You copied the Doc URL to your clipboard.

ICC_MGRPEN1, Interrupt Controller Monitor Interrupt Group 1 Enable register

The ICC_MGRPEN1 characteristics are:

Purpose

Controls whether Group 1 interrupts are enabled or not.

Configuration

AArch32 System register ICC_MGRPEN1 bits [31:0] can be mapped to AArch64 System register ICC_IGRPEN1_EL3[31:0] , but this is not architecturally mandated.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ICC_MGRPEN1 are UNKNOWN.

Attributes

ICC_MGRPEN1 is a 32-bit register.

Field descriptions

The ICC_MGRPEN1 bit assignments are:

313029282726252423222120191817161514131211109876543210
RES0EnableGrp1SEnableGrp1NS

Bits [31:2]

Reserved, RES0.

EnableGrp1S, bit [1]

Enables Group 1 interrupts for the Secure state.

EnableGrp1SMeaning
0b0

Secure Group 1 interrupts are disabled.

0b1

Secure Group 1 interrupts are enabled.

The Secure ICC_IGRPEN1.Enable bit is a read/write alias of the ICC_MGRPEN1.EnableGrp1S bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N model, then the interrupt will target another PE as a result of the Enable bit changing from 1 to 0.

This field resets to 0.

EnableGrp1NS, bit [0]

Enables Group 1 interrupts for the Non-secure state.

EnableGrp1NSMeaning
0b0

Non-secure Group 1 interrupts are disabled.

0b1

Non-secure Group 1 interrupts are enabled.

The Non-secure ICC_IGRPEN1.Enable bit is a read/write alias of the ICC_MGRPEN1.EnableGrp1NS bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N model, then the interrupt will target another PE as a result of the Enable bit changing from 1 to 0.

This field resets to 0.

Accessing the ICC_MGRPEN1

If an interrupt is pending within the CPU interface when an Enable bit becomes 0, the interrupt must be released to allow the Distributor to forward the interrupt to a different PE.

This register is only accessible when executing in Monitor mode.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b1100b11000b11000b111
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    if ICC_MSRE.SRE == '0' then
        UNDEFINED;
    else
        return ICC_MGRPEN1;
              

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b1100b11000b11000b111
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    if ICC_MSRE.SRE == '0' then
        UNDEFINED;
    else
        ICC_MGRPEN1 = R[t];