You copied the Doc URL to your clipboard.

AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15

The AMEVCNTR1<n> characteristics are:

Purpose

Provides access to the auxiliary activity monitor event counters.

Configuration

AArch32 System register AMEVCNTR1<n> bits [63:0] are architecturally mapped to AArch64 System register AMEVCNTR1<n>_EL0[63:0] .

AArch32 System register AMEVCNTR1<n> bits [63:0] are architecturally mapped to External register AMEVCNTR1<n>[63:0] .

This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMEVCNTR1<n> are UNDEFINED.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch32. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AMEVCNTR1<n> is a 64-bit register.

Field descriptions

The AMEVCNTR1<n> bit assignments are:

6362616059585756555453525150494847464544434241403938373635343332
ACNT
ACNT
313029282726252423222120191817161514131211109876543210

ACNT, bits [63:0]

Auxiliary activity monitor event counter n.

Value of auxiliary activity monitor event counter n, where n is the number of this register and is a number from 0 to 15.

If ARMv8.6-AMU is implemented, HCR_EL2.AMVOFFEN is 1, SCR_EL3.AMVOFFEN is 1, HCR_EL2.{E2H, TGE} is not {1,1}, EL2 is using AArch64 and is implemented in the current Security state, and AMCR_EL0.CG1RZ is 0, reads to these registers at EL0 or EL1 return (PCount<63:0> - AMEVCNTVOFF1<n>_EL2<63:0>).

PCount is the physical count returned when AMEVCNTR1<n> is read from EL2 or EL3.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

On a Cold reset, this field resets to 0.

Accessing the AMEVCNTR1<n>

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of AMEVCNTR1<n> are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

  • Accesses to the register are UNDEFINED.
  • Accesses to the register behave as RAZ/WI.
  • Accesses to the register execute as a NOP.
Note

AMCGCR.CG1NC identifies the number of auxiliary activity monitor event counters.

Accesses to this register use the following encodings:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coprocCRmopc1
0b11110b010:n[3]0b0:n[2:0]
if CRm == 100 then
    if PSTATE.EL == EL0 then
        if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
            if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
                AArch64.AArch32SystemAccessTrap(EL2, 0x04);
            else
                AArch64.AArch32SystemAccessTrap(EL1, 0x04);
        elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
            if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
                AArch64.AArch32SystemAccessTrap(EL2, 0x04);
            elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
                AArch32.TakeHypTrapException(0x00);
            else
                UNDEFINED;
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T4 == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T4 == '1' then
            AArch32.TakeHypTrapException(0x04);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
            AArch32.TakeHypTrapException(0x04);
        elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVCNTR1<n>_EL0 == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL3, 0x04);
        elsif !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then
            Zeros();
        elsif HighestELUsingAArch32() && AMCR.CG1RZ == '1' then
            Zeros();
        else
            return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
    elsif PSTATE.EL == EL1 then
        if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T4 == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T4 == '1' then
            AArch32.TakeHypTrapException(0x04);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
            AArch32.TakeHypTrapException(0x04);
        elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL3, 0x04);
        elsif !IsHighestEL(PSTATE.EL) && !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then
            Zeros();
        elsif !IsHighestEL(PSTATE.EL) && HighestELUsingAArch32() && AMCR.CG1RZ == '1' then
            Zeros();
        else
            return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
    elsif PSTATE.EL == EL2 then
        if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL3, 0x04);
        elsif !IsHighestEL(PSTATE.EL) && !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then
            Zeros();
        elsif !IsHighestEL(PSTATE.EL) && HighestELUsingAArch32() && AMCR.CG1RZ == '1' then
            Zeros();
        else
            return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
    elsif PSTATE.EL == EL3 then
        return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
elsif CRm == 101 then
    if PSTATE.EL == EL0 then
        if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
            if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
                AArch64.AArch32SystemAccessTrap(EL2, 0x04);
            else
                AArch64.AArch32SystemAccessTrap(EL1, 0x04);
        elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
            if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
                AArch64.AArch32SystemAccessTrap(EL2, 0x04);
            elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
                AArch32.TakeHypTrapException(0x00);
            else
                UNDEFINED;
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T5 == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
            AArch32.TakeHypTrapException(0x04);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
            AArch32.TakeHypTrapException(0x04);
        elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVCNTR1<n>_EL0 == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL3, 0x04);
        elsif !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then
            Zeros();
        elsif HighestELUsingAArch32() && AMCR.CG1RZ == '1' then
            Zeros();
        else
            return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
    elsif PSTATE.EL == EL1 then
        if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
            AArch32.TakeHypTrapException(0x04);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
            AArch32.TakeHypTrapException(0x04);
        elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL3, 0x04);
        elsif !IsHighestEL(PSTATE.EL) && !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then
            Zeros();
        elsif !IsHighestEL(PSTATE.EL) && HighestELUsingAArch32() && AMCR.CG1RZ == '1' then
            Zeros();
        else
            return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
    elsif PSTATE.EL == EL2 then
        if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL3, 0x04);
        elsif !IsHighestEL(PSTATE.EL) && !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then
            Zeros();
        elsif !IsHighestEL(PSTATE.EL) && HighestELUsingAArch32() && AMCR.CG1RZ == '1' then
            Zeros();
        else
            return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
    elsif PSTATE.EL == EL3 then
        return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
else
    UNDEFINED;
              

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coprocCRmopc1
0b11110b010:n[3]0b0:n[2:0]
if CRm == 100 then
    if PSTATE.EL == EL0 then
        if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
            if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
                AArch64.AArch32SystemAccessTrap(EL2, 0x04);
            else
                AArch64.AArch32SystemAccessTrap(EL1, 0x04);
        elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
            if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
                AArch64.AArch32SystemAccessTrap(EL2, 0x04);
            elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
                AArch32.TakeHypTrapException(0x00);
            else
                UNDEFINED;
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T4 == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T4 == '1' then
            AArch32.TakeHypTrapException(0x04);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
            AArch32.TakeHypTrapException(0x04);
        elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL3, 0x04);
        else
            AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)] = R[t2]:R[t];
    elsif PSTATE.EL == EL1 then
        if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T4 == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T4 == '1' then
            AArch32.TakeHypTrapException(0x04);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
            AArch32.TakeHypTrapException(0x04);
        elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL3, 0x04);
        else
            AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)] = R[t2]:R[t];
    elsif PSTATE.EL == EL2 then
        if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL3, 0x04);
        else
            AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)] = R[t2]:R[t];
    elsif PSTATE.EL == EL3 then
        AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)] = R[t2]:R[t];
elsif CRm == 101 then
    if PSTATE.EL == EL0 then
        if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
            if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
                AArch64.AArch32SystemAccessTrap(EL2, 0x04);
            else
                AArch64.AArch32SystemAccessTrap(EL1, 0x04);
        elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
            if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
                AArch64.AArch32SystemAccessTrap(EL2, 0x04);
            elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
                AArch32.TakeHypTrapException(0x00);
            else
                UNDEFINED;
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T5 == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
            AArch32.TakeHypTrapException(0x04);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
            AArch32.TakeHypTrapException(0x04);
        elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL3, 0x04);
        else
            AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)] = R[t2]:R[t];
    elsif PSTATE.EL == EL1 then
        if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
            AArch32.TakeHypTrapException(0x04);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
            AArch32.TakeHypTrapException(0x04);
        elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL3, 0x04);
        else
            AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)] = R[t2]:R[t];
    elsif PSTATE.EL == EL2 then
        if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
            AArch64.AArch32SystemAccessTrap(EL3, 0x04);
        else
            AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)] = R[t2]:R[t];
    elsif PSTATE.EL == EL3 then
        AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)] = R[t2]:R[t];
else
    UNDEFINED;
              


Was this page helpful? Yes No