CPACR_EL1, Architectural Feature Access Control Register
The CPACR_EL1 characteristics are:
Purpose
Controls access to trace, SVE, Advanced SIMD and floating-point functionality.
Configuration
AArch64 System register CPACR_EL1 bits [31:0] are architecturally mapped to AArch32 System register CPACR[31:0] .
When HCR_EL2.{E2H, TGE} == {1, 1}, the fields in this register have no effect on execution at EL0 and EL1. In this case, the controls provided by CPTR_EL2 are used.
RW fields in this register reset to architecturally UNKNOWN values.
Attributes
CPACR_EL1 is a 64-bit register.
Field descriptions
The CPACR_EL1 bit assignments are:
63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 |
RES0 | |||||||||||||||||||||||||||||||
RES0 | TTA | RES0 | FPEN | RES0 | ZEN | RES0 | |||||||||||||||||||||||||
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Bits [63:29]
Reserved, RES0.
TTA, bit [28]
Traps EL0 and EL1 System register accesses to all implemented trace registers to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from both Execution states.
TTA | Meaning |
---|---|
0b0 |
This control does not cause any instructions to be trapped. |
0b1 |
This control causes EL0 and EL1 System register accesses to all implemented trace registers to be trapped. |
- The ETMv4 architecture does not permit EL0 to access the trace registers. If the Armv8-A architecture is implemented with an ETMv4 implementation, EL0 accesses to the trace registers are UNDEFINED, and any resulting exception is higher priority than an exception that would be generated because the value of CPACR_EL1.TTA is 1.
- The Armv8-A architecture does not provide traps on trace register accesses through the optional memory-mapped interface.
System register accesses to the trace registers can have side-effects. When a System register access is trapped, any side-effects that are normally associated with the access do not occur before the exception is taken.
If System register access to the trace functionality is not implemented, this bit is RES0.
This field resets to an architecturally UNKNOWN value.
Bits [27:22]
Reserved, RES0.
FPEN, bits [21:20]
Traps EL0 and EL1 accesses to the SVE, Advanced SIMD, and floating-point registers to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from both Execution states.
FPEN | Meaning |
---|---|
0b00 |
This control causes any instructions at EL0 or EL1 that use the registers associated with SVE, Advanced SIMD and floating-point execution to be trapped, unless they are trapped by CPACR_EL1.ZEN. |
0b01 |
This control causes any instructions at EL0 that use the registers associated with SVE, Advanced SIMD and floating-point execution to be trapped, unless they are trapped by CPACR_EL1.ZEN, but does not cause any instruction at EL1 to be trapped. |
0b10 |
This control causes any instructions at EL0 or EL1 that use the registers associated with SVE, Advanced SIMD and floating-point execution to be trapped, unless they are trapped by CPACR_EL1.ZEN. |
0b11 |
This control does not cause any instructions to be trapped. |
Writes to MVFR0, MVFR1 and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE and whether these accesses can be trapped by this control depends on implemented CONSTRAINED UNPREDICTABLE behavior.
- Attempts to write to the FPSID count as use of the registers for accesses from EL1 or higher.
- Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are UNDEFINED, and any resulting exception is higher priority than an exception that would be generated because the value of CPACR_EL1.FPEN is not 0b11.
This field resets to an architecturally UNKNOWN value.
Bits [19:18]
Reserved, RES0.
ZEN, bits [17:16]
When SVE is implemented:
When SVE is implemented:
Traps SVE instructions and instructions that access SVE System registers at EL0 and EL1 to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1.
ZEN | Meaning |
---|---|
0b00 |
This control causes these instructions executed at EL0 or EL1 to be trapped. |
0b01 |
This control causes these instructions executed at EL0 to be trapped, but does not cause any instruction at EL1 to be trapped. |
0b10 |
This control causes these instructions executed at EL0 or EL1 to be trapped. |
0b11 |
This control does not cause any instruction to be trapped. |
If SVE is not implemented, this field is RES0.
This field resets to an architecturally UNKNOWN value.
Otherwise:
Otherwise:
Reserved, RES0.
Bits [15:0]
Reserved, RES0.
Accessing the CPACR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CPACR_EL1 or CPACR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.
Accesses to this register use the following encodings:
MRS <Xt>, CPACR_EL1
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b000 | 0b0001 | 0b0000 | 0b010 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then AArch64.SystemAccessTrap(EL3, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then return NVMem[0x100]; else return CPACR_EL1; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then AArch64.SystemAccessTrap(EL3, 0x18); elsif HCR_EL2.E2H == '1' then return CPTR_EL2; else return CPACR_EL1; elsif PSTATE.EL == EL3 then return CPACR_EL1;
MSR CPACR_EL1, <Xt>
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b000 | 0b0001 | 0b0000 | 0b010 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then AArch64.SystemAccessTrap(EL3, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then NVMem[0x100] = X[t]; else CPACR_EL1 = X[t]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then AArch64.SystemAccessTrap(EL3, 0x18); elsif HCR_EL2.E2H == '1' then CPTR_EL2 = X[t]; else CPACR_EL1 = X[t]; elsif PSTATE.EL == EL3 then CPACR_EL1 = X[t];
MRS <Xt>, CPACR_EL12
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b101 | 0b0001 | 0b0000 | 0b010 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then return NVMem[0x100]; elsif EL2Enabled() && HCR_EL2.NV == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else UNDEFINED; elsif PSTATE.EL == EL2 then if EL2Enabled() && HCR_EL2.E2H == '1' then if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else return CPACR_EL1; else UNDEFINED; elsif PSTATE.EL == EL3 then if EL2Enabled() && HCR_EL2.E2H == '1' then return CPACR_EL1; else UNDEFINED;
MSR CPACR_EL12, <Xt>
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b101 | 0b0001 | 0b0000 | 0b010 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then NVMem[0x100] = X[t]; elsif EL2Enabled() && HCR_EL2.NV == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else UNDEFINED; elsif PSTATE.EL == EL2 then if EL2Enabled() && HCR_EL2.E2H == '1' then if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else CPACR_EL1 = X[t]; else UNDEFINED; elsif PSTATE.EL == EL3 then if EL2Enabled() && HCR_EL2.E2H == '1' then CPACR_EL1 = X[t]; else UNDEFINED;