You copied the Doc URL to your clipboard.
LASTA (SIMD&FP scalar)
Extract element after last to SIMD&FP scalar register.
If there is an active element then extract the element after the last active element modulo the number of elements from the final source vector register. If there are no active elements, extract element zero. Then place the extracted element in the destination SIMD&FP scalar register.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | size | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | Pg | Zn | Vd |
if !HaveSVE() then UNDEFINED; integer esize = 8 << UInt(size); integer g = UInt(Pg); integer n = UInt(Zn); integer d = UInt(Vd); boolean isBefore = FALSE;
Assembler Symbols
<V> |
Is a width specifier,
encoded in
size:
|
<d> |
Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field. |
<Pg> |
Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field. |
<Zn> |
Is the name of the source scalable vector register, encoded in the "Zn" field. |
<T> |
Is the size specifier,
encoded in
size:
|
Operation
CheckSVEEnabled(); integer elements = VL DIV esize; bits(PL) mask = P[g]; bits(VL) operand = Z[n]; integer last = LastActiveElement(mask, esize); if isBefore then if last < 0 then last = elements - 1; else last = last + 1; if last >= elements then last = 0; V[d] = Elem[operand, last, esize];
Operational information
If PSTATE.DIT is 1:
- The execution time of this instruction is independent of:
- The values of the data supplied in any of its operand registers when its governing predicate register contains the same value for each execution.
- The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
- The values of the data supplied in any of its operand registers when its governing predicate register contains the same value for each execution.
- The values of the NZCV flags.