with the equivalent bit in
GICR_IGRPMODR0 to form a 2-bit field that defines an interrupt group. The encoding of this field is at
GICR_IGRPMODR0.

This field resets to an architecturally UNKNOWN value.

The considerations for the reset value of this register are the same as those for GICD_IGROUPR<n> with n=0.

Accessing the GICR_IGROUPR0
When affinity routing is not enabled for the Security state of an interrupt in GICR_IGROUPR0, the corresponding bit is
RES0 and equivalent functionality is provided by GICD_IGROUPR<n> with n=0.

GICR_IGROUPR0, Interrupt Group Register 0

Page 3715

When GICD_CTLR.DS == 0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than one time. The effect of the
change must be visible in finite time.

GICR_IGROUPR0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0080 GICR_IGROUPR0

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_IGROUPR0, Interrupt Group Register 0

Page 3716

GICR_IGROUPR<n>E, Interrupt Group Registers, n = 1
- 2

The GICR_IGROUPR<n>E characteristics are:

Purpose
Controls whether the corresponding PPI is in Group 0 or Group 1.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICR_IGROUPR<n>E are
RES0.

When GICD_CTLR.DS==0, this register is Secure.

A copy of this register is provided for each Redistributor.

Attributes
GICR_IGROUPR<n>E is a 32-bit register.

Field descriptions
The GICR_IGROUPR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Group_status_bit<x>, bit [x], for x = 0 to 31

Group_status_bit<x>, bit [x], for x = 0 to 31

Group status bit.

Group_status_bit<x> Meaning
0b0 When GICD_CTLR.DS==1, the corresponding

interrupt is Group 0.
When GICD_CTLR.DS==0, the corresponding
interrupt is Secure.

0b1 When GICD_CTLR.DS==1, the corresponding
interrupt is Group 1.
When GICD_CTLR.DS==0, the corresponding
interrupt is Non-secure Group 1.

This field resets to an architecturally UNKNOWN value.

If affinity routing is enabled for the Security state of an interrupt, the bit that corresponds to the interrupt is
concatenated with the equivalent bit in GICR_IGRPMODR<n>E to form a 2-bit field that defines an interrupt group.
The encoding of this field is described in GICR_IGRPMODR<n>E.

If affinity routing is disabled for the Security state of an interrupt, the bit is RES0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICR_IGROUPR<n>E number, n, is given by n = (m-1024) DIV 32.
• The offset of the required GICR_IGROUPR<n>E is (0x080 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-1024) MOD 32.

GICR_IGROUPR<n>E, Interrupt Group Registers, n = 1 - 2

Page 3717

Accessing the GICR_IGROUPR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_IGROUPR<n>E, the corresponding
bit is RES0.

When GICD_CTLR.DS==0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_IGROUPR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0080

+ 4n
GICR_IGROUPR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_IGROUPR<n>E, Interrupt Group Registers, n = 1 - 2

Page 3718

GICR_IGRPMODR0, Interrupt Group Modifier Register 0
The GICR_IGRPMODR0 characteristics are:

Purpose
When GICD_CTLR.DS==0, this register together with the GICR_IGROUPR0 register, controls whether the
corresponding interrupt is in:

• Secure Group 0.
• Non-secure Group 1.
• When System register access is enabled, Secure Group 1.

Configuration
When GICD_CTLR.DS==0, this register is Secure.

A copy of this register is provided for each Redistributor.

Attributes
GICR_IGRPMODR0 is a 32-bit register.

Field descriptions
The GICR_IGRPMODR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Group_modifier_bit<x>, bit [x], for x = 0 to 31

Group_modifier_bit<x>, bit [x], for x = 0 to 31

Group modifier bit. In implementations where affinity routing is enabled for the Security state of an interrupt, the bit
that corresponds to the interrupt is concatenated with the equivalent bit in GICR_IGROUPR0 to form a 2-bit field that
defines an interrupt group:

Group
modifier bit

Group
status bit Definition Short

name
0b0 0b0 Secure Group 0 G0S
0b0 0b1 Non-secure Group 1 G1NS
0b1 0b0 Secure Group 1 G1S
0b1 0b1 Reserved, treated as Non-

secure Group 1
-

This field resets to an architecturally UNKNOWN value.

Accessing the GICR_IGRPMODR0
When affinity routing is not enabled for the Security state of an interrupt in GICR_IGRPMODR0, the corresponding bit
is RES0 and equivalent functionality is provided by GICD_IGRPMODR<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by
GICD_IGRPMODR<n>.

When GICD_CTLR.ARE_S == 0 or GICD_CTLR.DS == 1, GICR_IGRPMODR0 is RES0. An implementation can make this
register RAZ/WI in this case.

When GICD_CTLR.DS==0, the register is RAZ/WI to Non-secure accesses.

GICR_IGRPMODR0, Interrupt Group Modifier Register 0

Page 3719

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than one time. The effect of the
change must be visible in finite time.

GICR_IGRPMODR0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0D00 GICR_IGRPMODR0

This interface is accessible as follows:

• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_IGRPMODR0, Interrupt Group Modifier Register 0

Page 3720

GICR_IGRPMODR<n>E, Interrupt Group Modifier
Registers, n = 1 - 2

The GICR_IGRPMODR<n>E characteristics are:

Purpose
When GICD_CTLR.DS==0, this register together with the GICR_IGROUPR<n>E registers, controls whether the
corresponding interrupt is in:

• Secure Group 0.
• Non-secure Group 1.
• When System register access is enabled, Secure Group 1.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICR_IGRPMODR<n>E are
RES0.

When GICD_CTLR.DS==0, this register is Secure.

A copy of this register is provided for each Redistributor.

Attributes
GICR_IGRPMODR<n>E is a 32-bit register.

Field descriptions
The GICR_IGRPMODR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Group_modifier_bit<x>, bit [x], for x = 0 to 31

Group_modifier_bit<x>, bit [x], for x = 0 to 31

Group modifier bit. In implementations where affinity routing is enabled for the Security state of an interrupt, the bit
that corresponds to the interrupt is concatenated with the equivalent bit in GICR_IGROUPR<n>E to form a 2-bit field
that defines an interrupt group:

Group
modifier bit

Group
status bit Definition Short

name
0b0 0b0 Secure Group 0 G0S
0b0 0b1 Non-secure Group 1 G1NS
0b1 0b0 Secure Group 1 G1S
0b1 0b1 Reserved, treated as Non-

secure Group 1
-

This field resets to an architecturally UNKNOWN value.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICR_IGRPMODR<n>E number, n, is given by n = (m-1024) DIV 32.
• The offset of the required GICR_IGRPMODR<n>E is (0xD00 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-1024) MOD 32.

GICR_IGRPMODR<n>E, Interrupt Group Modifier Registers, n = 1 - 2

Page 3721

Accessing the GICR_IGRPMODR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_IGRPMODR<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_IGRPMODR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0D00

+ 4n
GICR_IGRPMODR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_IGRPMODR<n>E, Interrupt Group Modifier Registers, n = 1 - 2

Page 3722

GICR_IIDR, Redistributor Implementer Identification
Register

The GICR_IIDR characteristics are:

Purpose
Provides information about the implementer and revision of the Redistributor.

Configuration
This register is available in all configurations of the GIC. If the GIC implementation supports two Security states, this
register is Common.

Attributes
GICR_IIDR is a 32-bit register.

Field descriptions
The GICR_IIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ProductID RES0 Variant Revision Implementer

ProductID, bits [31:24]

An IMPLEMENTATION DEFINED product identifier.

Bits [23:20]

Reserved, RES0.

Variant, bits [19:16]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish product variants, or major
revisions of a product.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number. Typically, this field is used to distinguish minor revisions of a product.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the Redistributor:

• Bits [11:8] are the JEP106 continuation code of the implementer. For an Arm implementation, this field is 0x4.
• Bit [7] is always 0.
• Bits [6:0] are the JEP106 identity code of the implementer. For an Arm implementation, bits [7:0] are therefore

0x3B.

GICR_IIDR, Redistributor Implementer Identification Register

Page 3723

Accessing the GICR_IIDR

GICR_IIDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0004 GICR_IIDR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_IIDR, Redistributor Implementer Identification Register

Page 3724

GICR_INVALLR, Redistributor Invalidate All Register
The GICR_INVALLR characteristics are:

Purpose
Invalidates any cached configuration data of all physical LPIs, causing the GIC to reload the interrupt configuration
from the physical LPI Configuration table at the address specified by GICR_PROPBASER.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_INVALLR is a 64-bit register.

Field descriptions
The GICR_INVALLR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
V RES0 V

RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V, bit [63]

When GICv4.1 is implemented:

Indicates whether the INTID is virtual or physical.

V Meaning
0b0 Invalidate is for a physical INTID.
0b1 Invalidate is for a virtual INTID.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

V, bits [47:32]

When GICv4.1 is implemented:

When GICR_INVLPIR.V == 0, this field is RES0

When GICR_INVLPIR.V == 1, this field is the target vPEID of the invalidate.

Note

GICR_INVALLR, Redistributor Invalidate All Register

Page 3725

The size of this field is IMPLEMENTATION DEFINED, and is specified by the
GICD_TYPER2.VIL and GICD_TYPER2.VID fields. Unimplemented bits are
RES0.

Otherwise:

Reserved, RES0.

Bits [31:0]

Reserved, RES0.

Note

If any LPI has been forwarded to the PE and a valid write to GICR_INVALLR is
received, the Redistributor must ensure it reloads its properties from memory.
This has no effect on the forwarded LPI if it has already been activated.

Accessing the GICR_INVALLR
This register is mandatory in an implementation that supports LPIs and does not include an ITS. The functionality is
IMPLEMENTATION DEFINED in an implementation that does include an ITS.

Writes to this register have no effect if no physical LPIs are currently stored in the local Redistributor cache.

GICR_INVALLR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x00B0 GICR_INVALLR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are WO.
• When IsAccessSecure() accesses to this register are WO.
• When !IsAccessSecure() accesses to this register are WO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_INVALLR, Redistributor Invalidate All Register

Page 3726

GICR_INVLPIR, Redistributor Invalidate LPI Register
The GICR_INVLPIR characteristics are:

Purpose
Invalidates the cached configuration data of a specified LPI, causing the GIC to reload the interrupt configuration from
the physical LPI Configuration table at the address specified by GICR_PROPBASER.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_INVLPIR is a 64-bit register.

Field descriptions
The GICR_INVLPIR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
V RES0 vPEID

INTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V, bit [63]

When GICv4.1 is implemented:

Indicates whether the INTID is virtual or physical.

V Meaning
0b0 Invalidate is for a physical INTID.
0b1 Invalidate is for a virtual INTID.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

vPEID, bits [47:32]

When GICv4.1 is implemented:

When GICR_INVLPIR.V == 0, this field is RES0

When GICR_INVLPIR.V == 1, this field is the target vPEID of the invalidate.

Note

GICR_INVLPIR, Redistributor Invalidate LPI Register

Page 3727

The size of this field is IMPLEMENTATION DEFINED, and is specified by the
GICD_TYPER2.VIL and GICD_TYPER2.VID fields. Unimplemented bits are
RES0.

Otherwise:

Reserved, RES0.

INTID, bits [31:0]

The INTID of the physical LPI to be cleaned.

Note

The size of this field is IMPLEMENTATION DEFINED, and is specified by the
GICD_TYPER.IDbits field. Unimplemented bits are RES0.

Note

If any LPI has been forwarded to the PE and a valid write to GICR_INVLPIR is
received, the Redistributor must ensure it reloads its properties from memory
and apply any changes by retrieving and reforwarding the LPI as required.
This has no effect on the forwarded LPI if it has already been activated.

Accessing the GICR_INVLPIR
When written with a 32-bit write the data is zero-extended to 64 bits.

This register is mandatory in an implementation that supports LPIs and does not include an ITS. The functionality is
IMPLEMENTATION DEFINED in an implementation that does include an ITS.

Writes to this register have no effect if either:

• The specified LPI is not currently stored in the local Redistributor.
• The pINTID field corresponds to an unimplemented LPI.

GICR_INVLPIR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x00A0 GICR_INVLPIR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are WO.
• When IsAccessSecure() accesses to this register are WO.
• When !IsAccessSecure() accesses to this register are WO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_INVLPIR, Redistributor Invalidate LPI Register

Page 3728

GICR_IPRIORITYR<n>, Interrupt Priority Registers, n =
0 - 7

The GICR_IPRIORITYR<n> characteristics are:

Purpose
Holds the priority of the corresponding interrupt for each SGI and PPI supported by the GIC.

Configuration
A copy of these registers is provided for each Redistributor.

These registers are configured as follows:

• GICR_IPRIORITYR0-GICR_IPRIORITYR3 store the priority of SGIs.
• GICR_IPRIORITYR4-GICR_IPRIORITYR7 store the priority of PPIs.

Attributes
GICR_IPRIORITYR<n> is a 32-bit register.

Field descriptions
The GICR_IPRIORITYR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Priority_offset_3B Priority_offset_2B Priority_offset_1B Priority_offset_0B

Priority_offset_3B, bits [31:24]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 3. Lower priority values correspond to
greater priority of the interrupt.

This field resets to an architecturally UNKNOWN value.

Priority_offset_2B, bits [23:16]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 2. Lower priority values correspond to
greater priority of the interrupt.

This field resets to an architecturally UNKNOWN value.

Priority_offset_1B, bits [15:8]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 1. Lower priority values correspond to
greater priority of the interrupt.

This field resets to an architecturally UNKNOWN value.

Priority_offset_0B, bits [7:0]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 0. Lower priority values correspond to
greater priority of the interrupt.

This field resets to an architecturally UNKNOWN value.

GICR_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 7

Page 3729

Accessing the GICR_IPRIORITYR<n>
These registers are used when affinity routing is enabled for the Security state of the interrupt. When affinity routing
is not enabled the bits corresponding to the interrupt are RAZ/WI and GICD_IPRIORITYR<n> provides equivalent
functionality.

These registers are used for SGIs and PPIs only. Equivalent functionality for SPIs is provided by
GICD_IPRIORITYR<n>.

These registers are byte-accessible.

When GICD_CTLR.DS == 0:

• A field that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-secure accesses.
• A Non-secure access to a field that corresponds to a Non-secure Group 1 interrupt behaves as described in

Software accesses of interrupt priority.

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than one time. The effect of the
change must be visible in finite time.

GICR_IPRIORITYR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0400

+ 4n
GICR_IPRIORITYR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 7

Page 3730

GICR_IPRIORITYR<n>E, Interrupt Priority Registers
(extended PPI range), n = 8 - 23

The GICR_IPRIORITYR<n>E characteristics are:

Purpose
Holds the priority of the corresponding interrupt for each extended PPI supported by the GIC.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICR_IPRIORITYR<n>E are
RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_IPRIORITYR<n>E is a 32-bit register.

Field descriptions
The GICR_IPRIORITYR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Priority_offset_3B Priority_offset_2B Priority_offset_1B Priority_offset_0B

Priority_offset_3B, bits [31:24]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 3. Lower priority values correspond to
greater priority of the interrupt.

This field resets to an architecturally UNKNOWN value.

Priority_offset_2B, bits [23:16]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 2. Lower priority values correspond to
greater priority of the interrupt.

This field resets to an architecturally UNKNOWN value.

Priority_offset_1B, bits [15:8]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 1. Lower priority values correspond to
greater priority of the interrupt.

This field resets to an architecturally UNKNOWN value.

Priority_offset_0B, bits [7:0]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 0. Lower priority values correspond to
greater priority of the interrupt.

This field resets to an architecturally UNKNOWN value.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

GICR_IPRIORITYR<n>E, Interrupt Priority Registers (extended PPI range), n = 8 - 23

Page 3731

• The corresponding GICR_IPRIORITYR<n> number, n, is given by n = (m-1024) DIV 4.
• The offset of the required GICR_IPRIORITYR<n>E register is (0x400 + (4*n)).
• The byte offset of the required Priority field in this register is m MOD 4, where:

◦ Byte offset 0 refers to register bits [7:0].
◦ Byte offset 1 refers to register bits [15:8].
◦ Byte offset 2 refers to register bits [23:16].
◦ Byte offset 3 refers to register bits [31:24].

Accessing the GICR_IPRIORITYR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_ISACTIVER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0:

• A field that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-secure accesses.
• A Non-secure access to a field that corresponds to a Non-secure Group 1 interrupt behaves as described in

Software accesses of interrupt priority.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than once. The effect of the change
must be visible in finite time.

GICR_IPRIORITYR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0400

+ 4n
GICR_IPRIORITYR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_IPRIORITYR<n>E, Interrupt Priority Registers (extended PPI range), n = 8 - 23

Page 3732

GICR_ISACTIVER0, Interrupt Set-Active Register 0
The GICR_ISACTIVER0 characteristics are:

Purpose
Activates the corresponding SGI or PPI. These registers are used when saving and restoring GIC state.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_ISACTIVER0 is a 32-bit register.

Field descriptions
The GICR_ISACTIVER0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Set_active_bit<x>, bit [x], for x = 0 to 31

Set_active_bit<x>, bit [x], for x = 0 to 31

Adds the active state to interrupt number x. Reads and writes have the following behavior:

Set_active_bit<x> Meaning
0b0 If read, indicates that the corresponding interrupt

is not active, and is not active and pending.
If written, has no effect.

0b1 If read, indicates that the corresponding interrupt
is active, or is active and pending.
If written, activates the corresponding interrupt, if
the interrupt is not already active. If the interrupt
is already active, the write has no effect.
After a write of 1 to this bit, a subsequent read of
this bit returns 1.

This field resets to an architecturally UNKNOWN value.

Accessing the GICR_ISACTIVER0
When affinity routing is not enabled for the Security state of an interrupt in GICR_ISACTIVER0, the corresponding bit
is RAZ/WI and equivalent functionality is provided by GICD_ISACTIVER<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by
GICD_ISACTIVER<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to Non-secure accesses.

GICR_ISACTIVER0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0300 GICR_ISACTIVER0

GICR_ISACTIVER0, Interrupt Set-Active Register 0

Page 3733

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ISACTIVER0, Interrupt Set-Active Register 0

Page 3734

GICR_ISACTIVER<n>E, Interrupt Set-Active Registers,
n = 1 - 2

The GICR_ISACTIVER<n>E characteristics are:

Purpose
Adds the active state to the corresponding PPI.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICR_ISACTIVER<n>E are
RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_ISACTIVER<n>E is a 32-bit register.

Field descriptions
The GICR_ISACTIVER<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Set_active_bit<x>, bit [x], for x = 0 to 31

Set_active_bit<x>, bit [x], for x = 0 to 31

For the extended PPIs, adds the active state to interrupt number x. Reads and writes have the following behavior:

Set_active_bit<x> Meaning
0b0 If read, indicates that the corresponding interrupt

is not active, and is not active and pending.
If written, has no effect.

0b1 If read, indicates that the corresponding interrupt
is active, or active and pending on this PE.
If written, activates the corresponding interrupt, if
the interrupt is not already active. If the interrupt
is already active, the write has no effect.
After a write of 1 to this bit, a subsequent read of
this bit returns 1.

This field resets to an architecturally UNKNOWN value.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICR_ISACTIVER<n>E number, n, is given by n = (m-1024) DIV 32.
• The offset of the required GICR_ISACTIVER<n>E is (0x200 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-1024) MOD 32.

Accessing the GICR_ISACTIVER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_ISACTIVER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure PPIs are RAZ/WI to Non-secure accesses.

GICR_ISACTIVER<n>E, Interrupt Set-Active Registers, n = 1 - 2

Page 3735

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_ISACTIVER<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0300

+ 4n
GICR_ISACTIVER<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ISACTIVER<n>E, Interrupt Set-Active Registers, n = 1 - 2

Page 3736

GICR_ISENABLER0, Interrupt Set-Enable Register 0
The GICR_ISENABLER0 characteristics are:

Purpose
Enables forwarding of the corresponding SGI or PPI to the CPU interfaces.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_ISENABLER0 is a 32-bit register.

Field descriptions
The GICR_ISENABLER0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Set_enable_bit<x>, bit [x], for x = 0 to 31

Set_enable_bit<x>, bit [x], for x = 0 to 31

For PPIs and SGIs, controls the forwarding of interrupt number x to the CPU interface. Reads and writes have the
following behavior:

Set_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, enables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent read of
this bit returns 1.

This field resets to 0.

Accessing the GICR_ISENABLER0
When affinity routing is not enabled for the Security state of an interrupt in GICR_ISENABLER0, the corresponding bit
is RAZ/WI and equivalent functionality is provided by GICD_ISENABLER<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by
GICD_ISENABLER<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to Non-secure accesses.

GICR_ISENABLER0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0100 GICR_ISENABLER0

GICR_ISENABLER0, Interrupt Set-Enable Register 0

Page 3737

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ISENABLER0, Interrupt Set-Enable Register 0

Page 3738

GICR_ISENABLER<n>E, Interrupt Set-Enable
Registers, n = 1 - 2

The GICR_ISENABLER<n>E characteristics are:

Purpose
Enables forwarding of the corresponding PPI to the CPU interfaces.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICR_ISENABLER<n>E are
RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_ISENABLER<n>E is a 32-bit register.

Field descriptions
The GICR_ISENABLER<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Set_enable_bit<x>, bit [x], for x = 0 to 31

Set_enable_bit<x>, bit [x], for x = 0 to 31

For the extended PPI range, controls the forwarding of interrupt number x to the CPU interface. Reads and writes
have the following behavior:

Set_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, enables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent read of
this bit returns 1.

This field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICR_ISENABLER<n>E number, n, is given by n = (m-1024) DIV 32.
• The offset of the required GICR_ISENABLER<n>E is (0x100 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-1024) MOD 32.

Accessing the GICR_ISENABLER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_ISENABLER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure PPIs are RAZ/WI to Non-secure accesses.

GICR_ISENABLER<n>E, Interrupt Set-Enable Registers, n = 1 - 2

Page 3739

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_ISENABLER<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0100

+ 4n
GICR_ISENABLER<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ISENABLER<n>E, Interrupt Set-Enable Registers, n = 1 - 2

Page 3740

GICR_ISPENDR0, Interrupt Set-Pending Register 0
The GICR_ISPENDR0 characteristics are:

Purpose
Adds the pending state to the corresponding SGI or PPI.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_ISPENDR0 is a 32-bit register.

Field descriptions
The GICR_ISPENDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Set_pending_bit<x>, bit [x], for x = 0 to 31

Set_pending_bit<x>, bit [x], for x = 0 to 31

For PPIs and SGIs, adds the pending state to interrupt number x. Reads and writes have the following behavior:

Set_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending on this PE.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is pending, or active and pending on
this PE.
If written, changes the state of the
corresponding interrupt from inactive to
pending, or from active to active and pending.
This has no effect in the following cases:

• If the interrupt is already pending because
of a write to GICR_ISPENDR0.

• If the interrupt is already pending because
the corresponding interrupt signal is
asserted. In this case, the interrupt remains
pending if the interrupt signal is
deasserted.

This field resets to an architecturally UNKNOWN value.

Accessing the GICR_ISPENDR0
When affinity routing is not enabled for the Security state of an interrupt in GICR_ISPENDR0, the corresponding bit is
RAZ/WI and equivalent functionality is provided by GICD_ISPENDR<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by
GICD_ISPENDR<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to Non-secure accesses.

GICR_ISPENDR0, Interrupt Set-Pending Register 0

Page 3741

GICR_ISPENDR0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0200 GICR_ISPENDR0

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ISPENDR0, Interrupt Set-Pending Register 0

Page 3742

GICR_ISPENDR<n>E, Interrupt Set-Pending Registers,
n = 1 - 2

The GICR_ISPENDR<n>E characteristics are:

Purpose
Adds the pending state to the corresponding PPI.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICR_ISPENDR<n>E are
RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_ISPENDR<n>E is a 32-bit register.

Field descriptions
The GICR_ISPENDR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Set_pending_bit<x>, bit [x], for x = 0 to 31

Set_pending_bit<x>, bit [x], for x = 0 to 31

For the extended PPIs, adds the pending state to interrupt number x. Reads and writes have the following behavior:

Set_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending on this PE.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is pending, or active and pending on
this PE.
If written, changes the state of the
corresponding interrupt from inactive to
pending, or from active to active and pending.
This has no effect in the following cases:

• If the interrupt is already pending
because of a write to
GICR_ISPENDR<n>E.

• If the interrupt is already pending
because the corresponding interrupt
signal is asserted. In this case, the
interrupt remains pending if the interrupt
signal is deasserted.

This field resets to an architecturally UNKNOWN value.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICR_ISPENDR<n>E number, n, is given by n = (m-1024) DIV 32.
• The offset of the required GICR_ISPENDR<n>E is (0x200 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-1024) MOD 32.

GICR_ISPENDR<n>E, Interrupt Set-Pending Registers, n = 1 - 2

Page 3743

Accessing the GICR_ISPENDR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_ISPENDR<n>E, the corresponding
bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure PPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_ISPENDR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0200

+ 4n
GICR_ISPENDR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ISPENDR<n>E, Interrupt Set-Pending Registers, n = 1 - 2

Page 3744

GICR_MPAMIDR, Report maximum PARTID and PMG
Register

The GICR_MPAMIDR characteristics are:

Purpose
Reports the maximum support PARTID and PMG values.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICR_MPAMIDR are RES0.

A copy of this register is provided for each Redistributor.

When GICR_TYPER.MPAM==0, this register is RES0.

Attributes
GICR_MPAMIDR is a 32-bit register.

Field descriptions
The GICR_MPAMIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PMGmax PARTIDmax

Bits [31:24]

Reserved, RES0.

PMGmax, bits [23:16]

Maximum PMG value supported.

PARTIDmax, bits [15:0]

Maximum PARTID value supported.

Accessing the GICR_MPAMIDR

GICR_MPAMIDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0018 GICR_MPAMIDR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

GICR_MPAMIDR, Report maximum PARTID and PMG Register

Page 3745

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_MPAMIDR, Report maximum PARTID and PMG Register

Page 3746

GICR_NSACR, Non-secure Access Control Register
The GICR_NSACR characteristics are:

Purpose
Enables Secure software to permit Non-secure software to create SGIs targeting the PE connected to this
Redistributor by writing to ICC_SGI1R_EL1, ICC_ASGI1R_EL1 or ICC_SGI0R_EL1.

See Forwarding an SGI to a target PE for more information.

Configuration
For a description on when a write to ICC_SGI0R_EL1, ICC_SGI1R_EL1 or ICC_ASGI1R_EL1 is permitted to generate
an interrupt see Use of control registers for SGI forwarding.

Attributes
GICR_NSACR is a 32-bit register.

Field descriptions
The GICR_NSACR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NS_access<x>, bits [2x+1:2x], for x = 0 to 15

NS_access<x>, bits [2x+1:2x], for x = 0 to 15

Configures the level of Non-secure access permitted when the SGI is in Secure Group 0 or Secure Group 1, as defined
from GICR_IGROUPR0 and GICR_IGRPMODR0. A field is provided for each SGI. The possible values of each 2-bit field
are:

NS_access<x> Meaning
0b00 Non-secure writes are not permitted to generate

Secure Group 0 SGIs or Secure Group 1 SGIs.
0b01 Non-secure writes are permitted to generate a Secure

Group 0 SGI.
0b10 As 0b01, but additionally Non-secure writes to are

permitted to generate a Secure Group 1 SGI.
0b11 Reserved.

If the field is programmed to the reserved value, then
the hardware will treat the field as if it has been
programmed to an IMPLEMENTATION DEFINED choice of
the valid values. However, to maintain the principle
that as the value increases additional accesses are
permitted Arm strongly recommends that
implementations treat this value as 0b10. It is
IMPLEMENTATION DEFINED whether the value read back
is the value programmed or the valid value chosen.

This field resets to an architecturally UNKNOWN value.

Accessing the GICR_NSACR
When GICD_CTLR.DS == 1, this register is RAZ/WI.

When GICD_CTLR.DS == 0, this register is Secure, and is RAZ/WI to Non-secure accesses.

GICR_NSACR, Non-secure Access Control Register

Page 3747

This register is used when affinity routing is enabled. When affinity routing is not enabled for the Security state of the
interrupt, GICD_NSACR<n> with n=0 provides equivalent functionality.

This register does not support PPIs.

GICR_NSACR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0E00 GICR_NSACR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_NSACR, Non-secure Access Control Register

Page 3748

GICR_PARTIDR, Set PARTID and PMG Register
The GICR_PARTIDR characteristics are:

Purpose
Sets the PARTID and PMG values used for memory accesses by the Redistributor.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GICR_PARTIDR are RES0.

A copy of this register is provided for each Redistributor.

When GICR_TYPER.MPAM==0, this register is RES0.

Attributes
GICR_PARTIDR is a 32-bit register.

Field descriptions
The GICR_PARTIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PMG PARTID

Bits [31:24]

Reserved, RES0.

PMG, bits [23:16]

PMG value used when Redistributor accesses memory.

It is IMPLEMENTATION DEFINED whether bits not needed to represent PMG values in the range 0 to PMG_MAX are
stateful or RES0.

PARTID, bits [15:0]

PARTID value used when Redistributor accesses memory.

It is IMPLEMENTATION DEFINED whether bits not needed to represent PARTID values in the range 0 to PARTID_MAX are
stateful or RES0.

Accessing the GICR_PARTIDR

GICR_PARTIDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x001C GICR_PARTIDR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.

GICR_PARTIDR, Set PARTID and PMG Register

Page 3749

• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_PARTIDR, Set PARTID and PMG Register

Page 3750

GICR_PENDBASER, Redistributor LPI Pending Table
Base Address Register

The GICR_PENDBASER characteristics are:

Purpose
Specifies the base address of the LPI Pending table, and the Shareability and Cacheability of accesses to the LPI
Pending table.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_PENDBASER is a 64-bit register.

Field descriptions
The GICR_PENDBASER bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0PTZ RES0 OuterCache RES0 Physical_Address

Physical_Address RES0 ShareabilityInnerCache RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit [63]

Reserved, RES0.

PTZ, bit [62]

Pending Table Zero. Indicates to the Redistributor whether the LPI Pending table is zero when GICR_CTLR.EnableLPIs
== 1.

This field is WO, and reads as 0.

PTZ Meaning
0b0 The LPI Pending table is not zero, and contains live data.
0b1 The LPI Pending table is zero. Software must ensure the LPI

Pending table is zero before this value is written.

Bits [61:59]

Reserved, RES0.

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to the LPI Pending table. The possible values of this field are:

GICR_PENDBASER, Redistributor LPI Pending Table Base Address Register

Page 3751

OuterCache Meaning
0b000 Memory type defined in InnerCache field. For Normal

memory, Outer Cacheability is the same as Inner
Cacheability.

0b001 Normal Outer Non-cacheable.
0b010 Normal Outer Cacheable Read-allocate, Write-through.
0b011 Normal Outer Cacheable Read-allocate, Write-back.
0b100 Normal Outer Cacheable Write-allocate, Write-through.
0b101 Normal Outer Cacheable Write-allocate, Write-back.
0b110 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing
this field with a fixed value is deprecated.

This field resets to an architecturally UNKNOWN value.

Bits [55:52]

Reserved, RES0.

Physical_Address, bits [51:16]

Bits [51:16] of the physical address containing the LPI Pending table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are RES0.

This field resets to an architecturally UNKNOWN value.

Bits [15:12]

Reserved, RES0.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the LPI Pending table. The possible values of this field are:

Shareability Meaning
0b00 Non-shareable.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Reserved. Treated as 0b00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing
this field with a fixed value is deprecated.

This field resets to an architecturally UNKNOWN value.

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the LPI Pending table. The possible values of this field are:

InnerCache Meaning
0b000 Device-nGnRnE.
0b001 Normal Inner Non-cacheable.
0b010 Normal Inner Cacheable Read-allocate, Write-through.
0b011 Normal Inner Cacheable Read-allocate, Write-back.
0b100 Normal Inner Cacheable Write-allocate, Write-through.
0b101 Normal Inner Cacheable Write-allocate, Write-back.
0b110 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-back.

GICR_PENDBASER, Redistributor LPI Pending Table Base Address Register

Page 3752

This field resets to an architecturally UNKNOWN value.

Bits [6:0]

Reserved, RES0.

Accessing the GICR_PENDBASER
Having the GICR_PENDBASER OuterCache, Shareability or InnerCache fields programmed to different values on
different Redistributors with GICR_CTLR.EnableLPIs == 1 in the system is UNPREDICTABLE.

Changing GICR_PENDBASER with GICR_CTLR.EnableLPIs == 1 is UNPREDICTABLE.

GICR_PENDBASER can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0078 GICR_PENDBASER

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_PENDBASER, Redistributor LPI Pending Table Base Address Register

Page 3753

GICR_PROPBASER, Redistributor Properties Base
Address Register

The GICR_PROPBASER characteristics are:

Purpose
Specifies the base address of the LPI Configuration table, and the Shareability and Cacheability of accesses to the LPI
Configuration table.

Configuration
A copy of this register is provided for each Redistributor.

An implementation might make this register RO, for example to correspond to an LPI Configuration table in read-only
memory.

Attributes
GICR_PROPBASER is a 64-bit register.

Field descriptions
The GICR_PROPBASER bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 OuterCache RES0 Physical_Address

Physical_Address ShareabilityInnerCache RES0 IDbits
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:59]

Reserved, RES0.

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to the LPI Configuration table. The possible values of this field
are:

OuterCache Meaning
0b000 Memory type defined in InnerCache field. For Normal

memory, Outer Cacheability is the same as Inner
Cacheability.

0b001 Normal Outer Non-cacheable.
0b010 Normal Outer Cacheable Read-allocate, Write-through.
0b011 Normal Outer Cacheable Read-allocate, Write-back.
0b100 Normal Outer Cacheable Write-allocate, Write-through.
0b101 Normal Outer Cacheable Write-allocate, Write-back.
0b110 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing
this field with a fixed value is deprecated.

This field resets to an architecturally UNKNOWN value.

GICR_PROPBASER, Redistributor Properties Base Address Register

Page 3754

Bits [55:52]

Reserved, RES0.

Physical_Address, bits [51:12]

Bits [51:12] of the physical address containing the LPI Configuration table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are RES0.

This field resets to an architecturally UNKNOWN value.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the LPI Configuration table. The possible values of this field are:

Shareability Meaning
0b00 Non-shareable.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Reserved. Treated as 0b00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing
this field with a fixed value is deprecated.

This field resets to an architecturally UNKNOWN value.

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the LPI Configuration table. The possible values of this field
are:

InnerCache Meaning
0b000 Device-nGnRnE.
0b001 Normal Inner Non-cacheable.
0b010 Normal Inner Cacheable Read-allocate, Write-through.
0b011 Normal Inner Cacheable Read-allocate, Write-back.
0b100 Normal Inner Cacheable Write-allocate, Write-through.
0b101 Normal Inner Cacheable Write-allocate, Write-back.
0b110 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-back.

This field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IDbits, bits [4:0]

The number of bits of LPI INTID supported, minus one, by the LPI Configuration table starting at Physical_Address.

If the value of this field is larger than the value of GICD_TYPER.IDbits, the GICD_TYPER.IDbits value applies.

If the value of this field is less than 0b1101, indicating that the largest INTID is less than 8192 (the smallest LPI
interrupt ID), the GIC will behave as if all physical LPIs are out of range.

This field resets to an architecturally UNKNOWN value.

GICR_PROPBASER, Redistributor Properties Base Address Register

Page 3755

Accessing the GICR_PROPBASER
It is IMPLEMENTATION DEFINED whether GICR_PROPBASER can be set to different values on different Redistributors.
GICR_TYPER.CommonLPIAff identifies the Redistributors that must have GICR_PROPBASER set to the same values
whenever GICR_CTLR.EnableLPIs == 1.

Setting different values in different copies of GICR_PROPBASER on Redistributors that are required to use a common
LPI Configuration table when GICR_CTLR.EnableLPIs == 1 leads to UNPREDICTABLE behavior.

Other restrictions apply when a Redistributor caches information from GICR_PROPBASER. See LPI Configuration
tables for more information.

GICR_PROPBASER can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0070 GICR_PROPBASER

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_PROPBASER, Redistributor Properties Base Address Register

Page 3756

GICR_SETLPIR, Set LPI Pending Register
The GICR_SETLPIR characteristics are:

Purpose
Generates an LPI by setting the pending state of the specified LPI.

Configuration
This register is present only when GICv4.1 is implemented. Otherwise, direct accesses to GICR_SETLPIR are RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_SETLPIR is a 64-bit register.

Field descriptions
The GICR_SETLPIR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

pINTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

pINTID, bits [31:0]

The INTID of the physical LPI to be generated.

Note

The size of this field is IMPLEMENTATION DEFINED, and is specified by the
GICD_TYPER.IDbits field. Unimplemented bits are RES0.

Accessing the GICR_SETLPIR
When written with a 32-bit write the data is zero-extended to 64 bits.

This register is mandatory in an implementation that supports LPIs and does not include an ITS. The functionality is
IMPLEMENTATION DEFINED in an implementation that does include an ITS.

Writes to this register have no effect if either:

• The pINTID field corresponds to an LPI that is already pending.
• The pINTID field corresponds to an unimplemented LPI.
• GICR_CTLR.EnableLPIs == 0.

GICR_SETLPIR, Set LPI Pending Register

Page 3757

GICR_SETLPIR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0040 GICR_SETLPIR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are WO.
• When IsAccessSecure() accesses to this register are WO.
• When !IsAccessSecure() accesses to this register are WO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_SETLPIR, Set LPI Pending Register

Page 3758

GICR_STATUSR, Error Reporting Status Register
The GICR_STATUSR characteristics are:

Purpose
Provides software with a mechanism to detect:

• Accesses to reserved locations.
• Writes to read-only locations.
• Reads of write-only locations.

Configuration
A copy of this register is provided for each Redistributor.

If the GIC implementation supports two Security states this register is Banked to provide Secure and Non-secure
copies.

Attributes
GICR_STATUSR is a 32-bit register.

Field descriptions
The GICR_STATUSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 WRODRWODWRDRRD

Bits [31:4]

Reserved, RES0.

WROD, bit [3]

Write to an RO location.

WROD Meaning
0b0 Normal operation.
0b1 A write to an RO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RWOD, bit [2]

Read of a WO location.

RWOD Meaning
0b0 Normal operation.
0b1 A read of a WO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

WRD, bit [1]

Write to a reserved location.

GICR_STATUSR, Error Reporting Status Register

Page 3759

WRD Meaning
0b0 Normal operation.
0b1 A write to a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RRD, bit [0]

Read of a reserved location.

RRD Meaning
0b0 Normal operation.
0b1 A read of a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

Accessing the GICR_STATUSR
This is an optional register. If the register is not implemented, the location is RAZ/WI.

GICR_STATUSR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0010 GICR_STATUSR

(S)

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0010 GICR_STATUSR

(NS)

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_STATUSR, Error Reporting Status Register

Page 3760

GICR_SYNCR, Redistributor Synchronize Register
The GICR_SYNCR characteristics are:

Purpose
Indicates completion of register based invalidate operations.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_SYNCR is a 32-bit register.

Field descriptions
The GICR_SYNCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Busy

Bits [31:1]

Reserved, RES0.

Busy, bit [0]

Indicates completion of invalidation operations

Busy Meaning
0b0 No operations are in progress.
0b1 A write is in progress to one or more of the following registers:

• GICR_INVLPIR.
• GICR_INVALLR.
• GICv3, GICR_CLRLPIR.

This field tracks operations initiated on the same Redistributor.

Accessing the GICR_SYNCR
When this register is accessed, it is optional that an implementation might wait until all operations are complete
before returning a value, in which case GICR_SYNCR.Busy is always 0.

This register is mandatory in an implementation that supports LPIs and does not include an ITS. The functionality is
IMPLEMENTATION DEFINED in an implementation that does include an ITS.

GICR_SYNCR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x00C0 GICR_SYNCR

This interface is accessible as follows:

GICR_SYNCR, Redistributor Synchronize Register

Page 3761

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_SYNCR, Redistributor Synchronize Register

Page 3762

GICR_TYPER, Redistributor Type Register
The GICR_TYPER characteristics are:

Purpose
Provides information about the configuration of this Redistributor.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_TYPER is a 64-bit register.

Field descriptions
The GICR_TYPER bit assignments are:

6362616059 58 57 56 55545352515049484746454443424140 39 38 37 36 35 34 33 32
Affinity_Value

PPInum VSGICommonLPIAff Processor_Number RVPEIDMPAMDPGSLastDirectLPIDirtyVLPISPLPIS
3130292827 26 25 24 2322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Affinity_Value, bits [63:32]

The identity of the PE associated with this Redistributor.

Bits [63:56] provide Aff3, the Affinity level 3 value for the Redistributor.

Bits [55:48] provide Aff2, the Affinity level 2 value for the Redistributor.

Bits [47:40] provide Aff1, the Affinity level 1 value for the Redistributor.

Bits [39:32] provide Aff0, the Affinity level 0 value for the Redistributor.

PPInum, bits [31:27]

When GICv3.1 is implemented:

The value derived from this field specifies the maximum PPI INTID that a GIC implementation can support. An
implementation might not implement all PPIs up to this maximum.

PPInum Meaning
0b00000 Maximum PPI INTID is 31.
0b00001 Maximum PPI INTID is 1087.
0b00010 Maximum PPI INTID is 1119.

All other values are reserved.

Otherwise:

Reserved, RES0.

GICR_TYPER, Redistributor Type Register

Page 3763

VSGI, bit [26]

When GICv4.1 is implemented:

Indicates whether vSGIs are supported.

VSGI Meaning
0b0 Direct injection of SGIs not supported.
0b1 Direct injection of SGIs supported.

Otherwise:

Reserved, RES0.

CommonLPIAff, bits [25:24]

The affinity level at which Redistributors share an LPI Configuration table.

CommonLPIAff Meaning
0b00 All Redistributors must share an LPI Configuration

table.
0b01 All Redistributors with the same Aff3 value must

share an LPI Configuration table.
0b10 All Redistributors with the same Aff3.Aff2 value must

share an LPI Configuration table.
0b11 All Redistributors with the same Aff3.Aff2.Aff1 value

must share an LPI Configuration table.

Processor_Number, bits [23:8]

A unique identifier for the PE. When GITS_TYPER.PTA == 0, an ITS uses this field to identify the interrupt target.

When affinity routing is disabled for a Security state, this field indicates which GICD_ITARGETSR<n> corresponds to
this Redistributor.

RVPEID, bit [7]

When GICv4.1 is implemented:

Indicates how the resident vPE is specified.

RVPEID Meaning
0b0 GICR_VPENDBASER records the address of the vPE's Virtual

Pending Table.
0b1 GICR_VPENDBASER records vPEID.

Otherwise:

Reserved, RES0.

MPAM, bit [6]

When GICv3.1 is implemented:

MPAM

MPAM Meaning
0b0 MPAM not supported.
0b1 MPAM supported.

GICR_TYPER, Redistributor Type Register

Page 3764

Otherwise:

Reserved, RES0.

DPGS, bit [5]

Sets support for GICR_CTLR.DPG* bits.

DPGS Meaning
0b0 GICR_CTLR.DPG* bits are not supported.
0b1 GICR_CTLR.DPG* bits are supported.

Last, bit [4]

Indicates whether this Redistributor is the highest-numbered Redistributor in a series of contiguous Redistributor
pages.

Last Meaning
0b0 This Redistributor is not the highest-numbered Redistributor in a

series of contiguous Redistributor pages.
0b1 This Redistributor is the highest-numbered Redistributor in a

series of contiguous Redistributor pages.

DirectLPI, bit [3]

Indicates whether this Redistributor supports direct injection of LPIs.

DirectLPI Meaning
0b0 This Redistributor does not support direct injection of LPIs.

The GICR_SETLPIR, GICR_CLRLPIR, GICR_INVLPIR,
GICR_INVALLR, and GICR_SYNCR registers are either not
implemented, or have an IMPLEMENTATION DEFINED purpose.

0b1 This Redistributor supports direct injection of LPIs. The
GICR_SETLPIR, GICR_CLRLPIR, GICR_INVLPIR,
GICR_INVALLR, and GICR_SYNCR registers are
implemented.

Dirty, bit [2]

Controls the functionality of GICR_VPENDBASER.Dirty.

Dirty Meaning
0b0 GICR_VPENDBASER.Dirty is UNKNOWN when

GICR_VPENDBASER.Valid == 1.
0b1 GICR_VPENDBASER.Dirty indicates when the Virtual Pending

Table has been parsed when GICR_VPENDBASER.Valid is written
from 0 to 1.

When GICR_TYPER.VLPIS == 0, this field is RES0.

Note

In GICv4.1 implementations this field is RES1.

VLPIS, bit [1]

Indicates whether the GIC implementation supports virtual LPIs and the direct injection of virtual LPIs.

GICR_TYPER, Redistributor Type Register

Page 3765

VLPIS Meaning
0b0 The implementation does not support virtual LPIs or the direct

injection of virtual LPIs.
0b1 The implementation supports virtual LPIs and the direct

injection of virtual LPIs.

Note

In GICv3 implementations this field is RES0.

PLPIS, bit [0]

Indicates whether the GIC implementation supports physical LPIs.

PLPIS Meaning
0b0 The implementation does not support physical LPIs.
0b1 The implementation supports physical LPIs.

Accessing the GICR_TYPER

GICR_TYPER can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0008 GICR_TYPER

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_TYPER, Redistributor Type Register

Page 3766

GICR_VPENDBASER, Virtual Redistributor LPI Pending
Table Base Address Register

The GICR_VPENDBASER characteristics are:

Purpose
Specifies the base address of the memory that holds the virtual LPI Pending table for the currently scheduled virtual
machine.

Configuration

Attributes
GICR_VPENDBASER is a 64-bit register.

Field descriptions
The GICR_VPENDBASER bit assignments are:

When GICv4 is implemented:

63 62 61 60 59 58 57 56 555453525150494847464544 43 42 41 40 39 38373635343332
ValidIDAIPendingLastDirtyRES0OuterCache RES0 Physical_Address

Physical_Address RES0 ShareabilityInnerCache RES0
31 30 29 28 27 26 25 24 232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Valid, bit [63]

This bit controls whether the virtual LPI Pending table is valid:

Valid Meaning
0b0 The virtual LPI Pending table is not valid. No vPE is scheduled.
0b1 The virtual LPI Pending table is valid. A vPE is scheduled.

Setting GICR_VPENDBASER.Valid == 1 when the associated CPU interface does not implement GICv4 is
UNPREDICTABLE.

Note

Software can determine whether a PE supports GICv3 or GICv4 by reading
ID_AA64PFR0_EL1.

Writing a new value to any bit of GICR_VPENDBASER, other than GICR_VPENDBASER.Valid, when
GICR_VPENDBASER.Valid==1 is UNPREDICTABLE.

This field resets to 0.

IDAI, bit [62]

Implementation Defined Area Invalid. Indicates whether the IMPLEMENTATION DEFINED area in the virtual LPI Pending
table is valid:

GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register

Page 3767

IDAI Meaning
0b0 The IMPLEMENTATION DEFINED area is valid.
0b1 The IMPLEMENTATION DEFINED area is invalid and all pending

interrupt information is held in the architecturally defined part of
the virtual LPI Pending table.

For more information, see LPI Pending tables and Virtual LPI Configuration tables and virtual LPI Pending tables.

This field resets to an architecturally UNKNOWN value.

PendingLast, bit [61]

Indicates whether there are pending and enabled interrupts for the last scheduled vPE.

This value is set by the implementation when GICR_VPENDBASER.Valid has been written from 1 to 0 and is otherwise
UNKNOWN.

PendingLast Meaning
0b0 There are no pending and enabled interrupts for the last

scheduled vPE.
0b1 There is at least one pending interrupt for the last

scheduled vPE. It is IMPLEMENTATION DEFINED whether
this bit is set when the only pending interrupts for the
last scheduled vPE are not enabled.
Arm deprecates setting PendingLast to 1 when the only
pending interrupts for the last scheduled virtual machine
are not enabled.

When the GICR_VPENDBASER.Valid bit is written from 0 to 1, this bit is RES1.

This field resets to 0.

Dirty, bit [60]

When GICR_VPENDBASER.Valid == 0b0:

Indicates whether a de-scheduling operation is in progress.

This field is read-only.

Dirty Meaning
0b0 No de-scheduling operation in process.
0b1 De-scheduling operation in process.

Writing 1 to GICR_VPENDBASER.Valid is UNPREDICTABLE while GICR_VPENDBASER.Dirty==1.

This field resets to 0.

When GICR_VPENDBASER.Valid == 0b1 and GICR_TYPER.Dirty == 0b1:

This field is read-only. Reports whether the Virtual Pending table has been parsed.

Dirty Meaning
0b0 Parsing of the Virtual Pending Table has completed.
0b1 Parsing of the Virtual Pending Table has not completed.

Writing 1 to GICR_VPENDBASER.Valid is UNPREDICTABLE while GICR_VPENDBASER.Dirty == 1.

This field resets to 0.

Otherwise:

This field is read-only. This fields is UNKNOWN.

This field resets to 0.

GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register

Page 3768

Bit [59]

Reserved, RES0.

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to virtual LPI Pending tables of vPEs targeting this
Redistributor. The possible values of this field are:

OuterCache Meaning
0b000 Memory type defined in InnerCache field. For Normal

memory, Outer Cacheability is the same as Inner
Cacheability.

0b001 Normal Outer Non-cacheable.
0b010 Normal Outer Cacheable Read-allocate, Write-through.
0b011 Normal Outer Cacheable Read-allocate, Write-back.
0b100 Normal Outer Cacheable Write-allocate, Write-through.
0b101 Normal Outer Cacheable Write-allocate, Write-back.
0b110 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing
this field with a fixed value is deprecated.

The Cacheability, Outer Cacheability and Shareability fields are used for accesses to the virtual LPI Pending table of
resident and non-resident vPEs.

If the OuterCacheabilty attribute of the virtual LPI Pending tables that are associated with vPEs targeting the same
Redistributor are different, behavior is UNPREDICTABLE.

This field resets to an architecturally UNKNOWN value.

Bits [55:52]

Reserved, RES0.

Physical_Address, bits [51:16]

Bits [51:16] of the physical address containing the virtual LPI Pending table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are RES0.

This field resets to an architecturally UNKNOWN value.

Bits [15:12]

Reserved, RES0.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the virtual LPI Pending table. The possible values of this field are:

Shareability Meaning
0b00 Non-shareable.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Reserved. Treated as 0b00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing
this field with a fixed value is deprecated.

The Cacheability, Outer Cacheability and Shareability fields are used for accesses to the virtual LPI Pending table of
resident and non-resident vPEs.

GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register

Page 3769

If the Shareability attribute of the virtual LPI Pending tables that are associated with vPEs targeting the same
Redistributor are different, behavior is UNPREDICTABLE.

This field resets to an architecturally UNKNOWN value.

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the virtual LPI Pending table. The possible values of this field
are:

InnerCache Meaning
0b000 Device-nGnRnE.
0b001 Normal Inner Non-cacheable.
0b010 Normal Inner Cacheable Read-allocate, Write-through.
0b011 Normal Inner Cacheable Read-allocate, Write-back.
0b100 Normal Inner Cacheable Write-allocate, Write-through.
0b101 Normal Inner Cacheable Write-allocate, Write-back.
0b110 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-back.

The Cacheability, Outer Cacheability and Shareability fields are used for accesses to the virtual LPI Pending table of
resident and non-resident vPEs.

If the InnerCacheabilty attribute of the virtual LPI Pending tables that are associated with vPEs targeting the same
Redistributor are different, behavior is UNPREDICTABLE.

This field resets to an architecturally UNKNOWN value.

Bits [6:0]

Reserved, RES0.

When GICv4.1 is implemented:

63 62 61 60 59 58 5756555453525150494847464544434241403938373635343332
ValidDoorbellPendingLastDirtyVGrp0EnVGrp1En RES0

RES0 vPEID
31 30 29 28 27 26 25242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Valid, bit [63]

This bit controls whether a vPE is scheduled:

Valid Meaning
0b0 The virtual LPI Pending table is not valid. No vPE is scheduled.
0b1 The virtual LPI Pending table is valid. A vPE is scheduled.

Setting GICR_VPENDBASER.Valid == 1 when the associated CPU interface does not implement GICv4 is
UNPREDICTABLE.

Note

Software can determine whether a PE supports GICv3 or GICv4 by reading
ID_AA64PFR0_EL1.

Writing a new value to any bit of GICR_VPENDBASER, other than GICR_VPENDBASER.Valid, when
GICR_VPENDBASER.Valid==1 is UNPREDICTABLE.

Setting GICR_VPENDBASER.Valid to 1 is UNPREDICTABLE if GICR_VPROPBASER.Valid == 0.

This field resets to 0.

GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register

Page 3770

Doorbell, bit [62]

When GICR_VPENDBASER.Valid is written from 1 to 0, this bit controls whether a default doorbell interrupt is
requested for the descheduled vPE.

Doorbell Meaning
0b0 Default doorbell requested.
0b1 No default doorbell requested.

When GICR_VPENDBASER.Valid is written from 1 to 0, if there are outstanding enabled pending interrupts then this
bit is treated as 0.

When GICR_VPENDBASER.Valid is written from 1 to 0, if GICR_VPENDBASER.PendingLast is written as 1 then this
bit is treated as 0.

When GICR_VPENDBASER.Valid == 1, reads return an UNKNOWN value.

This field resets to an UNKNOWN value.

PendingLast, bit [61]

Indicates whether there are pending and enabled interrupts for the last scheduled vPE.

This value is set by the implementation when GICR_VPENDBASER.Valid is written from 1 to 0 and is otherwise
UNKNOWN.

PendingLast Meaning
0b0 There are no pending and enabled interrupts for the last

scheduled vPE.
0b1 There is at least one pending and enabled interrupt for

the last scheduled vPE.

When the GICR_VPENDBASER.Valid bit is written from 0 to 1, this bit is RES1.

When GICR_VPENDBASER.Valid is written from 1 to 0, if GICR_VPENDBASER.PendingLast is written as 1, then this
bit is set to an UNKNOWN value.

This field resets to an UNKNOWN value.

Dirty, bit [60]

When GICR_VPENDBASER.Valid == 0b0:

Read-only. Indicates whether a de-scheduling operation is in progress.

Dirty Meaning
0b0 No de-scheduling operation in progess.
0b1 De-scheduling operation in progess.

Writing 1 to GICR_VPENDBASER.Valid is UNPREDICTABLE while GICR_VPENDBASER.Dirty == 1.

This field resets to 0.

Otherwise:

Read-only. Reports whether the Virtual Pending table has been parsed.

Dirty Meaning
0b0 Parsing of the Virtual Pending Table is complete.
0b1 Parsing of the Virtual Pending Table has not completed.

Writing 1 to GICR_VPENDBASER.Valid is UNPREDICTABLE while GICR_VPENDBASER.Dirty == 1.

This field resets to 0.

GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register

Page 3771

VGrp0En, bit [59]

Enable virtual Group 0 interrupts.

VGrp0En Meaning
0b0 Forwarding of virtual Group 0 interrupts disabled.
0b1 Forwarding of virtual Group 0 interrupts enabled.

This field resets to an UNKNOWN value.

VGrp1En, bit [58]

Enable virtual Group 1 interrupts.

VGrp1En Meaning
0b0 Forwarding of virtual Group 1 interrupts disabled.
0b1 Forwarding of virtual Group 1 interrupts enabled.

This field resets to an UNKNOWN value.

Bits [57:16]

Reserved, RES0.

vPEID, bits [15:0]

When GICR_VPENDBASER.Valid == 1, ID of scheduled vPE.

When GICR_VPENDBASER.Valid == 1, if GICR_VPENDBASER.vPEID is set to a value greater than the configured
vPEID width, the behavior of this field is CONSTRAINED UNPREDICTABLE:

• GICR_VPENDBASER.vPEID is treated as having an UNKNOWN valid value for all purposes other than a direct
read of the register.

• GICR_VPENDBASER.Valid is treated as being set to 0 for all purposes other than a direct read of the
register.

The size of this field is IMPLEMENTATION DEFINED, and is specified by the GICD_TYPER2.VIL and GICD_TYPER2.VID
fields, unimplemented bits are RES0.

Accessing the GICR_VPENDBASER
The effect of a write to this register is not guaranteed to be visible throughout the affinity hierarchy, as indicated by
GICR_CTLR.RWP == 0.

GICR_VPENDBASER can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
VLPI_base 0x0078 GICR_VPENDBASER

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register

Page 3772

GICR_VPROPBASER, Virtual Redistributor Properties
Base Address Register

The GICR_VPROPBASER characteristics are:

Purpose
Specifies the base address of the memory that holds the virtual LPI Configuration table for the currently scheduled
virtual machine.

Configuration
This register is provided in GICv4 implementations only.

Attributes
GICR_VPROPBASER is a 64-bit register.

Field descriptions
The GICR_VPROPBASER bit assignments are:

When GICv4 is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 OuterCache RES0 Physical_Address

Physical_Address ShareabilityInnerCache RES0 IDbits
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:59]

Reserved, RES0.

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to the LPI Configuration table. The possible values of this field
are:

OuterCache Meaning
0b000 Memory type defined in InnerCache field. For Normal

memory, Outer Cacheability is the same as Inner
Cacheability.

0b001 Normal Outer Non-cacheable.
0b010 Normal Outer Cacheable Read-allocate, Write-through.
0b011 Normal Outer Cacheable Read-allocate, Write-back.
0b100 Normal Outer Cacheable Write-allocate, Write-through.
0b101 Normal Outer Cacheable Write-allocate, Write-back.
0b110 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing
this field with a fixed value is deprecated.

This field resets to an architecturally UNKNOWN value.

GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

Page 3773

Bits [55:52]

Reserved, RES0.

Physical_Address, bits [51:12]

Bits [51:12] of the physical address containing the virtual LPI Configuration table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are RES0.

This field resets to an architecturally UNKNOWN value.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the LPI Configuration table. The possible values of this field are:

Shareability Meaning
0b00 Non-shareable.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Reserved. Treated as 0b00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing
this field with a fixed value is deprecated.

This field resets to an architecturally UNKNOWN value.

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the LPI Configuration table. The possible values of this field
are:

InnerCache Meaning
0b000 Device-nGnRnE.
0b001 Normal Inner Non-cacheable.
0b010 Normal Inner Cacheable Read-allocate, Write-through.
0b011 Normal Inner Cacheable Read-allocate, Write-back.
0b100 Normal Inner Cacheable Write-allocate, Write-through.
0b101 Normal Inner Cacheable Write-allocate, Write-back.
0b110 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-back.

This field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IDbits, bits [4:0]

The number of bits of virtual LPI INTID supported, minus one.

If the value of this field is less than 0b1101, indicating that the largest INTID is less than 8192 (the smallest LPI
interrupt ID), the GIC will behave as if all virtual LPIs are out of range.

This field resets to an architecturally UNKNOWN value.

GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

Page 3774

When GICv4.1 is implemented:

63 62 61 60 59 58 57 56 55 54 53 525150494847464544 43 42 41 40 39 38373635343332
ValidRES0Entry_SizeOuterCacheIndirectPage_Size Z Physical_Address

Physical_Address ShareabilityInnerCache Size
31 30 29 28 27 26 25 24 23 22 21 201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Valid, bit [63]

This bit controls whether the vPE Configuration Table is valid:

Valid Meaning
0b0 The vPE Configuration table is not valid.
0b1 The vPE Configuration table is valid.

TBC

This field resets to 0.

Bit [62]

Reserved, RES0.

Entry_Size, bits [61:59]

Specifies the number of bytes per table entry, minus one.

This bit is read-only.

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to the table. The possible values of this field are:

OuterCache Meaning
0b000 Memory type defined in InnerCache field. For Normal

memory, Outer Cacheability is the same as Inner
Cacheability.

0b001 Normal Outer Non-cacheable.
0b010 Normal Outer Cacheable Read-allocate, Write-through.
0b011 Normal Outer Cacheable Read-allocate, Write-back.
0b100 Normal Outer Cacheable Write-allocate, Write-through.
0b101 Normal Outer Cacheable Write-allocate, Write-back.
0b110 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing
this field with a fixed value is deprecated.

This field resets to an UNKNOWN value.

Indirect, bit [55]

This field indicates whether GICR_VPROPBASER specifies a single, flat table or a two-level table where the first level
contains a list of descriptors.

Indirect Meaning
0b0 Single Level. The Size field indicates the number of pages

used to store data associated with each table entry.
0b1 Two Level. The Size field indicates the number of pages that

contain an array of 64-bit descriptors to pages that are used
to store the data associated with each table entry. A little
endian memory order model is used.

GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

Page 3775

This field is RES0 for GIC implementations that only support flat tables.

This field resets to an UNKNOWN value.

Page_Size, bits [54:53]

The following values indicate the size of page that the translation table uses:

Page_Size Meaning
0b00 4KB.
0b01 16KB.
0b10 64KB.
0b11 Reserved. Treated as 0b10.

Note

If the GIC implementation supports only a single, fixed page size, this field
might be RO.

This field resets to an UNKNOWN value.

Z, bit [52]

When GICR_VPROPBASER.Valid is written from 0 to 1, GICR_VPROPBASER.Z indicates whether the vPE
Configuration table is known to contain all zeros.

Z Meaning
0b0 The vPE Configutation table is not zero, and contains live data.
0b1 The vPE Configuration table is zero.

Setting GICR_VPROPBASER.Z to 0 causes the IRI to reload configuration from memory

When GICR_VPROPBASER.Valid is written from 0 to 1, if GICR_VPROPBASER.Z==1 behavior is UNPREDICTABLE if the
allocated memory does not contain all zeros.

This field is WO, and reads as 0.

Physical_Address, bits [51:12]

Bits [51:12] of the physical address containing the LPI Configuration table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are RES0.

This field resets to an UNKNOWN value.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the LPI Configuration table. The possible values of this field are:

Shareability Meaning
0b00 Non-shareable.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Reserved. Treated as 0b00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing
this field with a fixed value is deprecated.

This field resets to an UNKNOWN value.

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the LPI Configuration table. The possible values of this field
are:

GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

Page 3776

InnerCache Meaning
0b000 Device-nGnRnE.
0b001 Normal Inner Non-cacheable.
0b010 Normal Inner Cacheable Read-allocate, Write-through.
0b011 Normal Inner Cacheable Read-allocate, Write-back.
0b100 Normal Inner Cacheable Write-allocate, Write-through.
0b101 Normal Inner Cacheable Write-allocate, Write-back.
0b110 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-back.

This field resets to an UNKNOWN value.

Size, bits [6:0]

The number of pages of physical memory allocated to the table, minus one.

GICR_VPROPBASER.Page_Size specifies the size of each page.

This field resets to an UNKNOWN value.

Accessing the GICR_VPROPBASER

GICR_VPROPBASER can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
VLPI_base 0x0070 GICR_VPROPBASER

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

Page 3777

GICR_VSGIPENDR, Redistributor virtual SGI pending
state register

The GICR_VSGIPENDR characteristics are:

Purpose
Requests the pending state of virtual SGIs for a specified vPE.

Configuration
This register is present only when GICv4.1 is implemented. Otherwise, direct accesses to GICR_VSGIPENDR are RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_VSGIPENDR is a 32-bit register.

Field descriptions
The GICR_VSGIPENDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Busy RES0 Pending

Busy, bit [31]

ID of target vPEID

Busy Meaning
0b0 Query of virtual SGI state not in progress.
0b1 Query of virtual SGI state in progress.

Bits [30:16]

Reserved, RES0.

Pending, bits [15:0]

Pending state of virtual SGIs for requested vPEID.

This field is UNKNOWN when GICR_VSGIPENDR.Busy == 1

Accessing the GICR_VSGIPENDR
64-bit access only.

GICR_VSGIPENDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
VLPI_base 0x0088 GICR_VSGIPENDR

GICR_VSGIPENDR, Redistributor virtual SGI pending state register

Page 3778

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_VSGIPENDR, Redistributor virtual SGI pending state register

Page 3779

GICR_VSGIR, Redistributor virtual SGI pending state
request register

The GICR_VSGIR characteristics are:

Purpose
Requests the pending state of virtual SGIs for a specified vPE.

Configuration
This register is present only when GICv4.1 is implemented. Otherwise, direct accesses to GICR_VSGIR are RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_VSGIR is a 32-bit register.

Field descriptions
The GICR_VSGIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 vPEID

Bits [31:16]

Reserved, RES0.

vPEID, bits [15:0]

ID of target vPE

Writing this field is CONSTRAINED UNPREDICTABLE when GICR_VSGIPENDR.Busy == 1, with either the write ignored or a
new query started.

Writing a value greater than the configured vPEID width behaviur is CONSTRAINED UNPREDICTABLE:

• GICR_VPENDBASER.vPEID is treated as having an UNKNOWN valid value for all purposes other than a direct
read of the register.

• GICR_VPENDBASER.Valid is treated as being set to 0 for all purposes other than a direct read of the
register.

The size of this field is IMPLEMENTATION DEFINED, and is specified by the GICD_TYPER2.VIL and GICD_TYPER2.VID
fields. Unimplemented bits are RES0.

Accessing the GICR_VSGIR
64-bit access only.

GICR_VSGIR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance

GICR_VSGIR, Redistributor virtual SGI pending state request register

Page 3780

GIC
Redistributor

VLPI_base 0x0080 GICR_VSGIR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are WO.
• When IsAccessSecure() accesses to this register are WO.
• When !IsAccessSecure() accesses to this register are WO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_VSGIR, Redistributor virtual SGI pending state request register

Page 3781

GICR_WAKER, Redistributor Wake Register
The GICR_WAKER characteristics are:

Purpose
Permits software to control the behavior of the WakeRequest power management signal corresponding to the
Redistributor. Power management operations follow the rules in Power management.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_WAKER is a 32-bit register.

Field descriptions
The GICR_WAKER bit assignments are:

31 3029282726252423222120191817161514131211109876543 2 1 0
IMPLEMENTATION

DEFINED RES0 ChildrenAsleepProcessorSleepIMPLEMENTATION
DEFINED

IMPLEMENTATION DEFINED, bit [31]

IMPLEMENTATION DEFINED.

Bits [30:3]

Reserved, RES0.

ChildrenAsleep, bit [2]

Read-only. Indicates whether the connected PE is quiescent:

ChildrenAsleep Meaning
0b0 An interface to the connected PE might be active.
0b1 All interfaces to the connected PE are quiescent.

This field resets to 1.

ProcessorSleep, bit [1]

Indicates whether the Redistributor can assert the WakeRequest signal:

GICR_WAKER, Redistributor Wake Register

Page 3782

ProcessorSleep Meaning
0b0 This PE is not in, and is not entering, a low power

state.
0b1 The PE is either in, or is in the process of entering, a

low power state.
All interrupts that arrive at the Redistributor:

• Assert a WakeRequest signal.
• Are held in the pending state at the

Redistributor, and are not communicated to the
CPU interface.

Note
When ProcessorSleep == 1, the
Redistributor must ensure that
any interrupts that are pending
on the CPU interface are
released.

For an implementation that is using the GIC Stream
Protocol Interface:

• A Quiesce command can put the interface
between the Redistributor and the CPU interface
in a quiescent state.

• A Release command can release any interrupts
that are pending on the CPU interface.

Note

Before powering down a PE, software must set this bit to 1 and wait until
ChildrenAsleep == 1. After powering up a PE, or following a failed
powerdown, software must set this bit to 0 and wait until ChildrenAsleep ==
0.

Changing ProcessorSleep from 1 to 0 when ChildrenAsleep is not 1 results in UNPREDICTABLE behavior.

Changing ProcessorSleep from 0 to 1 when the Enable for each interrupt group in the associated CPU interface is not
0 results in UNPREDICTABLE behavior.

This field resets to 1.

IMPLEMENTATION DEFINED, bit [0]

IMPLEMENTATION DEFINED.

Accessing the GICR_WAKER
When GICD_CTLR.DS==1, this register is always accessible.

When GICD_CTLR.DS==0, this is a Secure register. This register is RAZ/WI to Non-secure accesses.

To ensure a Redistributor is quiescent, software must write to GICR_WAKER with ProcessorSleep == 1, then poll the
register until ChildrenAsleep == 1.

Resetting the connected PE when GICR_WAKER.ProcessorSleep==0 or GICR_WAKER.ChildresAsleep==0, can lead to
UNPREDICTABLE behaviour in the IRI.

Resetting the IRI when GICR_WAKER.ProcessorSleep==0 or GICR_WAKER.ChildresAsleep==0 can lead to
UNPREDICTABLE behaviour in the connected PE.

GICR_WAKER can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0014 GICR_WAKER

This interface is accessible as follows:

GICR_WAKER, Redistributor Wake Register

Page 3783

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_WAKER, Redistributor Wake Register

Page 3784

GICV_ABPR, Virtual Machine Aliased Binary Point
Register

The GICV_ABPR characteristics are:

Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field.
The group priority field determines Group 1 interrupt preemption.

This register corresponds to GICC_ABPR in the physical CPU interface.

Note

GICH_LR<n>.Group determines whether a virtual interrupt is Group 0 or
Group 1.

Configuration
This register is available when the GIC implementation supports interrupt virtualization.

Attributes
GICV_ABPR is a 32-bit register.

Field descriptions
The GICV_ABPR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Binary_Point

Bits [31:3]

Reserved, RES0.

Binary_Point, bits [2:0]

Controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption,
and a subpriority field.

For information about how this field determines the interrupt priority bits assigned to the group priority field, see
Priority grouping.

This field resets to 0.

The Binary_Point field of this register is aliased to GICH_VMCR.VBPR1.

Accessing the GICV_ABPR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_BPR1 provides equivalent functionality.
• For AArch64 implementations, ICC_BPR1_EL1 provides equivalent functionality.

GICV_ABPR, Virtual Machine Aliased Binary Point Register

Page 3785

The value contained in this register is one greater than the actual applied binary point value, as described in 'Priority
grouping' in the GICv3 Architecture Specification.

This register is used for Group 1 interrupts when GICV_CTLR.CBPR == 0. GICV_BPR provides equivalent functionality
for Group 0 interrupts, and for Group 1 interrupts when GICV_CTLR.CBPR == 1.

GICV_ABPR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual CPU

interface
0x001C GICV_ABPR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_ABPR, Virtual Machine Aliased Binary Point Register

Page 3786

GICV_AEOIR, Virtual Machine Aliased End Of Interrupt
Register

The GICV_AEOIR characteristics are:

Purpose
A write to this register performs a priority drop for the specified Group 1 virtual interrupt and, if GICV_CTLR.EOImode
== 0, also deactivates the interrupt.

Configuration
This register is available when the GIC implementation supports interrupt virtualization.

Attributes
GICV_AEOIR is a 32-bit register.

Field descriptions
The GICV_AEOIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as
spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these

bits are RES0.

A successful EOI request means that:

• The highest priority bit in GICH_APR<n> is cleared, causing the running priority to drop.
• If the appropriate GICV_CTLR.EOImode bit == 0, the interrupt is deactivated in the corresponding List

register. If the INTID corresponds to a hardware interrupt, the interrupt is also deactivated in the Distributor.

Note

Only Group 1 interrupts can target the hypervisor, and therefore only Group 1
interrupts are deactivated in the Distributor.

GICV_AEOIR, Virtual Machine Aliased End Of Interrupt Register

Page 3787

A write to this register is UNPREDICTABLE if the INTID corresponds to a Group 0 interrupt. In addition, the following
GICv2 UNPREDICTABLE cases require specific actions:

• If highest active priority is Group 0 and the identified interrupt is in the List Registers and it matches the
highest active priority. When EL2 is using System registers and ICH_VTR_EL2.SEIS is 1, an IMPLEMENTATION
DEFINED SEI might be generated, otherwise GICv3 implementations must ignore such writes.

• If the identified interrupt is in the List Registers, and the HW bit is 1, and the interrupt to be deactivated is an
SGI (that is, the value of Physical_ID is between 0 and 15). GICv3 implementations must perform the
deactivate operation. This means that a GICv3 implementation in legacy operation must ensure only a single
SGI is active for a PE.

• If the identified interrupt is in the List Registers, and the HW bit is 1, and the corresponding pINTID field
value is between 1020 and 1023, indicating a special purpose INTID. GICv3 implementations must not perform
a deactivate operation but must still change the state of the List register as appropriate. When EL2 is using
System registers and ICH_VTR_EL2.SEIS is 1, an implementation might generate a system error.

Accessing the GICV_AEOIR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_EOIR1 provides equivalent functionality.
• For AArch64 implementations, ICC_EOIR1_EL1 provides equivalent functionality.

This register is used for Group 1 interrupts only. GICV_EOIR provides equivalent functionality for Group 0 interrupts.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to access the GIC.

GICV_AEOIR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual CPU

interface
0x0024 GICV_AEOIR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are WO.
• When IsAccessSecure() accesses to this register are WO.
• When !IsAccessSecure() accesses to this register are WO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_AEOIR, Virtual Machine Aliased End Of Interrupt Register

Page 3788

GICV_AHPPIR, Virtual Machine Aliased Highest Priority
Pending Interrupt Register

The GICV_AHPPIR characteristics are:

Purpose
Provides the INTID of the highest priority pending Group 1 virtual interrupt in the List registers.

This register corresponds to the physical CPU interface register GICC_AHPPIR.

Configuration
This register is available when the GIC implementation supports interrupt virtualization.

Attributes
GICV_AHPPIR is a 32-bit register.

Field descriptions
The GICV_AHPPIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as
spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these

bits are RES0.

A read of this register returns the spurious INTID 1023 if any of the following are true:

• There are no pending interrupts of sufficiently high priority value to be signaled to the PE.
• The highest priority pending interrupt is in Group 0.

Accessing the GICV_AHPPIR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_HPPIR1 provides equivalent functionality.
• For AArch64 implementations, ICC_HPPIR1_EL1 provides equivalent functionality.

GICV_AHPPIR, Virtual Machine Aliased Highest Priority Pending Interrupt Register

Page 3789

This register is used for Group 1 interrupts only. GICV_HPPIR provides equivalent functionality for Group 0 interrupts.

The register does not return the INTID of an interrupt that is active and pending.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to access the GIC.

GICV_AHPPIR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual CPU

interface
0x0028 GICV_AHPPIR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_AHPPIR, Virtual Machine Aliased Highest Priority Pending Interrupt Register

Page 3790

GICV_AIAR, Virtual Machine Aliased Interrupt
Acknowledge Register

The GICV_AIAR characteristics are:

Purpose
Provides the INTID of the signaled Group 1 virtual interrupt. A read of this register by the PE acts as an acknowledge
for the interrupt.

This register corresponds to the physical CPU interface register GICC_AIAR.

Configuration
This register is available when the GIC implementation supports interrupt virtualization.

Attributes
GICV_AIAR is a 32-bit register.

Field descriptions
The GICV_AIAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as
spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these

bits are RES0.

The operation of this register is similar to the operation of GICV_IAR. When a vPE reads this register, the
corresponding GICH_LR<n>.Group field is checked to determine whether the interrupt is in Group 0 or Group 1:

• If the interrupt is Group 0, the spurious INTID 1023 is returned and the interrupt is not acknowledged.
• If the interrupt is Group 1, the INTID is returned. The List register entry is updated to active state, and the

appropriate bit in GICH_APR<n> is set to 1.

A read of this register returns the spurious INTID 1023 if any of the following are true:

• When the virtual CPU interface is enabled and GICH_HCR.En == 1:
◦ There are no pending interrupts of sufficiently high priority value to be signaled to the PE.

GICV_AIAR, Virtual Machine Aliased Interrupt Acknowledge Register

Page 3791

◦ The highest priority pending interrupt is in Group 0.
• Interrupt signaling by the virtual CPU interface is disabled.

Accessing the GICV_AIAR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_IAR1 provides equivalent functionality.
• For AArch64 implementations, ICC_IAR1_EL1 provides equivalent functionality.

This register is used for Group 1 interrupts only. GICV_IAR provides equivalent functionality for Group 0 interrupts.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to access the GIC.

GICV_AIAR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual CPU

interface
0x0020 GICV_AIAR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_AIAR, Virtual Machine Aliased Interrupt Acknowledge Register

Page 3792

GICV_APR<n>, Virtual Machine Active Priorities
Registers, n = 0 - 3

The GICV_APR<n> characteristics are:

Purpose
Provides information about interrupt active priorities.

These registers correspond to the physical CPU interface registers GICC_APR<n>.

Configuration
When System register access is disabled for EL2, these registers access GICH_APR<n>, and all active priorities for
virtual machines are held in GICH_APR<n> regardless of interrupt group.

When System register access is enabled for EL2, these registers access ICH_AP1R<n>_EL2, and all active priorities
for virtual machines are held in ICH_AP1R<n>_EL2 regardless of interrupt group.

Attributes
GICV_APR<n> is a 32-bit register.

Field descriptions
The GICV_APR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P31P30P29P28P27P26P25P24P23P22P21P20P19P18P17P16P15P14P13P12P11P10P9P8P7P6P5P4P3P2P1P0

P<x>, bit [x], for x = 0 to 31

Provides information about active priorities for the virtual machine.

See GICH_APR<n> and ICH_AP1R<n>_EL2 for the correspondence between priorities and bits.

Accessing the GICV_APR<n>
If System register access is not enabled for EL2, these registers access GICH_APR<n>. If System register access is
enabled for EL2, these registers access ICH_AP1R<n>_EL2. All active priority mapped guests are held in the accessed
registers, regardless of interrupt group.

GICV_APR<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual CPU

interface
0x00D0 + 4n GICV_APR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

GICV_APR<n>, Virtual Machine Active Priorities Registers, n = 0 - 3

Page 3793

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_APR<n>, Virtual Machine Active Priorities Registers, n = 0 - 3

Page 3794

GICV_BPR, Virtual Machine Binary Point Register
The GICV_BPR characteristics are:

Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field.
The group priority field determines Group 0 interrupt preemption.

This register corresponds to GICC_BPR in the physical CPU interface.

Note

GICH_LR<n>.Group determines whether a virtual interrupt is Group 0 or
Group 1.

Configuration
This register is available when the GIC implementation supports interrupt virtualization.

When GICV_CTLR.CBPR == 1, this register determines interrupt preemption for both Group 0 and Group 1 interrupts.

Attributes
GICV_BPR is a 32-bit register.

Field descriptions
The GICV_BPR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Binary_Point

Bits [31:3]

Reserved, RES0.

Binary_Point, bits [2:0]

Controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption,
and a subpriority field.

For information about how this field determines the interrupt priority bits assigned to the group priority field, see
Priority grouping for Group 0 interrupts, or Group 1 interrupts when CBPR==1

This field resets to an architecturally UNKNOWN value.

The Binary_Point field of this register is aliased to GICH_VMCR.VBPR0.

Accessing the GICV_BPR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_BPR0 provides equivalent functionality.
• For AArch64 implementations, ICC_BPR0_EL1 provides equivalent functionality.

GICV_BPR, Virtual Machine Binary Point Register

Page 3795

GICV_BPR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual CPU

interface
0x0008 GICV_BPR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_BPR, Virtual Machine Binary Point Register

Page 3796

GICV_CTLR, Virtual Machine Control Register
The GICV_CTLR characteristics are:

Purpose
Controls the behavior of virtual interrupts.

This register corresponds to the physical CPU interface register GICC_CTLR.

Configuration
This register is available when a GIC implementation supports interrupt virtualization.

Attributes
GICV_CTLR is a 32-bit register.

Field descriptions
The GICV_CTLR bit assignments are:

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
RES0 EOImode RES0 CBPRFIQEnAckCtlEnableGrp1EnableGrp0

Bits [31:10]

Reserved, RES0.

EOImode, bit [9]

Controls the behavior associated with the GICV_EOIR, GICV_AEOIR, and GICV_DIR registers:

EOImode Meaning
0b0 Writes to GICV_EOIR and GICV_AEOIR perform priority

drop and deactivate interrupt operations simultaneously.
Behavior on a write to GICV_DIR is unpredictable.
When it has completed processing the interrupt, the virtual
machine writes to GICV_EOIR or GICV_AEOIR to deactivate
the interrupt. The write updates the List registers and
causes the virtual CPU interface to signal the interrupt
completion to the physical Distributor.

0b1 Writes to GICV_EOIR and GICV_AEOIR perform priority
drop operation only. Writes to GICV_DIR perform deactivate
interrupt operation only.
When it has completed processing the interrupt, the virtual
machine writes to GICV_DIR to deactivate the interrupt. The
write updates the List registers and causes the virtual CPU
interface to signal the interrupt completion to the
Distributor.

This field resets to an architecturally UNKNOWN value.

Bits [8:5]

Reserved, RES0.

GICV_CTLR, Virtual Machine Control Register

Page 3797

CBPR, bit [4]

Controls whether GICV_BPR affects both Group 0 and Group 1 interrupts:

CBPR Meaning
0b0 GICV_BPR affects Group 0 virtual interrupts only. GICV_ABPR

affects Group 1 virtual interrupts only.
0b1 GICV_BPR affects both Group 0 and Group 1 virtual interrupts.

See Priority grouping for more information.

This field resets to an architecturally UNKNOWN value.

FIQEn, bit [3]

FIQ Enable. Controls whether Group 0 virtual interrupts are presented as virtual FIQs:

FIQEn Meaning
0b0 Group 0 virtual interrupts are presented as virtual IRQs.
0b1 Group 0 virtual interrupts are presented as virtual FIQs.

This field resets to an architecturally UNKNOWN value.

AckCtl, bit [2]

Arm deprecates use of this bit. Arm strongly recommends that software is written to operate with this bit always
cleared to 0.

Acknowledge control. When the highest priority interrupt is Group 1, determines whether GICV_IAR causes the CPU
interface to acknowledge the interrupt or returns the spurious identifier 1022, and whether GICV_HPPIR returns the
interrupt ID or the special identifier 1022.

AckCtl Meaning
0b0 If the highest priority pending interrupt is Group 1, a read of

GICV_IAR or GICV_HPPIR returns an interrupt ID of 1022.
0b1 If the highest priority pending interrupt is Group 1, a read of

GICV_IAR or GICV_HPPIR returns the interrupt ID of the
corresponding interrupt.

This field resets to an architecturally UNKNOWN value.

EnableGrp1, bit [1]

Enables the signaling of Group 1 virtual interrupts by the virtual CPU interface to the virtual machine:

EnableGrp1 Meaning
0b0 Signaling of Group 1 interrupts is disabled.
0b1 Signaling of Group 1 interrupts is enabled.

This field resets to an architecturally UNKNOWN value.

EnableGrp0, bit [0]

Enables the signaling of Group 0 virtual interrupts by the virtual CPU interface to the virtual machine:

EnableGrp0 Meaning
0b0 Signaling of Group 0 interrupts is disabled.
0b1 Signaling of Group 0 interrupts is enabled.

This field resets to an architecturally UNKNOWN value.

Accessing the GICV_CTLR
This register is used only when System register access is not enabled. When System register access is enabled:

GICV_CTLR, Virtual Machine Control Register

Page 3798

• For AArch32 implementations, ICC_CTLR provides equivalent functionality.
• For AArch64 implementations, ICC_CTLR_EL1 provides equivalent functionality.

GICV_CTLR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual CPU

interface
0x0000 GICV_CTLR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_CTLR, Virtual Machine Control Register

Page 3799

GICV_DIR, Virtual Machine Deactivate Interrupt
Register

The GICV_DIR characteristics are:

Purpose
Deactivates a specified virtual interrupt in the GICH_LR<n> List registers.

This register corresponds to the physical CPU interface register GICC_DIR.

Configuration
This register is available when the GIC implementation supports interrupt virtualization.

Attributes
GICV_DIR is a 32-bit register.

Field descriptions
The GICV_DIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as
spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these

bits are RES0.

When the virtual machine writes to this register, the specified interrupt in the List registers is changed from active to
inactive, or from active and pending to pending. If the specified interrupt is present in the List registers but is not in
either the active or active and pending states, the effect is UNPREDICTABLE. If the specified interrupt is not present in
the List registers, GICH_HCR.EOICount is incremented, potentially generating a maintenance interrupt.

Note

If the specified interrupt is not present in the List registers, the virtual
machine cannot recover the INTID. Therefore, the hypervisor must ensure
that, when GICV_CTLR.EOImode == 1, no more than one active interrupt is
transferred from the List registers into a software list. If more than one active

GICV_DIR, Virtual Machine Deactivate Interrupt Register

Page 3800

interrupt that is not stored in the List registers exists, the hypervisor must
handle accesses to GICV_DIR in software, typically by trapping these
accesses.

If the corresponding GICH_LR<n>.HW == 1, indicating a hardware interrupt, then a deactivate request is sent to the
physical Distributor, identifying the physical INTID from the corresponding field in the List register. This effect is
identical to a Non-secure write to GICC_DIR from the PE having that physical INTID. This means that if the
corresponding physical interrupt is marked as Group 0, the request is ignored.

Note

Interrupt deactivation using this register is based on the provided INTID, with
no requirement to deactivate interrupts in any particular order. A single
register is therefore used to deactivate both Group 0 and Group 1 interrupts.

Accessing the GICV_DIR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_DIR provides equivalent functionality.
• For AArch64 implementations, ICC_DIR_EL1 provides equivalent functionality.

Writes to this register are valid only when GICV_CTLR.EOImode == 1. Writes to this register are otherwise
UNPREDICTABLE.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to access the GIC.

GICV_DIR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual CPU

interface
0x1000 GICV_DIR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are WO.
• When IsAccessSecure() accesses to this register are WO.
• When !IsAccessSecure() accesses to this register are WO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_DIR, Virtual Machine Deactivate Interrupt Register

Page 3801

GICV_EOIR, Virtual Machine End Of Interrupt Register
The GICV_EOIR characteristics are:

Purpose
A write to this register performs a priority drop for the specified Group 0 virtual interrupt and, if GICV_CTLR.EOImode
== 0, also deactivates the interrupt.

This register corresponds to the physical CPU interface register GICC_EOIR.

Configuration
This register is available when the GIC implementation supports interrupt virtualization.

Attributes
GICV_EOIR is a 32-bit register.

Field descriptions
The GICV_EOIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as
spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these

bits are RES0.

The behavior of this register depends on the setting of GICV_CTLR.EOImode:

GICV_CTLR.EOImode Behavior
0b0 Both the priority drop and the deactivate

interrupt effects occur
0b1 Only the priority drop effect occurs.

A successful EOI request means that:

• The highest priority bit in GICH_APR<n> is cleared, causing the running priority to drop.
• If the appropriate GICV_CTLR.EOImode bit == 0, the interrupt is deactivated in the corresponding List

register GICH_LR<n>. If GICH_LR<n>.HW == 1, indicating the INTID corresponds to a hardware interrupt,
a deactivate request is also sent to the physical Distributor, identifying the physical INTID from the

GICV_EOIR, Virtual Machine End Of Interrupt Register

Page 3802

corresponding field in the List register. This effect is identical to a Non-secure write to GICC_DIR from the PE
having that physical INTID. This means that if the corresponding physical interrupt is marked as Group 0, and
GICD_CTLR.DS == 0, the deactivation request is ignored. See GICC_EOIR for more information.

Note

Only Group 1 interrupts can target the hypervisor, and therefore only Group 1
interrupts are deactivated in the Distributor.

Accessing the GICV_EOIR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_EOIR0 provides equivalent functionality.
• For AArch64 implementations, ICC_EOIR0_EL1 provides equivalent functionality.

This register is used for Group 0 interrupts only. GICV_AEOIR provides equivalent functionality for Group 1 interrupts.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to access the GIC.

GICV_EOIR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual CPU

interface
0x0010 GICV_EOIR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are WO.
• When IsAccessSecure() accesses to this register are WO.
• When !IsAccessSecure() accesses to this register are WO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_EOIR, Virtual Machine End Of Interrupt Register

Page 3803

GICV_HPPIR, Virtual Machine Highest Priority Pending
Interrupt Register

The GICV_HPPIR characteristics are:

Purpose
Provides the INTID of the highest priority pending Group 0 virtual interrupt in the List registers.

This register corresponds to the physical CPU interface register GICC_HPPIR.

Configuration
This register is available when the GIC implementation supports interrupt virtualization.

Attributes
GICV_HPPIR is a 32-bit register.

Field descriptions
The GICV_HPPIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as
spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these

bits are RES0.

Reads of the GICC_HPPIR that do not return a valid INTID return a spurious INTID, 1022 or 1023. See Special INTIDs.

GICV_HPPIR, Virtual Machine Highest Priority Pending Interrupt Register

Page 3804

Highest priority
pending interrupt

Group
GICV_HPPIR

read GICV_CTLR.AckCtl Returned
INTID

1 Non-secure x ID of
Group 1
interrupt

1 Secure 0 1022
1 Secure 1 ID of

Group 1
interrupt

0 Non-secure x 1023
0 Secure x ID of

Group 0
interrupt

No pending
interrupts

x x 1023

If the CPU interface supports only a single Security state, the entries that apply to Secure reads describe the behavior.

Accessing the GICV_HPPIR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_HPPIR0 provides equivalent functionality.
• For AArch64 implementations, ICC_HPPIR0_EL1 provides equivalent functionality.

This register is used for Group 0 interrupts only. GICV_AHPPIR provides equivalent functionality for Group 1
interrupts.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to access the GIC.

GICV_HPPIR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual CPU

interface
0x0018 GICV_HPPIR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_HPPIR, Virtual Machine Highest Priority Pending Interrupt Register

Page 3805

GICV_IAR, Virtual Machine Interrupt Acknowledge
Register

The GICV_IAR characteristics are:

Purpose
Provides the INTID of the signaled Group 0 virtual interrupt. A read of this register by the PE acts as an acknowledge
for the interrupt.

This register corresponds to the physical CPU interface register GICC_IAR.

Configuration
This register is available when the GIC implementation supports interrupt virtualization.

Attributes
GICV_IAR is a 32-bit register.

Field descriptions
The GICV_IAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as
spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these

bits are RES0.

When the virtual machine writes to this register, the virtual CPU interface acknowledges the highest priority pending
virtual interrupt and sets the state in the corresponding List register to active. The appropriate bit in the active
priorities register GICH_APR<n> is set to 1.

If GICH_LR<n>.HW == 0, indicating that the interrupt is software-triggered, then bits [12:10] of GICH_LR<n> are
returned in bits [12:10] of GICV_IAR. Otherwise bits [12:10] are RES0.

A read of this register returns the spurious INTID 1023 if either of the following is true:

• There are no pending interrupts of sufficiently high priority value to be signaled to the PE with the virtual CPU
interface enabled and GICH_HCR.En == 1.

GICV_IAR, Virtual Machine Interrupt Acknowledge Register

Page 3806

• Interrupt signaling by the virtual CPU interface is disabled.

A read of this register returns the spurious INTID 1022 if the highest priority pending interrupt is Group 1 and
GICV_CTLR.AckCtl == 0.

Accessing the GICV_IAR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_IAR0 provides equivalent functionality.
• For AArch64 implementations, ICC_IAR0_EL1 provides equivalent functionality.

This register is used for Group 0 interrupts only. GICV_AIAR provides equivalent functionality for Group 1 interrupts.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to access the GIC.

GICV_IAR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual CPU

interface
0x000C GICV_IAR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_IAR, Virtual Machine Interrupt Acknowledge Register

Page 3807

GICV_IIDR, Virtual Machine CPU Interface
Identification Register

The GICV_IIDR characteristics are:

Purpose
Provides information about the implementer and revision of the virtual CPU interface.

Configuration
This register is available in all configurations of the GIC. If the GIC implementation supports two Security states this
register is Common.

Attributes
GICV_IIDR is a 32-bit register.

Field descriptions
The GICV_IIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ProductID Architecture_version Revision Implementer

ProductID, bits [31:20]

An IMPLEMENTATION DEFINED product identifier.

Architecture_version, bits [19:16]

The version of the GIC architecture that is implemented.

Architecture_version Meaning
0b0001 GICv1.
0b0010 GICv2.
0b0011 GICv3 memory-mapped interface supported.

Support for the System register interface is
discoverable from PE registers ID_PFR1 and
ID_AA64PFR0_EL1.

0b0100 GICv4 memory-mapped interface supported.
Support for the System register interface is
discoverable from PE registers ID_PFR1 and
ID_AA64PFR0_EL1.

Other values are reserved.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number for the CPU interface.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the CPU interface.

• Bits [11:8] are the JEP106 continuation code of the implementer. For an Arm implementation, this field is 0x4.

GICV_IIDR, Virtual Machine CPU Interface Identification Register

Page 3808

• Bit [7] is always 0.
• Bits [6:0] are the JEP106 identity code of the implementer. For an Arm implementation, bits [7:0] are therefore

0x3B.

Accessing the GICV_IIDR

GICV_IIDR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual CPU

interface
0x00FC GICV_IIDR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_IIDR, Virtual Machine CPU Interface Identification Register

Page 3809

GICV_PMR, Virtual Machine Priority Mask Register
The GICV_PMR characteristics are:

Purpose
This register provides a virtual interrupt priority filter. Only virtual interrupts with a higher priority than the value in
this register are signaled to the PE.

Note

Higher interrupt priority corresponds to a lower value of the Priority field.

This register corresponds to the physical CPU interface register GICC_PMR.

Configuration
This register is available when the GIC implementation supports interrupt virtualization.

The Priority field of this register is aliased to GICH_VMCR.VMPR, to enable state to be switched easily between virtual
machines during context-switching.

Attributes
GICV_PMR is a 32-bit register.

Field descriptions
The GICV_PMR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Priority

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The priority mask level for the virtual CPU interface. If the priority of the interrupt is higher than the value indicated
by this field, the interface signals the interrupt to the PE.

If the GIC implementation supports fewer than 256 priority levels some bits might be RAZ/WI, as follows:

• For 128 supported levels, bit [0] = 0b0.
• For 64 supported levels, bits [1:0] = 0b00.
• For 32 supported levels, bits [2:0] = 0b000.
• For 16 supported levels, bits [3:0] = 0b0000.

See Interrupt prioritization, section 4.8 of the GICv3 Architecture Specification for more information.

This field resets to an architecturally UNKNOWN value.

Accessing the GICV_PMR
This register is used only when System register access is not enabled. When System register access is enabled:

GICV_PMR, Virtual Machine Priority Mask Register

Page 3810

• For AArch32 implementations, ICC_PMR provides equivalent functionality.
• For AArch64 implementations, ICC_PMR_EL1 provides equivalent functionality.

GICV_PMR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual CPU

interface
0x0004 GICV_PMR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_PMR, Virtual Machine Priority Mask Register

Page 3811

GICV_RPR, Virtual Machine Running Priority Register
The GICV_RPR characteristics are:

Purpose
This register indicates the running priority of the virtual CPU interface.

This register corresponds to the physical CPU interface register GICC_RPR.

Configuration
This register is available when the GIC implementation supports interrupt virtualization.

Attributes
GICV_RPR is a 32-bit register.

Field descriptions
The GICV_RPR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Priority

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the virtual CPU interface. This is the group priority of the current active interrupt.

If there are no active interrupts on the CPU interface, or all active interrupts have undergone a priority drop, the value
returned is the Idle priority.

The priority returned is the group priority as if the BPR was set to the minimum value.

Accessing the GICV_RPR
This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_RPR provides equivalent functionality.
• For AArch64 implementations, ICC_RPR_EL1 provides equivalent functionality.

Depending on the implementation, if no bits are set to 1 in GICH_APR<n>, indicating no active virtual interrupts in
the virtual CPU interface, the priority reads as 0xFF or 0xF8 to reflect the number of supported interrupt priority bits
defined by GICH_VTR.PRIbits.

GICV_RPR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual CPU

interface
0x0014 GICV_RPR

This interface is accessible as follows:

GICV_RPR, Virtual Machine Running Priority Register

Page 3812

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_RPR, Virtual Machine Running Priority Register

Page 3813

GICV_STATUSR, Virtual Machine Error Reporting
Status Register

The GICV_STATUSR characteristics are:

Purpose
Provides software with a mechanism to detect:

• Accesses to reserved locations.
• Writes to read-only locations.
• Reads of write-only locations.

Configuration
In systems where this register is implemented, Arm expects that when a virtual machine is scheduled, the hypervisor
ensures that this register is cleared to 0. The hypervisor might check for illegal accesses when the virtual machine is
unscheduled.

Attributes
GICV_STATUSR is a 32-bit register.

Field descriptions
The GICV_STATUSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 WRODRWODWRDRRD

Bits [31:4]

Reserved, RES0.

WROD, bit [3]

Write to an RO location.

WROD Meaning
0b0 Normal operation.
0b1 A write to an RO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RWOD, bit [2]

Read of a WO location.

RWOD Meaning
0b0 Normal operation.
0b1 A read of a WO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

GICV_STATUSR, Virtual Machine Error Reporting Status Register

Page 3814

WRD, bit [1]

Write to a reserved location.

WRD Meaning
0b0 Normal operation.
0b1 A write to a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RRD, bit [0]

Read of a reserved location.

RRD Meaning
0b0 Normal operation.
0b1 A read of a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

Accessing the GICV_STATUSR
This is an optional register. If the register is implemented, GICC_STATUSR must also be implemented. If the register is
not implemented, the location is RAZ/WI.

This register is used only when System register access is not enabled. If System register access is enabled, this
register is not updated. Equivalent function might be provided by appropriate traps and exceptions.

GICV_STATUSR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC Virtual CPU

interface
0x002C GICV_STATUSR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_STATUSR, Virtual Machine Error Reporting Status Register

Page 3815

GITS_BASER<n>, ITS Translation Table Descriptors, n
= 0 - 7

The GITS_BASER<n> characteristics are:

Purpose
Specifies the base address and size of the ITS translation tables.

Configuration
A copy of this register is provided for each ITS translation table.

Bits [63:32] and bits [31:0] are accessible independently.

A maximum of 8 GITS_BASER<n> registers can be provided. Unimplemented registers are RES0.

When GITS_CTLR.Enabled == 1 or GITS_CTLR.Quiescent == 0, writing this register is UNPREDICTABLE.

Attributes
GITS_BASER<n> is a 64-bit register.

Field descriptions
The GITS_BASER<n> bit assignments are:

63 62 61 60 59 585756 55 54 53 525150494847464544 43 42 41 40 3938373635343332
ValidIndirectInnerCache Type OuterCache Entry_Size Physical_Address

Physical_Address ShareabilityPage_Size Size
31 30 29 28 27 262524 23 22 21 201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Valid, bit [63]

Indicates whether software has allocated memory for the translation table:

Valid Meaning
0b0 No memory is allocated for the translation table. The ITS

discards any writes to the interrupt translation page when
either:

• GITS_BASER<n>.Type specifies any valid table entry type
other than interrupt collections, that is, any value other
than 0b100.

• GITS_BASER<n>.Type specifies an interrupt collection and
GITS_TYPER.HCC == 0.

0b1 Memory is allocated to the translation table.

This field resets to 0.

Indirect, bit [62]

This field indicates whether an implemented register specifies a single, flat table or a two-level table where the first
level contains a list of descriptors.

GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

Page 3816

Indirect Meaning
0b0 Single Level. The Size field indicates the number of pages

used by the ITS to store data associated with each table entry.
0b1 Two Level. The Size field indicates the number of pages

which contain an array of 64-bit descriptors to pages that are
used to store the data associated with each table entry. A
little endian memory order model is used.

See The ITS tables for more information.

This field is RAZ/WI for GIC implementations that only support flat tables. If the maximum width of the scaling factor
that is identified by GITS_BASER<n>.Type and the smallest page size that is supported result in a single level table
that requires multiple pages, then implementing this bit as RAZ/WI is DEPRECATED.

This field resets to an architecturally UNKNOWN value.

InnerCache, bits [61:59]

Indicates the Inner Cacheability attributes of accesses to the table. The possible values of this field are:

InnerCache Meaning
0b000 Device-nGnRnE.
0b001 Normal Inner Non-cacheable.
0b010 Normal Inner Cacheable Read-allocate, Write-through.
0b011 Normal Inner Cacheable Read-allocate, Write-back.
0b100 Normal Inner Cacheable Write-allocate, Write-through.
0b101 Normal Inner Cacheable Write-allocate, Write-back.
0b110 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-back.

This field resets to an architecturally UNKNOWN value.

Type, bits [58:56]

Read only. Specifies the type of entity that requires entries in the corresponding translation table. The possible values
of the field are:

Type Meaning
0b000 Unimplemented. This register does not correspond to a

translation table.
0b001 Devices. This register corresponds to a translation table that

scales with the width of the DeviceID. Only a single
GITS_BASER<n> register reports this type.

0b010 vPEs. GICv4 only. This register corresponds to a translation
table that scales with the number of vPEs in the system. The
translation table requires (ENTRY_SIZE * N) bytes of memory,
where N is the number of vPEs in the system. Only a single
GITS_BASER<n> register reports this type.

0b100 Interrupt collections. This register corresponds to a translation
table that scales with the number of interrupt collections in the
system. The translation table requires (ENTRY_SIZE * N) bytes
of memory, where N is the number of interrupt collections. Not
more than one GITS_BASER<n> register will report this type.

Other values are reserved.

For GICv4.1, the registers are allocated as follows:

• GITS_BASER0.Type is 0b001 (Device).

• GITS_BASER1.Type is either 0b100 (Collection Table) or 0b000 (Unimplemented).

• GITS_BASER2.Type is either 0b010 (vPE) or 0b000 (Unimplemented).

• GITS_BASER<n>.Type, where 'n' is in the range 3 to 7, is 0b000 (Unimplemented).

GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

Page 3817

For GICv3.x and GICv4.0, Arm recommends that the GITS_BASER<n> use the same allocations.

Other allocations of Type values are deprecated.

This field resets to an architecturally UNKNOWN value.

OuterCache, bits [55:53]

Indicates the Outer Cacheability attributes of accesses to the table. The possible values of this field are:

OuterCache Meaning
0b000 Memory type defined in InnerCache field. For Normal

memory, Outer Cacheability is the same as Inner
Cacheability.

0b001 Normal Outer Non-cacheable.
0b010 Normal Outer Cacheable Read-allocate, Write-through.
0b011 Normal Outer Cacheable Read-allocate, Write-back.
0b100 Normal Outer Cacheable Write-allocate, Write-through.
0b101 Normal Outer Cacheable Write-allocate, Write-back.
0b110 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing
this field with a fixed value is deprecated.

This field resets to an architecturally UNKNOWN value.

Entry_Size, bits [52:48]

Read-only. Specifies the number of bytes per translation table entry, minus one.

Physical_Address, bits [47:12]

Physical Address. When Page_Size is 4KB or 16KB:

• Bits [51:48] of the base physical address are zero.
• This field provides bits[47:12] of the base physical address of the table.
• Bits[11:0] of the base physical address are zero.
• The address must be aligned to the size specified in the Page Size field. Otherwise the effect is CONSTRAINED

UNPREDICTABLE, and can be one of the following:
◦ Bits[X:12], where X is derived from the page size, are treated as zero.
◦ The value of bits[X:12] are used when calculating the address of a table access.

When Page_Size is 64KB:

• Bits[47:16] of the register provide bits[47:16] of the base physical address of the table.
• Bits[15:12] of the register provide bits[51:48] of the base physical address of the table.
• Bits[15:0] of the base physical address are 0.

In implementations that support fewer than 52 bits of physical address, any unimplemented upper bits might be RAZ/
WI.

This field resets to an architecturally UNKNOWN value.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the table. The possible values of this field are:

Shareability Meaning
0b00 Non-shareable.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Reserved. Treated as 0b00.

GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

Page 3818

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing
this field with a fixed value is deprecated.

This field resets to an architecturally UNKNOWN value.

Page_Size, bits [9:8]

The size of page that the translation table uses:

Page_Size Meaning
0b00 4KB.
0b01 16KB.
0b10 64KB.
0b11 Reserved. Treated as 0b10.

Note

If the GIC implementation supports only a single, fixed page size, this field
might be RO.

This field resets to an architecturally UNKNOWN value.

Size, bits [7:0]

The number of pages of physical memory allocated to the table, minus one. GITS_BASER<n>.Page_Size specifies the
size of each page.

If GITS_BASER<n>.Type == 0, this field is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

Accessing the GITS_BASER<n>

GITS_BASER<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS control 0x0100 + 8n GITS_BASER<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

Page 3819

GITS_CBASER, ITS Command Queue Descriptor
The GITS_CBASER characteristics are:

Purpose
Specifies the base address and size of the ITS command queue.

Configuration
Bits [63:32] and bits [31:0] are accessible separately.

Attributes
GITS_CBASER is a 64-bit register.

Field descriptions
The GITS_CBASER bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ValidRES0InnerCache RES0 OuterCacheRES0 Physical_Address

Physical_Address ShareabilityRES0 Size
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Valid, bit [63]

Indicates whether software has allocated memory for the command queue:

Valid Meaning
0b0 No memory is allocated for the command queue.
0b1 Memory is allocated to the command queue.

This field resets to 0.

Bit [62]

Reserved, RES0.

InnerCache, bits [61:59]

Indicates the Inner Cacheability attributes of accesses to the command queue. The possible values of this field are:

InnerCache Meaning
0b000 Device-nGnRnE.
0b001 Normal Inner Non-cacheable.
0b010 Normal Inner Cacheable Read-allocate, Write-through.
0b011 Normal Inner Cacheable Read-allocate, Write-back.
0b100 Normal Inner Cacheable Write-allocate, Write-through.
0b101 Normal Inner Cacheable Write-allocate, Write-back.
0b110 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-back.

This field resets to an architecturally UNKNOWN value.

GITS_CBASER, ITS Command Queue Descriptor

Page 3820

Bits [58:56]

Reserved, RES0.

OuterCache, bits [55:53]

Indicates the Outer Cacheability attributes of accesses to the command queue. The possible values of this field are:

OuterCache Meaning
0b000 Memory type defined in InnerCache field. For Normal

memory, Outer Cacheability is the same as Inner
Cacheability.

0b001 Normal Outer Non-cacheable.
0b010 Normal Outer Cacheable Read-allocate, Write-through.
0b011 Normal Outer Cacheable Read-allocate, Write-back.
0b100 Normal Outer Cacheable Write-allocate, Write-through.
0b101 Normal Outer Cacheable Write-allocate, Write-back.
0b110 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing
this field with a fixed value is deprecated.

This field resets to an architecturally UNKNOWN value.

Bit [52]

Reserved, RES0.

Physical_Address, bits [51:12]

Bits [51:12] of the base physical address of the command queue. Bits [11:0] of the base address are 0.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are RES0.

If bits [15:12] are not all zeros, behavior is a CONSTRAINED UNPREDICTABLE choice:

• Bits [15:12] are treated as if all the bits are zero. The value read back from those bits is either the value
written or zero.

• The result of the calculation of an address for a command queue read can be corrupted.

This field resets to an architecturally UNKNOWN value.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the command queue. The possible values of this field are:

Shareability Meaning
0b00 Non-shareable.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Reserved. Treated as 0b00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing
this field with a fixed value is deprecated.

This field resets to an architecturally UNKNOWN value.

Bits [9:8]

Reserved, RES0.

GITS_CBASER, ITS Command Queue Descriptor

Page 3821

Size, bits [7:0]

The number of 4KB pages of physical memory allocated to the command queue, minus one.

This field resets to an architecturally UNKNOWN value.

The command queue is a circular buffer and wraps at Physical Address [47:0] + (4096 * (Size + 1)).

Note

When this register is successfully written, the value of GITS_CREADR is set to
zero.

Accessing the GITS_CBASER
When GITS_CTLR.Enabled == 1 or GITS_CTLR.Quiescent == 0, writing this register is UNPREDICTABLE.

GITS_CBASER can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS control 0x0080 GITS_CBASER

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_CBASER, ITS Command Queue Descriptor

Page 3822

GITS_CREADR, ITS Read Register
The GITS_CREADR characteristics are:

Purpose
Specifies the offset from GITS_CBASER where the ITS reads the next ITS command.

Configuration
This register is cleared to 0 when a value is written to GITS_CBASER.

Bits [63:32] and bits [31:0] are accessible separately.

Attributes
GITS_CREADR is a 64-bit register.

Field descriptions
The GITS_CREADR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 Offset RES0 Stalled
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:20]

Reserved, RES0.

Offset, bits [19:5]

Bits [19:5] of the offset from GITS_CBASER. Bits [4:0] of the offset are zero.

Bits [4:1]

Reserved, RES0.

Stalled, bit [0]

Reports whether the processing of commands is stalled because of a command error.

Stalled Meaning
0b0 ITS command queue is not stalled because of a command

error.
0b1 ITS command queue is stalled because of a command error.

See The ITS Command Interface for more information.

Accessing the GITS_CREADR

GITS_CREADR can be accessed through the memory-mapped interfaces:

Component Offset Instance

GITS_CREADR, ITS Read Register

Page 3823

GIC ITS control 0x0090 GITS_CREADR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_CREADR, ITS Read Register

Page 3824

GITS_CTLR, ITS Control Register
The GITS_CTLR characteristics are:

Purpose
Controls the operation of an ITS.

Configuration
The ITS_Number (bits [7:4]) and bit [1] fields apply only in GICv4 implementations, and are RES0 in GICv3
implementations.

Attributes
GITS_CTLR is a 32-bit register.

Field descriptions
The GITS_CTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Quiescent RES0 ITS_NumberRES0ImDeEnabled

Quiescent, bit [31]

Read-only. Indicates completion of all ITS operations when GITS_CTLR.Enabled == 0.

Quiescent Meaning
0b0 The ITS is not quiescent and cannot be powered down.
0b1 The ITS is quiescent and can be powered down.

For the ITS to be considered inactive, there must be no transactions in progress. In addition, all operations required to
ensure that mapping data is consistent with external memory must be complete.

Note

In distributed GIC implementations, this bit is set to 1 only after the ITS
forwards any operations that have not yet been completed to the
Redistributors and receives confirmation that all such operations have
reached the appropriate Redistributor.

In GICv4.0 and GICv3.x, when GITS_CTLR.Enabled==1 the value of GITS_CTLR.Quiescent is UNKNOWN.

In GICv4.1, when GITS_CTLR.Enabled==1 the value of GITS_CTLR.Quiescent reads as 1 until the write to Enabled
has taken effect and then reads as 0.

This field resets to 1.

Bits [30:8]

Reserved, RES0.

ITS_Number, bits [7:4]

In GICv3 implementations this field is RES0.

GITS_CTLR, ITS Control Register

Page 3825

In GICv4 implementations with more than one ITS instance, this field indicates the ITS number for use with VMOVP.

It is IMPLEMENTATION DEFINED whether this field is programmable or RO.

If this field is programmable, changing this field when GITS_CTLR.Quiescent == 0 or GITS_CTLR.Enabled == 1 is
UNPREDICTABLE.

This field resets to an architecturally UNKNOWN value.

Bits [3:2]

Reserved, RES0.

ImDe, bit [1]

In GICv3 implementations this bit is RES0.

In GICv4 implementations this bit is IMPLEMENTATION DEFINED.

This field resets to 0.

Enabled, bit [0]

Controls whether the ITS is enabled:

Enabled Meaning
0b0 The ITS is not enabled. Writes to GITS_TRANSLATER are

ignored and no further command queue entries are
processed.

0b1 The ITS is enabled. Writes to GITS_TRANSLATER result in
interrupt translations and the command queue is processed.

If a write to this register changes this field from 1 to 0, the ITS must ensure that both:

• Any caches containing mapping data are made consistent with external memory.
• GITS_CTLR.Quiescent == 0 until all caches are consistent with external memory.

Changing GITS_CTLR.Enabled from 0 to 1 when GITS_CTLR.Quiescent is 0 results in UNPREDICTABLE behavior.

This field resets to 0.

Accessing the GITS_CTLR

GITS_CTLR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS control 0x0000 GITS_CTLR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_CTLR, ITS Control Register

Page 3826

GITS_CWRITER, ITS Write Register
The GITS_CWRITER characteristics are:

Purpose
Specifies the offset from GITS_CBASER where software writes the next ITS command.

Configuration
Bits [63:32] and bits [31:0] are accessible separately.

Attributes
GITS_CWRITER is a 64-bit register.

Field descriptions
The GITS_CWRITER bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 Offset RES0 Retry
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:20]

Reserved, RES0.

Offset, bits [19:5]

Bits [19:5] of the offset from GITS_CBASER. Bits [4:0] of the offset are zero.

This field resets to an architecturally UNKNOWN value.

Bits [4:1]

Reserved, RES0.

Retry, bit [0]

Writing this bit has the following effects:

Retry Meaning
0b0 No effect on the processing commands by the ITS.
0b1 Restarts the processing of commands by the ITS if it stalled

because of a command error.

Note
If the processing of commands is not
stalled because of a command error,
writing 1 to this bit has no effect.

When read, this bit is RES0.

See The ITS Command Interface for more information.

GITS_CWRITER, ITS Write Register

Page 3827

If GITS_CWRITER is written with a value outside of the valid range specified by GITS_CBASER.Physical_Address and
GITS_CBASER.Size, behavior is a CONSTRAINED UNPREDICTABLE choice, as follows:

• The command queue is considered invalid, and no further commands are processed until GITS_CWRITER is
written with a value that is in the valid range.

• The value is treated as a valid UNKNOWN value.

An implementation might choose to report a system error in an IMPLEMENTATION DEFINED manner.

Accessing the GITS_CWRITER

GITS_CWRITER can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS control 0x0088 GITS_CWRITER

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.
• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_CWRITER, ITS Write Register

Page 3828

GITS_IIDR, ITS Identification Register
The GITS_IIDR characteristics are:

Purpose
Provides information about the implementer and revision of the ITS.

Configuration
This register is available in all configurations of the GIC. If the GIC implementation supports two Security states, this
register is Common.

Attributes
GITS_IIDR is a 32-bit register.

Field descriptions
The GITS_IIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ProductID RES0 Variant Revision Implementer

ProductID, bits [31:24]

An IMPLEMENTATION DEFINED product identifier.

Bits [23:20]

Reserved, RES0.

Variant, bits [19:16]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish product variants, or major
revisions of a product.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number. Typically, this field is used to distinguish minor revisions of a product.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the ITS:

• Bits [11:8] are the JEP106 continuation code of the implementer. For an Arm implementation, this field is 0x4.
• Bit [7] is always 0.
• Bits [6:0] are the JEP106 identity code of the implementer. For an Arm implementation, bits [7:0] are therefore

0x3B.

GITS_IIDR, ITS Identification Register

Page 3829

Accessing the GITS_IIDR

GITS_IIDR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS control 0x0004 GITS_IIDR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_IIDR, ITS Identification Register

Page 3830

GITS_MPAMIDR, Report maximum PARTID and PMG
Register

The GITS_MPAMIDR characteristics are:

Purpose
Reports the maximum support PARTID and PMG values.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GITS_MPAMIDR are RES0.

A copy of this register is provided for each ITS.

When GITS_TYPER.MPAM==0, this register is RES0.

Attributes
GITS_MPAMIDR is a 32-bit register.

Field descriptions
The GITS_MPAMIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PMGmax PARTIDmax

Bits [31:24]

Reserved, RES0.

PMGmax, bits [23:16]

Maximum PMG value supported.

PARTIDmax, bits [15:0]

Maximum PARTID value supported.

Accessing the GITS_MPAMIDR

GITS_MPAMIDR can be accessed through the memory-mapped interfaces:

Component Offset
GIC ITS control 0x0010

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

GITS_MPAMIDR, Report maximum PARTID and PMG Register

Page 3831

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_MPAMIDR, Report maximum PARTID and PMG Register

Page 3832

GITS_MPIDR, Report ITS's affinity.
The GITS_MPIDR characteristics are:

Purpose
Reports ITS's affinity when the vPE Table is shared with Redistributors.

Configuration
This register is present only when GICv4.1 is implemented. Otherwise, direct accesses to GITS_MPIDR are RES0.

A copy of this register is provided for each ITS.

When GITS_TYPER.SVPET==0, this register is RES0.

Attributes
GITS_MPIDR is a 32-bit register.

Field descriptions
The GITS_MPIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Aff3 Aff2 Aff1 RES0

Aff3, bits [31:24]

Aff2, bits [23:16]

Aff1, bits [15:8]

Bits [7:0]

Reserved, RES0.

Accessing the GITS_MPIDR

GITS_MPIDR can be accessed through the memory-mapped interfaces:

Component Offset
GIC ITS control 0x0018

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_MPIDR, Report ITS's affinity.

Page 3833

GITS_PARTIDR, Set PARTID and PMG Register
The GITS_PARTIDR characteristics are:

Purpose
Sets the PARTID and PMG values used for memory accesses by the ITS.

Configuration
This register is present only when GICv3.1 is implemented. Otherwise, direct accesses to GITS_PARTIDR are RES0.

A copy of this register is provided for each ITS.

When GITS_TYPER.MPAM==0, this register is RES0.

Attributes
GITS_PARTIDR is a 32-bit register.

Field descriptions
The GITS_PARTIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PMG PARTID

Bits [31:24]

Reserved, RES0.

PMG, bits [23:16]

PMG value used when ITS accesses memory.

It is IMPLEMENTATION DEFINED whether bits not needed to represent PMG values in the range 0 to PMG_MAX are
stateful or RES0.

PARTID, bits [15:0]

PARTID value used when ITS accesses memory.

It is IMPLEMENTATION DEFINED whether bits not needed to represent PARTID values in the range 0 to PARTID_MAX are
stateful or RES0.

Accessing the GITS_PARTIDR

GITS_PARTIDR can be accessed through the memory-mapped interfaces:

Component Offset
GIC ITS control 0x0014

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RW.
• When IsAccessSecure() accesses to this register are RW.

GITS_PARTIDR, Set PARTID and PMG Register

Page 3834

• When !IsAccessSecure() accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_PARTIDR, Set PARTID and PMG Register

Page 3835

GITS_SGIR, ITS SGI Register
The GITS_SGIR characteristics are:

Purpose
Written by software to signal a virtual SGI for translation by the ITS.

Configuration
This register is present only when GICv4.1 is implemented. Otherwise, direct accesses to GITS_SGIR are RES0.

This register is provided only in GICv4.1 implementations.

Attributes
GITS_SGIR is a 64-bit register.

Field descriptions
The GITS_SGIR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 vPEID

RES0 vINTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

vPEID, bits [47:32]

ID of target vPEID.

The size of this field is IMPLEMENTATION DEFINED, and is specified by the GICD_TYPER2.VIL and GICD_TYPER2.VID
fields. Unimplemented bits are RES0.

Bits [31:4]

Reserved, RES0.

vINTID, bits [3:0]

INTID of virtual SGI.

Accessing the GITS_SGIR
64-bit access only.

GITS_SGIR can be accessed through the memory-mapped interfaces:

Component Offset
GIC ITS control 0x20020

GITS_SGIR, ITS SGI Register

Page 3836

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are WO.
• When IsAccessSecure() accesses to this register are WO.
• When !IsAccessSecure() accesses to this register are WO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_SGIR, ITS SGI Register

Page 3837

GITS_TRANSLATER, ITS Translation Register
The GITS_TRANSLATER characteristics are:

Purpose
Written by a requesting Device to signal an interrupt for translation by the ITS.

Configuration
This register is at the same offset as GICD_SETSPI_NSR in the Distributor, and is at the same offset as GICR_SETLPIR
in the Redistributor.

Attributes
GITS_TRANSLATER is a 32-bit register.

Field descriptions
The GITS_TRANSLATER bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EventID

EventID, bits [31:0]

An identifier corresponding to the interrupt to be translated.

Note

The size of the EventID is DeviceID specific, and set when the DeviceID is
mapped to an ITT (using MAPD).

The number of EventID bits implemented is reported by GITS_TYPER.ID_bits. If a write specifies non-zero identifiers
bits outside this range behavior is a CONSTRAINED UNPREDICTABLE choice between:

• Non-zero identifier bits outside the supported range are ignored.
• The write is ignored.

The DeviceID presented to an ITS is used to index a device table. The device table maps the DeviceID to an interrupt
translation table for that device.

Accessing the GITS_TRANSLATER
16-bit access to bits [15:0] of this register must be supported. When this register is written by a 16-bit transaction, bits
[31:16] are written as zero.

Implementations must ensure that:

• A unique DeviceID is provided for each requesting device, and the DeviceID is presented to the ITS when a
write to this register occurs in a manner that cannot be spoofed by any agent capable of performing writes.

• The DeviceID presented corresponds to the DeviceID field in the ITS commands.

Writes to this register are ignored if any of the following are true:

• GITS_CTLR.Enabled == 0.
• The presented DeviceID is not mapped to an Interrupt Translation Table.
• The DeviceID is larger than the supported size.

GITS_TRANSLATER, ITS Translation Register

Page 3838

• The DeviceID is mapped to an Interrupt Translation Table, but the EventID is outside the range specified by
MAPD.

• The EventID is mapped to an Interrupt Translation Table and the EventID is within the range specified by
MAPD, but the EventID is unmapped.

Translation requests that result from writes to this register are subject to certain ordering rules. See Ordering of
translations following writes to GITS_TRANSLATER for more information.

GITS_TRANSLATER can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS

translation
0x0040 GITS_TRANSLATER

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are WO.
• When IsAccessSecure() accesses to this register are WO.
• When !IsAccessSecure() accesses to this register are WO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_TRANSLATER, ITS Translation Register

Page 3839

GITS_TYPER, ITS Type Register
The GITS_TYPER characteristics are:

Purpose
Specifies the features that an ITS supports.

Configuration

Attributes
GITS_TYPER is a 64-bit register.

Field descriptions
The GITS_TYPER bit assignments are:

636261605958575655545352 51 50 494847464544 43 42 41 40 39 38 37 36 35 34 33 32
RES0 nIDSVPETVMAPPVSGIMPAMVMOVPCIL CIDbits

HCC RES0 PTASEIS Devbits ID_bits ITT_entry_size IMPLEMENTATION
DEFINED CCTVirtualPhysical

313029282726252423222120 19 18 171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:44]

Reserved, RES0.

nID, bit [43]

When GICv4.1 is implemented:

nID

nID Meaning
0b0 Individual doorbell interrupt supported.
0b1 Individual doorbell interrupt not supported.

Otherwise:

Reserved, RES0.

SVPET, bits [42:41]

When GICv4.1 is implemented:

SVPET

SVPET Meaning
0b00 vPE Table is not shared with Redistributors.
0b01 vPE Table is shared with the groups of Redistributors indicated

by GITS_MPIDR.Aff3.
0b10 vPE Table is shared with the groups of Redistributors indicated

by GITS_MPIDR fields Aff3 and Aff2.
0b11 vPE Table is shared with the groups of Redistributors indicated

by GITS_MPIDR fields Aff3, Aff2 and Aff1.

GITS_TYPER, ITS Type Register

Page 3840

Otherwise:

Reserved, RES0.

VMAPP, bit [40]

When GICv4.1 is implemented:

VMAPP

VMAPP Meaning
0b0 GICv4.0 VMAPP command layout.
0b1 GICv4.1 VMAPP command layout.

Otherwise:

Reserved, RES0.

VSGI, bit [39]

When GICv4.1 is implemented:

VSGI

VSGI Meaning
0b0 Direct injection of SGIs is not supported.
0b1 Direct injection of SGIs is supported.

Otherwise:

Reserved, RES0.

MPAM, bit [38]

When GIC, >=3.1 is implemented:

MPAM

MPAM Meaning
0b0 MPAM is not supported.
0b1 MPAM is supported.

Otherwise:

Reserved, RES0.

VMOVP, bit [37]

Indicates the form of the VMOVP command.

VMOVP Meaning
0b0 When moving a vPE, software must issue a VMOVP on all ITSs

that have mappings for that vPE. The ITSList and Sequence
Number fields in the VMOVP command must ensure
synchronization, otherwise behavior is UNPREDICTABLE.

0b1 When moving a vPE, software must only issue a VMOVP on
one of the ITSs that has a mapping for that vPE. The ITSList
and Sequence Number fields in the VMOVP command are
RES0.

GITS_TYPER, ITS Type Register

Page 3841

CIL, bit [36]

Collection ID Limit.

CIL Meaning
0b0 ITS supports 16-bit Collection ID, GITS_TYPER.CIDbits is RES0.
0b1 GITS_TYPER.CIDbits indicates supported Collection ID size

In implementations that do not support Collections in external memory, this bit is RES0 and the number of Collections
supported is reported by GITS_TYPER.HCC.

CIDbits, bits [35:32]

Number of Collection ID bits.

• The number of bits of Collection ID minus one.
• When GITS_TYPER.CIL == 0, this field is RES0.

HCC, bits [31:24]

Hardware Collection Count. The number of interrupt collections supported by the ITS without provisioning of external
memory.

Note

Collections held in hardware are unmapped at reset.

Bits [23:20]

Reserved, RES0.

PTA, bit [19]

Physical Target Addresses. Indicates the format of the target address:

PTA Meaning
0b0 The target address corresponds to the PE number specified by

GICR_TYPER.Processor_Number.
0b1 The target address corresponds to the base physical address of

the required Redistributor.

See Target addresses for more information.

SEIS, bit [18]

SEI support. Indicates whether the virtual CPU interface supports generation of SEIs:

SEIS Meaning
0b0 The ITS does not support local generation of SEIs.
0b1 The ITS supports local generation of SEIs.

Devbits, bits [17:13]

The number of DeviceID bits implemented, minus one.

ID_bits, bits [12:8]

The number of EventID bits implemented, minus one.

GITS_TYPER, ITS Type Register

Page 3842

ITT_entry_size, bits [7:4]

Read-only. Indicates the number of bytes per translation table entry, minus one.

See the ITS command 'MAPD' for more information.

IMPLEMENTATION DEFINED, bit [3]

IMPLEMENTATION DEFINED.

CCT, bit [2]

Cumulative Collection Tables.

CCT Meaning
0b0 The total number of supported collections is determined by the

number of collections held in memory only.
0b1 The total number of supported collections is determined by

number of collections that are held in memory and the number
indicated by GITS_TYPER.HCC.

If GITS_TYPER.HCC == 0, or if memory backed collections are not supported (all GITS_BASER<n>.Type != 100), this
bit is RES0.

Virtual, bit [1]

Indicates whether the ITS supports virtual LPIs and direct injection of virtual LPIs:

Virtual Meaning
0b0 The ITS does not support virtual LPIs or direct injection of

virtual LPIs.
0b1 The ITS supports virtual LPIs and direct injection of virtual

LPIs.

This field is RES0 in GICv3 implementations.

Physical, bit [0]

Indicates whether the ITS supports physical LPIs:

Physical Meaning
0b0 The ITS does not support physical LPIs.
0b1 The ITS supports physical LPIs.

This field is RES1, indicating that the ITS supports physical LPIs.

Accessing the GITS_TYPER

GITS_TYPER can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS control 0x0008 GITS_TYPER

This interface is accessible as follows:

• When GICD_CTLR.DS == 0b0 accesses to this register are RO.
• When IsAccessSecure() accesses to this register are RO.
• When !IsAccessSecure() accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

GITS_TYPER, ITS Type Register

Page 3843

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_TYPER, ITS Type Register

Page 3844

MIDR_EL1, Main ID Register
The MIDR_EL1 characteristics are:

Purpose
Provides identification information for the PE, including an implementer code for the device and a device ID number.

Configuration
External register MIDR_EL1 bits [31:0] are architecturally mapped to AArch64 System register MIDR_EL1[31:0] .

External register MIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register MIDR[31:0] .

It is IMPLEMENTATION DEFINED whether MIDR_EL1 is implemented in the Core power domain or in the Debug power
domain.

Attributes
MIDR_EL1 is a 32-bit register.

Field descriptions
The MIDR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Implementer Variant Architecture PartNum Revision

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm. Assigned codes
include the following:

Hex representation Implementer
0x00 Reserved for software use
0xC0 Ampere Computing
0x41 Arm Limited
0x42 Broadcom Corporation
0x43 Cavium Inc.
0x44 Digital Equipment Corporation
0x46 Fujitsu Ltd.
0x49 Infineon Technologies AG
0x4D Motorola or Freescale Semiconductor Inc.
0x4E NVIDIA Corporation
0x50 Applied Micro Circuits Corporation
0x51 Qualcomm Inc.
0x56 Marvell International Ltd.
0x69 Intel Corporation

Arm can assign codes that are not published in this manual. All values not assigned by Arm are reserved and must not
be used.

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product
variants, or major revisions of a product.

MIDR_EL1, Main ID Register

Page 3845

Architecture, bits [19:16]

The permitted values of this field are:

Architecture Meaning
0b0001 Armv4.
0b0010 Armv4T.
0b0011 Armv5 (obsolete).
0b0100 Armv5T.
0b0101 Armv5TE.
0b0110 Armv5TEJ.
0b0111 Armv6.
0b1111 Architectural features are individually identified in the

ID_* registers, see ID registers in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A
architecture profile

All other values are reserved.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7, the variant and
architecture are encoded differently.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

Accessing the MIDR_EL1

MIDR_EL1 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xD00 MIDR_EL1

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to this register are RO.
• Otherwise accesses to this register are IMPDEF.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MIDR_EL1, Main ID Register

Page 3846

MPAMCFG_CMAX, MPAM Cache Maximum Capacity
Partition Configuration Register

The MPAMCFG_CMAX characteristics are:

Purpose
The MPAMCFG_CMAX is a 32-bit read-write register that controls the maximum fraction of the cache capacity that the
PARTID selected by MPAMCFG_PART_SEL is permitted to allocate. MPAMCFG_CMAX_s controls cache maximum
capacity for the Secure PARTID selected by the Secure instance of MPAMCFG_PART_SEL. MPAMCFG_CMAX_ns
controls the cache maximum capacity for the Non-secure PARTID selected by the Non-secure instance of
MPAMCFG_PART_SEL.

Configuration
The power domain of MPAMCFG_CMAX is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_CCAP_PART == 1. Otherwise, direct accesses to
MPAMCFG_CMAX are RES0.

Attributes
MPAMCFG_CMAX is a 32-bit register.

Field descriptions
The MPAMCFG_CMAX bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CMAX

Bits [31:16]

Reserved, RES0.

CMAX, bits [15:0]

Maximum cache capacity usage in fixed-point fraction format by the partition selected by MPAMCFG_PART_SEL. The
fraction represents the portion of the total cache capacity that the PARTID is permitted to allocate.

The implemented width of the fixed-point fraction is given in MPAMF_CCAP_IDR.CMAX_WD. Unimplemented bits
within the field are RAZ/WI. The implemented bits of the CMAX field are always the most-significant bits of the field.

The fixed-point fraction CMAX is less than 1. The implied binary point is between bits 15 and 16. This representation
has as the largest fraction of the cache that can be represented in an implementation with w implemented bits is 1 - 1/
w.

Accessing the MPAMCFG_CMAX
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMCFG_CMAX_s must be accessible from the Secure MPAM feature page. MPAMCFG_CMAX_ns must be
accessible from the Non-secure MPAM feature page.

MPAMCFG_CMAX, MPAM Cache Maximum Capacity Partition Configuration Register

Page 3847

MPAMCFG_CMAX_s and MPAMCFG_CMAX_ns must be separate registers. The Secure instance (MPAMCFG_CMAX_s)
accesses the cache capacity partitioning used for Secure PARTIDs, and the Non-secure instance
(MPAMCFG_CMAX_ns) accesses the cache capacity partitioning used for Non-secure PARTIDs.

MPAMCFG_CMAX can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0108 MPAMCFG_CMAX_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0108 MPAMCFG_CMAX_s

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMCFG_CMAX, MPAM Cache Maximum Capacity Partition Configuration Register

Page 3848

MPAMCFG_CPBM, MPAM Cache Portion Bitmap
Partition Configuration Register

The MPAMCFG_CPBM characteristics are:

Purpose
The MPAMCFG_CPBM register is a read-write register that configures the cache portions that a PARTID is allowed to
allocate. After setting MPAMCFG_PART_SEL with a PARTID, software (usually a hypervisor) writes to the
MPAMCFG_CPBM register to configure which cache portions the PARTID is allowed to allocate.

MPAMCFG_CPBM_s controls cache portions for the Secure PARTID selected by the Secure instance of
MPAMCFG_PART_SEL. MPAMCFG_CPBM_ns controls the cache portions for the Non-secure PARTID selected by the
Non-secure instance of MPAMCFG_PART_SEL.

Configuration
The power domain of MPAMCFG_CPBM is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_CPOR_PART == 1. Otherwise, direct accesses to
MPAMCFG_CPBM are RES0.

Attributes
MPAMCFG_CPBM is a 32768-bit register.

Field descriptions
The MPAMCFG_CPBM bit assignments are:

CPBM<n>, bit [n], for n = 0 to 32767

Each bit, CPBM<n>, grants permission to the PARTID to allocate cache lines within cache portion n.

CPBM<n> Meaning
0b0 The PARTID is not permitted to allocate into cache portion

n.
0b1 The PARTID is permitted to allocate within cache portion

n.

The number of bits in the cache portion partitioning bit map of this component is given in
MPAMF_CPOR_IDR.CPBM_WD. CPBM_WD contains a value from 1 to 215, inclusive. Values of CPBM_WD greater than
32 require a group of 32-bit registers to access the CPBM, up to 1024 registers.

Bits CPBM<n>, where n is greater than CPBM_WD, are not required to be implemented.

Accessing the MPAMCFG_CPBM
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMCFG_CPBM_s must be accessible from the Secure MPAM feature page. MPAMCFG_CPBM_ns must be
accessible from the Non-secure MPAM feature page.

MPAMCFG_CPBM_s and MPAMCFG_CPBM_ns must be separate registers. The Secure instance (MPAMCFG_CPBM_s)
accesses the cache portion bitmaps used for Secure PARTIDs, and the Non-secure instance (MPAMCFG_CPBM_ns)
accesses the cache portion bitmaps used for Non-secure PARTIDs.

MPAMCFG_CPBM, MPAM Cache Portion Bitmap Partition Configuration Register

Page 3849

MPAMCFG_CPBM can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x1000 MPAMCFG_CPBM_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x1000 MPAMCFG_CPBM_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMCFG_CPBM, MPAM Cache Portion Bitmap Partition Configuration Register

Page 3850

MPAMCFG_INTPARTID, MPAM Internal PARTID
Narrowing Configuration Register

The MPAMCFG_INTPARTID characteristics are:

Purpose
MPAMCFG_INTPARTID is a 32-bit read-write register that controls the mapping of the PARTID selected by
MPAMCFG_PART_SEL into a narrower internal PARTID (intPARTID).

MPAMCFG_INTPARTID_s controls the mapping for the Secure PARTID selected by the Secure instance of
MPAMCFG_PART_SEL. MPAMCFG_INTPARTID_ns controls the mapping for the Non-secure PARTID selected by the
Non-secure instance of MPAMCFG_PART_SEL.

The MPAMCFG_INTPARTID register associates the request PARTID (reqPARTID) in the MPAMCFG_PART_SEL register
with an internal PARTID (intPARTID) in this register. To set that association, store reqPARTID into the
MPAMCFG_PART_SEL register and then store the intPARTID into the MPAMCFG_INTPARTID register. To read the
association, store reqPARTID into the MPAMCFG_PART_SEL register and then read MPAMCFG_INTPARTID.

If the intPARTID stored into MPAMCFG_INTPARTID is out-of-range or does not have the INTERNAL bit set, the
association of reqPARTID to intPARTID is not written and MPAMF_ESR is set to indicate an intPARTID_Range error.

If MPAMCFG_PART_SEL.INTERNAL is 1 when MPAMCFG_INTPARTID is read or written, MPAMF_ESR is set to
indicate an Unexpected_INTERNAL error.

Configuration
The power domain of MPAMCFG_INTPARTID is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_PARTID_NRW == 1. Otherwise, direct accesses to
MPAMCFG_INTPARTID are RES0.

Attributes
MPAMCFG_INTPARTID is a 32-bit register.

Field descriptions
The MPAMCFG_INTPARTID bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTERNAL INTPARTID

Bits [31:17]

Reserved, RES0.

INTERNAL, bit [16]

Internal PARTID flag.

This bit must be 1 when written to the register. If written as 0, the write will not update the reqPARTID to intPARTID
association.

On a read of this register, the bit will always read the value last written.

MPAMCFG_INTPARTID, MPAM Internal PARTID Narrowing Configuration Register

Page 3851

INTPARTID, bits [15:0]

This field contains the intPARTID mapped to the reqPARTID in MPAMCFG_PART_SEL.

The maximum intPARTID supported is MPAMF_PARTID_NRW_IDR.INTPARTID_MAX.

Accessing the MPAMCFG_INTPARTID
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMCFG_INTPARTID_s must be accessible from the Secure MPAM feature page. MPAMCFG_INTPARTID_ns must be
accessible from the Non-secure MPAM feature page.

MPAMCFG_INTPARTID_s and MPAMCFG_INTPARTID_ns must be separate registers. The Secure instance
(MPAMCFG_INTPARTID_s) accesses the PARTID narrowing used for Secure PARTIDs, and the Non-secure instance
(MPAMCFG_INTPARTID_ns) accesses the PARTID narrowing used for Non-secure PARTIDs.

MPAMCFG_INTPARTID can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0600 MPAMCFG_INTPARTID_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0600 MPAMCFG_INTPARTID_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMCFG_INTPARTID, MPAM Internal PARTID Narrowing Configuration Register

Page 3852

MPAMCFG_MBW_MAX, MPAM Memory Bandwidth
Maximum Partition Configuration Register

The MPAMCFG_MBW_MAX characteristics are:

Purpose
MPAMCFG_MBW_MAX is a 32-bit read-write register that controls the maximum fraction of memory bandwidth that
the PARTID selected by MPAMCFG_PART_SEL is permitted to use. MPAMCFG_MBW_MAX_s controls maximum
bandwidth for the Secure PARTID selected by the Secure instance of MPAMCFG_PART_SEL.
MPAMCFG_MBW_MAX_ns controls the maximum bandwidth for the Non-secure PARTID selected by the Non-secure
instance of MPAMCFG_PART_SEL.

A PARTID that has used more than MAX is given no access to additional bandwidth if HARDLIM == 1 or is given
additional bandwidth only if there are no requests from PARTIDs that have not exceeded their MAX if HARDLIM == 0.

Configuration
The power domain of MPAMCFG_MBW_MAX is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MBW_PART == 1 and MPAMF_MBW_IDR.HAS_MAX == 1.
Otherwise, direct accesses to MPAMCFG_MBW_MAX are RES0.

Attributes
MPAMCFG_MBW_MAX is a 32-bit register.

Field descriptions
The MPAMCFG_MBW_MAX bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HARDLIM RES0 MAX

HARDLIM, bit [31]

Hard bandwidth limiting.

HARDLIM Meaning
0b0 When MAX bandwidth is exceeded, the partition contends

with a low preference for downstream bandwidth beyond
MAX.

0b1 When MAX bandwidth is exceeded, the partition does not
be use any more bandwidth until the memory bandwidth
measurement for the partition falls below MAX.

Bits [30:16]

Reserved, RES0.

MAX, bits [15:0]

Memory maximum bandwidth allocated to the partition selected by MPAMCFG_PART_SEL. MAX is in fixed-point
fraction format. The fraction represents the portion of the total memory bandwidth capacity through the controlled
component that the PARTID is permitted to allocate.

MPAMCFG_MBW_MAX, MPAM Memory Bandwidth Maximum Partition Configuration Register

Page 3853

The implemented width of the fixed-point fraction is given in MPAMF_MBW_IDR.BWA_WD. Unimplemented bits are
RAZ/WI. The implemented bits of the MAX field are always to the left of the field. For example, if BWA_WD = 3, the
implemented bits are MPAMCFG_MBW_MAX[15:13] and MPAMCFG_MBW_MAX[12:0] are unimplemented.

The fixed-point fraction MAX is less than 1. The implied binary point is between bits 15 and 16. This representation
has as the largest fraction of the cache that can be represented in an implementation with w implemented bits is 1 - 1/
w.

Accessing the MPAMCFG_MBW_MAX
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMCFG_MBW_MAX_s must be accessible from the Secure MPAM feature page. MPAMCFG_MBW_MAX_ns must be
accessible from the Non-secure MPAM feature page.

MPAMCFG_MBW_MAX_s and MPAMCFG_MBW_MAX_ns must be separate registers. The Secure instance
(MPAMCFG_MBW_MAX_s) accesses the memory maximum bandwidth partitioning used for Secure PARTIDs, and the
Non-secure instance (MPAMCFG_MBW_MAX_ns) accesses the memory maximum bandwidth partitioning used for
Non-secure PARTIDs.

MPAMCFG_MBW_MAX can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0208 MPAMCFG_MBW_MAX_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0208 MPAMCFG_MBW_MAX_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMCFG_MBW_MAX, MPAM Memory Bandwidth Maximum Partition Configuration Register

Page 3854

MPAMCFG_MBW_MIN, MPAM Cache Maximum Capacity
Partition Configuration Register

The MPAMCFG_MBW_MIN characteristics are:

Purpose
MPAMCFG_MBW_MIN is a 32-bit read-write register that controls the minimum fraction of memory bandwidth that
the PARTID selected by MPAMCFG_PART_SEL is permitted to use. MPAMCFG_MBW_MIN_s controls the minimum
bandwidth for the Secure PARTID selected by the Secure instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_MIN_ns
controls the minimum bandwidth for the Non-secure PARTID selected by the Non-secure instance of
MPAMCFG_PART_SEL.

A PARTID that has used less than MIN is given preferential access to bandwidth.

Configuration
The power domain of MPAMCFG_MBW_MIN is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MBW_PART == 1 and MPAMF_MBW_IDR.HAS_MIN == 1.
Otherwise, direct accesses to MPAMCFG_MBW_MIN are RES0.

Attributes
MPAMCFG_MBW_MIN is a 32-bit register.

Field descriptions
The MPAMCFG_MBW_MIN bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 MIN

Bits [31:16]

Reserved, RES0.

MIN, bits [15:0]

Memory minimum bandwidth allocated to the partition selected by MPAMCFG_PART_SEL. MIN is in fixed-point
fraction format. The fraction represents the portion of the total memory bandwidth capacity through the controlled
component that the PARTID is permitted to allocate.

The implemented width of the fixed-point fraction is given in MPAMF_MBW_IDR.BWA_WD. Unimplemented bits are
RAZ/WI. The implemented bits of the MIN field are always to the left of the field. For example, if BWA_WD = 4, the
implemented bits are MPAMCFG_MBW_MIN[15:12] and MPAMCFG_MBW_MIN[11:0] are unimplemented.

The fixed-point fraction MIN is less than 1. The implied binary point is between bits 15 and 16. This representation has
as the largest fraction of the cache that can be represented in an implementation with w implemented bits is 1 - 1/w.

Accessing the MPAMCFG_MBW_MIN
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMCFG_MBW_MIN_s must be accessible from the Secure MPAM feature page. MPAMCFG_MBW_MIN_ns must be
accessible from the Non-secure MPAM feature page.

MPAMCFG_MBW_MIN, MPAM Cache Maximum Capacity Partition Configuration Register

Page 3855

MPAMCFG_MBW_MIN_s and MPAMCFG_MBW_MIN_ns must be separate registers. The Secure instance
(MPAMCFG_MBW_MIN_s) accesses the memory minimum bandwidth partitioning used for Secure PARTIDs, and the
Non-secure instance (MPAMCFG_MBW_MIN_ns) accesses the memory minimum bandwidth partitioning used for Non-
secure PARTIDs.

MPAMCFG_MBW_MIN can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0200 MPAMCFG_MBW_MIN_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0200 MPAMCFG_MBW_MIN_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMCFG_MBW_MIN, MPAM Cache Maximum Capacity Partition Configuration Register

Page 3856

MPAMCFG_MBW_PBM, MPAM Bandwidth Portion
Bitmap Partition Configuration Register

The MPAMCFG_MBW_PBM characteristics are:

Purpose
The MPAMCFG_MBW_PBM register is a read-write register that configures the cache portions that a PARTID is
allowed to allocate. MPAMCFG_MBW_PBM_s controls the bandwidth portion bitmap for the Secure PARTID selected
by the Secure instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_PBM_ns controls the bandwidth portion bitmap for
the Non-secure PARTID selected by the Non-secure instance of MPAMCFG_PART_SEL.

After setting MPAMCFG_PART_SEL with a PARTID, software writes to the MPAMCFG_CPBM register to configure
which cache portions the PARTID is allowed to allocate.

Configuration
The power domain of MPAMCFG_MBW_PBM is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MBW_PART == 1 and MPAMF_MBW_IDR.HAS_PBM == 1.
Otherwise, direct accesses to MPAMCFG_MBW_PBM are RES0.

Attributes
MPAMCFG_MBW_PBM is a 4096-bit register.

Field descriptions
The MPAMCFG_MBW_PBM bit assignments are:

BWPBM<n>, bit [n], for n = 0 to 4095

Each bit BWPBM<n> grants permission to the PARTID to allocate bandwidth within bandwidth portion n.

BWPBM<n> Meaning
0b0 The PARTID is not permitted to allocate into bandwidth

portion n.
0b1 The PARTID is permitted to allocate within bandwidth

portion n.

The number of bits in the bandwidth portion partitioning bit map of this component is given in
MPAMF_MBW_IDR.BWPBM_WD. BWPBM_WD contains a value from 1 to 212, inclusive. Values of BWPBM_WD greater
than 32 require a group of 32-bit registers to access the BWPBM, up to 128 32-bit registers.

Bits BWPBM<n>, where n is greater than or equal to BWPBM_WD, are not required to be implemented.

Accessing the MPAMCFG_MBW_PBM
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMCFG_MBW_PBM_s must be accessible from the Secure MPAM feature page. MPAMCFG_MBW_PBM_ns must be
accessible from the Non-secure MPAM feature page.

MPAMCFG_MBW_PBM_s and MPAMCFG_MBW_PBM_ns must be separate registers. The Secure instance
(MPAMCFG_MBW_PBM_s) accesses the memory bandwidth portion bitmaps used for Secure PARTIDs, and the Non-
secure instance (MPAMCFG_MBW_PBM_ns) accesses the memory bandwidth portion bitmaps used for Non-secure
PARTIDs.

MPAMCFG_MBW_PBM, MPAM Bandwidth Portion Bitmap Partition Configuration Register

Page 3857

MPAMCFG_MBW_PBM can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x2000 MPAMCFG_MBW_PBM_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x2000 MPAMCFG_MBW_PBM_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMCFG_MBW_PBM, MPAM Bandwidth Portion Bitmap Partition Configuration Register

Page 3858

MPAMCFG_MBW_PROP, MPAM Memory Bandwidth
Proportional Stride Partition Configuration Register

The MPAMCFG_MBW_PROP characteristics are:

Purpose
Controls the proportional stride of memory bandwidth that the PARTID selected by MPAMCFG_PART_SEL uses.
MPAMCFG_MBW_PROP_s controls the bandwidth proportional stride for the Secure PARTID selected by the Secure
instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_PROP_ns controls the bandwidth proportional stride for the Non-
secure PARTID selected by the Non-secure instance of MPAMCFG_PART_SEL.

Proportional stride is a relative cost of bandwidth requested by one PARTID in relation to the costs of the bandwidths
requested by each other PARTID also competing to use the bandwidth.

Configuration
The power domain of MPAMCFG_MBW_PROP is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MBW_PART == 1 and MPAMF_MBW_IDR.HAS_PROP == 1.
Otherwise, direct accesses to MPAMCFG_MBW_PROP are RES0.

Attributes
MPAMCFG_MBW_PROP is a 32-bit register.

Field descriptions
The MPAMCFG_MBW_PROP bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EN RES0 STRIDEM1

EN, bit [31]

Enable proportional stride bandwidth partitioning.

EN Meaning
0b0 The selected partition is not regulated by proportional stride

bandwidth partitioning.
0b1 The selected partition has bandwidth usage regulated by

proportional stride bandwidth partitioning as controlled by
STRIDEM1.

Bits [30:16]

Reserved, RES0.

STRIDEM1, bits [15:0]

Memory bandwidth stride minus 1 allocated to the partition selected by MPAMCFG_PART_SEL. STRIDEM1 represents
the normalized cost of bandwidth consumption by the partition.

The proportional stride partitioning control parameter is an unsigned integer representing the normalized cost to a
partition for consuming bandwidth. Larger values have a larger cost and correspond to a lesser allocation of
bandwidth while smaller values indicate a lesser cost and therefore a higher allocation of bandwidth.

MPAMCFG_MBW_PROP, MPAM Memory Bandwidth Proportional Stride Partition Configuration Register

Page 3859

The implemented width of STRIDEM1 is given in MPAMF_MBW_IDR.BWA_WD.

Accessing the MPAMCFG_MBW_PROP
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMCFG_MBW_PROP_s must be accessible from the Secure MPAM feature page. MPAMCFG_MBW_PROP_ns must
be accessible from the Non-secure MPAM feature page.

MPAMCFG_MBW_PROP_s and MPAMCFG_MBW_PROP_ns must be separate registers. The Secure instance
(MPAMCFG_MBW_PROP_s) accesses the memory proportional stride bandwidth partitioning used for Secure PARTIDs,
and the Non-secure instance (MPAMCFG_MBW_PROP_ns) accesses the memory proportional stride bandwidth
partitioning used for Non-secure PARTIDs.

MPAMCFG_MBW_PROP can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0500 MPAMCFG_MBW_PROP_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0500 MPAMCFG_MBW_PROP_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMCFG_MBW_PROP, MPAM Memory Bandwidth Proportional Stride Partition Configuration Register

Page 3860

MPAMCFG_MBW_WINWD, MPAM Memory Bandwidth
Partitioning Window Width Configuration Register

The MPAMCFG_MBW_WINWD characteristics are:

Purpose
MPAMCFG_MBW_WINWD is a 32-bit register that shows and sets the value of the window width for the PARTID in
MPAMCFG_PART_SEL. MPAMCFG_MBW_WINWD_s reads and controls the bandwidth control window width for the
Secure PARTID selected by the Secure instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_WINWD_ns reads and
controls the bandwidth control window for the Non-secure PARTID selected by the Non-secure instance of
MPAMCFG_PART_SEL.

MPAMCFG_MBW_WINWD is read-only if MPAMF_MBW_IDR.WINDWR == 0, and the window width is set by the
hardware, even if variable.

MPAMCFG_MBW_WINWD is read-write if MPAMF_MBW_IDR.WINDWR == 1, permitting configuration of the window
width for each PARTID independently on hardware that supports this functionality.

Configuration
The power domain of MPAMCFG_MBW_WINWD is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MBW_PART == 1. Otherwise, direct accesses to
MPAMCFG_MBW_WINWD are RES0.

Attributes
MPAMCFG_MBW_WINWD is a 32-bit register.

Field descriptions
The MPAMCFG_MBW_WINWD bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 US_INT US_FRAC

Bits [31:24]

Reserved, RES0.

US_INT, bits [23:8]

Window width, integer microseconds.

This field reads (and sets) the integer part of the window width in microseconds for the PARTID selected by
MPAMCFG_PART_SEL.

US_FRAC, bits [7:0]

Window width, fractional microseconds.

This field reads (and sets) the fractional part of the window width in microseconds for the PARTID selected by
MPAMCFG_PART_SEL.

MPAMCFG_MBW_WINWD, MPAM Memory Bandwidth Partitioning Window Width Configuration Register

Page 3861

Accessing the MPAMCFG_MBW_WINWD
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMCFG_MBW_WINWD_s must be accessible from the Secure MPAM feature page. MPAMCFG_MBW_WINWD_ns
must be accessible from the Non-secure MPAM feature page.

MPAMCFG_MBW_WINWD_s and MPAMCFG_MBW_WINWD_ns must be separate registers. The Secure instance
(MPAMCFG_MBW_WINWD_s) accesses the window width used for Secure PARTIDs, and the Non-secure instance
(MPAMCFG_MBW_WINWD_ns) accesses the window width used for Non-secure PARTIDs.

MPAMCFG_MBW_WINWD can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0220 MPAMCFG_MBW_WINWD_s

This interface is accessible as follows:

• When MPAMF_MBW_IDR.WINDWR == 0 accesses to this register are RO.
• Otherwise accesses to this register are RW.
Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0220 MPAMCFG_MBW_WINWD_ns

This interface is accessible as follows:

• When MPAMF_MBW_IDR.WINDWR == 0 accesses to this register are RO.
• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMCFG_MBW_WINWD, MPAM Memory Bandwidth Partitioning Window Width Configuration Register

Page 3862

MPAMCFG_PART_SEL, MPAM Partition Configuration
Selection Register

The MPAMCFG_PART_SEL characteristics are:

Purpose
Selects a partition ID to configure. MPAMCFG_PART_SEL_s selects a Secure PARTID to configure.
MPAMCFG_PART_SEL_ns selects a Non-secure PARTID to configure.

After setting this register with a PARTID, software (usually a hypervisor) can perform a series of accesses to
MPAMCFG registers to configure parameters for MPAM resource controls to use when requests have that PARTID.

Configuration
The power domain of MPAMCFG_PART_SEL is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_CCAP_PART == 1, or MPAMF_IDR.HAS_CPOR_PART == 1, or
MPAMF_IDR.HAS_MBW_PART == 1, or MPAMF_IDR.HAS_PRI_PART == 1, or MPAMF_IDR.HAS_PARTID_NRW == 1,
or (MPAMF_IDR.EXT == 0 and MPAMF_IDR.HAS_IMPL_IDR == 1) or (MPAMF_IDR.EXT == 1,
MPAMF_IDR.HAS_IMPL_IDR == 1 and MPAMF_IDR.NO_IMPL_PART == 0). Otherwise, direct accesses to
MPAMCFG_PART_SEL are RES0.

Attributes
MPAMCFG_PART_SEL is a 32-bit register.

Field descriptions
The MPAMCFG_PART_SEL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 RIS RES0 INTERNAL PARTID_SEL

Bits [31:28]

Reserved, RES0.

RIS, bits [27:24]

When ARMv8.6-MPAM is implemented, MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_RIS == 1:

Resource Instance Selector. RIS selects one resource to configure through MPAMCFG registers and describe with
MPAMF ID registers.

Otherwise:

Reserved, RES0.

Bits [23:17]

Reserved, RES0.

MPAMCFG_PART_SEL, MPAM Partition Configuration Selection Register

Page 3863

INTERNAL, bit [16]

Internal PARTID.

If MPAMF_IDR.HAS_PARTID_NRW =0, this field is RAZ/WI.

If MPAMF_IDR.HAS_PARTID_NRW = 1:

INTERNAL Meaning
0b0 PARTID_SEL is interpreted as a request PARTID and

ignored except for use with MPAMCFG_INTPARTID
register access.

0b1 PARTID_SEL is interpreted as an internal PARTID and
used for access to MPAMCFG control settings except for
MPAMCFG_INTPARTID.

If PARTID narrowing is implemented as indicated by MPAMF_IDR.HAS_PARTID_NRW = 1, when accessing other
MPAMCFG registers the value of the MPAMCFG_PART_SEL.INTERNAL bit is checked for these conditions:

• When the MPAMCFG_INTPARTID register is read or written, if the value of
MPAMCFG_PART_SEL.INTERNAL is not 0, an Unexpected_INTERNAL error is set in MPAMF_ESR.

• When an MPAMCFG register other than MPAMCFG_INTPARTID is read or written, if the value of
MPAMCFG_PART_SEL.INTERNAL is not 1, MPAMF_ESR is set to indicate an intPARTID_Range error.

In either error case listed here, the value returned by a read operation is UNPREDICTABLE, and the control settings are
not affected by a write.

PARTID_SEL, bits [15:0]

Selects the partition ID to configure.

Reads and writes to other MPAMCFG registers are indexed by PARTID_SEL and by the NS bit used to access
MPAMCFG_PART_SEL to access the configuration for a single partition.

Accessing the MPAMCFG_PART_SEL
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMCFG_PART_SEL_s must be accessible from the Secure MPAM feature page. MPAMCFG_PART_SEL_ns must be
accessible from the Non-secure MPAM feature page.

MPAMCFG_PART_SEL_s and MPAMCFG_PART_SEL_ns must be separate registers. The Secure instance
(MPAMCFG_PART_SEL_s) accesses the PARTID selector used for Secure PARTIDs, and the Non-secure instance
(MPAMCFG_PART_SEL_ns) accesses the PARTID selector used for Non-secure PARTIDs.

MPAMCFG_PART_SEL can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0100 MPAMCFG_PART_SEL_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0100 MPAMCFG_PART_SEL_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMCFG_PART_SEL, MPAM Partition Configuration Selection Register

Page 3864

MPAMCFG_PRI, MPAM Priority Partition Configuration
Register

The MPAMCFG_PRI characteristics are:

Purpose
Controls the internal and downstream priority of requests attributed to the PARTID selected by MPAMCFG_PART_SEL.
MPAMCFG_PRI_s controls the priorities for the Secure PARTID selected by the Secure instance of
MPAMCFG_PART_SEL. MPAMCFG_PRI_ns controls the priorities for the Non-secure PARTID selected by the Non-
secure instance of MPAMCFG_PART_SEL.

Configuration
The power domain of MPAMCFG_PRI is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_PRI_PART == 1. Otherwise, direct accesses to MPAMCFG_PRI
are RES0.

Attributes
MPAMCFG_PRI is a 32-bit register.

Field descriptions
The MPAMCFG_PRI bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DSPRI INTPRI

DSPRI, bits [31:16]

Downstream priority.

If MPAMF_PRI_IDR.HAS_DSPRI == 0, bits of this field are RES0 as this field is not used.

If MPAMF_PRI_IDR.HAS_DSPRI == 1, this field is a priority value applied to downstream communications from this
MSC for transactions of the partition selected by MPAMCFG_PART_SEL.

The implemented width of this field is MPAMF_PRI_IDR.DSPRI_WD bits. If the implemented width is less than the
width of this field, the least significant bits are used.

The encoding of priority is 0-as-lowest or 0-as-highest priority according to the value of
MPAMF_PRI_IDR.DSPRI_0_IS_LOW.

INTPRI, bits [15:0]

Internal priority.

If MPAMF_PRI_IDR.HAS_INTPRI == 0, bits of this field are RES0 as this field is not used.

If MPAMF_PRI_IDR.HAS_INTPRI == 1, this field is a priority value applied internally inside this MSC for transactions
of the partition selected by Mext-PAMCFG_PART_SEL.

The implemented width of this field is MPAMF_PRI_IDR.INTPRI_WD bits. If the implemented width is less than the
width of this field, the least significant bits are used.

The encoding of priority is 0-as-lowest or 0-as-highest priority according to the value of
MPAMF_PRI_IDR.INTPRI_0_IS_LOW.

MPAMCFG_PRI, MPAM Priority Partition Configuration Register

Page 3865

Accessing the MPAMCFG_PRI
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMCFG_PRI_s must be accessible from the Secure MPAM feature page. MPAMCFG_PRI_ns must be accessible from
the Non-secure MPAM feature page.

MPAMCFG_PRI_s and MPAMCFG_PRI_ns must be separate registers. The Secure instance (MPAMCFG_PRI_s)
accesses the priority partitioning used for Secure PARTIDs, and the Non-secure instance (MPAMCFG_PRI_ns) accesses
the priority partitioning used for Non-secure PARTIDs.

MPAMCFG_PRI can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0400 MPAMCFG_PRI_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0400 MPAMCFG_PRI_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMCFG_PRI, MPAM Priority Partition Configuration Register

Page 3866

MPAMF_AIDR, MPAM Architecture Identification
Register

The MPAMF_AIDR characteristics are:

Purpose
Identifies the version of the MPAM architecture that this MSC implements.

Note: The following values are defined for bits [7:0]:

• 0x01 == MPAM architecture v0.1

• 0x10 == MPAM architecture v1.0

• 0x11 == MPAM architecture v1.1

Configuration
The power domain of MPAMF_AIDR is IMPLEMENTATION DEFINED.

Attributes
MPAMF_AIDR is a 32-bit register.

Field descriptions
The MPAMF_AIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ArchMajorRevArchMinorRev

Bits [31:8]

Reserved, RES0.

ArchMajorRev, bits [7:4]

Major revision of the MPAM architecture implemented by the MSC.

This table shows the only valid combinations of MPAM version numbers in an MSC. FORCE_NS functionality is only
available in MPAM v0.1.

ArchMajorRev ArchMinorRev MPAMv Available
0 0 None.
0 1 v0.1 MPAMv1.0 + MPAMv1.1

+ FORCE_NS
1 0 v1.0 MPAMv1.0
1 1 v1.1 MPAMv1.0 + MPAMv1.1

- FORCE_NS

ArchMinorRev, bits [3:0]

Minor revision of the MPAM architecture implemented by the MSC.

See the table in the description of the ArchMajorRev field in this register.

MPAMF_AIDR, MPAM Architecture Identification Register

Page 3867

Accessing the MPAMF_AIDR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_AIDR is read-only.

MPAMF_AIDR must be readable from the Non-secure and Secure MPAM feature pages.

MPAMF_AIDR must have the same contents in the Secure and Non-secure MPAM feature pages.

MPAMF_AIDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0020 MPAMF_AIDR

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0020 MPAMF_AIDR

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMF_AIDR, MPAM Architecture Identification Register

Page 3868

MPAMF_CCAP_IDR, MPAM Features Cache Capacity
Partitioning ID register

The MPAMF_CCAP_IDR characteristics are:

Purpose
Indicates the number of fractional bits in MPAMCFG_CMAX for this MSC. MPAMF_CCAP_IDR_s indicates the number
of fractional bits in the Secure instance of MPAMCFG_CMAX. MPAMF_CCAP_IDR_ns indicates the number of
fractional bits in the Non-secure instance of MPAMCFG_CMAX.

Configuration
The power domain of MPAMF_CCAP_IDR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_CCAP_PART == 1. Otherwise, direct accesses to
MPAMF_CCAP_IDR are RES0.

Attributes
MPAMF_CCAP_IDR is a 32-bit register.

Field descriptions
The MPAMF_CCAP_IDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CMAX_WD

Bits [31:6]

Reserved, RES0.

CMAX_WD, bits [5:0]

Number of fractional bits implemented in the cache capacity partitioning control, MPAMCFG_CMAX.CMAX, of this
device. See MPAMCFG_CMAX.

This field must contain a value from 1 to 16, inclusive.

Accessing the MPAMF_CCAP_IDR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_CCAP_IDR is read-only.

MPAMF_CCAP_IDR must be readable from the Non-secure and Secure MPAM feature pages.

MPAMF_CCAP_IDR is permitted to have the same contents when read from either the Secure and Non-secure MPAM
feature pages unless the register contents is different for Secure and Non-secure versions, when there must be
separate registers in the Secure (MPAMF_CCAP_IDR_s) and Non-secure (MPAMF_CCAP_IDR_ns) MPAM feature
pages.

MPAMF_CCAP_IDR, MPAM Features Cache Capacity Partitioning ID register

Page 3869

MPAMF_CCAP_IDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0038 MPAMF_CCAP_IDR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0038 MPAMF_CCAP_IDR_ns

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMF_CCAP_IDR, MPAM Features Cache Capacity Partitioning ID register

Page 3870

MPAMF_CPOR_IDR, MPAM Features Cache Portion
Partitioning ID register

The MPAMF_CPOR_IDR characteristics are:

Purpose
Indicates the number of bits in MPAMCFG_CPBM for this MSC. MPAMF_CPOR_IDR_s indicates the number of bits in
the Secure instance of MPAMCFG_CPBM. MPAMF_CPOR_IDR_ns indicates the number of bits in the Non-secure
instance of MPAMCFG_CPBM.

Configuration
The power domain of MPAMF_CPOR_IDR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_CPOR_PART == 1. Otherwise, direct accesses to
MPAMF_CPOR_IDR are RES0.

Attributes
MPAMF_CPOR_IDR is a 32-bit register.

Field descriptions
The MPAMF_CPOR_IDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CPBM_WD

Bits [31:16]

Reserved, RES0.

CPBM_WD, bits [15:0]

Number of bits in the cache portion partitioning bit map of this device. See MPAMCFG_CPBM.

This field must contain a value from 1 to 32768, inclusive. Values greater than 32 require a group of 32-bit registers to
access the CPBM, up to 1024 if CPBM_WD is the largest value.

Accessing the MPAMF_CPOR_IDR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_CPOR_IDR is read-only.

MPAMF_CPOR_IDR must be readable from the Non-secure and Secure MPAM feature pages.

MPAMF_CPOR_IDR is permitted to have the same contents when read from either the Secure and Non-secure MPAM
feature pages unless the register contents is different for Secure and Non-secure versions, when there must be
separate registers in the Secure (MPAMF_CPOR_IDR_s) and Non-secure (MPAMF_CPOR_IDR_ns) MPAM feature
pages.

MPAMF_CPOR_IDR, MPAM Features Cache Portion Partitioning ID register

Page 3871

MPAMF_CPOR_IDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0030 MPAMF_CPOR_IDR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0030 MPAMF_CPOR_IDR_ns

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMF_CPOR_IDR, MPAM Features Cache Portion Partitioning ID register

Page 3872

MPAMF_CSUMON_IDR, MPAM Features Cache Storage
Usage Monitoring ID register

The MPAMF_CSUMON_IDR characteristics are:

Purpose
Indicates the number of cache storage usage monitors for this MSC. MPAMF_CSUMON_IDR_s indicates the number of
Secure cache storage usage monitors. MPAMF_CSUMON_IDR_ns indicates the number of Non-secure cache storage
usage monitors.

Configuration
The power domain of MPAMF_CSUMON_IDR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MSMON == 1 and MPAMF_MSMON_IDR.MSMON_CSU == 1.
Otherwise, direct accesses to MPAMF_CSUMON_IDR are RES0.

Attributes
MPAMF_CSUMON_IDR is a 32-bit register.

Field descriptions
The MPAMF_CSUMON_IDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HAS_CAPTURE RES0 NUM_MON

HAS_CAPTURE, bit [31]

The implementation of this MSC supports copying an MSMON_CSU to the corresponding MSMON_CSU_CAPTURE on
a capture event.

HAS_CAPTURE Meaning
0b0 MSMON_CSU_CAPTURE is not implemented and

there is no support for capture events in the CSU
monitor.

0b1 The MSMON_CSU_CAPTURE register is implemented
and the CSU monitor supports the capture event
behavior.

Bits [30:16]

Reserved, RES0.

NUM_MON, bits [15:0]

The number of cache storage usage monitors implemented in this MSC.

Accessing the MPAMF_CSUMON_IDR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_CSUMON_IDR is read-only.

MPAMF_CSUMON_IDR, MPAM Features Cache Storage Usage Monitoring ID register

Page 3873

MPAMF_CSUMON_IDR must be readable from the Non-secure and Secure MPAM feature pages.

MPAMF_CSUMON_IDR is permitted to have the same contents when read from either the Secure and Non-secure
MPAM feature pages unless the register contents is different for Secure and Non-secure versions, when there must be
separate registers in the Secure (MPAMF_CSUMON_IDR_s) and Non-secure (MPAMF_CSUMON_IDR_ns) MPAM
feature pages.

MPAMF_CSUMON_IDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0088 MPAMF_CSUMON_IDR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0088 MPAMF_CSUMON_IDR_ns

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMF_CSUMON_IDR, MPAM Features Cache Storage Usage Monitoring ID register

Page 3874

MPAMF_ECR, MPAM Error Control Register
The MPAMF_ECR characteristics are:

Purpose
MPAMF_ECR is a 32-bit read-write register that controls MPAM error interrupts for this MSC. MPAMF_ECR_s controls
Secure MPAM error handling. MPAMF_ECR_ns controls Non-secure MPAM error handling.

Configuration
The power domain of MPAMF_ECR is IMPLEMENTATION DEFINED.

If a MSC cannot encounter any of the error conditions listed in section 15.1, both the MPAMF_ESR and MPAMF_ECR
must be RAZ/WI.

Attributes
MPAMF_ECR is a 32-bit register.

Field descriptions
The MPAMF_ECR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTEN

Bits [31:1]

Reserved, RES0.

INTEN, bit [0]

Interrupt Enable.

INTEN Meaning
0b0 MPAM error interrupts are not generated.
0b1 MPAM error interrupts are generated.

Accessing the MPAMF_ECR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_ECR_s must be accessible from the Secure MPAM feature page. MPAMF_ECR_ns must be accessible from the
Non-secure MPAM feature page.

MPAMF_ECR_s and MPAMF_ECR_ns must be separate registers. The Secure instance (MPAMF_ECR_s) accesses the
error interrupt controls used for Secure PARTIDs, and the Non-secure instance (MPAMF_ECR_ns) accesses the error
interrupt controls used for Non-secure PARTIDs.

MPAMF_ECR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x00F0 MPAMF_ECR_s

MPAMF_ECR, MPAM Error Control Register

Page 3875

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x00F0 MPAMF_ECR_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMF_ECR, MPAM Error Control Register

Page 3876

MPAMF_ESR, MPAM Error Status Register
The MPAMF_ESR characteristics are:

Purpose
Indicates MPAM error status for this MSC. MPAMF_ESR_s reports Secure MPAM errors. MPAMF_ESR_ns reports Non-
secure MPAM errors.

Software should write this register after reading the status of an error to reset ERRCODE to 0x0000 and OVRWR to 0
so that future errors are not reported with OVRWR set.

Configuration
The power domain of MPAMF_ESR is IMPLEMENTATION DEFINED.

If a MSC cannot encounter any of the error conditions listed in Chapter 12 Errors in MSCs, both the MPAMF_ESR and
MPAMF_ECR must be RAZ/WI.

Attributes
MAMPF_ESR is 64-bit register when ARMv8.6-MPAM is implemented and MPAMF_IDR.HAS_EXTD_ESR == 1.

Otherwise, MAMPF_ESR is a 32-bit register.

Field descriptions
The MPAMF_ESR bit assignments are:

When ARMv8.6-MPAM is implemented and MPAMF_IDR.HAS_EXTD_ESR == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 RIS

OVRWR RES0 ERRCODE PMG PARTID_MON
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:36]

Reserved, RES0.

RIS, bits [35:32]

When MPAMF_IDR.HAS_RIS == 1:

Resource Instance Selector. Where applicable to the ERRCODE, captures the RIS value for the error.

Otherwise:

Reserved, RES0.

OVRWR, bit [31]

Overwritten.

If 0 and ERRCODE == 0b0000, no errors have occurred.

MPAMF_ESR, MPAM Error Status Register

Page 3877

If 0 and ERRCODE is non-zero, a single error has occurred and is recorded in this register.

If 1 and ERRCODE is non-zero, multiple errors have occurred and this register records the most recent error.

The state where this bit is 1 and ERRCODE is zero must not be produced by hardware and is only reached when
software writes this combination into this register.

Bits [30:28]

Reserved, RES0.

ERRCODE, bits [27:24]

Error code.

ERRCODE Meaning
0b0000 No error.
0b0001 PARTID_SEL_Range.
0b0010 Req_PARTID_Range.
0b0011 MSMONCFG_ID_RANGE.
0b0100 Req_PMG_Range.
0b0101 Monitor_Range.
0b0110 intPARTID_Range.
0b0111 Unexpected_INTERNAL.
0b1000 Undefined_RIS_PART_SEL.
0b1001 RIS_No_Control.
0b1010 Undefined_RIS_MON_SEL.
0b1011 RIS_No_Monitor.
0b1100 Reserved.
0b1101 Reserved.
0b1110 Reserved.
0b1111 Reserved.

PMG, bits [23:16]

Program monitoring group.

Set to the PMG on an error that captures PMG. Otherwise, set to 0x00 on an error that does not capture PMG.

PARTID_MON, bits [15:0]

PARTID or monitor.

Set to the PARTID on an error that captures PARTID.

Set to the monitor index on an error that captures MON.

On an error that captures neither PARTID nor MON, this field is set to 0.

Otherwise:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OVRWR RES0 ERRCODE PMG PARTID_MON

OVRWR, bit [31]

Overwritten.

If 0 and ERRCODE == 0b0000, no errors have occurred.

If 0 and ERRCODE is non-zero, a single error has occurred and is recorded in this register.

If 1 and ERRCODE is non-zero, multiple errors have occurred and this register records the most recent error.

MPAMF_ESR, MPAM Error Status Register

Page 3878

The state where this bit is 1 and ERRCODE is 0 must not be produced by hardware and is only reached when software
writes this combination into this register.

Bits [30:28]

Reserved, RES0.

ERRCODE, bits [27:24]

Error code.

ERRCODE Meaning
0b0000 No error.
0b0001 PARTID_SEL_Range.
0b0010 Req_PARTID_Range.
0b0011 MSMONCFG_ID_RANGE.
0b0100 Req_PMG_Range.
0b0101 Monitor_Range.
0b0110 intPARTID_Range.
0b0111 Unexpected_INTERNAL.
0b1000 Reserved.
0b1001 Reserved.
0b1010 Reserved.
0b1011 Reserved.
0b1100 Reserved.
0b1101 Reserved.
0b1110 Reserved.
0b1111 Reserved.

PMG, bits [23:16]

Program monitoring group.

Set to the PMG on an error that captures PMG. Otherwise, set to 0x00 on an error that does not capture PMG.

PARTID_MON, bits [15:0]

PARTID or monitor.

Set to the PARTID on an error that captures PARTID.

Set to the monitor index on an error that captures MON.

On an error that captures neither PARTID nor MON, this field is set to 0x0000.

Accessing the MPAMF_ESR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_ESR_s must be accessible from the Secure MPAM feature page. MPAMF_ESR_ns must be accessible from the
Non-secure MPAM feature page.

MPAMF_ESR_s and MPAMF_ESR_ns must be separate registers. The Secure instance (MPAMF_ESR_s) accesses the
error status used for Secure PARTIDs, and the Non-secure instance (MPAMF_ESR_ns) accesses the error status used
for Non-secure PARTIDs.

MPAMF_ESR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x00F8 MPAMF_ESR_s

Accesses on this interface are RW.

MPAMF_ESR, MPAM Error Status Register

Page 3879

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x00F8 MPAMF_ESR_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMF_ESR, MPAM Error Status Register

Page 3880

MPAMF_IDR, MPAM Features Identification Register
The MPAMF_IDR characteristics are:

Purpose
Indicates which memory partitioning and monitoring features are present on this MSC. MPAMF_IDR_s indicates the
MPAM features accessed from the Secure MPAM feature page. MPAMF_IDR_ns indicates the MPAM features accessed
from the Non-secure MPAM feature page.

Configuration
The power domain of MPAMF_IDR is IMPLEMENTATION DEFINED.

Attributes
MAMPF_IDR is 64-bit register when ARMv8.6-MPAM is implemented.

Otherwise, MAMPF_IDR is a 32-bit register.

Field descriptions
The MPAMF_IDR bit assignments are:

When ARMv8.6-MPAM is implemented:

63 62 61 60 59 58 57 56 55545352515049484746454443424140 39 38 37 36 353433 32
RES0 RIS_MAX RES0 HAS_ESRHAS_EXTD_ESRNO_IMPL_MSMONNO_IMPL_PART RES0 HAS_RIS

HAS_PARTID_NRWHAS_MSMONHAS_IMPL_IDREXTHAS_PRI_PARTHAS_MBW_PARTHAS_CPOR_PARTHAS_CCAP_PART PMG_MAX PARTID_MAX
31 30 29 28 27 26 25 24 2322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Bits [63:60]

Reserved, RES0.

RIS_MAX, bits [59:56]

When MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_RIS == 1:

Maximum RIS value supported in MPAMCFG_PART_SEL. Must be 0b0000 if MPAMF_IDR.HAS_RIS == 0.

Otherwise:

Reserved, RES0.

Bits [55:40]

Reserved, RES0.

HAS_ESR, bit [39]

When MPAMF_IDR.EXT == 1:

MPAMF_ESR is implemented.

MPAMF_IDR, MPAM Features Identification Register

Page 3881

HAS_ESR Meaning
0b0 MPAMF_ESR, MPAM_ECR and MPAM error handling are

not implemented.
0b1 MPAMF_ESR, MPAM_ECR and MPAM error handling are

implemented.

Otherwise:

Reserved, RES0.

HAS_EXTD_ESR, bit [38]

When MPAMF_IDR.EXT == 1:

MPAMF_ESR is 64 bits.

HAS_EXTD_ESR Meaning
0b0 MPAMF_ESR is 32 bits.
0b1 MPAMF_ESR is 64 bits.

Otherwise:

Reserved, RES0.

NO_IMPL_MSMON, bit [37]

When MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_IMPL_IDR == 1:

MPAMF_IMPL_IDR defines no IMPLEMENTATION DEFINED resource monitors.

NO_IMPL_MSMON Meaning
0b0 MPAMF_IMPL_IDR defines at least one

IMPLEMENTATION DEFINED resource monitor.
0b1 MPAMF_IMPL_IDR does not define any

IMPLEMENTATION DEFINED resource monitors.

Otherwise:

Reserved, RES0.

NO_IMPL_PART, bit [36]

When MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_IMPL_IDR == 1:

MPAMF_IMPL_IDR defines no IMPLEMENTATION DEFINED resource controls.

NO_IMPL_PART Meaning
0b0 MPAMF_IMPL_IDR defines at least one

IMPLEMENTATION DEFINED resource control.
0b1 MPAMF_IMPL_IDR does not define any

IMPLEMENTATION DEFINED resource controls.

Otherwise:

Reserved, RES0.

Bits [35:33]

Reserved, RES0.

MPAMF_IDR, MPAM Features Identification Register

Page 3882

ext-mpam_ecr.html
ext-mpam_ecr.html

HAS_RIS, bit [32]

When MPAMF_IDR.EXT == 1:

Has resource instance selector. Indicates that MPAMCFG_PART_SEL contains the RIS field that selects a resource
instance to control.

HAS_RIS Meaning
0b0 MPAMCFG_PART_SEL does not implement the

MPAMFCFG_PART_SEL.RIS field or multiple resource
instance suport.

0b1 MPAMCFG_PART_SEL implements the
MPAMFCFG_PART_SEL.RIS field and MPAM resource
instance numbers up to and including
MPAMF_IDR.RIS_MAX.

Otherwise:

Reserved, RES0.

HAS_PARTID_NRW, bit [31]

Has PARTID narrowing.

HAS_PARTID_NRW Meaning
0b0 Does not have MPAMF_PARTID_NRW_IDR,

MPAMCFG_INTPARTID or intPARTID mapping
support.

0b1 Supports the MPAMF_PARTID_NRW_IDR,
MPAMCFG_INTPARTID registers.

HAS_MSMON, bit [30]

Has resource monitors. Indicates whether this MSC has MPAM resource monitors.

HAS_MSMON Meaning
0b0 Does not support MPAM resource monitoring by groups

or MPAMF_MSMON_IDR.
0b1 Supports resource monitoring by matching a

combination of PARTID and PMG. See
MPAMF_MSMON_IDR.

HAS_IMPL_IDR, bit [29]

Has MPAMF_IMPL_IDR. Indicates whether this MSC has the implementation-specific MPAM features register,
MPAMF_IMPL_IDR.

HAS_IMPL_IDR Meaning
0b0 Does not have MPAMF_IMPL_IDR.
0b1 Has MPAMF_IMPL_IDR.

EXT, bit [28]

From Armv8.6:

Extended MPAMF_IDR.

EXT Meaning
0b0 MPAMF_IDR has no defined bits in [63:32]. The register is

effectively 32 bits.
0b1 MPAMF_IDR has bits defined in [63:32]. The register is 64-bits.

MPAMF_IDR, MPAM Features Identification Register

Page 3883

ext-mpamfcfg_part_sel.html
ext-mpamfcfg_part_sel.html

Otherwise:

Reserved, RES0.

HAS_PRI_PART, bit [27]

Has priority partitioning. Indicates whether this MSC implements MPAM priority partitioning and MPAMF_PRI_IDR.

HAS_PRI_PART Meaning
0b0 Does not support priority partitioning or have

MPAMF_PRI_IDR.
0b1 Has MPAMF_PRI_IDR.

HAS_MBW_PART, bit [26]

Has memory bandwidth partitioning. Indicates whether this MSC implements MPAM memory bandwidth partitioning
and MPAMF_MBW_IDR.

HAS_MBW_PART Meaning
0b0 Does not support memory bandwidth partitioning or

have MPAMF_MBW_IDR register.
0b1 Has MPAMF_MBW_IDR register.

HAS_CPOR_PART, bit [25]

Has cache portion partitioning. Indicates whether this MSC implements MPAM cache portion partitioning and
MPAMF_CPOR_IDR.

HAS_CPOR_PART Meaning
0b0 Does not support cache portion partitioning or have

MPAMF_CPOR_IDR or MPAMCFG_CPBM registers.
0b1 Has MPAMF_CPOR_IDR and MPAMCFG_CPBM

registers.

HAS_CCAP_PART, bit [24]

Has cache capacity partitioning. Indicates whether this MSC implements MPAM cache capacity partitioning and the
MPAMF_CCAP_IDR and MPAMCFG_CMAX registers.

HAS_CCAP_PART Meaning
0b0 Does not support cache capacity partitioning or

have MPAMF_CCAP_IDR and MPAMCFG_CMAX
registers.

0b1 Has MPAMF_CCAP_IDR and MPAMCFG_CMAX
registers.

PMG_MAX, bits [23:16]

Maximum value of Non-secure PMG supported by this component.

PARTID_MAX, bits [15:0]

Maximum value of Non-secure PARTID supported by this component.

Otherwise:

31 30 29 28 27 26 25 24 23222120191817161514131211109876543210
HAS_PARTID_NRWHAS_MSMONHAS_IMPL_IDREXTHAS_PRI_PARTHAS_MBW_PARTHAS_CPOR_PARTHAS_CCAP_PART PMG_MAX PARTID_MAX

MPAMF_IDR, MPAM Features Identification Register

Page 3884

HAS_PARTID_NRW, bit [31]

Has PARTID narrowing.

HAS_PARTID_NRW Meaning
0b0 Does not have MPAMF_PARTID_NRW_IDR,

MPAMCFG_INTPARTID or intPARTID mapping
support.

0b1 Supports the MPAMF_PARTID_NRW_IDR,
MPAMCFG_INTPARTID registers.

HAS_MSMON, bit [30]

Has resource monitors. Indicates whether this MSC has MPAM resource monitors.

HAS_MSMON Meaning
0b0 Does not support MPAM resource monitoring by groups

or MPAMF_MSMON_IDR.
0b1 Supports resource monitoring by matching a

combination of PARTID and PMG. See
MPAMF_MSMON_IDR.

HAS_IMPL_IDR, bit [29]

Has MPAMF_IMPL_IDR. Indicates whether this MSC has the implementation-specific MPAM features register,
MPAMF_IMPL_IDR.

HAS_IMPL_IDR Meaning
0b0 Does not have MPAMF_IMPL_IDR.
0b1 Has MPAMF_IMPL_IDR.

EXT, bit [28]

From Armv8.6:

Extended MPAMF_IDR.

EXT Meaning
0b0 MPAMF_IDR has no defined bits in [63:32]. The register is

effectively 32 bits.
0b1 MPAMF_IDR has bits defined in [63:32]. The register is 64-bits.

Otherwise:

Reserved, RES0.

HAS_PRI_PART, bit [27]

Has priority partitioning. Indicates whether this MSC implements MPAM priority partitioning and MPAMF_PRI_IDR.

HAS_PRI_PART Meaning
0b0 Does not support priority partitioning or have

MPAMF_PRI_IDR.
0b1 Has MPAMF_PRI_IDR.

HAS_MBW_PART, bit [26]

Has memory bandwidth partitioning. Indicates whether this MSC implements MPAM memory bandwidth partitioning
and MPAMF_MBW_IDR.

MPAMF_IDR, MPAM Features Identification Register

Page 3885

HAS_MBW_PART Meaning
0b0 Does not support memory bandwidth partitioning or

have MPAMF_MBW_IDR register.
0b1 Has MPAMF_MBW_IDR register.

HAS_CPOR_PART, bit [25]

Has cache portion partitioning. Indicates whether this MSC implements MPAM cache portion partitioning and
MPAMF_CPOR_IDR.

HAS_CPOR_PART Meaning
0b0 Does not support cache portion partitioning or have

MPAMF_CPOR_IDR or MPAMCFG_CPBM registers.
0b1 Has MPAMF_CPOR_IDR and MPAMCFG_CPBM

registers.

HAS_CCAP_PART, bit [24]

Has cache capacity partitioning. Indicates whether this MSC implements MPAM cache capacity partitioning and the
MPAMF_CCAP_IDR and MPAMCFG_CMAX registers.

HAS_CCAP_PART Meaning
0b0 Does not support cache capacity partitioning or

have MPAMF_CCAP_IDR and MPAMCFG_CMAX
registers.

0b1 Has MPAMF_CCAP_IDR and MPAMCFG_CMAX
registers.

PMG_MAX, bits [23:16]

Maximum value of Non-secure PMG supported by this component.

PARTID_MAX, bits [15:0]

Maximum value of Non-secure PARTID supported by this component.

Accessing the MPAMF_IDR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_IDR is read-only.

MPAMF_IDR must be readable from the Non-secure and Secure MPAM feature pages.

MPAMF_IDR is permitted to have the same contents when read from either the Secure and Non-secure MPAM feature
pages unless the register contents is different for Secure and Non-secure versions, when there must be separate
registers in the Secure (MPAMF_IDR_s) and Non-secure (MPAMF_IDR_ns) MPAM feature pages.

MPAMF_IDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0000 MPAMF_IDR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0000 MPAMF_IDR_ns

Accesses on this interface are RO.

MPAMF_IDR, MPAM Features Identification Register

Page 3886

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMF_IDR, MPAM Features Identification Register

Page 3887

MPAMF_IIDR, MPAM Implementation Identification
Register

The MPAMF_IIDR characteristics are:

Purpose
Uniquely identifies the MSC implementation by the combination of implementer, product ID, variant and revision.

Configuration
The power domain of MPAMF_IIDR is IMPLEMENTATION DEFINED.

Attributes
MPAMF_IIDR is a 32-bit register.

Field descriptions
The MPAMF_IIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ProductID Variant Revision Implementer

ProductID, bits [31:20]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED value identifying the MPAM MSC.

The MSC implementer as identified in the MPAMF_IIDR.Implementer field must assure each product has a unique
ProductID from any other with the same Implementer value.

Variant, bits [19:16]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED value used to distinguish product variants, or major revisions of the product.

Note

Implementations of ProductID with differing software interfaces are expected
to have different values in the MPAMF_IIDR.Variant field.

Revision, bits [15:12]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED value used to distinguish minor revisions of the product.

Note

This field is intended to differentiate product revisions that are minor changes
and are largely software compatible with previous revisions.

MPAMF_IIDR, MPAM Implementation Identification Register

Page 3888

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the MPAM MSC.

[11:8] must contain the JEP106 continuation code of the implementer.

[7] must always be 0.

[6:0] must contain the JEP106 identity code of the implementer.

For an Arm implementation, bits[11:0] are 0x43B.

Accessing the MPAMF_IIDR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_IIDR is read-only.

MPAMF_IIDR must be readable from the Non-secure and Secure MPAM feature pages.

MPAMF_IIDR must have the same contents in the Secure and Non-secure MPAM feature pages.

MPAMF_IIDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0018 MPAMF_IIDR

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0018 MPAMF_IIDR

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMF_IIDR, MPAM Implementation Identification Register

Page 3889

MPAMF_IMPL_IDR, MPAM Implementation-Specific
Partitioning Feature Identification Register

The MPAMF_IMPL_IDR characteristics are:

Purpose
Indicates the implementation-defined partitioning and monitoring features and parameters of the MSC.
MPAMF_IMPL_IDR_s indicates implementation-defined partitioning and monitoring features accessed from the Secure
MPAM feature page. MPAMF_IMPL_IDR_ns indicates those accessed from the Non-secure MPAM feature page.

Configuration
The power domain of MPAMF_IMPL_IDR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_IMPL_IDR == 1. Otherwise, direct accesses to
MPAMF_IMPL_IDR are RES0.

Attributes
MPAMF_IMPL_IDR is a 32-bit register.

Field descriptions
The MPAMF_IMPL_IDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

All 32 bits of this register are available to be used as the implementer sees fit to indicate the presence of
implementation-defined MPAM features in this MSC and to give additional implementation-specific read-only
information about the parameters of implementation-specific MPAM features to software.

Accessing the MPAMF_IMPL_IDR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_IMPL_IDR is read-only.

MPAMF_IMPL_IDR must be readable from the Non-secure and Secure MPAM feature pages.

MPAMF_IMPL_IDR is permitted to have the same contents when read from either the Secure and Non-secure MPAM
feature pages unless the register contents is different for Secure and Non-secure versions, when there must be
separate registers in the Secure (MPAMF_IMPL_IDR_s) and Non-secure (MPAMF_IMPL_IDR_ns) MPAM feature pages.

MPAMF_IMPL_IDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0028 MPAMF_IMPL_IDR_s

Accesses on this interface are RO.

MPAMF_IMPL_IDR, MPAM Implementation-Specific Partitioning Feature Identification Register

Page 3890

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0028 MPAMF_IMPL_IDR_ns

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMF_IMPL_IDR, MPAM Implementation-Specific Partitioning Feature Identification Register

Page 3891

MPAMF_MBW_IDR, MPAM Memory Bandwidth
Partitioning Identification Register

The MPAMF_MBW_IDR characteristics are:

Purpose
Indicates which MPAM bandwidth partitioning features are present on this MSC. MPAMF_MBW_IDR_s indicates
bandwidth partitioning features accessed from the Secure MPAM feature page. MPAMF_MBW_IDR_ns indicates
bandwidth partitioning features accessed from the Non-secure MPAM feature page.

Configuration
The power domain of MPAMF_MBW_IDR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MBW_PART == 1. Otherwise, direct accesses to
MPAMF_MBW_IDR are RES0.

Attributes
MPAMF_MBW_IDR is a 32-bit register.

Field descriptions
The MPAMF_MBW_IDR bit assignments are:

31302928272625242322212019181716 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BWPBM_WD RES0WINDWRHAS_PROPHAS_PBMHAS_MAXHAS_MIN RES0 BWA_WD

Bits [31:29]

Reserved, RES0.

BWPBM_WD, bits [28:16]

Bandwidth portion bitmap width.

The number of bandwidth portion bits in MPAMCFG_MBW_PBM.BWPBM.

This field must contain a value from 1 to 4096, inclusive. Values greater than 32 require a group of 32-bit registers to
access the BWPBM, up to 128 if BWPBM_WD is the largest value.

Bit [15]

Reserved, RES0.

WINDWR, bit [14]

Indicates the bandwidth accounting period register is writable.

MPAMF_MBW_IDR, MPAM Memory Bandwidth Partitioning Identification Register

Page 3892

WINDWR Meaning
0b0 The bandwidth accounting period is readable from

MPAMCFG_MBW_WINWD which might be fixed or vary due
to clock rate reconfiguration of the memory channel or
memory controller.

0b1 The bandwidth accounting width is readable and writable
per partition in MPAMCFG_MBW_WINWD.

HAS_PROP, bit [13]

Indicates that this MSC implements proportional stride bandwidth partitioning and the MPAMCFG_MBW_PROP
register.

HAS_PROP Meaning
0b0 There is no memory bandwidth proportional stride control

and no MPAMCFG_MBW_PROP register.
0b1 The MPAMCFG_MBW_PROP register exists and the

proportional stride memory bandwidth allocation scheme
is supported.

HAS_PBM, bit [12]

Indicates that this MSC implements bandwidth portion partitioning and the MPAMCFG_MBW_PBM register.

HAS_PBM Meaning
0b0 There is no memory bandwidth portion control and no

MPAMCFG_MBW_PBM register.
0b1 The MPAMCFG_MBW_PBM register exists and the memory

bandwidth portion allocation scheme exists.

HAS_MAX, bit [11]

Indicates that this MSC implements maximum bandwidth partitioning and the MPAMCFG_MBW_MAX register.

HAS_MAX Meaning
0b0 There is no maximum memory bandwidth control and no

MPAMCFG_MBW_MAX register.
0b1 The MPAMCFG_MBW_MAX register exists and the

maximum memory bandwidth allocation scheme is
supported.

HAS_MIN, bit [10]

Indicates that this MSC implements minimum bandwidth partitioning.

HAS_MIN Meaning
0b0 There is no minimum memory bandwidth control and no

MPAMCFG_MBW_MIN register.
0b1 The MPAMCFG_MBW_MIN register exists and the minimum

memory bandwidth allocation scheme is supported.

Bits [9:6]

Reserved, RES0.

BWA_WD, bits [5:0]

Number of implemented bits in the bandwidth allocation fields: MIN, MAX and STRIDE. See MPAMCFG_MBW_MIN,
MPAMCFG_MBW_MAX and MPAMCFG_MBW_PROP.

This field must have a value from 1 to 16, inclusive.

MPAMF_MBW_IDR, MPAM Memory Bandwidth Partitioning Identification Register

Page 3893

Accessing the MPAMF_MBW_IDR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_MBW_IDR is read-only.

MPAMF_MBW_IDR must be readable from the Non-secure and Secure MPAM feature pages.

MPAMF_MBW_IDR is permitted to have the same contents when read from either the Secure and Non-secure MPAM
feature pages unless the register contents is different for Secure and Non-secure versions, when there must be
separate registers in the Secure (MPAMF_MBW_IDR_s) and Non-secure (MPAMF_MBW_IDR_ns) MPAM feature pages.

MPAMF_MBW_IDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0040 MPAMF_MBW_IDR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0040 MPAMF_MBW_IDR_ns

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMF_MBW_IDR, MPAM Memory Bandwidth Partitioning Identification Register

Page 3894

MPAMF_MBWUMON_IDR, MPAM Features Memory
Bandwidth Usage Monitoring ID register

The MPAMF_MBWUMON_IDR characteristics are:

Purpose
Indicates the number of memory bandwidth usage monitors for this MSC. This register also indicates several
properties of the MBWU monitors, including whether they support capture, scaling or long counters.

MPAMF_MBWUMON_IDR_s indicates the number of Secure memory bandwidth usage monitor instances.
MPAMF_MBWUMON_IDR_ns indicates the number of Non-secure memory bandwidth usage monitor instances.

Configuration
The power domain of MPAMF_MBWUMON_IDR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MSMON == 1 and MPAMF_MSMON_IDR.MSMON_MBWU == 1.
Otherwise, direct accesses to MPAMF_MBWUMON_IDR are RES0.

Attributes
MPAMF_MBWUMON_IDR is a 32-bit register.

Field descriptions
The MPAMF_MBWUMON_IDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HAS_CAPTUREHAS_LONGLWD RES0 SCALE NUM_MON

HAS_CAPTURE, bit [31]

The implementation of this MSC supports copying an MSMON_MBWU to the corresponding
MSMON_MBWU_CAPTURE on a capture event.

HAS_CAPTURE Meaning
0b0 MSMON_MBWU_CAPTURE is not implemented and

there is no support for capture events in the MBWU
monitor.

0b1 The MSMON_MBWU_CAPTURE register is
implemented and the MBWU monitor supports the
capture event behavior.

HAS_LONG, bit [30]

When ARMv8.6-MPAM is implemented:

Indicates whether MSMON_MBWU_L is implemented.

If HAS_CAPTURE == 1, indicates whether MSMON_MBWU_L_CAPTURE is implemented.

HAS_LONG Meaning
0b0 Does not implement MSMON_MBWU_L or

MSMON_MBWU_L_CAPTURE.
0b1 Implements MSMON_MBWU_L. If HAS_CAPTURE == 1,

MSMON_MBWU_L_CAPTURE is also implemented.

MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth Usage Monitoring ID register

Page 3895

Otherwise:

Reserved, RES0.

LWD, bit [29]

When ARMv8.6-MPAM is implemented:

Long register VALUE width.

If MPAMF_MBWUMON_IDR.HAS_LONG == 0, MPAMF_MBWUMON_IDR.LWD must also be 0.

LWD Meaning
0b0 If MPAMF_MBWUMON_IDR.HAS_LONG == 1,

MSMON_MBWU_L has 44-bit VALUE field in bits [43:0]. Bits
[62:44] are RES0. If HAS_LONG == 1 and
MSMON_MBWU_IDR.HAS_CAPTURE == 1,
MSMON_MBWU_L_CAPTURE also has 44-bit VALUE field in bits
[43:0].

0b1 MSMON_MBWU_L has 63-bit VALUE field in bits [62:0]. If
MPAMF_MBWUMON_IDR.HAS_CAPTURE == 1,
MSMON_MBWU_L_CAPTURE also has 63-bit VALUE field in bits
[62:0].

Otherwise:

Reserved, RES0.

Bits [28:21]

Reserved, RES0.

SCALE, bits [20:16]

Scaling of MSMON_MBWU.VALUE in bits. If scaling is enabled by MSMON_CFG_MBWU_CTL.SCLEN, the byte count
in the VALUE field has been shifted by SCALE bits to the right.

SCALE Meaning
0b00000 Scaling is not implemented.
0bxxxxx Other values are right shift count when scaling is enabled.

NUM_MON, bits [15:0]

The number of memory bandwidth usage monitors implemented in this MSC.

Accessing the MPAMF_MBWUMON_IDR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_MBWUMON_IDR is read-only.

MPAMF_MBWUMON_IDR must be readable from the Non-secure and Secure MPAM feature pages.

MPAMF_MBWUMON_IDR is permitted to have the same contents when read from either the Secure and Non-secure
MPAM feature pages unless the register contents is different for Secure and Non-secure versions, when there must be
separate registers in the Secure (MPAMF_MBWUMON_IDR_s) and Non-secure (MPAMF_MBWUMON_IDR_ns) MPAM
feature pages.

MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth Usage Monitoring ID register

Page 3896

ext-msmon_mbwu_idr.html

MPAMF_MBWUMON_IDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0090 MPAMF_MBWUMON_IDR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0090 MPAMF_MBWUMON_IDR_ns

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth Usage Monitoring ID register

Page 3897

MPAMF_MSMON_IDR, MPAM Resource Monitoring
Identification Register

The MPAMF_MSMON_IDR characteristics are:

Purpose
Indicates which MPAM monitoring features are present on this MSC. MPAMF_MSMON_IDR_s indicates Secure
monitoring features. MPAMF_MSMON_IDR_ns indicates Non-secure monitoring features.

Configuration
The power domain of MPAMF_MSMON_IDR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MSMON == 1. Otherwise, direct accesses to
MPAMF_MSMON_IDR are RES0.

Attributes
MPAMF_MSMON_IDR is a 32-bit register.

Field descriptions
The MPAMF_MSMON_IDR bit assignments are:

31 30292827262524232221201918 17 16 1514131211109876543210
HAS_LOCAL_CAPT_EVNT RES0 MSMON_MBWUMSMON_CSU RES0

HAS_LOCAL_CAPT_EVNT, bit [31]

Has local capture event generator. Indicates whether this MSC has the MPAM local capture event generator and the
MSMON_CAPT_EVNT register.

HAS_LOCAL_CAPT_EVNT Meaning
0b0 Does not support MPAM local capture

event generator or MSMON_CAPT_EVNT.
0b1 Supports the MPAM local capture event

generator and the MSMON_CAPT_EVNT
register.

Bits [30:18]

Reserved, RES0.

MSMON_MBWU, bit [17]

Memory bandwidth usage monitoring. Indicates whether this MSC has MPAM monitoring for Memory Bandwidth
Usage by PARTID and PMG and uses the following bandwidth usage registers:

• MPAMF_MBWUMON_IDR, MSMON_CFG_MBWU_CTL, MSMON_CFG_MBWU_FLT, MSMON_MBWU.
• The optional MSMON_MBWU_CAPTURE.

MSMON_MBWU Meaning
0b0 Does not have monitoring for memory bandwidth

usage and does not use the bandwidth usage
registers.

0b1 Has monitoring of memory bandwidth usage and
uses the bandwidth usage registers.

MPAMF_MSMON_IDR, MPAM Resource Monitoring Identification Register

Page 3898

MSMON_CSU, bit [16]

Cache storage usage monitoring. Indicates whether this MSC has MPAM monitoring of cache storage usage by
PARTID and PMG.

MSMON_CSU Meaning
0b0 Does not have monitoring for cache storage usage or

the MPAMF_CSUMON_IDR, MSMON_CFG_CSU_CTL,
MSMON_CFG_CSU_FLT, MSMON_CSU or
MSMON_CSU_CAPTURE registers.

0b1 Has monitoring of cache storage usage and the
MPAMF_CSUMON_IDR, MSMON_CFG_CSU_CTL,
MSMON_CFG_CSU_FLT, MSMON_CSU and optional
MSMON_CSU_CAPTURE registers.

Bits [15:0]

Reserved, RES0.

Accessing the MPAMF_MSMON_IDR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_MSMON_IDR is read-only.

MPAMF_MSMON_IDR must be readable from the Non-secure and Secure MPAM feature pages.

MPAMF_MSMON_IDR is permitted to have the same contents when read from either the Secure and Non-secure
MPAM feature pages unless the register contents is different for Secure and Non-secure versions, when there must be
separate registers in the Secure (MPAMF_MSMON_IDR_s) and Non-secure (MPAMF_MSMON_IDR_ns) MPAM feature
pages.

MPAMF_MSMON_IDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0080 MPAMF_MSMON_IDR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0080 MPAMF_MSMON_IDR_ns

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMF_MSMON_IDR, MPAM Resource Monitoring Identification Register

Page 3899

MPAMF_PARTID_NRW_IDR, MPAM PARTID Narrowing ID
register

The MPAMF_PARTID_NRW_IDR characteristics are:

Purpose
Indicates the largest internal PARTID for this MSC. MPAMF_PARTID_NRW_IDR_s indicates the largest Secure internal
PARTID. MPAMF_PARTID_NRW_IDR_ns indicates the largest Non-secure internal PARTID.

Configuration
The power domain of MPAMF_PARTID_NRW_IDR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_PARTID_NRW == 1. Otherwise, direct accesses to
MPAMF_PARTID_NRW_IDR are RES0.

Attributes
MPAMF_PARTID_NRW_IDR is a 32-bit register.

Field descriptions
The MPAMF_PARTID_NRW_IDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTPARTID_MAX

Bits [31:16]

Reserved, RES0.

INTPARTID_MAX, bits [15:0]

The largest intPARTID supported in this MSC.

Accessing the MPAMF_PARTID_NRW_IDR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_PARTID_NRW_IDR is read-only.

MPAMF_PARTID_NRW_IDR must be readable from the Non-secure and Secure MPAM feature pages.

MPAMF_PARTID_NRW_IDR is permitted to have the same contents when read from either the Secure and Non-secure
MPAM feature pages unless the register contents is different for Secure and Non-secure versions, when there must be
separate registers in the Secure (MPAMF_PARTID_NRW_IDR_s) and Non-secure (MPAMF_PARTID_NRW_IDR_ns)
MPAM feature pages.

MPAMF_PARTID_NRW_IDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0050 MPAMF_PARTID_NRW_IDR_s

MPAMF_PARTID_NRW_IDR, MPAM PARTID Narrowing ID register

Page 3900

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0050 MPAMF_PARTID_NRW_IDR_ns

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMF_PARTID_NRW_IDR, MPAM PARTID Narrowing ID register

Page 3901

MPAMF_PRI_IDR, MPAM Priority Partitioning
Identification Register

The MPAMF_PRI_IDR characteristics are:

Purpose
Indicates which MPAM priority partitioning features are present on this MSC. MPAMF_PRI_IDR_s indicates priority
partitioning features accessed from the Secure MPAM feature page. MPAMF_PRI_IDR_ns indicates priority
partitioning features accessed from the Non-secure MPAM feature page.

Configuration
The power domain of MPAMF_PRI_IDR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_PRI_PART == 1. Otherwise, direct accesses to MPAMF_PRI_IDR
are RES0.

Attributes
MPAMF_PRI_IDR is a 32-bit register.

Field descriptions
The MPAMF_PRI_IDR bit assignments are:

313029282726252423222120 19 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 0
RES0 DSPRI_WD RES0DSPRI_0_IS_LOWHAS_DSPRI RES0 INTPRI_WDRES0INTPRI_0_IS_LOWHAS_INTPRI

Bits [31:26]

Reserved, RES0.

DSPRI_WD, bits [25:20]

Number of implemented bits in the downstream priority field (DSPRI) of MPAMCFG_PRI.

If HAS_DSPRI == 1, this field must contain a value from 1 to 32, inclusive.

If HAS_DSPRI == 0, this field must be 0.

Bits [19:18]

Reserved, RES0.

DSPRI_0_IS_LOW, bit [17]

Indicates whether 0 in MPAMCFG_PRI.DSPRI is the lowest or the highest priority.

DSPRI_0_IS_LOW Meaning
0b0 In the MPAMCFG_PRI.DSPRI field, a value of 0

means the highest priority.
0b1 In the MPAMCFG_PRI.DSPRI field, a value of 0

means the lowest priority.

MPAMF_PRI_IDR, MPAM Priority Partitioning Identification Register

Page 3902

HAS_DSPRI, bit [16]

Indicates that this MSC implements the DSPRI field in the MPAMCFG_PRI register.

HAS_DSPRI Meaning
0b0 This MSC supports priority partitioning, but does not

implement a downstream priority (DSPRI) field in the
MPAMCFG_PRI register.

0b1 This MSC supports downstream priority partitioning and
implements the downstream priority (DSPRI) field in the
MPAMCFG_PRI register.

Bits [15:10]

Reserved, RES0.

INTPRI_WD, bits [9:4]

Number of implemented bits in the internal priority field (INTPRI) in the MPAMCFG_PRI register.

If HAS_INTPRI == 1, this field must contain a value from 1 to 32, inclusive.

If HAS_INTPRI == 0, this field must be 0.

Bits [3:2]

Reserved, RES0.

INTPRI_0_IS_LOW, bit [1]

Indicates whether 0 in MPAMCFG_PRI.INTPRI is the lowest or the highest priority.

INTPRI_0_IS_LOW Meaning
0b0 In the MPAMCFG_PRI.INTPRI field, a value of 0

means the highest priority.
0b1 In the MPAMCFG_PRI.INTPRI field, a value of 0

means the lowest priority.

HAS_INTPRI, bit [0]

Indicates that this MSC implements the INTPRI field in the MPAMCFG_PRI register.

HAS_INTPRI Meaning
0b0 This MSC supports priority partitioning, but does not

implement the internal priority (INTPRI) field in the
MPAMCFG_PRI register.

0b1 This MSC supports internal priority partitioning and
implements the internal priority (INTPRI) field in the
MPAMCFG_PRI register.

Accessing the MPAMF_PRI_IDR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_PRI_IDR is read-only.

MPAMF_PRI_IDR must be readable from the Non-secure and Secure MPAM feature pages.

MPAMF_PRI_IDR is permitted to have the same contents when read from either the Secure and Non-secure MPAM
feature pages unless the register contents is different for Secure and Non-secure versions, when there must be
separate registers in the Secure (MPAMF_PRI_IDR_s) and Non-secure (MPAMF_PRI_IDR_ns) MPAM feature pages.

MPAMF_PRI_IDR, MPAM Priority Partitioning Identification Register

Page 3903

MPAMF_PRI_IDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0048 MPAMF_PRI_IDR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0048 MPAMF_PRI_IDR_ns

Accesses on this interface are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMF_PRI_IDR, MPAM Priority Partitioning Identification Register

Page 3904

MPAMF_SIDR, MPAM Features Secure Identification
Register

The MPAMF_SIDR characteristics are:

Purpose
The MPAMF_SIDR is a 32-bit read-only register that indicates the maximum Secure PARTID and Secure PMG on this
MSC.

Configuration
The power domain of MPAMF_SIDR is IMPLEMENTATION DEFINED.

Attributes
MPAMF_SIDR is a 32-bit register.

Field descriptions
The MPAMF_SIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 S_PMG_MAX S_PARTID_MAX

Bits [31:24]

Reserved, RES0.

S_PMG_MAX, bits [23:16]

Maximum value of Secure PMG supported by this component.

S_PARTID_MAX, bits [15:0]

Maximum value of Secure PARTID supported by this component.

Accessing the MPAMF_SIDR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_SIDR is read-only.

MPAMF_SIDR must only be readable from the Secure MPAM feature page. If the system or the MSC does not support
the Secure address map, this register must not be accessible.

MPAMF_SIDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0008 MPAMF_SIDR_s

Accesses on this interface are RO.

MPAMF_SIDR, MPAM Features Secure Identification Register

Page 3905

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMF_SIDR, MPAM Features Secure Identification Register

Page 3906

MSMON_CAPT_EVNT, MPAM Capture Event Generation
Register

The MSMON_CAPT_EVNT characteristics are:

Purpose
Generates a local capture event when written with bit[0] as 1. MSMON_CAPT_EVNT_s generates local capture events
for Secure monitors only or for Secure and Non-secure monitors. MSMON_CAPT_EVNT_ns generates local capture
events for Non-secure monitors only.

Configuration
The power domain of MSMON_CAPT_EVNT is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MSMON == 1 and
MPAMF_MSMON_IDR.HAS_LOCAL_CAPT_EVNT == 1. Otherwise, direct accesses to MSMON_CAPT_EVNT are RES0.

Attributes
MSMON_CAPT_EVNT is a 32-bit register.

Field descriptions
The MSMON_CAPT_EVNT bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ALLNOW

Bits [31:2]

Reserved, RES0.

ALL, bit [1]

In the Secure instance of this register, if ALL written as 1 and NOW is also written as 1, signal a capture event to
Secure and Non-secure monitor instances in this MSC that are configured with CAPT_EVNT = 7.

If written as 0 and NOW is written as 1, signal a capture event to Secure monitor instances in this MSC that are
configured with CAPT_EVNT = 7.

In the Non-secure instance of this register, this bit is RAZ/WI.

This bit always reads as zero.

ALL Meaning
0b0 Send capture event to Secure monitors only.
0b1 Send capture event to both Secure and Non-secure monitors.

NOW, bit [0]

When written as 1, this bit causes an event to all monitors in this MSC with CAPT_EVNT set to the value of 7.

When this bit is written as 0, no event is signaled.

This bit always reads as zero.

MSMON_CAPT_EVNT, MPAM Capture Event Generation Register

Page 3907

Accessing the MSMON_CAPT_EVNT
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_CAPT_EVNT_s must be accessible from the Secure MPAM feature page. MSMON_CAPT_EVENT_ns must be
accessible from the Non-secure MPAM feature page.

The two instances of MSMON_CAPT_EVNT must be separate registers. The Secure instance (MSMON_CAPT_EVNT_s)
can generate capture events for both Secure and Non-secure PARTID monitors, and the Non-secure instance
(MSMON_CAPT_EVNT_ns) can generate capture events for Non-secure PARTID monitors only.

MSMON_CAPT_EVNT can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0808 MSMON_CAPT_EVNT_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0808 MSMON_CAPT_EVNT_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSMON_CAPT_EVNT, MPAM Capture Event Generation Register

Page 3908

MSMON_CFG_CSU_CTL, MPAM Memory System Monitor
Configure Cache Storage Usage Monitor Control

Register
The MSMON_CFG_CSU_CTL characteristics are:

Purpose
Controls the CSU monitor selected by MSMON_CFG_MON_SEL. MSMON_CFG_CSU_CTL_s controls the Secure cache
storage usage monitor instance selected by the Secure instance of MSMON_CFG_MON_SEL.
MSMON_CFG_CSU_CTL_ns controls Non-secure cache storage usage monitor instance selected by the Non-secure
instance of MSMON_CFG_MON_SEL.

Configuration
The power domain of MSMON_CFG_CSU_CTL is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MSMON == 1 and MPAMF_MSMON_IDR.MSMON_CSU == 1.
Otherwise, direct accesses to MSMON_CFG_CSU_CTL are RES0.

Attributes
MSMON_CFG_CSU_CTL is a 32-bit register.

Field descriptions
The MSMON_CFG_CSU_CTL bit assignments are:

31 30 29 28 27 26 25 24 23222120 19 18 17 16 1514131211109876543210
ENCAPT_EVNTCAPT_RESETOFLOW_STATUSOFLOW_INTROFLOW_FRZSUBTYPERES0MATCH_PMGMATCH_PARTID RES0 TYPE

EN, bit [31]

Enabled.

EN Meaning
0b0 The monitor instance is disabled and must not collect any

information.
0b1 The monitor instance is enabled to collect information according to

the configuration of the instance.

CAPT_EVNT, bits [30:28]

Capture event selector.

Select the event that triggers capture from the following:

MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register

Page 3909

CAPT_EVNT Meaning
0b000 No capture event is triggered.
0b001 External capture event 1 (optional but recommended)
0b010 External capture event 2 (optional)
0b011 External capture event 3 (optional)
0b100 External capture event 4 (optional)
0b101 External capture event 5 (optional)
0b110 External capture event 6 (optional)
0b111 Capture occurs when a MSMON_CAPT_EVNT register in

this MSC is written and causes a capture event for the
security state of this monitor. (optional)

The values marked as optional indicate capture event sources that can be omitted in an implementation. Those values
representing non-implemented event sources must not trigger a capture event.

If capture is not implemented for the CSU monitor type as indicated by MPAMF_CSUMON_IDR.HAS_CAPTURE = 0,
this field is RAZ/WI.

CAPT_RESET, bit [27]

Reset after capture.

Controls whether the value of MSMON_CSU is reset to zero immediately after being copied to
MSMON_CSU_CAPTURE.

CAPT_RESET Meaning
0b0 Monitor is not reset on capture.
0b1 Monitor is reset on capture.

If capture is not implemented for the CSU monitor type as indicated by MPAMF_CSUMON_IDR.HAS_CAPTURE = 0,
this field is RAZ/WI.

Because the CSU monitor type produces a measurement rather than a count, it might not make sense to ever reset the
value after a capture. If there is no reason to ever reset a CSU monitor, this field is RAZ/WI.

OFLOW_STATUS, bit [26]

Overflow status.

Indicates whether the value of MSMON_CSU has overflowed.

OFLOW_STATUS Meaning
0b0 No overflow has occurred.
0b1 At least one overflow has occurred since this bit was

last written to zero.

If overflow is not possible for a CSU monitor in the implementation, this field is RAZ/WI.

OFLOW_INTR, bit [25]

Overflow Interrupt.

Controls whether an overflow interrupt is generated when the value of MSMON_CSU has overflowed.

OFLOW_INTR Meaning
0b0 No interrupt is signaled on an overflow of

MSMON_CSU.
0b1 On overflow, an implementation-specific interrupt is

signaled.

If OFLOW_INTR is not supported by the implementation, this field is RAZ/WI.

OFLOW_FRZ, bit [24]

Freeze Monitor on Overflow.

MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register

Page 3910

Controls whether the value of MSMON_CSU freezes on an overflow.

OFLOW_FRZ Meaning
0b0 Monitor count wraps on overflow.
0b1 Monitor count freezes on overflow. The frozen value

might be 0 or another value if the monitor overflowed
with an increment larger than 1.

If overflow is not possible for a CSU monitor in the implementation, this field is RAZ/WI.

SUBTYPE, bits [23:20]

Subtype.

A monitor can have other event matching criteria.

This field is not currently used for CSU monitors, but reserved for future use.

This field is RAZ/WI.

Bits [19:18]

Reserved, RES0.

MATCH_PMG, bit [17]

Match PMG.

Controls whether the monitor measures only storage used with PMG matching MSMON_CFG_CSU_FLT.PMG.

MATCH_PMG Meaning
0b0 The monitor measures storage used with any PMG

value.
0b1 The monitor only measures storage used with the PMG

value matching MSMON_CFG_CSU_FLT.PMG.

If MATCH_PMG == 1 and MATCH_PARTID == 0, it is CONSTRAINED UNPREDICTABLE whether the monitor instance:

• Measures the storage used with matching PMG and with any PARTID.
• Measures no storage usage, that is, MSMON_CSU.VALUE is zero.
• Measures the storage used with matching PMG and PARTID, that is, treats MATCH_PARTID as == 1.

MATCH_PARTID, bit [16]

Match PARTID.

Controls whether the monitor measures only storage used with PARTID matching MSMON_CFG_CSU_FLT.PARTID.

MATCH_PARTID Meaning
0b0 The monitor measures storage used with any

PARTID value.
0b1 The monitor only measures storage used with the

PARTID value matching
MSMON_CFG_CSU_FLT.PARTID.

Bits [15:8]

Reserved, RES0.

TYPE, bits [7:0]

Monitor Type Code.

Constant type indicating the type of the monitor.

MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register

Page 3911

Read-only.

CSU monitor is TYPE = 0x43.

Accessing the MSMON_CFG_CSU_CTL
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_CFG_CSU_CTL_s must be accessible from the Secure MPAM feature page. MSMON_CFG_CSU_CTL_ns must
be accessible from the Non-secure MPAM feature page.

MSMON_CFG_CSU_CTL_s and MSMON_CFG_CSU_CTL_ns must be separate registers. The Secure instance
(MSMON_CFG_CSU_CTL_s) accesses the cache storage usage monitor controls used for Secure PARTIDs, and the
Non-secure instance (MSMON_CFG_CSU_CTL_ns) accesses the cache storage usage monitor controls used for Non-
secure PARTIDs.

MSMON_CFG_CSU_CTL can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0818 MSMON_CFG_CSU_CTL_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0818 MSMON_CFG_CSU_CTL_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register

Page 3912

MSMON_CFG_CSU_FLT, MPAM Memory System Monitor
Configure Cache Storage Usage Monitor Filter

Register
The MSMON_CFG_CSU_FLT characteristics are:

Purpose
Configures PARTID and PMG to measure or count in the CSU monitor selected by MSMON_CFG_MON_SEL.
MSMON_CFG_CSU_FLT_s sets filter conditions for the Secure cache storage usage monitor instance selected by the
Secure instance of MSMON_CFG_MON_SEL. MSMON_CFG_CSU_CTL_ns sets filter conditions for the Non-secure
cache storage usage monitor instance selected by the Non-secure instance of MSMON_CFG_MON_SEL.

Configuration
The power domain of MSMON_CFG_CSU_FLT is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MSMON == 1 and MPAMF_MSMON_IDR.MSMON_CSU == 1.
Otherwise, direct accesses to MSMON_CFG_CSU_FLT are RES0.

Attributes
MSMON_CFG_CSU_FLT is a 32-bit register.

Field descriptions
The MSMON_CFG_CSU_FLT bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PMG PARTID

Bits [31:24]

Reserved, RES0.

PMG, bits [23:16]

Performance monitoring group to filter cache storage usage monitoring.

If MSMON_CFG_CSU_CTL.MATCH_PMG == 0, this field is not used to match cache storage to a PMG and the
contents of this field is ignored.

If MSMON_CFG_CSU_CTL.MATCH_PMG == 1 and MSMON_CFG_CSU_CTL.MATCH_PARTID == 1, the monitor
instance selected by MSMON_CFG_MON_SEL measures or counts cache storage labeled with PMG equal to this field
and PARTID equal to the PARTID field.

If MSMON_CFG_CSU_CTL.MATCH_PMG == 1 and MSMON_CFG_CSU_CTL.MATCH_PARTID == 0, the behavior of
the monitor instance selected by MSMON_CFG_MON_SEL is CONSTRAINED UNPREDICTABLE. See
MSMON_CFG_CSU_CTL.MATCH_PMG for more information.

PARTID, bits [15:0]

Partition ID to filter cache storage usage monitoring.

If MSMON_CFG_CSU_CTL.MATCH_PARTID == 0 and MSMON_CFG_CSU_CTL.MATCH_PMG == 0, the monitor
measures all allocated cache storage.

MSMON_CFG_CSU_FLT, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Filter Register

Page 3913

If MSMON_CFG_CSU_CTL.MATCH_PARTID == 0 and MSMON_CFG_CSU_CTL.MATCH_PMG == 1, the behavior of
the monitor is CONSTRAINED UNPREDICTABLE. See the description of MSMON_CFG_CSU_CTL.MATCH_PMG.

If MSMON_CFG_CSU_CTL.MATCH_PARTID == 1 and MSMON_CFG_CSU_CTL.MATCH_PMG == 0, the monitor
selected by MSMON_CFG_MON_SEL measures or counts cache storage labeled with PARTID equal to this field.

If MSMON_CFG_CSU_CTL.MATCH_PARTID == 1 and MSMON_CFG_CSU_CTL.MATCH_PMG == 1, the monitor
selected by MSMON_CFG_MON_SEL measures or counts cache storage labeled with PARTID equal to this field and
PMG equal to the PMG field.

Accessing the MSMON_CFG_CSU_FLT
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_CFG_CSU_FLT_s must be accessible from the Secure MPAM feature page. MSMON_CFG_CSU_FLT_ns must
be accessible from the Non-secure MPAM feature page.

MSMON_CFG_CSU_FLT_s and MSMON_CFG_CSU_FLT_ns must be separate registers. The Secure instance
(MSMON_CFG_CSU_FLT_s) accesses the PARTID and PMG matching for a cache storage usage monitor used for
Secure PARTIDs, and the Non-secure instance (MSMON_CFG_CSU_FLT_ns) accesses the PARTID and PMG matching
for a cache storage usage monitor used for Non-secure PARTIDs.

MSMON_CFG_CSU_FLT can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0810 MSMON_CFG_CSU_FLT_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0810 MSMON_CFG_CSU_FLT_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSMON_CFG_CSU_FLT, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Filter Register

Page 3914

MSMON_CFG_MBWU_CTL, MPAM Memory System
Monitor Configure Memory Bandwidth Usage Monitor

Control Register
The MSMON_CFG_MBWU_CTL characteristics are:

Purpose
Controls the MBWU monitor selected by MSMON_CFG_MON_SEL. MSMON_CFG_MBWU_CTL_s controls the Secure
memory bandwidth usage monitor instance selected by the Secure instance of MSMON_CFG_MON_SEL.
MSMON_CFG_MBWU_CTL_ns controls Non-secure memory bandwidth usage monitor instance selected by the Non-
secure instance of MSMON_CFG_MON_SEL.

Configuration
The power domain of MSMON_CFG_MBWU_CTL is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MSMON == 1 and MPAMF_MSMON_IDR.MSMON_MBWU == 1.
Otherwise, direct accesses to MSMON_CFG_MBWU_CTL are RES0.

Attributes
MSMON_CFG_MBWU_CTL is a 32-bit register.

Field descriptions
The MSMON_CFG_MBWU_CTL bit assignments are:

31 30 29 28 27 26 25 24 23222120 19 18 17 16 15 14 131211109876543210
ENCAPT_EVNTCAPT_RESETOFLOW_STATUSOFLOW_INTROFLOW_FRZSUBTYPESCLENRES0MATCH_PMGMATCH_PARTIDOFLOW_STATUS_LOFLOW_INTR_L RES0 TYPE

EN, bit [31]

Enabled.

EN Meaning
0b0 The monitor instance is disabled and must not collect any

information.
0b1 The monitor instance is enabled to collect information according to

the configuration of the instance.

CAPT_EVNT, bits [30:28]

Capture event selector.

When the selected capture event occurs, MSMON_MBWU of the monitor instance is copied to
MSMON_MBWU_CAPTURE of the same instance. If the long counter is also implemented, MSMON_MBWU_L is also
copied to MSMON_MBWU_L_CAPTURE.

Select the event that triggers capture from the following:

MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

Page 3915

CAPT_EVNT Meaning
0b000 No capture event is triggered.
0b001 External capture event 1 (optional but recommended)
0b010 External capture event 2 (optional)
0b011 External capture event 3 (optional)
0b100 External capture event 4 (optional)
0b101 External capture event 5 (optional)
0b110 External capture event 6 (optional)
0b111 Capture occurs when a MSMON_CAPT_EVNT register in

this MSC is written and causes a capture event for the
security state of this monitor. (optional)

The values marked as optional indicate capture event sources that can be omitted in an implementation. Those values
representing non-implemented event sources must not trigger a capture event.

If capture is not implemented for the MBWU monitor type as indicated by MPAMF_MBWUMON_IDR.HAS_CAPTURE =
0, this field is RAZ/WI.

CAPT_RESET, bit [27]

Reset MSMON_MBWU.VALUE after capture.

Controls whether the VALUE field of the monitor instance is reset to zero immediately after being copied to the
corresponding capture register.

CAPT_RESET Meaning
0b0 MSMON_MBWU.VALUE field of the monitor instance is

not reset on capture.
0b1 MSMON_MBWU.VALUE field of the monitor instance is

reset on capture.

If capture is not implemented for the MBWU monitor type as indicated by MPAMF_MBWUMON_IDR.HAS_CAPTURE =
0, this field is RAZ/WI.

This control bit affects both MSMON_MBWU and MSMON_MBWU_L in implementations that include
MSMON_MBWU_L.

OFLOW_STATUS, bit [26]

Overflow status.

Indicates whether the value of MSMON_MBWU has overflowed.

OFLOW_STATUS Meaning
0b0 MSMON_MBWU has not overflowed.
0b1 MSMON_MBUW has overflowed at least once since

this bit was last written to zero.

If overflow is not possible for a MBWU monitor in the implementation, this field is RAZ/WI.

OFLOW_INTR, bit [25]

Overflow status of the MSMON_MBWU_L instance.

Indicates that the value of MSMON_MBWU overflow has overflowed.

OFLOW_INTR Meaning
0b0 No interrupt is signaled on an overflow of

MSMON_MBWU.
0b1 An implementation-specific interrupt is signaled on an

overflow of MSMON_MBWU.

OFLOW_FRZ, bit [24]

Freeze monitor instance on overflow.

MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

Page 3916

ext-msmon_mbuw.html

Controls whether MSMON_MBWU.VALUE field of the monitor instance freezes on an overflow.

OFLOW_FRZ Meaning
0b0 MSMON_MBWU.VALUE field of the monitor instance

wraps on overflow.
0b1 MSMON_MBWU.VALUE field of the monitor instance

freezes on overflow. If the increment that caused the
overflow was 1, the frozen value is the post-increment
value of 0. If the increment that caused the overflow was
larger than 1, the frozen value of the monitor might be 0
or a larger value less than the final increment.

If overflow is not possible for the instance of the MBWU monitor in the implementation, this field is RAZ/WI.

This control bit affects both MSMON_MBWU and MSMON_MBWU_L in implementations that include
MSMON_MBWU_L.

SUBTYPE, bits [23:20]

Subtype.

A monitor can have other event matching criteria.

This field is not currently used for MBWU monitors, but reserved for future use.

This field is RAZ/WI.

SCLEN, bit [19]

MSMON_MBWU.VALUE Scaling Enable.

Enables scaling of MSMON_MBWU.VALUE by MPAMF_MBWUMON_IDR.SCALE.

SCLEN Meaning
0b0 MSMON_MBWU.VALUE has bytes counted by the monitor

instance.
0b1 MSMON_MBWU.VALUE has bytes counted by the monitor

instance, shifted right by MPAMF_MBWUMON_IDR.SCALE.

Bit [18]

Reserved, RES0.

MATCH_PMG, bit [17]

Match PMG.

Controls whether the monitor instance only counts data transferred with PMG matching
MSMON_CFG_MBWU_FLT.PMG.

MATCH_PMG Meaning
0b0 The monitor instance counts data transferred with any

PMG value.
0b1 The monitor instance only counts data transferred with

the PMG value matching
MSMON_CFG_MBWU_FLT.PMG.

MATCH_PARTID, bit [16]

Match PARTID.

Controls whether the monitor instance counts only data transferred with PARTID matching
MSMON_CFG_MBWU_FLT.PARTID.

MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

Page 3917

MATCH_PARTID Meaning
0b0 The monitor instance counts data transferred with

any PARTID value.
0b1 The monitor instance only counts data transferred

with the PARTID value matching
MSMON_CFG_MBWU_FLT.PARTID.

OFLOW_STATUS_L, bit [15]

When ARMv8.6-MPAM is implemented:

Overflow Status of the MSMON_MBWU_L instance.

Indicates whether an MPAM overflow interrupt is generated when the value of MSMON_MBWU_L has overflowed.

OFLOW_STATUS_L Meaning
0b0 MSMON_MBWU_L has not overflowed.
0b1 MSMON_MBWU_L has overflowed at least once

since this bit was last written to zero.

If MPAMF_MBWUMON_IDR.HAS_LONG == 0, this bit is RES0.

Otherwise:

Reserved, RES0.

OFLOW_INTR_L, bit [14]

When ARMv8.6-MPAM is implemented:

Overflow Interrupt for MSMON_MBWU_L.

Controls whether an MPAM overflow interrupt is generated when the value of MSMON_MBWU_L overflows.

OFLOW_INTR_L Meaning
0b0 No interrupt is signaled on an overflow of

MSMON_MBWU_L.
0b1 An implementation-specific interrupt is signalled on

overflow of MSMON_MBWU_L.

If OFLOW_INTR is not supported by the implementation, this field is RAZ/WI.

If MPAMF_MBWUMON_IDR.HAS_LONG == 0, this bit is RES0.

Otherwise:

Reserved, RES0.

Bits [13:8]

Reserved, RES0.

TYPE, bits [7:0]

Monitor Type Code.

Constant type indicating the type of the monitor.

Read-only.

MBWU monitor is TYPE = 0x42.

MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

Page 3918

Accessing the MSMON_CFG_MBWU_CTL
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_CFG_MBWU_CTL_s must be accessible from the Secure MPAM feature page. MSMON_CFG_MBWU_CTL_ns
must be accessible from the Non-secure MPAM feature page.

MSMON_CFG_MBWU_CTL_s and MSMON_CFG_MBWU_CTL_ns must be separate registers. The Secure instance
(MSMON_CFG_MBWU_CTL_s) accesses the memory bandwidth usage monitor controls used for Secure PARTIDs, and
the Non-secure instance (MSMON_CFG_MBWU_CTL_ns) accesses the memory bandwidth usage monitor controls used
for Non-secure PARTIDs.

MSMON_CFG_MBWU_CTL can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0828 MSMON_CFG_MBWU_CTL_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0828 MSMON_CFG_MBWU_CTL_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

Page 3919

MSMON_CFG_MBWU_FLT, MPAM Memory System
Monitor Configure Memory Bandwidth Usage Monitor

Filter Register
The MSMON_CFG_MBWU_FLT characteristics are:

Purpose
Controls PARTID and PMG to measure or count in the MBWU monitor selected by MSMON_CFG_MON_SEL.
MSMON_CFG_MBWU_FLT_s sets filter conditions for the Secure memory bandwidth usage monitor instance selected
by the Secure instance of MSMON_CFG_MON_SEL. MSMON_CFG_MBWU_CTL_ns sets filter conditions for the Non-
secure memory bandwidth usage monitor instance selected by the Non-secure instance of MSMON_CFG_MON_SEL.

Configuration
The power domain of MSMON_CFG_MBWU_FLT is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MSMON == 1 and MPAMF_MSMON_IDR.MSMON_MBWU == 1.
Otherwise, direct accesses to MSMON_CFG_MBWU_FLT are RES0.

Attributes
MSMON_CFG_MBWU_FLT is a 32-bit register.

Field descriptions
The MSMON_CFG_MBWU_FLT bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PMG PARTID

Bits [31:24]

Reserved, RES0.

PMG, bits [23:16]

Performance monitoring group to filter memory bandwidth usage monitoring.

If MSMON_CFG_MBWU_CTL.MATCH_PMG == 0, this field is not used to match memory bandwidth to a PMG and the
contents of this field is ignored.

If MSMON_CFG_MBWU_CTL.MATCH_PMG == 1, the monitor selected by MSMON_CFG_MON_SEL measures or
counts memory bandwidth labeled with PMG equal to this field.

PARTID, bits [15:0]

Partition ID to filter memory bandwidth usage monitoring.

If MSMON_CFG_MBWU_CTL.MATCH_PARTID == 0, this field is not used to match memory bandwidth to a PARTID
and the contents of this field is ignored.

If MSMON_CFG_MBWU_CTL.MATCH_PARTID == 1, the monitor selected by MSMON_CFG_MON_SEL measures or
counts memory bandwidth labeled with PARTID equal to this field.

MSMON_CFG_MBWU_FLT, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Filter
Register

Page 3920

Accessing the MSMON_CFG_MBWU_FLT
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_CFG_MBWU_FLT_s must be accessible from the Secure MPAM feature page. MSMON_CFG_MBWU_FLT_ns
must be accessible from the Non-secure MPAM feature page.

MSMON_CFG_MBWU_FLT_s and MSMON_CFG_MBWU_FLT_ns must be separate registers. The Secure instance
(MSMON_CFG_MBWU_FLT_s) accesses the PARTID and PMG matching for a memory bandwidth usage monitor used
for Secure PARTIDs, and the Non-secure instance (MSMON_CFG_MBWU_FLT_ns) accesses the PARTID and PMG
matching for a memory bandwidth usage monitor used for Non-secure PARTIDs.

MSMON_CFG_MBWU_FLT can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0820 MSMON_CFG_MBWU_FLT_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0820 MSMON_CFG_MBWU_FLT_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSMON_CFG_MBWU_FLT, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Filter
Register

Page 3921

MSMON_CFG_MON_SEL, MPAM Monitor Instance
Selection Register

The MSMON_CFG_MON_SEL characteristics are:

Purpose
Selects a monitor instance to access through the MSMON configuration and counter registers.
MSMON_CFG_MON_SEL_s selects a Secure monitor instance to access via the Secure MPAM feature page.
MSMON_CFG_MON_SEL_ns selects a Non-secure monitor instance to access via the Non-secure MPAM feature page.

Note

Different performance monitoring features within a MSC could have different
numbers of monitor instances. See the NUM_MON field in the corresponding
ID register. This means that a monitor out-of-bounds error might be signaled
when an MSMON_CFG register is accessed because the value in
MSMON_CFG_MON_SEL.MON_SEL is too large for the particular monitoring
feature.

To configure a monitor, set MON_SEL in this register to the index of the monitor instance to configure, then write to
the MSMON_CFG_x register to set the configuration of the monitor. At a later time, read the monitor register (for
example MSMON_MBWU) to get the value of the monitor.

Configuration
The power domain of MSMON_CFG_MON_SEL is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MSMON == 1, or (MPAMF_IDR.HAS_IMPL_IDR == 1 and
MPAMF_IDR.EXT == 0) or (MPAMF_IDR.HAS_IMPL_IDR == 1, MPAMF_IDR.EXT == 1 and
MPAMF_IDR.NO_IMPL_MSMON == 0). Otherwise, direct accesses to MSMON_CFG_MON_SEL are RES0.

Attributes
MSMON_CFG_MON_SEL is a 32-bit register.

Field descriptions
The MSMON_CFG_MON_SEL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 RIS RES0 MON_SEL

Bits [31:28]

Reserved, RES0.

RIS, bits [27:24]

When ARMv8.6-MPAM is implemented, MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_RIS == 1:

Resource Instance Selector. RIS selects one resource to configure through MSMON_CFG registers.

Otherwise:

Reserved, RES0.

MSMON_CFG_MON_SEL, MPAM Monitor Instance Selection Register

Page 3922

Bits [23:16]

Reserved, RES0.

MON_SEL, bits [15:0]

Selects the monitor instance to configure or read.

Reads and writes to other MSMON registers are indexed by MON_SEL and by the NS bit used to access
MSMON_CFG_MON_SEL to access the configuration for a single monitor.

Accessing the MSMON_CFG_MON_SEL
This register is part of the MPAMF_BASE memory frame. In a system that supports Secure and Non-secure memory
maps, the MPAMF_BASE frame must be accessible in both Secure and Non-secure memory address maps.

MSMON_CFG_MON_SEL must be accessible from the Non-secure and Secure address maps.

MSMON_CFG_MON_SEL must be banked for the Secure and Non-secure address maps. The Secure instance is used
with accesses to other MSMON registers to configure monitors for Secure PARTIDs, and the Non-secure instance is
used with accesses to other MSMON registers to configure monitors for Non-secure PARTIDs.

MSMON_CFG_MON_SEL can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0800 MSMON_CFG_MON_SEL_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0800 MSMON_CFG_MON_SEL_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSMON_CFG_MON_SEL, MPAM Monitor Instance Selection Register

Page 3923

MSMON_CSU, MPAM Cache Storage Usage Monitor
Register

The MSMON_CSU characteristics are:

Purpose
Accesses the CSU monitor selected by MSMON_CFG_MON_SEL. MSMON_CSU_s is the Secure cache storage usage
monitor instance selected by the Secure instance of MSMON_CFG_MON_SEL. MSMON_CSU_ns is the Non-secure
cache storage usage monitor instance selected by the Non-secure instance of MSMON_CFG_MON_SEL.

Configuration
The power domain of MSMON_CSU is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MSMON == 1 and MPAMF_MSMON_IDR.MSMON_CSU == 1.
Otherwise, direct accesses to MSMON_CSU are RES0.

Attributes
MSMON_CSU is a 32-bit register.

Field descriptions
The MSMON_CSU bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NRDY VALUE

NRDY, bit [31]

Not Ready. Indicates whether the monitor has possibly inaccurate data.

NRDY Meaning
0b0 The monitor is not ready and the contents of the VALUE field

might be inaccurate or otherwise not represent the actual cache
storage usage.

0b1 The monitor is ready and the VALUE fields is accurate.

VALUE, bits [30:0]

Cache storage usage value if NRDY == 0. Invalid if NRDY == 1.

VALUE is the cache storage usage in bytes meeting the criteria set in MSMON_CFG_CSU_FLT and
MSMON_CFG_CSU_CTL for the monitor instance selected by MSMON_CFG_MON_SEL.

Accessing the MSMON_CSU
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_CSU_s must be accessible from the Secure MPAM feature page. MSMON_CSU_ns must be accessible from
the Non-secure MPAM feature page.

MSMON_CSU_s and MSMON_CSU_ns must be separate registers. The Secure instance (MSMON_CSU_s) accesses the
cache storage usage monitor used for Secure PARTIDs, and the Non-secure instance (MSMON_CSU_ns) accesses the
cache storage usage monitor used for Non-secure PARTIDs.

MSMON_CSU, MPAM Cache Storage Usage Monitor Register

Page 3924

MSMON_CSU can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0840 MSMON_CSU_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0840 MSMON_CSU_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSMON_CSU, MPAM Cache Storage Usage Monitor Register

Page 3925

MSMON_CSU_CAPTURE, MPAM Cache Storage Usage
Monitor Capture Register

The MSMON_CSU_CAPTURE characteristics are:

Purpose
MSMON_CSU_CAPTURE is a 32-bit read-write register that accesses the captured MSMON_CSU monitor selected by
MSMON_CFG_MON_SEL. MSMON_CSU_CAPTURE_s is the Secure cache storage usage monitor capture instance
selected by the Secure instance of MSMON_CFG_MON_SEL. MSMON_CSU_CAPTURE_ns is the Non-secure cache
storage usage monitor capture instance selected by the Non-secure instance of MSMON_CFG_MON_SEL.

Configuration
The power domain of MSMON_CSU_CAPTURE is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MSMON == 1, MPAMF_MSMON_IDR.MSMON_CSU == 1 and
MPAMF_CSUMON_IDR.HAS_CAPTURE == 1. Otherwise, direct accesses to MSMON_CSU_CAPTURE are RES0.

Attributes
MSMON_CSU_CAPTURE is a 32-bit register.

Field descriptions
The MSMON_CSU_CAPTURE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NRDY VALUE

NRDY, bit [31]

Not Ready. Indicates whether the captured monitor value has possibly inaccurate data.

NRDY Meaning
0b0 The captured monitor was not ready and the contents of the

VALUE field might be inaccurate or otherwise not represent the
actual cache storage usage.

0b1 The captured monitor was ready and the VALUE fields is
accurate.

VALUE, bits [30:0]

Captured cache storage usage value if NRDY == 0. Invalid if NRDY == 1.

VALUE is the captured cache storage usage in bytes meeting the criteria set in MSMON_CFG_CSU_FLT and
MSMON_CFG_CSU_CTL for the monitor instance selected by MSMON_CFG_MON_SEL.

Accessing the MSMON_CSU_CAPTURE
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_CSU_CAPTURE_s must be accessible from the Secure MPAM feature page. MSMON_CSU_CAPTURE_ns
must be accessible from the Non-secure MPAM feature page.

MSMON_CSU_CAPTURE, MPAM Cache Storage Usage Monitor Capture Register

Page 3926

MSMON_CSU_CAPTURE_s and MSMON_CSU_CAPTURE_ns must be separate registers. The Secure instance
(MSMON_CSU_CAPTURE_s) accesses the captured cache storage usage monitor used for Secure PARTIDs, and the
Non-secure instance (MSMON_CSU_CAPTURE_ns) accesses the captured cache storage usage monitor used for Non-
secure PARTIDs.

MSMON_CSU_CAPTURE can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0848 MSMON_CSU_CAPTURE_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0848 MSMON_CSU_CAPTURE_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSMON_CSU_CAPTURE, MPAM Cache Storage Usage Monitor Capture Register

Page 3927

MSMON_MBWU, MPAM Memory Bandwidth Usage
Monitor Register

The MSMON_MBWU characteristics are:

Purpose
Accesses the monitor instance selected by MSMON_CFG_MON_SEL. MSMON_MBWU_s is the Secure memory
bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL_s. MSMON_MBWU_ns is the Non-secure
memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL_ns.

Configuration
The power domain of MSMON_MBWU is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MSMON == 1 and MPAMF_MSMON_IDR.MSMON_MBWU == 1.
Otherwise, direct accesses to MSMON_MBWU are RES0.

Attributes
MSMON_MBWU is a 32-bit register.

Field descriptions
The MSMON_MBWU bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NRDY VALUE

NRDY, bit [31]

Not Ready. Indicates whether the monitor has possibly inaccurate data.

NRDY Meaning
0b0 The monitor is not ready and the contents of the VALUE field

might be inaccurate or otherwise not represent the actual
memory bandwidth usage.

0b1 The monitor is ready and the VALUE fields is accurate.

VALUE, bits [30:0]

Memory bandwidth usage counter value if NRDY == 0. Invalid if NRDY == 1.

VALUE is the scaled count of bytes transferred since the monitor was last reset that meet the criteria set in
MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the monitor instance selected by
MSMON_CFG_MON_SEL.

If MSMON_CFG_MBWU_CTL.SCLEN enables scaling, the count in VALUE is the number of bytes shifted right by
MPAMF_MBWUMON_IDR.SCALE bit positions and rounded.

Accessing the MSMON_MBWU
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_MBWU_s must be accessible from the Secure MPAM feature page. MSMON_MBWU_ns must be accessible
from the Non-secure MPAM feature page.

MSMON_MBWU, MPAM Memory Bandwidth Usage Monitor Register

Page 3928

MSMON_MBWU_s and MSMON_MBWU_ns must be separate registers. The Secure instance (MSMON_MBWU_s)
accesses the memory bandwidth usage monitor used for Secure PARTIDs, and the Non-secure instance
(MSMON_MBWU_ns) accesses the memory bandwidth usage monitor used for Non-secure PARTIDs.

MSMON_MBWU can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0860 MSMON_MBWU_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0860 MSMON_MBWU_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSMON_MBWU, MPAM Memory Bandwidth Usage Monitor Register

Page 3929

MSMON_MBWU_CAPTURE, MPAM Memory Bandwidth
Usage Monitor Capture Register

The MSMON_MBWU_CAPTURE characteristics are:

Purpose
Accesses the captured MSMON_MBWU monitor instance selected by MSMON_CFG_MON_SEL.
MSMON_MBWU_CAPTURE_s is the Secure memory bandwidth usage monitor capture instance selected by the Secure
instance of MSMON_CFG_MON_SEL. MSMON_MBWU_CAPTURE_ns is the Non-secure memory bandwidth usage
monitor capture instance selected by the Non-secure instance of MSMON_CFG_MON_SEL.

Configuration
The power domain of MSMON_MBWU_CAPTURE is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MSMON == 1, MPAMF_MSMON_IDR.MSMON_MBWU == 1 and
MPAMF_MBWUMON_IDR.HAS_CAPTURE == 1. Otherwise, direct accesses to MSMON_MBWU_CAPTURE are RES0.

Attributes
MSMON_MBWU_CAPTURE is a 32-bit register.

Field descriptions
The MSMON_MBWU_CAPTURE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NRDY VALUE

NRDY, bit [31]

Not Ready. The captured NRDY bit from the corresponding instance of MSMON_MBWU. This bit indicates whether the
captured monitor value has possibly inaccurate data.

NRDY Meaning
0b0 The captured monitor was not ready and the contents of the

VALUE field might be inaccurate or otherwise not represent the
actual memory bandwidth usage.

0b1 The captured monitor was ready and the VALUE fields is
accurate.

VALUE, bits [30:0]

Captured memory bandwidth usage counter value if NRDY == 0. Invalid if NRDY == 1.

VALUE is the captured VALUE field from the corresponding instance of MSMON_MBWU, the count of bytes
transferred since the monitor was last reset that meet the criteria set in MSMON_CFG_MBWU_FLT and
MSMON_CFG_MBWU_CTL for the monitor instance selected by MSMON_CFG_MON_SEL.

VALUE captures the MSMON_MBWU.VALUE and preserves any scaling that had been performed on the VALUE field
in that register.

Accessing the MSMON_MBWU_CAPTURE
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_MBWU_CAPTURE, MPAM Memory Bandwidth Usage Monitor Capture Register

Page 3930

MSMON_MBWU_CAPTURE_s must be accessible from the Secure MPAM feature page. MSMON_MBWU_CAPTURE_ns
must be accessible from the Non-secure MPAM feature page.

MSMON_MBWU_CAPTURE_s and MSMON_MBWU_CAPTURE_ns must be separate registers. The Secure instance
(MSMON_MBWU_CAPTURE_s) accesses the captured memory bandwidth usage monitor used for Secure PARTIDs,
and the Non-secure instance (MSMON_MBWU_CAPTURE_ns) accesses the captured memory bandwidth usage
monitor used for Non-secure PARTIDs.

MSMON_MBWU_CAPTURE can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0868 MSMON_MBWU_CAPTURE_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0868 MSMON_MBWU_CAPTURE_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSMON_MBWU_CAPTURE, MPAM Memory Bandwidth Usage Monitor Capture Register

Page 3931

MSMON_MBWU_L, MPAM Long Memory Bandwidth
Usage Monitor Register

The MSMON_MBWU_L characteristics are:

Purpose
Accesses the monitor instance selected by MSMON_CFG_MON_SEL. MSMON_MBWU_L_s is the Secure memory
bandwidth usage monitor instance selected by the Secure instance of MSMON_CFG_MON_SEL. MSMON_MBWU_L_ns
is the Non-secure memory bandwidth usage monitor instance selected by the Non-secure instance of
MSMON_CFG_MON_SEL.

Configuration
The power domain of MSMON_MBWU_L is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MSMON == 1, MPAMF_MSMON_IDR.MSMON_MBWU == 1 and
MPAMF_MBWUMON_IDR.HAS_LONG == 1. Otherwise, direct accesses to MSMON_MBWU_L are IMPLEMENTATION
DEFINED.

Attributes
MSMON_MBWU_L is a 64-bit register.

Field descriptions
The MSMON_MBWU_L bit assignments are:

When MPAMF_MBWUMON_IDR.LWD == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NRDY RES0 VALUE

VALUE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NRDY, bit [63]

Not Ready. Indicates whether the monitor has possibly inaccurate data.

NRDY Meaning
0b0 The monitor is not ready and the contents of the VALUE field

might be inaccurate or otherwise not represent the actual
memory bandwidth usage.

0b1 The monitor is ready and the VALUE fields is accurate.

Bits [62:44]

Reserved, RES0.

VALUE, bits [43:0]

Long (44-bit) memory bandwidth usage counter value if NRDY == 0. Invalid if NRDY == 1.

VALUE is the long count of bytes transferred since the monitor was last reset that meet the criteria set in
MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the monitor instance selected by
MSMON_CFG_MON_SEL.

MSMON_MBWU_L, MPAM Long Memory Bandwidth Usage Monitor Register

Page 3932

When MPAMF_MBWUMON_IDR.LWD == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NRDY VALUE

VALUE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NRDY, bit [63]

Not Ready. Indicates whether the monitor has possibly inaccurate data.

NRDY Meaning
0b0 The monitor is not ready and the contents of the VALUE field

might be inaccurate or otherwise not represent the actual
memory bandwidth usage.

0b1 The monitor is ready and the VALUE fields is accurate.

VALUE, bits [62:0]

Long (63-bit) memory bandwidth usage counter value if NRDY == 0. Invalid if NRDY == 1.

VALUE is the long count of bytes transferred since the monitor was last reset that meet the criteria set in
MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the monitor instance selected by
MSMON_CFG_MON_SEL.

Accessing the MSMON_MBWU_L
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_MBWU_L_s must be accessible from the Secure MPAM feature page. MSMON_MBWU_L_ns must be
accessible from the Non-secure MPAM feature page.

MSMON_MBWU_L_s and MSMON_MBWU_L_ns must be separate registers. The Secure instance
(MSMON_MBWU_L_s) accesses the long memory bandwidth usage monitor used for Secure PARTIDs, and the Non-
secure instance (MSMON_MBWU_L_ns) accesses the long memory bandwidth usage monitor used for Non-secure
PARTIDs.

MSMON_MBWU_L can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0880 MSMON_MBWU_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0880 MSMON_MBWU_ns

Accesses on this interface are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSMON_MBWU_L, MPAM Long Memory Bandwidth Usage Monitor Register

Page 3933

MSMON_MBWU_L_CAPTURE, MPAM Long Memory
Bandwidth Usage Monitor Capture Register

The MSMON_MBWU_L_CAPTURE characteristics are:

Purpose
Accesses the captured MSMON_MBWU_L monitor instance selected by MSMON_CFG_MON_SEL.

MSMON_MBWU_L_CAPTURE_s is the Secure memory bandwidth usage monitor capture instance selected by the
Secure instance of MSMON_CFG_MON_SEL.

MSMON_MBWU_L_CAPTURE_ns is the Non-secure memory bandwidth usage monitor capture instance selected by
the Non-secure instance of MSMON_CFG_MON_SEL.

Configuration
The power domain of MSMON_MBWU_L_CAPTURE is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_MSMON == 1, MPAMF_MSMON_IDR.MSMON_MBWU == 1,
MPAMF_MBWUMON_IDR.HAS_CAPTURE == 1 and MPAMF_MBWUMON_IDR.HAS_LONG == 1. Otherwise, direct
accesses to MSMON_MBWU_L_CAPTURE are IMPLEMENTATION DEFINED.

Attributes
MSMON_MBWU_L_CAPTURE is a 64-bit register.

Field descriptions
The MSMON_MBWU_L_CAPTURE bit assignments are:

When MPAMF_MBWUMON_IDR.LWD == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NRDY RES0 VALUE

VALUE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NRDY, bit [63]

Not Ready. Indicates whether the monitor has possibly inaccurate data.

NRDY Meaning
0b0 The monitor is not ready and the contents of the

MSMON_MBWU_L_CAPTURE.VALUE field might be inaccurate
or otherwise not represent the actual memory bandwidth usage.

0b1 The monitor is ready and the
MSMON_MBWU_L_CAPTURE.VALUE field is accurate.

Bits [62:44]

Reserved, RES0.

MSMON_MBWU_L_CAPTURE, MPAM Long Memory Bandwidth Usage Monitor Capture Register

Page 3934

VALUE, bits [43:0]

Memory bandwidth usage counter value if MSMON_MBWU_L_CAPTURE.NRDY == 0. Invalid if
MSMON_MBWU_L_CAPTURE.NRDY == 1.

MSMON_MBWU_L_CAPTURE.VALUE is the 44-bit count of bytes transferred since the monitor was last reset that
meet the criteria set in MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the monitor instance selected
by MSMON_CFG_MON_SEL.

When MPAMF_MBWUMON_IDR.LWD == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NRDY VALUE

VALUE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NRDY, bit [63]

Not Ready. Indicates whether the monitor has possibly inaccurate data.

NRDY Meaning
0b0 The monitor is not ready and the contents of the

MSMON_MBWU_L_CAPTURE.VALUE field might be inaccurate
or otherwise not represent the actual memory bandwidth usage.

0b1 The monitor is ready and the
MSMON_MBWU_L_CAPTURE.VALUE fields is accurate.

VALUE, bits [62:0]

Memory bandwidth usage counter value if MSMON_MBWU_L_CAPTURE.NRDY == 0. Invalid if
MSMON_MBWU_L_CAPTURE.NRDY == 1.

MSMON_MBWU_L_CAPTURE.VALUE is the 63-bit count of bytes transferred since the monitor was last reset that
meet the criteria set in MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the monitor instance selected
by MSMON_CFG_MON_SEL.

Accessing the MSMON_MBWU_L_CAPTURE
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_MBWU_L_CAPTURE_s must be accessible from the Secure MPAM feature page.
MSMON_MBWU_L_CAPTURE_ns must be accessible from the Non-secure MPAM feature page.

MSMON_MBWU_L_CAPTURE_s and MSMON_MBWU_L_CAPTURE_ns must be separate registers. The Secure
instance (MSMON_MBWU_L_CAPTURE_s) accesses the captured long memory bandwidth usage monitor used for
Secure PARTIDs, and the Non-secure instance (MSMON_MBWU_L_CAPTURE_ns) accesses the captured long memory
bandwidth usage monitor used for Non-secure PARTIDs.

MSMON_MBWU_L_CAPTURE can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0890 MSMON_MBWU_CAPTURE_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0890 MSMON_MBWU_CAPTURE_ns

Accesses on this interface are RW.

MSMON_MBWU_L_CAPTURE, MPAM Long Memory Bandwidth Usage Monitor Capture Register

Page 3935

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSMON_MBWU_L_CAPTURE, MPAM Long Memory Bandwidth Usage Monitor Capture Register

Page 3936

OSLAR_EL1, OS Lock Access Register
The OSLAR_EL1 characteristics are:

Purpose
Used to lock or unlock the OS lock.

Configuration
External register OSLAR_EL1 bits [31:0] are architecturally mapped to AArch64 System register OSLAR_EL1[31:0] .

External register OSLAR_EL1 bits [31:0] are architecturally mapped to AArch32 System register DBGOSLAR[31:0] .

OSLAR_EL1 is in the Core power domain.

If ARMv8.2-Debug is not implemented, it is IMPLEMENTATION DEFINED whether external debug accesses to OSLAR_EL1
are ignored and return an error when AllowExternalDebugAccess() returns FALSE for the access.

If ARMv8.2-Debug is implemented, external debug accesses to OSLAR_EL1 are ignored and return an error when
AllowExternalDebugAccess() returns FALSE for the access.

Attributes
OSLAR_EL1 is a 32-bit register.

Field descriptions
The OSLAR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 OSLK

Bits [31:1]

Reserved, RES0.

OSLK, bit [0]

On writes to OSLAR_EL1, bit[0] is copied to the OS lock.

Use EDPRSR.OSLK to check the current status of the lock.

Accessing the OSLAR_EL1

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalDebugAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

OSLAR_EL1 can be accessed through the external debug interface:

Component Offset Instance
Debug 0x300 OSLAR_EL1

OSLAR_EL1, OS Lock Access Register

Page 3937

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), AllowExternalDebugAccess() and SoftwareLockStatus() accesses
to this register are WI.

• When IsCorePowered(), !DoubleLockStatus(), AllowExternalDebugAccess() and !SoftwareLockStatus()
accesses to this register are WO.

• When IsCorePowered(), !DoubleLockStatus(), !AllowExternalDebugAccess() and ARMv8.2-Debug is not
implemented accesses to this register are IMPDEF.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

OSLAR_EL1, OS Lock Access Register

Page 3938

PMAUTHSTATUS, Performance Monitors
Authentication Status register

The PMAUTHSTATUS characteristics are:

Purpose
Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for Performance
Monitors.

Configuration
If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is OPTIONAL, and is required for CoreSight compliance. Arm recommends that this register is
implemented.

Attributes
PMAUTHSTATUS is a 32-bit register.

Field descriptions
The PMAUTHSTATUS bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SNID SID NSNID NSID

Bits [31:8]

Reserved, RES0.

SNID, bits [7:6]

Holds the same value as DBGAUTHSTATUS_EL1.SNID.

SID, bits [5:4]

Secure invasive debug. Possible values of this field are:

SID Meaning
0b00 Not implemented.

All other values are reserved.

NSNID, bits [3:2]

Holds the same value as DBGAUTHSTATUS_EL1.NSNID.

NSID, bits [1:0]

Non-secure invasive debug. Possible values of this field are:

PMAUTHSTATUS, Performance Monitors Authentication Status register

Page 3939

NSID Meaning
0b00 Not implemented.

All other values are reserved.

Accessing the PMAUTHSTATUS

PMAUTHSTATUS can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFB8 PMAUTHSTATUS

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMAUTHSTATUS, Performance Monitors Authentication Status register

Page 3940

PMCCFILTR_EL0, Performance Monitors Cycle Counter
Filter Register

The PMCCFILTR_EL0 characteristics are:

Purpose
Determines the modes in which the Cycle Counter, PMCCNTR_EL0, increments.

Configuration
External register PMCCFILTR_EL0 bits [31:0] are architecturally mapped to AArch64 System register
PMCCFILTR_EL0[31:0] .

External register PMCCFILTR_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMCCFILTR[31:0] .

PMCCFILTR_EL0 is in the Core power domain.

On a Warm or Cold reset, RW fields in this register reset:

• To architecturally UNKNOWN values if the reset is to an Exception level that is using AArch64.

• To 0 if the reset is to an Exception level that is using AArch32.

The register is not affected by an External debug reset.

Attributes
PMCCFILTR_EL0 is a 32-bit register.

Field descriptions
The PMCCFILTR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P U NSKNSUNSH M RES0SH RES0

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMCCFILTR_EL0.NSK bit.

P Meaning
0b0 Count cycles in EL1.
0b1 Do not count cycles in EL1.

U, bit [30]

User filtering bit. Controls counting in EL0.

If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMCCFILTR_EL0.NSU bit.

U Meaning
0b0 Count cycles in EL0.
0b1 Do not count cycles in EL0.

PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register

Page 3941

NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of the PMCCFILTR_EL0.P bit, cycles in Non-secure EL1 are counted.

Otherwise, cycles in Non-secure EL1 are not counted.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 (Unprivileged) filtering bit. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of the PMCCFILTR_EL0.U bit, cycles in Non-secure EL0 are counted.

Otherwise, cycles in Non-secure EL0 are not counted.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 (Hypervisor) filtering bit. Controls counting in EL2.

If Secure EL2 is implemented, counting in Secure EL2 is further controlled by the PMCCFILTR_EL0.SH bit.

NSH Meaning
0b0 Do not count cycles in EL2.
0b1 Count cycles in EL2.

Otherwise:

Reserved, RES0.

M, bit [26]

When EL3 is implemented:

Secure EL3 filtering bit.

If the value of this bit is equal to the value of the PMCCFILTR_EL0.P bit, cycles in Secure EL3 are counted.

Otherwise, cycles in Secure EL3 are not counted.

Most applications can ignore this field and set its value to 0.

Note

This field is not visible in the AArch32 PMCCFILTR System register.

PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register

Page 3942

Otherwise:

Reserved, RES0.

Bit [25]

Reserved, RES0.

SH, bit [24]

When ARMv8.4-SecEL2 is implemented:

Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMCCFILTR_EL0.NSH bit, cycles in Secure EL2 are counted.

Otherwise, cycles in Secure EL2 are not counted.

If Secure EL2 is not implemented or is disabled, this field is RES0.

Note

This field is not visible in the AArch32 PMCCFILTR System register.

Otherwise:

Reserved, RES0.

Bits [23:0]

Reserved, RES0.

Accessing the PMCCFILTR_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMCCFILTR_EL0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0x47C PMCCFILTR_EL0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register

Page 3943

PMCCNTR_EL0, Performance Monitors Cycle Counter
The PMCCNTR_EL0 characteristics are:

Purpose
Holds the value of the processor Cycle Counter, CCNT, that counts processor clock cycles. See 'Time as measured by
the Performance Monitors cycle counter' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile for more information.

PMCCFILTR_EL0 determines the modes and states in which the PMCCNTR_EL0 can increment.

Configuration
External register PMCCNTR_EL0 bits [63:0] are architecturally mapped to AArch64 System register
PMCCNTR_EL0[63:0] .

External register PMCCNTR_EL0 bits [63:0] are architecturally mapped to AArch32 System register PMCCNTR[63:0] .

PMCCNTR_EL0 is in the Core power domain.

Attributes
PMCCNTR_EL0 is a 64-bit register.

Field descriptions
The PMCCNTR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CCNT
CCNT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCNT, bits [63:0]

Cycle count. Depending on the values of PMCR_EL0.{LC,D}, the cycle count increments in one of the following ways:

• Every processor clock cycle.
• Every 64th processor clock cycle.

Writing 1 to PMCR_EL0.C sets this field to 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMCCNTR_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMCCNTR_EL0 can be accessed through the external debug interface:

Component Offset Instance Range

PMCCNTR_EL0, Performance Monitors Cycle Counter

Page 3944

PMU 0x0F8 PMCCNTR_EL0 31:0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.
Component Offset Instance Range

PMU 0x0FC PMCCNTR_EL0 63:32

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCCNTR_EL0, Performance Monitors Cycle Counter

Page 3945

PMCEID0, Performance Monitors Common Event
Identification register 0

The PMCEID0 characteristics are:

Purpose
Defines which common architectural events and common microarchitectural events are implemented, or counted,
using PMU events in the range 0x0000 to 0x001F

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

For more information about the common events and the use of the PMCEIDn registers see The section describing
'Event numbers and common events' in chapter D5 'The Performance Monitors Extension' of the Arm Architecture
Reference Manual, for Armv8-A architecture profile.

Note
• Arm recommends that, if a common event is never counted, the value of

the corresponding register bit is 0.
• This view of the register was previously called PMCEID0_EL0.

Configuration
External register PMCEID0 bits [31:0] are architecturally mapped to AArch64 System register PMCEID0_EL0[31:0] .

External register PMCEID0 bits [31:0] are architecturally mapped to AArch32 System register PMCEID0[31:0] .

PMCEID0 is in the Core power domain.

Attributes
PMCEID0 is a 32-bit register.

Field descriptions
The PMCEID0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID31ID30ID29ID28ID27ID26ID25ID24ID23ID22ID21ID20ID19ID18ID17ID16ID15ID14ID13ID12ID11ID10ID9ID8ID7ID6ID5ID4ID3ID2ID1ID0

ID<n>, bit [n], for n = 0 to 31

ID[n] corresponds to common event n.

For each bit:

ID<n> Meaning
0b0 The common event is not implemented, or not counted.
0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU
architecture, provided the event does not require any additional PMU features

PMCEID0, Performance Monitors Common Event Identification register 0

Page 3946

and has an event number that can be represented in the PMCEID<n>
registers of that earlier version of the PMU architecture.

Accessing the PMCEID0

Note

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMCEID0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xE20 PMCEID0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses to this
register are RO.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID0, Performance Monitors Common Event Identification register 0

Page 3947

PMCEID1, Performance Monitors Common Event
Identification register 1

The PMCEID1 characteristics are:

Purpose
Defines which common architectural events and common microarchitectural events are implemented, or counted,
using PMU events in the range 0x020 to 0x03F.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

For more information about the common events and the use of the PMCEIDn registers see The section describing
'Event numbers and common events' in chapter D5 'The Performance Monitors Extension' of the Arm Architecture
Reference Manual, for Armv8-A architecture profile.

Note
• Arm recommends that, if a common event is never counted, the value of

the corresponding register bit is 0.
• This view of the register was previously called PMCEID1_EL0.

Configuration
External register PMCEID1 bits [31:0] are architecturally mapped to AArch64 System register PMCEID1_EL0[31:0] .

External register PMCEID1 bits [31:0] are architecturally mapped to AArch32 System register PMCEID1[31:0] .

PMCEID1 is in the Core power domain.

Attributes
PMCEID1 is a 32-bit register.

Field descriptions
The PMCEID1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID31ID30ID29ID28ID27ID26ID25ID24ID23ID22ID21ID20ID19ID18ID17ID16ID15ID14ID13ID12ID11ID10ID9ID8ID7ID6ID5ID4ID3ID2ID1ID0

ID<n>, bit [n], for n = 0 to 31

ID[n] corresponds to common event (0x0020 + n).

For each bit:

ID<n> Meaning
0b0 The common event is not implemented, or not counted.
0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU
architecture, provided the event does not require any additional PMU features

PMCEID1, Performance Monitors Common Event Identification register 1

Page 3948

and has an event number that can be represented in the PMCEID<n>
registers of that earlier version of the PMU architecture.

Accessing the PMCEID1

Note

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMCEID1 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xE24 PMCEID1

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses to this
register are RO.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID1, Performance Monitors Common Event Identification register 1

Page 3949

PMCEID2, Performance Monitors Common Event
Identification register 2

The PMCEID2 characteristics are:

Purpose
Defines which common architectural events and common microarchitectural events are implemented, or counted,
using PMU events in the range 0x4000 to 0x401F.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

Note

Arm recommends that, if a common event is never counted, the value of the
corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers see The section describing
'Event numbers and common events' in chapter D5 'The Performance Monitors Extension' of the Arm Architecture
Reference Manual, for Armv8-A architecture profile.

Configuration
External register PMCEID2 bits [31:0] are architecturally mapped to AArch64 System register PMCEID0_EL0[63:32] .

External register PMCEID2 bits [63:32] are architecturally mapped to AArch32 System register PMCEID2[31:0] .

PMCEID2 is in the Core power domain.

This register is present only when ARMv8.1-PMU is implemented. Otherwise, direct accesses to PMCEID2 are RES0.

Attributes
PMCEID2 is a 32-bit register.

Field descriptions
The PMCEID2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDhi<n>, bit [n], for n = 0 to 31

IDhi<n>, bit [n], for n = 0 to 31

IDhi[n] corresponds to common event (0x4000 + n).

For each bit:

IDhi<n> Meaning
0b0 The common event is not implemented, or not counted.
0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional common event.

Note

PMCEID2, Performance Monitors Common Event Identification register 2

Page 3950

Such an event might be added retrospectively to an earlier version of the PMU
architecture, provided the event does not require any additional PMU features
and has an event number that can be represented in the PMCEID<n>
registers of that earlier version of the PMU architecture.

Accessing the PMCEID2

Note

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMCEID2 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xE28 PMCEID2

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses to this
register are RO.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID2, Performance Monitors Common Event Identification register 2

Page 3951

PMCEID3, Performance Monitors Common Event
Identification register 3

The PMCEID3 characteristics are:

Purpose
Defines which common architectural events and common microarchitectural events are implemented, or counted,
using PMU events in the range 0x4020 to 0x403F.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

Note

Arm recommends that, if a common event is never counted, the value of the
corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers see The section describing
'Event numbers and common events' in chapter D5 'The Performance Monitors Extension' of the Arm Architecture
Reference Manual, for Armv8-A architecture profile.

Configuration
External register PMCEID3 bits [31:0] are architecturally mapped to AArch64 System register PMCEID1_EL0[63:32] .

External register PMCEID3 bits [63:32] are architecturally mapped to AArch32 System register PMCEID3[31:0] .

PMCEID3 is in the Core power domain.

This register is present only when ARMv8.1-PMU is implemented. Otherwise, direct accesses to PMCEID3 are RES0.

Attributes
PMCEID3 is a 32-bit register.

Field descriptions
The PMCEID3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDhi<n>, bit [n], for n = 0 to 31

IDhi<n>, bit [n], for n = 0 to 31

IDhi[n] corresponds to common event (0x4020 + n).

For each bit:

IDhi<n> Meaning
0b0 The common event is not implemented, or not counted.
0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional common event.

Note

PMCEID3, Performance Monitors Common Event Identification register 3

Page 3952

Such an event might be added retrospectively to an earlier version of the PMU
architecture, provided the event does not require any additional PMU features
and has an event number that can be represented in the PMCEID<n>
registers of that earlier version of the PMU architecture.

Accessing the PMCEID3

Note

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMCEID3 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xE2C PMCEID3

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses to this
register are RO.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID3, Performance Monitors Common Event Identification register 3

Page 3953

PMCFGR, Performance Monitors Configuration
Register

The PMCFGR characteristics are:

Purpose
Contains PMU-specific configuration data.

Configuration
PMCFGR is in the Core power domain.

Attributes
PMCFGR is a 32-bit register.

Field descriptions
The PMCFGR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NCG RES0 UENWTNA EX CCDCC SIZE N

NCG, bits [31:28]

This feature is not supported, so this field is RAZ.

Bits [27:20]

Reserved, RES0.

UEN, bit [19]

User-mode Enable Register supported. PMUSERENR_EL0 is not visible in the external debug interface, so this bit is
RAZ.

WT, bit [18]

This feature is not supported, so this bit is RAZ.

NA, bit [17]

This feature is not supported, so this bit is RAZ.

EX, bit [16]

Export supported. Value is IMPLEMENTATION DEFINED.

EX Meaning
0b0 PMCR_EL0.X is RES0.
0b1 PMCR_EL0.X is read/write.

PMCFGR, Performance Monitors Configuration Register

Page 3954

CCD, bit [15]

Cycle counter has prescale.

This is RES1 if AArch32 is supported at any Exception level, and RAZ otherwise.

CCD Meaning
0b0 PMCR_EL0.D is RES0.
0b1 PMCR_EL0.D is read/write.

CC, bit [14]

Dedicated cycle counter (counter 31) supported. This bit is RAO.

SIZE, bits [13:8]

Size of counters, minus one. This field defines the size of the largest counter implemented by the Performance
Monitors Unit.

From Armv8, the largest counter is 64-bits, so the value of this field is 0b111111.

This field is used by software to determine the spacing of the counters in the memory-map. From Armv8, the counters
are a doubleword-aligned addresses.

N, bits [7:0]

Number of counters implemented in addition to the cycle counter, PMCCNTR_EL0. The maximum number of event
counters is 31.

N Meaning
0x00 Only PMCCNTR_EL0 implemented.
0x01 PMCCNTR_EL0 plus one event counter implemented.

and so on up to 0b00011111, which indicates PMCCNTR_EL0 and 31 event counters implemented.

Accessing the PMCFGR

Note

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMCFGR can be accessed through the external debug interface:

Component Offset Instance
PMU 0xE00 PMCFGR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses to this
register are RO.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCFGR, Performance Monitors Configuration Register

Page 3955

PMCID1SR, CONTEXTIDR_EL1 Sample Register
The PMCID1SR characteristics are:

Purpose
Contains the sampled value of CONTEXTIDR_EL1, captured on reading PMPCSR[31:0].

Configuration
PMCID1SR is in the Core power domain.

This register is present only when ARMv8.2-PCSample is implemented. Otherwise, direct accesses to PMCID1SR are
RES0.

Note

Before Armv8.2, the PC Sample-based Profiling Extension can be implemented
in the external debug register space, as indicated by the value of
EDDEVID.PCSample.

Attributes
PMCID1SR is a 32-bit register.

Field descriptions
The PMCID1SR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CONTEXTIDR_EL1

CONTEXTIDR_EL1, bits [31:0]

Context ID. The value of CONTEXTIDR that is associated with the most recent PMPCSR sample. When the most recent
PMPCSR sample was generated:

• If EL1 is using AArch64, then the Context ID is sampled from CONTEXTIDR_EL1.
• If EL1 is using AArch32, then the Context ID is sampled from CONTEXTIDR.
• If EL3 is implemented and is using AArch32, then CONTEXTIDR is a banked register and PMCID1SR samples

the current banked copy of CONTEXTIDR for the Security state that is associated with the most recent
PMPCSR sample.

Because the value written to PMCID1SR is an indirect read of CONTEXTIDR, it is CONSTRAINED UNPREDICTABLE whether
PMCID1SR is set to the original or new value if PMPCSR samples:

• An instruction that writes to CONTEXTIDR.
• The next Context synchronization event.
• Any instruction executed between these two instructions.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On an External debug reset, the value of this field is unchanged.

• On a Warm reset, the value of this field is unchanged.

PMCID1SR, CONTEXTIDR_EL1 Sample Register

Page 3956

Accessing the PMCID1SR
IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see 'Permitted
behavior that might make the PC Sample-based profiling registers UNKNOWN' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile

PMCID1SR can be accessed through the external debug interface:

Component Offset Instance
PMU 0x208 PMCID1SR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

Component Offset Instance
PMU 0x228 PMCID1SR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCID1SR, CONTEXTIDR_EL1 Sample Register

Page 3957

PMCID2SR, CONTEXTIDR_EL2 Sample Register
The PMCID2SR characteristics are:

Purpose
Contains the sampled value of CONTEXTIDR_EL2, captured on reading PMPCSR[31:0].

Configuration
PMCID2SR is in the Core power domain.

This register is present only when ARMv8.2-PCSample is implemented and EL2 is implemented. Otherwise, direct
accesses to PMCID2SR are RES0.

Note

If ARMv8.2-PCSample is not implemented, the PC Sample-based Profiling
Extension can be implemented in the external debug register space, as
indicated by the value of EDDEVID.PCSample.

Attributes
PMCID2SR is a 32-bit register.

Field descriptions
The PMCID2SR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CONTEXTIDR_EL2

CONTEXTIDR_EL2, bits [31:0]

Context ID. The value of CONTEXTIDR_EL2 that is associated with the most recent PMPCSR sample. When the most
recent PMPCSR sample was generated:

• If EL2 is using AArch64, then this field is set to the Context ID sampled from CONTEXTIDR_EL2.
• If EL2 is using AArch32, then this field is set to an UNKNOWN value.

Because the value written to PMCID2SR is an indirect read of CONTEXTIDR_EL2, it is CONSTRAINED UNPREDICTABLE
whether PMCID2SR is set to the original or new value if PMPCSR samples:

• An instruction that writes to CONTEXTIDR_EL2.
• The next Context synchronization event.
• Any instruction executed between these two instructions.

The following resets apply:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

• On an External debug reset, the value of this field is unchanged.

• On a Warm reset, the value of this field is unchanged.

PMCID2SR, CONTEXTIDR_EL2 Sample Register

Page 3958

Accessing the PMCID2SR
IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see 'Permitted
behavior that might make the PC Sample-based profiling registers UNKNOWN' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile

PMCID2SR can be accessed through the external debug interface:

Component Offset Instance
PMU 0x22C PMCID2SR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCID2SR, CONTEXTIDR_EL2 Sample Register

Page 3959

PMCIDR0, Performance Monitors Component
Identification Register 0

The PMCIDR0 characteristics are:

Purpose
Provides information to identify a Performance Monitor component.

For more information see 'About the Component identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
PMCIDR0 is a 32-bit register.

Field descriptions
The PMCIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_0

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble. Must read as 0x0D.

Accessing the PMCIDR0

PMCIDR0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFF0 PMCIDR0

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

PMCIDR0, Performance Monitors Component Identification Register 0

Page 3960

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCIDR0, Performance Monitors Component Identification Register 0

Page 3961

PMCIDR1, Performance Monitors Component
Identification Register 1

The PMCIDR1 characteristics are:

Purpose
Provides information to identify a Performance Monitor component.

For more information see 'About the Component identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
PMCIDR1 is a 32-bit register.

Field descriptions
The PMCIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CLASS PRMBL_1

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class. Reads as 0x9, debug component.

PRMBL_1, bits [3:0]

Preamble. RAZ.

Accessing the PMCIDR1

PMCIDR1 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFF4 PMCIDR1

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

PMCIDR1, Performance Monitors Component Identification Register 1

Page 3962

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCIDR1, Performance Monitors Component Identification Register 1

Page 3963

PMCIDR2, Performance Monitors Component
Identification Register 2

The PMCIDR2 characteristics are:

Purpose
Provides information to identify a Performance Monitor component.

For more information see 'About the Component identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
PMCIDR2 is a 32-bit register.

Field descriptions
The PMCIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_2

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble. Must read as 0x05.

Accessing the PMCIDR2

PMCIDR2 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFF8 PMCIDR2

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

PMCIDR2, Performance Monitors Component Identification Register 2

Page 3964

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCIDR2, Performance Monitors Component Identification Register 2

Page 3965

PMCIDR3, Performance Monitors Component
Identification Register 3

The PMCIDR3 characteristics are:

Purpose
Provides information to identify a Performance Monitor component.

For more information see 'About the Component identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
PMCIDR3 is a 32-bit register.

Field descriptions
The PMCIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_3

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble. Must read as 0xB1.

Accessing the PMCIDR3

PMCIDR3 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFFC PMCIDR3

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

PMCIDR3, Performance Monitors Component Identification Register 3

Page 3966

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCIDR3, Performance Monitors Component Identification Register 3

Page 3967

PMCNTENCLR_EL0, Performance Monitors Count
Enable Clear register

The PMCNTENCLR_EL0 characteristics are:

Purpose
Disables the Cycle Count Register, PMCCNTR_EL0, and any implemented event counters PMEVCNTR<n>. Reading
this register shows which counters are enabled.

Configuration
External register PMCNTENCLR_EL0 bits [31:0] are architecturally mapped to AArch64 System register
PMCNTENCLR_EL0[31:0] .

External register PMCNTENCLR_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMCNTENCLR[31:0] .

PMCNTENCLR_EL0 is in the Core power domain.

Attributes
PMCNTENCLR_EL0 is a 32-bit register.

Field descriptions
The PMCNTENCLR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C P<n>, bit [n]

C, bit [31]

PMCCNTR_EL0 disable bit. Disables the cycle counter register. Possible values are:

C Meaning
0b0 When read, means the cycle counter is disabled. When written, has

no effect.
0b1 When read, means the cycle counter is enabled. When written,

disables the cycle counter.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter disable bit for PMEVCNTR<n>_EL0.

If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are RAZ/WI.

P<n> Meaning
0b0 When read, means that PMEVCNTR<n>_EL0 is disabled. When

written, has no effect.
0b1 When read, means that PMEVCNTR<n>_EL0 is enabled. When

written, disables PMEVCNTR<n>_EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register

Page 3968

Accessing the PMCNTENCLR_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMCNTENCLR_EL0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xC20 PMCNTENCLR_EL0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register

Page 3969

PMCNTENSET_EL0, Performance Monitors Count
Enable Set register

The PMCNTENSET_EL0 characteristics are:

Purpose
Enables the Cycle Count Register, PMCCNTR_EL0, and any implemented event counters PMEVCNTR<n>. Reading
this register shows which counters are enabled.

Configuration
External register PMCNTENSET_EL0 bits [31:0] are architecturally mapped to AArch64 System register
PMCNTENSET_EL0[31:0] .

External register PMCNTENSET_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMCNTENSET[31:0] .

PMCNTENSET_EL0 is in the Core power domain.

Attributes
PMCNTENSET_EL0 is a 32-bit register.

Field descriptions
The PMCNTENSET_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C P<n>, bit [n]

C, bit [31]

PMCCNTR_EL0 enable bit. Enables the cycle counter register. Possible values are:

C Meaning
0b0 When read, means the cycle counter is disabled. When written, has

no effect.
0b1 When read, means the cycle counter is enabled. When written,

enables the cycle counter.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter enable bit for PMEVCNTR<n>_EL0.

If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are RAZ/WI.

P<n> Meaning
0b0 When read, means that PMEVCNTR<n>_EL0 is disabled. When

written, has no effect.
0b1 When read, means that PMEVCNTR<n>_EL0 event counter is

enabled. When written, enables PMEVCNTR<n>_EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMCNTENSET_EL0, Performance Monitors Count Enable Set register

Page 3970

Accessing the PMCNTENSET_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMCNTENSET_EL0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xC00 PMCNTENSET_EL0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCNTENSET_EL0, Performance Monitors Count Enable Set register

Page 3971

PMCR_EL0, Performance Monitors Control Register
The PMCR_EL0 characteristics are:

Purpose
Provides details of the Performance Monitors implementation, including the number of counters implemented, and
configures and controls the counters.

Configuration
External register PMCR_EL0 bits [7:0] are architecturally mapped to AArch32 System register PMCR[7:0] .

External register PMCR_EL0 bits [7:0] are architecturally mapped to AArch64 System register PMCR_EL0[7:0] .

PMCR_EL0 is in the Core power domain.

This register is only partially mapped to the internal PMCR System register. An external agent must use other means
to discover the information held in PMCR[31:11], such as accessing PMCFGR and the ID registers.

Attributes
PMCR_EL0 is a 32-bit register.

Field descriptions
The PMCR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAZ/WI RES0 LP LC DP X D C P E

Bits [31:11]

Reserved, RAZ/WI.

Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as zero, and must use a
read-modify-write sequence to write to the register.

Bits [10:8]

Reserved, RES0.

LP, bit [7]

When ARMv8.5-PMU is implemented:

Long event counter enable. Determines when unsigned overflow is recorded by a counter overflow bit.

LP Meaning
0b0 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[31:0].
0b1 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[63:0].

If EL2 is implemented and MDCR_EL2.HPMN is less than PMCR_EL0.N, this bit does not affect the operation of event
counters in the range [MDCR_EL2.HPMN:(PMCR_EL0.N-1)].

If EL2 is implemented and HDCR.HPMN is less than PMCR_EL0.N, this bit does not affect the operation of event
counters in the range [HDCR.HPMN..(PMCR_EL0.N-1)].

PMCR_EL0, Performance Monitors Control Register

Page 3972

Note

The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this bit
always applies if EL2 is implemented, at all Exception levels including EL2
and EL3, and regardless of whether EL2 is enabled in the current Security
state. For more information, see the description of MDCR_EL2.HPMN or
HDCR.HPMN.

If the highest implemented Exception level is using AArch32, it is IMPLEMENTATION DEFINED whether this bit is RW or
RAZ/WI.

Otherwise:

Reserved, RES0.

LC, bit [6]

When AArch32 is supported at any Exception level:

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter overflow bit.

LC Meaning
0b0 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR_EL0[31:0].
0b1 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR_EL0[63:0].

Arm deprecates use of PMCR_EL0.LC = 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

DP, bit [5]

When EL3 is implemented or (ARMv8.1-PMU is implemented and EL2 is implemented):

Disable cycle counter when event counting is prohibited. The possible values of this bit are:

DP Meaning
0b0 Cycle counting by PMCCNTR_EL0 is not affected by this bit.
0b1 When event counting for counters in the range

[0..(MDCR_EL2.HPMN-1)] is prohibited, cycle counting by
PMCCNTR_EL0 is disabled.

For more information about the interaction between the Performance Monitors and EL3, see 'Effect of EL3 and EL2' in
the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field it resets to:

• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using AArch64.
• 0 if the reset is into an Exception level that is using AArch32.

Otherwise:

Reserved, RES0.

PMCR_EL0, Performance Monitors Control Register

Page 3973

X, bit [4]

When the implementation includes a PMU event export bus:

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

X Meaning
0b0 Do not export events.
0b1 Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus to another device,
for example to an OPTIONAL PE trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or signaling to a cross-
trigger interface (CTI) that can be implemented as signals exported from the PE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field it resets to:

• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using AArch64.
• 0 if the reset is into an Exception level that is using AArch32.

Otherwise:

Reserved, RAZ/WI.

D, bit [3]

When AArch32 is supported at any Exception level:

Clock divider.

D Meaning
0b0 When enabled, PMCCNTR_EL0 counts every clock cycle.
0b1 When enabled, PMCCNTR_EL0 counts once every 64 clock cycles.

If PMCR_EL0.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR_EL0.D = 1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field it resets to:

• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using AArch64.
• 0 if the reset is into an Exception level that is using AArch32.

Otherwise:

Reserved, RES0.

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

C Meaning
0b0 No action.
0b1 Reset PMCCNTR_EL0 to zero.

This bit is always RAZ.

Note

Resetting PMCCNTR_EL0 does not change the cycle counter overflow bit.

PMCR_EL0, Performance Monitors Control Register

Page 3974

Access to this field is WO.

P, bit [1]

Event counter reset. The effects of writing to this bit are:

P Meaning
0b0 No action.
0b1 Reset all event counters, not including PMCCNTR_EL0, to zero.

This bit is always RAZ.

Note

Resetting the event counters does not change the event counter overflow bits.

If ARMv8.5-PMU is implemented, the value of MDCR_EL2.HLP, or
PMCR_EL0.LP is ignored and bits [63:0] of all event counters are reset.

Access to this field is WO.

E, bit [0]

Enable.

E Meaning
0b0 All event counters in the range [0..(PMN-1)] and PMCCNTR_EL0,

are disabled.
0b1 All event counters in the range [0..(PMN-1)] and PMCCNTR_EL0,

are enabled by PMCNTENSET_EL0.

If EL2 is implemented then:

• If EL2 is using AArch32, PMN is HDCR.HPMN.
• If EL2 is using AArch64, PMN is MDCR_EL2.HPMN.
• If PMN is less than PMCR_EL0.N, this bit does not affect the operation of event counters in the range

[PMN..(PMCR_EL0.N-1)].

If EL2 is not implemented, PMN is PMCR_EL0.N.

Note

The effect of the following fields on the operation of this bit applies if EL2 is
implemented regardless of whether EL2 is enabled in the current Security
state:

• HDCR.HPMN. See the description of HDCR.HPMN for more
information.

• MDCR_EL2.HPMN. See the description of MDCR_EL2.HPMN for more
information.

On a Warm reset, this field resets to 0.

Accessing the PMCR_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMCR_EL0, Performance Monitors Control Register

Page 3975

PMCR_EL0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xE04 PMCR_EL0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCR_EL0, Performance Monitors Control Register

Page 3976

PMDEVAFF0, Performance Monitors Device Affinity
register 0

The PMDEVAFF0 characteristics are:

Purpose
Copy of the low half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor
system the Performance Monitor component relates to.

Configuration
If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required if the external interface to the PMU is implemented.

Attributes
PMDEVAFF0 is a 32-bit register.

Field descriptions
The PMDEVAFF0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MPIDR_EL1lo

MPIDR_EL1lo, bits [31:0]

MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest implemented Exception
level.

Accessing the PMDEVAFF0

PMDEVAFF0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFA8 PMDEVAFF0

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMDEVAFF0, Performance Monitors Device Affinity register 0

Page 3977

PMDEVAFF1, Performance Monitors Device Affinity
register 1

The PMDEVAFF1 characteristics are:

Purpose
Copy of the high half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor
system the Performance Monitor component relates to.

Configuration
If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required if the external interface to the PMU is implemented.

Attributes
PMDEVAFF1 is a 32-bit register.

Field descriptions
The PMDEVAFF1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MPIDR_EL1hi

MPIDR_EL1hi, bits [31:0]

MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest implemented Exception
level.

Accessing the PMDEVAFF1

PMDEVAFF1 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFAC PMDEVAFF1

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMDEVAFF1, Performance Monitors Device Affinity register 1

Page 3978

PMDEVARCH, Performance Monitors Device
Architecture register

The PMDEVARCH characteristics are:

Purpose
Identifies the programmers' model architecture of the Performance Monitor component.

Configuration
If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

Attributes
PMDEVARCH is a 32-bit register.

Field descriptions
The PMDEVARCH bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARCHITECT PRESENT REVISION ARCHID

ARCHITECT, bits [31:21]

Defines the architecture of the component. For Performance Monitors, this is Arm Limited.

Bits [31:28] are the JEP106 continuation code, 0x4.

Bits [27:21] are the JEP106 ID code, 0x3B.

PRESENT, bit [20]

When set to 1, indicates that the DEVARCH is present.

This field is 1 in Armv8.

REVISION, bits [19:16]

Defines the architecture revision. For architectures defined by Arm this is the minor revision.

For Performance Monitors, the revision defined by Armv8 is 0x0.

All other values are reserved.

ARCHID, bits [15:0]

Defines this part to be an Armv8 debug component. For architectures defined by Arm this is further subdivided.

For Performance Monitors:

• Bits [15:12] are the architecture version, 0x2.
• Bits [11:0] are the architecture part number, 0xA16.

This corresponds to Performance Monitors architecture version PMUv3.

PMDEVARCH, Performance Monitors Device Architecture register

Page 3979

Note

The PMUv3 memory-mapped programmers' model can be used by devices
other than Armv8 processors. Software must determine whether the PMU is
attached to an Armv8 processor by using the PMDEVAFF0 and PMDEVAFF1
registers to discover the affinity of the PMU to any Armv8 processors.

Accessing the PMDEVARCH

PMDEVARCH can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFBC PMDEVARCH

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMDEVARCH, Performance Monitors Device Architecture register

Page 3980

PMDEVID, Performance Monitors Device ID register
The PMDEVID characteristics are:

Purpose
Provides information about features of the Performance Monitors implementation.

Configuration
If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required from Armv8.2 and in any implementation that includes ARMv8.2-PCSample. Otherwise, its
location is RES0.

Note

Before Armv8.2, the PC Sample-based Profiling Extension can be implemented
in the external debug register space, as indicated by the value of
EDDEVID.PCSample.

Attributes
PMDEVID is a 32-bit register.

Field descriptions
The PMDEVID bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PCSample

Bits [31:4]

Reserved, RES0.

PCSample, bits [3:0]

Indicates the level of PC Sample-based Profiling support using Performance Monitors registers. Permitted values of
this field are:

PCSample Meaning
0b0000 PC Sample-based Profiling Extension is not implemented in

the Performance Monitors register space.
0b0001 PC Sample-based Profiling Extension is implemented in the

Performance Monitors register space.

All other values are reserved.

ARMv8.2-PCSample implements the functionality identified by the value 0b0001.

PMDEVID, Performance Monitors Device ID register

Page 3981

Accessing the PMDEVID

PMDEVID can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFC8 PMDEVID

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMDEVID, Performance Monitors Device ID register

Page 3982

PMDEVTYPE, Performance Monitors Device Type
register

The PMDEVTYPE characteristics are:

Purpose
Indicates to a debugger that this component is part of a PEs performance monitor interface.

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

Attributes
PMDEVTYPE is a 32-bit register.

Field descriptions
The PMDEVTYPE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SUB MAJOR

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Subtype. Must read as 0x1 to indicate this is a component within a PE.

MAJOR, bits [3:0]

Major type. Must read as 0x6 to indicate this is a performance monitor component.

Accessing the PMDEVTYPE

PMDEVTYPE can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFCC PMDEVTYPE

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

PMDEVTYPE, Performance Monitors Device Type register

Page 3983

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMDEVTYPE, Performance Monitors Device Type register

Page 3984

PMEVCNTR<n>_EL0, Performance Monitors Event
Count Registers, n = 0 - 30

The PMEVCNTR<n>_EL0 characteristics are:

Purpose
Holds event counter n, which counts events, where n is 0 to 30.

Configuration
External register PMEVCNTR<n>_EL0 bits [31:0] are architecturally mapped to AArch64 System register
PMEVCNTR<n>_EL0[31:0] .

External register PMEVCNTR<n>_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMEVCNTR<n>[31:0] .

PMEVCNTR<n>_EL0 is in the Core power domain.

Attributes
PMEVCNTR<n>_EL0 is a 64-bit register.

Field descriptions
The PMEVCNTR<n>_EL0 bit assignments are:

When ARMv8.5-PMU is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Event counter n
Event counter n

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number from 0 to 30.

If the highest implemented Exception level is using AArch32, the optional external interface to the performance
monitors is implemented, and the PMCR.LP and HDCR.HLP bits are RAZ/WI, then locations in the external interface to
the performance monitors that map to PMEVCNTR<n>_EL0[63:32] return UNKNOWN values on reads.

If the implementation does not support AArch64 at any Exception level, bits [63:32] of the event counters are not
required to be implemented.

This field resets to an architecturally UNKNOWN value.

Otherwise:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Event counter n

Bits [31:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number from 0 to 30.

PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

Page 3985

This field resets to an architecturally UNKNOWN value.

Accessing the PMEVCNTR<n>_EL0
External accesses to the performance monitors ignore PMUSERENR_EL0 and, if implemented, MDCR_EL2.{TPM,
TPMCR, HPMN} and MDCR_EL3.TPM. This means that all counters are accessible regardless of the current Exception
level or privilege of the access.

If ARMv8.5-PMU is not implemented, when IsCorePowered(), DoubleLockStatus(), OSLockStatus() or
!AllowExternalPMUAccess(), 32-bit accesses to 0x004+8×n have a CONSTRAINED UNPREDICTABLE behavior.

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMEVCNTR<n>_EL0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0x000 + 8n PMEVCNTR<n>_EL0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

Page 3986

PMEVTYPER<n>_EL0, Performance Monitors Event
Type Registers, n = 0 - 30

The PMEVTYPER<n>_EL0 characteristics are:

Purpose
Configures event counter n, where n is 0 to 30.

Configuration
External register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to AArch64 System register
PMEVTYPER<n>_EL0[31:0] .

External register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMEVTYPER<n>[31:0] .

PMEVTYPER<n>_EL0 is in the Core power domain.

If event counter n is not implemented then accesses to this register are:

• RES0 when IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalPMUAccess().
• A CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR otherwise.

Attributes
PMEVTYPER<n>_EL0 is a 32-bit register.

Field descriptions
The PMEVTYPER<n>_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P U NSKNSUNSH M MT SH T RES0 evtCount[15:10] evtCount[9:0]

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMEVTYPER<n>_EL0.NSK bit.

P Meaning
0b0 Count events in EL1.
0b1 Do not count events in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering bit. Controls counting in EL0.

If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMEVTYPER<n>_EL0.NSU bit.

U Meaning
0b0 Count events in EL0.
0b1 Do not count events in EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 3987

NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in Non-secure EL1 are counted.

Otherwise, events in Non-secure EL1 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 (Unprivileged) filtering bit. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.U bit, events in Non-secure EL0 are counted.

Otherwise, events in Non-secure EL0 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 (Hypervisor) filtering bit. Controls counting in EL2.

If Secure EL2 is implemented, counting in Secure EL2 is further controlled by the PMEVTYPER<n>_EL0.SH bit.

NSH Meaning
0b0 Do not count events in EL2.
0b1 Count events in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M, bit [26]

When EL3 is implemented:

Secure EL3 filtering bit.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in Secure EL3 are counted.

Otherwise, events in Secure EL3 are not counted.

Most applications can ignore this field and set its value to 0b0.

Note

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 3988

This field is not visible in the AArch32 PMEVTYPER<n> System register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MT, bit [25]

When (ARMv8.6-MTPMU is implemented and enabled) or an IMPLEMENTATION DEFINED multi-threaded PMU Extension is
implemented:

Multithreading.

MT Meaning
0b0 Count events only on controlling PE.
0b1 Count events from any PE with the same affinity at level 1 and

above as this PE.

Note
• When the lowest level of affinity consists of logical PEs that are

implemented using a multi-threading type approach, an implementation
is described as multi-threaded. That is, the performance of PEs at the
lowest affinity level is highly interdependent.

• Events from a different thread of a multithreaded implementation are
not Attributable to the thread counting the event.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SH, bit [24]

When ARMv8.4-SecEL2 is implemented:

Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMEVTYPER<n>_EL0.NSH bit, events in Secure EL2 are
counted.

Otherwise, events in Secure EL2 are not counted.

Note

This field is not visible in the AArch32 PMEVTYPER<n> System register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

T, bit [23]

When TME is implemented:

Transactional state filtering bit. Controls counting in Transactional state. The possible values of this bit are:

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 3989

T Meaning
0b0 This bit has no effect on the filtering of events.
0b1 Do not count events in Transactional state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [22:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]

When ARMv8.1-PMU is implemented:

Extension to evtCount[9:0]. See evtCount[9:0] for more details.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>_EL0.

Software must program this field with an event that is supported by the PE being programmed.

The ranges of event numbers allocated to each type of event are shown in Allocation of the PMU event number space.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior depends on the value
written:

• For the range 0x0000 to 0x003F, no events are counted, and the value returned by a direct or external read of
the evtCount field is the value written to the field.

• If 16-bit evtCount is implemented, for the range 0x4000 to 0x403F, no events are counted, and the value
returned by a direct or external read of the evtCount field is the value written to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted, and the value returned
by a direct or external read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

Arm recommends that the behavior across a family of implementations is defined such that if a given implementation
does not include an event from a set of common IMPLEMENTATION DEFINED events, then no event is counted and the
value read back on evtCount is the value written.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMEVTYPER<n>_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 3990

PMEVTYPER<n>_EL0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0x400 + 4n PMEVTYPER<n>_EL0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 3991

PMINTENCLR_EL1, Performance Monitors Interrupt
Enable Clear register

The PMINTENCLR_EL1 characteristics are:

Purpose
Disables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR_EL0, and the
event counters PMEVCNTR<n>_EL0. Reading the register shows which overflow interrupt requests are enabled.

Configuration
External register PMINTENCLR_EL1 bits [31:0] are architecturally mapped to AArch64 System register
PMINTENCLR_EL1[31:0] .

External register PMINTENCLR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
PMINTENCLR[31:0] .

PMINTENCLR_EL1 is in the Core power domain.

Attributes
PMINTENCLR_EL1 is a 32-bit register.

Field descriptions
The PMINTENCLR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C P<n>, bit [n]

C, bit [31]

PMCCNTR_EL0 overflow interrupt request disable bit. Possible values are:

C Meaning
0b0 When read, means the cycle counter overflow interrupt request is

disabled. When written, has no effect.
0b1 When read, means the cycle counter overflow interrupt request is

enabled. When written, disables the cycle count overflow interrupt
request.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter overflow interrupt request disable bit for PMEVCNTR<n>_EL0.

If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are RAZ/WI.

P<n> Meaning
0b0 When read, means that the PMEVCNTR<n>_EL0 event counter

interrupt request is disabled. When written, has no effect.
0b1 When read, means that the PMEVCNTR<n>_EL0 event counter

interrupt request is enabled. When written, disables the
PMEVCNTR<n>_EL0 interrupt request.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register

Page 3992

Accessing the PMINTENCLR_EL1

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMINTENCLR_EL1 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xC60 PMINTENCLR_EL1

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register

Page 3993

PMINTENSET_EL1, Performance Monitors Interrupt
Enable Set register

The PMINTENSET_EL1 characteristics are:

Purpose
Enables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR_EL0, and the
event counters PMEVCNTR<n>_EL0. Reading the register shows which overflow interrupt requests are enabled.

Configuration
External register PMINTENSET_EL1 bits [31:0] are architecturally mapped to AArch64 System register
PMINTENSET_EL1[31:0] .

External register PMINTENSET_EL1 bits [31:0] are architecturally mapped to AArch32 System register
PMINTENSET[31:0] .

PMINTENSET_EL1 is in the Core power domain.

Attributes
PMINTENSET_EL1 is a 32-bit register.

Field descriptions
The PMINTENSET_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C P<n>, bit [n]

C, bit [31]

PMCCNTR_EL0 overflow interrupt request enable bit. Possible values are:

C Meaning
0b0 When read, means the cycle counter overflow interrupt request is

disabled. When written, has no effect.
0b1 When read, means the cycle counter overflow interrupt request is

enabled. When written, enables the cycle count overflow interrupt
request.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter overflow interrupt request enable bit for PMEVCNTR<n>_EL0.

If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are RAZ/WI.

P<n> Meaning
0b0 When read, means that the PMEVCNTR<n>_EL0 event counter

interrupt request is disabled. When written, has no effect.
0b1 When read, means that the PMEVCNTR<n>_EL0 event counter

interrupt request is enabled. When written, enables the
PMEVCNTR<n>_EL0 interrupt request.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register

Page 3994

Accessing the PMINTENSET_EL1

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMINTENSET_EL1 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xC40 PMINTENSET_EL1

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register

Page 3995

PMITCTRL, Performance Monitors Integration mode
Control register

The PMITCTRL characteristics are:

Purpose
Enables the Performance Monitors to switch from default mode into integration mode, where test software can control
directly the inputs and outputs of the PE, for integration testing or topology detection.

Configuration
It is IMPLEMENTATION DEFINED whether PMITCTRL is implemented in the Core power domain or in the Debug power
domain.

Implementation of this register is OPTIONAL.

Attributes
PMITCTRL is a 32-bit register.

Field descriptions
The PMITCTRL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IME

Bits [31:1]

Reserved, RES0.

IME, bit [0]

Integration mode enable. When IME == 1, the device reverts to an integration mode to enable integration testing or
topology detection. The integration mode behavior is IMPLEMENTATION DEFINED.

IME Meaning
0b0 Normal operation.
0b1 Integration mode enabled.

On a Implementation reset, this field resets to 0.

Accessing the PMITCTRL

PMITCTRL can be accessed through the external debug interface:

Component Offset Instance
PMU 0xF00 PMITCTRL

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

PMITCTRL, Performance Monitors Integration mode Control register

Page 3996

• Otherwise accesses to this register are IMPDEF.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMITCTRL, Performance Monitors Integration mode Control register

Page 3997

PMLAR, Performance Monitors Lock Access Register
The PMLAR characteristics are:

Purpose
Allows or disallows access to the Performance Monitors registers through a memory-mapped interface.

The optional Software Lock provides a lock to prevent memory-mapped writes to the Performance Monitors registers.
Use of this lock mechanism reduces the risk of accidental damage to the contents of the Performance Monitors
registers. It does not, and cannot, prevent all accidental or malicious damage.

Configuration
If ARMv8.3-DoPD is implemented, then ARMv8.0-SoftwareLock is not implemented by the architecturally-defined
debug components of the PE in the Core power domain.

If ARMv8.3-DoPD is not implemented, then this register is in the Debug power domain.

Software uses PMLAR to set or clear the lock, and PMLSR to check the current status of the lock.

Attributes
PMLAR is a 32-bit register.

Field descriptions
The PMLAR bit assignments are:

When the Software Lock is implemented.:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
KEY

KEY, bits [31:0]

Lock Access control. Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to this
component's registers through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to this component's registers through a
memory mapped interface.

Otherwise:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Otherwise

Bits [31:0]

Reserved, RES0.

PMLAR, Performance Monitors Lock Access Register

Page 3998

Accessing the PMLAR

PMLAR can be accessed through the memory-mapped interfaces:

Component Offset Instance
PMU 0xFB0 PMLAR

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are WO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMLAR, Performance Monitors Lock Access Register

Page 3999

PMLSR, Performance Monitors Lock Status Register
The PMLSR characteristics are:

Purpose
Indicates the current status of the software lock for Performance Monitors registers.

The optional Software Lock provides a lock to prevent memory-mapped writes to the Performance Monitors registers.
Use of this lock mechanism reduces the risk of accidental damage to the contents of the Performance Monitors
registers. It does not, and cannot, prevent all accidental or malicious damage.

Configuration
If ARMv8.3-DoPD is implemented, then ARMv8.0-SoftwareLock is not implemented by the architecturally-defined
debug components of the PE in the Core power domain.

If ARMv8.3-DoPD is not implemented, then this register is in the Debug power domain.

Software uses PMLAR to set or clear the lock, and PMLSR to check the current status of the lock.

Attributes
PMLSR is a 32-bit register.

Field descriptions
The PMLSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 nTTSLKSLI

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Not thirty-two bit access required. RAZ.

SLK, bit [1]

When the Software Lock is implemented.:

Software Lock status for this component. For an access to LSR that is not a memory-mapped access, or when the
Software Lock is not implemented, this field is RES0.

For memory-mapped accesses when the software lock is implemented, possible values of this field are:

SLK Meaning
0b0 Lock clear. Writes are permitted to this component's registers.
0b1 Lock set. Writes to this component's registers are ignored, and

reads have no side effects.

The following resets apply:

• If Armv8.3-DoPD is implemented, this register is reset by Cold reset and not affected by External debug
reset. If Armv8.3-DoPD is not implemented, this register is reset by External debug reset and not affected by
Cold reset.

PMLSR, Performance Monitors Lock Status Register

Page 4000

• On a Cold reset, this field resets to 1.

Otherwise:

Reserved, RAZ.

SLI, bit [0]

Software Lock implemented. For an access to LSR that is not a memory-mapped access, this field is RAZ. For memory-
mapped accesses, the value of this field is IMPLEMENTATION DEFINED. Permitted values are:

SLI Meaning
0b0 Software Lock not implemented or not memory-mapped access.
0b1 Software Lock implemented and memory-mapped access.

Accessing the PMLSR

PMLSR can be accessed through the memory-mapped interfaces:

Component Offset Instance
PMU 0xFB4 PMLSR

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMLSR, Performance Monitors Lock Status Register

Page 4001

PMMIR, Performance Monitors Machine Identification
Register

The PMMIR characteristics are:

Purpose
Describes Performance Monitors parameters specific to the implementation.

Configuration
PMMIR is in the Core power domain.

This register is present only when ARMv8.4-PMU is implemented. Otherwise, direct accesses to PMMIR are RES0.

Attributes
PMMIR is a 32-bit register.

Field descriptions
The PMMIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SLOTS

Bits [31:8]

Reserved, RES0.

SLOTS, bits [7:0]

Operation width. The largest value by which the STALL_SLOT event might increment by in a single cycle. If the
STALL_SLOT event is implemented, this field must not be zero.

Accessing the PMMIR
If the Core power domain is off or in a low-power state, access on this interface returns an Error.

PMMIR can be accessed through the external debug interface:

Component Offset Instance
PMU 0xE40 PMMIR

This interface is accessible as follows:

• When !IsCorePowered(), or DoubleLockStatus(), or OSLockStatus() or !AllowExternalPMUAccess() accesses to
this register generate an error response.

• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMMIR, Performance Monitors Machine Identification Register

Page 4002

PMOVSCLR_EL0, Performance Monitors Overflow Flag
Status Clear register

The PMOVSCLR_EL0 characteristics are:

Purpose
Contains the state of the overflow bit for the Cycle Count Register, PMCCNTR_EL0, and each of the implemented
event counters PMEVCNTR<n>. Writing to this register clears these bits.

Configuration
External register PMOVSCLR_EL0 bits [31:0] are architecturally mapped to AArch64 System register
PMOVSCLR_EL0[31:0] .

External register PMOVSCLR_EL0 bits [31:0] are architecturally mapped to AArch32 System register PMOVSR[31:0] .

PMOVSCLR_EL0 is in the Core power domain.

Attributes
PMOVSCLR_EL0 is a 32-bit register.

Field descriptions
The PMOVSCLR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C P<n>, bit [n]

C, bit [31]

Cycle counter overflow clear bit.

C Meaning
0b0 When read, means the cycle counter has not overflowed since this

bit was last cleared. When written, has no effect.
0b1 When read, means the cycle counter has overflowed since this bit

was last cleared. When written, clears the cycle counter overflow
bit to 0.

PMCR_EL0.LC controls whether an overflow is detected from unsigned overflow of PMCCNTR_EL0[31:0] or unsigned
overflow of PMCCNTR_EL0[63:0].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter overflow clear bit for PMEVCNTR<n>_EL0.

If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are RAZ/WI.

PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear register

Page 4003

P<n> Meaning
0b0 When read, means that PMEVCNTR<n>_EL0 has not

overflowed since this bit was last cleared. When written, has no
effect.

0b1 When read, means that PMEVCNTR<n>_EL0 has overflowed
since this bit was last cleared. When written, clears the
PMEVCNTR<n>_EL0 overflow bit to 0.

If ARMv8.5-PMU is implemented, MDCR_EL2.HLP and PMCR_EL0.LP control whether an overflow is detected from
unsigned overflow of PMEVCNTR<n>_EL0[31:0] or unsigned overflow of PMEVCNTR<n>_EL0[63:0].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMOVSCLR_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMOVSCLR_EL0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xC80 PMOVSCLR_EL0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear register

Page 4004

PMOVSSET_EL0, Performance Monitors Overflow Flag
Status Set register

The PMOVSSET_EL0 characteristics are:

Purpose
Sets the state of the overflow bit for the Cycle Count Register, PMCCNTR_EL0, and each of the implemented event
counters PMEVCNTR<n>.

Configuration
External register PMOVSSET_EL0 bits [31:0] are architecturally mapped to AArch64 System register
PMOVSSET_EL0[31:0] .

External register PMOVSSET_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMOVSSET[31:0] .

PMOVSSET_EL0 is in the Core power domain.

Attributes
PMOVSSET_EL0 is a 32-bit register.

Field descriptions
The PMOVSSET_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C P<n>, bit [n]

C, bit [31]

Cycle counter overflow set bit.

C Meaning
0b0 When read, means the cycle counter has not overflowed since this

bit was last cleared. When written, has no effect.
0b1 When read, means the cycle counter has overflowed since this bit

was last cleared. When written, sets the cycle counter overflow bit
to 1.

PMCR_EL0.LC controls whether an overflow is detected from unsigned overflow of PMCCNTR_EL0[31:0] or unsigned
overflow of PMCCNTR_EL0[63:0].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter overflow set bit for PMEVCNTR<n>_EL0.

If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are RAZ/WI.

PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register

Page 4005

P<n> Meaning
0b0 When read, means that PMEVCNTR<n>_EL0 has not

overflowed since this bit was last cleared. When written, has no
effect.

0b1 When read, means that PMEVCNTR<n>_EL0 has overflowed
since this bit was last cleared. When written, sets the
PMEVCNTR<n>_EL0 overflow bit to 1.

If ARMv8.5-PMU is implemented, MDCR_EL2.HLP and PMCR_EL0.LP control whether an overflow is detected from
unsigned overflow of PMEVCNTR<n>_EL0[31:0] or unsigned overflow of PMEVCNTR<n>_EL0[63:0].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMOVSSET_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMOVSSET_EL0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xCC0 PMOVSSET_EL0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register

Page 4006

PMPCSR, Program Counter Sample Register
The PMPCSR characteristics are:

Purpose
Holds a sampled instruction address value.

Configuration
PMPCSR is in the Core power domain.

This register is present only when ARMv8.2-PCSample is implemented. Otherwise, direct accesses to PMPCSR are
RES0.

Note

Before Armv8.2, the PC Sample-based Profiling Extension can be implemented
in the external debug register space, as indicated by the value of
EDDEVID.PCSample.

Support for 64-bit atomic reads is IMPLEMENTATION DEFINED. If 64-bit atomic reads are implemented, a 64-bit read of
PMPCSR has the same side-effect as a 32-bit read of PMCSR[31:0] followed by a 32-bit read of PMPCSR[63:32],
returning the combined value. For example, if the PE is in Debug state then a 64-bit atomic read returns bits[31:0] ==
0xFFFFFFFF and bits[63:32] UNKNOWN.

Attributes
PMPCSR is a 64-bit register.

Field descriptions
The PMPCSR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS EL T RES0 PCSample[55:32]

PCSample[31:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

Non-secure state sample. Indicates the Security state that is associated with the most recent PMPCSR sample or,
when it is read as a single atomic 64-bit read, the current PMPCSR sample.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

NS Meaning
0b0 Sample is from Secure state.
0b1 Sample is from Non-secure state.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

EL, bits [62:61]

Exception level status sample. Indicates the Exception level that is associated with the most recent PMPCSR sample
or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

PMPCSR, Program Counter Sample Register

Page 4007

EL Meaning
0b00 Sample is from EL0.
0b01 Sample is from EL1.
0b10 Sample is from EL2.
0b11 Sample is from EL3.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

T, bit [60]

When TME is implemented:

Transactional state of the sample. Indicates the Transactional state that is associated with the most recent PMPCSR
sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

T Meaning
0b0 Sample is from Non-transactional state.
0b1 Sample is from Transactional state.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [59:56]

Reserved, RES0.

PCSample[55:32], bits [55:32]

Bits[55:32] of the sampled instruction address value. The translation regime that PMPCSR samples can be determined
from PMPCSR.{NS,EL}.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

PCSample[31:0], bits [31:0]

Bits[31:0] of the sampled instruction address value.

PMPCSR[31:0] reads as 0xFFFFFFFF when any of the following are true:

• The PE is in Debug state.
• PC Sample-based profiling is prohibited.

If an instruction has retired since the PE left Reset state, then the first read of PMPCSR[31:0] is permitted but not
required to return 0xFFFFFFFF.

PMPCSR[31:0] reads as an UNKNOWN value when any of the following are true:

• The PE is in Reset state.
• No instruction has retired since the PE left Reset state, Debug state, or a state where PC Sample-based

Profiling is prohibited.
• No instruction has retired since the last read of PMPCSR[31:0].

For the cases where a read of PMPCSR[31:0] returns 0xFFFFFFFF or an UNKNOWN value, the read has the side-effect of
setting PMPCSR[63:32], PMCID1SR, PMCID2SR, and PMVIDSR to UNKNOWN values.

Otherwise, a read of PMPCSR[31:0] returns bits [31:0] of the sampled instruction address value and has the side-effect
of indirectly writing to PMPCSR[63:32], PMCID1SR, PMCID2SR, and PMVIDSR. The translation regime that PMPCSR
samples can be determined from PMPCSR.{NS,EL}.

For a read of PMPCSR[31:0] from the memory-mapped interface, if PMLSR.SLK == 1, meaning the OPTIONAL Software
Lock is locked, then the side-effect of the access does not occur and PMPCSR[63:32], PMCID1SR, PMCID2SR, and
PMVIDSR are unchanged.

PMPCSR, Program Counter Sample Register

Page 4008

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMPCSR
IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see 'Permitted
behavior that might make the PC Sample-based profiling registers UNKNOWN' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile

PMPCSR can be accessed through the external debug interface:

Component Offset Instance Range
PMU 0x200 PMPCSR 31:0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

Component Offset Instance Range
PMU 0x204 PMPCSR 63:32

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

Component Offset Instance Range
PMU 0x220 PMPCSR 31:0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

Component Offset Instance Range
PMU 0x224 PMPCSR 63:32

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMPCSR, Program Counter Sample Register

Page 4009

PMPIDR0, Performance Monitors Peripheral
Identification Register 0

The PMPIDR0 characteristics are:

Purpose
Provides information to identify a Performance Monitor component.

For more information see 'About the Peripheral identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
PMPIDR0 is a 32-bit register.

Field descriptions
The PMPIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PART_0

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, least significant byte.

Accessing the PMPIDR0

PMPIDR0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFE0 PMPIDR0

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

PMPIDR0, Performance Monitors Peripheral Identification Register 0

Page 4010

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMPIDR0, Performance Monitors Peripheral Identification Register 0

Page 4011

PMPIDR1, Performance Monitors Peripheral
Identification Register 1

The PMPIDR1 characteristics are:

Purpose
Provides information to identify a Performance Monitor component.

For more information see 'About the Peripheral identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
PMPIDR1 is a 32-bit register.

Field descriptions
The PMPIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 DES_0 PART_1

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.

PART_1, bits [3:0]

Part number, most significant nibble.

Accessing the PMPIDR1

PMPIDR1 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFE4 PMPIDR1

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

PMPIDR1, Performance Monitors Peripheral Identification Register 1

Page 4012

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMPIDR1, Performance Monitors Peripheral Identification Register 1

Page 4013

PMPIDR2, Performance Monitors Peripheral
Identification Register 2

The PMPIDR2 characteristics are:

Purpose
Provides information to identify a Performance Monitor component.

For more information see 'About the Peripheral identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
PMPIDR2 is a 32-bit register.

Field descriptions
The PMPIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 REVISION JEDEC DES_1

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Part major revision. Parts can also use this field to extend Part number to 16-bits.

JEDEC, bit [3]

RAO. Indicates a JEP106 identity code is used.

DES_1, bits [2:0]

Designer, most significant bits of JEP106 ID code. For Arm Limited, this field is 0b011.

Accessing the PMPIDR2

PMPIDR2 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFE8 PMPIDR2

PMPIDR2, Performance Monitors Peripheral Identification Register 2

Page 4014

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMPIDR2, Performance Monitors Peripheral Identification Register 2

Page 4015

PMPIDR3, Performance Monitors Peripheral
Identification Register 3

The PMPIDR3 characteristics are:

Purpose
Provides information to identify a Performance Monitor component.

For more information see 'About the Peripheral identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
PMPIDR3 is a 32-bit register.

Field descriptions
The PMPIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 REVAND CMOD

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Part minor revision. Parts using PMPIDR2.REVISION as an extension to the Part number must use this field as a major
revision number.

CMOD, bits [3:0]

Customer modified. Indicates someone other than the Designer has modified the component.

Accessing the PMPIDR3

PMPIDR3 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFEC PMPIDR3

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.

PMPIDR3, Performance Monitors Peripheral Identification Register 3

Page 4016

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMPIDR3, Performance Monitors Peripheral Identification Register 3

Page 4017

PMPIDR4, Performance Monitors Peripheral
Identification Register 4

The PMPIDR4 characteristics are:

Purpose
Provides information to identify a Performance Monitor component.

For more information see 'About the Peripheral identification scheme' in the Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile, section H8 (About the External Debug Registers).

Configuration
Implementation of this register is OPTIONAL.

If ARMv8.3-DoPD is implemented, this register is in the Core power domain. If ARMv8.3-DoPD is not implemented,
this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
PMPIDR4 is a 32-bit register.

Field descriptions
The PMPIDR4 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SIZE DES_2

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component. RAZ. Log2 of the number of 4KB pages from the start of the component to the end of the
component ID registers.

DES_2, bits [3:0]

Designer, JEP106 continuation code, least significant nibble. For Arm Limited, this field is 0b0100.

Accessing the PMPIDR4

PMPIDR4 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFD0 PMPIDR4

This interface is accessible as follows:

• When ARMv8.3-DoPD is not implemented or IsCorePowered() accesses to this register are RO.

PMPIDR4, Performance Monitors Peripheral Identification Register 4

Page 4018

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMPIDR4, Performance Monitors Peripheral Identification Register 4

Page 4019

PMSWINC_EL0, Performance Monitors Software
Increment register

The PMSWINC_EL0 characteristics are:

Purpose
Increments a counter that is configured to count the Software increment event, event 0x00. For more information, see
'SW_INCR' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section D5.

Configuration
External register PMSWINC_EL0 bits [31:0] are architecturally mapped to AArch64 System register
PMSWINC_EL0[31:0] .

External register PMSWINC_EL0 bits [31:0] are architecturally mapped to AArch32 System register PMSWINC[31:0] .

PMSWINC_EL0 is in the Core power domain.

Implementation of this register is OPTIONAL.

If this register is implemented, use of it is deprecated.

If 1 is written to bit [n] from the external debug interface, it is CONSTRAINED UNPREDICTABLE whether or not a SW_INCR
event is created for counter n. This is consistent with not implementing the register in the external debug interface.

Attributes
PMSWINC_EL0 is a 32-bit register.

Field descriptions
The PMSWINC_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 P<n>, bit [n]

Bit [31]

Reserved, RES0.

P<n>, bit [n], for n = 0 to 30

Event counter software increment bit for PMEVCNTR<n>_EL0.

If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are WI.

P<n> Meaning
0b0 No action. The write to this bit is ignored.
0b1 It is CONSTRAINED UNPREDICTABLE whether a SW_INCR event is

generated for event counter n.

Accessing the PMSWINC_EL0

Note

PMSWINC_EL0, Performance Monitors Software Increment register

Page 4020

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMSWINC_EL0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xCA0 PMSWINC_EL0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are WI.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are WO.

• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMSWINC_EL0, Performance Monitors Software Increment register

Page 4021

PMVIDSR, VMID Sample Register
The PMVIDSR characteristics are:

Purpose
Contains the sampled VMID value that is captured on reading PMPCSR[31:0].

Configuration
PMVIDSR is in the Core power domain.

This register is present only when ARMv8.2-PCSample is implemented and EL2 is implemented. Otherwise, direct
accesses to PMVIDSR are RES0.

Note

Before Armv8.2, the PC Sample-based Profiling Extension can be implemented
in the external debug register space, as indicated by the value of
EDDEVID.PCSample.

Attributes
PMVIDSR is a 32-bit register.

Field descriptions
The PMVIDSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 VMID[15:8] VMID

Bits [31:16]

Reserved, RES0.

VMID[15:8], bits [15:8]

When ARMv8.1-VMID16 is implemented:

Extension to VMID[7:0]. See VMID[7:0] for more details.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID, bits [7:0]

VMID sample. The VMID associated with the most recent PMPCSR sample. When the most recent PMPCSR sample
was generated:

• This field is set to an UNKNOWN value if any of the following apply:
◦ EL2 is disabled in the current Security state.
◦ The PE is executing at EL2.

PMVIDSR, VMID Sample Register

Page 4022

◦ EL2 is enabled in the current Security state, the PE is executing at EL0, EL2 is using AArch64,
HCR_EL2.E2H == 1, and HCR_EL2.TGE == 1.

• Otherwise:
◦ If EL2 is using AArch64 and either ARMv8.1-VMID16 is not implemented or VTCR_EL2.VS is 1, this

field is set to VTTBR_EL2.VMID.
◦ If EL2 is using AArch64, ARMv8.1-VMID16 is implemented, and VTCR_EL2.VS is 0,

PMVIDSR.VMID[7:0] is set to VTTBR_EL2.VMID[7:0] and PMVIDSR.VMID[15:8] is RES0.
◦ If EL2 is using AArch32, this field is set to VTTBR.VMID.

Because the value written to PMVIDR is an indirect read of the VMID value, it is CONSTRAINED UNPREDICTABLE whether
PMVIDSR is set to the original or new value if PMPCSR samples:

• An instruction that writes to the VMID value.
• The next Context synchronization event.
• Any instruction executed between these two instructions.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMVIDSR
IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see 'Permitted
behavior that might make the PC Sample-based profiling registers UNKNOWN' in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile

PMVIDSR can be accessed through the external debug interface:

Component Offset Instance
PMU 0x20C PMVIDSR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMVIDSR, VMID Sample Register

Page 4023

TRCACATR<n>, Address Comparator Access Type
Register <n>, n = 0 - 15

The TRCACATR<n> characteristics are:

Purpose
Defines the type of access for the corresponding TRCACVR<n> Register. This register configures the context type,
Exception levels, alignment, masking that is applied by the Address Comparator, and how the Address Comparator
behaves when it is one half of an Address Range Comparator.

Configuration
External register TRCACATR<n> bits [63:0] are architecturally mapped to AArch64 System register
TRCACATR<n>[63:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMACPAIRS * 2 > n. Otherwise, direct
accesses to TRCACATR<n> are RES0.

Attributes
TRCACATR<n> is a 64-bit register.

Field descriptions
The TRCACATR<n> bit assignments are:

6362616059585756555453525150494847 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 EXLEVEL_NS_EL2EXLEVEL_NS_EL1EXLEVEL_NS_EL0EXLEVEL_S_EL3EXLEVEL_S_EL2EXLEVEL_S_EL1EXLEVEL_S_EL0RES0CONTEXTCONTEXTTYPERES0
3130292827262524232221201918171615 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:15]

Reserved, RES0.

EXLEVEL_NS_EL2, bit [14]

When Non-secure EL2 is implemented:

Non-secure EL2 address comparison control. Controls whether a comparison can occur at EL2 in Non-secure state.

EXLEVEL_NS_EL2 Meaning
0b0 The Address Comparator performs comparisons in

Non-secure EL2.
0b1 The Address Comparator does not perform

comparisons in Non-secure EL2.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCACATR<n>, Address Comparator Access Type Register <n>, n = 0 - 15

Page 4024

EXLEVEL_NS_EL1, bit [13]

When Non-secure EL1 is implemented:

Non-secure EL1 address comparison control. Controls whether a comparison can occur at EL1 in Non-secure state.

EXLEVEL_NS_EL1 Meaning
0b0 The Address Comparator performs comparisons in

Non-secure EL1.
0b1 The Address Comparator does not perform

comparisons in Non-secure EL1.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_NS_EL0, bit [12]

When Non-secure EL0 is implemented:

Non-secure EL0 address comparison control. Controls whether a comparison can occur at EL0 in Non-secure state.

EXLEVEL_NS_EL0 Meaning
0b0 The Address Comparator performs comparisons in

Non-secure EL0.
0b1 The Address Comparator does not perform

comparisons in Non-secure EL0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL3, bit [11]

When EL3 is implemented:

Secure EL3 address comparison control. Controls whether a comparison can occur at EL3 in Secure state.

EXLEVEL_S_EL3 Meaning
0b0 The Address Comparator performs comparisons in

Secure EL3.
0b1 The Address Comparator does not perform

comparisons in Secure EL3.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL2, bit [10]

When EL2 is implemented and ARMv8.4-SecEL2 is implemented:

Secure EL2 address comparison control. Controls whether a comparison can occur at EL2 in Secure state.

TRCACATR<n>, Address Comparator Access Type Register <n>, n = 0 - 15

Page 4025

EXLEVEL_S_EL2 Meaning
0b0 The Address Comparator performs comparisons in

Secure EL2.
0b1 The Address Comparator does not perform

comparisons in Secure EL2.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL1, bit [9]

When Secure EL1 is implemented:

Secure EL1 address comparison control. Controls whether a comparison can occur at EL1 in Secure state.

EXLEVEL_S_EL1 Meaning
0b0 The Address Comparator performs comparisons in

Secure EL1.
0b1 The Address Comparator does not perform

comparisons in Secure EL1.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL0, bit [8]

When Secure EL0 is implemented:

Secure EL0 address comparison control. Controls whether a comparison can occur at EL0 in Secure state.

EXLEVEL_S_EL0 Meaning
0b0 The Address Comparator performs comparisons in

Secure EL0.
0b1 The Address Comparator does not perform

comparisons in Secure EL0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [7]

Reserved, RES0.

CONTEXT, bits [6:4]

Selects a Context Identifier Comparator or Virtual Context Identifier Comparator:

TRCACATR<n>, Address Comparator Access Type Register <n>, n = 0 - 15

Page 4026

CONTEXT Meaning
0b000 Comparator 0.
0b001 Comparator 1.
0b010 Comparator 2.
0b011 Comparator 3.
0b100 Comparator 4.
0b101 Comparator 5.
0b110 Comparator 6.
0b111 Comparator 7.

The width of this field is dependent on the maximum number of Context Identifier Comparators or Virtual Context
Identifier Comparators implemented. Unimplemented bits are RES0.

If TRCIDR4.NUMCIDC == 0b0000 and TRCIDR4.NUMVMIDC == 0b0000, then this field is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

CONTEXTTYPE, bits [3:2]

Controls whether the Address Comparator is dependent on a Context Identifier Comparator, a Virtual Context
Identifier Comparator, or both comparisons:

CONTEXTTYPE Meaning
0b00 The Address Comparator is not dependent on the

Context Identifier Comparators or Virtual Context
Identifier Comparators.

0b01 The Address Comparator is dependent on the Context
Identifier Comparator that the CONTEXT field
specifies. If both the Context Identifier Comparator
and the address comparison match, the Address
Comparator signals a match.

0b10 The Address Comparator is dependent on the Virtual
Context Identifier Comparator that the CONTEXT
field specifies. If both the Virtual Context Identifier
Comparator and the address comparison match, the
Address Comparator signals a match.

0b11 The Address Comparator is dependent on the Context
Identifier Comparator and Virtual Context Identifier
Comparator that the CONTEXT field specifies. If the
Context Identifier Comparator, the Virtual Context
Identifier Comparator and address comparison all
match, the Address Comparator signals a match.

If TRCIDR4.NUMCIDC == 0b0000, then bit [2] is RES0.

If TRCIDR4.NUMVMIDC == 0b0000, then bit [3] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

Accessing the TRCACATR<n>
Must be programmed if any of the following are true:

• TRCBBCTLR.RANGE[n/2] == 0b1.
• TRCRSCTLR<a>.GROUP == 0b0100 and TRCRSCTLR<a>.SAC[n] == 0b1.
• TRCRSCTLR<a>.GROUP == 0b0101 and TRCRSCTLR<a>.ARC[n/2] == 0b1.
• TRCVIIECTLR.EXCLUDE[n/2] == 0b1.
• TRCVIIECTLR.INCLUDE[n/2] == 0b1.
• TRCVISSCTLR.START[n] == 0b1.
• TRCVISSCTLR.STOP[n] == 0b1.
• TRCSSCCR<>.ARC[n/2] == 0b1.
• TRCSSCCR<>.SAC[n] == 0b1.
• TRCQCTLR.RANGE[n/2] == 0b1.

TRCACATR<n>, Address Comparator Access Type Register <n>, n = 0 - 15

Page 4027

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCACATR<n> can be accessed through the external debug interface:

Component Offset Instance
ETE 0x480 + 8n TRCACATR<n>

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCACATR<n>, Address Comparator Access Type Register <n>, n = 0 - 15

Page 4028

TRCACVR<n>, Address Comparator Value Register
<n>, n = 0 - 15

The TRCACVR<n> characteristics are:

Purpose
Contains the address value.

Configuration
External register TRCACVR<n> bits [63:0] are architecturally mapped to AArch64 System register
TRCACVR<n>[63:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMACPAIRS * 2 > n. Otherwise, direct
accesses to TRCACVR<n> are RES0.

Attributes
TRCACVR<n> is a 64-bit register.

Field descriptions
The TRCACVR<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ADDRESS
ADDRESS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDRESS, bits [63:0]

Address Value.

The Address Comparators can support implementations that use multiple address widths. When the trace unit
compares the ADDRESS field with an address that has a width less than this field, then the address must be zero-
extended to the ADDRESS field width. The trace unit then compares all implemented bits. For example, in a system
that supports both 32-bit and 64-bit addresses, when the PE is in AArch32 state the comparator must zero-extend the
32-bit address and compare against the full 64 bits that are stored in the TRCACVR<n>. This requires that the trace
analyzer always programs all implemented bits of the TRCACVR<n>.

The result of writing a value other than all zeros or all ones to ADDRESS at bits[63:P] is an UNKNOWN value, where P is
defined as the virtual address size supported by the PE.

The result of writing a value of all zeros or all ones to ADDRESS at bits[63:P] is the written value, and a read of the
register returns the written value.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCACVR<n>
Must be programmed if any of the following are true:

• TRCBBCTLR.RANGE[n/2] == 0b1.
• TRCRSCTLR<a>.GROUP == 0b0100 and TRCRSCTLR<a>.SAC[n] == 0b1.
• TRCRSCTLR<a>.GROUP == 0b0101 and TRCRSCTLR<a>.ARC[n/2] == 0b1.
• TRCVIIECTLR.EXCLUDE[n/2] == 0b1.
• TRCVIIECTLR.INCLUDE[n/2] == 0b1.

TRCACVR<n>, Address Comparator Value Register <n>, n = 0 - 15

Page 4029

• TRCVISSCTLR.START[n] == 0b1.
• TRCVISSCTLR.STOP[n] == 0b1.
• TRCSSCCR<>.ARC[n/2] == 0b1.
• TRCSSCCR<>.SAC[n] == 0b1.
• TRCQCTLR.RANGE[n/2] == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCACVR<n> can be accessed through the external debug interface:

Component Offset Instance
ETE 0x400 + 8n TRCACVR<n>

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCACVR<n>, Address Comparator Value Register <n>, n = 0 - 15

Page 4030

TRCAUTHSTATUS, Authentication Status Register
The TRCAUTHSTATUS characteristics are:

Purpose
Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for debug.

For additional information see the CoreSight Architecture Specification.

Configuration
External register TRCAUTHSTATUS bits [31:0] are architecturally mapped to AArch64 System register
TRCAUTHSTATUS[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCAUTHSTATUS are RES0.

Attributes
TRCAUTHSTATUS is a 32-bit register.

Field descriptions
The TRCAUTHSTATUS bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SNID SID NSNID NSID

Bits [31:8]

Reserved, RES0.

SNID, bits [7:6]

Secure Non-invasive Debug. Indicates whether Secure non-invasive debug features are implemented and enabled.

SNID Meaning
0b00 Secure non-invasive debug features not implemented.
0b10 Implemented and disabled.
0b11 Implemented and enabled.

All other values are reserved.

When EL3 is implemented, this field takes the value 0b10 or 0b11 depending whether Secure non-invasive debug is
enabled.

When EL3 is not implemented and the PE is Non-secure, this field reads as 0b00.

When EL3 is not implemented and the PE is Secure, this field takes the value 0b10 or 0b11 depending whether Secure
non-invasive debug is enabled.

SID, bits [5:4]

Secure Invasive Debug. Indicates whether Secure invasive debug features are implemented and enabled.

TRCAUTHSTATUS, Authentication Status Register

Page 4031

SID Meaning
0b00 Secure invasive debug features not implemented.
0b10 Implemented and disabled.
0b11 Implemented and enabled.

All other values are reserved.

This field reads as 0b00.

NSNID, bits [3:2]

Non-secure Non-invasive Debug. Indicates whether Non-secure non-invasive debug features are implemented and
enabled.

NSNID Meaning
0b00 Non-secure non-invasive debug features not implemented.
0b10 Implemented and disabled.
0b11 Implemented and enabled.

All other values are reserved.

When EL3 is implemented, this field reads as 0b11.

When EL3 is not implemented and the PE is Non-secure, this field reads as 0b11.

When EL3 is not implemented and the PE is Secure, this field reads as 0b00.

NSID, bits [1:0]

Non-secure Invasive Debug. Indicates whether Non-secure invasive debug features are implemented and enabled.

NSID Meaning
0b00 Non-secure invasive debug features not implemented.
0b10 Implemented and disabled.
0b11 Implemented and enabled.

All other values are reserved.

This field reads as 0b00.

Accessing the TRCAUTHSTATUS
For implementations that support multiple access mechanisms, different access mechanisms can return different
values for reads of TRCAUTHSTATUS if the authentication signals have changed and that change has not yet been
synchronized by a Context synchronization event. This scenario can happen if, for example, the external debugger
view is implemented separately from the system instruction view to allow for separate power domains, and so
observes changes on the signals differently.

External debugger accesses to this register are unaffected by the OS Lock.

TRCAUTHSTATUS can be accessed through the external debug interface:

Component Offset
ETE 0xFB8

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCAUTHSTATUS, Authentication Status Register

Page 4032

TRCAUXCTLR, Auxillary Control Register
The TRCAUXCTLR characteristics are:

Purpose
The function of this register is IMPLEMENTATION DEFINED.

Configuration
External register TRCAUXCTLR bits [31:0] are architecturally mapped to AArch64 System register
TRCAUXCTLR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCAUXCTLR are RES0.

Attributes
TRCAUXCTLR is a 32-bit register.

Field descriptions
The TRCAUXCTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

IMPLEMENTATION_DEFINED.

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION DEFINED behavior.

On a Trace unit reset, this field resets to 0.

Accessing the TRCAUXCTLR
If this register is set to nonzero then it might cause the behavior of a trace unit to contradict this architecture
specification. See the documentation of the specific implementation for information about the IMPLEMENTATION DEFINED
support for this register.

TRCAUXCTLR can be accessed through the external debug interface:

Component Offset
ETE 0x018

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCAUXCTLR, Auxillary Control Register

Page 4033

TRCBBCTLR, Branch Broadcast Control Register
The TRCBBCTLR characteristics are:

Purpose
Controls the regions in the memory map where branch broadcasting is active.

Configuration
External register TRCBBCTLR bits [31:0] are architecturally mapped to AArch64 System register TRCBBCTLR[31:0] .

This register is present only when ETE is implemented, TRCIDR0.TRCBB == 0b1 and TRCIDR4.NUMACPAIRS >
0b0000. Otherwise, direct accesses to TRCBBCTLR are RES0.

Attributes
TRCBBCTLR is a 32-bit register.

Field descriptions
The TRCBBCTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 MODE RANGE<m>, bit [m]

Bits [31:9]

Reserved, RES0.

MODE, bit [8]

Mode.

MODE Meaning
0b0 Exclude Mode.

Branch broadcasting is not active for instructions in the
address ranges defined by RANGE.
If RANGE == 0x00 then branch broadcasting is active for all
instructions.

0b1 Include Mode.
Branch broadcasting is active for instructions in the address
ranges defined by RANGE.
If RANGE == 0x00 then the behavior of the trace unit is
CONSTRAINED UNPREDICTABLE. That is, the trace unit might or
might not consider any instructions to be in a branch
broadcasting region.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RANGE<m>, bit [m], for m = 0 to 7

Address range field.

Selects which Address Range Comparators are in use with branch broadcasting.

TRCBBCTLR, Branch Broadcast Control Register

Page 4034

RANGE<m> Meaning
0b0 The address range that Address Range Comparator m

defines, is not selected.
0b1 The address range that Address Range Comparator m

defines, is selected.

This bit is RES0 if m >= TRCIDR4.NUMACPAIRS.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCBBCTLR
Must be programmed if TRCCONFIGR.BB == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCBBCTLR can be accessed through the external debug interface:

Component Offset
ETE 0x03C

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCBBCTLR, Branch Broadcast Control Register

Page 4035

TRCCCCTLR, Cycle Count Control Register
The TRCCCCTLR characteristics are:

Purpose
Set the threshold value for cycle counting.

Configuration
External register TRCCCCTLR bits [31:0] are architecturally mapped to AArch64 System register TRCCCCTLR[31:0] .

This register is present only when ETE is implemented and TRCIDR0.TRCCCI == 0b1. Otherwise, direct accesses to
TRCCCCTLR are RES0.

Attributes
TRCCCCTLR is a 32-bit register.

Field descriptions
The TRCCCCTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 THRESHOLD

Bits [31:12]

Reserved, RES0.

THRESHOLD, bits [11:0]

Sets the threshold value for instruction trace cycle counting.

The minimum threshold value that can be programmed into THRESHOLD is given in TRCIDR3.CCITMIN. If the
THRESHOLD value is smaller than the value in TRCIDR3.CCITMIN then the behavior is CONSTRAINED UNPREDICTABLE.
That is, cycle counts might or might not be included in the trace and the cycle count threshold is not known.

Writing a value of zero when TRCCONFIGR.CCI is set to enable instruction trace cycle counting, results in
CONSTRAINED UNPREDICTABLE behavior. That is, cycle counts might or might not be included in the trace and the cycle
count threshold is not known.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCCCCTLR
Must be programmed if TRCCONFIGR.CCI == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCCCCTLR can be accessed through the external debug interface:

Component Offset
ETE 0x038

This interface is accessible as follows:

TRCCCCTLR, Cycle Count Control Register

Page 4036

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCCCTLR, Cycle Count Control Register

Page 4037

TRCCIDCCTLR0, Context Identifier Comparator Control
Register 0

The TRCCIDCCTLR0 characteristics are:

Purpose
Contains Context identifier mask values for the TRCCIDCVR<n> registers, for n = 0 to 3.

Configuration
External register TRCCIDCCTLR0 bits [31:0] are architecturally mapped to AArch64 System register
TRCCIDCCTLR0[31:0] .

This register is present only when ETE is implemented, TRCIDR4.NUMCIDC > 0x0 and TRCIDR2.CIDSIZE > 0b00000.
Otherwise, direct accesses to TRCCIDCCTLR0 are RES0.

Attributes
TRCCIDCCTLR0 is a 32-bit register.

Field descriptions
The TRCCIDCCTLR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
COMP3<m>, bit [m+24] COMP2<m>, bit [m+16] COMP1<m>, bit [m+8] COMP0<m>, bit [m]

COMP3<m>, bit [m+24], for m = 0 to 7

When TRCIDR4.NUMCIDC > 3:

TRCCIDCVR3 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR3. Each bit in this field
corresponds to a byte in TRCCIDCVR3.

COMP3<m> Meaning
0b0 The trace unit includes TRCCIDCVR3[(m×8+7):(m×8)]

when it performs the Context identifier comparison.
0b1 The trace unit ignores TRCCIDCVR3[(m×8+7):(m×8)]

when it performs the Context identifier comparison.

This bit is RES0 if m >= TRCIDR2.CIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP2<m>, bit [m+16], for m = 0 to 7

When TRCIDR4.NUMCIDC > 2:

TRCCIDCVR2 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR2. Each bit in this field
corresponds to a byte in TRCCIDCVR2.

TRCCIDCCTLR0, Context Identifier Comparator Control Register 0

Page 4038

COMP2<m> Meaning
0b0 The trace unit includes TRCCIDCVR2[(m×8+7):(m×8)]

when it performs the Context identifier comparison.
0b1 The trace unit ignores TRCCIDCVR2[(m×8+7):(m×8)]

when it performs the Context identifier comparison.

This bit is RES0 if m >= TRCIDR2.CIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP1<m>, bit [m+8], for m = 0 to 7

When TRCIDR4.NUMCIDC > 1:

TRCCIDCVR1 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR1. Each bit in this field
corresponds to a byte in TRCCIDCVR1.

COMP1<m> Meaning
0b0 The trace unit includes TRCCIDCVR1[(m×8+7):(m×8)]

when it performs the Context identifier comparison.
0b1 The trace unit ignores TRCCIDCVR1[(m×8+7):(m×8)]

when it performs the Context identifier comparison.

This bit is RES0 if m >= TRCIDR2.CIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP0<m>, bit [m], for m = 0 to 7

When TRCIDR4.NUMCIDC > 0:

TRCCIDCVR0 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR0. Each bit in this field
corresponds to a byte in TRCCIDCVR0.

COMP0<m> Meaning
0b0 The trace unit includes TRCCIDCVR0[(m×8+7):(m×8)]

when it performs the Context identifier comparison.
0b1 The trace unit ignores TRCCIDCVR0[(m×8+7):(m×8)]

when it performs the Context identifier comparison.

This bit is RES0 if m >= TRCIDR2.CIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TRCCIDCCTLR0
If software uses the TRCCIDCVR<n> registers, for n = 0 to 3, then it must program this register.

If software sets a mask bit to 0b1 then it must program the relevant byte in TRCCIDCVR<n> to 0x00.

TRCCIDCCTLR0, Context Identifier Comparator Control Register 0

Page 4039

If any bit is 0b1 and the relevant byte in TRCCIDCVR<n> is not 0x00, the behavior of the Context Identifier
Comparator is CONSTRAINED UNPREDICTABLE. In this scenario the comparator might match unexpectedly or might not
match.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCCIDCCTLR0 can be accessed through the external debug interface:

Component Offset
ETE 0x680

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCIDCCTLR0, Context Identifier Comparator Control Register 0

Page 4040

TRCCIDCCTLR1, Context Identifier Comparator Control
Register 1

The TRCCIDCCTLR1 characteristics are:

Purpose
Contains Context identifier mask values for the TRCCIDCVR<n> registers, for n = 4 to 7.

Configuration
External register TRCCIDCCTLR1 bits [31:0] are architecturally mapped to AArch64 System register
TRCCIDCCTLR1[31:0] .

This register is present only when ETE is implemented, TRCIDR4.NUMCIDC > 0x4 and TRCIDR2.CIDSIZE > 0b00000.
Otherwise, direct accesses to TRCCIDCCTLR1 are RES0.

Attributes
TRCCIDCCTLR1 is a 32-bit register.

Field descriptions
The TRCCIDCCTLR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
COMP7<m>, bit [m+24] COMP6<m>, bit [m+16] COMP5<m>, bit [m+8] COMP4<m>, bit [m]

COMP7<m>, bit [m+24], for m = 0 to 7

When TRCIDR4.NUMCIDC > 7:

TRCCIDCVR7 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR7. Each bit in this field
corresponds to a byte in TRCCIDCVR7.

COMP7<m> Meaning
0b0 The trace unit includes TRCCIDCVR7[(m×8+7):(m×8)]

when it performs the Context identifier comparison.
0b1 The trace unit ignores TRCCIDCVR7[(m×8+7):(m×8)]

when it performs the Context identifier comparison.

This bit is RES0 if m >= TRCIDR2.CIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP6<m>, bit [m+16], for m = 0 to 7

When TRCIDR4.NUMCIDC > 6:

TRCCIDCVR6 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR6. Each bit in this field
corresponds to a byte in TRCCIDCVR6.

TRCCIDCCTLR1, Context Identifier Comparator Control Register 1

Page 4041

COMP6<m> Meaning
0b0 The trace unit includes TRCCIDCVR6[(m×8+7):(m×8)]

when it performs the Context identifier comparison.
0b1 The trace unit ignores TRCCIDCVR6[(m×8+7):(m×8)]

when it performs the Context identifier comparison.

This bit is RES0 if m >= TRCIDR2.CIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP5<m>, bit [m+8], for m = 0 to 7

When TRCIDR4.NUMCIDC > 5:

TRCCIDCVR5 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR5. Each bit in this field
corresponds to a byte in TRCCIDCVR5.

COMP5<m> Meaning
0b0 The trace unit includes TRCCIDCVR5[(m×8+7):(m×8)]

when it performs the Context identifier comparison.
0b1 The trace unit ignores TRCCIDCVR5[(m×8+7):(m×8)]

when it performs the Context identifier comparison.

This bit is RES0 if m >= TRCIDR2.CIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP4<m>, bit [m], for m = 0 to 7

When TRCIDR4.NUMCIDC > 4:

TRCCIDCVR4 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR4. Each bit in this field
corresponds to a byte in TRCCIDCVR4.

COMP4<m> Meaning
0b0 The trace unit includes TRCCIDCVR4[(m×8+7):(m×8)]

when it performs the Context identifier comparison.
0b1 The trace unit ignores TRCCIDCVR4[(m×8+7):(m×8)]

when it performs the Context identifier comparison.

This bit is RES0 if m >= TRCIDR2.CIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TRCCIDCCTLR1
If software uses the TRCCIDCVR<n> registers, for n = 4 to 7, then it must program this register.

If software sets a mask bit to 0b1 then it must program the relevant byte in TRCCIDCVR<n> to 0x00.

TRCCIDCCTLR1, Context Identifier Comparator Control Register 1

Page 4042

If any bit is 0b1 and the relevant byte in TRCCIDCVR<n> is not 0x00, the behavior of the Context Identifier
Comparator is CONSTRAINED UNPREDICTABLE. In this scenario the comparator might match unexpectedly or might not
match.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCCIDCCTLR1 can be accessed through the external debug interface:

Component Offset
ETE 0x684

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCIDCCTLR1, Context Identifier Comparator Control Register 1

Page 4043

TRCCIDCVR<n>, Context Identifier Comparator Value
Registers <n>, n = 0 - 7

The TRCCIDCVR<n> characteristics are:

Purpose
Contains a Context identifier value.

Configuration
External register TRCCIDCVR<n> bits [63:0] are architecturally mapped to AArch64 System register
TRCCIDCVR<n>[63:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMCIDC > n. Otherwise, direct accesses to
TRCCIDCVR<n> are RES0.

Attributes
TRCCIDCVR<n> is a 64-bit register.

Field descriptions
The TRCCIDCVR<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
VALUE
VALUE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VALUE, bits [63:0]

Context identifier value. The width of this field is indicated by TRCIDR2.CIDSIZE. Unimplemented bits are RES0. After
a PE Reset, the trace unit assumes that the Context identifier is zero until the PE updates the Context identifier.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCCIDCVR<n>
Must be programmed if any of the following are true:

• TRCRSCTLR<a>.GROUP == 0b0110 and TRCRSCTLR<a>.CID[n] == 0b1.
• TRCACATR<a>.CONTEXTTYPE == 0b01 or 0b11 and TRCACATR<a>.CONTEXT == n.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCCIDCVR<n> can be accessed through the external debug interface:

Component Offset Instance
ETE 0x600 + 8n TRCCIDCVR<n>

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

TRCCIDCVR<n>, Context Identifier Comparator Value Registers <n>, n = 0 - 7

Page 4044

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCIDCVR<n>, Context Identifier Comparator Value Registers <n>, n = 0 - 7

Page 4045

TRCCIDR0, Component Identification Register 0
The TRCCIDR0 characteristics are:

Purpose
Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCCIDR0 are RES0.

Attributes
TRCCIDR0 is a 32-bit register.

Field descriptions
The TRCCIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_0

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Component identification preamble, segment 0.

This field reads as 0x0D.

Accessing the TRCCIDR0
External debugger accesses to this register are unaffected by the OS Lock.

TRCCIDR0 can be accessed through the external debug interface:

Component Offset
ETE 0xFF0

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCIDR0, Component Identification Register 0

Page 4046

TRCCIDR1, Component Identification Register 1
The TRCCIDR1 characteristics are:

Purpose
Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCCIDR1 are RES0.

Attributes
TRCCIDR1 is a 32-bit register.

Field descriptions
The TRCCIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CLASS PRMBL_1

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

CLASS Meaning
0b1001 CoreSight peripheral.

Other values are defined by the CoreSight Architecture.

This field reads as 0x9.

PRMBL_1, bits [3:0]

Component identification preamble, segment 1.

This field reads as 0x0.

Accessing the TRCCIDR1
External debugger accesses to this register are unaffected by the OS Lock.

TRCCIDR1 can be accessed through the external debug interface:

Component Offset
ETE 0xFF4

TRCCIDR1, Component Identification Register 1

Page 4047

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCIDR1, Component Identification Register 1

Page 4048

TRCCIDR2, Component Identification Register 2
The TRCCIDR2 characteristics are:

Purpose
Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCCIDR2 are RES0.

Attributes
TRCCIDR2 is a 32-bit register.

Field descriptions
The TRCCIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_2

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Component identification preamble, segment 2.

This field reads as 0x05.

Accessing the TRCCIDR2
External debugger accesses to this register are unaffected by the OS Lock.

TRCCIDR2 can be accessed through the external debug interface:

Component Offset
ETE 0xFF8

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCIDR2, Component Identification Register 2

Page 4049

TRCCIDR3, Component Identification Register 3
The TRCCIDR3 characteristics are:

Purpose
Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCCIDR3 are RES0.

Attributes
TRCCIDR3 is a 32-bit register.

Field descriptions
The TRCCIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_3

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Component identification preamble, segment 3.

This field reads as 0xB1.

Accessing the TRCCIDR3
External debugger accesses to this register are unaffected by the OS Lock.

TRCCIDR3 can be accessed through the external debug interface:

Component Offset
ETE 0xFFC

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCIDR3, Component Identification Register 3

Page 4050

TRCCLAIMCLR, Claim Tag Clear Register
The TRCCLAIMCLR characteristics are:

Purpose
In conjunction with TRCCLAIMSET, provides Claim Tag bits that can be separately set and cleared to indicate whether
functionality is in use by a debug agent.

For additional information see the CoreSight Architecture Specification.

Configuration
External register TRCCLAIMCLR bits [31:0] are architecturally mapped to AArch64 System register
TRCCLAIMCLR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCCLAIMCLR are RES0.

Attributes
TRCCLAIMCLR is a 32-bit register.

Field descriptions
The TRCCLAIMCLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CLR<m>, bit [m]

CLR<m>, bit [m], for m = 0 to 31

Claim Tag Clear. Indicates the current status of the Claim Tag bit m, and is used to clear Claim Tag bit m to 0b0.

CLR<m> Meaning
0b0 On a read: Claim Tag bit m is not set.

On a write: Ignored.
0b1 On a read: Claim Tag bit m is set.

On a write: Clear Claim tag bit m to 0b0.

The number of Claim Tag bits implemented is indicated in TRCCLAIMSET.

On a Trace unit reset, this field resets to 0.

Accessing the TRCCLAIMCLR

TRCCLAIMCLR can be accessed through the external debug interface:

Component Offset
ETE 0xFA4

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

TRCCLAIMCLR, Claim Tag Clear Register

Page 4051

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCLAIMCLR, Claim Tag Clear Register

Page 4052

TRCCLAIMSET, Claim Tag Set Register
The TRCCLAIMSET characteristics are:

Purpose
In conjunction with TRCCLAIMCLR, provides Claim Tag bits that can be separately set and cleared to indicate whether
functionality is in use by a debug agent.

For additional information see the CoreSight Architecture Specification.

Configuration
External register TRCCLAIMSET bits [31:0] are architecturally mapped to AArch64 System register
TRCCLAIMSET[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCCLAIMSET are RES0.

The number of claim tag bits implemented is IMPLEMENTATION DEFINED. Arm recommends that implementations support
a minimum of four claim tag bits, that is, SET[3:0] reads as 0b1111.

Attributes
TRCCLAIMSET is a 32-bit register.

Field descriptions
The TRCCLAIMSET bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SET<m>, bit [m]

SET<m>, bit [m], for m = 0 to 31

Claim Tag Set. Indicates whether Claim Tag bit m is implemented, and is used to set Claim Tag bit m to 0b1.

SET<m> Meaning
0b0 On a read: Claim Tag bit m is not implemented.

On a write: Ignored.
0b1 On a read: Claim Tag bit m is implemented.

On a write: Set Claim Tag bit m to 0b1.

Accessing the TRCCLAIMSET

TRCCLAIMSET can be accessed through the external debug interface:

Component Offset
ETE 0xFA0

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

TRCCLAIMSET, Claim Tag Set Register

Page 4053

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCLAIMSET, Claim Tag Set Register

Page 4054

TRCCNTCTLR<n>, Counter Control Register <n>, n =
0 - 3

The TRCCNTCTLR<n> characteristics are:

Purpose
Controls the operation of Counter <n>.

Configuration
External register TRCCNTCTLR<n> bits [31:0] are architecturally mapped to AArch64 System register
TRCCNTCTLR<n>[31:0] .

This register is present only when ETE is implemented and TRCIDR5.NUMCNTR > n. Otherwise, direct accesses to
TRCCNTCTLR<n> are RES0.

Attributes
TRCCNTCTLR<n> is a 32-bit register.

Field descriptions
The TRCCNTCTLR<n> bit assignments are:

3130292827262524232221201918 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CNTCHAINRLDSELFRLDEVENT_TYPERES0RLDEVENT_SELCNTEVENT_TYPERES0CNTEVENT_SEL

Bits [31:18]

Reserved, RES0.

CNTCHAIN, bit [17]

For TRCCNTCTLR3 and TRCCNTCTLR1, this bit controls whether the Counter decrements when a reload event occurs
for Counter <n-1>.

CNTCHAIN Meaning
0b0 The Counter does not decrement when a reload event for

Counter <n-1> occurs.
0b1 Counter <n> decrements when a reload event for

Counter <n-1> occurs. This concatenates Counter <n>
and Counter <n-1>, to provide a larger count value.

CNTCHAIN is not implemented for TRCCNTCTLR0 and TRCCNTCTLR2.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RLDSELF, bit [16]

Controls whether a reload event occurs for the Counter, when the Counter reaches zero.

RLDSELF Meaning
0b0 Normal mode.

The Counter is in Normal mode.
0b1 Self-reload mode.

The Counter is in Self-reload mode.

TRCCNTCTLR<n>, Counter Control Register <n>, n = 0 - 3

Page 4055

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RLDEVENT_TYPE, bit [15]

Chooses the type of Resource Selector.

Selects an event, that when it occurs causes a reload event for Counter <n>.

RLDEVENT_TYPE Meaning
0b0 A single Resource Selector.

TRCCNTCTLR<n>.RLDEVENT.SEL[4:0] selects the
single Resource Selector, from 0-31, used to
activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCCNTCTLR<n>.RLDEVENT.SEL[3:0] selects the
Resource Selector pair, from 0-15, that has a
Boolean function that is applied to it whose output
is used to activate the resource event.
TRCCNTCTLR<n>.RLDEVENT.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [14:13]

Reserved, RES0.

RLDEVENT_SEL, bits [12:8]

Defines the selected Resource Selector or pair of Resource Selectors. TRCCNTCTLR<n>.RLDEVENT.TYPE controls
whether TRCCNTCTLR<n>.RLDEVENT.SEL is the index of a single Resource Selector, or the index of a pair of
Resource Selectors.

Selects an event, that when it occurs causes a reload event for Counter <n>.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

CNTEVENT_TYPE, bit [7]

Chooses the type of Resource Selector.

Selects an event, that when it occurs causes Counter <n> to decrement.

CNTEVENT_TYPE Meaning
0b0 A single Resource Selector.

TRCCNTCTLR<n>.CNTEVENT.SEL[4:0] selects
the single Resource Selector, from 0-31, used to
activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCCNTCTLR<n>.CNTEVENT.SEL[3:0] selects
the Resource Selector pair, from 0-15, that has a
Boolean function that is applied to it whose output
is used to activate the resource event.
TRCCNTCTLR<n>.CNTEVENT.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

TRCCNTCTLR<n>, Counter Control Register <n>, n = 0 - 3

Page 4056

CNTEVENT_SEL, bits [4:0]

Defines the selected Resource Selector or pair of Resource Selectors. TRCCNTCTLR<n>.CNTEVENT.TYPE controls
whether TRCCNTCTLR<n>.CNTEVENT.SEL is the index of a single Resource Selector, or the index of a pair of
Resource Selectors.

Selects an event, that when it occurs causes Counter <n> to decrement.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCCNTCTLR<n>
Must be programmed if TRCRSCTLR<a>.GROUP == 0b0010 and TRCRSCTLR<a>.COUNTERS[n] == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCCNTCTLR<n> can be accessed through the external debug interface:

Component Offset Instance
ETE 0x150 + 4n TRCCNTCTLR<n>

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCNTCTLR<n>, Counter Control Register <n>, n = 0 - 3

Page 4057

TRCCNTRLDVR<n>, Counter Reload Value Register
<n>, n = 0 - 3

The TRCCNTRLDVR<n> characteristics are:

Purpose
This sets or returns the reload count value for Counter <n>.

Configuration
External register TRCCNTRLDVR<n> bits [31:0] are architecturally mapped to AArch64 System register
TRCCNTRLDVR<n>[31:0] .

This register is present only when ETE is implemented and TRCIDR5.NUMCNTR > n. Otherwise, direct accesses to
TRCCNTRLDVR<n> are RES0.

Attributes
TRCCNTRLDVR<n> is a 32-bit register.

Field descriptions
The TRCCNTRLDVR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 VALUE

Bits [31:16]

Reserved, RES0.

VALUE, bits [15:0]

Contains the reload value for Counter <n>. When a reload event occurs for Counter <n> then the trace unit copies
the VALUE<n> field into Counter <n>.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCCNTRLDVR<n>
Must be programmed if TRCRSCTLR<a>.GROUP == 0b0010 and TRCRSCTLR<a>.COUNTERS[n] == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCCNTRLDVR<n> can be accessed through the external debug interface:

Component Offset Instance
ETE 0x140 + 4n TRCCNTRLDVR<n>

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

TRCCNTRLDVR<n>, Counter Reload Value Register <n>, n = 0 - 3

Page 4058

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCNTRLDVR<n>, Counter Reload Value Register <n>, n = 0 - 3

Page 4059

TRCCNTVR<n>, Counter Value Register <n>, n = 0 - 3
The TRCCNTVR<n> characteristics are:

Purpose
This sets or returns the value of Counter <n>.

Configuration
External register TRCCNTVR<n> bits [31:0] are architecturally mapped to AArch64 System register
TRCCNTVR<n>[31:0] .

This register is present only when ETE is implemented and TRCIDR5.NUMCNTR > n. Otherwise, direct accesses to
TRCCNTVR<n> are RES0.

Attributes
TRCCNTVR<n> is a 32-bit register.

Field descriptions
The TRCCNTVR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 VALUE

Bits [31:16]

Reserved, RES0.

VALUE, bits [15:0]

Contains the count value of Counter.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCCNTVR<n>
Must be programmed if TRCRSCTLR<a>.GROUP == 0b0010 and TRCRSCTLR<a>.COUNTERS[n] == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

TRCCNTVR<n> can be accessed through the external debug interface:

Component Offset Instance
ETE 0x160 + 4n TRCCNTVR<n>

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

TRCCNTVR<n>, Counter Value Register <n>, n = 0 - 3

Page 4060

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCNTVR<n>, Counter Value Register <n>, n = 0 - 3

Page 4061

TRCCONFIGR, Trace Configuration Register
The TRCCONFIGR characteristics are:

Purpose
Controls the tracing options.

Configuration
External register TRCCONFIGR bits [31:0] are architecturally mapped to AArch64 System register
TRCCONFIGR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCCONFIGR are RES0.

Attributes
TRCCONFIGR is a 32-bit register.

Field descriptions
The TRCCONFIGR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 RES0 QE RS TS RES0 VMIDCIDRES0CCIBB RES0 RES1

Bits [31:16]

Reserved, RES0.

Bit [15]

When TRCIDR2.VMIDOPT == 0b00:

Reserved, RES0.

Virtual context identifier selection control.

VTTBR_EL2.VMID is used as the Virtual context identifier.

When TRCIDR2.VMIDOPT == 0b10:

Reserved, RES1.

Virtual context identifier selection control.

CONTEXTIDR_EL2.PROCID is used as the Virtual context identifier.

When TRCIDR2.VMIDOPT == 0b01:

Virtual context identifier selection control.

VMIDOPT Meaning
0b0 VTTBR_EL2.VMID is used as the Virtual context identifier.
0b1 CONTEXTIDR_EL2.PROCID is used as the Virtual context

identifier.

TRCCONFIGR, Trace Configuration Register

Page 4062

Otherwise:

Reserved, RES0.

QE, bits [14:13]

When TRCIDR0.QSUPP == 0b01:

Q element generation control.

QE Meaning
0b00 Q elements are disabled.
0b01 Q elements with instruction counts are enabled.

Q elements without instruction counts are disabled.

All other values are reserved.

When TRCIDR0.QSUPP == 0b10:

Q element generation control.

QE Meaning
0b00 Q elements are disabled.
0b11 Q elements with instruction counts are enabled.

Q elements without instruction counts are enabled.

All other values are reserved.

When TRCIDR0.QSUPP == 0b11:

Q element generation control.

QE Meaning
0b00 Q elements are disabled.
0b01 Q elements with instruction counts are enabled.

Q elements without instruction counts are disabled.
0b11 Q elements with instruction counts are enabled.

Q elements without instruction counts are enabled.

All other values are reserved.

Otherwise:

Reserved, RES0.

RS, bit [12]

When TRCIDR0.RETSTACK == 0b1:

Return stack control.

RS Meaning
0b0 Return stack is disabled.
0b1 Return stack is enabled.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCCONFIGR, Trace Configuration Register

Page 4063

TS, bit [11]

When TRCIDR0.TSSIZE != 0b00000:

Global timestamp tracing control.

TS Meaning
0b0 Global timestamp tracing is disabled.
0b1 Global timestamp tracing is enabled.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [10:8]

Reserved, RES0.

VMID, bit [7]

When TRCIDR2.VMIDSIZE != 0b00000:

Virtual context identifier tracing control.

VMID Meaning
0b0 Virtual context identifier tracing is disabled.
0b1 Virtual context identifier tracing is enabled.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CID, bit [6]

When TRCIDR2.CIDSIZE != 0b00000:

Context identifier tracing control.

CID Meaning
0b0 Context identifier tracing is disabled.
0b1 Context identifier tracing is enabled.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [5]

Reserved, RES0.

CCI, bit [4]

When TRCIDR0.TRCCCI == 0b1:

Cycle counting instruction tracing control.

TRCCONFIGR, Trace Configuration Register

Page 4064

CCI Meaning
0b0 Cycle counting instruction tracing is disabled.
0b1 Cycle counting instruction tracing is enabled.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BB, bit [3]

When TRCIDR0.TRCBB == 0b1:

Branch broadcasting control.

BB Meaning
0b0 Branch broadcasting is disabled.
0b1 Branch broadcasting is enabled.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [2:1]

Reserved, RES0.

Bit [0]

Reserved, RES1.

Accessing the TRCCONFIGR
Must always be programmed.

TRCCONFIGR.QE must be set to 0b00 if TRCCONFIGR.BB is not 0b0.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCCONFIGR can be accessed through the external debug interface:

Component Offset
ETE 0x010

This interface is accessible as follows:

• When OSLockStatus(), or !IsTraceCorePowered() or !AllowExternalTraceAccess() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCCONFIGR, Trace Configuration Register

Page 4065

TRCDEVAFF, Device Affinity Register
The TRCDEVAFF characteristics are:

Purpose
For additional information see the CoreSight Architecture Specification.

Reads the same value as the MPIDR_EL1 register for the PE that this trace unit has affinity with.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCDEVAFF are RES0.

Attributes
TRCDEVAFF is a 64-bit register.

Field descriptions
The TRCDEVAFF bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
MPIDR_EL1
MPIDR_EL1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPIDR_EL1, bits [63:0]

Read-only copy of MPIDR_EL1, as seen from the highest implemented Exception level.

Accessing the TRCDEVAFF
External debugger accesses to this register are unaffected by the OS Lock.

TRCDEVAFF can be accessed through the external debug interface:

Component Offset
ETE 0xFA8

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCDEVAFF, Device Affinity Register

Page 4066

TRCDEVARCH, Device Architecture Register
The TRCDEVARCH characteristics are:

Purpose
Provides discovery information for the component.

For additional information see the CoreSight Architecture Specification.

Configuration
External register TRCDEVARCH bits [31:0] are architecturally mapped to AArch64 System register
TRCDEVARCH[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCDEVARCH are RES0.

Attributes
TRCDEVARCH is a 32-bit register.

Field descriptions
The TRCDEVARCH bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARCHITECT PRESENT REVISION ARCHVER ARCHPART

ARCHITECT, bits [31:21]

Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106 bank ID,
minus 1) and bits [27:21] are the JEP106 ID code.

ARCHITECT Meaning
0b01000111011 JEP106 continuation code 0x4, ID code 0x3B. Arm

Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

PRESENT, bit [20]

DEVARCH Present. Defines that the DEVARCH register is present.

PRESENT Meaning
0b0 Device Architecture information not present.
0b1 Device Architecture information present.

This bit reads as 0b1.

REVISION, bits [19:16]

Revision. Defines the architecture revision of the component.

REVISION Meaning
0b0000 ETE Version 1.0.

TRCDEVARCH, Device Architecture Register

Page 4067

All other values are reserved.

ARCHVER, bits [15:12]

Architecture Version. Defines the architecture version of the component.

ARCHVER Meaning
0b0101 ETE Version 1.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is ARCHID[15:12].

This field reads as 0x5.

ARCHPART, bits [11:0]

Architecture Part. Defines the architecture of the component.

ARCHPART Meaning
0xA13 Arm PE trace architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is ARCHID[11:0].

This field reads as 0xA13.

Accessing the TRCDEVARCH
External debugger accesses to this register are unaffected by the OS Lock.

TRCDEVARCH can be accessed through the external debug interface:

Component Offset
ETE 0xFBC

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCDEVARCH, Device Architecture Register

Page 4068

TRCDEVID, Device Configuration Register
The TRCDEVID characteristics are:

Purpose
Provides discovery information for the component.

For additional information see the CoreSight Architecture Specification.

Configuration
External register TRCDEVID bits [31:0] are architecturally mapped to AArch64 System register TRCDEVID[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCDEVID are RES0.

Attributes
TRCDEVID is a 32-bit register.

Field descriptions
The TRCDEVID bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [31:0]

Reserved, RES0.

Accessing the TRCDEVID
External debugger accesses to this register are unaffected by the OS Lock.

TRCDEVID can be accessed through the external debug interface:

Component Offset
ETE 0xFC8

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCDEVID, Device Configuration Register

Page 4069

TRCDEVID1, Device Configuration Register 1
The TRCDEVID1 characteristics are:

Purpose
Provides discovery information for the component.

For additional information see the CoreSight Architecture Specification.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCDEVID1 are RES0.

Attributes
TRCDEVID1 is a 32-bit register.

Field descriptions
The TRCDEVID1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [31:0]

Reserved, RES0.

Accessing the TRCDEVID1
External debugger accesses to this register are unaffected by the OS Lock.

TRCDEVID1 can be accessed through the external debug interface:

Component Offset
ETE 0xFC4

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCDEVID1, Device Configuration Register 1

Page 4070

TRCDEVID2, Device Configuration Register 2
The TRCDEVID2 characteristics are:

Purpose
Provides discovery information for the component.

For additional information see the CoreSight Architecture Specification.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCDEVID2 are RES0.

Attributes
TRCDEVID2 is a 32-bit register.

Field descriptions
The TRCDEVID2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [31:0]

Reserved, RES0.

Accessing the TRCDEVID2
External debugger accesses to this register are unaffected by the OS Lock.

TRCDEVID2 can be accessed through the external debug interface:

Component Offset
ETE 0xFC0

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCDEVID2, Device Configuration Register 2

Page 4071

TRCDEVTYPE, Device Type Register
The TRCDEVTYPE characteristics are:

Purpose
Provides discovery information for the component. If the part number field is not recognised, a debugger can report
the information that is provided by TRCDEVTYPE about the component instead.

For additional information see the CoreSight Architecture Specification.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCDEVTYPE are RES0.

Attributes
TRCDEVTYPE is a 32-bit register.

Field descriptions
The TRCDEVTYPE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SUB MAJOR

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Component sub-type.

SUB Meaning
0b0001 When MAJOR == 0x3 (Trace source): Associated with a PE.

This field reads as 0x1.

MAJOR, bits [3:0]

Component major type.

MAJOR Meaning
0b0011 Trace source.

Other values are defined by the CoreSight Architecture.

This field reads as 0x3.

Accessing the TRCDEVTYPE
External debugger accesses to this register are unaffected by the OS Lock.

TRCDEVTYPE, Device Type Register

Page 4072

TRCDEVTYPE can be accessed through the external debug interface:

Component Offset
ETE 0xFCC

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCDEVTYPE, Device Type Register

Page 4073

TRCEVENTCTL0R, Event Control 0 Register
The TRCEVENTCTL0R characteristics are:

Purpose
Controls the generation of ETEEvents.

Configuration
External register TRCEVENTCTL0R bits [31:0] are architecturally mapped to AArch64 System register
TRCEVENTCTL0R[31:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMRSPAIR != 0b0000. Otherwise, direct
accesses to TRCEVENTCTL0R are RES0.

Attributes
TRCEVENTCTL0R is a 32-bit register.

Field descriptions
The TRCEVENTCTL0R bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EVENT3_TYPERES0EVENT3_SELEVENT2_TYPERES0EVENT2_SELEVENT1_TYPERES0EVENT1_SELEVENT0_TYPERES0EVENT0_SEL

EVENT3_TYPE, bit [31]

When TRCIDR4.NUMRSPAIR != 0b0000 and TRCIDR0.NUMEVENT >= 0b11:

Chooses the type of Resource Selector.

EVENT3_TYPE Meaning
0b0 A single Resource Selector.

TRCEVENTCTL0R.EVENT3.SEL[4:0] selects the single
Resource Selector, from 0-31, used to activate the
resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCEVENTCTL0R.EVENT3.SEL[3:0] selects the
Resource Selector pair, from 0-15, that has a Boolean
function that is applied to it whose output is used to
activate the resource event.
TRCEVENTCTL0R.EVENT3.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [30:29]

Reserved, RES0.

TRCEVENTCTL0R, Event Control 0 Register

Page 4074

EVENT3_SEL, bits [28:24]

When TRCIDR4.NUMRSPAIR != 0b0000 and TRCIDR0.NUMEVENT >= 0b11:

Defines the selected Resource Selector or pair of Resource Selectors. TRCEVENTCTL0R.EVENT3.TYPE controls
whether TRCEVENTCTL0R.EVENT3.SEL is the index of a single Resource Selector, or the index of a pair of Resource
Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

When any of the selected resource events occurs and TRCEVENTCTL1R.INSTEN[3] == 0b1, then Event element 3 is
generated in the instruction trace element stream.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EVENT2_TYPE, bit [23]

When TRCIDR4.NUMRSPAIR != 0b0000 and TRCIDR0.NUMEVENT >= 0b10:

Chooses the type of Resource Selector.

EVENT2_TYPE Meaning
0b0 A single Resource Selector.

TRCEVENTCTL0R.EVENT2.SEL[4:0] selects the single
Resource Selector, from 0-31, used to activate the
resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCEVENTCTL0R.EVENT2.SEL[3:0] selects the
Resource Selector pair, from 0-15, that has a Boolean
function that is applied to it whose output is used to
activate the resource event.
TRCEVENTCTL0R.EVENT2.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [22:21]

Reserved, RES0.

EVENT2_SEL, bits [20:16]

When TRCIDR4.NUMRSPAIR != 0b0000 and TRCIDR0.NUMEVENT >= 0b10:

Defines the selected Resource Selector or pair of Resource Selectors. TRCEVENTCTL0R.EVENT2.TYPE controls
whether TRCEVENTCTL0R.EVENT2.SEL is the index of a single Resource Selector, or the index of a pair of Resource
Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

When any of the selected resource events occurs and TRCEVENTCTL1R.INSTEN[2] == 0b1, then Event element 2 is
generated in the instruction trace element stream.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

TRCEVENTCTL0R, Event Control 0 Register

Page 4075

Otherwise:

Reserved, RES0.

EVENT1_TYPE, bit [15]

When TRCIDR4.NUMRSPAIR != 0b0000 and TRCIDR0.NUMEVENT >= 0b01:

Chooses the type of Resource Selector.

EVENT1_TYPE Meaning
0b0 A single Resource Selector.

TRCEVENTCTL0R.EVENT1.SEL[4:0] selects the single
Resource Selector, from 0-31, used to activate the
resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCEVENTCTL0R.EVENT1.SEL[3:0] selects the
Resource Selector pair, from 0-15, that has a Boolean
function that is applied to it whose output is used to
activate the resource event.
TRCEVENTCTL0R.EVENT1.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [14:13]

Reserved, RES0.

EVENT1_SEL, bits [12:8]

When TRCIDR4.NUMRSPAIR != 0b0000 and TRCIDR0.NUMEVENT >= 0b01:

Defines the selected Resource Selector or pair of Resource Selectors. TRCEVENTCTL0R.EVENT1.TYPE controls
whether TRCEVENTCTL0R.EVENT1.SEL is the index of a single Resource Selector, or the index of a pair of Resource
Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

When any of the selected resource events occurs and TRCEVENTCTL1R.INSTEN[1] == 0b1, then Event element 1 is
generated in the instruction trace element stream.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EVENT0_TYPE, bit [7]

When TRCIDR4.NUMRSPAIR != 0b0000 and TRCIDR0.NUMEVENT >= 0b00:

Chooses the type of Resource Selector.

TRCEVENTCTL0R, Event Control 0 Register

Page 4076

EVENT0_TYPE Meaning
0b0 A single Resource Selector.

TRCEVENTCTL0R.EVENT0.SEL[4:0] selects the single
Resource Selector, from 0-31, used to activate the
resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCEVENTCTL0R.EVENT0.SEL[3:0] selects the
Resource Selector pair, from 0-15, that has a Boolean
function that is applied to it whose output is used to
activate the resource event.
TRCEVENTCTL0R.EVENT0.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [6:5]

Reserved, RES0.

EVENT0_SEL, bits [4:0]

When TRCIDR4.NUMRSPAIR != 0b0000 and TRCIDR0.NUMEVENT >= 0b00:

Defines the selected Resource Selector or pair of Resource Selectors. TRCEVENTCTL0R.EVENT0.TYPE controls
whether TRCEVENTCTL0R.EVENT0.SEL is the index of a single Resource Selector, or the index of a pair of Resource
Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

When any of the selected resource events occurs and TRCEVENTCTL1R.INSTEN[0] == 0b1, then Event element 0 is
generated in the instruction trace element stream.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TRCEVENTCTL0R
Must be programmed if implemented.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCEVENTCTL0R can be accessed through the external debug interface:

Component Offset
ETE 0x020

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

TRCEVENTCTL0R, Event Control 0 Register

Page 4077

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCEVENTCTL0R, Event Control 0 Register

Page 4078

TRCEVENTCTL1R, Event Control 1 Register
The TRCEVENTCTL1R characteristics are:

Purpose
Controls the behavior of the ETEEvents that TRCEVENTCTL0R selects.

Configuration
External register TRCEVENTCTL1R bits [31:0] are architecturally mapped to AArch64 System register
TRCEVENTCTL1R[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCEVENTCTL1R are RES0.

Attributes
TRCEVENTCTL1R is a 32-bit register.

Field descriptions
The TRCEVENTCTL1R bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 LPOVERRIDEATB RES0 INSTEN<m>,
bit [m]

Bits [31:13]

Reserved, RES0.

LPOVERRIDE, bit [12]

When TRCIDR5.LPOVERRIDE == 0b1:

Low-power Override Mode select.

LPOVERRIDE Meaning
0b0 Trace unit Low-power Override Mode is not enabled.

That is, the trace unit is permitted to enter low-power
state.

0b1 Trace unit Low-power Override Mode is enabled. That
is, entry to a low-power state does not affect the trace
unit resources or trace generation.

Otherwise:

Reserved, RES0.

ATB, bit [11]

When TRCIDR5.ATBTRIG == 0b1:

AMBA Trace Bus (ATB) trigger enable.

If a CoreSight ATB interface is implemented then when ETEEvent 0 occurs the trace unit sets:

TRCEVENTCTL1R, Event Control 1 Register

Page 4079

• ATID == 0x7D.
• ATDATA to the value of TRCTRACEIDR.

If the width of ATDATA is greater than the width of TRCTRACEIDR.TRACEID then the trace unit zeros the upper
ATDATA bits.

If ETEEvent 0 is programmed to occur based on program execution, such as an Address Comparator, the ATB trigger
might not be inserted into the ATB stream at the same time as any trace generated by that program execution is
output by the trace unit. Typically, the generated trace might be buffered in a trace unit which means that the ATB
trigger would be output before the associated trace is output.

If ETEEvent 0 is asserted multiple times in close succession, the trace unit is required to generate an ATB trigger for
the first assertion, but might ignore one or more of the subsequent assertions. Arm recommends that the window in
which ETEEvent 0 is ignored is limited only by the time taken to output an ATB trigger.

ATB Meaning
0b0 ATB trigger is disabled.
0b1 ATB trigger is enabled.

Otherwise:

Reserved, RES0.

Bits [10:4]

Reserved, RES0.

INSTEN<m>, bit [m], for m = 0 to 3

Event element control.

INSTEN<m> Meaning
0b0 The trace unit does not generate an Event element m.
0b1 The trace unit generates an Event element m.

This bit is RES0 if m >= the number indicated by TRCIDR0.NUMEVENT.

Accessing the TRCEVENTCTL1R
Must be programmed.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCEVENTCTL1R can be accessed through the external debug interface:

Component Offset
ETE 0x024

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCEVENTCTL1R, Event Control 1 Register

Page 4080

TRCEXTINSELR<n>, External Input Select Register
<n>, n = 0 - 3

The TRCEXTINSELR<n> characteristics are:

Purpose
Use this to set, or read, which External Inputs are resources to the trace unit.

Configuration
External register TRCEXTINSELR<n> bits [31:0] are architecturally mapped to AArch64 System register
TRCEXTINSELR<n>[31:0] .

This register is present only when ETE is implemented and TRCIDR5.NUMEXTINSEL > n. Otherwise, direct accesses
to TRCEXTINSELR<n> are RES0.

Attributes
TRCEXTINSELR<n> is a 32-bit register.

Field descriptions
The TRCEXTINSELR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 evtCount

Bits [31:16]

Reserved, RES0.

evtCount, bits [15:0]

PMU event to select.

The event number as defined by the Arm ARM.

Software must program this field with a PMU event that is supported by the PE being programmed.

There are three ranges of PMU event numbers:

• PMU event numbers in the range 0x0000 to 0x003F are common architectural and microarchitectural events.
• PMU event numbers in the range 0x0040 to 0x00BF are Arm recommended common architectural and

microarchitectural PMU events.
• PMU event numbers in the range 0x00C0 to 0x03FF are IMPLEMENTATION DEFINED PMU events.

If evtCount is programmed to a PMU event that is reserved or not supported by the PE, the behavior depends on the
PMU event type:

• For the range 0x0000 to 0x003F, then the PMU event is not active, and the value returned by a direct or
external read of the evtCount field is the value written to the field.

• For IMPLEMENTATION DEFINED PMU events, it is UNPREDICTABLE what PMU event, if any, is counted, and the
value returned by a direct or external read of the evtCount field is UNKNOWN.

UNPREDICTABLE means the PMU event must not expose privileged information.

TRCEXTINSELR<n>, External Input Select Register <n>, n = 0 - 3

Page 4081

Arm recommends that the behavior across a family of implementations is defined such that if a given implementation
does not include a PMU event from a set of common IMPLEMENTATION DEFINED PMU events, then no PMU event is
counted and the value read back on evtCount is the value written.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCEXTINSELR<n>
Must be programmed if any of the following is true: TRCRSCTLR<a>.GROUP == 0b0000 and
TRCRSCTLR<a>.EXTIN[n] == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCEXTINSELR<n> can be accessed through the external debug interface:

Component Offset Instance
ETE 0x120 + 4n TRCEXTINSELR<n>

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCEXTINSELR<n>, External Input Select Register <n>, n = 0 - 3

Page 4082

TRCIDR0, ID Register 0
The TRCIDR0 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
External register TRCIDR0 bits [31:0] are architecturally mapped to AArch64 System register TRCIDR0[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR0 are RES0.

Attributes
TRCIDR0 is a 32-bit register.

Field descriptions
The TRCIDR0 bit assignments are:

31 30 29 2827262524232221201918 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0COMMTRANSCOMMOPT TSSIZE RES0 TRCEXDATAQSUPPQFILTCONDTYPENUMEVENTRETSTACKRES0TRCCCITRCCONDTRCBBTRCDATAINSTP0RES1

Bit [31]

Reserved, RES0.

COMMTRANS, bit [30]

Transaction Start element behavior.

COMMTRANS Meaning
0b0 Transaction Start elements are P0 elements.
0b1 Transaction Start elements are not P0 elements.

COMMOPT, bit [29]

Indicates the contents and encodings of Cycle count packets.

COMMOPT Meaning
0b0 Commit mode 0.
0b1 Commit mode 1.

The Commit mode defines the contents and encodings of Cycle Count packets, in particular how Commit elements are
indicated by these packets. See the descriptions of these packets for more details.

This bit reads-as-one if TRCIDR0.TRCCCI == 0b1 and TRCIDR8.MAXSPEC == 0x0. This bit reads-as-zero if
TRCIDR0.TRCCCI == 0b0.

TSSIZE, bits [28:24]

Indicates that the trace unit implements Global timestamping and the size of the timestamp value.

TRCIDR0, ID Register 0

Page 4083

TSSIZE Meaning
0b00000 Global timestamping not implemented.
0b01000 Global timestamping implemented with a 64-bit timestamp

value.

All other values are reserved.

This field reads as 0b01000.

Bits [23:18]

Reserved, RES0.

TRCEXDATA, bit [17]

When TRCIDR0.TRCDATA != 0b00:

Indicates if the trace unit implements tracing of data transfers for exceptions and exception returns. Data tracing is
not implemented in ETE and this field is reserved for other trace architectures. Allocated in other trace architectures.

TRCEXDATA Meaning
0b0 Tracing of data transfers for exceptions and exception

returns not implemented.
0b1 Tracing of data transfers for exceptions and exception

returns implemented.

Otherwise:

Reserved, RES0.

QSUPP, bits [16:15]

Indicates that the trace unit implements Q element support.

QSUPP Meaning
0b00 Q element support is not implemented.
0b01 Q element support is implemented, and only supports Q

elements with instruction counts.
0b10 Q element support is implemented, and only supports Q

elements without instruction counts.
0b11 Q element support is implemented, and supports:

• Q elements with instruction counts.
• Q elements without instruction counts.

QFILT, bit [14]

Indicates if the trace unit implements Q element filtering.

QFILT Meaning
0b0 Q element filtering is not implemented.
0b1 Q element filtering is implemented.

If TRCIDR0.QSUPP == 0b00 then this field is 0b0.

CONDTYPE, bits [13:12]

When TRCIDR0.TRCCOND == 0b1:

Indicates how conditional instructions are traced. Conditional instruction tracing is not implemented in ETE and this
field is reserved for other trace architectures. Allocated in other trace architectures.

TRCIDR0, ID Register 0

Page 4084

CONDTYPE Meaning
0b00 Conditional instructions are traced with an indication of

whether they pass or fail their condition code check.
0b01 Conditional instructions are traced with an indication of

the APSR condition flags.

All other values are reserved.

Otherwise:

Reserved, RES0.

NUMEVENT, bits [11:10]

When TRCIDR4.NUMRSPAIR == 0b0000:

Indicates the number of ETEEvents implemented.

NUMEVENT Meaning
0b00 The trace unit supports 0 ETEEvents.

All other values are reserved.

When TRCIDR4.NUMRSPAIR != 0b0000:

Indicates the number of ETEEvents implemented.

NUMEVENT Meaning
0b00 The trace unit supports 1 ETEEvent.
0b01 The trace unit supports 2 ETEEvents.
0b10 The trace unit supports 3 ETEEvents.
0b11 The trace unit supports 4 ETEEvents.

Otherwise:

Reserved, RES0.

RETSTACK, bit [9]

Indicates if the trace unit supports the return stack.

RETSTACK Meaning
0b0 Return stack not implemented.
0b1 Return stack implemented.

Bit [8]

Reserved, RES0.

TRCCCI, bit [7]

Indicates if the trace unit implements cycle counting.

TRCCCI Meaning
0b0 Cycle counting not implemented.
0b1 Cycle counting implemented.

This bit reads as 0b1.

TRCIDR0, ID Register 0

Page 4085

TRCCOND, bit [6]

Indicates if the trace unit implements conditional instruction tracing. Conditional instruction tracing is not
implemented in ETE and this field is reserved for other trace architectures.

TRCCOND Meaning
0b0 Conditional instruction tracing not implemented.
0b1 Conditional instruction tracing implemented.

This bit reads as 0b0.

TRCBB, bit [5]

Indicates if the trace unit implements branch broadcasting.

TRCBB Meaning
0b0 Branch broadcasting not implemented.
0b1 Branch broadcasting implemented.

This bit reads as 0b1.

TRCDATA, bits [4:3]

Indicates if the trace unit implements data tracing. Data tracing is not implemented in ETE and this field is reserved
for other trace architectures.

TRCDATA Meaning
0b00 Data tracing not implemented.
0b11 Data tracing implemented.

All other values are reserved.

This field reads as 0b00.

INSTP0, bits [2:1]

Indicates if load and store instructions are P0 instructions. Load and store instructions as P0 instructions is not
implemented in ETE and this field is reserved for other trace architectures.

INSTP0 Meaning
0b00 Load and store instructions are not P0 instructions.
0b11 Load and store instructions are P0 instructions.

All other values are reserved.

This field reads as 0b00.

Bit [0]

Reserved, RES1.

Accessing the TRCIDR0

TRCIDR0 can be accessed through the external debug interface:

Component Offset
ETE 0x1E0

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

TRCIDR0, ID Register 0

Page 4086

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR0, ID Register 0

Page 4087

TRCIDR1, ID Register 1
The TRCIDR1 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
External register TRCIDR1 bits [31:0] are architecturally mapped to AArch64 System register TRCIDR1[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR1 are RES0.

Attributes
TRCIDR1 is a 32-bit register.

Field descriptions
The TRCIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DESIGNER RES0 RES1 TRCARCHMAJTRCARCHMIN REVISION

DESIGNER, bits [31:24]

Indicates which company designed the trace unit. The permitted values of this field are the same as
MIDR_EL1.Implementer.

Bits [23:16]

Reserved, RES0.

Bits [15:12]

Reserved, RES1.

TRCARCHMAJ, bits [11:8]

Major architecture version.

TRCARCHMAJ Meaning
0b1111 If both TRCARCHMAJ and TRCARCHMIN == 0xF then

refer to TRCDEVARCH.

All other values are reserved.

This field reads as 0b1111.

TRCARCHMIN, bits [7:4]

Minor architecture version.

TRCIDR1, ID Register 1

Page 4088

TRCARCHMIN Meaning
0b1111 If both TRCARCHMAJ and TRCARCHMIN == 0xF then

refer to TRCDEVARCH.

All other values are reserved.

This field reads as 0b1111.

REVISION, bits [3:0]

Implementation revision.

Returns an IMPLEMENTATION DEFINED value that identifies the revision of:

• The trace registers.
• The OS Lock registers.

Arm recommends that the initial implementation sets REVISION == 0x0 and the field then increments for any
subsequent implementations. However, it is acceptable to omit some values or use another scheme to identify the
revision number.

Arm recommends that TRCPIDR2.REVISION == TRCIDR1.REVISION. However, in situations where it is difficult to
align these fields, such as with a metal layer fix then it is acceptable to change the REVISION fields independently.

Accessing the TRCIDR1

TRCIDR1 can be accessed through the external debug interface:

Component Offset
ETE 0x1E4

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR1, ID Register 1

Page 4089

TRCIDR10, ID Register 10
The TRCIDR10 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
External register TRCIDR10 bits [31:0] are architecturally mapped to AArch64 System register TRCIDR10[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR10 are RES0.

Attributes
TRCIDR10 is a 32-bit register.

Field descriptions
The TRCIDR10 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NUMP1KEY

NUMP1KEY, bits [31:0]

When TRCIDR0.TRCDATA != 0b00:

Indicates the number of P1 right-hand keys. Data tracing is not implemented in ETE and this field is reserved for other
trace architectures. Allocated in other trace architectures.

Otherwise:

Reserved, RES0.

Accessing the TRCIDR10

TRCIDR10 can be accessed through the external debug interface:

Component Offset
ETE 0x188

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR10, ID Register 10

Page 4090

TRCIDR11, ID Register 11
The TRCIDR11 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
External register TRCIDR11 bits [31:0] are architecturally mapped to AArch64 System register TRCIDR11[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR11 are RES0.

Attributes
TRCIDR11 is a 32-bit register.

Field descriptions
The TRCIDR11 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NUMP1SPC

NUMP1SPC, bits [31:0]

When TRCIDR0.TRCDATA != 0b00:

Indicates the number of special P1 right-hand keys. Data tracing is not implemented in ETE and this field is reserved
for other trace architectures. Allocated in other trace architectures.

Otherwise:

Reserved, RES0.

Accessing the TRCIDR11

TRCIDR11 can be accessed through the external debug interface:

Component Offset
ETE 0x18C

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR11, ID Register 11

Page 4091

TRCIDR12, ID Register 12
The TRCIDR12 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
External register TRCIDR12 bits [31:0] are architecturally mapped to AArch64 System register TRCIDR12[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR12 are RES0.

Attributes
TRCIDR12 is a 32-bit register.

Field descriptions
The TRCIDR12 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NUMCONDKEY

NUMCONDKEY, bits [31:0]

When TRCIDR0.TRCCOND == 0b1:

Indicates the number of conditional instruction right-hand keys. Conditional instruction tracing is not implemented in
ETE and this field is reserved for other trace architectures. Allocated in other trace architectures.

Otherwise:

Reserved, RES0.

Accessing the TRCIDR12

TRCIDR12 can be accessed through the external debug interface:

Component Offset
ETE 0x190

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR12, ID Register 12

Page 4092

TRCIDR13, ID Register 13
The TRCIDR13 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
External register TRCIDR13 bits [31:0] are architecturally mapped to AArch64 System register TRCIDR13[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR13 are RES0.

Attributes
TRCIDR13 is a 32-bit register.

Field descriptions
The TRCIDR13 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NUMCONDSPC

NUMCONDSPC, bits [31:0]

When TRCIDR0.TRCCOND == 0b1:

Indicates the number of special conditional instruction right-hand keys. Conditional instruction tracing is not
implemented in ETE and this field is reserved for other trace architectures. Allocated in other trace architectures.

Otherwise:

Reserved, RES0.

Accessing the TRCIDR13

TRCIDR13 can be accessed through the external debug interface:

Component Offset
ETE 0x194

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR13, ID Register 13

Page 4093

TRCIDR2, ID Register 2
The TRCIDR2 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
External register TRCIDR2 bits [31:0] are architecturally mapped to AArch64 System register TRCIDR2[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR2 are RES0.

Attributes
TRCIDR2 is a 32-bit register.

Field descriptions
The TRCIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
WFXMODEVMIDOPT CCSIZE DVSIZE DASIZE VMIDSIZE CIDSIZE IASIZE

WFXMODE, bit [31]

Indicates whether WFI and WFE instructions are classified as P0 instructions:

WFXMODE Meaning
0b0 WFI and WFE instructions are not classified as P0

instructions.
0b1 WFI and WFE instructions are classified as P0

instructions.

VMIDOPT, bits [30:29]

Indicates the options for Virtual context identifier selection.

VMIDOPT Meaning
0b00 Virtual context identifier selection not supported.

TRCCONFIGR.VMIDOPT is RES0.
0b01 Virtual context identifier selection supported.

TRCCONFIGR.VMIDOPT is implemented.
0b10 Virtual context identifier selection not supported.

TRCCONFIGR.VMIDOPT is RES1.

All other values are reserved.

If TRCIDR2.VMIDSIZE == 0b00000 then this field is 0b00.

If TRCIDR2.VMIDSIZE != 0b00000 then this field is 0b10.

CCSIZE, bits [28:25]

When TRCIDR0.TRCCCI == 0b1:

Indicates the size of the cycle counter.

TRCIDR2, ID Register 2

Page 4094

CCSIZE Meaning
0b0000 The cycle counter is 12 bits in length.
0b0001 The cycle counter is 13 bits in length.
0b0010 The cycle counter is 14 bits in length.
0b0011 The cycle counter is 15 bits in length.
0b0100 The cycle counter is 16 bits in length.
0b0101 The cycle counter is 17 bits in length.
0b0110 The cycle counter is 18 bits in length.
0b0111 The cycle counter is 19 bits in length.
0b1000 The cycle counter is 20 bits in length.

All other values are reserved.

Otherwise:

Reserved, RES0.

DVSIZE, bits [24:20]

When TRCIDR0.TRCDATA != 0b00:

Indicates the data value size in bytes. Data tracing is not implemented in ETE and this field is reserved for other trace
architectures. Allocated in other trace architectures.

DVSIZE Meaning
0b00000 Data value tracing not implemented.
0b00100 Data value tracing has a maximum of 32-bit data values.
0b01000 Data value tracing has a maximum of 64-bit data values.

All other values are reserved.

Otherwise:

Reserved, RES0.

DASIZE, bits [19:15]

When TRCIDR0.TRCDATA != 0b00:

Indicates the data address size in bytes. Data tracing is not implemented in ETE and this field is reserved for other
trace architectures. Allocated in other trace architectures.

DASIZE Meaning
0b00000 Data address tracing not implemented.
0b00100 Data address tracing has a maximum of 32-bit data addresses.
0b01000 Data address tracing has a maximum of 64-bit data addresses.

All other values are reserved.

Otherwise:

Reserved, RES0.

VMIDSIZE, bits [14:10]

Indicates the trace unit Virtual context identifier size.

VMIDSIZE Meaning
0b00000 Virtual context identifier tracing is not supported.
0b00001 8-bit Virtual context identifier size.
0b00010 16-bit Virtual context identifier size.
0b00100 32-bit Virtual context identifier size.

TRCIDR2, ID Register 2

Page 4095

All other values are reserved.

If the PE does not implement EL2 then this field is 0b00000.

If the PE implements EL2 then this field is 0b00100.

CIDSIZE, bits [9:5]

Indicates the Context identifier size.

CIDSIZE Meaning
0b00000 Context identifier tracing is not supported.
0b00100 32-bit Context identifier size.

All other values are reserved.

This field reads as 0b00100.

IASIZE, bits [4:0]

Virtual instruction address size.

IASIZE Meaning
0b00100 Maximum of 32-bit instruction address size.
0b01000 Maximum of 64-bit instruction address size.

All other values are reserved.

This field reads as 0b01000.

Accessing the TRCIDR2

TRCIDR2 can be accessed through the external debug interface:

Component Offset
ETE 0x1E8

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR2, ID Register 2

Page 4096

TRCIDR3, ID Register 3
The TRCIDR3 characteristics are:

Purpose
Returns the base architecture of the trace unit.

Configuration
External register TRCIDR3 bits [31:0] are architecturally mapped to AArch64 System register TRCIDR3[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR3 are RES0.

Attributes
TRCIDR3 is a 32-bit register.

Field descriptions
The TRCIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109876543210
NOOVERFLOWNUMPROC[2:0]SYSSTALLSTALLCTLSYNCPRTRCERRRES0EXLEVEL_NS_EL2EXLEVEL_NS_EL1EXLEVEL_NS_EL0EXLEVEL_S_EL3EXLEVEL_S_EL2EXLEVEL_S_EL1EXLEVEL_S_EL0RES0NUMPROC[4:3] CCITMIN

NOOVERFLOW, bit [31]

Indicates if overflow prevention is implemented.

NOOVERFLOW Meaning
0b0 Overflow prevention is not implemented.
0b1 Overflow prevention is implemented.

NUMPROC[2:0], bits [30:28]

This field is bits[2:0] of NUMPROC[4:0].

Indicates the number of PEs available for tracing.

NUMPROC Meaning
0b00000 The trace unit can trace one PE.

This field reads as 0b00000.

The NUMPROC field is split as follows:

• NUMPROC[2:0] is TRCIDR3[30:28].
• NUMPROC[4:3] is TRCIDR3[13:12].

SYSSTALL, bit [27]

Indicates if stalling of the PE is permitted.

SYSSTALL Meaning
0b0 Stalling of the PE is not permitted.
0b1 Stalling of the PE is permitted.

The value of this field might be dynamic and change based on system conditions.

TRCIDR3, ID Register 3

Page 4097

If TRCIDR3.STALLCTL == 0b0 then this field is 0b0.

STALLCTL, bit [26]

Indicates if trace unit implements stalling of the PE.

STALLCTL Meaning
0b0 Stalling of the PE is not implemented.
0b1 Stalling of the PE is implemented.

SYNCPR, bit [25]

Indicates if an implementation has a fixed synchronization period.

SYNCPR Meaning
0b0 TRCSYNCPR is read-write so software can change the

synchronization period.
0b1 TRCSYNCPR is read-only so the synchronization period is

fixed.

This bit reads as 0b0.

TRCERR, bit [24]

Indicates forced tracing of System Error exceptions is implemented.

TRCERR Meaning
0b0 Forced tracing of System Error exceptions is not

implemented.
0b1 Forced tracing of System Error exceptions is implemented.

This bit reads as 0b1.

Bit [23]

Reserved, RES0.

EXLEVEL_NS_EL2, bit [22]

Indicates if Non-secure EL2 implemented.

EXLEVEL_NS_EL2 Meaning
0b0 Non-secure EL2 is not implemented.
0b1 Non-secure EL2 is implemented.

EXLEVEL_NS_EL1, bit [21]

Indicates if Non-secure EL1 implemented.

EXLEVEL_NS_EL1 Meaning
0b0 Non-secure EL1 is not implemented.
0b1 Non-secure EL1 is implemented.

EXLEVEL_NS_EL0, bit [20]

Indicates if Non-secure EL0 implemented.

EXLEVEL_NS_EL0 Meaning
0b0 Non-secure EL0 is not implemented.
0b1 Non-secure EL0 is implemented.

TRCIDR3, ID Register 3

Page 4098

EXLEVEL_S_EL3, bit [19]

Indicates if Secure EL3 implemented.

EXLEVEL_S_EL3 Meaning
0b0 Secure EL3 is not implemented.
0b1 Secure EL3 is implemented.

EXLEVEL_S_EL2, bit [18]

Indicates if Secure EL2 implemented.

EXLEVEL_S_EL2 Meaning
0b0 Secure EL2 is not implemented.
0b1 Secure EL2 is implemented.

EXLEVEL_S_EL1, bit [17]

Indicates if Secure EL1 implemented.

EXLEVEL_S_EL1 Meaning
0b0 Secure EL1 is not implemented.
0b1 Secure EL1 is implemented.

EXLEVEL_S_EL0, bit [16]

Indicates if Secure EL0 implemented.

EXLEVEL_S_EL0 Meaning
0b0 Secure EL0 is not implemented.
0b1 Secure EL0 is implemented.

Bits [15:14]

Reserved, RES0.

NUMPROC[4:3], bits [13:12]

This field is bits[4:3] of NUMPROC[4:0].

See NUMPROC[2:0] for the field description.

CCITMIN, bits [11:0]

Indicates the minimum value that can be programmed in TRCCCCTLR.THRESHOLD.

If TRCIDR0.TRCCCI == 0b1 then the minimum value of this field is 0x001.

If TRCIDR0.TRCCCI == 0b0 then this field is zero.

Accessing the TRCIDR3

TRCIDR3 can be accessed through the external debug interface:

Component Offset
ETE 0x1EC

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

TRCIDR3, ID Register 3

Page 4099

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR3, ID Register 3

Page 4100

TRCIDR4, ID Register 4
The TRCIDR4 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
External register TRCIDR4 bits [31:0] are architecturally mapped to AArch64 System register TRCIDR4[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR4 are RES0.

Attributes
TRCIDR4 is a 32-bit register.

Field descriptions
The TRCIDR4 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NUMVMIDC NUMCIDC NUMSSCC NUMRSPAIR NUMPC RES0 SUPPDAC NUMDVC NUMACPAIRS

NUMVMIDC, bits [31:28]

Indicates the number of Virtual Context Identifier Comparators that are available for tracing.

NUMVMIDC Meaning
0b0000 No Virtual Context Identifier Comparators are available.
0b0001 The implementation has one Virtual Context Identifier

Comparator.
0b0010 The implementation has two Virtual Context Identifier

Comparators.
0b0011 The implementation has three Virtual Context Identifier

Comparators.
0b0100 The implementation has four Virtual Context Identifier

Comparators.
0b0101 The implementation has five Virtual Context Identifier

Comparators.
0b0110 The implementation has six Virtual Context Identifier

Comparators.
0b0111 The implementation has seven Virtual Context Identifier

Comparators.
0b1000 The implementation has eight Virtual Context Identifier

Comparators.

All other values are reserved.

NUMCIDC, bits [27:24]

Indicates the number of Context Identifier Comparators that are available for tracing.

TRCIDR4, ID Register 4

Page 4101

NUMCIDC Meaning
0b0000 No Context Identifier Comparators are available.
0b0001 The implementation has one Context Identifier

Comparator.
0b0010 The implementation has two Context Identifier

Comparators.
0b0011 The implementation has three Context Identifier

Comparators.
0b0100 The implementation has four Context Identifier

Comparators.
0b0101 The implementation has five Context Identifier

Comparators.
0b0110 The implementation has six Context Identifier

Comparators.
0b0111 The implementation has seven Context Identifier

Comparators.
0b1000 The implementation has eight Context Identifier

Comparators.

All other values are reserved.

NUMSSCC, bits [23:20]

Indicates the number of Single-shot Comparator Controls that are available for tracing.

NUMSSCC Meaning
0b0000 No Single-shot Comparator Controls are available.
0b0001 The implementation has one Single-shot Comparator

Control.
0b0010 The implementation has two Single-shot Comparator

Controls.
0b0011 The implementation has three Single-shot Comparator

Controls.
0b0100 The implementation has four Single-shot Comparator

Controls.
0b0101 The implementation has five Single-shot Comparator

Controls.
0b0110 The implementation has six Single-shot Comparator

Controls.
0b0111 The implementation has seven Single-shot Comparator

Controls.
0b1000 The implementation has eight Single-shot Comparator

Controls.

All other values are reserved.

NUMRSPAIR, bits [19:16]

Indicates the number of resource selector pairs that are available for tracing.

TRCIDR4, ID Register 4

Page 4102

NUMRSPAIR Meaning
0b0000 The implementation has zero resource selectors.
0b0001 The implementation has two resource selector pairs.
0b0010 The implementation has three resource selector pairs.
0b0011 The implementation has four resource selector pairs.
0b0100 The implementation has five resource selector pairs.
0b0101 The implementation has six resource selector pairs.
0b0110 The implementation has seven resource selector pairs.
0b0111 The implementation has eight resource selector pairs.
0b1000 The implementation has nine resource selector pairs.
0b1001 The implementation has ten resource selector pairs.
0b1010 The implementation has eleven resource selector pairs.
0b1011 The implementation has twelve resource selector pairs.
0b1100 The implementation has thirteen resource selector

pairs.
0b1101 The implementation has fourteen resource selector

pairs.
0b1110 The implementation has fifteen resource selector pairs.
0b1111 The implementation has sixteen resource selector pairs.

All other values are reserved.

NUMPC, bits [15:12]

Indicates the number of PE Comparator Inputs that are available for tracing.

NUMPC Meaning
0b0000 No PE Comparator Inputs are available.
0b0001 The implementation has one PE Comparator Input.
0b0010 The implementation has two PE Comparator Inputs.
0b0011 The implementation has three PE Comparator Inputs.
0b0100 The implementation has four PE Comparator Inputs.
0b0101 The implementation has five PE Comparator Inputs.
0b0110 The implementation has six PE Comparator Inputs.
0b0111 The implementation has seven PE Comparator Inputs.
0b1000 The implementation has eight PE Comparator Inputs.

All other values are reserved.

Bits [11:9]

Reserved, RES0.

SUPPDAC, bit [8]

When TRCIDR4.NUMACPAIRS != 0b0000:

Indicates whether data address comparisons are implemented. Data address comparisons are not implemented in ETE
and are reserved for other trace architectures. Allocated in other trace architectures.

SUPPDAC Meaning
0b0 Data address comparisons not implemented.
0b1 Data address comparisons implemented.

This bit reads as 0b0.

Otherwise:

Reserved, RES0.

NUMDVC, bits [7:4]

Indicates the number of data value comparators. Data value comparators are not implemented in ETE and are
reserved for other trace architectures. Allocated in other trace architectures.

TRCIDR4, ID Register 4

Page 4103

NUMDVC Meaning
0b0000 No data value comparators implemented.
0b0001 One data value comparator implemented.
0b0010 Two data value comparators implemented.
0b0011 Three data value comparators implemented.
0b0100 Four data value comparators implemented.
0b0101 Five data value comparators implemented.
0b0110 Six data value comparators implemented.
0b0111 Seven data value comparators implemented.
0b1000 Eight data value comparators implemented.

All other values are reserved.

This field reads as 0b0000.

NUMACPAIRS, bits [3:0]

Indicates the number of Address Comparator pairs that are available for tracing.

NUMACPAIRS Meaning
0b0000 No Address Comparator pairs are available.
0b0001 The implementation has one Address Comparator pair.
0b0010 The implementation has two Address Comparator

pairs.
0b0011 The implementation has three Address Comparator

pairs.
0b0100 The implementation has four Address Comparator

pairs.
0b0101 The implementation has five Address Comparator

pairs.
0b0110 The implementation has six Address Comparator pairs.
0b0111 The implementation has seven Address Comparator

pairs.
0b1000 The implementation has eight Address Comparator

pairs.

All other values are reserved.

Accessing the TRCIDR4

TRCIDR4 can be accessed through the external debug interface:

Component Offset
ETE 0x1F0

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR4, ID Register 4

Page 4104

TRCIDR5, ID Register 5
The TRCIDR5 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
External register TRCIDR5 bits [31:0] are architecturally mapped to AArch64 System register TRCIDR5[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR5 are RES0.

Attributes
TRCIDR5 is a 32-bit register.

Field descriptions
The TRCIDR5 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21201918171615141312 11 10 9 876543210
RES0NUMCNTRNUMSEQSTATERES0LPOVERRIDEATBTRIGTRACEIDSIZE RES0 NUMEXTINSEL NUMEXTIN

Bit [31]

Reserved, RES0.

NUMCNTR, bits [30:28]

Indicates the number of Counters that are available for tracing.

NUMCNTR Meaning
0b000 No Counters are available.
0b001 One Counter implemented.
0b010 Two Counters implemented.
0b011 Three Counters implemented.
0b100 Four Counters implemented.

All other values are reserved.

If TRCIDR4.NUMRSPAIR == 0b0000 then this field is 0b000.

NUMSEQSTATE, bits [27:25]

Indicates if the Sequencer is implemented and the number of Sequencer states that are implemented.

NUMSEQSTATE Meaning
0b000 The Sequencer is not implemented.
0b100 Four Sequencer states are implemented.

All other values are reserved.

If TRCIDR4.NUMRSPAIR == 0b0000 then this field is 0b000.

TRCIDR5, ID Register 5

Page 4105

Bit [24]

Reserved, RES0.

LPOVERRIDE, bit [23]

Indicates support for Low-power Override Mode.

LPOVERRIDE Meaning
0b0 The trace unit does not support Low-power Override

Mode.
0b1 The trace unit supports Low-power Override Mode.

ATBTRIG, bit [22]

Indicates if the implementation can support ATB triggers.

ATBTRIG Meaning
0b0 The implementation does not support ATB triggers.
0b1 The implementation supports ATB triggers.

If TRCIDR4.NUMRSPAIR == 0b0000 then this field is 0b0.

TRACEIDSIZE, bits [21:16]

Indicates the trace ID width.

TRACEIDSIZE Meaning
0b000000 The external trace interface is not implemented.
0b000111 The implementation supports a 7-bit trace ID.

All other values are reserved.

Note that AMBA ATB requires a 7-bit trace ID width.

Bits [15:12]

Reserved, RES0.

NUMEXTINSEL, bits [11:9]

Indicates how many External Input Selector resources are implemented.

NUMEXTINSEL Meaning
0b000 No External Input Selector resources are available.
0b001 1 External Input Selector resource is available.
0b010 2 External Input Selector resources are available.
0b011 3 External Input Selector resources are available.
0b100 4 External Input Selector resources are available.

All other values are reserved.

NUMEXTIN, bits [8:0]

Indicates how many External Inputs are implemented.

NUMEXTIN Meaning
0b111111111 Unified PMU event selection.

All other values are reserved.

TRCIDR5, ID Register 5

Page 4106

Accessing the TRCIDR5

TRCIDR5 can be accessed through the external debug interface:

Component Offset
ETE 0x1F4

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR5, ID Register 5

Page 4107

TRCIDR6, ID Register 6
The TRCIDR6 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
External register TRCIDR6 bits [31:0] are architecturally mapped to AArch64 System register TRCIDR6[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR6 are RES0.

Attributes
TRCIDR6 is a 32-bit register.

Field descriptions
The TRCIDR6 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [31:0]

Reserved, RES0.

Accessing the TRCIDR6

TRCIDR6 can be accessed through the external debug interface:

Component Offset
ETE 0x1F8

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR6, ID Register 6

Page 4108

TRCIDR7, ID Register 7
The TRCIDR7 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
External register TRCIDR7 bits [31:0] are architecturally mapped to AArch64 System register TRCIDR7[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR7 are RES0.

Attributes
TRCIDR7 is a 32-bit register.

Field descriptions
The TRCIDR7 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [31:0]

Reserved, RES0.

Accessing the TRCIDR7

TRCIDR7 can be accessed through the external debug interface:

Component Offset
ETE 0x1FC

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR7, ID Register 7

Page 4109

TRCIDR8, ID Register 8
The TRCIDR8 characteristics are:

Purpose
Returns the maximum speculation depth of the instruction trace element stream.

Configuration
External register TRCIDR8 bits [31:0] are architecturally mapped to AArch64 System register TRCIDR8[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR8 are RES0.

Attributes
TRCIDR8 is a 32-bit register.

Field descriptions
The TRCIDR8 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MAXSPEC

MAXSPEC, bits [31:0]

Indicates the maximum speculation depth of the instruction trace element stream. This is the maximum number of P0
elements in the trace element stream that can be speculative at any time.

Accessing the TRCIDR8

TRCIDR8 can be accessed through the external debug interface:

Component Offset
ETE 0x180

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR8, ID Register 8

Page 4110

TRCIDR9, ID Register 9
The TRCIDR9 characteristics are:

Purpose
Returns the tracing capabilities of the trace unit.

Configuration
External register TRCIDR9 bits [31:0] are architecturally mapped to AArch64 System register TRCIDR9[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIDR9 are RES0.

Attributes
TRCIDR9 is a 32-bit register.

Field descriptions
The TRCIDR9 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NUMP0KEY

NUMP0KEY, bits [31:0]

When TRCIDR0.TRCDATA != 0b00:

Indicates the number of P0 right-hand keys. Data tracing is not implemented in ETE and this field is reserved for other
trace architectures. Allocated in other trace architectures.

Otherwise:

Reserved, RES0.

Accessing the TRCIDR9

TRCIDR9 can be accessed through the external debug interface:

Component Offset
ETE 0x184

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIDR9, ID Register 9

Page 4111

TRCIMSPEC0, IMP DEF Register 0
The TRCIMSPEC0 characteristics are:

Purpose
TRCIMSPEC0 shows the presence of any IMPLEMENTATION DEFINED features, and provides an interface to enable the
features that are provided.

Configuration
External register TRCIMSPEC0 bits [31:0] are architecturally mapped to AArch64 System register TRCIMSPEC0[31:0]
.

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCIMSPEC0 are RES0.

Attributes
TRCIMSPEC0 is a 32-bit register.

Field descriptions
The TRCIMSPEC0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 EN SUPPORT

Bits [31:8]

Reserved, RES0.

EN, bits [7:4]

When TRCIMSPEC0.SUPPORT != 0b0000:

Enable. Controls whether the IMPLEMENTATION DEFINED features are enabled.

EN Meaning
0b0000 The IMPLEMENTATION DEFINED features are not enabled. The

trace unit must behave as if the IMPLEMENTATION DEFINED
features are not supported.

0b0001 The trace unit behavior is IMPLEMENTATION DEFINED.
0b0010 The trace unit behavior is IMPLEMENTATION DEFINED.
0b0011 The trace unit behavior is IMPLEMENTATION DEFINED.
0b0100 The trace unit behavior is IMPLEMENTATION DEFINED.
0b0101 The trace unit behavior is IMPLEMENTATION DEFINED.
0b0110 The trace unit behavior is IMPLEMENTATION DEFINED.
0b0111 The trace unit behavior is IMPLEMENTATION DEFINED.
0b1000 The trace unit behavior is IMPLEMENTATION DEFINED.
0b1001 The trace unit behavior is IMPLEMENTATION DEFINED.
0b1010 The trace unit behavior is IMPLEMENTATION DEFINED.
0b1011 The trace unit behavior is IMPLEMENTATION DEFINED.
0b1100 The trace unit behavior is IMPLEMENTATION DEFINED.
0b1101 The trace unit behavior is IMPLEMENTATION DEFINED.
0b1110 The trace unit behavior is IMPLEMENTATION DEFINED.
0b1111 The trace unit behavior is IMPLEMENTATION DEFINED.

On a Trace unit reset, this field resets to 0.

TRCIMSPEC0, IMP DEF Register 0

Page 4112

Otherwise:

Reserved, RES0.

SUPPORT, bits [3:0]

Indicates whether the implementation supports IMPLEMENTATION DEFINED features.

SUPPORT Meaning
0b0000 No IMPLEMENTATION DEFINED features are supported.
0b0001 IMPLEMENTATION DEFINED features are supported.
0b0010 IMPLEMENTATION DEFINED features are supported.
0b0011 IMPLEMENTATION DEFINED features are supported.
0b0100 IMPLEMENTATION DEFINED features are supported.
0b0101 IMPLEMENTATION DEFINED features are supported.
0b0110 IMPLEMENTATION DEFINED features are supported.
0b0111 IMPLEMENTATION DEFINED features are supported.
0b1000 IMPLEMENTATION DEFINED features are supported.
0b1001 IMPLEMENTATION DEFINED features are supported.
0b1010 IMPLEMENTATION DEFINED features are supported.
0b1011 IMPLEMENTATION DEFINED features are supported.
0b1100 IMPLEMENTATION DEFINED features are supported.
0b1101 IMPLEMENTATION DEFINED features are supported.
0b1110 IMPLEMENTATION DEFINED features are supported.
0b1111 IMPLEMENTATION DEFINED features are supported.

Use of nonzero values requires written permission from Arm.

Access to this field is RO.

Accessing the TRCIMSPEC0

TRCIMSPEC0 can be accessed through the external debug interface:

Component Offset
ETE 0x1C0

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIMSPEC0, IMP DEF Register 0

Page 4113

TRCIMSPEC<n>, IMP DEF Register <n>, n = 1 - 7
The TRCIMSPEC<n> characteristics are:

Purpose
These registers might return information that is specific to an implementation, or enable features specific to an
implementation to be programmed. The product Technical Reference Manual describes these registers.

Configuration
External register TRCIMSPEC<n> bits [31:0] are architecturally mapped to AArch64 System register
TRCIMSPEC<n>[31:0] .

This register is present only when the trace unit implements this OPTIONAL register and ETE is implemented.
Otherwise, direct accesses to TRCIMSPEC<n> are RES0.

Attributes
TRCIMSPEC<n> is a 32-bit register.

Field descriptions
The TRCIMSPEC<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

IMPLEMENTATION_DEFINED.

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION DEFINED behavior.

Accessing the TRCIMSPEC<n>

TRCIMSPEC<n> can be accessed through the external debug interface:

Component Offset Instance
ETE 0x1C0 + 4n TRCIMSPEC<n>

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCIMSPEC<n>, IMP DEF Register <n>, n = 1 - 7

Page 4114

TRCITCTRL, Integration Mode Control Register
The TRCITCTRL characteristics are:

Purpose
A component can use TRCITCTRL to dynamically switch between functional mode and integration mode. In integration
mode, topology detection is enabled. After switching to integration mode and performing integration tests or topology
detection, reset the system to ensure correct behavior of CoreSight and other connected system components.

For additional information see the CoreSight Architecture Specification.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCITCTRL are RES0.

Attributes
TRCITCTRL is a 32-bit register.

Field descriptions
The TRCITCTRL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IME

Bits [31:1]

Reserved, RES0.

IME, bit [0]

Integration Mode Enable.

IME Meaning
0b0 The component must enter functional mode.
0b1 The component must enter integration mode, and enable support

for topology detection and integration testing.

This bit is RES0 if no topology detection or integration functionality is implemented.

Accessing the TRCITCTRL
External debugger accesses to this register are IMPLEMENTATION DEFINED when the trace unit is not in the Idle state.

TRCITCTRL can be accessed through the external debug interface:

Component Offset
ETE 0xF00

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

TRCITCTRL, Integration Mode Control Register

Page 4115

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCITCTRL, Integration Mode Control Register

Page 4116

TRCLAR, Lock Access Register
The TRCLAR characteristics are:

Purpose
Used to lock and unlock the Software Lock.

Note that ETE does not implement the Software Lock.

For additional information see the CoreSight Architecture Specification.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCLAR are RES0.

Attributes
TRCLAR is a 32-bit register.

Field descriptions
The TRCLAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
KEY

KEY, bits [31:0]

When the Software Lock is implemented:

Software Lock Key.

A value of 0xC5ACCE55 unlocks the Software Lock.

Any other value locks the Software Lock.

Otherwise:

Reserved, RES0.

Accessing the TRCLAR
External debugger accesses to this register are unaffected by the OS Lock.

TRCLAR can be accessed through the external debug interface:

Component Offset
ETE 0xFB0

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are WO.

TRCLAR, Lock Access Register

Page 4117

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCLAR, Lock Access Register

Page 4118

TRCLSR, Lock Status Register
The TRCLSR characteristics are:

Purpose
Indicates whether the Software Lock is implemented, and the current status of the Software Lock.

For additional information see the CoreSight Architecture Specification.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCLSR are RES0.

Attributes
TRCLSR is a 32-bit register.

Field descriptions
The TRCLSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 nTTSLKSLI

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Software lock size.

This bit reads as 0b0.

SLK, bit [1]

The current Software Lock status.

SLK Meaning
0b0 Software Lock is unlocked.
0b1 Software Lock is locked. Writes to the other registers in this

component, except for the TRCLAR, are ignored.

This bit reads as zero.

SLI, bit [0]

Indicates whether the Software Lock is implemented.

SLI Meaning
0b0 Software Lock is not implemented. Writes to the TRCLAR are

ignored.
0b1 Software Lock is implemented.

This bit reads as zero.

TRCLSR, Lock Status Register

Page 4119

Accessing the TRCLSR
External debugger accesses to this register are unaffected by the OS Lock.

TRCLSR can be accessed through the external debug interface:

Component Offset
ETE 0xFB4

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCLSR, Lock Status Register

Page 4120

TRCOSLSR, Trace OS Lock Status Register
The TRCOSLSR characteristics are:

Purpose
Returns the status of the Trace OS Lock.

Configuration
External register TRCOSLSR bits [31:0] are architecturally mapped to AArch64 System register TRCOSLSR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCOSLSR are RES0.

Attributes
TRCOSLSR is a 32-bit register.

Field descriptions
The TRCOSLSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 OSLM[2:1]RES0OSLKOSLM[0]

Bits [31:5]

Reserved, RES0.

OSLM[2:1], bits [4:3]

This field is bits[2:1] of OSLM[2:0].

OS Lock model.

OSLM Meaning
0b000 Trace OS Lock is not implemented.
0b010 Trace OS Lock is implemented.
0b100 Trace OS Lock is not implemented, and the trace unit is

controlled by the PE OS Lock.

All other values are reserved.

This field reads as 0b100.

The OSLM field is split as follows:

• OSLM[2:1] is TRCOSLSR[4:3].
• OSLM[0] is TRCOSLSR[0].

Bit [2]

Reserved, RES0.

OSLK, bit [1]

OS Lock status.

TRCOSLSR, Trace OS Lock Status Register

Page 4121

OSLK Meaning
0b0 The OS Lock is unlocked.
0b1 The OS Lock is locked.

Note that this field indicates the state of the PE OS Lock.

OSLM[0], bit [0]

This field is bit[0] of OSLM[2:0].

See OSLM[2:1] for the field description.

Accessing the TRCOSLSR
External debugger accesses to this register are unaffected by the OS Lock.

TRCOSLSR can be accessed through the external debug interface:

Component Offset
ETE 0x304

This interface is accessible as follows:

• When !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCOSLSR, Trace OS Lock Status Register

Page 4122

TRCPDCR, PowerDown Control Register
The TRCPDCR characteristics are:

Purpose
Requests the system to provide power to the trace unit.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCPDCR are RES0.

Attributes
TRCPDCR is a 32-bit register.

Field descriptions
The TRCPDCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PU RES0

Bits [31:4]

Reserved, RES0.

PU, bit [3]

Power Up Request.

PU Meaning
0b0 The system can remove power from the trace unit core power

domain, or requests for power to the trace unit core power domain
are implemented outside of the trace unit.

0b1 The system must provide power to the trace unit core power
domain.

This bit is RES0.

Bits [2:0]

Reserved, RES0.

Accessing the TRCPDCR
External debugger accesses to this register are unaffected by the OS Lock.

TRCPDCR can be accessed through the external debug interface:

Component Offset
ETE 0x310

This interface is accessible as follows:

TRCPDCR, PowerDown Control Register

Page 4123

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCPDCR, PowerDown Control Register

Page 4124

TRCPDSR, PowerDown Status Register
The TRCPDSR characteristics are:

Purpose
Indicates the power status of the trace unit.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCPDSR are RES0.

Attributes
TRCPDSR is a 32-bit register.

Field descriptions
The TRCPDSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 OSLK RES0 STICKYPDPOWER

Bits [31:6]

Reserved, RES0.

OSLK, bit [5]

OS Lock Status.

OSLK Meaning
0b0 The OS Lock is unlocked.
0b1 The OS Lock is locked.

Note that this field indicates the state of the PE OS Lock.

Bits [4:2]

Reserved, RES0.

STICKYPD, bit [1]

Sticky powerdown status. Indicates whether the trace register state is valid.

STICKYPD Meaning
0b0 The state of TRCOSLSR and the trace registers are valid.
0b1 The state of TRCOSLSR and the trace registers might not

be valid.

This field is set to 0b1 if the power to the trace unit core power domain is removed and the trace unit register state is
not valid.

The STICKYPD field is read-sensitive. On a read of the TRCPDSR, this field is cleared to 0b0 after the register has been
read.

On a Trace unit reset, this field resets to 1.

TRCPDSR, PowerDown Status Register

Page 4125

POWER, bit [0]

Power Status.

POWER Meaning
0b0 The trace unit core power domain is not powered. All trace

unit registers are not accessible and they all return an error
response.

0b1 The trace unit core power domain is powered. Trace unit
registers are accessible.

Access to this field is RAO.

Accessing the TRCPDSR
External debugger accesses to this register are unaffected by the OS Lock.

TRCPDSR can be accessed through the external debug interface:

Component Offset
ETE 0x314

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCPDSR, PowerDown Status Register

Page 4126

TRCPIDR0, Peripheral Identification Register 0
The TRCPIDR0 characteristics are:

Purpose
Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCPIDR0 are RES0.

Attributes
TRCPIDR0 is a 32-bit register.

Field descriptions
The TRCPIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PART_0

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

IMPLEMENTATION DEFINED.

Part number, bits [7:0].

The part number is selected by the designer of the component, and is stored in TRCPIDR1.PART_1 and
TRCPIDR0.PART_0.

This field reads as an IMPLEMENTATION DEFINED value.

Accessing the TRCPIDR0
External debugger accesses to this register are unaffected by the OS Lock.

TRCPIDR0 can be accessed through the external debug interface:

Component Offset
ETE 0xFE0

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

TRCPIDR0, Peripheral Identification Register 0

Page 4127

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCPIDR0, Peripheral Identification Register 0

Page 4128

TRCPIDR1, Peripheral Identification Register 1
The TRCPIDR1 characteristics are:

Purpose
Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCPIDR1 are RES0.

Attributes
TRCPIDR1 is a 32-bit register.

Field descriptions
The TRCPIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 DES_0 PART_1

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

IMPLEMENTATION DEFINED.

Designer, JEP106 identification code, bits [3:0]. TRCPIDR1.DES_0 and TRCPIDR2.DES_1 together form the JEDEC-
assigned JEP106 identification code for the designer of the component. The parity bit in the JEP106 identification code
is not included. The code identifies the designer of the component, which might not be not the same as the
implementer of the device containing the component. To obtain a number, or to see the assignment of these codes,
contact JEDEC http://www.jedec.org.

This field reads as an IMPLEMENTATION DEFINED value.

Note

For a component designed by Arm Limited, the JEP106 identification code is
0x3B.

PART_1, bits [3:0]

IMPLEMENTATION DEFINED.

Part number, bits [11:8].

The part number is selected by the designer of the component, and is stored in TRCPIDR1.PART_1 and
TRCPIDR0.PART_0.

This field reads as an IMPLEMENTATION DEFINED value.

TRCPIDR1, Peripheral Identification Register 1

Page 4129

Accessing the TRCPIDR1
External debugger accesses to this register are unaffected by the OS Lock.

TRCPIDR1 can be accessed through the external debug interface:

Component Offset
ETE 0xFE4

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCPIDR1, Peripheral Identification Register 1

Page 4130

TRCPIDR2, Peripheral Identification Register 2
The TRCPIDR2 characteristics are:

Purpose
Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCPIDR2 are RES0.

Attributes
TRCPIDR2 is a 32-bit register.

Field descriptions
The TRCPIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 REVISION JEDEC DES_1

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

IMPLEMENTATION DEFINED.

Component major revision. TRCPIDR2.REVISION and TRCPIDR3.REVAND together form the revision number of the
component, with TRCPIDR2.REVISION being the most significant part and TRCPIDR3.REVAND the least significant
part. When a component is changed, TRCPIDR2.REVISION or TRCPIDR3.REVAND must be increased to ensure that
software can differentiate the different revisions of the component. If TRCPIDR2.REVISION is increased then
TRCPIDR3.REVAND should be set to 0b0000.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]

JEDEC-assigned JEP106 implementer code is used.

This bit reads as one.

DES_1, bits [2:0]

IMPLEMENTATION DEFINED.

Designer, JEP106 identification code, bits [6:4]. TRCPIDR1.DES_0 and TRCPIDR2.DES_1 together form the JEDEC-
assigned JEP106 identification code for the designer of the component. The parity bit in the JEP106 identification code
is not included. The code identifies the designer of the component, which might not be not the same as the
implementer of the device containing the component. To obtain a number, or to see the assignment of these codes,
contact JEDEC http://www.jedec.org.

This field reads as an IMPLEMENTATION DEFINED value.

TRCPIDR2, Peripheral Identification Register 2

Page 4131

Note

For a component designed by Arm Limited, the JEP106 identification code is
0x3B.

Accessing the TRCPIDR2
External debugger accesses to this register are unaffected by the OS Lock.

TRCPIDR2 can be accessed through the external debug interface:

Component Offset
ETE 0xFE8

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCPIDR2, Peripheral Identification Register 2

Page 4132

TRCPIDR3, Peripheral Identification Register 3
The TRCPIDR3 characteristics are:

Purpose
Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCPIDR3 are RES0.

Attributes
TRCPIDR3 is a 32-bit register.

Field descriptions
The TRCPIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 REVAND CMOD

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

IMPLEMENTATION DEFINED.

Component minor revision. TRCPIDR2.REVISION and TRCPIDR3.REVAND together form the revision number of the
component, with TRCPIDR2.REVISION being the most significant part and TRCPIDR3.REVAND the least significant
part. When a component is changed, TRCPIDR2.REVISION or TRCPIDR3.REVAND must be increased to ensure that
software can differentiate the different revisions of the component. If TRCPIDR2.REVISION is increased then
TRCPIDR3.REVAND should be set to 0b0000.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]

IMPLEMENTATION DEFINED.

Customer Modified.

Indicates the component has been modified.

A value of 0b0000 means the component is not modified from the original design.

Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.

For any two components with the same Unique Component Identifier:

• If the value of the CMOD fields of both components equals zero, the components are identical.
• If the CMOD fields of both components have the same non-zero value, it does not necessarily mean that they

have the same modifications.

TRCPIDR3, Peripheral Identification Register 3

Page 4133

• If the value of the CMOD field of either of the two components is non-zero, they might not be identical, even
though they have the same Unique Component Identifier.

This field reads as an IMPLEMENTATION DEFINED value.

Accessing the TRCPIDR3
External debugger accesses to this register are unaffected by the OS Lock.

TRCPIDR3 can be accessed through the external debug interface:

Component Offset
ETE 0xFEC

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCPIDR3, Peripheral Identification Register 3

Page 4134

TRCPIDR4, Peripheral Identification Register 4
The TRCPIDR4 characteristics are:

Purpose
Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCPIDR4 are RES0.

Attributes
TRCPIDR4 is a 32-bit register.

Field descriptions
The TRCPIDR4 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SIZE DES_2

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

IMPLEMENTATION DEFINED.

Size of the component.

The distance from the start of the address space used by this component to the end of the component identification
registers.

A value of 0b0000 means one of the following is true:

• The component uses a single 4KB block.
• The component uses an IMPLEMENTATION DEFINED number of 4KB blocks.

Any other value means the component occupies 2TRCPIDR4.SIZE 4KB blocks.

Using this field to indicate the size of the component is deprecated. This field might not correctly indicate the size of
the component. Arm recommends that software determine the size of the component from the Unique Component
Identifier fields, and other IMPLEMENTATION DEFINED registers in the component.

This field reads as 0b0000.

DES_2, bits [3:0]

IMPLEMENTATION DEFINED.

Designer, JEP106 continuation code. This is the JEDEC-assigned JEP106 bank identifier for the designer of the
component, minus 1. The code identifies the designer of the component, which might not be not the same as the
implementer of the device containing the component. To obtain a number, or to see the assignment of these codes,
contact JEDEC http://www.jedec.org.

TRCPIDR4, Peripheral Identification Register 4

Page 4135

This field reads as an IMPLEMENTATION DEFINED value.

Note

For a component designed by Arm Limited, the JEP106 bank is 5, meaning this
field has the value 0x4.

Accessing the TRCPIDR4
External debugger accesses to this register are unaffected by the OS Lock.

TRCPIDR4 can be accessed through the external debug interface:

Component Offset
ETE 0xFD0

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCPIDR4, Peripheral Identification Register 4

Page 4136

TRCPIDR5, Peripheral Identification Register 5
The TRCPIDR5 characteristics are:

Purpose
Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCPIDR5 are RES0.

Attributes
TRCPIDR5 is a 32-bit register.

Field descriptions
The TRCPIDR5 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [31:0]

Reserved, RES0.

Accessing the TRCPIDR5
External debugger accesses to this register are unaffected by the OS Lock.

TRCPIDR5 can be accessed through the external debug interface:

Component Offset
ETE 0xFD4

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCPIDR5, Peripheral Identification Register 5

Page 4137

TRCPIDR6, Peripheral Identification Register 6
The TRCPIDR6 characteristics are:

Purpose
Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCPIDR6 are RES0.

Attributes
TRCPIDR6 is a 32-bit register.

Field descriptions
The TRCPIDR6 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [31:0]

Reserved, RES0.

Accessing the TRCPIDR6
External debugger accesses to this register are unaffected by the OS Lock.

TRCPIDR6 can be accessed through the external debug interface:

Component Offset
ETE 0xFD8

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCPIDR6, Peripheral Identification Register 6

Page 4138

TRCPIDR7, Peripheral Identification Register 7
The TRCPIDR7 characteristics are:

Purpose
Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configuration
This register is present only when ETE is implemented. Otherwise, direct accesses to TRCPIDR7 are RES0.

Attributes
TRCPIDR7 is a 32-bit register.

Field descriptions
The TRCPIDR7 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [31:0]

Reserved, RES0.

Accessing the TRCPIDR7
External debugger accesses to this register are unaffected by the OS Lock.

TRCPIDR7 can be accessed through the external debug interface:

Component Offset
ETE 0xFDC

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.
• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCPIDR7, Peripheral Identification Register 7

Page 4139

TRCPRGCTLR, Programming Control Register
The TRCPRGCTLR characteristics are:

Purpose
Enables the trace unit.

Configuration
External register TRCPRGCTLR bits [31:0] are architecturally mapped to AArch64 System register
TRCPRGCTLR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCPRGCTLR are RES0.

Attributes
TRCPRGCTLR is a 32-bit register.

Field descriptions
The TRCPRGCTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 EN

Bits [31:1]

Reserved, RES0.

EN, bit [0]

Trace unit enable.

EN Meaning
0b0 The trace unit is disabled.
0b1 The trace unit is enabled.

On a Trace unit reset, this field resets to 0.

Accessing the TRCPRGCTLR
Must be programmed.

TRCPRGCTLR can be accessed through the external debug interface:

Component Offset
ETE 0x004

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

TRCPRGCTLR, Programming Control Register

Page 4140

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCPRGCTLR, Programming Control Register

Page 4141

TRCQCTLR, Q Element Control Register
The TRCQCTLR characteristics are:

Purpose
Controls when Q elements are enabled.

Configuration
External register TRCQCTLR bits [31:0] are architecturally mapped to AArch64 System register TRCQCTLR[31:0] .

This register is present only when ETE is implemented and TRCIDR0.QFILT == 0b1. Otherwise, direct accesses to
TRCQCTLR are RES0.

Attributes
TRCQCTLR is a 32-bit register.

Field descriptions
The TRCQCTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 MODE RANGE<m>, bit [m]

Bits [31:9]

Reserved, RES0.

MODE, bit [8]

Selects whether the Address Range Comparators selected by the RANGE field indicate address ranges where the trace
unit is permitted to generate Q elements or address ranges where the trace unit is not permitted to generate Q
elements:

MODE Meaning
0b0 Exclude mode.

The Address Range Comparators selected by the RANGE field
indicate address ranges where the trace unit must not generate
Q elements. If no ranges are selected, Q elements are
permitted across the entire memory map.

0b1 Include Mode.
The Address Range Comparators selected by the RANGE field
indicate address ranges where the trace unit can generate Q
elements. If all the implemented bits in RANGE are set to 0b0
then Q elements are disabled.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RANGE<m>, bit [m], for m = 0 to 7

Specifies the Address Range Comparators to be used for controlling Q elements.

TRCQCTLR, Q Element Control Register

Page 4142

RANGE<m> Meaning
0b0 The address range that Address Range Comparator m

defines, is not selected.
0b1 The address range that Address Range Comparator m

defines, is selected.

This bit is RES0 if m >= TRCIDR4.NUMACPAIRS.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCQCTLR
Must be programmed if TRCCONFIGR.QE != 0b00.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCQCTLR can be accessed through the external debug interface:

Component Offset
ETE 0x044

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCQCTLR, Q Element Control Register

Page 4143

TRCRSCTLR<n>, Resource Selection Control Register
<n>, n = 2 - 31

The TRCRSCTLR<n> characteristics are:

Purpose
Controls the selection of the resources in the trace unit.

Configuration
External register TRCRSCTLR<n> bits [31:0] are architecturally mapped to AArch64 System register
TRCRSCTLR<n>[31:0] .

This register is present only when ETE is implemented and ((ext-TRCIDR4.NUMRSPAIR + 1) * 2) > n. Otherwise,
direct accesses to TRCRSCTLR<n> are RES0.

Resource selector 0 always returns FALSE.

Resource selector 1 always returns TRUE.

Resource selectors are implemented in pairs. Each odd numbered resource selector is part of a pair with the even
numbered resource selector that is numbered as one less than it. For example, resource selectors 2 and 3 form a pair.

Attributes
TRCRSCTLR<n> is a 32-bit register.

Field descriptions
The TRCRSCTLR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PAIRINVINV GROUP SELECT

Bits [31:22]

Reserved, RES0.

PAIRINV, bit [21]

For TRCRSCTLR<n>, where n is even, controls whether the combined result from a resource selector pair is inverted.

PAIRINV Meaning
0b0 Do not invert the combined output of the 2 resource

selectors.
0b1 Invert the combined output of the 2 resource selectors.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

INV, bit [20]

Controls whether the resource, that GROUP and SELECT selects, is inverted.

INV Meaning
0b0 Do not invert the output of this selector.
0b1 Invert the output of this selector.

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 4144

If:

• A is the register TRCRSCTLR<m> where m is even.
• B is the register TRCRSCTLR<m+1>.

Then the combined output of the 2 resource selectors A and B depends on the value of (A.PAIRINV, A.INV, B.INV) as
follows:

• 0b000 -> A and B.
• 0b001 -> RESERVED.
• 0b010 -> not(A) and B.
• 0b011 -> not(A) and not(B).
• 0b100 -> not(A) or not(B).
• 0b101 -> not(A) or B.
• 0b110 -> RESERVED.
• 0b111 -> A or B.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

GROUP, bits [19:16]

Selects a group of resources.

GROUP Meaning SELECT
0b0000 External Input

Selectors.
SELECT encoding for External
Input Selectors

0b0001 PE Comparator
Inputs.

SELECT encoding for PE
Comparator Inputs

0b0010 Counters and
Sequencer.

SELECT encoding for Counters and
Sequencer

0b0011 Single-shot
Comparator Controls.

SELECT encoding for Single-shot
Comparator Controls

0b0100 Single Address
Comparators.

SELECT encoding for Single
Address Comparators

0b0101 Address Range
Comparators.

SELECT encoding for Address
Range Comparators

0b0110 Context Identifier
Comparators.

SELECT encoding for Context
Identifier Comparators

0b0111 Virtual Context
Identifier
Comparators.

SELECT encoding for Virtual
Context Identifier Comparators

All other values are reserved.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT, bits [15:0]

Resource Specific Controls. Contains the controls specific to the resource group selected by GROUP, described in the
following sections.

SELECT encoding for External Input Selectors

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 EXTIN<m>, bit [m]

Bits [15:4]

Reserved, RES0.

EXTIN<m>, bit [m], for m = 0 to 3

Selects one or more External Inputs.

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 4145

EXTIN<m> Meaning
0b0 Ignore EXTIN m.
0b1 Select EXTIN m.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for PE Comparator Inputs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PECOMP<m>, bit [m]

Bits [15:8]

Reserved, RES0.

PECOMP<m>, bit [m], for m = 0 to 7

Selects one or more PE Comparator Inputs.

PECOMP<m> Meaning
0b0 Ignore PE Comparator Input m.
0b1 Select PE Comparator Input m.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Counters and Sequencer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 SEQUENCER<m>, bit
[m+4]

COUNTERS<m>, bit
[m]

Bits [15:8]

Reserved, RES0.

SEQUENCER<m>, bit [m+4], for m = 0 to 3

Sequencer states.

SEQUENCER<m> Meaning
0b0 Ignore Sequencer state m.
0b1 Select Sequencer state m.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

COUNTERS<m>, bit [m], for m = 0 to 3

Counters resources at zero.

COUNTERS<m> Meaning
0b0 Ignore Counter m.
0b1 Select Counter m is zero.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Single-shot Comparator Controls

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SINGLE_SHOT<m>, bit [m]

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 4146

Bits [15:8]

Reserved, RES0.

SINGLE_SHOT<m>, bit [m], for m = 0 to 7

Selects one or more Single-shot Comparator Controls.

SINGLE_SHOT<m> Meaning
0b0 Ignore Single-shot Comparator Control m.
0b1 Select Single-shot Comparator Control m.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Single Address Comparators

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SAC<m>, bit [m]

SAC<m>, bit [m], for m = 0 to 15

Selects one or more Single Address Comparators.

SAC<m> Meaning
0b0 Ignore Single Address Comparator m.
0b1 Select Single Address Comparator m.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Address Range Comparators

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ARC<m>, bit [m]

Bits [15:8]

Reserved, RES0.

ARC<m>, bit [m], for m = 0 to 7

Selects one or more Address Range Comparators.

ARC<m> Meaning
0b0 Ignore Address Range Comparator m.
0b1 Select Address Range Comparator m.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Context Identifier Comparators

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CID<m>, bit [m]

Bits [15:8]

Reserved, RES0.

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 4147

CID<m>, bit [m], for m = 0 to 7

Selects one or more Context Identifier Comparators.

CID<m> Meaning
0b0 Ignore Context Identifier Comparator m.
0b1 Select Context Identifier Comparator m.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Virtual Context Identifier Comparators

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 VMID<m>, bit [m]

Bits [15:8]

Reserved, RES0.

VMID<m>, bit [m], for m = 0 to 7

Selects one or more Virtual Context Identifier Comparators.

VMID<m> Meaning
0b0 Ignore Virtual Context Identifier Comparator m.
0b1 Select Virtual Context Identifier Comparator m.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCRSCTLR<n>
Must be programmed if any of the following are true:

• TRCCNTCTLR<a>.RLDEVENT.TYPE == 0b0 and TRCCNTCTLR<a>.RLDEVENT.SEL == n.
• TRCCNTCTLR<a>.RLDEVENT.TYPE == 0b1 and TRCCNTCTLR<a>.RLDEVENT.SEL == n/2.
• TRCCNTCTLR<a>.CNTEVENT.TYPE == 0b0 and TRCCNTCTLR<a>.CNTEVENT.SEL == n.
• TRCCNTCTLR<a>.CNTEVENT.TYPE == 0b1 and TRCCNTCTLR<a>.CNTEVENT.SEL == n/2.
• TRCEVENTCTL0R.EVENT0.TYPE == 0b0 and TRCEVENTCTL0R.EVENT0.SEL == n.
• TRCEVENTCTL0R.EVENT0.TYPE == 0b1 and TRCEVENTCTL0R.EVENT0.SEL == n/2.
• TRCEVENTCTL0R.EVENT1.TYPE == 0b0 and TRCEVENTCTL0R.EVENT1.SEL == n.
• TRCEVENTCTL0R.EVENT1.TYPE == 0b1 and TRCEVENTCTL0R.EVENT1.SEL == n/2.
• TRCEVENTCTL0R.EVENT2.TYPE == 0b0 and TRCEVENTCTL0R.EVENT2.SEL == n.
• TRCEVENTCTL0R.EVENT2.TYPE == 0b1 and TRCEVENTCTL0R.EVENT2.SEL == n/2.
• TRCEVENTCTL0R.EVENT3.TYPE == 0b0 and TRCEVENTCTL0R.EVENT3.SEL == n.
• TRCEVENTCTL0R.EVENT3.TYPE == 0b1 and TRCEVENTCTL0R.EVENT3.SEL == n/2.
• TRCSEQEVR<a>.B.TYPE == 0b0 and TRCSEQEVR<a>.B.SEL = n.
• TRCSEQEVR<a>.B.TYPE == 0b1 and TRCSEQEVR<a>.B.SEL = n/2.
• TRCSEQEVR<a>.F.TYPE == 0b0 and TRCSEQEVR<a>.F.SEL = n.
• TRCSEQEVR<a>.F.TYPE == 0b1 and TRCSEQEVR<a>.F.SEL = n/2.
• TRCSEQRSTEVR.RST.TYPE == 0b0 and TRCSEQRSTEVR.RST.SEL == n.
• TRCSEQRSTEVR.RST.TYPE == 0b1 and TRCSEQRSTEVR.RST.SEL == n/2.
• TRCTSCTLR.EVENT.TYPE == 0b0 and TRCTSCTLR.EVENT.SEL == n.
• TRCTSCTLR.EVENT.TYPE == 0b1 and TRCTSCTLR.EVENT.SEL == n/2.
• TRCVICTLR.EVENT.TYPE == 0b0 and TRCVICTLR.EVENT.SEL == n.
• TRCVICTLR.EVENT.TYPE == 0b1 and TRCVICTLR.EVENT.SEL == n/2.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCRSCTLR<n> can be accessed through the external debug interface:

Component Offset Instance
ETE 0x200 + 4n TRCRSCTLR<n>

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 4148

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31

Page 4149

TRCRSR, Resources Status Register
The TRCRSR characteristics are:

Purpose
Use this to set, or read, the status of the resources.

Configuration
External register TRCRSR bits [31:0] are architecturally mapped to AArch64 System register TRCRSR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCRSR are RES0.

Attributes
TRCRSR is a 32-bit register.

Field descriptions
The TRCRSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 TA EVENT<m>,
bit [m+8] RES0 EXTIN<m>,

bit [m]

Bits [31:13]

Reserved, RES0.

TA, bit [12]

Tracing active.

TA Meaning
0b0 Tracing is not active.
0b1 Tracing is active.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

EVENT<m>, bit [m+8], for m = 0 to 3

Untraced status of ETEEvents.

EVENT<m> Meaning
0b0 An ETEEvent[n] has not occurred.
0b1 An ETEEvent[n] has occurred while the resources were

in the Paused state.

This bit is RES0 if TRCIDR4.NUMRSPAIR == 0b0 || m > TRCIDR0.NUMEVENT.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [7:4]

Reserved, RES0.

TRCRSR, Resources Status Register

Page 4150

EXTIN<m>, bit [m], for m = 0 to 3

The sticky status of the External Input Selectors.

EXTIN<m> Meaning
0b0 An event selected by External Input Selector[n] has not

occurred.
0b1 At least one event selected by External Input Selector[n]

has occurred while the resources were in the Paused
state.

This bit is RES0 if m >= TRCIDR5.NUMEXTINSEL.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCRSR
Must always be programmed.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

TRCRSR can be accessed through the external debug interface:

Component Offset
ETE 0x028

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCRSR, Resources Status Register

Page 4151

TRCSEQEVR<n>, Sequencer State Transition Control
Register <n>, n = 0 - 2

The TRCSEQEVR<n> characteristics are:

Purpose
Moves the Sequencer state:

• Backwards, from state n+1 to state n when a programmed resource event occurs.
• Forwards, from state n to state n+1 when a programmed resource event occurs.

Configuration
External register TRCSEQEVR<n> bits [31:0] are architecturally mapped to AArch64 System register
TRCSEQEVR<n>[31:0] .

This register is present only when ETE is implemented and TRCIDR5.NUMSEQSTATE != 0b000. Otherwise, direct
accesses to TRCSEQEVR<n> are RES0.

Attributes
TRCSEQEVR<n> is a 32-bit register.

Field descriptions
The TRCSEQEVR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 B_TYPE RES0 B_SEL F_TYPE RES0 F_SEL

Bits [31:16]

Reserved, RES0.

B_TYPE, bit [15]

Chooses the type of Resource Selector.

Backward field. Defines whether the backward resource event is a single Resource Selector or a Resource Selector
pair. When the resource event occurs then the Sequencer state moves from state n+1 to state n. For example, if
TRCSEQEVR2.B.SEL == 0x14 then when event 0x14 occurs, the Sequencer moves from state 3 to state 2.

B_TYPE Meaning
0b0 A single Resource Selector.

TRCSEQEVR<n>.B.SEL[4:0] selects the single Resource
Selector, from 0-31, used to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCSEQEVR<n>.B.SEL[3:0] selects the Resource Selector
pair, from 0-15, that has a Boolean function that is applied to
it whose output is used to activate the resource event.
TRCSEQEVR<n>.B.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

TRCSEQEVR<n>, Sequencer State Transition Control Register <n>, n = 0 - 2

Page 4152

Bits [14:13]

Reserved, RES0.

B_SEL, bits [12:8]

Defines the selected Resource Selector or pair of Resource Selectors. TRCSEQEVR<n>.B.TYPE controls whether
TRCSEQEVR<n>.B.SEL is the index of a single Resource Selector, or the index of a pair of Resource Selectors.

Backward field. Selects the single Resource Selector or Resource Selector pair.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

F_TYPE, bit [7]

Chooses the type of Resource Selector.

Backward field. Defines whether the forward resource event is a single Resource Selector or a Resource Selector pair.
When the resource event occurs then the Sequencer state moves from state n to state n+1. For example, if
TRCSEQEVR1.F.SEL == 0x12 then when event 0x12 occurs, the Sequencer moves from state 1 to state 2.

F_TYPE Meaning
0b0 A single Resource Selector.

TRCSEQEVR<n>.F.SEL[4:0] selects the single Resource
Selector, from 0-31, used to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCSEQEVR<n>.F.SEL[3:0] selects the Resource Selector
pair, from 0-15, that has a Boolean function that is applied to
it whose output is used to activate the resource event.
TRCSEQEVR<n>.F.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

F_SEL, bits [4:0]

Defines the selected Resource Selector or pair of Resource Selectors. TRCSEQEVR<n>.F.TYPE controls whether
TRCSEQEVR<n>.F.SEL is the index of a single Resource Selector, or the index of a pair of Resource Selectors.

Forward field. Selects the single Resource Selector or Resource Selector pair.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCSEQEVR<n>
Must be programmed if TRCRSCTLR<a>.GROUP == 0b0010 and TRCRSCTLR<a>.SEQUENCER != 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCSEQEVR<n> can be accessed through the external debug interface:

Component Offset Instance
ETE 0x100 + 4n TRCSEQEVR<n>

TRCSEQEVR<n>, Sequencer State Transition Control Register <n>, n = 0 - 2

Page 4153

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCSEQEVR<n>, Sequencer State Transition Control Register <n>, n = 0 - 2

Page 4154

TRCSEQRSTEVR, Sequencer Reset Control Register
The TRCSEQRSTEVR characteristics are:

Purpose
Moves the Sequencer to state 0 when a programmed resource event occurs.

Configuration
External register TRCSEQRSTEVR bits [31:0] are architecturally mapped to AArch64 System register
TRCSEQRSTEVR[31:0] .

This register is present only when ETE is implemented and TRCIDR5.NUMSEQSTATE != 0b000. Otherwise, direct
accesses to TRCSEQRSTEVR are RES0.

Attributes
TRCSEQRSTEVR is a 32-bit register.

Field descriptions
The TRCSEQRSTEVR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 RST_TYPE RES0 RST_SEL

Bits [31:8]

Reserved, RES0.

RST_TYPE, bit [7]

Chooses the type of Resource Selector.

RST_TYPE Meaning
0b0 A single Resource Selector.

TRCSEQRSTEVR.RST.SEL[4:0] selects the single Resource
Selector, from 0-31, used to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCSEQRSTEVR.RST.SEL[3:0] selects the Resource
Selector pair, from 0-15, that has a Boolean function that is
applied to it whose output is used to activate the resource
event. TRCSEQRSTEVR.RST.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

RST_SEL, bits [4:0]

Defines the selected Resource Selector or pair of Resource Selectors. TRCSEQRSTEVR.RST.TYPE controls whether
TRCSEQRSTEVR.RST.SEL is the index of a single Resource Selector, or the index of a pair of Resource Selectors.

TRCSEQRSTEVR, Sequencer Reset Control Register

Page 4155

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCSEQRSTEVR
Must be programmed if TRCRSCTLR<a>.GROUP == 0b0010 and TRCRSCTLR<a>.SEQUENCER != 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCSEQRSTEVR can be accessed through the external debug interface:

Component Offset
ETE 0x118

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCSEQRSTEVR, Sequencer Reset Control Register

Page 4156

TRCSEQSTR, Sequencer State Register
The TRCSEQSTR characteristics are:

Purpose
Use this to set, or read, the Sequencer state.

Configuration
External register TRCSEQSTR bits [31:0] are architecturally mapped to AArch64 System register TRCSEQSTR[31:0] .

This register is present only when ETE is implemented and TRCIDR5.NUMSEQSTATE != 0b000. Otherwise, direct
accesses to TRCSEQSTR are RES0.

Attributes
TRCSEQSTR is a 32-bit register.

Field descriptions
The TRCSEQSTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 STATE

Bits [31:2]

Reserved, RES0.

STATE, bits [1:0]

Set or returns the state of the Sequencer.

STATE Meaning
0b00 State 0.
0b01 State 1.
0b10 State 2.
0b11 State 3.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCSEQSTR
Must be programmed if TRCRSCTLR<a>.GROUP == 0b0010 and TRCRSCTLR<a>.SEQUENCER != 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

TRCSEQSTR can be accessed through the external debug interface:

Component Offset
ETE 0x11C

This interface is accessible as follows:

TRCSEQSTR, Sequencer State Register

Page 4157

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCSEQSTR, Sequencer State Register

Page 4158

TRCSSCCR<n>, Single-shot Comparator Control
Register <n>, n = 0 - 7

The TRCSSCCR<n> characteristics are:

Purpose
Controls the corresponding Single-shot Comparator Control resource.

Configuration
External register TRCSSCCR<n> bits [31:0] are architecturally mapped to AArch64 System register
TRCSSCCR<n>[31:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMSSCC > n. Otherwise, direct accesses to
TRCSSCCR<n> are RES0.

Attributes
TRCSSCCR<n> is a 32-bit register.

Field descriptions
The TRCSSCCR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 RST ARC<m>, bit [m+16] SAC<m>, bit [m]

Bits [31:25]

Reserved, RES0.

RST, bit [24]

Selects the Single-shot Comparator Control mode.

RST Meaning
0b0 The Single-shot Comparator Control is in single-shot mode.
0b1 The Single-shot Comparator Control is in multi-shot mode.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

ARC<m>, bit [m+16], for m = 0 to 7

Selects one or more Address Range Comparators for Single-shot control.

ARC<m> Meaning
0b0 The Address Range Comparator m, is not selected for

Single-shot control.
0b1 The Address Range Comparator m, is selected for Single-

shot control.

This bit is RES0 if m >= TRCIDR4.NUMACPAIRS.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

TRCSSCCR<n>, Single-shot Comparator Control Register <n>, n = 0 - 7

Page 4159

SAC<m>, bit [m], for m = 0 to 15

Selects one or more Single Address Comparators for Single-shot control.

SAC<m> Meaning
0b0 The Single Address Comparator m, is not selected for Single-

shot control.
0b1 The Single Address Comparator m, is selected for Single-

shot control.

This bit is RES0 if m >= 2 × TRCIDR4.NUMACPAIRS.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCSSCCR<n>
Must be programmed if any TRCRSCTLR<a>.GROUP == 0b0011 and TRCRSCTLR<a>.SINGLE_SHOT[n] == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCSSCCR<n> can be accessed through the external debug interface:

Component Offset Instance
ETE 0x280 + 4n TRCSSCCR<n>

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCSSCCR<n>, Single-shot Comparator Control Register <n>, n = 0 - 7

Page 4160

TRCSSCSR<n>, Single-shot Comparator Control
Status Register <n>, n = 0 - 7

The TRCSSCSR<n> characteristics are:

Purpose
Returns the status of the corresponding Single-shot Comparator Control.

Configuration
External register TRCSSCSR<n> bits [31:0] are architecturally mapped to AArch64 System register
TRCSSCSR<n>[31:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMSSCC > n. Otherwise, direct accesses to
TRCSSCSR<n> are RES0.

Attributes
TRCSSCSR<n> is a 32-bit register.

Field descriptions
The TRCSSCSR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STATUSPENDING RES0 PCDVDAINST

STATUS, bit [31]

Single-shot Comparator Control status. Indicates if any of the comparators selected by this Single-shot Comparator
control have matched. The selected comparators are defined by TRCSSCCR<n>.ARC, TRCSSCCR<n>.SAC, and
TRCSSPCICR<n>.PC.

STATUS Meaning
0b0 No match has occurred. When the first match occurs, this

field takes a value of 0b1. It remains at 0b1 until explicitly
modified by a write to this register.

0b1 One or more matches has occurred. If TRCSSCCR<n>.RST
== 0b0 then:

• There is only one match and no more matches are
possible.

• Software must reset this bit to 0b0 to re-enable the
Single-shot Comparator Control.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

PENDING, bit [30]

Single-shot pending status. The Single-shot Comparator Control fired while the resources were in the Paused state.

PENDING Meaning
0b0 No match has occurred.
0b1 One or more matches has occurred.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

TRCSSCSR<n>, Single-shot Comparator Control Status Register <n>, n = 0 - 7

Page 4161

Bits [29:4]

Reserved, RES0.

PC, bit [3]

PE Comparator Input support. Indicates if the Single-shot Comparator Control supports PE Comparator Inputs.

PC Meaning
0b0 This Single-shot Comparator Control does not support PE

Comparator Inputs. Selecting any PE Comparator Inputs using the
associated TRCSSPCICR<n> results in CONSTRAINED
UNPREDICTABLE behavior of the Single-shot Comparator Control
resource. The Single-shot Comparator Control might match
unexpectedly or might not match.

0b1 This Single-shot Comparator Control supports PE Comparator
Inputs.

Access to this field is RO.

DV, bit [2]

Data value comparator support. Data value comparisons are not implemented in ETE and are reserved for other trace
architectures. Allocated in other trace architectures.

DV Meaning
0b0 This Single-shot Comparator Control does not support data value

comparisons.
0b1 This Single-shot Comparator Control supports data value

comparisons.

This bit reads as 0b0.

Access to this field is RO.

DA, bit [1]

Data Address Comparator support. Data address comparisons are not implemented in ETE and are reserved for other
trace architectures. Allocated in other trace architectures.

DA Meaning
0b0 This Single-shot Comparator Control does not support data

address comparisons.
0b1 This Single-shot Comparator Control supports data address

comparisons.

This bit reads as 0b0.

Access to this field is RO.

INST, bit [0]

Instruction Address Comparator support. Indicates if the Single-shot Comparator Control supports instruction address
comparisons.

INST Meaning
0b0 This Single-shot Comparator Control does not support

instruction address comparisons.
0b1 This Single-shot Comparator Control supports instruction

address comparisons.

This bit reads as 0b1.

Access to this field is RO.

TRCSSCSR<n>, Single-shot Comparator Control Status Register <n>, n = 0 - 7

Page 4162

Accessing the TRCSSCSR<n>
Must be programmed if TRCRSCTLR<a>.GROUP == 0b0011 and TRCRSCTLR<a>.SINGLE_SHOT[n] == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

TRCSSCSR<n> can be accessed through the external debug interface:

Component Offset Instance
ETE 0x2A0 + 4n TRCSSCSR<n>

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCSSCSR<n>, Single-shot Comparator Control Status Register <n>, n = 0 - 7

Page 4163

TRCSSPCICR<n>, Single-shot Processing Element
Comparator Input Control Register <n>, n = 0 - 7

The TRCSSPCICR<n> characteristics are:

Purpose
Returns the status of the corresponding Single-shot Comparator Control.

Configuration
External register TRCSSPCICR<n> bits [31:0] are architecturally mapped to AArch64 System register
TRCSSPCICR<n>[31:0] .

This register is present only when ETE is implemented, TRCIDR4.NUMSSCC > n, TRCIDR4.NUMPC > 0b0000 and
TRCSSCSR<n>.PC == 0b1. Otherwise, direct accesses to TRCSSPCICR<n> are RES0.

Attributes
TRCSSPCICR<n> is a 32-bit register.

Field descriptions
The TRCSSPCICR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PC<m>, bit [m]

Bits [31:8]

Reserved, RES0.

PC<m>, bit [m], for m = 0 to 7

Selects one or more PE Comparator Inputs for Single-shot control.

PC<m> Meaning
0b0 The single PE Comparator Input m, is not selected as for

Single-shot control.
0b1 The single PE Comparator Input m, is selected as for Single-

shot control.

This bit is RES0 if m >= TRCIDR4.NUMPC.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCSSPCICR<n>
Must be programmed if implemented and any TRCRSCTLR<a>.GROUP == 0b0011 and
TRCRSCTLR<a>.SINGLE_SHOT[n] == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

TRCSSPCICR<n>, Single-shot Processing Element Comparator Input Control Register <n>, n = 0 - 7

Page 4164

TRCSSPCICR<n> can be accessed through the external debug interface:

Component Offset Instance
ETE 0x2C0 + 4n TRCSSPCICR<n>

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCSSPCICR<n>, Single-shot Processing Element Comparator Input Control Register <n>, n = 0 - 7

Page 4165

TRCSTALLCTLR, Stall Control Register
The TRCSTALLCTLR characteristics are:

Purpose
Enables trace unit functionality that prevents trace unit buffer overflows.

Configuration
External register TRCSTALLCTLR bits [31:0] are architecturally mapped to AArch64 System register
TRCSTALLCTLR[31:0] .

This register is present only when ETE is implemented and TRCIDR3.STALLCTL == 0b1. Otherwise, direct accesses to
TRCSTALLCTLR are RES0.

Attributes
TRCSTALLCTLR is a 32-bit register.

Field descriptions
The TRCSTALLCTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 NOOVERFLOW RES0 ISTALL RES0 LEVEL

Bits [31:14]

Reserved, RES0.

NOOVERFLOW, bit [13]

When TRCIDR3.NOOVERFLOW == 0b1:

Trace overflow prevention.

NOOVERFLOW Meaning
0b0 Trace unit buffer overflow prevention is disabled.
0b1 Trace unit buffer overflow prevention is enabled.

Note that enabling this feature might cause a significant performance impact.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [12:9]

Reserved, RES0.

ISTALL, bit [8]

Instruction stall control. Controls if a trace unit can stall the PE when the trace buffer space is less than LEVEL.

TRCSTALLCTLR, Stall Control Register

Page 4166

ISTALL Meaning
0b0 The trace unit must not stall the PE.
0b1 The trace unit can stall the PE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [7:4]

Reserved, RES0.

LEVEL, bits [3:0]

Threshold level field. The field can support 16 monotonic levels from 0b0000 to 0b1111.

LEVEL Meaning
0b0000 Minimal invasion.

This setting has a greater risk of a trace unit buffer overflow.
0b1111 Maximum invasion.

Reduced risk of a trace unit buffer overflow.

Note that for some implementations, invasion might occur at the minimal invasion level.

It is IMPLEMENTATION DEFINED whether some of the least significant bits are supported. Arm recommends that bits[3:2]
are supported.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCSTALLCTLR
Must be programmed if implemented.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCSTALLCTLR can be accessed through the external debug interface:

Component Offset
ETE 0x02C

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCSTALLCTLR, Stall Control Register

Page 4167

TRCSTATR, Trace Status Register
The TRCSTATR characteristics are:

Purpose
Returns the trace unit status.

Configuration
External register TRCSTATR bits [31:0] are architecturally mapped to AArch64 System register TRCSTATR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCSTATR are RES0.

Attributes
TRCSTATR is a 32-bit register.

Field descriptions
The TRCSTATR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PMSTABLEIDLE

Bits [31:2]

Reserved, RES0.

PMSTABLE, bit [1]

Programmers' model stable.

PMSTABLE Meaning
0b0 The programmers' model is not stable.
0b1 The programmers' model is stable.

This bit is UNKNOWN while the trace unit is enabled.

IDLE, bit [0]

Idle status.

IDLE Meaning
0b0 The trace unit is not idle.
0b1 The trace unit is idle.

Accessing the TRCSTATR

TRCSTATR can be accessed through the external debug interface:

Component Offset
ETE 0x00C

This interface is accessible as follows:

TRCSTATR, Trace Status Register

Page 4168

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RO.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCSTATR, Trace Status Register

Page 4169

TRCSYNCPR, Synchronization Period Register
The TRCSYNCPR characteristics are:

Purpose
Controls how often trace protocol synchronization requests occur.

Configuration
External register TRCSYNCPR bits [31:0] are architecturally mapped to AArch64 System register TRCSYNCPR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCSYNCPR are RES0.

Attributes
TRCSYNCPR is a 32-bit register.

Field descriptions
The TRCSYNCPR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PERIOD

Bits [31:5]

Reserved, RES0.

PERIOD, bits [4:0]

Defines the number of bytes of trace between each periodic trace protocol synchronization request.

TRCSYNCPR, Synchronization Period Register

Page 4170

PERIOD Meaning
0b00000 Trace protocol synchronization is disabled.
0b01000 Trace protocol synchronization request occurs after 28 bytes

of trace.
0b01001 Trace protocol synchronization request occurs after 29 bytes

of trace.
0b01010 Trace protocol synchronization request occurs after 210 bytes

of trace.
0b01011 Trace protocol synchronization request occurs after 211 bytes

of trace.
0b01100 Trace protocol synchronization request occurs after 212 bytes

of trace.
0b01101 Trace protocol synchronization request occurs after 213 bytes

of trace.
0b01110 Trace protocol synchronization request occurs after 214 bytes

of trace.
0b01111 Trace protocol synchronization request occurs after 215 bytes

of trace.
0b10000 Trace protocol synchronization request occurs after 216 bytes

of trace.
0b10001 Trace protocol synchronization request occurs after 217 bytes

of trace.
0b10010 Trace protocol synchronization request occurs after 218 bytes

of trace.
0b10011 Trace protocol synchronization request occurs after 219 bytes

of trace.
0b10100 Trace protocol synchronization request occurs after 220 bytes

of trace.

Other values are reserved. If a reserved value is programmed into PERIOD, then the behavior of the synchronization
period counter is CONSTRAINED UNPREDICTABLE and one of the following behaviors occurs:

• No trace protocol synchronization requests are generated by this counter.
• Trace protocol synchronization requests occur at the specified period.
• Trace protocol synchronization requests occur at some other UNKNOWN period which can vary.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCSYNCPR
Must be programmed if TRCIDR3.SYNCPR == 0b0.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCSYNCPR can be accessed through the external debug interface:

Component Offset
ETE 0x034

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCSYNCPR, Synchronization Period Register

Page 4171

TRCTRACEIDR, Trace ID Register
The TRCTRACEIDR characteristics are:

Purpose
Sets the trace ID for instruction trace.

Configuration
External register TRCTRACEIDR bits [31:0] are architecturally mapped to AArch64 System register
TRCTRACEIDR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCTRACEIDR are RES0.

Attributes
TRCTRACEIDR is a 32-bit register.

Field descriptions
The TRCTRACEIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 TRACEID

Bits [31:7]

Reserved, RES0.

TRACEID, bits [6:0]

Trace ID field. Sets the trace ID value for instruction trace. The width of the field is indicated by the value of
TRCIDR5.TRACEIDSIZE. Unimplemented bits are RES0.

If an implementation supports AMBA ATB, then:

• The width of the field is 7 bits.
• Writing a reserved trace ID value does not affect behavior of the trace unit but it might cause UNPREDICTABLE

behavior of the trace capture infrastructure.

See the AMBA ATB Protocol Specification for information about which ATID values are reserved.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCTRACEIDR
Must be programmed if implemented.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCTRACEIDR can be accessed through the external debug interface:

Component Offset
ETE 0x040

This interface is accessible as follows:

TRCTRACEIDR, Trace ID Register

Page 4172

• When OSLockStatus(), or !IsTraceCorePowered() or !AllowExternalTraceAccess() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCTRACEIDR, Trace ID Register

Page 4173

TRCTSCTLR, Timestamp Control Register
The TRCTSCTLR characteristics are:

Purpose
Controls the insertion of global timestamps in the trace stream.

Configuration
External register TRCTSCTLR bits [31:0] are architecturally mapped to AArch64 System register TRCTSCTLR[31:0] .

This register is present only when ETE is implemented and TRCIDR0.TSSIZE != 0b00000. Otherwise, direct accesses
to TRCTSCTLR are RES0.

Attributes
TRCTSCTLR is a 32-bit register.

Field descriptions
The TRCTSCTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 EVENT_TYPE RES0 EVENT_SEL

Bits [31:8]

Reserved, RES0.

EVENT_TYPE, bit [7]

When TRCIDR4.NUMRSPAIR != 0b0000:

Chooses the type of Resource Selector.

EVENT_TYPE Meaning
0b0 A single Resource Selector.

TRCTSCTLR.EVENT.SEL[4:0] selects the single
Resource Selector, from 0-31, used to activate the
resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCTSCTLR.EVENT.SEL[3:0] selects the Resource
Selector pair, from 0-15, that has a Boolean function
that is applied to it whose output is used to activate the
resource event. TRCTSCTLR.EVENT.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [6:5]

Reserved, RES0.

TRCTSCTLR, Timestamp Control Register

Page 4174

EVENT_SEL, bits [4:0]

When TRCIDR4.NUMRSPAIR != 0b0000:

Defines the selected Resource Selector or pair of Resource Selectors. TRCTSCTLR.EVENT.TYPE controls whether
TRCTSCTLR.EVENT.SEL is the index of a single Resource Selector, or the index of a pair of Resource Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TRCTSCTLR
Must be programmed if TRCCONFIGR.TS == 0b1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCTSCTLR can be accessed through the external debug interface:

Component Offset
ETE 0x030

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCTSCTLR, Timestamp Control Register

Page 4175

TRCVICTLR, ViewInst Main Control Register
The TRCVICTLR characteristics are:

Purpose
Controls instruction trace filtering.

Configuration
External register TRCVICTLR bits [31:0] are architecturally mapped to AArch64 System register TRCVICTLR[31:0] .

This register is present only when ETE is implemented. Otherwise, direct accesses to TRCVICTLR are RES0.

Attributes
TRCVICTLR is a 32-bit register.

Field descriptions
The TRCVICTLR bit assignments are:

313029282726252423 22 21 20 19 18 17 16 15141312 11 10 9 8 7 6 5 4 3 2 1 0
RES0 EXLEVEL_NS_EL2EXLEVEL_NS_EL1EXLEVEL_NS_EL0EXLEVEL_S_EL3EXLEVEL_S_EL2EXLEVEL_S_EL1EXLEVEL_S_EL0 RES0 TRCERRTRCRESETSSSTATUSRES0EVENT_TYPERES0EVENT_SEL

Bits [31:23]

Reserved, RES0.

EXLEVEL_NS_EL2, bit [22]

When Non-secure EL2 is implemented:

Filter instruction trace for EL2 in Non-secure state.

EXLEVEL_NS_EL2 Meaning
0b0 The trace unit generates instruction trace for EL2

in Non-secure state.
0b1 The trace unit does not generate instruction trace

for EL2 in Non-secure state.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_NS_EL1, bit [21]

When Non-secure EL1 is implemented:

Filter instruction trace for EL1 in Non-secure state.

TRCVICTLR, ViewInst Main Control Register

Page 4176

EXLEVEL_NS_EL1 Meaning
0b0 The trace unit generates instruction trace for EL1

in Non-secure state.
0b1 The trace unit does not generate instruction trace

for EL1 in Non-secure state.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_NS_EL0, bit [20]

When Non-secure EL0 is implemented:

Filter instruction trace for EL0 in Non-secure state.

EXLEVEL_NS_EL0 Meaning
0b0 The trace unit generates instruction trace for EL0

in Non-secure state.
0b1 The trace unit does not generate instruction trace

for EL0 in Non-secure state.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL3, bit [19]

When EL3 is implemented:

Filter instruction trace for EL3 in Secure state.

EXLEVEL_S_EL3 Meaning
0b0 The trace unit generates instruction trace for EL3 in

Secure state.
0b1 The trace unit does not generate instruction trace

for EL3 in Secure state.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL2, bit [18]

When EL2 is implemented and ARMv8.4-SecEL2 is implemented:

Filter instruction trace for EL2 in Secure state.

EXLEVEL_S_EL2 Meaning
0b0 The trace unit generates instruction trace for EL2 in

Secure state.
0b1 The trace unit does not generate instruction trace

for EL2 in Secure state.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

TRCVICTLR, ViewInst Main Control Register

Page 4177

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL1, bit [17]

When Secure EL1 is implemented:

Filter instruction trace for EL1 in Secure state.

EXLEVEL_S_EL1 Meaning
0b0 The trace unit generates instruction trace for EL1 in

Secure state.
0b1 The trace unit does not generate instruction trace

for EL1 in Secure state.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL0, bit [16]

When Secure EL0 is implemented:

Filter instruction trace for EL0 in Secure state.

EXLEVEL_S_EL0 Meaning
0b0 The trace unit generates instruction trace for EL0 in

Secure state.
0b1 The trace unit does not generate instruction trace

for EL0 in Secure state.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [15:12]

Reserved, RES0.

TRCERR, bit [11]

When TRCIDR3.TRCERR == 0b1:

Controls the forced tracing of System Error exceptions.

TRCERR Meaning
0b0 Forced tracing of System Error exceptions is disabled.
0b1 Forced tracing of System Error exceptions is enabled.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCVICTLR, ViewInst Main Control Register

Page 4178

TRCRESET, bit [10]

Controls the forced tracing of PE Resets.

TRCRESET Meaning
0b0 Forced tracing of PE Resets is disabled.
0b1 Forced tracing of PE Resets is enabled.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SSSTATUS, bit [9]

ViewInst start/stop function status.

SSSTATUS Meaning
0b0 Stopped State.

The ViewInst start/stop function is in the stopped state.
0b1 Started State.

The ViewInst start/stop function is in the started state.

Before software enables the trace unit, it must write to this bit to set the initial state of the ViewInst start/stop
function. If the ViewInst start/stop function is not used then set this bit to 0b1. Arm recommends that the value of this
bit is set before each trace session begins.

If the trace unit becomes disabled while a start point or stop point is still speculative, then the value of
TRCVICTLR.SSSTATUS is UNKNOWN and might represent the result of a speculative start point or stop point.

If software which is running on the PE being traced disables the trace unit, either by clearing TRCPRGCTLR.EN or
locking the OS Lock, Arm recommends that a DSB and an ISB instruction are executed before disabling the trace unit
to prevent any start points or stop points being speculative at the point of disabling the trace unit. This procedure
assumes that all start points or stop points occur before the barrier instructions are executed. The procedure does not
guarantee that there are no speculative start points or stop points when disabling, although it helps minimize the
probability.

This bit is RES1 if TRCIDR4.NUMACPAIRS == 0b0000 and TRCIDR4.NUMPC == 0b0000.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

EVENT_TYPE, bit [7]

When TRCIDR4.NUMRSPAIR != 0b0000:

Chooses the type of Resource Selector.

EVENT_TYPE Meaning
0b0 A single Resource Selector.

TRCVICTLR.EVENT.SEL[4:0] selects the single
Resource Selector, from 0-31, used to activate the
resource event.

0b1 A Boolean-combined pair of Resource Selectors.
TRCVICTLR.EVENT.SEL[3:0] selects the Resource
Selector pair, from 0-15, that has a Boolean function
that is applied to it whose output is used to activate the
resource event. TRCVICTLR.EVENT.SEL[4] is RES0.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCVICTLR, ViewInst Main Control Register

Page 4179

Bits [6:5]

Reserved, RES0.

EVENT_SEL, bits [4:0]

When TRCIDR4.NUMRSPAIR != 0b0000:

Defines the selected Resource Selector or pair of Resource Selectors. TRCVICTLR.EVENT.TYPE controls whether
TRCVICTLR.EVENT.SEL is the index of a single Resource Selector, or the index of a pair of Resource Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource event is
UNPREDICTABLE, and the resource event might fire or might not fire.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

When TRCIDR4.NUMRSPAIR == 0b0000:

This field is reserved:

• Bits [4:1] are RES0.
• Bit [0] is RES1.

Otherwise:

Reserved, RES0.

Accessing the TRCVICTLR
Must be programmed.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

TRCVICTLR can be accessed through the external debug interface:

Component Offset
ETE 0x080

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCVICTLR, ViewInst Main Control Register

Page 4180

TRCVIIECTLR, ViewInst Include/Exclude Control
Register

The TRCVIIECTLR characteristics are:

Purpose
Use this to select, or read, the Address Range Comparators for the ViewInst include/exclude function.

Configuration
External register TRCVIIECTLR bits [31:0] are architecturally mapped to AArch64 System register
TRCVIIECTLR[31:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMACPAIRS > 0b0000. Otherwise, direct
accesses to TRCVIIECTLR are RES0.

Attributes
TRCVIIECTLR is a 32-bit register.

Field descriptions
The TRCVIIECTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 EXCLUDE<m>, bit
[m+16] RES0 INCLUDE<m>, bit [m]

Bits [31:24]

Reserved, RES0.

EXCLUDE<m>, bit [m+16], for m = 0 to 7

Selects which Address Range Comparators are in use with the ViewInst exclude function.

Each bit represents an Address Range Comparator, so bit[m] controls the selection of Address Range Comparator m.

EXCLUDE<m> Meaning
0b0 The address range that Address Range Comparator m

defines, is not selected for the ViewInst exclude
function.

0b1 The address range that Address Range Comparator m
defines, is selected for the ViewInst exclude function.

This bit is RES0 if m >= TRCIDR4.NUMACPAIRS.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [15:8]

Reserved, RES0.

TRCVIIECTLR, ViewInst Include/Exclude Control Register

Page 4181

INCLUDE<m>, bit [m], for m = 0 to 7

Selects which Address Range Comparators are in use with the ViewInst include function.

Each bit represents an Address Range Comparator, so bit[m] controls the selection of Address Range Comparator m.

Selecting no comparators for the ViewInst include function indicates that all instructions are included by default.

The ViewInst exclude function then indicates which ranges are excluded.

INCLUDE<m> Meaning
0b0 The address range that Address Range Comparator m

defines, is not selected for the ViewInst include
function.

0b1 The address range that Address Range Comparator m
defines, is selected for the ViewInst include function.

This bit is RES0 if m >= TRCIDR4.NUMACPAIRS.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCVIIECTLR
Must be programmed if TRCIDR4.NUMACPAIRS > 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCVIIECTLR can be accessed through the external debug interface:

Component Offset
ETE 0x084

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCVIIECTLR, ViewInst Include/Exclude Control Register

Page 4182

TRCVIPCSSCTLR, ViewInst Start/Stop PE Comparator
Control Register

The TRCVIPCSSCTLR characteristics are:

Purpose
Use this to select, or read, which PE Comparator Inputs can control the ViewInst start/stop function.

Configuration
External register TRCVIPCSSCTLR bits [31:0] are architecturally mapped to AArch64 System register
TRCVIPCSSCTLR[31:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMPC > 0b0000. Otherwise, direct accesses to
TRCVIPCSSCTLR are RES0.

Attributes
TRCVIPCSSCTLR is a 32-bit register.

Field descriptions
The TRCVIPCSSCTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 STOP<m>, bit [m+16] RES0 START<m>, bit [m]

Bits [31:24]

Reserved, RES0.

STOP<m>, bit [m+16], for m = 0 to 7

Selects which PE Comparator Inputs are in use with ViewInst start/stop function, for the purpose of stopping trace.

STOP<m> Meaning
0b0 The PE Comparator Input m, is not selected as a stop

resource.
0b1 The PE Comparator Input m, is selected as a stop resource.

This bit is RES0 if m >= TRCIDR4.NUMPC.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [15:8]

Reserved, RES0.

START<m>, bit [m], for m = 0 to 7

Selects which PE Comparator Inputs are in use with ViewInst start/stop function, for the purpose of starting trace.

TRCVIPCSSCTLR, ViewInst Start/Stop PE Comparator Control Register

Page 4183

START<m> Meaning
0b0 The PE Comparator Input m, is not selected as a start

resource.
0b1 The PE Comparator Input m, is selected as a start

resource.

This bit is RES0 if m >= TRCIDR4.NUMPC.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCVIPCSSCTLR
Must be programmed if TRCIDR4.NUMPC != 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCVIPCSSCTLR can be accessed through the external debug interface:

Component Offset
ETE 0x08C

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCVIPCSSCTLR, ViewInst Start/Stop PE Comparator Control Register

Page 4184

TRCVISSCTLR, ViewInst Start/Stop Control Register
The TRCVISSCTLR characteristics are:

Purpose
Use this to select, or read, the Single Address Comparators for the ViewInst start/stop function.

Configuration
External register TRCVISSCTLR bits [31:0] are architecturally mapped to AArch64 System register
TRCVISSCTLR[31:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMACPAIRS > 0b0000. Otherwise, direct
accesses to TRCVISSCTLR are RES0.

Attributes
TRCVISSCTLR is a 32-bit register.

Field descriptions
The TRCVISSCTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STOP<m>, bit [m+16] START<m>, bit [m]

STOP<m>, bit [m+16], for m = 0 to 15

Selects which Single Address Comparators are in use with ViewInst start/stop function, for the purpose of stopping
trace.

STOP<m> Meaning
0b0 The Single Address Comparator m, is not selected as a stop

resource.
0b1 The Single Address Comparator m, is selected as a stop

resource.

This bit is RES0 if m >= 2 × TRCIDR4.NUMACPAIRS.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

START<m>, bit [m], for m = 0 to 15

Selects which Single Address Comparators are in use with ViewInst start/stop function, for the purpose of starting
trace.

START<m> Meaning
0b0 The Single Address Comparator m, is not selected as a

start resource.
0b1 The Single Address Comparator m, is selected as a start

resource.

This bit is RES0 if m >= 2 × TRCIDR4.NUMACPAIRS.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

TRCVISSCTLR, ViewInst Start/Stop Control Register

Page 4185

Accessing the TRCVISSCTLR
Must be programmed if TRCIDR4.NUMACPAIRS > 0b0000.

For any 2 comparators selected for the ViewInst start/stop function, the comparator containing the lower address must
be a lower numbered comparator.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCVISSCTLR can be accessed through the external debug interface:

Component Offset
ETE 0x088

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCVISSCTLR, ViewInst Start/Stop Control Register

Page 4186

TRCVMIDCCTLR0, Virtual Context Identifier
Comparator Control Register 0

The TRCVMIDCCTLR0 characteristics are:

Purpose
Virtual Context Identifier Comparator mask values for the TRCVMIDCVR<n> registers, where n=0-3.

Configuration
External register TRCVMIDCCTLR0 bits [31:0] are architecturally mapped to AArch64 System register
TRCVMIDCCTLR0[31:0] .

This register is present only when ETE is implemented, TRCIDR4.NUMVMIDC > 0x0 and TRCIDR2.VMIDSIZE >
0b00000. Otherwise, direct accesses to TRCVMIDCCTLR0 are RES0.

Attributes
TRCVMIDCCTLR0 is a 32-bit register.

Field descriptions
The TRCVMIDCCTLR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
COMP3<m>, bit [m+24] COMP2<m>, bit [m+16] COMP1<m>, bit [m+8] COMP0<m>, bit [m]

COMP3<m>, bit [m+24], for m = 0 to 7

When TRCIDR4.NUMVMIDC > 3:

TRCVMIDCVR3 mask control. Specifies the mask value that the trace unit applies to TRCVMIDCVR3. Each bit in this
field corresponds to a byte in TRCVMIDCVR3.

COMP3<m> Meaning
0b0 The trace unit includes TRCVMIDCVR3[(m×8+7):(m×8)]

when it performs the Virtual context identifier
comparison.

0b1 The trace unit ignores TRCVMIDCVR3[(m×8+7):(m×8)]
when it performs the Virtual context identifier
comparison.

This bit is RES0 if m >= TRCIDR2.VMIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP2<m>, bit [m+16], for m = 0 to 7

When TRCIDR4.NUMVMIDC > 2:

TRCVMIDCVR2 mask control. Specifies the mask value that the trace unit applies to TRCVMIDCVR2. Each bit in this
field corresponds to a byte in TRCVMIDCVR2.

TRCVMIDCCTLR0, Virtual Context Identifier Comparator Control Register 0

Page 4187

COMP2<m> Meaning
0b0 The trace unit includes TRCVMIDCVR2[(m×8+7):(m×8)]

when it performs the Virtual context identifier
comparison.

0b1 The trace unit ignores TRCVMIDCVR2[(m×8+7):(m×8)]
when it performs the Virtual context identifier
comparison.

This bit is RES0 if m >= TRCIDR2.VMIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP1<m>, bit [m+8], for m = 0 to 7

When TRCIDR4.NUMVMIDC > 1:

TRCVMIDCVR1 mask control. Specifies the mask value that the trace unit applies to TRCVMIDCVR1. Each bit in this
field corresponds to a byte in TRCVMIDCVR1.

COMP1<m> Meaning
0b0 The trace unit includes TRCVMIDCVR1[(m×8+7):(m×8)]

when it performs the Virtual context identifier
comparison.

0b1 The trace unit ignores TRCVMIDCVR1[(m×8+7):(m×8)]
when it performs the Virtual context identifier
comparison.

This bit is RES0 if m >= TRCIDR2.VMIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP0<m>, bit [m], for m = 0 to 7

When TRCIDR4.NUMVMIDC > 0:

TRCVMIDCVR0 mask control. Specifies the mask value that the trace unit applies to TRCVMIDCVR0. Each bit in this
field corresponds to a byte in TRCVMIDCVR0.

COMP0<m> Meaning
0b0 The trace unit includes TRCVMIDCVR0[(m×8+7):(m×8)]

when it performs the Virtual context identifier
comparison.

0b1 The trace unit ignores TRCVMIDCVR0[(m×8+7):(m×8)]
when it performs the Virtual context identifier
comparison.

This bit is RES0 if m >= TRCIDR2.VMIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCVMIDCCTLR0, Virtual Context Identifier Comparator Control Register 0

Page 4188

Accessing the TRCVMIDCCTLR0
If software uses the TRCVMIDCVR<n> registers, where n=0-3, then it must program this register.

If software sets a mask bit to 0b1 then it must program the relevant byte in TRCVMIDCVR<n> to 0x00.

If any bit is 0b1 and the relevant byte in TRCVMIDCVR<n> is not 0x00, the behavior of the Virtual Context Identifier
Comparator is CONSTRAINED UNPREDICTABLE. In this scenario the comparator might match unexpectedly or might not
match.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCVMIDCCTLR0 can be accessed through the external debug interface:

Component Offset
ETE 0x688

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCVMIDCCTLR0, Virtual Context Identifier Comparator Control Register 0

Page 4189

TRCVMIDCCTLR1, Virtual Context Identifier
Comparator Control Register 1

The TRCVMIDCCTLR1 characteristics are:

Purpose
Virtual Context Identifier Comparator mask values for the TRCVMIDCVR<n> registers, where n=4-7.

Configuration
External register TRCVMIDCCTLR1 bits [31:0] are architecturally mapped to AArch64 System register
TRCVMIDCCTLR1[31:0] .

This register is present only when ETE is implemented, TRCIDR4.NUMVMIDC > 0x4 and TRCIDR2.VMIDSIZE >
0b00000. Otherwise, direct accesses to TRCVMIDCCTLR1 are RES0.

Attributes
TRCVMIDCCTLR1 is a 32-bit register.

Field descriptions
The TRCVMIDCCTLR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
COMP7<m>, bit [m+24] COMP6<m>, bit [m+16] COMP5<m>, bit [m+8] COMP4<m>, bit [m]

COMP7<m>, bit [m+24], for m = 0 to 7

When TRCIDR4.NUMVMIDC > 7:

TRCVMIDCVR7 mask control. Specifies the mask value that the trace unit applies to TRCVMIDCVR7. Each bit in this
field corresponds to a byte in TRCVMIDCVR7.

COMP7<m> Meaning
0b0 The trace unit includes TRCVMIDCVR7[(m×8+7):(m×8)]

when it performs the Virtual context identifier
comparison.

0b1 The trace unit ignores TRCVMIDCVR7[(m×8+7):(m×8)]
when it performs the Virtual context identifier
comparison.

This bit is RES0 if m >= TRCIDR2.VMIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP6<m>, bit [m+16], for m = 0 to 7

When TRCIDR4.NUMVMIDC > 6:

TRCVMIDCVR6 mask control. Specifies the mask value that the trace unit applies to TRCVMIDCVR6. Each bit in this
field corresponds to a byte in TRCVMIDCVR6.

TRCVMIDCCTLR1, Virtual Context Identifier Comparator Control Register 1

Page 4190

COMP6<m> Meaning
0b0 The trace unit includes TRCVMIDCVR6[(m×8+7):(m×8)]

when it performs the Virtual context identifier
comparison.

0b1 The trace unit ignores TRCVMIDCVR6[(m×8+7):(m×8)]
when it performs the Virtual context identifier
comparison.

This bit is RES0 if m >= TRCIDR2.VMIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP5<m>, bit [m+8], for m = 0 to 7

When TRCIDR4.NUMVMIDC > 5:

TRCVMIDCVR5 mask control. Specifies the mask value that the trace unit applies to TRCVMIDCVR5. Each bit in this
field corresponds to a byte in TRCVMIDCVR5.

COMP5<m> Meaning
0b0 The trace unit includes TRCVMIDCVR5[(m×8+7):(m×8)]

when it performs the Virtual context identifier
comparison.

0b1 The trace unit ignores TRCVMIDCVR5[(m×8+7):(m×8)]
when it performs the Virtual context identifier
comparison.

This bit is RES0 if m >= TRCIDR2.VMIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

COMP4<m>, bit [m], for m = 0 to 7

When TRCIDR4.NUMVMIDC > 4:

TRCVMIDCVR4 mask control. Specifies the mask value that the trace unit applies to TRCVMIDCVR4. Each bit in this
field corresponds to a byte in TRCVMIDCVR4.

COMP4<m> Meaning
0b0 The trace unit includes TRCVMIDCVR4[(m×8+7):(m×8)]

when it performs the Virtual context identifier
comparison.

0b1 The trace unit ignores TRCVMIDCVR4[(m×8+7):(m×8)]
when it performs the Virtual context identifier
comparison.

This bit is RES0 if m >= TRCIDR2.VMIDSIZE.

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCVMIDCCTLR1, Virtual Context Identifier Comparator Control Register 1

Page 4191

Accessing the TRCVMIDCCTLR1
If software uses the TRCVMIDCVR<n> registers, where n=4-7, then it must program this register.

If software sets a mask bit to 0b1 then it must program the relevant byte in TRCVMIDCVR<n> to 0x00.

If any bit is 0b1 and the relevant byte in TRCVMIDCVR<n> is not 0x00, the behavior of the Virtual Context Identifier
Comparator is CONSTRAINED UNPREDICTABLE. In this scenario the comparator might match unexpectedly or might not
match.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCVMIDCCTLR1 can be accessed through the external debug interface:

Component Offset
ETE 0x68C

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCVMIDCCTLR1, Virtual Context Identifier Comparator Control Register 1

Page 4192

TRCVMIDCVR<n>, Virtual Context Identifier
Comparator Value Register <n>, n = 0 - 7

The TRCVMIDCVR<n> characteristics are:

Purpose
Contains the Virtual Context Identifier Comparator value.

Configuration
External register TRCVMIDCVR<n> bits [63:0] are architecturally mapped to AArch64 System register
TRCVMIDCVR<n>[63:0] .

This register is present only when ETE is implemented and TRCIDR4.NUMVMIDC > n. Otherwise, direct accesses to
TRCVMIDCVR<n> are RES0.

Attributes
TRCVMIDCVR<n> is a 64-bit register.

Field descriptions
The TRCVMIDCVR<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
VALUE
VALUE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VALUE, bits [63:0]

Virtual context identifier value. The width of this field is indicated by TRCIDR2.VMIDSIZE. Unimplemented bits are
RES0. After a PE Reset, the trace unit assumes that the Virtual context identifier is zero until the PE updates the
Virtual context identifier .

On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCVMIDCVR<n>
Must be programmed if any of the following are true:

• TRCRSCTLR<a>.GROUP == 0b0111 and TRCRSCTLR<a>.VMID[n] == 0b1.
• TRCACATR<a>.CONTEXTTYPE == 0b10 or 0b11 and TRCACATR<a>.CONTEXT == n.

TRCVMIDCVR<n> can be accessed through the external debug interface:

Component Offset Instance
ETE 0x640 + 8n TRCVMIDCVR<n>

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

TRCVMIDCVR<n>, Virtual Context Identifier Comparator Value Register <n>, n = 0 - 7

Page 4193

09/12/2019 19:23; 4931ecb80e191d85331fc84f6cc8b3483d27b25d

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRCVMIDCVR<n>, Virtual Context Identifier Comparator Value Register <n>, n = 0 - 7

Page 4194

	Proprietary Notice
	AArch64 System Registers
	AArch64 System Instructions
	ACTLR_EL1, Auxiliary Control Register (EL1)
	ACTLR_EL2, Auxiliary Control Register (EL2)
	ACTLR_EL3, Auxiliary Control Register (EL3)
	AFSR0_EL1, Auxiliary Fault Status Register 0 (EL1)
	AFSR0_EL2, Auxiliary Fault Status Register 0 (EL2)
	AFSR0_EL3, Auxiliary Fault Status Register 0 (EL3)
	AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)
	AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)
	AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3)
	AIDR_EL1, Auxiliary ID Register
	AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)
	AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)
	AMAIR_EL3, Auxiliary Memory Attribute Indirection Register (EL3)
	AMCFGR_EL0, Activity Monitors Configuration Register
	AMCG1IDR_EL0, Activity Monitors Counter Group 1 Identification Register
	AMCGCR_EL0, Activity Monitors Counter Group Configuration Register
	AMCNTENCLR0_EL0, Activity Monitors Count Enable Clear Register 0
	AMCNTENCLR1_EL0, Activity Monitors Count Enable Clear Register 1
	AMCNTENSET0_EL0, Activity Monitors Count Enable Set Register 0
	AMCNTENSET1_EL0, Activity Monitors Count Enable Set Register 1
	AMCR_EL0, Activity Monitors Control Register
	AMEVCNTR0<n>_EL0, Activity Monitors Event Counter Registers 0, n = 0 - 15
	AMEVCNTR1<n>_EL0, Activity Monitors Event Counter Registers 1, n = 0 - 15
	AMEVCNTVOFF0<n>_EL2, Activity Monitors Event Counter Virtual Offset Registers 0, n = 0 - 15
	AMEVCNTVOFF1<n>_EL2, Activity Monitors Event Counter Virtual Offset Registers 1, n = 0 - 15
	AMEVTYPER0<n>_EL0, Activity Monitors Event Type Registers 0, n = 0 - 15
	AMEVTYPER1<n>_EL0, Activity Monitors Event Type Registers 1, n = 0 - 15
	AMUSERENR_EL0, Activity Monitors User Enable Register
	APDAKeyHi_EL1, Pointer Authentication Key A for Data (bits[127:64])
	APDAKeyLo_EL1, Pointer Authentication Key A for Data (bits[63:0])
	APDBKeyHi_EL1, Pointer Authentication Key B for Data (bits[127:64])
	APDBKeyLo_EL1, Pointer Authentication Key B for Data (bits[63:0])
	APGAKeyHi_EL1, Pointer Authentication Key A for Code (bits[127:64])
	APGAKeyLo_EL1, Pointer Authentication Key A for Code (bits[63:0])
	APIAKeyHi_EL1, Pointer Authentication Key A for Instruction (bits[127:64])
	APIAKeyLo_EL1, Pointer Authentication Key A for Instruction (bits[63:0])
	APIBKeyHi_EL1, Pointer Authentication Key B for Instruction (bits[127:64])
	APIBKeyLo_EL1, Pointer Authentication Key B for Instruction (bits[63:0])
	AT S12E0R, Address Translate Stages 1 and 2 EL0 Read
	AT S12E0W, Address Translate Stages 1 and 2 EL0 Write
	AT S12E1R, Address Translate Stages 1 and 2 EL1 Read
	AT S12E1W, Address Translate Stages 1 and 2 EL1 Write
	AT S1E0R, Address Translate Stage 1 EL0 Read
	AT S1E0W, Address Translate Stage 1 EL0 Write
	AT S1E1R, Address Translate Stage 1 EL1 Read
	AT S1E1RP, Address Translate Stage 1 EL1 Read PAN
	AT S1E1W, Address Translate Stage 1 EL1 Write
	AT S1E1WP, Address Translate Stage 1 EL1 Write PAN
	AT S1E2R, Address Translate Stage 1 EL2 Read
	AT S1E2W, Address Translate Stage 1 EL2 Write
	AT S1E3R, Address Translate Stage 1 EL3 Read
	AT S1E3W, Address Translate Stage 1 EL3 Write
	CCSIDR2_EL1, Current Cache Size ID Register 2
	CCSIDR_EL1, Current Cache Size ID Register
	CFP RCTX, Control Flow Prediction Restriction by Context
	CLIDR_EL1, Cache Level ID Register
	CNTFRQ_EL0, Counter-timer Frequency register
	CNTHCTL_EL2, Counter-timer Hypervisor Control register
	CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register
	CNTHP_CVAL_EL2, Counter-timer Physical Timer CompareValue register (EL2)
	CNTHP_TVAL_EL2, Counter-timer Physical Timer TimerValue register (EL2)
	CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)
	CNTHPS_CVAL_EL2, Counter-timer Secure Physical Timer CompareValue register (EL2)
	CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)
	CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)
	CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)
	CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue Register (EL2)
	CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)
	CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register (EL2)
	CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)
	CNTKCTL_EL1, Counter-timer Kernel Control register
	CNTP_CTL_EL0, Counter-timer Physical Timer Control register
	CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue register
	CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register
	CNTPCT_EL0, Counter-timer Physical Count register
	CNTPCTSS_EL0, Counter-timer Self-Synchronized Physical Count register
	CNTPOFF_EL2, Counter-timer Physical Offset register
	CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control register
	CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer CompareValue register
	CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue register
	CNTV_CTL_EL0, Counter-timer Virtual Timer Control register
	CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue register
	CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register
	CNTVCT_EL0, Counter-timer Virtual Count register
	CNTVCTSS_EL0, Counter-timer Self-Synchronized Virtual Count register
	CNTVOFF_EL2, Counter-timer Virtual Offset register
	CONTEXTIDR_EL1, Context ID Register (EL1)
	CONTEXTIDR_EL2, Context ID Register (EL2)
	CPACR_EL1, Architectural Feature Access Control Register
	CPP RCTX, Cache Prefetch Prediction Restriction by Context
	CPTR_EL2, Architectural Feature Trap Register (EL2)
	CPTR_EL3, Architectural Feature Trap Register (EL3)
	CSSELR_EL1, Cache Size Selection Register
	CTR_EL0, Cache Type Register
	CurrentEL, Current Exception Level
	DACR32_EL2, Domain Access Control Register
	DAIF, Interrupt Mask Bits
	DBGAUTHSTATUS_EL1, Debug Authentication Status register
	DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15
	DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15
	DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register
	DBGCLAIMSET_EL1, Debug CLAIM Tag Set register
	DBGDTR_EL0, Debug Data Transfer Register, half-duplex
	DBGDTRRX_EL0, Debug Data Transfer Register, Receive
	DBGDTRTX_EL0, Debug Data Transfer Register, Transmit
	DBGPRCR_EL1, Debug Power Control Register
	DBGVCR32_EL2, Debug Vector Catch Register
	DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15
	DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15
	DC CGDSW, Data, Allocation Tag or unified Cache line Clean of Data and Allocation Tags by Set/Way
	DC CGDVAC, Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoC
	DC CGDVADP, Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoDP
	DC CGDVAP, Data, Allocation Tag or unified Cache line Clean of Data and Allocation Tags by VA to PoP
	DC CGSW, Data, Allocation Tag or unified Cache line Clean of Allocation Tags by Set/Way
	DC CGVAC, Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoC
	DC CGVADP, Data, Allocation Tag or unified Cache line Clean of Data and Allocation Tags by VA to PoDP
	DC CGVAP, Data, Allocation Tag or unified Cache line Clean of Allocation Tags by VA to PoP
	DC CIGDSW, Data, Allocation Tag or unified Cache line Clean and Invalidate of Data and Allocation Tags by Set/Way
	DC CIGDVAC, Data, Allocation Tag or unified Cache line Clean and Invalidate of Data and Allocation Tags by VA to PoC
	DC CIGSW, Data, Allocation Tag or unified Cache line Clean and Invalidate of Allocation Tags by Set/Way
	DC CIGVAC, Data, Allocation Tag or unified Cache line Clean and Invalidate of Allocation Tags by VA to PoC
	DC CISW, Data or unified Cache line Clean and Invalidate by Set/Way
	DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC
	DC CSW, Data or unified Cache line Clean by Set/Way
	DC CVAC, Data or unified Cache line Clean by VA to PoC
	DC CVADP, Data or unified Cache line Clean by VA to PoDP
	DC CVAP, Data or unified Cache line Clean by VA to PoP
	DC CVAU, Data or unified Cache line Clean by VA to PoU
	DC GVA, Data Cache set Allocation Tag by VA
	DC GZVA, Data Cache set Allocation Tags and Zero by VA
	DC IGDSW, Data, Allocation Tag or unified Cache line Invalidate of Data and Allocation Tags by Set/Way
	DC IGDVAC, Data, Allocation Tag or unified Cache line Invalidate of Allocation Tags by VA to PoC
	DC IGSW, Data, Allocation Tag or unified Cache line Invalidate of Allocation Tags by Set/Way
	DC IGVAC, Data, Allocation Tag or unified Cache line Invalidate of Allocation Tags by VA to PoC
	DC ISW, Data or unified Cache line Invalidate by Set/Way
	DC IVAC, Data or unified Cache line Invalidate by VA to PoC
	DC ZVA, Data Cache Zero by VA
	DCZID_EL0, Data Cache Zero ID register
	DISR_EL1, Deferred Interrupt Status Register
	DIT, Data Independent Timing
	DLR_EL0, Debug Link Register
	DSPSR_EL0, Debug Saved Program Status Register
	DVP RCTX, Data Value Prediction Restriction by Context
	ELR_EL1, Exception Link Register (EL1)
	ELR_EL2, Exception Link Register (EL2)
	ELR_EL3, Exception Link Register (EL3)
	ERRIDR_EL1, Error Record ID Register
	ERRSELR_EL1, Error Record Select Register
	ERXADDR_EL1, Selected Error Record Address Register
	ERXCTLR_EL1, Selected Error Record Control Register
	ERXFR_EL1, Selected Error Record Feature Register
	ERXMISC0_EL1, Selected Error Record Miscellaneous Register 0
	ERXMISC1_EL1, Selected Error Record Miscellaneous Register 1
	ERXMISC2_EL1, Selected Error Record Miscellaneous Register 2
	ERXMISC3_EL1, Selected Error Record Miscellaneous Register 3
	ERXPFGCDN_EL1, Selected Pseudo-fault Generation Countdown register
	ERXPFGCTL_EL1, Selected Pseudo-fault Generation Control register
	ERXPFGF_EL1, Selected Pseudo-fault Generation Feature register
	ERXSTATUS_EL1, Selected Error Record Primary Status Register
	ESR_EL1, Exception Syndrome Register (EL1)
	ESR_EL2, Exception Syndrome Register (EL2)
	ESR_EL3, Exception Syndrome Register (EL3)
	FAR_EL1, Fault Address Register (EL1)
	FAR_EL2, Fault Address Register (EL2)
	FAR_EL3, Fault Address Register (EL3)
	FPCR, Floating-point Control Register
	FPEXC32_EL2, Floating-Point Exception Control register
	FPSR, Floating-point Status Register
	GCR_EL1, Tag Control Register.
	GMID_EL1, Multiple tag transfer ID register
	HACR_EL2, Hypervisor Auxiliary Control Register
	HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register
	HCR_EL2, Hypervisor Configuration Register
	HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register
	HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register
	HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register
	HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register
	HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register
	HPFAR_EL2, Hypervisor IPA Fault Address Register
	HSTR_EL2, Hypervisor System Trap Register
	IC IALLU, Instruction Cache Invalidate All to PoU
	IC IALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable
	IC IVAU, Instruction Cache line Invalidate by VA to PoU
	ICC_AP0R<n>_EL1, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3
	ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3
	ICC_ASGI1R_EL1, Interrupt Controller Alias Software Generated Interrupt Group 1 Register
	ICC_BPR0_EL1, Interrupt Controller Binary Point Register 0
	ICC_BPR1_EL1, Interrupt Controller Binary Point Register 1
	ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)
	ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)
	ICC_DIR_EL1, Interrupt Controller Deactivate Interrupt Register
	ICC_EOIR0_EL1, Interrupt Controller End Of Interrupt Register 0
	ICC_EOIR1_EL1, Interrupt Controller End Of Interrupt Register 1
	ICC_HPPIR0_EL1, Interrupt Controller Highest Priority Pending Interrupt Register 0
	ICC_HPPIR1_EL1, Interrupt Controller Highest Priority Pending Interrupt Register 1
	ICC_IAR0_EL1, Interrupt Controller Interrupt Acknowledge Register 0
	ICC_IAR1_EL1, Interrupt Controller Interrupt Acknowledge Register 1
	ICC_IGRPEN0_EL1, Interrupt Controller Interrupt Group 0 Enable register
	ICC_IGRPEN1_EL1, Interrupt Controller Interrupt Group 1 Enable register
	ICC_IGRPEN1_EL3, Interrupt Controller Interrupt Group 1 Enable register (EL3)
	ICC_PMR_EL1, Interrupt Controller Interrupt Priority Mask Register
	ICC_RPR_EL1, Interrupt Controller Running Priority Register
	ICC_SGI0R_EL1, Interrupt Controller Software Generated Interrupt Group 0 Register
	ICC_SGI1R_EL1, Interrupt Controller Software Generated Interrupt Group 1 Register
	ICC_SRE_EL1, Interrupt Controller System Register Enable register (EL1)
	ICC_SRE_EL2, Interrupt Controller System Register Enable register (EL2)
	ICC_SRE_EL3, Interrupt Controller System Register Enable register (EL3)
	ICH_AP0R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3
	ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3
	ICH_EISR_EL2, Interrupt Controller End of Interrupt Status Register
	ICH_ELRSR_EL2, Interrupt Controller Empty List Register Status Register
	ICH_HCR_EL2, Interrupt Controller Hyp Control Register
	ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15
	ICH_MISR_EL2, Interrupt Controller Maintenance Interrupt State Register
	ICH_VMCR_EL2, Interrupt Controller Virtual Machine Control Register
	ICH_VTR_EL2, Interrupt Controller VGIC Type Register
	ICV_AP0R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 0 Registers, n = 0 - 3
	ICV_AP1R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3
	ICV_BPR0_EL1, Interrupt Controller Virtual Binary Point Register 0
	ICV_BPR1_EL1, Interrupt Controller Virtual Binary Point Register 1
	ICV_CTLR_EL1, Interrupt Controller Virtual Control Register
	ICV_DIR_EL1, Interrupt Controller Deactivate Virtual Interrupt Register
	ICV_EOIR0_EL1, Interrupt Controller Virtual End Of Interrupt Register 0
	ICV_EOIR1_EL1, Interrupt Controller Virtual End Of Interrupt Register 1
	ICV_HPPIR0_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
	ICV_HPPIR1_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
	ICV_IAR0_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 0
	ICV_IAR1_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 1
	ICV_IGRPEN0_EL1, Interrupt Controller Virtual Interrupt Group 0 Enable register
	ICV_IGRPEN1_EL1, Interrupt Controller Virtual Interrupt Group 1 Enable register
	ICV_PMR_EL1, Interrupt Controller Virtual Interrupt Priority Mask Register
	ICV_RPR_EL1, Interrupt Controller Virtual Running Priority Register
	ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register 0
	ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register 1
	ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0
	ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1
	ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0
	ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1
	ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0
	ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1
	ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2
	ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0
	ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1
	ID_AA64ZFR0_EL1, SVE Feature ID register 0
	ID_AFR0_EL1, AArch32 Auxiliary Feature Register 0
	ID_DFR0_EL1, AArch32 Debug Feature Register 0
	ID_DFR1_EL1, Debug Feature Register 1
	ID_ISAR0_EL1, AArch32 Instruction Set Attribute Register 0
	ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1
	ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2
	ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3
	ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4
	ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5
	ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6
	ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0
	ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1
	ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2
	ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3
	ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4
	ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5
	ID_PFR0_EL1, AArch32 Processor Feature Register 0
	ID_PFR1_EL1, AArch32 Processor Feature Register 1
	ID_PFR2_EL1, AArch32 Processor Feature Register 2
	IFSR32_EL2, Instruction Fault Status Register (EL2)
	ISR_EL1, Interrupt Status Register
	LORC_EL1, LORegion Control (EL1)
	LOREA_EL1, LORegion End Address (EL1)
	LORID_EL1, LORegionID (EL1)
	LORN_EL1, LORegion Number (EL1)
	LORSA_EL1, LORegion Start Address (EL1)
	MAIR_EL1, Memory Attribute Indirection Register (EL1)
	MAIR_EL2, Memory Attribute Indirection Register (EL2)
	MAIR_EL3, Memory Attribute Indirection Register (EL3)
	MDCCINT_EL1, Monitor DCC Interrupt Enable Register
	MDCCSR_EL0, Monitor DCC Status Register
	MDCR_EL2, Monitor Debug Configuration Register (EL2)
	MDCR_EL3, Monitor Debug Configuration Register (EL3)
	MDRAR_EL1, Monitor Debug ROM Address Register
	MDSCR_EL1, Monitor Debug System Control Register
	MIDR_EL1, Main ID Register
	MPAM0_EL1, MPAM0 Register (EL1)
	MPAM1_EL1, MPAM1 Register (EL1)
	MPAM2_EL2, MPAM2 Register (EL2)
	MPAM3_EL3, MPAM3 Register (EL3)
	MPAMHCR_EL2, MPAM Hypervisor Control Register (EL2)
	MPAMIDR_EL1, MPAM ID Register (EL1)
	MPAMVPM0_EL2, MPAM Virtual PARTID Mapping Register 0
	MPAMVPM1_EL2, MPAM Virtual PARTID Mapping Register 1
	MPAMVPM2_EL2, MPAM Virtual PARTID Mapping Register 2
	MPAMVPM3_EL2, MPAM Virtual PARTID Mapping Register 3
	MPAMVPM4_EL2, MPAM Virtual PARTID Mapping Register 4
	MPAMVPM5_EL2, MPAM Virtual PARTID Mapping Register 5
	MPAMVPM6_EL2, MPAM Virtual PARTID Mapping Register 6
	MPAMVPM7_EL2, MPAM Virtual PARTID Mapping Register 7
	MPAMVPMV_EL2, MPAM Virtual Partition Mapping Valid Register
	MPIDR_EL1, Multiprocessor Affinity Register
	MVFR0_EL1, AArch32 Media and VFP Feature Register 0
	MVFR1_EL1, AArch32 Media and VFP Feature Register 1
	MVFR2_EL1, AArch32 Media and VFP Feature Register 2
	NZCV, Condition Flags
	OSDLR_EL1, OS Double Lock Register
	OSDTRRX_EL1, OS Lock Data Transfer Register, Receive
	OSDTRTX_EL1, OS Lock Data Transfer Register, Transmit
	OSECCR_EL1, OS Lock Exception Catch Control Register
	OSLAR_EL1, OS Lock Access Register
	OSLSR_EL1, OS Lock Status Register
	PAN, Privileged Access Never
	PAR_EL1, Physical Address Register
	PMBIDR_EL1, Profiling Buffer ID Register
	PMBLIMITR_EL1, Profiling Buffer Limit Address Register
	PMBPTR_EL1, Profiling Buffer Write Pointer Register
	PMBSR_EL1, Profiling Buffer Status/syndrome Register
	PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register
	PMCCNTR_EL0, Performance Monitors Cycle Count Register
	PMCEID0_EL0, Performance Monitors Common Event Identification register 0
	PMCEID1_EL0, Performance Monitors Common Event Identification register 1
	PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register
	PMCNTENSET_EL0, Performance Monitors Count Enable Set register
	PMCR_EL0, Performance Monitors Control Register
	PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30
	PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30
	PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register
	PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register
	PMMIR_EL1, Performance Monitors Machine Identification Register
	PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear Register
	PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register
	PMSCR_EL1, Statistical Profiling Control Register (EL1)
	PMSCR_EL2, Statistical Profiling Control Register (EL2)
	PMSELR_EL0, Performance Monitors Event Counter Selection Register
	PMSEVFR_EL1, Sampling Event Filter Register
	PMSFCR_EL1, Sampling Filter Control Register
	PMSICR_EL1, Sampling Interval Counter Register
	PMSIDR_EL1, Sampling Profiling ID Register
	PMSIRR_EL1, Sampling Interval Reload Register
	PMSLATFR_EL1, Sampling Latency Filter Register
	PMSWINC_EL0, Performance Monitors Software Increment register
	PMUSERENR_EL0, Performance Monitors User Enable Register
	PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register
	PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register
	REVIDR_EL1, Revision ID Register
	RGSR_EL1, Random Allocation Tag Seed Register.
	RMR_EL1, Reset Management Register (EL1)
	RMR_EL2, Reset Management Register (EL2)
	RMR_EL3, Reset Management Register (EL3)
	RNDR, Random Number
	RNDRRS, Reseeded Random Number
	RVBAR_EL1, Reset Vector Base Address Register (if EL2 and EL3 not implemented)
	RVBAR_EL2, Reset Vector Base Address Register (if EL3 not implemented)
	RVBAR_EL3, Reset Vector Base Address Register (if EL3 implemented)
	S1_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED maintenance instructions
	S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED registers
	SCR_EL3, Secure Configuration Register
	SCTLR_EL1, System Control Register (EL1)
	SCTLR_EL2, System Control Register (EL2)
	SCTLR_EL3, System Control Register (EL3)
	SCXTNUM_EL0, EL0 Read/Write Software Context Number
	SCXTNUM_EL1, EL1 Read/Write Software Context Number
	SCXTNUM_EL2, EL2 Read/Write Software Context Number
	SCXTNUM_EL3, EL3 Read/Write Software Context Number
	SDER32_EL2, AArch32 Secure Debug Enable Register
	SDER32_EL3, AArch32 Secure Debug Enable Register
	SP_EL0, Stack Pointer (EL0)
	SP_EL1, Stack Pointer (EL1)
	SP_EL2, Stack Pointer (EL2)
	SP_EL3, Stack Pointer (EL3)
	SPSel, Stack Pointer Select
	SPSR_abt, Saved Program Status Register (Abort mode)
	SPSR_EL1, Saved Program Status Register (EL1)
	SPSR_EL2, Saved Program Status Register (EL2)
	SPSR_EL3, Saved Program Status Register (EL3)
	SPSR_fiq, Saved Program Status Register (FIQ mode)
	SPSR_irq, Saved Program Status Register (IRQ mode)
	SPSR_und, Saved Program Status Register (Undefined mode)
	SSBS, Speculative Store Bypass Safe
	TCO, Tag Check Override
	TCR_EL1, Translation Control Register (EL1)
	TCR_EL2, Translation Control Register (EL2)
	TCR_EL3, Translation Control Register (EL3)
	TFSR_EL1, Tag Fault Status Register (EL1)
	TFSR_EL2, Tag Fault Status Register (EL2)
	TFSR_EL3, Tag Fault Status Register (EL3)
	TFSRE0_EL1, Tag Fault Status Register (EL0).
	TLBI ALLE1, TLB Invalidate All, EL1
	TLBI ALLE1IS, TLB Invalidate All, EL1, Inner Shareable
	TLBI ALLE1OS, TLB Invalidate All, EL1, Outer Shareable
	TLBI ALLE2, TLB Invalidate All, EL2
	TLBI ALLE2IS, TLB Invalidate All, EL2, Inner Shareable
	TLBI ALLE2OS, TLB Invalidate All, EL2, Outer Shareable
	TLBI ALLE3, TLB Invalidate All, EL3
	TLBI ALLE3IS, TLB Invalidate All, EL3, Inner Shareable
	TLBI ALLE3OS, TLB Invalidate All, EL3, Outer Shareable
	TLBI ASIDE1, TLB Invalidate by ASID, EL1
	TLBI ASIDE1IS, TLB Invalidate by ASID, EL1, Inner Shareable
	TLBI ASIDE1OS, TLB Invalidate by ASID, EL1, Outer Shareable
	TLBI IPAS2E1, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1
	TLBI IPAS2E1IS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable
	TLBI IPAS2E1OS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable
	TLBI IPAS2LE1, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1
	TLBI IPAS2LE1IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable
	TLBI IPAS2LE1OS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable
	TLBI RIPAS2E1, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1
	TLBI RIPAS2E1IS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable
	TLBI RIPAS2E1OS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable
	TLBI RIPAS2LE1, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1
	TLBI RIPAS2LE1IS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable
	TLBI RIPAS2LE1OS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable
	TLBI RVAAE1, TLB Range Invalidate by VA, All ASID, EL1
	TLBI RVAAE1IS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable
	TLBI RVAAE1OS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable
	TLBI RVAALE1, TLB Range Invalidate by VA, All ASID, Last level, EL1
	TLBI RVAALE1IS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable
	TLBI RVAALE1OS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable
	TLBI RVAE1, TLB Range Invalidate by VA, EL1
	TLBI RVAE1IS, TLB Range Invalidate by VA, EL1, Inner Shareable
	TLBI RVAE1OS, TLB Range Invalidate by VA, EL1, Outer Shareable
	TLBI RVAE2, TLB Range Invalidate by VA, EL2
	TLBI RVAE2IS, TLB Range Invalidate by VA, EL2, Inner Shareable
	TLBI RVAE2OS, TLB Range Invalidate by VA, EL2, Outer Shareable
	TLBI RVAE3, TLB Range Invalidate by VA, EL3
	TLBI RVAE3IS, TLB Range Invalidate by VA, EL3, Inner Shareable
	TLBI RVAE3OS, TLB Range Invalidate by VA, EL3, Outer Shareable
	TLBI RVALE1, TLB Range Invalidate by VA, Last level, EL1
	TLBI RVALE1IS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable
	TLBI RVALE1OS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable
	TLBI RVALE2, TLB Range Invalidate by VA, Last level, EL2
	TLBI RVALE2IS, TLB Range Invalidate by VA, Last level, EL2, Inner Shareable
	TLBI RVALE2OS, TLB Range Invalidate by VA, Last level, EL2, Outer Shareable
	TLBI RVALE3, TLB Range Invalidate by VA, Last level, EL3
	TLBI RVALE3IS, TLB Range Invalidate by VA, Last level, EL3, Inner Shareable
	TLBI RVALE3OS, TLB Range Invalidate by VA, Last level, EL3, Outer Shareable
	TLBI VAAE1, TLB Invalidate by VA, All ASID, EL1
	TLBI VAAE1IS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable
	TLBI VAAE1OS, TLB Invalidate by VA, All ASID, EL1, Outer Shareable
	TLBI VAALE1, TLB Invalidate by VA, All ASID, Last level, EL1
	TLBI VAALE1IS, TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable
	TLBI VAALE1OS, TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable
	TLBI VAE1, TLB Invalidate by VA, EL1
	TLBI VAE1IS, TLB Invalidate by VA, EL1, Inner Shareable
	TLBI VAE1OS, TLB Invalidate by VA, EL1, Outer Shareable
	TLBI VAE2, TLB Invalidate by VA, EL2
	TLBI VAE2IS, TLB Invalidate by VA, EL2, Inner Shareable
	TLBI VAE2OS, TLB Invalidate by VA, EL2, Outer Shareable
	TLBI VAE3, TLB Invalidate by VA, EL3
	TLBI VAE3IS, TLB Invalidate by VA, EL3, Inner Shareable
	TLBI VAE3OS, TLB Invalidate by VA, EL3, Outer Shareable
	TLBI VALE1, TLB Invalidate by VA, Last level, EL1
	TLBI VALE1IS, TLB Invalidate by VA, Last level, EL1, Inner Shareable
	TLBI VALE1OS, TLB Invalidate by VA, Last level, EL1, Outer Shareable
	TLBI VALE2, TLB Invalidate by VA, Last level, EL2
	TLBI VALE2IS, TLB Invalidate by VA, Last level, EL2, Inner Shareable
	TLBI VALE2OS, TLB Invalidate by VA, Last level, EL2, Outer Shareable
	TLBI VALE3, TLB Invalidate by VA, Last level, EL3
	TLBI VALE3IS, TLB Invalidate by VA, Last level, EL3, Inner Shareable
	TLBI VALE3OS, TLB Invalidate by VA, Last level, EL3, Outer Shareable
	TLBI VMALLE1, TLB Invalidate by VMID, All at stage 1, EL1
	TLBI VMALLE1IS, TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable
	TLBI VMALLE1OS, TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable
	TLBI VMALLS12E1, TLB Invalidate by VMID, All at Stage 1 and 2, EL1
	TLBI VMALLS12E1IS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable
	TLBI VMALLS12E1OS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Outer Shareable
	TPIDR_EL0, EL0 Read/Write Software Thread ID Register
	TPIDR_EL1, EL1 Software Thread ID Register
	TPIDR_EL2, EL2 Software Thread ID Register
	TPIDR_EL3, EL3 Software Thread ID Register
	TPIDRRO_EL0, EL0 Read-Only Software Thread ID Register
	TRBBASER_EL1, Trace Buffer Base Address Register
	TRBIDR_EL1, Trace Buffer ID Register
	TRBLIMITR_EL1, Trace Buffer Limit Address Register
	TRBMAR_EL1, Trace Buffer Memory Attribute Register
	TRBPTR_EL1, Trace Buffer Write Pointer Register
	TRBSR_EL1, Trace Buffer Status/syndrome Register
	TRBTRG_EL1, Trace Buffer Trigger Counter Register
	TRCACATR<n>, Address Comparator Access Type Register <n>, n = 0 - 15
	TRCACVR<n>, Address Comparator Value Register <n>, n = 0 - 15
	TRCAUTHSTATUS, Authentication Status Register
	TRCAUXCTLR, Auxillary Control Register
	TRCBBCTLR, Branch Broadcast Control Register
	TRCCCCTLR, Cycle Count Control Register
	TRCCIDCCTLR0, Context Identifier Comparator Control Register 0
	TRCCIDCCTLR1, Context Identifier Comparator Control Register 1
	TRCCIDCVR<n>, Context Identifier Comparator Value Registers <n>, n = 0 - 7
	TRCCLAIMCLR, Claim Tag Clear Register
	TRCCLAIMSET, Claim Tag Set Register
	TRCCNTCTLR<n>, Counter Control Register <n>, n = 0 - 3
	TRCCNTRLDVR<n>, Counter Reload Value Register <n>, n = 0 - 3
	TRCCNTVR<n>, Counter Value Register <n>, n = 0 - 3
	TRCCONFIGR, Trace Configuration Register
	TRCDEVARCH, Device Architecture Register
	TRCDEVID, Device Configuration Register
	TRCEVENTCTL0R, Event Control 0 Register
	TRCEVENTCTL1R, Event Control 1 Register
	TRCEXTINSELR<n>, External Input Select Register <n>, n = 0 - 3
	TRCIDR0, ID Register 0
	TRCIDR1, ID Register 1
	TRCIDR10, ID Register 10
	TRCIDR11, ID Register 11
	TRCIDR12, ID Register 12
	TRCIDR13, ID Register 13
	TRCIDR2, ID Register 2
	TRCIDR3, ID Register 3
	TRCIDR4, ID Register 4
	TRCIDR5, ID Register 5
	TRCIDR6, ID Register 6
	TRCIDR7, ID Register 7
	TRCIDR8, ID Register 8
	TRCIDR9, ID Register 9
	TRCIMSPEC0, IMP DEF Register 0
	TRCIMSPEC<n>, IMP DEF Register <n>, n = 1 - 7
	TRCOSLSR, Trace OS Lock Status Register
	TRCPRGCTLR, Programming Control Register
	TRCQCTLR, Q Element Control Register
	TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31
	TRCRSR, Resources Status Register
	TRCSEQEVR<n>, Sequencer State Transition Control Register <n>, n = 0 - 2
	TRCSEQRSTEVR, Sequencer Reset Control Register
	TRCSEQSTR, Sequencer State Register
	TRCSSCCR<n>, Single-shot Comparator Control Register <n>, n = 0 - 7
	TRCSSCSR<n>, Single-shot Comparator Control Status Register <n>, n = 0 - 7
	TRCSSPCICR<n>, Single-shot Processing Element Comparator Input Control Register <n>, n = 0 - 7
	TRCSTALLCTLR, Stall Control Register
	TRCSTATR, Trace Status Register
	TRCSYNCPR, Synchronization Period Register
	TRCTRACEIDR, Trace ID Register
	TRCTSCTLR, Timestamp Control Register
	TRCVICTLR, ViewInst Main Control Register
	TRCVIIECTLR, ViewInst Include/Exclude Control Register
	TRCVIPCSSCTLR, ViewInst Start/Stop PE Comparator Control Register
	TRCVISSCTLR, ViewInst Start/Stop Control Register
	TRCVMIDCCTLR0, Virtual Context Identifier Comparator Control Register 0
	TRCVMIDCCTLR1, Virtual Context Identifier Comparator Control Register 1
	TRCVMIDCVR<n>, Virtual Context Identifier Comparator Value Register <n>, n = 0 - 7
	TRFCR_EL1, Trace Filter Control Register (EL1)
	TRFCR_EL2, Trace Filter Control Register (EL2)
	TTBR0_EL1, Translation Table Base Register 0 (EL1)
	TTBR0_EL2, Translation Table Base Register 0 (EL2)
	TTBR0_EL3, Translation Table Base Register 0 (EL3)
	TTBR1_EL1, Translation Table Base Register 1 (EL1)
	TTBR1_EL2, Translation Table Base Register 1 (EL2)
	UAO, User Access Override
	VBAR_EL1, Vector Base Address Register (EL1)
	VBAR_EL2, Vector Base Address Register (EL2)
	VBAR_EL3, Vector Base Address Register (EL3)
	VDISR_EL2, Virtual Deferred Interrupt Status Register
	VMPIDR_EL2, Virtualization Multiprocessor ID Register
	VNCR_EL2, Virtual Nested Control Register
	VPIDR_EL2, Virtualization Processor ID Register
	VSESR_EL2, Virtual SError Exception Syndrome Register
	VSTCR_EL2, Virtualization Secure Translation Control Register
	VSTTBR_EL2, Virtualization Secure Translation Table Base Register
	VTCR_EL2, Virtualization Translation Control Register
	VTTBR_EL2, Virtualization Translation Table Base Register
	ZCR_EL1, SVE Control Register for EL1
	ZCR_EL2, SVE Control Register for EL2
	ZCR_EL3, SVE Control Register for EL3

	AArch32 System Registers
	AArch32 System Instructions
	ACTLR, Auxiliary Control Register
	ACTLR2, Auxiliary Control Register 2
	ADFSR, Auxiliary Data Fault Status Register
	AIDR, Auxiliary ID Register
	AIFSR, Auxiliary Instruction Fault Status Register
	AMAIR0, Auxiliary Memory Attribute Indirection Register 0
	AMAIR1, Auxiliary Memory Attribute Indirection Register 1
	AMCFGR, Activity Monitors Configuration Register
	AMCGCR, Activity Monitors Counter Group Configuration Register
	AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0
	AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1
	AMCNTENSET0, Activity Monitors Count Enable Set Register 0
	AMCNTENSET1, Activity Monitors Count Enable Set Register 1
	AMCR, Activity Monitors Control Register
	AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 15
	AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15
	AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 15
	AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15
	AMUSERENR, Activity Monitors User Enable Register
	APSR, Application Program Status Register
	ATS12NSOPR, Address Translate Stages 1 and 2 Non-secure Only PL1 Read
	ATS12NSOPW, Address Translate Stages 1 and 2 Non-secure Only PL1 Write
	ATS12NSOUR, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read
	ATS12NSOUW, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write
	ATS1CPR, Address Translate Stage 1 Current state PL1 Read
	ATS1CPRP, Address Translate Stage 1 Current state PL1 Read PAN
	ATS1CPW, Address Translate Stage 1 Current state PL1 Write
	ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PAN
	ATS1CUR, Address Translate Stage 1 Current state Unprivileged Read
	ATS1CUW, Address Translate Stage 1 Current state Unprivileged Write
	ATS1HR, Address Translate Stage 1 Hyp mode Read
	ATS1HW, Address Translate Stage 1 Hyp mode Write
	BPIALL, Branch Predictor Invalidate All
	BPIALLIS, Branch Predictor Invalidate All, Inner Shareable
	BPIMVA, Branch Predictor Invalidate by VA
	CCSIDR, Current Cache Size ID Register
	CCSIDR2, Current Cache Size ID Register 2
	CFPRCTX, Control Flow Prediction Restriction by Context
	CLIDR, Cache Level ID Register
	CNTFRQ, Counter-timer Frequency register
	CNTHCTL, Counter-timer Hyp Control register
	CNTHP_CTL, Counter-timer Hyp Physical Timer Control register
	CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register
	CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register
	CNTHPS_CTL, Counter-timer Secure Physical Timer Control Register (EL2)
	CNTHPS_CVAL, Counter-timer Secure Physical Timer CompareValue Register (EL2)
	CNTHPS_TVAL, Counter-timer Secure Physical Timer TimerValue Register (EL2)
	CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)
	CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)
	CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)
	CNTHVS_CTL, Counter-timer Secure Virtual Timer Control Register (EL2)
	CNTHVS_CVAL, Counter-timer Secure Virtual Timer CompareValue Register (EL2)
	CNTHVS_TVAL, Counter-timer Secure Virtual Timer TimerValue Register (EL2)
	CNTKCTL, Counter-timer Kernel Control register
	CNTP_CTL, Counter-timer Physical Timer Control register
	CNTP_CVAL, Counter-timer Physical Timer CompareValue register
	CNTP_TVAL, Counter-timer Physical Timer TimerValue register
	CNTPCT, Counter-timer Physical Count register
	CNTPCTSS, Counter-timer Self-Synchronized Physical Count register
	CNTV_CTL, Counter-timer Virtual Timer Control register
	CNTV_CVAL, Counter-timer Virtual Timer CompareValue register
	CNTV_TVAL, Counter-timer Virtual Timer TimerValue register
	CNTVCT, Counter-timer Virtual Count register
	CNTVCTSS, Counter-timer Self-Synchronized Virtual Count register
	CNTVOFF, Counter-timer Virtual Offset register
	CONTEXTIDR, Context ID Register
	CP15DMB, Data Memory Barrier System instruction
	CP15DSB, Data Synchronization Barrier System instruction
	CP15ISB, Instruction Synchronization Barrier System instruction
	CPACR, Architectural Feature Access Control Register
	CPPRCTX, Cache Prefetch Prediction Restriction by Context
	CPSR, Current Program Status Register
	CSSELR, Cache Size Selection Register
	CTR, Cache Type Register
	DACR, Domain Access Control Register
	DBGAUTHSTATUS, Debug Authentication Status register
	DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15
	DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15
	DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15
	DBGCLAIMCLR, Debug CLAIM Tag Clear register
	DBGCLAIMSET, Debug CLAIM Tag Set register
	DBGDCCINT, DCC Interrupt Enable Register
	DBGDEVID, Debug Device ID register 0
	DBGDEVID1, Debug Device ID register 1
	DBGDEVID2, Debug Device ID register 2
	DBGDIDR, Debug ID Register
	DBGDRAR, Debug ROM Address Register
	DBGDSAR, Debug Self Address Register
	DBGDSCRext, Debug Status and Control Register, External View
	DBGDSCRint, Debug Status and Control Register, Internal View
	DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View
	DBGDTRRXint, Debug Data Transfer Register, Receive
	DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit
	DBGDTRTXint, Debug Data Transfer Register, Transmit
	DBGOSDLR, Debug OS Double Lock Register
	DBGOSECCR, Debug OS Lock Exception Catch Control Register
	DBGOSLAR, Debug OS Lock Access Register
	DBGOSLSR, Debug OS Lock Status Register
	DBGPRCR, Debug Power Control Register
	DBGVCR, Debug Vector Catch Register
	DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15
	DBGWFAR, Debug Watchpoint Fault Address Register
	DBGWVR<n>, Debug Watchpoint Value Registers, n = 0 - 15
	DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC
	DCCISW, Data Cache line Clean and Invalidate by Set/Way
	DCCMVAC, Data Cache line Clean by VA to PoC
	DCCMVAU, Data Cache line Clean by VA to PoU
	DCCSW, Data Cache line Clean by Set/Way
	DCIMVAC, Data Cache line Invalidate by VA to PoC
	DCISW, Data Cache line Invalidate by Set/Way
	DFAR, Data Fault Address Register
	DFSR, Data Fault Status Register
	DISR, Deferred Interrupt Status Register
	DLR, Debug Link Register
	DSPSR, Debug Saved Program Status Register
	DTLBIALL, Data TLB Invalidate All
	DTLBIASID, Data TLB Invalidate by ASID match
	DTLBIMVA, Data TLB Invalidate by VA
	DVPRCTX, Data Value Prediction Restriction by Context
	ELR_hyp, Exception Link Register (Hyp mode)
	ERRIDR, Error Record ID Register
	ERRSELR, Error Record Select Register
	ERXADDR, Selected Error Record Address Register
	ERXADDR2, Selected Error Record Address Register 2
	ERXCTLR, Selected Error Record Control Register
	ERXCTLR2, Selected Error Record Control Register 2
	ERXFR, Selected Error Record Feature Register
	ERXFR2, Selected Error Record Feature Register 2
	ERXMISC0, Selected Error Record Miscellaneous Register 0
	ERXMISC1, Selected Error Record Miscellaneous Register 1
	ERXMISC2, Selected Error Record Miscellaneous Register 2
	ERXMISC3, Selected Error Record Miscellaneous Register 3
	ERXMISC4, Selected Error Record Miscellaneous Register 4
	ERXMISC5, Selected Error Record Miscellaneous Register 5
	ERXMISC6, Selected Error Record Miscellaneous Register 6
	ERXMISC7, Selected Error Record Miscellaneous Register 7
	ERXSTATUS, Selected Error Record Primary Status Register
	FCSEIDR, FCSE Process ID register
	FPEXC, Floating-Point Exception Control register
	FPSCR, Floating-Point Status and Control Register
	FPSID, Floating-Point System ID register
	HACR, Hyp Auxiliary Configuration Register
	HACTLR, Hyp Auxiliary Control Register
	HACTLR2, Hyp Auxiliary Control Register 2
	HADFSR, Hyp Auxiliary Data Fault Status Register
	HAIFSR, Hyp Auxiliary Instruction Fault Status Register
	HAMAIR0, Hyp Auxiliary Memory Attribute Indirection Register 0
	HAMAIR1, Hyp Auxiliary Memory Attribute Indirection Register 1
	HCPTR, Hyp Architectural Feature Trap Register
	HCR, Hyp Configuration Register
	HCR2, Hyp Configuration Register 2
	HDCR, Hyp Debug Control Register
	HDFAR, Hyp Data Fault Address Register
	HIFAR, Hyp Instruction Fault Address Register
	HMAIR0, Hyp Memory Attribute Indirection Register 0
	HMAIR1, Hyp Memory Attribute Indirection Register 1
	HPFAR, Hyp IPA Fault Address Register
	HRMR, Hyp Reset Management Register
	HSCTLR, Hyp System Control Register
	HSR, Hyp Syndrome Register
	HSTR, Hyp System Trap Register
	HTCR, Hyp Translation Control Register
	HTPIDR, Hyp Software Thread ID Register
	HTRFCR, Hyp Trace Filter Control Register
	HTTBR, Hyp Translation Table Base Register
	HVBAR, Hyp Vector Base Address Register
	ICC_AP0R<n>, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3
	ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3
	ICC_ASGI1R, Interrupt Controller Alias Software Generated Interrupt Group 1 Register
	ICC_BPR0, Interrupt Controller Binary Point Register 0
	ICC_BPR1, Interrupt Controller Binary Point Register 1
	ICC_CTLR, Interrupt Controller Control Register
	ICC_DIR, Interrupt Controller Deactivate Interrupt Register
	ICC_EOIR0, Interrupt Controller End Of Interrupt Register 0
	ICC_EOIR1, Interrupt Controller End Of Interrupt Register 1
	ICC_HPPIR0, Interrupt Controller Highest Priority Pending Interrupt Register 0
	ICC_HPPIR1, Interrupt Controller Highest Priority Pending Interrupt Register 1
	ICC_HSRE, Interrupt Controller Hyp System Register Enable register
	ICC_IAR0, Interrupt Controller Interrupt Acknowledge Register 0
	ICC_IAR1, Interrupt Controller Interrupt Acknowledge Register 1
	ICC_IGRPEN0, Interrupt Controller Interrupt Group 0 Enable register
	ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register
	ICC_MCTLR, Interrupt Controller Monitor Control Register
	ICC_MGRPEN1, Interrupt Controller Monitor Interrupt Group 1 Enable register
	ICC_MSRE, Interrupt Controller Monitor System Register Enable register
	ICC_PMR, Interrupt Controller Interrupt Priority Mask Register
	ICC_RPR, Interrupt Controller Running Priority Register
	ICC_SGI0R, Interrupt Controller Software Generated Interrupt Group 0 Register
	ICC_SGI1R, Interrupt Controller Software Generated Interrupt Group 1 Register
	ICC_SRE, Interrupt Controller System Register Enable register
	ICH_AP0R<n>, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3
	ICH_AP1R<n>, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3
	ICH_EISR, Interrupt Controller End of Interrupt Status Register
	ICH_ELRSR, Interrupt Controller Empty List Register Status Register
	ICH_HCR, Interrupt Controller Hyp Control Register
	ICH_LRC<n>, Interrupt Controller List Registers, n = 0 - 15
	ICH_LR<n>, Interrupt Controller List Registers, n = 0 - 15
	ICH_MISR, Interrupt Controller Maintenance Interrupt State Register
	ICH_VMCR, Interrupt Controller Virtual Machine Control Register
	ICH_VTR, Interrupt Controller VGIC Type Register
	ICIALLU, Instruction Cache Invalidate All to PoU
	ICIALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable
	ICIMVAU, Instruction Cache line Invalidate by VA to PoU
	ICV_AP0R<n>, Interrupt Controller Virtual Active Priorities Group 0 Registers, n = 0 - 3
	ICV_AP1R<n>, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3
	ICV_BPR0, Interrupt Controller Virtual Binary Point Register 0
	ICV_BPR1, Interrupt Controller Virtual Binary Point Register 1
	ICV_CTLR, Interrupt Controller Virtual Control Register
	ICV_DIR, Interrupt Controller Deactivate Virtual Interrupt Register
	ICV_EOIR0, Interrupt Controller Virtual End Of Interrupt Register 0
	ICV_EOIR1, Interrupt Controller Virtual End Of Interrupt Register 1
	ICV_HPPIR0, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
	ICV_HPPIR1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
	ICV_IAR0, Interrupt Controller Virtual Interrupt Acknowledge Register 0
	ICV_IAR1, Interrupt Controller Virtual Interrupt Acknowledge Register 1
	ICV_IGRPEN0, Interrupt Controller Virtual Interrupt Group 0 Enable register
	ICV_IGRPEN1, Interrupt Controller Virtual Interrupt Group 1 Enable register
	ICV_PMR, Interrupt Controller Virtual Interrupt Priority Mask Register
	ICV_RPR, Interrupt Controller Virtual Running Priority Register
	ID_AFR0, Auxiliary Feature Register 0
	ID_DFR0, Debug Feature Register 0
	ID_DFR1, Debug Feature Register 1
	ID_ISAR0, Instruction Set Attribute Register 0
	ID_ISAR1, Instruction Set Attribute Register 1
	ID_ISAR2, Instruction Set Attribute Register 2
	ID_ISAR3, Instruction Set Attribute Register 3
	ID_ISAR4, Instruction Set Attribute Register 4
	ID_ISAR5, Instruction Set Attribute Register 5
	ID_ISAR6, Instruction Set Attribute Register 6
	ID_MMFR0, Memory Model Feature Register 0
	ID_MMFR1, Memory Model Feature Register 1
	ID_MMFR2, Memory Model Feature Register 2
	ID_MMFR3, Memory Model Feature Register 3
	ID_MMFR4, Memory Model Feature Register 4
	ID_MMFR5, Memory Model Feature Register 5
	ID_PFR0, Processor Feature Register 0
	ID_PFR1, Processor Feature Register 1
	ID_PFR2, Processor Feature Register 2
	IFAR, Instruction Fault Address Register
	IFSR, Instruction Fault Status Register
	ISR, Interrupt Status Register
	ITLBIALL, Instruction TLB Invalidate All
	ITLBIASID, Instruction TLB Invalidate by ASID match
	ITLBIMVA, Instruction TLB Invalidate by VA
	JIDR, Jazelle ID Register
	JMCR, Jazelle Main Configuration Register
	JOSCR, Jazelle OS Control Register
	MAIR0, Memory Attribute Indirection Register 0
	MAIR1, Memory Attribute Indirection Register 1
	MIDR, Main ID Register
	MPIDR, Multiprocessor Affinity Register
	MVBAR, Monitor Vector Base Address Register
	MVFR0, Media and VFP Feature Register 0
	MVFR1, Media and VFP Feature Register 1
	MVFR2, Media and VFP Feature Register 2
	NMRR, Normal Memory Remap Register
	NSACR, Non-Secure Access Control Register
	PAR, Physical Address Register
	PMCCFILTR, Performance Monitors Cycle Count Filter Register
	PMCCNTR, Performance Monitors Cycle Count Register
	PMCEID0, Performance Monitors Common Event Identification register 0
	PMCEID1, Performance Monitors Common Event Identification register 1
	PMCEID2, Performance Monitors Common Event Identification register 2
	PMCEID3, Performance Monitors Common Event Identification register 3
	PMCNTENCLR, Performance Monitors Count Enable Clear register
	PMCNTENSET, Performance Monitors Count Enable Set register
	PMCR, Performance Monitors Control Register
	PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30
	PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30
	PMINTENCLR, Performance Monitors Interrupt Enable Clear register
	PMINTENSET, Performance Monitors Interrupt Enable Set register
	PMMIR, Performance Monitors Machine Identification Register
	PMOVSR, Performance Monitors Overflow Flag Status Register
	PMOVSSET, Performance Monitors Overflow Flag Status Set register
	PMSELR, Performance Monitors Event Counter Selection Register
	PMSWINC, Performance Monitors Software Increment register
	PMUSERENR, Performance Monitors User Enable Register
	PMXEVCNTR, Performance Monitors Selected Event Count Register
	PMXEVTYPER, Performance Monitors Selected Event Type Register
	PRRR, Primary Region Remap Register
	REVIDR, Revision ID Register
	RMR, Reset Management Register
	RVBAR, Reset Vector Base Address Register
	SCR, Secure Configuration Register
	SCTLR, System Control Register
	SDCR, Secure Debug Control Register
	SDER, Secure Debug Enable Register
	SPSR, Saved Program Status Register
	SPSR_abt, Saved Program Status Register (Abort mode)
	SPSR_fiq, Saved Program Status Register (FIQ mode)
	SPSR_hyp, Saved Program Status Register (Hyp mode)
	SPSR_irq, Saved Program Status Register (IRQ mode)
	SPSR_mon, Saved Program Status Register (Monitor mode)
	SPSR_svc, Saved Program Status Register (Supervisor mode)
	SPSR_und, Saved Program Status Register (Undefined mode)
	TCMTR, TCM Type Register
	TLBIALL, TLB Invalidate All
	TLBIALLH, TLB Invalidate All, Hyp mode
	TLBIALLHIS, TLB Invalidate All, Hyp mode, Inner Shareable
	TLBIALLIS, TLB Invalidate All, Inner Shareable
	TLBIALLNSNH, TLB Invalidate All, Non-Secure Non-Hyp
	TLBIALLNSNHIS, TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
	TLBIASID, TLB Invalidate by ASID match
	TLBIASIDIS, TLB Invalidate by ASID match, Inner Shareable
	TLBIIPAS2, TLB Invalidate by Intermediate Physical Address, Stage 2
	TLBIIPAS2IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable
	TLBIIPAS2L, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level
	TLBIIPAS2LIS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable
	TLBIMVA, TLB Invalidate by VA
	TLBIMVAA, TLB Invalidate by VA, All ASID
	TLBIMVAAIS, TLB Invalidate by VA, All ASID, Inner Shareable
	TLBIMVAAL, TLB Invalidate by VA, All ASID, Last level
	TLBIMVAALIS, TLB Invalidate by VA, All ASID, Last level, Inner Shareable
	TLBIMVAH, TLB Invalidate by VA, Hyp mode
	TLBIMVAHIS, TLB Invalidate by VA, Hyp mode, Inner Shareable
	TLBIMVAIS, TLB Invalidate by VA, Inner Shareable
	TLBIMVAL, TLB Invalidate by VA, Last level
	TLBIMVALH, TLB Invalidate by VA, Last level, Hyp mode
	TLBIMVALHIS, TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable
	TLBIMVALIS, TLB Invalidate by VA, Last level, Inner Shareable
	TLBTR, TLB Type Register
	TPIDRPRW, PL1 Software Thread ID Register
	TPIDRURO, PL0 Read-Only Software Thread ID Register
	TPIDRURW, PL0 Read/Write Software Thread ID Register
	TRFCR, Trace Filter Control Register
	TTBCR, Translation Table Base Control Register
	TTBCR2, Translation Table Base Control Register 2
	TTBR0, Translation Table Base Register 0
	TTBR1, Translation Table Base Register 1
	VBAR, Vector Base Address Register
	VDFSR, Virtual SError Exception Syndrome Register
	VDISR, Virtual Deferred Interrupt Status Register
	VMPIDR, Virtualization Multiprocessor ID Register
	VPIDR, Virtualization Processor ID Register
	VTCR, Virtualization Translation Control Register
	VTTBR, Virtualization Translation Table Base Register

	System Register index by instruction and encoding
	System Register index by functional group
	External System registers
	External register index by offset
	AMCFGR, Activity Monitors Configuration Register
	AMCGCR, Activity Monitors Counter Group Configuration Register
	AMCIDR0, Activity Monitors Component Identification Register 0
	AMCIDR1, Activity Monitors Component Identification Register 1
	AMCIDR2, Activity Monitors Component Identification Register 2
	AMCIDR3, Activity Monitors Component Identification Register 3
	AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0
	AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1
	AMCNTENSET0, Activity Monitors Count Enable Set Register 0
	AMCNTENSET1, Activity Monitors Count Enable Set Register 1
	AMCR, Activity Monitors Control Register
	AMDEVAFF0, Activity Monitors Device Affinity Register 0
	AMDEVAFF1, Activity Monitors Device Affinity Register 1
	AMDEVARCH, Activity Monitors Device Architecture Register
	AMDEVTYPE, Activity Monitors Device Type Register
	AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 15
	AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15
	AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 15
	AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15
	AMIIDR, Activity Monitors Implementation Identification Register
	AMPIDR0, Activity Monitors Peripheral Identification Register 0
	AMPIDR1, Activity Monitors Peripheral Identification Register 1
	AMPIDR2, Activity Monitors Peripheral Identification Register 2
	AMPIDR3, Activity Monitors Peripheral Identification Register 3
	AMPIDR4, Activity Monitors Peripheral Identification Register 4
	ASICCTL, CTI External Multiplexer Control register
	CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7
	CNTCR, Counter Control Register
	CNTCV, Counter Count Value register
	CNTEL0ACR, Counter-timer EL0 Access Control Register
	CNTFID0, Counter Frequency ID
	CNTFID<n>, Counter Frequency IDs, n > 0, n = 1 - 1003
	CNTFRQ, Counter-timer Frequency
	CNTID, Counter Identification Register
	CNTNSAR, Counter-timer Non-secure Access Register
	CNTP_CTL, Counter-timer Physical Timer Control
	CNTP_CVAL, Counter-timer Physical Timer CompareValue
	CNTP_TVAL, Counter-timer Physical Timer TimerValue
	CNTPCT, Counter-timer Physical Count
	CNTSCR, Counter Scale Register
	CNTSR, Counter Status Register
	CNTTIDR, Counter-timer Timer ID Register
	CNTV_CTL, Counter-timer Virtual Timer Control
	CNTV_CVAL, Counter-timer Virtual Timer CompareValue
	CNTV_TVAL, Counter-timer Virtual Timer TimerValue
	CNTVCT, Counter-timer Virtual Count
	CNTVOFF, Counter-timer Virtual Offset
	CNTVOFF<n>, Counter-timer Virtual Offsets, n = 0 - 7
	CounterID<n>, Counter ID registers, n = 0 - 11
	CTIAPPCLEAR, CTI Application Trigger Clear register
	CTIAPPPULSE, CTI Application Pulse register
	CTIAPPSET, CTI Application Trigger Set register
	CTIAUTHSTATUS, CTI Authentication Status register
	CTICHINSTATUS, CTI Channel In Status register
	CTICHOUTSTATUS, CTI Channel Out Status register
	CTICIDR0, CTI Component Identification Register 0
	CTICIDR1, CTI Component Identification Register 1
	CTICIDR2, CTI Component Identification Register 2
	CTICIDR3, CTI Component Identification Register 3
	CTICLAIMCLR, CTI CLAIM Tag Clear register
	CTICLAIMSET, CTI CLAIM Tag Set register
	CTICONTROL, CTI Control register
	CTIDEVAFF0, CTI Device Affinity register 0
	CTIDEVAFF1, CTI Device Affinity register 1
	CTIDEVARCH, CTI Device Architecture register
	CTIDEVCTL, CTI Device Control register
	CTIDEVID, CTI Device ID register 0
	CTIDEVID1, CTI Device ID register 1
	CTIDEVID2, CTI Device ID register 2
	CTIDEVTYPE, CTI Device Type register
	CTIGATE, CTI Channel Gate Enable register
	CTIINEN<n>, CTI Input Trigger to Output Channel Enable registers, n = 0 - 31
	CTIINTACK, CTI Output Trigger Acknowledge register
	CTIITCTRL, CTI Integration mode Control register
	CTILAR, CTI Lock Access Register
	CTILSR, CTI Lock Status Register
	CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable registers, n = 0 - 31
	CTIPIDR0, CTI Peripheral Identification Register 0
	CTIPIDR1, CTI Peripheral Identification Register 1
	CTIPIDR2, CTI Peripheral Identification Register 2
	CTIPIDR3, CTI Peripheral Identification Register 3
	CTIPIDR4, CTI Peripheral Identification Register 4
	CTITRIGINSTATUS, CTI Trigger In Status register
	CTITRIGOUTSTATUS, CTI Trigger Out Status register
	DBGAUTHSTATUS_EL1, Debug Authentication Status register
	DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15
	DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15
	DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register
	DBGCLAIMSET_EL1, Debug CLAIM Tag Set register
	DBGDTRRX_EL0, Debug Data Transfer Register, Receive
	DBGDTRTX_EL0, Debug Data Transfer Register, Transmit
	DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15
	DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15
	EDAA32PFR, External Debug AArch32 Processor Feature Register
	EDACR, External Debug Auxiliary Control Register
	EDCIDR0, External Debug Component Identification Register 0
	EDCIDR1, External Debug Component Identification Register 1
	EDCIDR2, External Debug Component Identification Register 2
	EDCIDR3, External Debug Component Identification Register 3
	EDCIDSR, External Debug Context ID Sample Register
	EDDEVAFF0, External Debug Device Affinity register 0
	EDDEVAFF1, External Debug Device Affinity register 1
	EDDEVARCH, External Debug Device Architecture register
	EDDEVID, External Debug Device ID register 0
	EDDEVID1, External Debug Device ID register 1
	EDDEVID2, External Debug Device ID register 2
	EDDEVTYPE, External Debug Device Type register
	EDDFR, External Debug Feature Register
	EDECCR, External Debug Exception Catch Control Register
	EDECR, External Debug Execution Control Register
	EDESR, External Debug Event Status Register
	EDITCTRL, External Debug Integration mode Control register
	EDITR, External Debug Instruction Transfer Register
	EDLAR, External Debug Lock Access Register
	EDLSR, External Debug Lock Status Register
	EDPCSR, External Debug Program Counter Sample Register
	EDPFR, External Debug Processor Feature Register
	EDPIDR0, External Debug Peripheral Identification Register 0
	EDPIDR1, External Debug Peripheral Identification Register 1
	EDPIDR2, External Debug Peripheral Identification Register 2
	EDPIDR3, External Debug Peripheral Identification Register 3
	EDPIDR4, External Debug Peripheral Identification Register 4
	EDPRCR, External Debug Power/Reset Control Register
	EDPRSR, External Debug Processor Status Register
	EDRCR, External Debug Reserve Control Register
	EDSCR, External Debug Status and Control Register
	EDVIDSR, External Debug Virtual Context Sample Register
	EDWAR, External Debug Watchpoint Address Register
	ERRCIDR0, Component Identification Register 0
	ERRCIDR1, Component Identification Register 1
	ERRCIDR2, Component Identification Register 2
	ERRCIDR3, Component Identification Register 3
	ERRCRICR0, Critical Error Interrupt Configuration Register 0
	ERRCRICR1, Critical Error Interrupt Configuration Register 1
	ERRCRICR2, Critical Error Interrupt Configuration Register 2
	ERRDEVAFF, Device Affinity Register
	ERRDEVARCH, Device Architecture Register
	ERRDEVID, Device Configuration Register
	ERRERICR0, Error Recovery Interrupt Configuration Register 0
	ERRERICR1, Error Recovery Interrupt Configuration Register 1
	ERRERICR2, Error Recovery Interrupt Configuration Register 2
	ERRFHICR0, Fault-Handling Interrupt Configuration Register 0
	ERRFHICR1, Fault-Handling Interrupt Configuration Register 1
	ERRFHICR2, Fault-Handling Interrupt Configuration Register 2
	ERRGSR, Error Group Status Register
	ERRIIDR, Implementation Identification Register
	ERRIRQCR<n>, Generic Error Interrupt Configuration Register, n = 0 - 15
	ERRIRQSR, Error Interrupt Status Register
	ERR<n>ADDR, Error Record Address Register, n = 0 - 65534
	ERR<n>CTLR, Error Record Control Register, n = 0 - 65534
	ERR<n>FR, Error Record Feature Register, n = 0 - 65534
	ERR<n>MISC0, Error Record Miscellaneous Register 0, n = 0 - 65534
	ERR<n>MISC1, Error Record Miscellaneous Register 1, n = 0 - 65534
	ERR<n>MISC2, Error Record Miscellaneous Register 2, n = 0 - 65534
	ERR<n>MISC3, Error Record Miscellaneous Register 3, n = 0 - 65534
	ERR<n>PFGCDN, Pseudo-fault Generation Countdown Register, n = 0 - 65534
	ERR<n>PFGCTL, Pseudo-fault Generation Control Register, n = 0 - 65534
	ERR<n>PFGF, Pseudo-fault Generation Feature Register, n = 0 - 65534
	ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534
	ERRPIDR0, Peripheral Identification Register 0
	ERRPIDR1, Peripheral Identification Register 1
	ERRPIDR2, Peripheral Identification Register 2
	ERRPIDR3, Peripheral Identification Register 3
	ERRPIDR4, Peripheral Identification Register 4
	GICC_ABPR, CPU Interface Aliased Binary Point Register
	GICC_AEOIR, CPU Interface Aliased End Of Interrupt Register
	GICC_AHPPIR, CPU Interface Aliased Highest Priority Pending Interrupt Register
	GICC_AIAR, CPU Interface Aliased Interrupt Acknowledge Register
	GICC_APR<n>, CPU Interface Active Priorities Registers, n = 0 - 3
	GICC_BPR, CPU Interface Binary Point Register
	GICC_CTLR, CPU Interface Control Register
	GICC_DIR, CPU Interface Deactivate Interrupt Register
	GICC_EOIR, CPU Interface End Of Interrupt Register
	GICC_HPPIR, CPU Interface Highest Priority Pending Interrupt Register
	GICC_IAR, CPU Interface Interrupt Acknowledge Register
	GICC_IIDR, CPU Interface Identification Register
	GICC_NSAPR<n>, CPU Interface Non-secure Active Priorities Registers, n = 0 - 3
	GICC_PMR, CPU Interface Priority Mask Register
	GICC_RPR, CPU Interface Running Priority Register
	GICC_STATUSR, CPU Interface Status Register
	GICD_CLRSPI_NSR, Clear Non-secure SPI Pending Register
	GICD_CLRSPI_SR, Clear Secure SPI Pending Register
	GICD_CPENDSGIR<n>, SGI Clear-Pending Registers, n = 0 - 3
	GICD_CTLR, Distributor Control Register
	GICD_ICACTIVER<n>, Interrupt Clear-Active Registers, n = 0 - 31
	GICD_ICACTIVER<n>E, Interrupt Clear-Active Registers (extended SPI range), n = 0 - 31
	GICD_ICENABLER<n>, Interrupt Clear-Enable Registers, n = 0 - 31
	GICD_ICENABLER<n>E, Interrupt Clear-Enable Registers, n = 0 - 31
	GICD_ICFGR<n>, Interrupt Configuration Registers, n = 0 - 63
	GICD_ICFGR<n>E, Interrupt Configuration Registers (Extended SPI Range), n = 0 - 63
	GICD_ICPENDR<n>, Interrupt Clear-Pending Registers, n = 0 - 31
	GICD_ICPENDR<n>E, Interrupt Clear-Pending Registers (extended SPI range), n = 0 - 31
	GICD_IGROUPR<n>, Interrupt Group Registers, n = 0 - 31
	GICD_IGROUPR<n>E, Interrupt Group Registers (extended SPI range), n = 0 - 31
	GICD_IGRPMODR<n>, Interrupt Group Modifier Registers, n = 0 - 31
	GICD_IGRPMODR<n>E, Interrupt Group Modifier Registers (extended SPI range), n = 0 - 31
	GICD_IIDR, Distributor Implementer Identification Register
	GICD_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 254
	GICD_IPRIORITYR<n>E, Holds the priority of the corresponding interrupt for each extended SPI supported by the GIC., n = 0 - 255
	GICD_IROUTER<n>, Interrupt Routing Registers, n = 32 - 1019
	GICD_IROUTER<n>E, Interrupt Routing Registers (Extended SPI Range), n = 0 - 1023
	GICD_ISACTIVER<n>, Interrupt Set-Active Registers, n = 0 - 31
	GICD_ISACTIVER<n>E, Interrupt Set-Active Registers (extended SPI range), n = 0 - 31
	GICD_ISENABLER<n>, Interrupt Set-Enable Registers, n = 0 - 31
	GICD_ISENABLER<n>E, Interrupt Set-Enable Registers, n = 0 - 31
	GICD_ISPENDR<n>, Interrupt Set-Pending Registers, n = 0 - 31
	GICD_ISPENDR<n>E, Interrupt Set-Pending Registers (extended SPI range), n = 0 - 31
	GICD_ITARGETSR<n>, Interrupt Processor Targets Registers, n = 0 - 254
	GICD_NSACR<n>, Non-secure Access Control Registers, n = 0 - 63
	GICD_NSACR<n>E, Non-secure Access Control Registers, n = 0 - 63
	GICD_SETSPI_NSR, Set Non-secure SPI Pending Register
	GICD_SETSPI_SR, Set Secure SPI Pending Register
	GICD_SGIR, Software Generated Interrupt Register
	GICD_SPENDSGIR<n>, SGI Set-Pending Registers, n = 0 - 3
	GICD_STATUSR, Error Reporting Status Register
	GICD_TYPER, Interrupt Controller Type Register
	GICD_TYPER2, Interrupt Controller Type Register 2
	GICH_APR<n>, Active Priorities Registers, n = 0 - 3
	GICH_EISR, End Interrupt Status Register
	GICH_ELRSR, Empty List Register Status Register
	GICH_HCR, Hypervisor Control Register
	GICH_LR<n>, List Registers, n = 0 - 15
	GICH_MISR, Maintenance Interrupt Status Register
	GICH_VMCR, Virtual Machine Control Register
	GICH_VTR, Virtual Type Register
	GICR_CLRLPIR, Clear LPI Pending Register
	GICR_CTLR, Redistributor Control Register
	GICR_ICACTIVER0, Interrupt Clear-Active Register 0
	GICR_ICACTIVER<n>E, Interrupt Clear-Active Registers, n = 1 - 2
	GICR_ICENABLER0, Interrupt Clear-Enable Register 0
	GICR_ICENABLER<n>E, Interrupt Clear-Enable Registers, n = 1 - 2
	GICR_ICFGR0, Interrupt Configuration Register 0
	GICR_ICFGR1, Interrupt Configuration Register 1
	GICR_ICFGR<n>E, Interrupt configuration registers, n = 2 - 5
	GICR_ICPENDR0, Interrupt Clear-Pending Register 0
	GICR_ICPENDR<n>E, Interrupt Clear-Pending Registers, n = 1 - 2
	GICR_IGROUPR0, Interrupt Group Register 0
	GICR_IGROUPR<n>E, Interrupt Group Registers, n = 1 - 2
	GICR_IGRPMODR0, Interrupt Group Modifier Register 0
	GICR_IGRPMODR<n>E, Interrupt Group Modifier Registers, n = 1 - 2
	GICR_IIDR, Redistributor Implementer Identification Register
	GICR_INVALLR, Redistributor Invalidate All Register
	GICR_INVLPIR, Redistributor Invalidate LPI Register
	GICR_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 7
	GICR_IPRIORITYR<n>E, Interrupt Priority Registers (extended PPI range), n = 8 - 23
	GICR_ISACTIVER0, Interrupt Set-Active Register 0
	GICR_ISACTIVER<n>E, Interrupt Set-Active Registers, n = 1 - 2
	GICR_ISENABLER0, Interrupt Set-Enable Register 0
	GICR_ISENABLER<n>E, Interrupt Set-Enable Registers, n = 1 - 2
	GICR_ISPENDR0, Interrupt Set-Pending Register 0
	GICR_ISPENDR<n>E, Interrupt Set-Pending Registers, n = 1 - 2
	GICR_MPAMIDR, Report maximum PARTID and PMG Register
	GICR_NSACR, Non-secure Access Control Register
	GICR_PARTIDR, Set PARTID and PMG Register
	GICR_PENDBASER, Redistributor LPI Pending Table Base Address Register
	GICR_PROPBASER, Redistributor Properties Base Address Register
	GICR_SETLPIR, Set LPI Pending Register
	GICR_STATUSR, Error Reporting Status Register
	GICR_SYNCR, Redistributor Synchronize Register
	GICR_TYPER, Redistributor Type Register
	GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register
	GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register
	GICR_VSGIPENDR, Redistributor virtual SGI pending state register
	GICR_VSGIR, Redistributor virtual SGI pending state request register
	GICR_WAKER, Redistributor Wake Register
	GICV_ABPR, Virtual Machine Aliased Binary Point Register
	GICV_AEOIR, Virtual Machine Aliased End Of Interrupt Register
	GICV_AHPPIR, Virtual Machine Aliased Highest Priority Pending Interrupt Register
	GICV_AIAR, Virtual Machine Aliased Interrupt Acknowledge Register
	GICV_APR<n>, Virtual Machine Active Priorities Registers, n = 0 - 3
	GICV_BPR, Virtual Machine Binary Point Register
	GICV_CTLR, Virtual Machine Control Register
	GICV_DIR, Virtual Machine Deactivate Interrupt Register
	GICV_EOIR, Virtual Machine End Of Interrupt Register
	GICV_HPPIR, Virtual Machine Highest Priority Pending Interrupt Register
	GICV_IAR, Virtual Machine Interrupt Acknowledge Register
	GICV_IIDR, Virtual Machine CPU Interface Identification Register
	GICV_PMR, Virtual Machine Priority Mask Register
	GICV_RPR, Virtual Machine Running Priority Register
	GICV_STATUSR, Virtual Machine Error Reporting Status Register
	GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7
	GITS_CBASER, ITS Command Queue Descriptor
	GITS_CREADR, ITS Read Register
	GITS_CTLR, ITS Control Register
	GITS_CWRITER, ITS Write Register
	GITS_IIDR, ITS Identification Register
	GITS_MPAMIDR, Report maximum PARTID and PMG Register
	GITS_MPIDR, Report ITS's affinity.
	GITS_PARTIDR, Set PARTID and PMG Register
	GITS_SGIR, ITS SGI Register
	GITS_TRANSLATER, ITS Translation Register
	GITS_TYPER, ITS Type Register
	MIDR_EL1, Main ID Register
	MPAMCFG_CMAX, MPAM Cache Maximum Capacity Partition Configuration Register
	MPAMCFG_CPBM, MPAM Cache Portion Bitmap Partition Configuration Register
	MPAMCFG_INTPARTID, MPAM Internal PARTID Narrowing Configuration Register
	MPAMCFG_MBW_MAX, MPAM Memory Bandwidth Maximum Partition Configuration Register
	MPAMCFG_MBW_MIN, MPAM Cache Maximum Capacity Partition Configuration Register
	MPAMCFG_MBW_PBM, MPAM Bandwidth Portion Bitmap Partition Configuration Register
	MPAMCFG_MBW_PROP, MPAM Memory Bandwidth Proportional Stride Partition Configuration Register
	MPAMCFG_MBW_WINWD, MPAM Memory Bandwidth Partitioning Window Width Configuration Register
	MPAMCFG_PART_SEL, MPAM Partition Configuration Selection Register
	MPAMCFG_PRI, MPAM Priority Partition Configuration Register
	MPAMF_AIDR, MPAM Architecture Identification Register
	MPAMF_CCAP_IDR, MPAM Features Cache Capacity Partitioning ID register
	MPAMF_CPOR_IDR, MPAM Features Cache Portion Partitioning ID register
	MPAMF_CSUMON_IDR, MPAM Features Cache Storage Usage Monitoring ID register
	MPAMF_ECR, MPAM Error Control Register
	MPAMF_ESR, MPAM Error Status Register
	MPAMF_IDR, MPAM Features Identification Register
	MPAMF_IIDR, MPAM Implementation Identification Register
	MPAMF_IMPL_IDR, MPAM Implementation-Specific Partitioning Feature Identification Register
	MPAMF_MBW_IDR, MPAM Memory Bandwidth Partitioning Identification Register
	MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth Usage Monitoring ID register
	MPAMF_MSMON_IDR, MPAM Resource Monitoring Identification Register
	MPAMF_PARTID_NRW_IDR, MPAM PARTID Narrowing ID register
	MPAMF_PRI_IDR, MPAM Priority Partitioning Identification Register
	MPAMF_SIDR, MPAM Features Secure Identification Register
	MSMON_CAPT_EVNT, MPAM Capture Event Generation Register
	MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register
	MSMON_CFG_CSU_FLT, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Filter Register
	MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control Register
	MSMON_CFG_MBWU_FLT, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Filter Register
	MSMON_CFG_MON_SEL, MPAM Monitor Instance Selection Register
	MSMON_CSU, MPAM Cache Storage Usage Monitor Register
	MSMON_CSU_CAPTURE, MPAM Cache Storage Usage Monitor Capture Register
	MSMON_MBWU, MPAM Memory Bandwidth Usage Monitor Register
	MSMON_MBWU_CAPTURE, MPAM Memory Bandwidth Usage Monitor Capture Register
	MSMON_MBWU_L, MPAM Long Memory Bandwidth Usage Monitor Register
	MSMON_MBWU_L_CAPTURE, MPAM Long Memory Bandwidth Usage Monitor Capture Register
	OSLAR_EL1, OS Lock Access Register
	PMAUTHSTATUS, Performance Monitors Authentication Status register
	PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register
	PMCCNTR_EL0, Performance Monitors Cycle Counter
	PMCEID0, Performance Monitors Common Event Identification register 0
	PMCEID1, Performance Monitors Common Event Identification register 1
	PMCEID2, Performance Monitors Common Event Identification register 2
	PMCEID3, Performance Monitors Common Event Identification register 3
	PMCFGR, Performance Monitors Configuration Register
	PMCID1SR, CONTEXTIDR_EL1 Sample Register
	PMCID2SR, CONTEXTIDR_EL2 Sample Register
	PMCIDR0, Performance Monitors Component Identification Register 0
	PMCIDR1, Performance Monitors Component Identification Register 1
	PMCIDR2, Performance Monitors Component Identification Register 2
	PMCIDR3, Performance Monitors Component Identification Register 3
	PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register
	PMCNTENSET_EL0, Performance Monitors Count Enable Set register
	PMCR_EL0, Performance Monitors Control Register
	PMDEVAFF0, Performance Monitors Device Affinity register 0
	PMDEVAFF1, Performance Monitors Device Affinity register 1
	PMDEVARCH, Performance Monitors Device Architecture register
	PMDEVID, Performance Monitors Device ID register
	PMDEVTYPE, Performance Monitors Device Type register
	PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30
	PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30
	PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register
	PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register
	PMITCTRL, Performance Monitors Integration mode Control register
	PMLAR, Performance Monitors Lock Access Register
	PMLSR, Performance Monitors Lock Status Register
	PMMIR, Performance Monitors Machine Identification Register
	PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear register
	PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register
	PMPCSR, Program Counter Sample Register
	PMPIDR0, Performance Monitors Peripheral Identification Register 0
	PMPIDR1, Performance Monitors Peripheral Identification Register 1
	PMPIDR2, Performance Monitors Peripheral Identification Register 2
	PMPIDR3, Performance Monitors Peripheral Identification Register 3
	PMPIDR4, Performance Monitors Peripheral Identification Register 4
	PMSWINC_EL0, Performance Monitors Software Increment register
	PMVIDSR, VMID Sample Register
	TRCACATR<n>, Address Comparator Access Type Register <n>, n = 0 - 15
	TRCACVR<n>, Address Comparator Value Register <n>, n = 0 - 15
	TRCAUTHSTATUS, Authentication Status Register
	TRCAUXCTLR, Auxillary Control Register
	TRCBBCTLR, Branch Broadcast Control Register
	TRCCCCTLR, Cycle Count Control Register
	TRCCIDCCTLR0, Context Identifier Comparator Control Register 0
	TRCCIDCCTLR1, Context Identifier Comparator Control Register 1
	TRCCIDCVR<n>, Context Identifier Comparator Value Registers <n>, n = 0 - 7
	TRCCIDR0, Component Identification Register 0
	TRCCIDR1, Component Identification Register 1
	TRCCIDR2, Component Identification Register 2
	TRCCIDR3, Component Identification Register 3
	TRCCLAIMCLR, Claim Tag Clear Register
	TRCCLAIMSET, Claim Tag Set Register
	TRCCNTCTLR<n>, Counter Control Register <n>, n = 0 - 3
	TRCCNTRLDVR<n>, Counter Reload Value Register <n>, n = 0 - 3
	TRCCNTVR<n>, Counter Value Register <n>, n = 0 - 3
	TRCCONFIGR, Trace Configuration Register
	TRCDEVAFF, Device Affinity Register
	TRCDEVARCH, Device Architecture Register
	TRCDEVID, Device Configuration Register
	TRCDEVID1, Device Configuration Register 1
	TRCDEVID2, Device Configuration Register 2
	TRCDEVTYPE, Device Type Register
	TRCEVENTCTL0R, Event Control 0 Register
	TRCEVENTCTL1R, Event Control 1 Register
	TRCEXTINSELR<n>, External Input Select Register <n>, n = 0 - 3
	TRCIDR0, ID Register 0
	TRCIDR1, ID Register 1
	TRCIDR10, ID Register 10
	TRCIDR11, ID Register 11
	TRCIDR12, ID Register 12
	TRCIDR13, ID Register 13
	TRCIDR2, ID Register 2
	TRCIDR3, ID Register 3
	TRCIDR4, ID Register 4
	TRCIDR5, ID Register 5
	TRCIDR6, ID Register 6
	TRCIDR7, ID Register 7
	TRCIDR8, ID Register 8
	TRCIDR9, ID Register 9
	TRCIMSPEC0, IMP DEF Register 0
	TRCIMSPEC<n>, IMP DEF Register <n>, n = 1 - 7
	TRCITCTRL, Integration Mode Control Register
	TRCLAR, Lock Access Register
	TRCLSR, Lock Status Register
	TRCOSLSR, Trace OS Lock Status Register
	TRCPDCR, PowerDown Control Register
	TRCPDSR, PowerDown Status Register
	TRCPIDR0, Peripheral Identification Register 0
	TRCPIDR1, Peripheral Identification Register 1
	TRCPIDR2, Peripheral Identification Register 2
	TRCPIDR3, Peripheral Identification Register 3
	TRCPIDR4, Peripheral Identification Register 4
	TRCPIDR5, Peripheral Identification Register 5
	TRCPIDR6, Peripheral Identification Register 6
	TRCPIDR7, Peripheral Identification Register 7
	TRCPRGCTLR, Programming Control Register
	TRCQCTLR, Q Element Control Register
	TRCRSCTLR<n>, Resource Selection Control Register <n>, n = 2 - 31
	TRCRSR, Resources Status Register
	TRCSEQEVR<n>, Sequencer State Transition Control Register <n>, n = 0 - 2
	TRCSEQRSTEVR, Sequencer Reset Control Register
	TRCSEQSTR, Sequencer State Register
	TRCSSCCR<n>, Single-shot Comparator Control Register <n>, n = 0 - 7
	TRCSSCSR<n>, Single-shot Comparator Control Status Register <n>, n = 0 - 7
	TRCSSPCICR<n>, Single-shot Processing Element Comparator Input Control Register <n>, n = 0 - 7
	TRCSTALLCTLR, Stall Control Register
	TRCSTATR, Trace Status Register
	TRCSYNCPR, Synchronization Period Register
	TRCTRACEIDR, Trace ID Register
	TRCTSCTLR, Timestamp Control Register
	TRCVICTLR, ViewInst Main Control Register
	TRCVIIECTLR, ViewInst Include/Exclude Control Register
	TRCVIPCSSCTLR, ViewInst Start/Stop PE Comparator Control Register
	TRCVISSCTLR, ViewInst Start/Stop Control Register
	TRCVMIDCCTLR0, Virtual Context Identifier Comparator Control Register 0
	TRCVMIDCCTLR1, Virtual Context Identifier Comparator Control Register 1
	TRCVMIDCVR<n>, Virtual Context Identifier Comparator Value Register <n>, n = 0 - 7

	bookinfo_for_DDI0601_armFAT_xml_reg.pdf
	Arm Architecture Registers Armv8, for Armv8-A architecture profile

