You copied the Doc URL to your clipboard.

FRECPX

Floating-point Reciprocal exponent (scalar). This instruction finds an approximate reciprocal exponent for each vector element in the source SIMD&FP register, places the result in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(Armv8.2)

313029282726252423222120191817161514131211109876543210
0101111011111001111110RnRd

FRECPX <Hd>, <Hn>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

Single-precision and double-precision

313029282726252423222120191817161514131211109876543210
010111101sz100001111110RnRd

FRECPX <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

Assembler Symbols

<Hd>

Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn>

Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in sz:
sz <V>
0 S
1 D
<d>

Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n>

Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
    element = Elem[operand, e, esize];
    Elem[result, e, esize] = FPRecpX(element, FPCR[]);

V[d] = result;