You copied the Doc URL to your clipboard.

CLZ (vector)

Count Leading Zero bits (vector). This instruction counts the number of consecutive zeros, starting from the most significant bit, in each vector element in the source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

313029282726252423222120191817161514131211109876543210
0Q101110size100000010010RnRd
U
integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CountOp countop = if U == '1' then CountOp_CLZ else CountOp_CLS;

Assembler Symbols

<Vd>

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in size:Q:
size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED
<Vn>

Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

integer count;
for e = 0 to elements-1
    if countop == CountOp_CLS then
        count = CountLeadingSignBits(Elem[operand, e, esize]);
    else
        count = CountLeadingZeroBits(Elem[operand, e, esize]);
    Elem[result, e, esize] = count<esize-1:0>;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

  • The execution time of this instruction is independent of:
    • The values of the data supplied in any of its registers.
    • The values of the NZCV flags.
  • The response of this instruction to asynchronous exceptions does not vary based on:
    • The values of the data supplied in any of its registers.
    • The values of the NZCV flags.