You copied the Doc URL to your clipboard.

ICC_AP0R<n>, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3

The ICC_AP0R<n> characteristics are:

Purpose

Provides information about Group 0 active priorities.

Configuration

AArch32 System register ICC_AP0R<n> bits [31:0] are architecturally mapped to AArch64 System register ICC_AP0R<n>_EL1[31:0] .

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch32. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ICC_AP0R<n> is a 32-bit register.

Field descriptions

The ICC_AP0R<n> bit assignments are:

313029282726252423222120191817161514131211109876543210
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value 0x00000000 is consistent with no interrupts being active.

Accessing the ICC_AP0R<n>

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are no Group 0 active priorities) might result in UNPREDICTABLE behavior of the interrupt prioritization system, causing:

  • Interrupts that should preempt execution to not preempt execution.
  • Interrupts that should not preempt execution to preempt execution.

ICC_AP0R1 is only implemented in implementations that support 6 or more bits of preemption. ICC_AP0R2 and ICC_AP0R3 are only implemented in implementations that support 7 bits of preemption. Unimplemented registers are UNDEFINED.

Note

The number of bits of preemption is indicated by ICH_VTR.PREbits.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE behavior:

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b0000b11000b10000b1:n[1:0]
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif ICC_SRE.SRE == '0' then
        UNDEFINED;
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then
        return ICV_AP0R[UInt(opc2<1:0>)];
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR.FMO == '1' then
        return ICV_AP0R[UInt(opc2<1:0>)];
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then
        AArch32.TakeMonitorTrapException();
    else
        return ICC_AP0R[UInt(opc2<1:0>)];
elsif PSTATE.EL == EL2 then
    if ICC_HSRE.SRE == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
        AArch32.TakeMonitorTrapException();
    else
        return ICC_AP0R[UInt(opc2<1:0>)];
elsif PSTATE.EL == EL3 then
    if ICC_MSRE.SRE == '0' then
        UNDEFINED;
    else
        return ICC_AP0R[UInt(opc2<1:0>)];
              

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b0000b11000b10000b1:n[1:0]
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif ICC_SRE.SRE == '0' then
        UNDEFINED;
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL0 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then
        ICV_AP0R[UInt(opc2<1:0>)] = R[t];
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR.FMO == '1' then
        ICV_AP0R[UInt(opc2<1:0>)] = R[t];
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.FIQ == '1' then
        AArch32.TakeMonitorTrapException();
    else
        ICC_AP0R[UInt(opc2<1:0>)] = R[t];
elsif PSTATE.EL == EL2 then
    if ICC_HSRE.SRE == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.FIQ == '1' then
        AArch32.TakeMonitorTrapException();
    else
        ICC_AP0R[UInt(opc2<1:0>)] = R[t];
elsif PSTATE.EL == EL3 then
    if ICC_MSRE.SRE == '0' then
        UNDEFINED;
    else
        ICC_AP0R[UInt(opc2<1:0>)] = R[t];
              


Was this page helpful? Yes No