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Overview: 

Architects and system engineers face extreme challenges in developing embedded SoC-based 

systems to meet the tight power budgets of today's mobile and handheld applications while 

still maintaining the performance and quality of service. Without fully understanding the 

performance and power, it is impossible to properly understand the Power, Performance, Area 

(PPA) trade-offs. These decisions need to be upfront, before the implementation phase has 

started.  The problem is that current methods typically only provide rough estimates of power 

and performance and don’t get refined until late in the product cycle when it is very hard to 

make changes.  What is needed is a methodology to achieve accurate performance and power 

characterization in the early phases of a project. 

Architects need to prove their design assumptions before a major commitment has been made 

to the design implementation.  These include: 

 IP selection 

 Exploration of the performance impact of hardware/software trade-offs  

 Measuring interconnect performance of complex bus architectures 

 Understanding cache and memory subsystem performance and trade-offs. 

 Analyzing HW accelerators/GPUs and their affect on the system. 

In addition, architects need to consider two factors that come into play with respect to meeting 

power budgets for today's battery powered devices: 1) Is the hardware being architected and 

designed to efficiently conserve energy? 2) Is the software controlling the power states of the 

device operating as they should? Figuring out these two factors requires the ability to 

characterize the power early in the development cycle and provide the modeling and analysis 

capabilities to understand how they affect the power constraints of the system and how they 

relate to performance. 

This discussion illustrates a methodology to understand both performance and power at the 

system-level running real software on a accurate virtual platform. 

Background: 

Three goals are discussed to help the architect and software engineer understand the power and 

performance trade-offs early in the project cycle: 

1. Define a methodology to understand and characterize the power and performance early in 

the project cycle 



2. Refine and debug the software that controls the power management of the system and 

understand it’s affects on power and performance 

3. Understand how process geometry and frequency affects power and performance on a 

SoC-based Design 

Current methods suffer from various ailments.  One solution is to use high level abstract 

models such as behavioral simulation or spreadsheets to characterize the performance and 

power of a system.  While this can give the architect a rough understanding of the solution, the 

problem with this approach is that it does not provide the required level of accuracy to fully 

understand the behavior of the system.  Another approach is to use RTL simulations to 

understand the performance and power.  This can be augmented by gate and transistor level 

simulations to augment and refine the power analysis.  But these techniques don’t provide the 

simulation performance to run real software applications so the data suffers from unrealistic 

situations created by artificial verification testbenches and traffic generators.  Finally, 

hardware solutions such as emulation or prototypes can provide the speed and accuracy but are 

available much too late in the design process to be an effective architecture analysis tool. 

Approach: 

The approach taken here to accomplish the goals outlined in the previous section primarily 

revolves around the creation of a virtual platform to represent the SoC-based system and to run 

the real software targeted for the system to understand the power and performance.  Accuracy 

is required for the critical pieces of the analysis and for these components, cycle accurate 

models are used.  Such a platform is ideal for understanding performance and power issues, as 

well as for the software that configures and manages the power of the system.  The ideal 

system will have the following requirements: 

 Speed: The platform must be fast enough to run real software and real traffic patterns 

 Accuracy: Accurate component models to represent the key parts of the system in order 

to provide required performance and power measurements 

 Visibility: Must provide the visibility to profile and monitor the interfaces and internals 

of the components 

 Configurability: Ability to change and reconfigure platform to analyze a multitude of 

experiments 

Basics: 

Traditional flows and methodologies are very serial in nature whereby much of the true 

analysis and development is done late in the design cycle.  The traditional flow suffers from 

requiring hardware prototypes, whether they be emulation, FPGA prototypes, or Silicon 

prototypes, to complete the software development, validate the hardware and software 

interfaces, and validate the architectural, performance, and power decisions.  Providing a 

reference system for outside customers can come very late in the project cycle.  Exacerbating 



this backend loaded flow is the fact that bugs and issues discovered late in a project are very 

expensive to fix. 

Virtual platforms (or ESL) provide a methodology that fixes many problems in the traditional 

flow by providing a platform to do very accurate performance and power modeling and 

analysis at the beginning of the architectural phase of a project.  This provides a much better 

understanding of the performance and power of the system as well as the IP to be used.  

Starting with a better understanding provides a better launch for implementation and reduces 

the bugs and issues seen downstream, reducing the time it takes to implement and verify.  In 

addition, the same platform can be used for pre-silicon software development long before 

silicon or FPGA prototypes are available.  A virtual platform can also be used as a reference 

platform that can be delivered to outside users before actual silicon is available. 

Understanding Performance: 

Part of goal 1 is to define a methodology to understand and characterize performance early in 

the project cycle.  Achieving this goal enables architects to have a better understanding of the 

correct IP to use in their system and the utilization and performance of the hardware resources 

such as the cache/memory subsystem, bus fabric, and hardware accelerators and engines.  It 

also allows them to understand and tune the software performance on the new hardware 

platform. 

The methodology needed to achieve goal 1 contains several steps.  First a virtual platform 

needs to be created that contains the vital and interesting components of the system.  For fabric 

analysis this can be driven with traffic generators either algorithmically at the beginning of a 

project, or with traces as things are refined.  Accurate models are needed of the bus fabric 

itself to understand the fine details of the latencies, throughput, arbitration, and utilization.  

The traffic generators should eventually be replaced with the rest of the system so that the bus 

fabric can be analyzed under real software loads.  When analyzing the 

processor/cache/memory subsystem, the hardware accelerators, and peripherals, a virtual 

platform representing the entire system should be used along with accurate models in the 

critical paths.  These platforms should be analyzed under real software loads in order to 

understand the performance in realistic situations. 

The next step is to compile and load the representative software onto the virtual platform.  

This can be done through the typical software tool chain, for example with the Realview 

Development System.  One advantage of this approach is that software developers use the 

same native compilers and debuggers that they are accustomed with to develop, debug and 

tune their code on real hardware. 

 Once the software (or traffic) is loaded onto the platform, the user can characterize the 

performance of the system.  One key advantage of a virtual platform is the visibility and 

controllability the user has to take measurements and analyze behavior.  With hardware based 

platforms (FPGA prototypes and silicon prototypes), visibility is limited and sometimes the 

user cannot inspect what they need to analyze.  In addition, hardware based platforms can’t be 

“stopped” such that the user can inspect or change things while time is frozen, without parts of 



the system getting out of step.  This is especially true in multi-core designs.  Virtual platforms 

eliminate these problems because the platforms provide 100% visibility into each component 

and interface as well as letting the user “stop” the system and freeze time to inspect or change 

things without any part of the system getting out of step.  These capabilities dramatically 

increase the user’s productivity in profiling and characterizing the software as well as 

hardware aspects of the design.  Examples of this include analyzing bus/fabric latencies, 

throughput, and utilization, cache profiling, frame rates, pixels rates, etc.  Here are some 

examples of virtual platform profiling capabilities. 

 



 

Figure 1. Hardware (Cache and Bus) and Software Profiling 

Finally, the last step is to make changes to the hardware or software configuration based on the 

analysis conducted in the previous step and iterate until the performance goals are met. 

Understanding Power: 

The second part of goal 1 is to define a methodology to understand and characterize the power 

early in the design cycle.  Achieving this goal provides the architect with an accurate 

understanding of power consumption under a real software load enabling a correct 

understanding of clocking, clock gating, frequency and voltage scaling, and power shut-off.  

Contrast this to analyzing power with RTL verification environment or gate level simulations 

where the stimulus provided to the circuits is synthetic and artificial and often doesn’t 

correlate well with what the circuits will see in a real system under a real software load.  Often 

the RTL verification environment or gate level simulations indicate an overly pessimistic 

power consumption because they tend to over stimulate the design compared to the real 

software.  This leads to over engineering the design to meet the power requirements and 

adding cost to the system.   

Power analysis is part of a refinement process.  Using virtual platforms with real software to 

understanding power early in the design cycle leads to better decision making early followed 

with power analysis at the RTL level and then at the gate and transistor level later.  Again, 

issues found earlier in the design cycle are much easier to fix. 



The methodology to attack power analysis can be broken down into two parts.  First, a more 

brute force methodology based on an activity flow.  In this flow activity data in the form of 

trace waveforms are collected from the interesting system components and fed into RTL 

power analysis tools.  Basically, a virtual platform is created with the major and important 

components in the system much like was done for performance analysis described previously.  

Software that will be run in the real system is then loaded into the platform and run.  Trace 

data is collected (for example VCD waveforms) for each component that the user wants to 

conduct power analysis (e.g. the processor, caches, fabric, memory subsystem, graphics unit, 

etc).  This trace data is used as activity data to feed any of the available EDA RTL power 

analysis tools on the market.  These tools use the RTL description of the design as well as the 

technology file of the process to calculate power but they rely on activity data to be supplied 

by a simulator.  The virtual platform provides an ideal way to generate this activity data under 

a real software load.  

One of the drawbacks of the above method is that dumping waveforms of activity data tends to 

slow down the virtual platform considerably.  So the second part to this methodology involves 

a simple refinement from part one.  We achieve this by just monitoring the power states of a 

design and doing tabular power look-ups to assign power to each power state dynamically.  

The way the power state flow works is that on the first run you collect the power data just as 

you did in the activity flow method above.  But this time you also record what power state the 

design is in at the times of the simulation.  The power states differ depending upon the IP but 

for example a GPU might have an IDLE power state, a power state for each of the pixel 

engines being enabled, and a power state for the cache/memory interface being enabled.  

Using the activity data to drive the RTL power estimator, the resulting output is averaged out 

for the time the device is in each power state.  Then a look-up table is created that assigns the 

average power while the component is in that mode of operation for each state entry in the 

table. 

  



For example: 

 

Once the table is generated, there is no longer a need to dump waveforms.  Therefore 

subsequent runs only need to monitor the signals or registers that identify what power state the 

device is in and uses the table look-up to estimate the power while running in that state.  

Without the drain of the waveform dumping overhead, a great deal of software can be run and 

analyzed to understand the power of the system. 

Power Management Software: 

Goal two is to refine and debug the software that controls the power management of the 

system and understand its affects on power and performance.  This includes the software that 

controls Dynamic Frequency and Voltage Scaling (DFVS). Dynamic Power Management 

(DPM), and Power Shut-off (PSO)/Power Gating.  With respect to DVFS software and 

algorithms, the architect needs to understanding the trade-off between scaling the voltage and 

frequency versus the performance achieved.  Making sure the algorithms are correctly 

calculating the workloads and deadlines to insure optimal energy operation while still meeting 

the performance needs of the system are critical.  For example, miscalculation can cause 

unwanted video effects or glitches in the audio when deadlines are not being met.  

Miscalculation can also drain too much energy out of the batteries if the frequency and voltage 

is not scaled aggressively enough.  In addition, how does the system engineer know if the 

latencies involved with switching the voltages and frequencies are being handled correctly in 

the hardware and software?  

Another technique that adds its own twist is Power Shut-off and Power Gating.  Similar to 

DFVS above the software that controls this needs to be debugged and optimized. An 

understanding is needed of how this software affects the hardware’s performance and power. 



PSO wake-up and sleep times need to be factored in with the software as well as their affects 

with the hardware performance.  In addition, how does the system engineer confirm that the 

proper state is being saved before power is shut-off and restored when the components are 

repowered?   

Using software driven power analysis on a virtual platform of the system provides an ideal 

solution to debug the algorithms, power management, and scaling software and how they 

impact the power and performance of the system.  The methodology to achieve this starts with 

creating a virtual platform of the important pieces of the system (processor, caches, fabric, 

memory subsystem, peripherals, accelerators, etc).  Isolate the clock and voltage domains such 

that the system can control the frequency of the power domains and report the operating 

voltages.  The frequency domains will determine the performance of the components while the 

frequency and voltage domains will feed the power analysis tools.  The next step is to compile 

and load the representative power/frequency management software on the platform.  After the 

user has debugged any issues of the software running on the system they can then measure the 

energy consumption to see if it meets the target goals.  In addition they can measure the true 

performance of the system to make sure all the workloads are meeting their deadlines.  Any 

issue with the energy consumption or performance trade-offs can easily be analyzed, fixed and 

refined within the software (and hardware).  Adjustment can be made and the process 

reiterated until the correct balance between energy efficiency and performance is achieved. 

Process Nodes and Frequency: 

The final goal is to provide a method to understand how process geometry and frequency 

affects power and performance on a SoC Design.  This is basically an application and example 

of using the techniques that have been discussed previously.   

The methodology of this technique is to start with a virtual platform with associated software 

as described in the preceding sections.  Then use the power analysis with power states flow 

described earlier.  This allows the user to run multiple software applications efficiently by only 

tracing the power states of the components.  Table looks-ups are created for each process 

node, and frequency (and voltage) making it easy to analyze the affects of changing process 

nodes and frequencies after the data has been collected.  This can all be done post-simulation 

giving the project manager and architect an easy way to understand the value and impacts of 

migrating to different process nodes, frequency and voltages.  



 

Summary: 

We have illustrated a methodology for software driven performance and power analysis and 

characterization that is achievable very early in the design flow.  This methodology is enabled 

through running real software on virtual platforms.  We also illustrated two important use 

cases.  The first involves the debug and refinement of power management software and it’s 

affects on power and performance of the system.  The second involves understanding and 

characterizing the power/performance trade-offs of between process geometry, frequency, and 

voltage targeted to the manufacturing process and how the project manager can select the 

correct one early in the design phase.  The techniques shown here demonstrate how the user 

can get accurate performance and power data using accurate models in a virtual platform and, 

just as importantly, realistic performance and power data by running real software on that 

same virtual platform.  Virtual platforms provide these capabilities early in the project phase 

when the architects are making their decisions and trade-offs providing a much more robust 

design flow and reducing the amount of engineering effort downstream in the design and 

implementation cycle. 


