ICC_BPR1, Interrupt Controller Binary Point Register 1
The ICC_BPR1 characteristics are:
Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field determines Group 1 interrupt preemption.
Configuration
AArch32 System register ICC_BPR1 bits [31:0] (S) are architecturally mapped to AArch64 System register ICC_BPR1_EL1[31:0] (S) .
AArch32 System register ICC_BPR1 bits [31:0] (NS) are architecturally mapped to AArch64 System register ICC_BPR1_EL1[31:0] (NS) .
In GIC implementations supporting two Security states, this register is Banked.
Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch32. If the PE resets into EL3 using AArch32 they apply only to the Secure instance of the register. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.
Attributes
ICC_BPR1 is a 32-bit register.
Field descriptions
The ICC_BPR1 bit assignments are:
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RES0 | BinaryPoint |
Bits [31:3]
Reserved, RES0.
BinaryPoint, bits [2:0]
If the GIC is configured to use separate binary point fields for Group 0 and Group 1 interrupts, the value of this field controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a subpriority field. For more information about priorities, see Priority grouping.
Writing 0 to this field will set this field to its reset value.
If EL3 is implemented and ICC_MCTLR.CBPR_EL1S is 1:
- Accesses to this register at EL3 not in Monitor mode access the state of ICC_BPR0.
- When SCR_EL3.EEL2 is 1 and HCR_EL2.IMO is 1, Secure accesses to this register at EL1 access the state of ICV_BPR1.
- Otherwise, Secure accesses to this register at EL1 access the state of ICC_BPR0.
If EL3 is implemented and ICC_MCTLR.CBPR_EL1NS is 1, Non-secure accesses to this register at EL1 or EL2 behave as follows, depending on the values of HCR.IMO and SCR.IRQ:
HCR.IMO | SCR_IRQ | Behavior |
---|---|---|
0b0 | 0b0 | Non-secure EL1 and EL2 reads return ICC_BPR0 + 1 saturated to 0b111. Non-secure EL1 and EL2 writes are ignored. |
0b0 | 0b1 | Non-secure EL1 and EL2 accesses trap to EL3. |
0b1 | 0b0 | Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads return ICC_BPR0 + 1 saturated to 0b111. Non-secure EL2 writes ignored. |
0b1 | 0b1 | Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 accesses trap to EL3. |
If EL3 is not implemented and ICC_CTLR.CBPR is 1, Non-secure accesses to this register at EL1 or EL2 behave as follows, depending on the values of HCR.IMO:
HCR.IMO | Behavior |
---|---|
0b0 | Non-secure EL1 and EL2 reads return ICC_BPR0 + 1 saturated to 0b111. Non-secure EL1 and EL2 writes are ignored. |
0b1 | Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads return ICC_BPR0 + 1 saturated to 0b111. Non-secure EL2 writes are ignored. |
This field resets to an IMPLEMENTATION DEFINED non-zero value.
Accessing the ICC_BPR1
When the PE resets into an Exception level that is using AArch32, the reset value is equal to:
- For the Secure copy of the register, the minimum value of ICC_BPR0 plus one.
- For the Non-secure copy of the register, the minimum value of ICC_BPR0.
Where the minimum value of ICC_BPR0 is IMPLEMENTATION DEFINED.
If EL3 is not implemented:
- If the PE is Secure this reset value is (minimum value of ICC_BPR0 plus one).
- If the PE is Non-secure this reset value is (minimum value of ICC_BPR0).
An attempt to program the binary point field to a value less than the reset value sets the field to the reset value.
Accesses to this register use the following encodings:
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b000 | 0b1100 | 0b1100 | 0b011 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then AArch32.TakeHypTrapException(0x03); elsif ICC_SRE.SRE == '0' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then return ICV_BPR1; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR.IMO == '1' then return ICV_BPR1; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then AArch32.TakeMonitorTrapException(); elsif HaveEL(EL3) then if SCR.NS == '0' then return ICC_BPR1_S; else return ICC_BPR1_NS; else return ICC_BPR1; elsif PSTATE.EL == EL2 then if ICC_HSRE.SRE == '0' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then AArch32.TakeMonitorTrapException(); elsif HaveEL(EL3) then return ICC_BPR1_NS; else return ICC_BPR1; elsif PSTATE.EL == EL3 then if ICC_MSRE.SRE == '0' then UNDEFINED; else if SCR.NS == '0' then return ICC_BPR1_S; else return ICC_BPR1_NS;
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b000 | 0b1100 | 0b1100 | 0b011 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then AArch32.TakeHypTrapException(0x03); elsif ICC_SRE.SRE == '0' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then ICV_BPR1 = R[t]; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR.IMO == '1' then ICV_BPR1 = R[t]; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then AArch32.TakeMonitorTrapException(); elsif HaveEL(EL3) then if SCR.NS == '0' then ICC_BPR1_S = R[t]; else ICC_BPR1_NS = R[t]; else ICC_BPR1 = R[t]; elsif PSTATE.EL == EL2 then if ICC_HSRE.SRE == '0' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then AArch32.TakeMonitorTrapException(); elsif HaveEL(EL3) then ICC_BPR1_NS = R[t]; else ICC_BPR1 = R[t]; elsif PSTATE.EL == EL3 then if ICC_MSRE.SRE == '0' then UNDEFINED; else if SCR.NS == '0' then ICC_BPR1_S = R[t]; else ICC_BPR1_NS = R[t];