Cortex-A7

The Arm Cortex-A7 processor is the most efficient Armv7-A processor.

Information on Cortex-A7.

Getting Started

The Cortex-A7 processor provides up to 20% more single thread performance than the Cortex-A5. The processor incorporates all features of the high-performance Cortex-A15 and Cortex-A17 processors, including virtualization support in hardware, Large Physical Address Extensions (LPAE), Neon, and 128-bit AMBA 4 AXI bus interface.


Specifications

Architecture Armv7-A
Multicore 1-4 cores. Symmetric Multiprocessing (SMP) within a single processor cluster, and multiple coherent SMP processor clusters through AMBA 4 technology
ISA Support
  • Armv7-A
  • Thumb-2
  • TrustZone security technology
  • DSP extensions
  • Neon advanced SIMD
  • VFPv4 Floating Point
  • Hardware virtualization support
  • Large Physical Address Extensions (LPAE)
Memory Management Unit (MMU)
Armv7 Memory Management Unit
Debug & Trace
CoreSight

Start designing now

Arm Flexible Access gives you quick and easy access to this IP, relevant tools and models, and valuable support. You can evaluate and design solutions before committing to production, and only pay when you’re ready to manufacture.

Characteristics

The Cortex-A7 processor builds on the energy-efficient 8-stage pipeline of the Cortex-A5 processor. It also benefits from an integrated L2 cache designed for low-power, with lower transaction latencies and improved OS support for cache maintenance. On top of this there is improved branch prediction and an improved memory system performance, with 64-bit load-store path, 128-bit AMBA 4 AXI buses and increased TLB size (256 entry, up from 128 entry for Cortex-A9 and Cortex-A5), increasing performance for large workloads such as web browsing.

In a 28nm process, the Cortex-A7 can run at 1.2-1.6GHz, has an area of 0.45mm2 (with Floating-Point Unit, Neon and a 32KB L1 cache) and requires less than 100mW of total power in typical conditions. This lowest performance profile makes it an ideal standalone processor for a range of mobile devices, and means the Cortex-A7 can ultimately deliver similar performance to the Cortex-A9 processor at much higher levels of power efficiency.


  • Manual containing technical information.
  • Cortex-A7 Technical Reference Manual

    For system designers and software engineers, the Cortex-A7 manual provides information on implementing and programming Cortex-A7 based devices.

    Read here
  • A program that is running on a desktop.
  • Cortex-A Series Programmer's Guide for Armv7-A

    Common to all Cortex-A series processors, this programmer's guide is useful for assembly and C language application development for Armv7-A.

    Get the Guide
  • a ulink, a board, a desktop.
  • Development Tools for Cortex-A

    Arm and our partners provide specialist code generation, debug and analysis tools for software development on Cortex-A series processors, such as DS-5 Development Studio

    Development Tools

Cortex-A Comparison Table (Armv7-A)

Feature Cortex-A5 Cortex-A7 Cortex-A9 Cortex-A15 Cortex-A17
Instruction set architecture and extensions Armv7-A Armv7-A
LPAE Virtualization
Armv7-A Armv7-A
LPAE Virtualization
Armv7-A
LPAE Virtualization
Pipeline In order In order Out of order Out of order Out of order
Superscalar No Partial Yes Yes Yes
Neon and Floating Point Unit Optional Optional Optional Optional Included
Floating Point Unit only Optional Optional Optional Optional Included
Cryptography Unit No No No No No
Physical Addressing (PA) 32-bit 40-bit 32-bit 40-bit 40-bit
Dual Core Lock-Step (DCLS) No No No No No
L1 I-Cache / D-Cache 4k-64k 8k-64k 16k-64k 32kB/32kB 32k-64k/32k
L2 Cache External L2C-310 Up to 1MB External L2C-310 512kB-4MB 256kB-8MB
L3 Cache NA NA NA NA NA
ECC / Parity   No Yes Yes L2 only
LPAE No Yes No Yes Yes
Bus Interfaces AXI ACE AXI ACE or CHI ACE
ACP Optional No Optional Optional Optional
Peripheral Port     No No Yes
Functional Safety Support          
Security TrustZone TrustZone TrustZone TrustZone TrustZone
Interrupt Controller Optional Integrated GIC v1 (MP only) Optional Integrated GIC v2 Internal Integrated GIC v1 (MP only) Optional Integrated GICv2 External GICv2
Generic Timer No Yes Yes Armv8-A Armv8-A

Cortex-A Comparison Table (Armv8-A)

Feature Cortex-A32 Cortex-A34 Cortex-A35 Cortex-A53 Cortex-A55 Cortex-A57 Cortex-A65 Cortex-A65AE Cortex-A72 Cortex-A73 Cortex-A75 Cortex-A76 Cortex-A76AE Cortex-A77 
Instruction set architecture and extensions Armv8-A AArch32 only Armv8-A AArch64 only Armv8-A Armv8-A Armv8-A, Armv8.1 extensions, Armv8.2 extensions, Cryptography extensions, RAS extensions, Armv8.3 (LDAPR instructions only), Armv8.4 Dot Product Armv8-A Armv8-A, Armv8.1 extensions, Armv8.2 extensions, Cryptography extensions, RAS extensions, Armv8.3 (LDAPR instructions only) Armv8-A, Armv8.1 extensions, Armv8.2 extensions, Cryptography extensions, RAS extensions, Armv8.3 (LDAPR instructions only), Armv8.4 Dot Product Armv8-A Armv8-A Armv8-A, Armv8.1 extensions, Armv8.2 extensions, Cryptography extensions, RAS extensions, Armv8.3 (LDAPR instructions only), Armv8.4 Dot Product Armv8-A, Armv8.1 extensions, Armv8.2 extensions, Cryptography extensions, RAS extensions, Armv8.3 (LDAPR instructions only), Armv8.4 Dot Product Armv8-A, Armv8.1 extensions, Armv8.2 extensions, Cryptography extensions, RAS extensions, Armv8.3 (LDAPR instructions only), Armv8.4 Dot Product Armv8-A, Armv8.1 extensions, Armv8.2 extensions, Cryptography extensions, RAS extensions, Armv8.3 (LDAPR instructions only), Armv8.4 Dot Product
Pipeline In order In order In order In order In order Out of order Out of order Out-of-order Out of order Out of order Out-of-order Out-of-order Out-of-order Out-of-order
Superscalar       Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Neon and Floating Point Unit Optional Optional Optional Optional Optional Included Included Included Included Included Included Included Included Included
Floating Point Unit only N/A N/A N/A N/A Optional Included Included Included Included Included Included Included Included Included
Cryptography Unit Optional Optional Optional Optional N/A Optional Optional Optional Optional Optional Optional Optional Optional Optional
Physical Addressing (PA) 40-bit 40-bit 40-bit 40-bit 40-bit 40-bit 44-bit 44-bit 40-bit 40-bit 44-bit 40-bit 40-bit 40-bit
Dual Core Lock-Step (DCLS) No No No No No No No Yes (in safety-mode) No No No No Yes (in safety-mode) No
L1 I-Cache / D-Cache 8k-64k 8k-64k 8k-64k 8k-64k 16kB-64kB 48kB/32kB 16KB to 64KB 16KB to 64KB 48KB/32kB-64kB 32k/32k-64k 64KB 64KB 64KB 64KB
L2 Cache 128KB-1MB 128KB-1MB 128KB-1MB 128KB-2MB 64kB-256kB 512kB-2MB 64KB to 256KB 64KB to 256KB 512kB-4MB 256k-8MB 256KB to 512KB 256KB to 512KB 256KB to 512KB 256KB to 512KB
L3 Cache NA NA NA NA Optional
From 256kB to 4MB
NA Optional 512KB to 4MB Optional 512KB to 4MB NA NA Optional 512KB to 4MB Optional 512KB to 4MB Optional 512KB to 4MB Optional 512KB to 4MB
ECC / Parity Yes Yes Yes Yes Yes Yes Yes Yes Yes L2 only Yes Yes Yes Yes
LPAE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Bus Interfaces ACE or CHI ACE or CHI ACE or CHI ACE or CHI ACE or CHI ACE or CHI ACE or CHI ACE or CHI ACE or CHI ACE ACE or CHI ACE or CHI ACE or CHI ACE or CHI
ACP Optional Optional Optional Optional Optional Yes Optional Optional Optional Yes Optional Optional Optional Optional
Peripheral Port         Optional   Optional Optional     Optional Optional Optional Optional
Functional Safety Support Yes Yes Yes Yes Yes Yes   Yes Yes   Yes Yes Yes Yes
Security TrustZone TrustZone TrustZone TrustZone TrustZone TrustZone TrustZone TrustZone TrustZone TrustZone TrustZone TrustZone TrustZone TrustZone
Interrupt Controller External
GICv3
External
GICv3
External
GICv3
External
GICv3
External
GICv4
External
GICv3
External
GICv4
External
GICv4
External
GICv3
External
GICv3
External
GICv4
External
GICv4
External
GICv4
External
GICv4
Generic Timer Armv8-A Armv8-A Armv8-A Armv8-A Armv8-A Armv8-A Armv8-A Armv8-A Armv8-A Armv8-A Armv8-A Armv8-A Armv8-A Armv8-A

 

Get Support

Arm Support

Arm training courses and on-site system-design advisory services enable licensees to efficiently integrate the Cortex-A7 processor into their design to realize maximum system performance with lowest risk and fastest time-to-market.

Arm training courses  Arm Design Reviews  Open a support case

Related IP

The Cortex-A7 processor can be incorporated into an SoC using a broad range of Arm technology including Graphics IP, System IP, and Physical IP. The Cortex-A7 processor is fully supported by Arm development tools. Related IP includes:

 

Graphic IP
Other IP
Tools

Mali GPUs

Mali Display Processors

Mali-V500 Video Processor

CoreLink Network Interconnect Family

CoreLink System Controllers

Interrupt Controllers

CoreSight SoC-400

POP IP

DS-5 Development Studio

Fixed Virtual Platforms

Development Boards

Arm Compiler

Fast Models

 

Community Blogs

Community Forums

Suggested answer Cortex-R5: Divide-by-zero
  • Armv7 Exception Model
  • Cortex-R5
  • Processors
  • Software Development
0 votes 346 views 4 replies Latest 7 hours ago by Tau Answer this
Answered How to specify virtual Address for pl011 uart in linux kernel
  • APB Peripherals
  • Arm11
  • PrimeCell UART (PL011)
  • Interrupt
0 votes 4163 views 6 replies Latest 4 days ago by smithclarkson01 Answer this
Suggested answer Program Counter, Stack Pointer and Link Register Status During an Interrupt Service in ARM based Processors 0 votes 193 views 2 replies Latest 5 days ago by Aman007kc Answer this
Suggested answer ARM Assembly how to print numbers instead of their ascii representation of that number
  • Armv6
  • Arm Assembly Language (ASM)
0 votes 292 views 2 replies Latest 5 days ago by Kanan Jarrus Answer this
Not answered Why there is no translation tables concatenation for stage 1 of VA translation? 0 votes 71 views 0 replies Started 6 days ago by Uzi Shvadron Answer this
Suggested answer Cortex R8 axi unaligned transfer
  • program
  • cortex-r8
0 votes 338 views 2 replies Latest 6 days ago by Ben Chen Answer this
Suggested answer Cortex-R5: Divide-by-zero Latest 7 hours ago by Tau 4 replies 346 views
Answered How to specify virtual Address for pl011 uart in linux kernel Latest 4 days ago by smithclarkson01 6 replies 4163 views
Suggested answer Program Counter, Stack Pointer and Link Register Status During an Interrupt Service in ARM based Processors Latest 5 days ago by Aman007kc 2 replies 193 views
Suggested answer ARM Assembly how to print numbers instead of their ascii representation of that number Latest 5 days ago by Kanan Jarrus 2 replies 292 views
Not answered Why there is no translation tables concatenation for stage 1 of VA translation? Started 6 days ago by Uzi Shvadron 0 replies 71 views
Suggested answer Cortex R8 axi unaligned transfer Latest 6 days ago by Ben Chen 2 replies 338 views