FCVT
Floating-point convert precision (predicated).
Convert the size and precision of each active floating-point element of the source vector, and place the results in the corresponding elements of the destination vector. Inactive elements in the destination vector register remain unmodified.
Since the input and result types have a different size the smaller type is held unpacked in the least significant bits of elements of the larger size. When the input is the smaller type the upper bits of each source element are ignored. When the result is the smaller type the results are zero-extended to fill each destination element.
It has encodings from 6 classes: Half-precision to single-precision , Half-precision to double-precision , Single-precision to half-precision , Single-precision to double-precision , Double-precision to half-precision and Double-precision to single-precision
Half-precision to single-precision
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED; integer esize = 32; integer g = UInt(Pg); integer n = UInt(Zn); integer d = UInt(Zd); integer s_esize = 16; integer d_esize = 32;
Half-precision to double-precision
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED; integer esize = 64; integer g = UInt(Pg); integer n = UInt(Zn); integer d = UInt(Zd); integer s_esize = 16; integer d_esize = 64;
Single-precision to half-precision
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED; integer esize = 32; integer g = UInt(Pg); integer n = UInt(Zn); integer d = UInt(Zd); integer s_esize = 32; integer d_esize = 16;
Single-precision to double-precision
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED; integer esize = 64; integer g = UInt(Pg); integer n = UInt(Zn); integer d = UInt(Zd); integer s_esize = 32; integer d_esize = 64;
Double-precision to half-precision
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED; integer esize = 64; integer g = UInt(Pg); integer n = UInt(Zn); integer d = UInt(Zd); integer s_esize = 64; integer d_esize = 16;
Double-precision to single-precision
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | Pg | Zn | Zd |
if !HaveSVE() then UNDEFINED; integer esize = 64; integer g = UInt(Pg); integer n = UInt(Zn); integer d = UInt(Zd); integer s_esize = 64; integer d_esize = 32;
Assembler Symbols
<Zd> |
Is the name of the destination scalable vector register, encoded in the "Zd" field. |
<Pg> |
Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field. |
<Zn> |
Is the name of the source scalable vector register, encoded in the "Zn" field. |
Operation
CheckSVEEnabled(); integer elements = VL DIV esize; bits(PL) mask = P[g]; bits(VL) operand = Z[n]; bits(VL) result = Z[d]; for e = 0 to elements-1 bits(esize) element = Elem[operand, e, esize]; if ElemP[mask, e, esize] == '1' then bits(d_esize) res = FPConvertSVE(element<s_esize-1:0>, FPCR); Elem[result, e, esize] = ZeroExtend(res); Z[d] = result;
Operational information
This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is unpredictable:
- The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register and source element size as this instruction.
- The MOVPRFX instruction must specify the same destination register as this instruction.
- The destination register must not refer to architectural register state referenced by any other source operand register of this instruction.