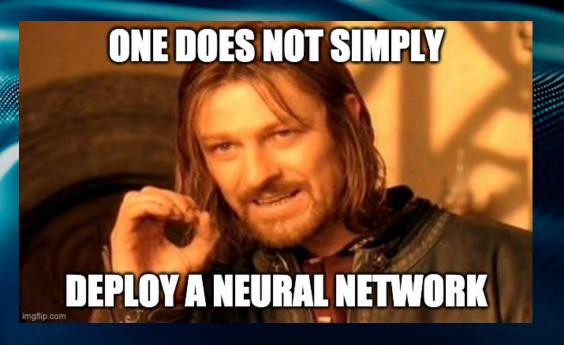
arm Research

TinyML Model Design

2nd On-Device Intelligence Workshop @ MLSys 2021



Igor Fedorov Arm ML Research Lab April 9, 2021

Tiny Hardware

- ~50 billion MCU chips shipped in '19
 - ~100 million GPUs in '18
- Severe memory limitations
 - Limited flash memory —> limited model size
 - Limited SRAM —> limited feature map size
- LeNet for MNIST
 - 420 KB flash
 - 12 KB SRAM

Table 1: Processors for ML inference: estimated characteristics to indicate the relative capabilities.

Processor	Usecase	Compute	Memory	Power	Cost
Nvidia 1080Ti GPU	Desktop	10 TFLOPs/Sec	11 GB	250 W	\$700
Intel i9-9900K CPU	Desktop	500 GFLOPs/Sec	256 GB	95 W	\$499
Google Pixel 1 (Arm CPU)	Mobile	50 GOPs/Sec	4 GB	~5 W	_
Raspberry Pi (Arm CPU)	Hobbyist	50 GOPs/Sec	1 GB	1.5 W	_
Micro Bit (Arm MCU)	ΙοΤ	16 MOPs/Sec	16 KB	~1 mW	\$1.75
Arduino Uno (Microchip MCU)	IoT	4 MOPs/Sec	2 KB	~1 mW	\$1.14

- "Bonsai is not compared to deep convolutional neural networks as they have not yet been demonstrated to fit on such tiny IoT devices" [2]
- "Consider a typical IoT device that has ≤ 32kB RAM and a 16MHz processor. Most existing ML models cannot be deployed on such tiny devices" [3]

^[1] Fedorov et al., SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers. NeurIPS '19

^[2] Kumar et al. Resource-efficient machine learning in 2 kb ram for the internet of things. ICML '17

^[3] Gupta et al. Protonn: Compressed and accurate knn for resource-scarce devices. ICML '17

Can we design the model *for* the device?

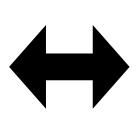
Deep learning training software

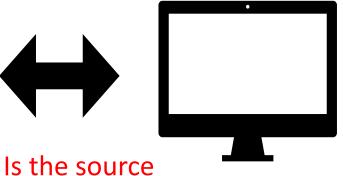
- Tensorflow
- Pytorch
- etc.

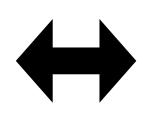
Deployment tool

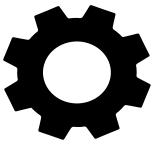
- TFlite-micro [4]
- TinyEngine [5]

Research papers

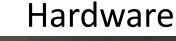








- Are all of the operators supported?
- All of compute graphs / structures?



What features are supported?

What are the compute resources required?

publicly

available?

code

- [4] David et al. TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems. MLSys '21
- [5] Lin et al. MCUNet: Tiny Deep Learning on IoT Devices. NeurIPS '21

Algorithmic Tools

- Quantization
 - Int8 cheaper than float (storage + compute)
 - Sub int8 not supported by HW
- Pruning
 - Structured pruning
 - HW friendly
 - Reduces ops
 - Limited compression benefits
 - Unstructured / random pruning
 - Not HW friendly unless extreme
 - Large compression benefits

- Neural architecture search
 - Operators, connectivity, layer width, resolution, etc.
 - Computationally demanding
 - Not all computational graphs supported by deployment tools
- Learn from the HW directly
 - HW model, or
 - HW interface

Quantization

- Float —> int8 (weights + activations)
 - 4x reduction in model size
 - 4x reduction in feature map size
 - Cheaper computation
- Sub 8-bit and non-uniform not supported by HW
- $Q(w) = s \times round\left(\frac{clip(w, -w_{max}, w_{max})}{s}\right)$ $s = \frac{w_{max}}{2^{8-1}-1} \quad [6]$
- How to select w_{max} ? Depends...

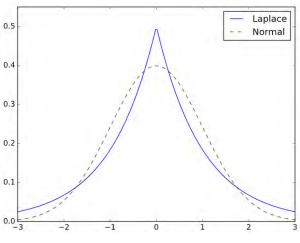
- If training data is available
 - Post-training calibration [7]
 - Quantization aware training [8]
 - Treat W_{max} as a variable and optimize by GD on the task objective
 - Two dependencies on W_{max}
 - Straight through estimator
- If no training data, still have options[9]

[9] Nagel et al., Data-Free Quantization Through Weight Equalization and Bias Correction. ArXiv '19

^[7] https://www.tensorflow.org/lite/performance/post training quantization

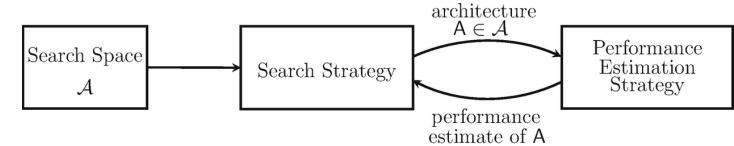
Pruning

- Unstructured [10] vs structured [11]
 - Can the HW benefit from highly compressed weights?
- Sparsity promoting regularization —> drive the weights to 0
 - How to pick number of non-zeros per layer?
 - Reinforcement learning [12]
- Gradient based [13]
 - $w \leftarrow w \times 1_{w > \tau}$,approximate indicator by sigmoid during backdrop
- Rank —> pruned —> retrain —> (repeat)
 - Magnitude [14], minimal influence on objective [15]
- [10] Molchanov et al. Variational dropout sparsifies deep neural networks. ICML '17
- [11] Louizos et al. Bayesian compression for deep learning. NeurIPS '17
- [12] He et al. AMC: AutoML for Model Compression and Acceleration on Mobile Devices. ECCV '18
- [13] Fedorov et al. TinyLSTMs: Efficient Neural Speech Enhancement for Hearing Aids. Interspeech '20



[14] Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding. ICLR '16
[15] Molchanov et al. Importance Estimation for Neural Network Pruning. CVPR '19

Neural architecture search



- The search strategy
 - Black box (RL, Bayesian optimization, genetic alg., etc.) [16] vs gradient based [17]
 - Hardware model —> do we need it, or is there a viable proxy?
- Estimation strategy
 - Computationally expensive —> thousands of GPU days in some cases
 - Weight sharing
 - Morphisms
- The distinction between quantization / pruning and NAS is arbitrary [18]



[17] Liu et al. DARTS: Differentiable Architecture Search. ICLR '19

[18] Cai and Vasconcelos. Rethinking Differentiable Search for Mixed-Precision Neural Networks. CVPR '20

A few examples and lessons from our work SpArSe [1]

- Multi-objective Bayesian optimization
- Architecture, channel / weight pruning thresholds, training hyperparameters
- Closed form memory model
 - SRAM usage modeled by sum of input and output tensors for each layer
- Able to deploy to devices previously thought too small for NNs
- The deployment tool (uTensor) only supported feed-toward graphs
- Bayesian optimization is slow, even with "tricks" to speed it up —> 10 GPU days on CIFAR10-binary

	MNIST			CIFAR10-binary			C	CUReT			Chars4k		
	Acc	<u>3</u>	GPUD	Acc	3 0 -	GPUD	Acc	<u>3</u> 0	GPUD	Acc	$\frac{\mathcal{B}}{\ _0}$	GPUD	
Bonsai	97.24 97.01	510 2.15 <i>e</i> 4	11	73.08 73.02	487 512	1	96.45 95.23	8.5e3 2.9e4	1	67.82 58.59	1.7e3 2.6e4	1	
Bonsai (16 kB)	-	-		76.66 76.64	1.4e3 4.1 <i>e</i> 3	9		-	_			_	
ProtoNN	96.84 95.88	476 1.6e4	11	76.56 76.35	1.4e3 4.1e3	10	96.45 94.44	8.5e3 1.6e4	1		-	_	
GBDT	9 8.78 97.90	7.5e6	11	77.90 77.19	1.6e3 4e5	8	96.45 90.81	8.5e3 6.1e5	1	67.82 43.34	1.7e3 = 2.5e6	1	
kNN	9 6.84 94.34	4.71 <i>e</i> 7	11	76.34 73.70	1.4e3 2e7	10	96.45 89.81	8.5e3 2.6e6	2	67.82 39.32	1.7e3 1.7e6	1	
RBF-SVM	9 7.42 97.30	569 1e7	10	81.77 81.68	3.2e3 1.6e7	3	9 7.58 97.43	2.2e4 2.3e6	2	67.82 48.04	1.7e3 2e6	1	
LeNet + SpVD	99.16 99.10	1e3 1.8e3	8	75.35 75.09	1.4e3 1.6e5	10	-	-	_		_	_	
MODC	99.17 99.15	1.45e3 3e3	1	-	-	_	-	-	_	 -	_	_	

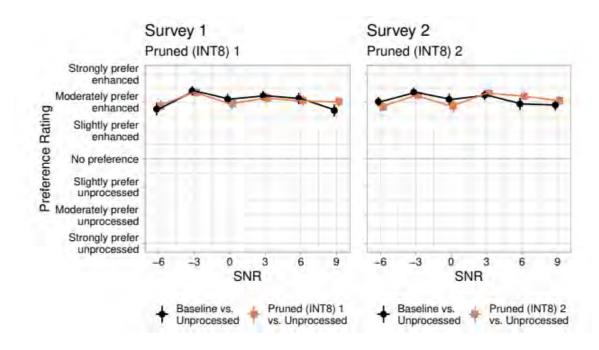
[1] Fedorov et al., SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers. NeurIPS '19

A few examples and lessons from our work

TinyLSTMs [13]

- Speech denoising using LSTMs
- Latency constraint w/ ops proxy
- Neuron pruning to reduce ops
 - Gradient based threshold learning for efficiency
- Quantization to run w/ integer math
- LSTMs were not supported by TFlitemicro

	SISDR (dB)	BSS SDR (dB)	Params (M)	MS (MB)	WM (KB)	MOps/inf.	Latency (ms/inf.)	Energy (mJ/inf.)	GPUH
Baseline (FP32)	11.99	12.77	0.97	3.70	26.0	1.94	12.52*	6.76*	14
Pruned (FP32)	11.99	12.78	0.52	1.97	18.8	1.04	6.71*	3.62*	72
Pruned (INT8) 1	11.80	12.69	0.61	0.58	5.1	1.22	7.87	4.25	61
Pruned (INT8) 2	11.47	12.22	0.33	0.31	3.7	0.66	4.26	2.30	144
Pruned Skip RNN (INT8)	11.42	12.07	0.46	0.43	4.67	0.37	2.39 [†]	1.29 [†]	275
Erdogan et al. [20]		13.36	0.96	3.65	25.9	1.92	12.39	6.69	- Q
Wilson et al. [6]	0.70	14.60	65	247.96	4472.6	130	839*	453	18360

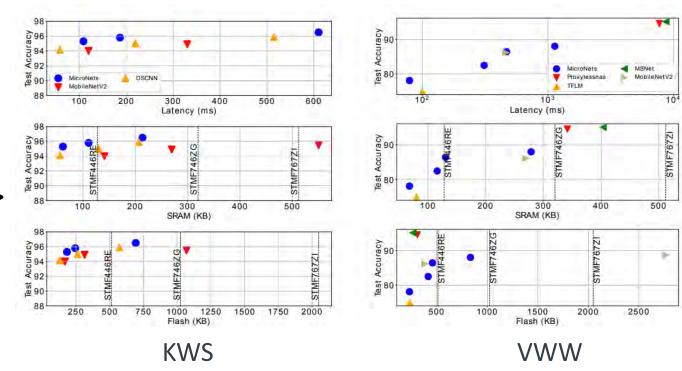


[13] Fedorov et al. TinyLSTMs: Efficient Neural Speech Enhancement for Hearing Aids. Interspeech '20

A few examples and lessons from our work

MicroNets [19]

- Differentiable NAS
- Commodity MCU target
- 3 TinyMLperf datasets
- Optimize for Flash, SRAM, ops —> good proxy for latency on MCUs
- Search cost on the order of hours
- TFlite-micro deployment tool
- Memory overheads difficult to predict



[19] Banbury et al. MicroNets: Neural Network Architectures for Deploying TinyML Applications on Commodity Microcontrollers. MLsys '21

