SCVTF
Signed integer convert to floating-point (predicated).
Convert to floating-point from the signed integer in each active element of the source vector, and place the results in the corresponding elements of the destination vector. Inactive elements in the destination vector register remain unmodified.
If the input and result types have a different size the smaller type is held unpacked in the least significant bits of elements of the larger size. When the input is the smaller type the upper bits of each source element are ignored. When the result is the smaller type the upper bits of each destination element are set to zero.
It has encodings from 7 classes:
16-bit to half-precision
,
32-bit to half-precision
,
32-bit to single-precision
,
32-bit to double-precision
,
64-bit to half-precision
,
64-bit to single-precision
and
64-bit to double-precision
16-bit to half-precision
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 16;
integer d_esize = 16;
boolean unsigned = FALSE;
FPRounding rounding = FPRoundingMode(FPCR);
32-bit to half-precision
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 32;
integer d_esize = 16;
boolean unsigned = FALSE;
FPRounding rounding = FPRoundingMode(FPCR);
32-bit to single-precision
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 32;
integer d_esize = 32;
boolean unsigned = FALSE;
FPRounding rounding = FPRoundingMode(FPCR);
32-bit to double-precision
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 32;
integer d_esize = 64;
boolean unsigned = FALSE;
FPRounding rounding = FPRoundingMode(FPCR);
64-bit to half-precision
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 64;
integer d_esize = 16;
boolean unsigned = FALSE;
FPRounding rounding = FPRoundingMode(FPCR);
64-bit to single-precision
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 64;
integer d_esize = 32;
boolean unsigned = FALSE;
FPRounding rounding = FPRoundingMode(FPCR);
64-bit to double-precision
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 64;
integer d_esize = 64;
boolean unsigned = FALSE;
FPRounding rounding = FPRoundingMode(FPCR);
Assembler Symbols
<Zd> |
Is the name of the destination scalable vector register, encoded in the "Zd" field.
|
<Pg> |
Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.
|
<Zn> |
Is the name of the source scalable vector register, encoded in the "Zn" field.
|
Operation
CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = Z[n];
bits(VL) result = Z[d];
for e = 0 to elements-1
bits(esize) element = Elem[operand, e, esize];
if ElemP[mask, e, esize] == '1' then
bits(d_esize) fpval = FixedToFP(element<s_esize-1:0>, 0, unsigned, FPCR, rounding);
Elem[result, e, esize] = ZeroExtend(fpval);
Z[d] = result;
Operational information
This instruction might be immediately preceded in program order by a MOVPRFX instruction that conforms to all of the following requirements, otherwise the behavior of either or both instructions is unpredictable:
- The MOVPRFX instruction must specify the same destination register as this instruction.
- The destination register must not refer to architectural register state referenced by any other source operand register of this instruction.
The
MOVPRFX instructions that can be used with this instruction are as follows:
- An unpredicated MOVPRFX instruction.
- A predicated MOVPRFX instruction using the same governing predicate register and source element size as this instruction.