You copied the Doc URL to your clipboard.

PMXEVTYPER, Performance Monitors Selected Event Type Register

The PMXEVTYPER characteristics are:

Purpose

When PMSELR.SEL selects an event counter, this accesses a PMEVTYPER<n> register. When PMSELR.SEL selects the cycle counter, this accesses PMCCFILTR.

Configuration

AArch32 System register PMXEVTYPER bits [31:0] are architecturally mapped to AArch64 System register PMXEVTYPER_EL0[31:0] .

When the value of PMSELR.SEL is 31, to select the cycle counter, RW fields in this register have defined reset values that apply only when the PE resets into an Exception level that is using AArch32. See PMCCFILTR for the reset values.

Otherwise, RW fields in this register reset to IMPLEMENTATION DEFINED values that might be UNKNOWN. This applies whenever PMSELR.SEL selects an event counter.

Attributes

PMXEVTYPER is a 32-bit register.

Field descriptions

The PMXEVTYPER bit assignments are:

313029282726252423222120191817161514131211109876543210
Event type register or PMCCFILTR

Bits [31:0]

Event type register or PMCCFILTR.

When PMSELR.SEL == 31, this register accesses PMCCFILTR.

Otherwise, this register accesses PMEVTYPER<n> where n is the value in PMSELR.SEL.

Accessing the PMXEVTYPER

If PMSELR.SEL is not 31, and is greater than or equal to the number of accessible counters then reads and writes of PMXEVTYPER are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

  • Accesses to the register are UNDEFINED.
  • Accesses to the register behave as RAZ/WI.
  • Accesses to the register execute as a NOP
  • Accesses to the register behave as if PMSELR.SEL has an UNKNOWN value less than the number of counters accessible at the current Exception level and Security state.
  • Accesses to the register behave as if PMSELR.SEL is 31.
  • If EL2 is implemented and enabled in the current Security state, and PMSELR.SEL is less than the number of implemented counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.
Note

In EL0, an access is permitted if it is enabled by PMUSERENR.EN or PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, at EL0 and EL1:

  • If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible counters.
  • If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible counters.

Otherwise, the number of accessible counters is the number of implemented counters. See HDCR.HPMN and MDCR_EL2.HPMN for more details.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

opc1opc2CRncoprocCRm
0b0000b0010b10010b11110b1101
if PSTATE.EL == EL0 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
        if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        else
            AArch64.AArch32SystemAccessTrap(EL1, 0x03);
    elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
        if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
            AArch32.TakeHypTrapException(0x00);
        else
            UNDEFINED;
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    else
        return PMXEVTYPER;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    else
        return PMXEVTYPER;
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    else
        return PMXEVTYPER;
elsif PSTATE.EL == EL3 then
    return PMXEVTYPER;
              

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

opc1opc2CRncoprocCRm
0b0000b0010b10010b11110b1101
if PSTATE.EL == EL0 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
        if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        else
            AArch64.AArch32SystemAccessTrap(EL1, 0x03);
    elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
        if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
            AArch32.TakeHypTrapException(0x00);
        else
            UNDEFINED;
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    else
        PMXEVTYPER = R[t];
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    else
        PMXEVTYPER = R[t];
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    else
        PMXEVTYPER = R[t];
elsif PSTATE.EL == EL3 then
    PMXEVTYPER = R[t];
              


Was this page helpful? Yes No