PMBPTR_EL1, Profiling Buffer Write Pointer Register
The PMBPTR_EL1 characteristics are:
Purpose
Defines the current write pointer for the profiling buffer.
Configuration
This register is present only when SPE is implemented. Otherwise, direct accesses to PMBPTR_EL1 are UNDEFINED.
RW fields in this register reset to architecturally UNKNOWN values.
Attributes
PMBPTR_EL1 is a 64-bit register.
Field descriptions
The PMBPTR_EL1 bit assignments are:
63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 |
PTR | |||||||||||||||||||||||||||||||
PTR | |||||||||||||||||||||||||||||||
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
PTR, bits [63:0]
Current write address. Defines the virtual address of the next entry to be written to the buffer.
The architecture places restrictions on the values software can write to the pointer. For more information see 'Restrictions on the current write pointer' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section D6.3.5.
As a result, an implementation might treat some of bits[M:0], where M is defined by PMBIDR_EL1.Align, as RES0.
On a management interrupt, PMBPTR_EL1 is frozen.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Accessing the PMBPTR_EL1
Accesses to this register use the following encodings:
MRS <Xt>, PMBPTR_EL1
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b000 | 0b1001 | 0b1010 | 0b001 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2PB == 'x0' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then AArch64.SystemAccessTrap(EL3, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then return NVMem[0x810]; else return PMBPTR_EL1; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then AArch64.SystemAccessTrap(EL3, 0x18); else return PMBPTR_EL1; elsif PSTATE.EL == EL3 then return PMBPTR_EL1;
MSR PMBPTR_EL1, <Xt>
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b000 | 0b1001 | 0b1010 | 0b001 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2PB == 'x0' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then AArch64.SystemAccessTrap(EL3, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '1x1' then NVMem[0x810] = X[t]; else PMBPTR_EL1 = X[t]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then AArch64.SystemAccessTrap(EL3, 0x18); else PMBPTR_EL1 = X[t]; elsif PSTATE.EL == EL3 then PMBPTR_EL1 = X[t];