You copied the Doc URL to your clipboard.

FRINT<r>

Floating-point round to integral value (predicated).

Round to an integral floating-point value with the specified rounding option from each active floating-point element of the source vector, and place the results in the corresponding elements of the destination vector. Inactive elements in the destination vector register remain unmodified.

The <r> symbol specifies one of the following rounding options: N (to nearest, with ties to even), A (to nearest, with ties away from zero), M (toward minus Infinity), P (toward plus Infinity), Z (toward zero), I (current FPCR rounding mode), or X (current FPCR rounding mode, signalling inexact).

It has encodings from 7 classes: Current mode , Current mode signalling inexact , Nearest with ties to away , Nearest with ties to even , Toward zero , Toward minus infinity and Toward plus infinity

Current mode

313029282726252423222120191817161514131211109876543210
01100101size000111101PgZnZd

Current mode

FRINTI <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = FALSE;
FPRounding rounding = FPRoundingMode(FPCR);

Current mode signalling inexact

313029282726252423222120191817161514131211109876543210
01100101size000110101PgZnZd

Current mode signalling inexact

FRINTX <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = TRUE;
FPRounding rounding = FPRoundingMode(FPCR);

Nearest with ties to away

313029282726252423222120191817161514131211109876543210
01100101size000100101PgZnZd

Nearest with ties to away

FRINTA <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = FALSE;
FPRounding rounding = FPRounding_TIEAWAY;

Nearest with ties to even

313029282726252423222120191817161514131211109876543210
01100101size000000101PgZnZd

Nearest with ties to even

FRINTN <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = FALSE;
FPRounding rounding = FPRounding_TIEEVEN;

Toward zero

313029282726252423222120191817161514131211109876543210
01100101size000011101PgZnZd

Toward zero

FRINTZ <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = FALSE;
FPRounding rounding = FPRounding_ZERO;

Toward minus infinity

313029282726252423222120191817161514131211109876543210
01100101size000010101PgZnZd

Toward minus infinity

FRINTM <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = FALSE;
FPRounding rounding = FPRounding_NEGINF;

Toward plus infinity

313029282726252423222120191817161514131211109876543210
01100101size000001101PgZnZd

Toward plus infinity

FRINTP <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = FALSE;
FPRounding rounding = FPRounding_POSINF;

Assembler Symbols

<Zd>

Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in size:
size <T>
00 RESERVED
01 H
10 S
11 D
<Pg>

Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn>

Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = Z[n];
bits(VL) result = Z[d];

for e = 0 to elements-1
    bits(esize) element = Elem[operand, e, esize];
    if ElemP[mask, e, esize] == '1' then
        Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

Z[d] = result;