FPSR, Floating-point Status Register
The FPSR characteristics are:
Purpose
Provides floating-point system status information.
Configuration
The named fields in this register map to the equivalent fields in the AArch32 FPSCR.
Attributes
FPSR is a 64-bit register.
Field descriptions
The FPSR bit assignments are:
63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 |
RES0 | |||||||||||||||||||||||||||||||
N | Z | C | V | QC | RES0 | IDC | RES0 | IXC | UFC | OFC | DZC | IOC | |||||||||||||||||||
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Bits [63:32]
Reserved, RES0.
N, bit [31]
When AArch32 is supported at any Exception level and AArch32 floating-point is implemented:
When AArch32 is supported at any Exception level and AArch32 floating-point is implemented:
Negative condition flag for AArch32 floating-point comparison operations.
AArch64 floating-point comparisons set the PSTATE.N flag instead.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:
Otherwise:
Reserved, RES0.
Z, bit [30]
When AArch32 is supported at any Exception level and AArch32 floating-point is implemented:
When AArch32 is supported at any Exception level and AArch32 floating-point is implemented:
Zero condition flag for AArch32 floating-point comparison operations.
AArch64 floating-point comparisons set the PSTATE.Z flag instead.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:
Otherwise:
Reserved, RES0.
C, bit [29]
When AArch32 is supported at any Exception level and AArch32 floating-point is implemented:
When AArch32 is supported at any Exception level and AArch32 floating-point is implemented:
Carry condition flag for AArch32 floating-point comparison operations.
AArch64 floating-point comparisons set the PSTATE.C flag instead.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:
Otherwise:
Reserved, RES0.
V, bit [28]
When AArch32 is supported at any Exception level and AArch32 floating-point is implemented:
When AArch32 is supported at any Exception level and AArch32 floating-point is implemented:
Overflow condition flag for AArch32 floating-point comparison operations.
AArch64 floating-point comparisons set the PSTATE.V flag instead.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:
Otherwise:
Reserved, RES0.
QC, bit [27]
Cumulative saturation bit, Advanced SIMD only. This bit is set to 1 to indicate that an Advanced SIMD integer operation has saturated since 0 was last written to this bit.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Bits [26:8]
Reserved, RES0.
IDC, bit [7]
Input Denormal cumulative floating-point exception bit. This bit is set to 1 to indicate that the Input Denormal floating-point exception has occurred since 0 was last written to this bit.
How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.IDE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.IDE is 0.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Bits [6:5]
Reserved, RES0.
IXC, bit [4]
Inexact cumulative floating-point exception bit. This bit is set to 1 to indicate that the Inexact exception floating-point has occurred since 0 was last written to this bit.
How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.IXE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.IXE is 0.
The criteria for the Inexact floating-point exception to occur are different in Flush-to-zero mode. For details, see 'Flush-to-zero'.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
UFC, bit [3]
Underflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Underflow floating-point exception has occurred since 0 was last written to this bit.
How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.UFE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.UFE is 0 or Flush-to-zero is enabled.
The criteria for the Underflow floating-point exception to occur are different in Flush-to-zero mode. For details, see 'Flush-to-zero'.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
OFC, bit [2]
Overflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Overflow floating-point exception has occurred since 0 was last written to this bit.
How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.OFE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.OFE is 0.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
DZC, bit [1]
Divide by Zero cumulative floating-point exception bit. This bit is set to 1 to indicate that the Divide by Zero floating-point exception has occurred since 0 was last written to this bit.
How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.DZE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.DZE is 0.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
IOC, bit [0]
Invalid Operation cumulative floating-point exception bit. This bit is set to 1 to indicate that the Invalid Operation floating-point exception has occurred since 0 was last written to this bit.
How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.IOE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.IOE is 0.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Accessing the FPSR
Accesses to this register use the following encodings:
MRS <Xt>, FPSR
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b011 | 0b0100 | 0b0100 | 0b001 |
if PSTATE.EL == EL0 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TFP == '1' then UNDEFINED; elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then if EL2Enabled() && HCR_EL2.TGE == '1' then AArch64.SystemAccessTrap(EL2, 0x00); else AArch64.SystemAccessTrap(EL1, 0x07); elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN != '11' then AArch64.SystemAccessTrap(EL2, 0x07); elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then AArch64.SystemAccessTrap(EL2, 0x07); elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then AArch64.SystemAccessTrap(EL2, 0x07); elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x07); else return FPSR; elsif PSTATE.EL == EL1 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TFP == '1' then UNDEFINED; elsif CPACR_EL1.FPEN == 'x0' then AArch64.SystemAccessTrap(EL1, 0x07); elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then AArch64.SystemAccessTrap(EL2, 0x07); elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then AArch64.SystemAccessTrap(EL2, 0x07); elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x07); else return FPSR; elsif PSTATE.EL == EL2 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TFP == '1' then UNDEFINED; elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then AArch64.SystemAccessTrap(EL2, 0x07); elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then AArch64.SystemAccessTrap(EL2, 0x07); elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x07); else return FPSR; elsif PSTATE.EL == EL3 then if CPTR_EL3.TFP == '1' then AArch64.SystemAccessTrap(EL3, 0x07); else return FPSR;
MSR FPSR, <Xt>
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b011 | 0b0100 | 0b0100 | 0b001 |
if PSTATE.EL == EL0 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TFP == '1' then UNDEFINED; elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then if EL2Enabled() && HCR_EL2.TGE == '1' then AArch64.SystemAccessTrap(EL2, 0x00); else AArch64.SystemAccessTrap(EL1, 0x07); elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN != '11' then AArch64.SystemAccessTrap(EL2, 0x07); elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then AArch64.SystemAccessTrap(EL2, 0x07); elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then AArch64.SystemAccessTrap(EL2, 0x07); elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x07); else FPSR = X[t]; elsif PSTATE.EL == EL1 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TFP == '1' then UNDEFINED; elsif CPACR_EL1.FPEN == 'x0' then AArch64.SystemAccessTrap(EL1, 0x07); elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then AArch64.SystemAccessTrap(EL2, 0x07); elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then AArch64.SystemAccessTrap(EL2, 0x07); elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x07); else FPSR = X[t]; elsif PSTATE.EL == EL2 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TFP == '1' then UNDEFINED; elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then AArch64.SystemAccessTrap(EL2, 0x07); elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then AArch64.SystemAccessTrap(EL2, 0x07); elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x07); else FPSR = X[t]; elsif PSTATE.EL == EL3 then if CPTR_EL3.TFP == '1' then AArch64.SystemAccessTrap(EL3, 0x07); else FPSR = X[t];