DC CIGVAC, Data, Allocation Tag or unified Cache line Clean and Invalidate of Allocation Tags by VA to PoC
The DC CIGVAC characteristics are:
Purpose
Clean and Invalidate Allocation Tags in data cache by address to Point of Coherency.
Configuration
This instruction is present only when ARMv8.5-MemTag is implemented. Otherwise, direct accesses to DC CIGVAC are UNDEFINED.
Attributes
DC CIGVAC is a 64-bit System instruction.
Field descriptions
The DC CIGVAC input value bit assignments are:
63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 |
Virtual address to use | |||||||||||||||||||||||||||||||
Virtual address to use | |||||||||||||||||||||||||||||||
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Bits [63:0]
Virtual address to use. No alignment restrictions apply to this VA.
Executing the DC CIGVAC instruction
Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see 'The data cache maintenance instruction (DC)' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.
If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission Fault, subject to the constraints described in 'Permission fault' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.
Accesses to this instruction use the following encodings:
DC CIGVAC, <Xt>
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b01 | 0b011 | 0b0111 | 0b1110 | 0b011 |
if PSTATE.EL == EL0 then if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then AArch64.SystemAccessTrap(EL2, 0x18); else DC_CIGVAC(X[t]); elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else DC_CIGVAC(X[t]); elsif PSTATE.EL == EL2 then DC_CIGVAC(X[t]); elsif PSTATE.EL == EL3 then DC_CIGVAC(X[t]);