

Firmware interfaces for mitigating
cache speculation vulnerabilities

System Software on Arm Systems

 Version 1.3

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 2 of 22

Firmware interfaces for mitigating cache speculation vulnerabilities

System Software on Arm Specification

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.

Release Information

Document History

Version/Issue Date Confidentiality Change

1.0 26 January 2018 Non-Confidential First release

1.1 31 January 2018 Non-Confidential Included missing details about Cortex-A8

1.2 09 March 2018 Non-Confidential Extension of SMCCC_ARCH_FEATURES to provide per-PE
mitigation discovery

1.3 21 May 2018 Non-Confidential Added SMCCC_ARCH_WORKAROUND_2 to mitigate CVE-
2018-3639. Clarified SMCCC_ARCH_WORKAROUND_1
discovery semantics

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in

this document may be protected by one or more patents or pending patent applications. No part of this document may be

reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by

estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use

the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR

STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-

INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm

makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of,

patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT

LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND

REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of

this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is

not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is not

intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any

time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement

covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting

provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 3 of 22

conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall

prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its subsidiaries)

in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of

their respective owners. Please follow Arm’s trademark usage guidelines at 33Thttp://www.arm.com/company/policies/trademarks 33T.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in

accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Web Address

33Thttp://www.arm.com 33T

http://www.arm.com/company/policies/trademarks
http://www.arm.com/

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 4 of 22

Contents

1 About this document .. 5

1.1 References .. 5

1.2 Terms and Abbreviations .. 6

1.3 Firmware definition .. 7

2 Changes to the SMC Calling Convention .. 8

2.1 Overview ... 8

2.1.1 Optimize SMC/HVC calling convention from AArch64 .. 8

2.1.2 SMCCC Version ... 9

2.1.3 SMCCC Arm Architecture Service function discovery ... 9

2.1.4 Workarounds for cache speculation vulnerabilities ... 9

2.1.5 Deprecation of the General Service Queries for the Arm Architecture Service .. 9

2.2 Interface ... 10

2.2.1 Return Codes .. 10

2.2.2 SMCCC_VERSION .. 10

2.2.3 SMCCC_ARCH_FEATURES ... 11

2.2.4 SMCCC_ARCH_WORKAROUND_1 ... 12

2.2.5 SMCCC_ARCH_WORKAROUND_2 ... 13

3 Changes to PSCI .. 16

3.1 Overview ... 16

3.1.1 Discoverability of SMCCC implementation ... 16

3.2 Interface ... 16

3.2.1 PSCI_FEATURES ... 16

4 Appendix A: Discovery of Arm Architecture Service functions ... 18

4.1 Step 1: Determine if SMCCC_VERSION is implemented ... 18

4.2 Step 2: Determine if Arm Architecture Service function is implemented ... 18

5 Appendix B: Mitigating CVE-2017-5715 on Arm CPUs .. 20

6 Appendix C: Mitigating CVE-2018-3639 on Arm CPUs .. 21

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 22

1 About this document
CVE-2017-5715, also known as Spectre variant 2, is a vulnerability in some Arm CPU designs that might allow an attacker to control the speculative

execution flow within a victim execution context and disclose data that is architecturally inaccessible to the attacker. On affected Arm CPUs the

recommended mitigations include invalidation of some or all of the Branch Predictor caches when transitioning to an execution context that

requires protection from previous executing contexts. See section 1.2 for a definition of the term execution context.

CVE-2018-3639, also known as variant 4, is a vulnerability in some Arm CPU designs that might allow a speculative read of a memory location to

read a data value from before the most recent write to that memory location. The speculatively read data might be attacker-controlled and

forwarded to later speculative accesses, which may disclose data that is architecturally inaccessible. On affected Arm CPUs the recommended

mitigations include disabling the bypassing of writes by reads (including speculative reads), either permanently during CPU initialization, or

dynamically as required by software requiring protection.

For more information on these and related vulnerabilities, please see the material provided at the Arm Security Update website [1].

The mechanism by which such software mitigations are implemented is CPU implementation specific, and is not always accessible by software

running at EL1 or EL2. This specification defines additional services that should be provided by firmware on systems with affected CPUs, enabling

operating system and hypervisor software to apply appropriate workarounds for these vulnerabilities, and to discover the presence of these

firmware services.

The interfaces are specified as extensions to the SMC Calling Convention (SMCCC) [3] and Power State Coordination Interface (PSCI) [4] in order

ensure a standard interface for affected CPUs.

The interfaces and recommended usage patterns described in this document will be incorporated into future versions of the SMCCC and PSCI

specifications.

Arm Trusted Firmware [5] provides a reference implementation of this functionality, which is enabled in default configurations of this firmware

1.1 References

See the Arm Infocenter, http://infocenter.arm.com, and Arm Developer for access to Arm documentation.

Reference Document Author Title

1 N/A Arm Arm Security Update
https://www.arm.com/security

2 ARM DDI 0487 Arm Arm Architecture Reference Manual, Armv8 for Armv8-A
architecture profile

3 ARM DEN 0028B Arm SMC Calling Conventions (SMCCC)

4 ARM DEN 0022D Arm Power State Coordination Interface (PSCI)

5 N/A Arm Trusted Firmware
https://github.com/Arm-Software/arm-trusted-firmware

6 N/A Arm Arm Developer processor documentation

https://developer.arm.com/products/processors/cortex-a

7 ARM DEN 0054A Arm Software Delegated Exception Interface (SDEI)

http://infocenter.arm.com/
http://developer.arm.com/
https://www.arm.com/security
https://github.com/Arm-Software/arm-trusted-firmware
https://developer.arm.com/products/processors/cortex-a

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 22

1.2 Terms and Abbreviations

This document uses the following terms and abbreviations.

Term Meaning

AArch64
state

The 64-bit Execution state. In AArch64 state, addresses are held in 64-bit registers, and instructions in
the base instruction set can use 64-bit registers for their processing. AArch64 state supports the A64
instruction set.

ACPI The Advanced Configuration and Power Interface specification. This defines a standard for device
configuration and power management by an OS.

CPU A hardware implementation of the Arm Architecture

EL0 The lowest Exception level. This Exception level is unprivileged. The Exception level used to execute
user applications, in Non-secure state.

EL1 Privileged Exception level. The Exception level typically used to execute operating systems.

EL2 Hypervisor Exception level. The Exception level used to execute hypervisor code. EL2 is always in Non-
secure state.

EL3 Secure monitor Exception level. This Exception level has the highest privilege and is always in Secure
state. If implemented, a PE always reset and commence execution at this Exception level.

Execution
context

The PE state associated with a thread of execution, including register state, exception level and
security state. Usually an execution context is is managed by another execution context at a higher
exception level or an exception level in the secure state, for example firmware manages one or more
system software execution contexts. However, the managing and managed execution contexts may
reside at the same exception level and security state, for example a runtime environment manages
one or more interpreted applications.

FDT Flattened Device Tree. This is a hardware description methodology. Firmware tables are constructed
that describe the hardware. These tables are passed to the OS at boot time. An OS can interrogate the
data they contain when it needs to discover the hardware properties of a device.

Firmware Software that provides platform specific services, typically operating at an exception level higher than
the Operating System or Hypervisor which makes use of the firmware services.

Function
Identifier

A 32-bit integer, which identifies the function being invoked by this SMC/HVC call. Passed in X0 into
every SMC/HVC call.

HVC Hypervisor Call. An instruction that causes a synchronous exception that is taken to EL2.

Hypervisor The hypervisor executes at EL2. It supports the execution of multiple EL1 operating systems.

Non-secure
state

The Security state that restricts access to only the Non-secure system resources such as memory,
peripherals and System registers.

Normal
world

The execution environment when the core is in the Non-secure state.

OS Application operating system such as Linux or Windows. This also includes virtualized OS running
under a hypervisor.

PE The abstract machine defined in the ARM architecture, as documented in an ARM Architecture
Reference Manual. A processing element implementation that is compliant with the ARM architecture
must conform with the behaviors described in the corresponding ARM Architecture Reference
Manual.

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 22

Term Meaning

Secure EL1 The Secure EL1 Exception level, the Exception level used to execute the S-EL1 software in Secure state.
The software can be a Secure OS or S-EL1 firmware.

Secure state The ARM Security state that enables access to the Secure and Non-secure systems resources, such as
memory, peripherals and System registers.

SMC Secure Monitor Call. An instruction that causes a synchronous exception that is taken to EL3.

SoC System on Chip.

Unknown
Function
Identifier

A reserved return code defined by SMCCC that indicates that the function is not implemented. It is

declared as NOT_SUPPORTED in the interface specification and takes the value -1.

1.3 Firmware definition

Implementations of the services described in this specification will be implemented at multiple levels to be available to both host operating

systems and hypervisors that run against hardware platforms, and to guest operating systems that run against virtual platforms.

Platform firmware typically runs at EL2 and EL3 to provide services to host Operating Systems and hypervisors. The services described in this

specification would be implemented in EL3 for this software.

Virtualized firmware typically runs at EL1 and EL2 to provide services to guest Operating Systems. The services described in this specification would

be implemented in EL2 for this software.

Both platform firmware and virtual firmware implementations of these services are referred to as firmware in the remainder of this document.

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 22

2 Changes to the SMC Calling Convention

2.1 Overview

2.1.1 Optimize SMC/HVC calling convention from AArch64

In order to optimize the execution of SMC and HVC calls from A64 assembly, the register calling convention from AArch64 is updated to reduce the

number of caller-save registers from 18 to just 4, which matches the calling convention for AArch32.

This permits firmware operations to be invoked from assembly code without saving and then restoring a large number of GP registers.

The calling convention change is backwards compatible from the perspective of the caller. However, unmodified callers will perform more saving

and restoring of registers than is strictly necessary.

Adding this calling convention change to the firmware implementation should not add a significant overhead, as most existing implementations

need to correctly handle calls from AArch32, which requires sanitizing GP register state on returning to the caller.

This change in calling convention is mandatory for all SMCCC calls, not just the new functions defined in this specification. Note that it must also

apply to all unimplemented SMCCC calls that return the Unknown Function Identifier (NOT_SUPPORTED) value.

The changes to the calling convention are highlighted in gray in Table 1 below, which is modified from section 3.1 in the original SMCCC

specification [3].

Register Name Role during SMC or HVC call

SMC32/HVC32 SMC64/HVC64 Calling values Modified Return state

SP_ELx ELx stack pointer No

Registers
values are
preserved

SP_EL0 EL0 stack pointer No

X30 The Link Register No

X29 The Frame Pointer No

X19…X28 Registers that are saved by the called function No

X18 The Platform Register No

X17 The second intra-procedure-call scratch register No

Registers
values are
preserved

X16 The first intra-procedure-call scratch register No

X9…X15 Temporary registers No

X8 Indirect result location register No

W7 W7 Optional Client ID in bits[15:0] (ignored for HVC
calls)

Optional Secure OS ID in bits[31:16]

No

W6 X6

(or W6)

Parameter register

Optional Session ID register

No

W4…W5 X4…X5 Parameter registers No

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 22

Register Name Role during SMC or HVC call

SMC32/HVC32 SMC64/HVC64 Calling values Modified Return state

W1…W3 X1…X3 Parameter registers Yes SMC and HVC
Result registers W0 W0 Function Identifier Yes

Table 1 Register Usage in AArch64 SMC32, HVC32, SMC64, and HVC64 calls

2.1.2 SMCCC Version

For system software to identify the implementation of the new calling convention, a SMCCC version number is introduced, and a function to

retrieve this value.

The version that introduces the new calling convention and Arm Architecture Services is v1.1.

All previous versions of SMCCC specification (revisions A and B) are v1.0.

As the SMCCC Version function is new in this specification, existing firmware implementations that conform to SMCCC are expected to return

NOT_SUPPORTED. When this value is returned then the caller should treat this as if it had returned v1.0.

Firmware implementations are permitted to implement this function and return v1.0 if they do not provide the new calling convention or feature

discovery function.

This function is mandatory if SMCCC is version 1.1 or later.

See section 2.2.2 for a full specification of the SMCCC version function.

2.1.3 SMCCC Arm Architecture Service function discovery

The new SMCCC functions are added to the Arm Architecture Service range of fast calls.

For system software to dynamically detect the implementation of the Arm Architecture Service functions, a new feature discovery function is

specified. This will also enable additional Arm Architecture Service functions to be detected when they are added to the firmware implementation

in future.

This function is mandatory if SMCCC is version 1.1 or later.

See section 2.2.3 for a full specification of the discovery function.

2.1.4 Workarounds for cache speculation vulnerabilities

These workaround functions should be provided in firmware on systems containing at least one PE affected by CVE-2017-5715 or CVE-2018-3639

with an available firmware workaround (see [1] for details on which Arm CPUs are affected).

See sections 2.2.4 and 2.2.5 for a full specification of the workaround functions.

2.1.5 Deprecation of the General Service Queries for the Arm Architecture Service

The General Service Queries for SMCCC call ranges are described in section 6.2 of the document ARM DEN 0028B SMC Calling Conventions.

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 22

These functions are not always well suited to firmware that is integrated with multiple sub-services being combined into one service range. For

example, PSCI and SDEI in the Standard Service range. In particular, the ‘call count’ and ‘revision’ functions do not provide useful information to the

caller when multiple functions are provided. As a result, these are not widely used to identify firmware services.

The requirement to implement these functions for the Arm Architecture Service is deprecated from version 1.1 of SMCCC, and might be removed in

a future version. The function IDs which can be omitted are: 0x8000 FF00, 0x8000 FF01 and 0x800 FF03.

2.2 Interface

2.2.1 Return Codes

Table 2 defines the possible values for error codes used with the interface functions. The error return type is signed integer. Zero and positive

values denote success and negative values indicates error.

Name Description Value

SUCCESS The call completed successfully. 0

NOT_SUPPORTED
Not supported by the
implementation.

-1

NOT_REQUIRED
The call is deemed not required by
the implementation.

-2

Table 2 Return code and values

2.2.2 SMCCC_VERSION

Dependency MANDATORY from SMCCC v1.1

OPTIONAL for SMCCC v1.0

Description Retrieve the implemented version of the SMC Calling Convention

Parameters uint32 Function ID 0x8000 0000

Return int32 NOT_SUPPORTED Treat as v1.0

major:minor  Bit[31] must be zero

 Bits [30:16] Major version

 Bits [15:0] Minor version

2.2.2.1 Usage
This call is used by system software to determine the version of SMCCC implemented, which indicates the calling convention for AArch64 callers

and the presence of the SMCCC_ARCH_FEATURES function.

2.2.2.2 Discovery
This function was not defined in SMCCC version 1.0, and might not be safe on all platforms. Calling software can detect the implementation of this

function by one of the following methods:

 Built-in knowledge of the firmware implementation.

 Discovery via PSCI_FEATURES (see section 3.2.1 which defines this function and Appendix A: Discovery of Arm Architecture Service functions

for the full discovery procedure).

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 22

 Information from firmware tables such as Flattened Device Tree or ACPI tables.

See Appendix A: Discovery of Arm Architecture Service functions for a description of the full discovery sequence.

If SMCCC_VERSION is implemented, calling SMCCC_ARCH_FEATURES with arch_func_id equal to 0x8000 0000 will return SUCCESS.

2.2.2.3 Caller responsibilities
Prior to calling this function, Arm recommends that the caller determines if it is safe to do so on the platform as some firmware implementations

do not implement this function safely. Appendix A: Discovery of Arm Architecture Service functions provides the recommended discovery protocol.

The caller must interpret a NOT_SUPPORTED response as indicating the presence of firmware implementing SMCCC v1.0.

2.2.2.4 Implementation responsibilities
For firmware that implements the old calling convention for AArch64 callers, this function must return NOT_SUPPORTED (-1) or version 1.0

(0x10000).

For firmware that implements the new calling convention for AArch64 callers this function must return version 1.1 (0x10001).

2.2.3 SMCCC_ARCH_FEATURES

Dependency MANDATORY from SMCCC v1.1

OPTIONAL for SMCCC v1.0

Description Determine the availability and capability of Arm Architecture Service functions

Parameters uint32 Function ID 0x8000 0001

uint32 arch_func_id Function ID of an Arm Architecture Service Function

Return int32 < 0 Function not implemented or arch_func_id
not in Arm Architecture Service range. The
reason is indicated by an error code specific to
the function.

SUCCESS Function implemented

> 0 Optional

Function implemented. Function capabilities
are indicated using feature flags specific to the
function.

2.2.3.1 Usage
This call is used by system software to determine whether a specific Arm Architecture Service function is implemented in the firmware. This

function might also provide information about the capabilities of the function.

2.2.3.2 Discovery
The implementation of this function can be detected by checking the SMCCC version. This function is mandatory if SMCCC_VERSION indicates that

version 1.1 or later is implemented.

See Appendix A: Discovery of Arm Architecture Service functions for the full discovery sequence.

If SMCCC_ARCH_FEATURES is implemented, calling SMCCC_ARCH_FEATURES with arch_func_id equal to 0x8000 0001 will return SUCCESS.

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 22

2.2.3.3 Parameters
The arch_func_id parameter is the Function ID in the Arm Architecture Service range: 0x8000 0000-0x8000 FFFF and 0xC000 0000-0xC000

FFFF. Values outside of this range are invalid.

2.2.3.4 Return
If the result is non-negative it indicates that the function is implemented.

Some functions provide information about their capabilities in the result.

A description of how to interpret the result of calling SMCCC_ARCH_FEATURES is provided in the Discovery section of the documentation for each

function.

2.2.3.5 Caller responsibilities
The caller must only call SMCCC_ARCH_FEATURES on implementations compliant to SMCCC version 1.1 or later.

2.2.3.6 Implementation responsibilities
This function must return NOT_SUPPORTED if the SMCCC version is lower than version 1.1.

This function must return SUCCESS when arch_func_id is the SMCCC_VERSION or SMCCC_ARCH_FEATURES function id.

2.2.4 SMCCC_ARCH_WORKAROUND_1

Dependency OPTIONAL from SMCCC v1.1

NOT SUPPORTED in SMCCC v1.0

Description Execute the mitigation for CVE-2017-5715 on the calling PE

Parameters uint32 Function ID 0x8000 8000

Return void This function has no return value

2.2.4.1 Usage
This call is used by system software to execute a firmware workaround required to mitigate CVE-2017-5715.

2.2.4.2 Discovery
The implementation of this function can be detected by calling SMCCC_ARCH_FEATURES (see 2.2.3) with arch_func_id equal to 0x8000 8000.

The result of that call should be interpreted as follows:

NOT_SUPPORTED The discovery call will return NOT_SUPPORTED on every PE in the system.

SMCCC_ARCH_WORKAROUND_1 must not be invoked on any PE in the system.

Either:

 None of the PEs in the system require firmware mitigation for CVE-2017-5715,

 The system contains at least 1 PE affected by CVE-2017-5715 that has no firmware mitigation
available, or

 The firmware does not provide any information about whether firmware mitigation is required.

0 SMCCC_ARCH_WORKAROUND_1 can be invoked safely on all PEs in the system.

The PE on which SMCCC_ARCH_FEATURES is called requires firmware mitigation for CVE-2017-5715.

1 SMCCC_ARCH_WORKAROUND_1 can be invoked safely on all PEs in the system.

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 22

The PE on which SMCCC_ARCH_FEATURES is called does not require firmware mitigation for CVE-2017-
5715.

2.2.4.3 Caller responsibilities
The caller must not call this function unless it has determined that it is implemented in the firmware, see Discovery above.

Arm recommends the caller only call this on PEs affected by CVE-2017-5715 when a firmware based mitigation is required and a local workaround

is infeasible. Calling this on other PEs is wasted execution.

See the Arm Security Update [1] and

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 22

Appendix B: Mitigating CVE-2017-5715 on Arm CPUs for more information.

2.2.4.4 Implementation responsibilities
This function must not be provided in firmware implementations not compliant to SMCCC version 1.1 or later.

If implemented, the firmware must provide discovery of this function as defined in the Discovery section above.

Arm recommends that firmware does not provide an implementation of this function on systems that return a negative error code in the discovery

call above.

If implemented, the firmware must fully implement this function for all PEs in the system requiring firmware mitigation for CVE-2017-5715

In heterogeneous systems with some PEs that require mitigation and others that do not, the firmware must provide a safe implementation of this

function on all PEs. This permits callers to call the function on all PEs in a system where the firmware implements the workaround, without risking

functional stability. In such systems, on PEs that do not require firmware mitigation, the firmware must provide an implementation that has no

effect.

See the Arm Security Update [1] and

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 22

Appendix B: Mitigating CVE-2017-5715 on Arm CPUs for more information.

2.2.5 SMCCC_ARCH_WORKAROUND_2

Dependency OPTIONAL from SMCCC v1.1

NOT SUPPORTED in SMCCC v1.0

Description Enable or disable the mitigation for CVE-2018-3639 on the calling PE

Parameters uint32 Function ID 0x8000 7FFFF

uint32 enable A non-zero value indicates that the mitigation for CVE-2018-3639 must be
enabled. A value of zero indicates that it must be disabled.

Return void This function has no return value.

2.2.5.1 Usage
This call is used by system software to enable or disable a firmware workaround required to mitigate CVE-2018-3639. The call only affects the

mitigation state (enabled or disabled) for the calling execution context. The workaround is enabled by default for all execution contexts managed

by the firmware. Once the workaround is disabled, it remains disabled until explicitly re-enabled by a subsequent call to this function.

2.2.5.2 Discovery
The implementation of this function can be detected by calling SMCCC_ARCH_FEATURES (see 2.2.3) with arch_func_id equal to 0x8000 7FFF. The

result of that call should be interpreted as follows:

NOT_SUPPORTED The discovery call will return NOT_SUPPORTED on every PE in the system.

SMCCC_ARCH_WORKAROUND_2 must not be invoked on any PE in the system.

Either:

 The system contains at least 1 PE affected by CVE-2018-3639 that has no firmware mitigation available, or

 The firmware does not provide any information about whether firmware mitigation is required or enabled.

NOT_REQUIRED The discovery call will return NOT_REQUIRED on every PE in the system.

SMCCC_ARCH_WORKAROUND_2 must not be invoked on any PE in the system.

For all PEs in the system, firmware mitigation for CVE-2018-3639 is either permanently enabled or not
required.

0 SMCCC_ARCH_WORKAROUND_2 can be invoked safely on all PEs in the system.

The PE on which SMCCC_ARCH_FEATURES is called requires dynamic firmware mitigation for CVE-2018-
3639 using SMCCC_ARCH_WORKAROUND_2.

1 SMCCC_ARCH_WORKAROUND_2 can be invoked safely on all PEs in the system.

The PE on which SMCCC_ARCH_FEATURES is called does not require dynamic firmware mitigation for
CVE-2018-3639 using SMCCC_ARCH_WORKAROUND_2.

Firmware mitigation on this PE is either permanently enabled or not required.

2.2.5.3 Caller responsibilities
The caller must not call this function unless it has determined it is implemented in the firmware, see Discovery above.

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 22

Arm recommends the caller only call this on PEs affected by CVE-2018-3639 when a dynamic firmware-based mitigation is required and a local

workaround is infeasible. Calling this on other PEs is wasted execution.

Arm recommends that secure world software does not use this call so that it remains protected at all times.

See the Arm Security Update [1] and Appendix C: Mitigating CVE-2018-3639 on Arm CPUs for more information.

2.2.5.4 Implementation responsibilities
This function must not be provided in firmware implementations not compliant to SMCCC version 1.1 or later.

If implemented, the firmware must provide discovery of this function as defined in the Discovery section above.

Arm recommends that firmware does not provide an implementation of this function on systems that return a negative error code in the discovery

call above.

If implemented, the firmware must fully implement this function for all PEs in the system requiring dynamic firmware mitigation for CVE-2018-

3639.

In heterogeneous systems with some PEs that require dynamic firmware mitigation and others that do not, the firmware must provide a safe

implementation of this function on all PEs. This permits callers to call the function on all PEs in a system where the firmware implements the

workaround, without risking functional stability. In such systems, on PEs that do not require dynamic firmware mitigation, the firmware must

provide an implementation that has no effect.

If implemented, the firmware must separately maintain the logical mitigation state (enabled or disabled) for each execution context it manages.

The default mitigation state (enabled) must be applied:

 To the primary PE following cold boot.

 To a PE when it starts up following a CPU_ON call, as defined by the PSCI specification [4].

 To a PE when it wakes up from a powerdown state (for example, following a CPU_SUSPEND call), as defined by the PSCI specification [4].

If implemented, Arm recommends that the firmware enables mitigation during its own execution.

If the firmware implements this function and the Software Delegated Exception Interface (SDEI) specification [7], then the firmware must apply the

default mitigation state (enabled) to the execution context of each SDEI client handler following each triggered event, irrespective of the mitigation

state of the interrupted or client execution contexts. The firmware must restore the mitigation state of the interrupted or client execution context

following a call to SDEI_EVENT_COMPLETE or SDEI_EVENT_COMPLETE_AND_RESUME respectively.

See the Arm Security Update [1] and Appendix C: Mitigating CVE-2018-3639 on Arm CPUs for more information.

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 22

3 Changes to PSCI

3.1 Overview

3.1.1 Discoverability of SMCCC implementation

On platforms that fully implement the SMC Calling Convention as described in revision B of that specification, the above additional functions are

adequate for detecting the presence of the Arm Architecture Service functionality.

However, some platform and virtualization firmware only implements a subset of SMCCC. Specifically, such firmware might only implement the

PSCI specification in order to meet Operating System requirements, but not provide a safe implementation of unimplemented SMCCC functions. A

safe implementation is one that conforms to the SMCCC calling convention and returns NOT_SUPPORTED (-1) for functions that are not defined or

not implemented.

System software that needs to use the mitigation functions described above but must also run correctly on such platforms, requires one or more

additional mechanisms to discover whether SMCCC is implemented, and specifically whether it is safe to call SMCCC_VERSION.

One mechanism is to add discoverability of this to the firmware description (e.g. Device Tree or ACPI tables).

To accelerate adoption of these mitigations and protect more systems more rapidly from this vulnerability, Arm strongly recommends the firmware

implementations also provide an additional discovery mechanism though the firmware PSCI implementation of PSCI_FEATURES.

3.2 Interface

This is an updated excerpt from the PSCI specification for PSCI_FEATURES. The significant changes are highlighted in gray. Note that the changes

will apply from PSCI v1.0.

3.2.1 PSCI_FEATURES

Dependency Introduced in PSCI v1.0

Description Query API that allows discovering whether a specific PSCI function is implemented and its features. See
the PSCI specification [4] for more details.

Parameters uint32 Function ID 0x8400 000A

uint32 psci_func_id Function ID for a PSCI Function or SMCCC_VERSION

Return int32 NOT_SUPPORTED Function identified by psci_func_id not is
not implemented or not valid

SUCCESS Function implemented

> 0 Optional

A set of feature flags associated with an
implemented function indentified by

psci_func_id. Feature flags are specific to
each function. In all cases the format is:

 Bit[31] is zero

 Bits[0:30] represent the feature flags.
See PSCI [4] for details.

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 22

3.2.1.1 Usage
As for PSCI v1.0 and later.

In addition, this interface can be used to detect the implementation of SMCCC_VERSION in the firmware.

3.2.1.2 Parameters
The psci_func_id parameter is valid if it is any of:

 a PSCI SMC32 function identifier, in the range 0x8400 0000-0x8400 001F

 a PSCI SMC64 function identifier, in the range 0xC400 0000-0xC400 001F

 the SMCCC_VERSION function identifier, 0x8000 0000

3.2.1.3 Return
For valid PSCI function identifiers see PSCI for details of the return value.

When psci_func_id is SMCCC_VERSION, a return value of SUCCESS (zero) indicates that SMCCC_VERSION is implemented.

3.2.1.4 Implementation responsibilities
Arm recommends that this function reports the presence of SMCCC_VERSION for any firmware that implements SMCCC v1.1 as described in this

specification.

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 22

4 Appendix A: Discovery of Arm Architecture
Service functions

System software needs to run safely on any existing platform, but should make use of the mitigation functionality whenever it is available. The

following approach to discovery should maximize the ability to detect this functionality without causing unsafe behavior on existing platforms.

4.1 Step 1: Determine if SMCCC_VERSION is implemented

The following pseudo code summarizes the proposed discovery flow using PSCI 1.0:

if (FirmwareTablesLookup(PCSI) == SUCCESS)

{

 if (invoke_pcsi_version() >= 0x10000)

 {

 if (invoke_pcsi_features(SMCCC_VERSION) == SUCCESS)

 return SUCCESS;

 }

}

return NOT_SUPPORTED

The steps are:

1. Use firmware data, device tree PSCI node, or ACPI FADT PSCI flag, to determine whether a PSCI implementation is present.

2. Use PSCI_VERSION to ascertain whether PSCI_FEATURES is provided. PSCI_FEATURES is mandatory from version 1.0 of PSCI.

3. Use PSCI_FEATURES with the SMCCC_VERSION function identifier as a parameter to determine that SMCCC_VERSION is implemented.

In future ACPI and device tree might also be extended to indicate the compliance to the SMCCC directly.

4.2 Step 2: Determine if Arm Architecture Service function is implemented

The following pseudo code summarizes the proposed discovery flow of an Arm Architecture Service function, using

SMCCC_ARCH_WORKAROUND_1 as an example:

if (invoke_smccc_version() >= 0x10001)

{

 if (invoke_smccc_arch_features(SMCCC_ARCH_WORKAROUND_1) >= 0)

 return SUCCESS;

}

return NOT_SUPPORTED

The steps are:

1. Use SMCCC_VERSION to ascertain that the calling convention complies to version 1.1 or above.

2. Use SMCCC_ARCH_FEATURES to query whether the Arm Architecture Service function is implemented on this system.

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 22

If the software is running on a heterogenous system (e.g. bit.LITTLE), it can optimize use of an Arm Architecture Service function by invoking

SMCCC_ARCH_FEATURES on each PE and eliminating the calls to the function on PEs that indicate the function call is not required, for example on

PEs that return one (1) in the case of SMCCC_ARCH_WORKAROUND_1.

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 22

5 Appendix B: Mitigating CVE-2017-5715 on
Arm CPUs

Mitigations for CVE-2017-5715 on Arm Cortex CPUs involves invalidation of the branch predictor. The approach differs depending on the CPU

model. See also the Arm Security Update [1] and the Technical Reference Manuals (TRMs) for each CPU on the Arm Developer website [6].

Table 3 provides a summary of the actions required.

 Cores AArch64 Workarounds AArch32 Workarounds

Armv8-A Cortex-A57

Cortex-A72

MMU Disable/Enable
(a)

 MMU Disable/Enable
(a)

Cortex-A73

Cortex-A75

BPIALL instruction
(b)

 BPIALL instruction

Cortex-A35

Cortex-A53

Cortex-A55

Not affected Not affected

Cortex-A32 -
(e)

 Not affected

Armv7-A Cortex-A8 -
(e)

 BPIALL instruction
(c)

Cortex-A9

Cortex-A12

Cortex-A17

-
(e)

 BPIALL instruction

Cortex-A15 -
(e)

 ICIALLU instruction
(d)

Cortex-A5

Cortex-A7

-
(e)

 Not affected

Table 3 CVE-2017-5715 mitigations on Arm Cortex CPUs

(a) The software must disable the MMU for the currently active translation regime. The toggling code must be mapped so that physical and virtual

address are the same.

(b) This must be done from a privileged exception level in AArch32 execution state.

(c) For Cortex-A8, ACTLR[6] ‘IBE’ must be equal to 1 to enable the BPIALL instruction.

(d) For Cortex-A15, ACTLR[0] must be equal to 1 in order to invalidate the branch predictor when performing the ICIALLU instruction.

(e) These cores are AArch32 only

Constraints (a) and (b), in particular, imply that the firmware based mitigation described in this document is the most effective, or only, mitigation

available for system software.

Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems

ARM DEN 0070A
Version 1.3

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 22

6 Appendix C: Mitigating CVE-2018-3639 on
Arm CPUs

Mitigations for CVE-2018-3639 on Arm Cortex CPUs involve disabling the bypassing of writes by reads (including speculative reads), either

permanently during CPU initialization, or dynamically as required. The approach differs depending on the CPU model. See also the Arm Security

Update [1] and the Technical Reference Manuals (TRMs) for each CPU on the Arm Developer website [6].

 Cores Workarounds

Armv8-A Cortex-A57

Cortex-A72

Permanently set bit 55 (Disable load pass store) of CPUACTLR_EL1
(S3_1_C15_C2_0)

Cortex-A73 Permanently set bit 3 of S3_0_C15_C0_0 (not in TRM)

Cortex-A75 Permanently set bit 35 (reserved in TRM) of CPUACTLR_EL1
(S3_0_C15_C1_0)

Cortex-A35

Cortex-A53

Cortex-A55

Cortex-A32

Not affected

Armv7-A Cortex-A8

Cortex-A9

Cortex-A12

Cortex-A17

Cortex-A15

Cortex-A5

Cortex-A7

Not affected

Table 4 CVE-2018-3639 mitigations on Arm CPUs

