ICC_BPR1_EL1, Interrupt Controller Binary Point Register 1
The ICC_BPR1_EL1 characteristics are:
Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field determines Group 1 interrupt preemption.
Configuration
AArch64 System register ICC_BPR1_EL1 bits [31:0] (S) are architecturally mapped to AArch32 System register ICC_BPR1[31:0] (S) .
AArch64 System register ICC_BPR1_EL1 bits [31:0] (NS) are architecturally mapped to AArch32 System register ICC_BPR1[31:0] (NS) .
Virtual accesses to this register update ICH_VMCR_EL2.VBPR1.
RW fields in this register reset to architecturally UNKNOWN values.
Attributes
ICC_BPR1_EL1 is a 64-bit register.
Field descriptions
The ICC_BPR1_EL1 bit assignments are:
63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | BinaryPoint | ||
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Bits [63:3]
Reserved, RES0.
BinaryPoint, bits [2:0]
If the GIC is configured to use separate binary point fields for Group 0 and Group 1 interrupts, the value of this field controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a subpriority field. For more information about priorities, see Priority grouping.
The minimum value of the Non-secure copy of this register is the minimum value of ICC_BPR0_EL1 + 1. The minimum value of the Secure copy of this register is the minimum value of ICC_BPR0_EL1.
If EL3 is implemented and ICC_CTLR_EL3.CBPR_EL1S is 1:
-
When SCR_EL3.EEL2 is 1 and HCR_EL2.IMO is 1, Secure accesses to this register at EL1 access the state of ICV_BPR1_EL1.
-
Otherwise, Secure accesses to this register at EL1 access the state of ICC_BPR0_EL1.
If EL3 is implemented and ICC_CTLR_EL3.CBPR_EL1NS is 1, Non-secure accesses to this register at EL1 or EL2 behave as follows, depending on the values of HCR_EL2.IMO and SCR_EL3.IRQ:
HCR_EL2.IMO | SCR_EL3.IRQ | Behavior |
---|---|---|
0b0 | 0b0 | Non-secure EL1 and EL2 reads return ICC_BPR0_EL1 + 1 saturated to 0b111. Non-secure EL1 and EL2 writes are ignored. |
0b0 | 0b1 | Non-secure EL1 and EL2 accesses trap to EL3. |
0b1 | 0b0 | Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads return ICC_BPR0_EL1 + 1 saturated to 0b111. Non-secure EL2 writes are ignored. |
0b1 | 0b1 | Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 accesses trap to EL3. |
If EL3 is not implemented and ICC_CTLR_EL1.CBPR is 1, Non-secure accesses to this register at EL1 or EL2 behave as follows, depending on the values of HCR_EL2.IMO:
HCR_EL2.IMO | Behavior |
---|---|
0b0 | Non-secure EL1 and EL2 reads return ICC_BPR0_EL1 + 1 saturated to 0b111. Non-secure EL1 and EL2 writes are ignored. |
0b1 | Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads return ICC_BPR0_EL1 + 1 saturated to 0b111. Non-secure EL2 writes are ignored. |
This field resets to an architecturally UNKNOWN value.
Accessing the ICC_BPR1_EL1
On a reset, the binary point field is UNKNOWN.
An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum value.
Accesses to this register use the following encodings:
MRS <Xt>, ICC_BPR1_EL1
op0 | CRn | op1 | op2 | CRm |
---|---|---|---|---|
0b11 | 0b1100 | 0b000 | 0b011 | 0b1100 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if ICC_SRE_EL1.SRE == '0' then AArch64.SystemAccessTrap(EL1, 0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then AArch64.SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then return ICV_BPR1_EL1; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then AArch64.SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) then if SCR_EL3.NS == '0' then return ICC_BPR1_EL1_S; else return ICC_BPR1_EL1_NS; else return ICC_BPR1_EL1; elsif PSTATE.EL == EL2 then if ICC_SRE_EL2.SRE == '0' then AArch64.SystemAccessTrap(EL2, 0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then AArch64.SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) then if SCR_EL3.NS == '0' then return ICC_BPR1_EL1_S; else return ICC_BPR1_EL1_NS; else return ICC_BPR1_EL1; elsif PSTATE.EL == EL3 then if ICC_SRE_EL3.SRE == '0' then AArch64.SystemAccessTrap(EL3, 0x03); else if SCR_EL3.NS == '0' then return ICC_BPR1_EL1_S; else return ICC_BPR1_EL1_NS;
MSR ICC_BPR1_EL1, <Xt>
op0 | CRn | op1 | op2 | CRm |
---|---|---|---|---|
0b11 | 0b1100 | 0b000 | 0b011 | 0b1100 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if ICC_SRE_EL1.SRE == '0' then AArch64.SystemAccessTrap(EL1, 0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then AArch64.SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then ICV_BPR1_EL1 = X[t]; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then AArch64.SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) then if SCR_EL3.NS == '0' then ICC_BPR1_EL1_S = X[t]; else ICC_BPR1_EL1_NS = X[t]; else ICC_BPR1_EL1 = X[t]; elsif PSTATE.EL == EL2 then if ICC_SRE_EL2.SRE == '0' then AArch64.SystemAccessTrap(EL2, 0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then AArch64.SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) then if SCR_EL3.NS == '0' then ICC_BPR1_EL1_S = X[t]; else ICC_BPR1_EL1_NS = X[t]; else ICC_BPR1_EL1 = X[t]; elsif PSTATE.EL == EL3 then if ICC_SRE_EL3.SRE == '0' then AArch64.SystemAccessTrap(EL3, 0x03); else if SCR_EL3.NS == '0' then ICC_BPR1_EL1_S = X[t]; else ICC_BPR1_EL1_NS = X[t];