ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3
The ICH_AP1R<n>_EL2 characteristics are:
Purpose
Provides information about Group 1 virtual active priorities for EL2.
Configuration
AArch64 System register ICH_AP1R<n>_EL2 bits [31:0] are architecturally mapped to AArch32 System register ICH_AP1R<n>[31:0] .
If EL2 is not implemented, this register is RES0 from EL3.
This register has no effect if EL2 is not enabled in the current Security state.
Attributes
ICH_AP1R<n>_EL2 is a 64-bit register.
Field descriptions
The ICH_AP1R<n>_EL2 bit assignments are:
63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 |
RES0 | |||||||||||||||||||||||||||||||
P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 | P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 | P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 | P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 |
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Bits [63:32]
Reserved, RES0.
P<x>, bit [x], for x = 31 to 0
Group 1 interrupt active priorities. Possible values of each bit are:
P<x> | Meaning |
---|---|
0b0 |
There is no Group 1 interrupt active with this priority level, or all active Group 1 interrupts with this priority level have undergone priority-drop. |
0b1 |
There is a Group 1 interrupt active with this priority level which has not undergone priority drop. |
The correspondence between priority levels and bits depends on the number of bits of priority that are implemented.
If 5 bits of preemption are implemented (bits [7:3] of priority), then there are 32 preemption levels, and the active state of these preemption levels are held in ICH_AP1R0_EL2 in the bits corresponding to Priority[7:3].
If 6 bits of preemption are implemented (bits [7:2] of priority), then there are 64 preemption levels, and:
- The active state of preemption levels 0 - 124 are held in ICH_AP1R0_EL2 in the bits corresponding to 0:Priority[6:2].
- The active state of preemption levels 128 - 252 are held in ICH_AP1R1_EL2 in the bits corresponding to 1:Priority[6:2].
If 7 bits of preemption are implemented (bits [7:1] of priority), then there are 128 preemption levels, and:
- The active state of preemption levels 0 - 62 are held in ICH_AP1R0_EL2 in the bits corresponding to 00:Priority[5:1].
- The active state of preemption levels 64 - 126 are held in ICH_AP1R1_EL2 in the bits corresponding to 01:Priority[5:1].
- The active state of preemption levels 128 - 190 are held in ICH_AP1R2_EL2 in the bits corresponding to 10:Priority[5:1].
- The active state of preemption levels 192 - 254 are held in ICH_AP1R3_EL2 in the bits corresponding to 11:Priority[5:1].
Having the bit corresponding to a priority set to 1 in both ICH_AP0R<n>_EL2 and ICH_AP1R<n>_EL2 might result in UNPREDICTABLE behavior of the interrupt prioritization system for virtual interrupts.
On a Warm reset, this field resets to 0.
This register is always used for legacy VMs, regardless of the group of the virtual interrupt. Reads and writes to GICV_APR<n> access ICH_AP1R<n>_EL2. For more information about support for legacy VMs, see 'Support for legacy operation of VMs' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).
Accessing the ICH_AP1R<n>_EL2
ICH_AP1R1_EL2 is only implemented in implementations that support 6 or more bits of preemption. ICH_AP1R2_EL2 and ICH_AP1R3_EL2 are only implemented in implementations that support 7 bits of preemption. Unimplemented registers are UNDEFINED.
The number of bits of preemption is indicated by ICH_VTR_EL2.PREbits
Writing to these registers with any value other than the last read value of the register (or 0x00000000 for a newly set up virtual machine) can result in UNPREDICTABLE behavior of the virtual interrupt prioritization system allowing either:
Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE behavior:
Accesses to this register use the following encodings:
MRS <Xt>, ICH_AP1R<n>_EL2
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b100 | 0b1100 | 0b1001 | 0b0:n[1:0] |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then return NVMem[0x4A0+8*UInt(op2<1:0>)]; elsif EL2Enabled() && HCR_EL2.NV == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else UNDEFINED; elsif PSTATE.EL == EL2 then if ICC_SRE_EL2.SRE == '0' then AArch64.SystemAccessTrap(EL2, 0x18); else return ICH_AP1R_EL2[UInt(op2<1:0>)]; elsif PSTATE.EL == EL3 then if ICC_SRE_EL3.SRE == '0' then AArch64.SystemAccessTrap(EL3, 0x18); else return ICH_AP1R_EL2[UInt(op2<1:0>)];
MSR ICH_AP1R<n>_EL2, <Xt>
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b100 | 0b1100 | 0b1001 | 0b0:n[1:0] |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then NVMem[0x4A0+8*UInt(op2<1:0>)] = X[t]; elsif EL2Enabled() && HCR_EL2.NV == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else UNDEFINED; elsif PSTATE.EL == EL2 then if ICC_SRE_EL2.SRE == '0' then AArch64.SystemAccessTrap(EL2, 0x18); else ICH_AP1R_EL2[UInt(op2<1:0>)] = X[t]; elsif PSTATE.EL == EL3 then if ICC_SRE_EL3.SRE == '0' then AArch64.SystemAccessTrap(EL3, 0x18); else ICH_AP1R_EL2[UInt(op2<1:0>)] = X[t];