
White paper

Arm Scalable Vector Extension and application to
Machine Learning

Dan Andrei Iliescu, Francesco Petrogalli

November 2017

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 1 of 16 1.0-alpha

White paper

Contents

Introduction 2

1 The Scalable Vector Extension 2

2 SVE ACLE 3
SVE intrinsic functions . 3
Example . 3

3 ML algorithms with VLA SVE 5
Matrix multiplication . 5

Simple vectorization . 7
Unrolled vectorization . 9

Dot products . 11

4 Tools 15

Acknowledgements 16

Trademarks 16

References 16

Introduction
In this document we present code examples that show how to vectorize some of the core computational kernels
that are part of machine learning system.

The examples presented in this document are written with the Vector Length Agnostic (VLA) approach introduced
by the Scalable Vector Extension (SVE).

In particular, the paper shows how VLA techniques can be used to efficiently vectorize General Matrix Multipli-
cation (GEMM) and low precision GEMM (GEMMlowp) computational kernels.

1 The Scalable Vector Extension
SVE is a vector extension for AArch64 execution mode for the A64 instruction set of the Armv8 architecture.
Unlike other SIMD architectures, SVE does not define the size of the vector registers, but constrains it to a range
of possible values, from a minimum of 128 bits up to a maximum of 2048 in 128-bit wide units. Therefore, any CPU
vendor can implement the extension by choosing the vector register size that better suits the workloads the CPU
is targeting. The design of SVE guarantees that the same program can run on different implementations of the ISA
without the need to recompile the code.

Most of the instructions of the extension also use predicate registers to mask the lanes for operating on
partial vectors. The SVE instruction set also provides gather loads and scatter stores, plus truncating stores, and
signed/unsigned extended loads.

The following documents describing the architecture extension are available:

• SVE architecture reference manual [1], which defines the instructions and the registers;
• A Sneak Peak to SVE and VLA programming [3], a whitepaper with assembly examples of loops vectorized with
the SVE instructions;

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 2 of 16 1.0-alpha

White paper

• The ARM Scalable Vector Extension [4].

This document focuses on the interface at C/C++ level for SVE that is provided via the SVE Arm C Language
Extensions (SVE ACLE) [2].

2 SVE ACLE
The SVE ACLE (or ACLE hereafter) is a set of functions and types that exposes the vectorization capabilities of
SVE at C/C++ level.

They introduce a set of size-less types and intrinsic functions that a C/C++ compiler can directly convert into
SVE assembly. The function-to-instruction mappings are not one to one, as some of the architectural details of the
instruction set can be resolved by a compiler. For example, there is no need to expose at C/C++ level some of
the addressing modes of the load and store instructions of SVE.

The ACLE introduces size-less data types in the form sv[type], where sv stands for Scalable Vector and type
can be any of the scalar types supported by the lanes of the SVE vectors. These size-less types cover SVE vectors
consisting of of 8, 16, 32 and 64 bit lanes for signed and unsigned integral types, and 16, 32 and 64 bit lanes for
floating point types:

• sv[u]int[8|16|32|64]_t;
• svfloat[16|32|64]_t.

An additional svbool_t type is defined to represent predicates for masking operations. The predicate type
carries one bit for each byte in the data types.

SVE intrinsic functions

The naming convention of the intrinsic functions in the SVE ACLE is described in detail in section 4 of the SVE
ACLE document [2].

Most of them are in the form: svbase[_disambiguator][_type0][_type1]...[_predication].
For example, the name of the intrinsic svadd_n_u16_ma, with signature svuint16_t svadd_n_u16_m(svbool_t

pg, svuint16_t op1, uint16_t op1), describes a vector addition (add) of unsigned 16-bit integer (u16),
where one of the arguments is a scalar (_n) and the predication mode is merging (_m).

Some of the functions, like loads and stores, have a different form for the names, with additional tokens that
specify the addressing mode. For example, the function svld1_gather_u32base_offset_s32, with signature

svint32_t svld1_gather_u32base_offset_s32(svbool_t pg, svuint32_t bases, int64_t
offset)

is a gather load (ld1_gather) of signed 32-bit integer (_s32) from a vector of unsigned 32-bit integer base
addresses (_u32base) plus an offset in bytes (_offset).

The SVE ACLE are compatible with C++ overloading and C _Generic association, so that the names
can be contracted removing those parts that can be derived from the arguments types. For example, the
svadd_n_u16_m can be contracted to svadd_m, and svld1_gather_u32base_offset_s32 can be
contracted to svld1_gather_offset.

All the examples of this document use the short form. For simplicity, we also assume no aliasing, meaning that
all the pointers passed as function parameters are to be considered as restrict pointers.

Example

A basic example that shows how to transform a scalar loop into VLA form using the SVE ACLE is shown in listing 2.1.
The vector version in vla_add_arrays of listing 2.1 works as follows.

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 3 of 16 1.0-alpha

White paper

Listing 2.1 VLA vectorization example using the SVE ACLE.

1 // Scalar version.
2 void add_arrays(double *dst, double *src, double c, const int N) {
3 for (int i = 0; i < N; i++)
4 dst[i] = src[i] + c;
5 }
6

7 // Vector version
8 void vla_add_arrays(double *dst, double *src, double c, const int N) {
9 svfloat64_t vc = svdup_f64(c);

10 for (int i = 0; i < N; i += svcntd()) {
11 svbool_t Pg = svwhilelt_b64(i, N);
12 svfloat64_t vsrc = svld1(Pg, &src[i]);
13 svfloat64_t vdst = svadd_x(Pg, vsrc, vc);
14 svst1(Pg, &dst[i], vdst);
15 }
16 }

First, the constant c is reproduced into all the lanes of a vector vc, with the svdup_f64 function (line 9). Note
that although we are using the short form of the ACLE, the _f64 part in the name is required, because standard C
scalar promotion does not allow the contraction of the name of those functions that process only scalar arguments
(see section 4.2 of [2] for a detailed explanation).

Next, the header of the vector loop is issued (line 10). The number of lanes that one iteration of the vector
loop can process is unknown at compile time. This means that the induction variable i needs to be incremented
dynamically with the svcntd() function, which returns the number of 64-bit (double-word) lanes in an SVE vector
type, or VL.D hereafter.

In the body of the loop, the predicate Pg is set with the whilelt_b64 function (line 4). This function builds
a predicate by testing the i < N inequality for all the values of the induction variable spanning the iteration of the
vector loop and associating its result to the correspondent lane of the vector register. At iteration i, it computes
j < N for j=i, i+1, ..., i+VL.D-1. The 64-bit lanes view of the predicate is specified by the _b64 part of
the intrinsic, which cannot be contracted into the intrinsic name because of C scalar promotion.

On a 256-bits implementation, the value of the predicate Pg would look as follows in the second iteration of
the loop in the example where N = 7:

MSB LSB
Pg = [00000000 00000001 00000001 00000001]

7 6 5 4 64-bit lanes index 'i'

Using the predicate Pg effectively removes the need to deal with the remainder of the loop that would not fit
in a full vector. The predicate values over the full loop iteration for the 256-bit example where N = 7 are shown
in figure 1.

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 4 of 16 1.0-alpha

White paper

Figure 1: Predication.

3 ML algorithms with VLA SVE
Matrix multiplication

Matrix multiplication is one of the most widely used operations in machine learning. It is a binary operation that
takes as input two matrices (A of dimensions (M, K) and B of dimensions (K, N)) and returns as output one
matrix (C of dimensions (M, N)) in which every element Cij is the dot product of row i of matrix A with row j
of matrix B.

The dot product of two arrays, X and Y , of equal length, N , is computed by multiplying each element of one
array with its corresponding element in the other array, and then summing up all the products.

Z =
N∑

n=1
Xn ∗ Yn

The dot product of two arrays can be implemented in C as in listing 3.1.

Listing 3.1 C implementation of the dot product of two arrays of the same size.

1 double dot(double *X, double *Y, int N) {
2 double Z = 0;
3 for (int n = 0; n < N; n ++)
4 Z += X[n] * Y[n];
5 }

To multiply two matrices, we perform the dot product for every row of matrix A with every column of matrix
B.

∀i ∈ [1 : M], ∀j ∈ [1 : N], Ci,j =
K∑

k=1
Ai,k ∗ Bk,j

In this document we assume that matrices of size (S, T) are implemented as C arrays of length S ∗ T where
element (s, t) is at memory offset (s ∗ T + t). Using this convention, matrix multiplication can be implemented as
in listing 3.2.

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 5 of 16 1.0-alpha

White paper

Figure 2: Matrix Multiplication. The blue row of A is multiplied with the red column of B to produce the yellow element of C.

Listing 3.2 C implementation of matrix multiplication.

1 void mm(double *C, double *A, double *B, long M, long N, long K) {
2 for (int i = 0; i < M; i ++)
3 for (int j = 0; j < N; j ++) {
4 C[i * N + j] = 0;
5 for (int k = 0; k < K; k ++)
6 C[i * N + j] += A[i * K + k] * B[k * N + j];
7 }
8 }

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 6 of 16 1.0-alpha

White paper

Simple vectorization

Matrix multiplication has great potential for parallelization due to the repetitive nature of the operations involved
and the layout of the data. For instance, each element of row i of the resulting matrix C is the dot product of row
i of matrix A with the corresponding column of matrix B. We can therefore compute a batch of V L elements of
row i of matrix C at once by computing the dot products of row i of matrix A with a batch of V L columns of
matrix B figure 3.

For describing the algorithm of the examples in this and the following sections, we introduce the notation
Aa,[b:c] to represent the sub-matrix of a matrix A containing the elements of row a between columns b and c.

Let’s considers a batch of V L columns of matrix B as a single-column matrix of size (K, 1) whose elements
are arrays of size V L. If we multiply each of these arrays of matrix B with the corresponding scalar element of
matrix A, and then sum up the results, we get an array of size V L which is equivalent to the batch of V L elements
of row i of the resulting matrix C .

Ci,[j:j+V L] =
K∑

k=1
Ai,k ∗ Bk,[j:j+V L]

We achieve this algorithmically by carrying a rectangular stencil, [j : j + V L], of size (K, V L) (where V L is
the number of elements in an SVE register) in steps of V L over matrix B. The stencil starts at column j and sits
over at most V L columns of matrix B. The columns of matrix B that are contained within the stencil represent
the batch of V L columns that will be multiplied with row i of matrix A to result in its corresponding batch of
elements of row i of matrix C figure 3.

So, for every row i in matrix A, and for every stencil [j : j + V L] in matrix B, we record in a predicate how
many columns of matrix B are actually contained within the stencil (in case N is not a multiple of V L and the
current stencil goes over the border of the matrix), then we compute the dot product between row i and columns
[j : j +V L] by multiplying the corresponding elements and adding them up, and we store the result in Ci,[j:j+V L].

The code shown in listing 3.3 presents a vectorized version of a half-precision (16-bit floating point) matrix
multiplication.

Figure 3: Vectorized Matrix Multiplication. The blue row of A is multiplied with the columns in the red stencil of B to produce
the yellow vector of C.

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 7 of 16 1.0-alpha

White paper

Listing 3.3 Half-precision matrix multiplication with VLA vectorization.

1 void hgemm_01(float16_t *C, float16_t const *A, float16_t const *B,
2 const unsigned long M, const unsigned long K,
3 const unsigned long N) {
4 for (unsigned long i = 0; i < M; ++i)
5 for (unsigned long j = 0; j < N; j += svcnth()) {
6 svfloat16_t Acc = svdup_f16(0);
7 const svbool_t pred_j = svwhilelt_b16(j, N);
8 for (unsigned long k = 0; k < K; ++k) {
9 const svfloat16_t A_i_k = svdup_f16(A[i * K + k]);

10 const svfloat16_t B_k_j = svld1_f16(pred_j, &B[k * N + j]);
11 Acc = svmla_x(pred_j, Acc, A_i_k, B_k_j);
12 }
13 svst1_f16(pred_j, &C[i * N + j], Acc);
14 }
15 }

Line 5: svcnth() is an SVE ACLE function that returns the value VL.H, representing the number of lanes of
an SVE vector with 16-bit (H, from half-word) subdivision.

Line 7: Mark the elements of the predicate pred_j with a 2-bit subdivision as active if the corresponding
element in the current stencil sits inside the matrix B, and as inactive if the element is outside the borders of the
matrix. We will end up with min(VL.H, N-j) active elements. This is implemented with the SVE ACLE function
p = svwhilelt(a, b) which activates the n-th element of p if and only if a+n <= b (see figure 4).

Line 11: Add to the accumulator Acc, that was set to zero on line 6, the dot product of an array of VL.H
copies of element A[i][k] with the array B[k][j:j+VL.H]. The SVE ACLE function a = svmla_x(pred, b,
c, d) assigns to a the value b+c*d. This accumulation operation is guarded by the predicate pred_j, which
guarantees that the inactive elements are not processed.

Figure 4: Stencil Overflow. The lanes of the stencil on the right that overflow the border of the matrix are not used for
computation. Therefore, they are set inactive.

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 8 of 16 1.0-alpha

White paper

Unrolled vectorization

A further improvement (from the perspective of using more registers) to the computation of the matrix product im-
plemented in [#lst:hgemm_01] is to use two consecutive stencils, [j:j+VL.H-1] and [j+VL.H:j+2*VL.H-1],
and, thus, compute 2*VL.H elements of the matrix C at once (see listing 3.4, and figure 5 for a graphical represen-
tation of the unrolling of the stencils).

Listing 3.4 Half-precision unrolled matrix multiplication with VLA vectorization.

1 void hgemm_unrolled(float16_t *C, float16_t const *A, float16_t const *B,
2 const unsigned long M, const unsigned long K,
3 const unsigned long N) {
4 const svbool_t all_active = svptrue_b16();
5

6 for (unsigned long i = 0; i < M; ++i)
7 for (unsigned long j = 0; j < N; j += 2 * svcnth()) {
8 svfloat16_t Acc = svdup_f16(0);
9 svfloat16_t Acc_1 = svdup_f16(0);

10 const svbool_t pred_j_1 = svwhilelt_b16(j + svcnth(), N);
11 const svbool_t pred_j = svptest_first(all_active, pred_j_1)
12 ? all_active
13 : svwhilelt_b16(j, N);
14 for (unsigned long k = 0; k < K; ++k) {
15 const svfloat16_t A_i_k = svdup_f16(A[i * K + k]);
16 const svfloat16_t B_k_j = svld1_vnum_f16(pred_j, &B[k * N + j], 0);
17 const svfloat16_t B_k_j_1 = svld1_vnum_f16(pred_j_1, &B[k * N + j], 1);
18 Acc = svmla_x(pred_j, Acc, A_i_k, B_k_j);
19 Acc_1 = svmla_x(pred_j_1, Acc_1, A_i_k, B_k_j_1);
20 }
21 svst1_vnum_f16(pred_j, &C[i * N + j], 0, Acc);
22 svst1_vnum_f16(pred_j_1, &C[i * N + j], 1, Acc_1);
23 }
24 }

Line 4: The SVE ACLE function svptrue_b16() returns a vector predicate of all active lanes, with a 16-bit
data subdivision.

Line 11: We can save unnecessary computation by not calling the svwhilelt_b16() function for the first
stencil when we know that it fits completely into the matrix boundaries. We can assume this happens if the second
stencil sits over at least one column of B. This can be verified by testing if the first lane of the predicate corresponding
to the second stencil (pred_j_1 in line 10) is active, by using the SVE ACLE function svptest_first(a, b).
This tests if the first element of predicate b is active.

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 9 of 16 1.0-alpha

White paper

Figure 5: Unrolled Vectorized Matrix Multiplication.

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 10 of 16 1.0-alpha

White paper

Dot products

An array of matrices X of dimensions (A, B, C) is an array of A matrices with B rows and C columns. Element
Xa

b,c is the element of matrix a that sits on row b and column c.
A dot product of two arrays of matrices A of dimensions (W, M, K) and B of dimensions (W, K, N), is a

matrix C of dimensions (M, N) where each element Ci,j is the sum of the dot products of each row i from the
matrices of array A with the column j from the corresponding matrix of array B.

∀i ∈ [1 : M], ∀j ∈ [1 : N], Ci,j =
W∑

n=1

K∑
k=1

An
i,k ∗ Bn

k,j

Due to commutativity, we can switch the sums around and, thus, treat the result Ci,j as the sum of the dot
products of each element of row i from matrix A with its corresponding element of column j from matrix B,
where the elements of matrices A and B are arrays of length W .

W∑
n=1

K∑
k=1

An
i,k ∗ Bn

k,j =
K∑

k=1

W∑
n=1

An
i,k ∗ Bn

k,j

In machine learning, it is very common to process arrays of matrices of 8-bit unsigned data to obtain 32-bit
results via such operations, without loss of information due to the accumulation of the product of 8-bit data into
the 32-bit accumulator.

We can implement these matrices of arrays as normal matrices of 32-bit elements, but where each 8-bit lane
of each element is an element in its own (see figure 6). We will refer to the 32-bit lanes as quadruplets of 8-bit
elements. A C++ implementation of the GEMMlowp algorithm is shown in listing 3.5.

Figure 6: Low Precision

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 11 of 16 1.0-alpha

White paper

Listing 3.5 C++ implemetation of GEMMlowp

1 void gemmlowp_c(uint32_t *C, const uint32_t *A, const uint32_t *B, size_t M,
2 size_t K, size_t N) {
3 for (size_t i = 0; i < M; ++i)
4 for (size_t j = 0; j < N; ++j)
5 for (size_t k = 0; k < K; ++k) {
6 uint8_t *dataA = (uint8_t *)&A[i * K + k];
7 uint8_t *dataB = (uint8_t *)&B[k * N + j];
8 uint32_t tmp = 0;
9 for (size_t s = 0; s < 4; ++s, ++dataA, ++dataB)

10 tmp += static_cast<uint32_t>(*dataA) * static_cast<uint32_t>(*dataB);
11

12 C[i * N + j] += tmp;
13 }
14 }

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 12 of 16 1.0-alpha

White paper

The GEMMlowp code in listing 3.5 can be vectorized by processing more than one multiplication from the dot
product at a time. This implies loading VL elements from a column in matrix B, performing the multiplications and
then summing up the results listing 3.6.

Listing 3.6 VLA version of GEMMlowp

1 void gemmlowp_acle(uint32_t *C, const uint32_t *A, const uint32_t *B, size_t M,
2 size_t K, size_t N) {
3 const svint32_t index = svindex_s32(0, N);
4

5 for (size_t i = 0; i < M; ++i)
6 for (size_t j = 0; j < N; ++j)
7 for (size_t k = 0; k < K; k += svcntw()) {
8 const svbool_t pred_k = svwhilelt_b32(k, K);
9 const svuint32_t vA = svld1_u32(pred_k, &A[i * K + k]);

10 const svuint32_t vB =
11 svld1_gather_s32index_u32(pred_k, &B[k * N + j], index);
12 svuint32_t tmp = svdot_u32(svdup_u32(0), svreinterpret_u8_u32(vA),
13 svreinterpret_u8_u32(vB));
14 C[i * N + j] += svaddv_u32(pred_k, tmp);
15 }
16 }

The code in listing 3.6 works as follow.
Line 3: Instruction svindex_s32(0, N) builds a vector register where each element is equal to its index

times N.
Line 11: In order to load part of a column from B into a vector register, we need to load the first el-

ement from the address B[k * N + j], followed by VL-1 elements in the same column, which are stored
N words apart from each other. This requires loading non-consecutive addresses, which can be done using
svld1_gather_s32index_u32().

Line 12: The svdot_u32 operation performs the dot products of each quadruplets in its two 8-bit input
registers, and stores the results in the correspondent 32-bit lane of the output vector register, without loss of
precision.

Line 14: svaddv_u32() sums all the elements in the argument vector into a scalar.

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 13 of 16 1.0-alpha

White paper

In the next implementation in listing 3.7, we optimise the process (from the perspective of increasing register
pressure) by loading four quadruplets from A at a time and computing the dot products with V L quadruplets from
B.

Listing 3.7 GEMMlowp with higher register pressure

1 void gemmlowp_acle_v3(uint32_t *C, const uint32_t *A, const uint32_t *B,
2 size_t M, size_t K, size_t N) {
3 for (size_t i = 0; i < M; ++i)
4 for (size_t j = 0; j < N; j += svcntw()) {
5 const svbool_t pred_j = svwhilelt_b32(j, N);
6 svuint32_t tmp = svdup_u32(0);
7 size_t k = 0;
8 if (K > 3)
9 for (; k < K - 3; k += 4) {

10 svuint32_t vA = svld1rq(svptrue_b32(), &A[i * K + k]);
11 const svuint32_t vB0 = svld1_u32(pred_j, &B[k * N + j]);
12 const svuint32_t vB1 = svld1_u32(pred_j, &B[(k + 1) * N + j]);
13 const svuint32_t vB2 = svld1_u32(pred_j, &B[(k + 2) * N + j]);
14 const svuint32_t vB3 = svld1_u32(pred_j, &B[(k + 3) * N + j]);
15 tmp = svdot_lane_u32(tmp, svreinterpret_u8_u32(vB0),
16 svreinterpret_u8_u32(vA), 0);
17 tmp = svdot_lane_u32(tmp, svreinterpret_u8_u32(vB1),
18 svreinterpret_u8_u32(vA), 1);
19 tmp = svdot_lane_u32(tmp, svreinterpret_u8_u32(vB2),
20 svreinterpret_u8_u32(vA), 2);
21 tmp = svdot_lane_u32(tmp, svreinterpret_u8_u32(vB3),
22 svreinterpret_u8_u32(vA), 3);
23 }
24 // process tail
25 for (; k < K; k += 1) {
26 svuint32_t vA = svdup_u32(A[i * K + k]);
27 const svuint32_t vB = svld1_u32(pred_j, &B[k * N + j]);
28 tmp = svdot_u32(tmp, svreinterpret_u8_u32(vA), svreinterpret_u8_u32(vB));
29 }
30 svst1_u32(pred_j, &C[i * N + j], tmp);
31 }
32 }

The code in listing 3.7 works as follows.
Line 10: We want to load four 32-bit elements from A and repeat them in the register. The instruction

svld1rq(), load replicate, fills every 128-bit subdivision of the vector register with the same four 32-bit
elements from the memory address it is provided. A rendering of a vector loaded from address int *X is shown
in listing 3.8.

Line 15: We want to compute the dot product of each of the four 32-bit quadruplets of 8-bit elements from
A with every 32-bit quadruplet of 8-bit elements from B, and store the results as 32-bit numbers in a vector
register. The instruction svdot_lane_u32() will compute the dot product of each 32-bit quadruplet of the
second argument with the indicated quadruplet of the third argument, without loss of precision. The quadruplet
of each 128-bit chunk of A is selected with an index from 0 to 3.

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 14 of 16 1.0-alpha

White paper

Listing 3.8 Example of load replicate from a pointer to 32-bit data.

... |<----- 128 bits ---->|<----- 128 bits ---->|
Lane index: VL.S-1 ... | 7 6 5 4 | 3 2 1 0 |
Value: X[3] ... | X[3] X[2] X[1] X[0] | X[3] X[2] X[1] X[0] |

4 Tools
The code snippets presented in this whitepaper can be compiled to SVE object files using Arm Compiler for HPC,
which fully support the SVE ACLE. The intrinsics are recognised automatically when -march=armv8+sve.

$> armclang -march=armv8+sve -c filename.c -o objectfile.o

Arm Compiler also supports automatic vectorisation that targets SVE VLA vectorisation techniques
when -march=armv8+sve is invoked in conjunction with the usual flag that enable the loop vectoriser,
-floop-vectorze, which is enabled by default from the optimisation level -O2.

As part of our simulation tools, a user space simulator is also provided to emulate programs that include SVE
instructions. The simulator, called Arm Instruction Emulator (ArmIE), execute natively on AArch64 hardware and
simulate only the SVE instructions.

ArmIE can execute SVE instruction for any size of the vector registers, from the minimal 128-bit to the maximum
2048-bit width. For example, the simulation of an SVE executable program for a 256-bit implementation of SVE is
invoked as follows:

$> armie -msve-vector-bits=256 ./program

Both Arm Compiler for HPC and ArmIE are available on the Arm Developer1 website.

1https://developer.arm.com/hpc

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 15 of 16 1.0-alpha

https://developer.arm.com/hpc

White paper

Acknowledgements
The authors would like to thank the following colleagues for their help and advice: Richard Sandiford, David Mansell,
Geraint North, and Julie Gaskin.

Trademarks
The trademarks featured in this document are registered and/or unregistered trademarks of Arm Limited (or its
subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their
respective owners. For more information, visit Arm website2.

References
[1] ARM limited, ed. ARM Architecture Reference Manual Supplement - The Scalable Vector Extension (SVE), for ARMv8-

A. 2017. URL: https://developer.arm.com/products/architecture/a-profile/docs/arm-architecture-reference-
manual-supplement-armv8-a.

[2] ARM limited, ed. ARM C Language Extensions for SVE. 2017. URL: https://developer.arm.com/docs/100987/
latest/arm-c-language-extensions-for-sve.

[3] Francesco Petrogalli. A sneak peek into SVE and VLA programming. Nov. 2016. URL: https://developer.arm.com/
hpc/a-sneak-peek-into-sve-and-vla-programming (visited on 10/14/2017).

[4] Nigel Stephens et al. “The ARM Scalable Vector Extension”. In: IEEE Micro 37.2 (Mar. 2017), pp. 26–39. DOI:
10.1109/mm.2017.353. URL: https://doi.org/10.1109/mm.2017.35.

2http://www.arm.com/about/trademarks
3https://doi.org/10.1109/mm.2017.35

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 16 of 16 1.0-alpha

https://developer.arm.com/products/architecture/a-profile/docs/arm-architecture-reference-manual-supplement-armv8-a
https://developer.arm.com/products/architecture/a-profile/docs/arm-architecture-reference-manual-supplement-armv8-a
https://developer.arm.com/docs/100987/latest/arm-c-language-extensions-for-sve
https://developer.arm.com/docs/100987/latest/arm-c-language-extensions-for-sve
https://developer.arm.com/hpc/a-sneak-peek-into-sve-and-vla-programming
https://developer.arm.com/hpc/a-sneak-peek-into-sve-and-vla-programming
https://doi.org/10.1109/mm.2017.35
http://www.arm.com/about/trademarks
https://doi.org/10.1109/mm.2017.35

	Introduction
	The Scalable Vector Extension
	SVE ACLE
	SVE intrinsic functions
	Example

	ML algorithms with VLA SVE
	Matrix multiplication
	Simple vectorization
	Unrolled vectorization

	Dot products

	Tools
	Acknowledgements
	Trademarks
	References

