DBGDTRRXint, Debug Data Transfer Register, Receive
The DBGDTRRXint characteristics are:
Purpose
Transfers data from an external debugger to the PE. For example, it is used by a debugger transferring commands and data to a debug target. See Arch64-DBGDTR_EL0 for additional architectural mappings. It is a component of the Debug Communications Channel.
Configuration
AArch32 System register DBGDTRRXint bits [31:0] are architecturally mapped to AArch64 System register DBGDTRRX_EL0[31:0] .
AArch32 System register DBGDTRRXint bits [31:0] are architecturally mapped to External register DBGDTRRX_EL0[31:0] .
RW fields in this register reset to architecturally UNKNOWN values.
Attributes
DBGDTRRXint is a 32-bit register.
Field descriptions
The DBGDTRRXint bit assignments are:
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Update DTRRX |
Bits [31:0]
Update DTRRX.
Reads of this register:
-
If RXfull is set to 1, return the last value written to DTRRX.
-
If RXfull is set to 0, return an UNKNOWN value.
After the read, RXfull is cleared to 0.
For the full behavior of the Debug Communications Channel, see The Debug Communication Channel and Instruction Transfer Register.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
Accessing the DBGDTRRXint
Data can be stored to memory from this register using STC.
Accesses to this register use the following encodings:
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1110 | 0b000 | 0b0000 | 0b0101 | 0b000 |
if PSTATE.EL == EL0 then if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x05); else AArch64.AArch32SystemAccessTrap(EL1, 0x05); elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x05); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then AArch32.TakeHypTrapException(0x00); else UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then AArch64.AArch32SystemAccessTrap(EL2, 0x05); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x05); else return DBGDTRRXint; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then AArch64.AArch32SystemAccessTrap(EL2, 0x05); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then AArch32.TakeHypTrapException(0x05); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x05); else return DBGDTRRXint; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x05); else return DBGDTRRXint; elsif PSTATE.EL == EL3 then return DBGDTRRXint;