FRINT<r>
Floating-point round to integral value (predicated).
Round to an integral floating-point value with the specified rounding option from each active floating-point element of the source vector, and place the results in the corresponding elements of the destination vector. Inactive elements in the destination vector register remain unmodified.
The <r> symbol specifies one of the following rounding options: N (to nearest, with ties to even), A (to nearest, with ties away from zero), M (toward minus Infinity), P (toward plus Infinity), Z (toward zero), I (current FPCR rounding mode), or X (current FPCR rounding mode, signalling inexact).
It has encodings from 7 classes:
Current mode
,
Current mode signalling inexact
,
Nearest with ties to away
,
Nearest with ties to even
,
Toward zero
,
Toward minus infinity
and
Toward plus infinity
Current mode
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | size | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = FALSE;
FPRounding rounding = FPRoundingMode(FPCR);
Current mode signalling inexact
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | size | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = TRUE;
FPRounding rounding = FPRoundingMode(FPCR);
Nearest with ties to away
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | size | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = FALSE;
FPRounding rounding = FPRounding_TIEAWAY;
Nearest with ties to even
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | size | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = FALSE;
FPRounding rounding = FPRounding_TIEEVEN;
Toward zero
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | size | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = FALSE;
FPRounding rounding = FPRounding_ZERO;
Toward minus infinity
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | size | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = FALSE;
FPRounding rounding = FPRounding_NEGINF;
Toward plus infinity
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | size | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = FALSE;
FPRounding rounding = FPRounding_POSINF;
Assembler Symbols
<Zd> |
Is the name of the destination scalable vector register, encoded in the "Zd" field.
|
<T> |
Is the size specifier,
encoded in
size :
size |
<T> |
00 |
RESERVED |
01 |
H |
10 |
S |
11 |
D |
|
<Pg> |
Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.
|
<Zn> |
Is the name of the source scalable vector register, encoded in the "Zn" field.
|
Operation
CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = Z[n];
bits(VL) result = Z[d];
for e = 0 to elements-1
bits(esize) element = Elem[operand, e, esize];
if ElemP[mask, e, esize] == '1' then
Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);
Z[d] = result;
Operational information
This instruction might be immediately preceded in program order by a MOVPRFX instruction that conforms to all of the following requirements, otherwise the behavior of either or both instructions is unpredictable:
- The MOVPRFX instruction must specify the same destination register as this instruction.
- The destination register must not refer to architectural register state referenced by any other source operand register of this instruction.
The
MOVPRFX instructions that can be used with this instruction are as follows:
- An unpredicated MOVPRFX instruction.
- A predicated MOVPRFX instruction using the same governing predicate register and source element size as this instruction.