PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30
The PMEVTYPER<n> characteristics are:
Purpose
Configures event counter n, where n is 0 to 30.
Configuration
AArch32 System register PMEVTYPER<n> bits [31:0] are architecturally mapped to AArch64 System register PMEVTYPER<n>_EL0[31:0] .
AArch32 System register PMEVTYPER<n> bits [31:0] are architecturally mapped to External register PMEVTYPER<n>_EL0[31:0] .
This register is present only when PMUv3 is implemented. Otherwise, direct accesses to PMEVTYPER<n> are UNDEFINED.
RW fields in this register reset to architecturally UNKNOWN values.
Attributes
PMEVTYPER<n> is a 32-bit register.
Field descriptions
The PMEVTYPER<n> bit assignments are:
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
P | U | NSK | NSU | NSH | RES0 | MT | RES0 | evtCount[15:10] | evtCount[9:0] |
P, bit [31]
Privileged filtering bit. Controls counting in EL1.
If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMEVTYPER<n>.NSK bit.
P | Meaning |
---|---|
0b0 |
Count events in EL1. |
0b1 |
Do not count events in EL1. |
On a Warm reset, this field resets to an architecturally UNKNOWN value.
U, bit [30]
User filtering bit. Controls counting in EL0.
If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMEVTYPER<n>.NSU bit.
U | Meaning |
---|---|
0b0 |
Count events in EL0. |
0b1 |
Do not count events in EL0. |
On a Warm reset, this field resets to an architecturally UNKNOWN value.
NSK, bit [29]
When HaveEL(EL3):
When HaveEL(EL3):
Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.
If the value of this bit is equal to the value of PMEVTYPER<n>.P, events in Non-secure EL1 are counted.
Otherwise, events in Non-secure EL1 are not counted.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:
Otherwise:
Reserved, RES0.
NSU, bit [28]
When HaveEL(EL3):
When HaveEL(EL3):
Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0.
If the value of this bit is equal to the value of PMEVTYPER<n>.U, events in Non-secure EL0 are counted.
Otherwise, events in Non-secure EL0 are not counted.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:
Otherwise:
Reserved, RES0.
NSH, bit [27]
When HaveEL(EL2):
When HaveEL(EL2):
Non-secure EL2 (Hyp mode) filtering bit. Controls counting in Non-secure EL2.
NSH | Meaning |
---|---|
0b0 |
Do not count events in EL2. |
0b1 |
Count events in EL2. |
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:
Otherwise:
Reserved, RES0.
Bit [26]
Reserved, RES0.
MT, bit [25]
When ARMv8.6-MTPMU is implemented or IMPLEMENTATION DEFINED multi-threaded PMU Extension is implemented:
When ARMv8.6-MTPMU is implemented or IMPLEMENTATION DEFINED multi-threaded PMU Extension is implemented:
Multithreading.
MT | Meaning |
---|---|
0b0 |
Count events only on controlling PE. |
0b1 |
Count events from any PE with the same affinity at level 1 and above as this PE. |
- When the lowest level of affinity consists of logical PEs that are implemented using a multi-threading type approach, an implementation is described as multi-threaded. That is, the performance of PEs at the lowest affinity level is highly interdependent.
- Events from a different thread of a multithreaded implementation are not Attributable to the thread counting the event.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:
Otherwise:
Reserved, RES0.
Bits [24:16]
Reserved, RES0.
evtCount[15:10], bits [15:10]
When ARMv8.1-PMU is implemented:
When ARMv8.1-PMU is implemented:
Extension to evtCount[9:0]. See evtCount[9:0] for more details.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:
Otherwise:
Reserved, RES0.
evtCount[9:0], bits [9:0]
Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>.
Software must program this field with an event that is supported by the PE being programmed.
The ranges of event numbers allocated to each type of event are shown in Allocation of the PMU event number space.
If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior depends on the value written:
- For the range 0x0000 to 0x003F, no events are counted, and the value returned by a direct or external read of the evtCount field is the value written to the field.
- If 16-bit evtCount is implemented, for the range 0x4000 to 0x403F, no events are counted, and the value returned by a direct or external read of the evtCount field is the value written to the field.
- For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted, and the value returned by a direct or external read of the evtCount field is UNKNOWN.
UNPREDICTABLE means the event must not expose privileged information.
Arm recommends that the behavior across a family of implementations is defined such that if a given implementation does not include an event from a set of common IMPLEMENTATION DEFINED events, then no event is counted and the value read back on evtCount is the value written.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Accessing the PMEVTYPER<n>
PMEVTYPER<n> can also be accessed by using PMXEVTYPER with PMSELR.SEL set to n.
If ARMv8.6-FGT is implemented, EL2 is implemented and enabled in the current Security state, and EL1 is using AArch64, for permitted reads and writes at EL0:
- If <n> is an unimplemented event counter, the access is UNDEFINED.
- Otherwise, if <n> is greater than or equal to MDCR_EL2.HPMN, the access is trapped to EL2.
If ARMv8.6-FGT is not implemented, or the above behaviors do not apply:
If <n> is greater or equal to the number of accessible counters, reads and writes of PMEVTYPER<n> are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:
- Accesses to the register are UNDEFINED.
- Accesses to the register behave as RAZ/WI.
- Accesses to the register execute as a NOP.
- If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of implemented counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.
In EL0, an access is permitted if it is enabled by PMUSERENR.EN or PMUSERENR_EL0.EN.
If EL2 is implemented and enabled in the current Security state, at EL0 and EL1:
- If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible counters.
- If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible counters.
Otherwise, the number of accessible counters is the number of implemented counters. See HDCR.HPMN and MDCR_EL2.HPMN for more details.
Accesses to this register use the following encodings:
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b000 | 0b1110 | 0b11:n[4:3] | n[2:0] |
if PSTATE.EL == EL0 then if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); else AArch64.AArch32SystemAccessTrap(EL1, 0x03); elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then AArch32.TakeHypTrapException(0x00); else UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); else return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)]; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); else return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); else return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)]; elsif PSTATE.EL == EL3 then return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b000 | 0b1110 | 0b11:n[4:3] | n[2:0] |
if PSTATE.EL == EL0 then if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); else AArch64.AArch32SystemAccessTrap(EL1, 0x03); elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then AArch32.TakeHypTrapException(0x00); else UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); else PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t]; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); else PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); else PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t]; elsif PSTATE.EL == EL3 then PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];