AMAIR1, Auxiliary Memory Attribute Indirection Register 1
The AMAIR1 characteristics are:
Purpose
When using the Long-descriptor format translation tables for stage 1 translations, provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by MAIR1.
Configuration
AArch32 System register AMAIR1 bits [31:0] are architecturally mapped to AArch64 System register AMAIR_EL1[63:32] .
When EL3 is using AArch32, write access to AMAIR1(S) is disabled when the CP15SDISABLE signal is asserted HIGH.
RW fields in this register reset to architecturally UNKNOWN values.
Attributes
AMAIR1 is a 32-bit register.
Field descriptions
The AMAIR1 bit assignments are:
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
IMPLEMENTATION DEFINED |
This register is RES0 in the following cases:
- When an implementation does not provide any IMPLEMENTATION DEFINED memory attributes.
- When the Long-descriptor translation table format is not used.
If EL3 is implemented and is using AArch32:
- AMAIR1(S) gives the value for memory accesses from Secure state.
- AMAIR1(NS) gives the value for memory accesses from Non-secure states other than Hyp mode.
Any IMPLEMENTATION DEFINED memory attributes are additional qualifiers for the memory locations and must not change the architected behavior specified by MAIR0 and MAIR1.
In a typical implementation, AMAIR0 and AMAIR1 split into eight one-byte fields, corresponding to the MAIRn.Attr<n> fields, but the architecture does not require them to do so.
IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED.
This field resets to an architecturally UNKNOWN value.
Accessing the AMAIR1
Accesses to this register use the following encodings:
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b000 | 0b1010 | 0b0011 | 0b001 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) then if SCR.NS == '0' then return AMAIR1_S; else return AMAIR1_NS; else return AMAIR1; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && ELUsingAArch32(EL3) then return AMAIR1_NS; else return AMAIR1; elsif PSTATE.EL == EL3 then if SCR.NS == '0' then return AMAIR1_S; else return AMAIR1_NS;
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b000 | 0b1010 | 0b0011 | 0b001 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.NS == '0' && CP15SDISABLE == HIGH then UNDEFINED; elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.NS == '0' && CP15SDISABLE2 == HIGH then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) then if SCR.NS == '0' then AMAIR1_S = R[t]; else AMAIR1_NS = R[t]; else AMAIR1 = R[t]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && ELUsingAArch32(EL3) then AMAIR1_NS = R[t]; else AMAIR1 = R[t]; elsif PSTATE.EL == EL3 then if SCR.NS == '0' && CP15SDISABLE == HIGH then UNDEFINED; elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then UNDEFINED; else if SCR.NS == '0' then AMAIR1_S = R[t]; else AMAIR1_NS = R[t];