Cortex-R5

The Arm Cortex-R5 processor provides extended fault containment for real-time applications.

Cortex-R5 Block Diagram.

Getting Started

The Arm Cortex-R5 processor forms a simple migration path from the Cortex-R4 processor, and onwards to the higher performance Cortex-R8 and Cortex-R52 processors. The Cortex-R5 processor builds on the feature set of the Cortex-R4 with enhanced error management, extended functional safety, and SoC integration features for use in deeply embedded real-time and safety-critical systems.

Specifications

Architecture Armv7-R.
Instruction Set Arm and Thumb-2. Supports DSP instructions optional Floating-Point Unit with single-precision.
Microarchitecture Eight-stage pipeline with instruction pre-fetch, branch prediction and selected dual-issue execution. Parallel execution paths for load-store, MAC, shift-ALU, divide and floating point. Binary compatibility with the Arm9Arm11Cortex-R4 and Cortex-R7 embedded processors.
Cache controllers Harvard memory architecture with optional integrated Instruction and Data cache controllers. Cache sizes are in-dependably configurable from 4 to 64KB. Cache lines are either write-back or write-through.
Tightly-Coupled Memories Optional Tightly-Coupled Memory interfaces are used for highly deterministic or low-latency applications that may not respond well to caching ( e.g. instruction code for interrupt service routines and data that requires intense processing). One or two logical TCMs, A and B, can be used for any mix of code and data. TCM size can be up to 8MB. TCM B has two physical ports, B0 and B1, for interleaving incoming DMA data streams.
Interrupt Interface Standard interrupt, IRQ, and non-maskable fast interrupt, FIQ, inputs are provided together with a VIC interrupt controller vector port. The GIC interrupt controller can also be used if more complex priority-based interrupt handling is required. The processor includes low-latency interrupt technology that allows long multi-cycle instructions to be interrupted and restarted. Lengthy memory accesses are also deferred in certain circumstances. LLPP is intended to provide non-blocking access to GIC registers.
Memory Protection Unit (MPU) Optional MPU configures attributes for either twelve or sixteen regions, each with resolution down to 32 Bytes. Regions can overlap, and the highest numbered region has highest priority.
Floating-Point Unit (FPU) Optional FPU implements the Arm Vector Floating Point architecture VFPv3 with 16 double-precision registers, compliant with IEEE754. The FPU performance is optimized for single-precision calculations and has (optional) full support for double precision. Operations include add, subtract, multiply, divide, multiply and accumulate, square root, conversions between fixed and floating-point, and floating-point constant instructions.
ECC Optional single-bit error correction and double-bit error detection for cache and/or TCM memories with ECC bits. Single-bit soft errors automatically corrected by the processor. ECC protection possible on all external interfaces.
Parity Optional support for parity bit error detection in caches and/or TCMs.
Master AXI bus 64-bit AMBA AXI bus master for Level-2 memory and peripheral access.
Slave AXI bus Optional 64-bit AMBA AXI bus slave port allows DMA masters to access the dual-port TCM B interface for high speed streaming of data in and out of the processor.
Low Latency Peripheral Port (LLPP) A dedicated 32-bit AMBA (AXI and optional AHB) port to integrate latency-sensitive peripherals more tightly with the processor.
Accelerator Coherency Port (ACP) A 64-bit AXI slave port to enable for coherency between the processor(s) and external intelligent peripherals such as DMA controllers, Ethernet or Flexray interfaces.
Dual-core A dual-core processor configuration for either a redundant Cortex-R5 CPU in lock-step for fault tolerant/fault detecting dependable systems or dual cores running independently, each executing its own program with its own bus interfaces, interrupts, and so on.
Debug Debug Access Port is provided. Functionality can be extended with DK-R5.
Trace An interface suitable for connection to CoreSight Embedded Trace Macrocell ETM R5 is present.

Compare all Cortex-R processors

Characteristics

Processor area, frequency and power consumption are highly dependent on process, libraries and optimizations. The table below estimates a typical single processor implementation of the Cortex-R5 processor on mainstream low-power process technology (28 nm HPM) with high-density, standard-performance cell libraries and 32KB instruction cache and 32KB data cache.

Cortex-R5 Single Processor 28nm HPM
Maximum clock frequency Above 1.4 GHz
Performance 1.67 / 2.02 / 2.45 DMIPS/MHz*
3.47 CoreMark/MHz**
Total area (Including Core+RAM+Routing) From 0.21 mm2
Efficiency From 62 DMIPS/mW

* The first result abides by all of the 'ground rules' laid out in the Dhrystone documentation, the second permits inlining of functions (not just the permitted C string libraries) while the third additionally permits simultaneous multifile compilation. All are with the original (K&R) v2.1 of Dhrystone.

** CFLAGS ="--endian=little --cpu=Cortex-R5 --fpu=None -Ohs --no_size_constraints"


  • Manual containing technical information.
  • Cortex-R5 Technical Reference Manual

    Technical information for system designers and verification engineers working on Cortex-R5 based systems.

    Read more
  • A program that is running on a desktop.
  • Cortex-R Series Programmer's Guide

    For Software developers working in assembly language, this guide covers programming Cortex-R series devices.

    Get the guide
  • a ulink, a board, a desktop.
  • Development Tools for Cortex-R Series

    DS-5 Development Studio and a range of 3rd party and open source tools support Cortex-R series software development.

    Learn more

Comparing Cortex-R Series Processors

Arm Cortex-R4 Arm Cortex-R5 Arm Cortex-R7 Arm Cortex-R8  Arm Cortex-R52
1.67 / 2.01 / 2.45 DMIPS/MHz*
3.47 CoreMark/MHz**
1.67 / 2.01 / 2.45 DMIPS/MHz*
3.47 CoreMark/MHz***
2.50 / 2.90 / 3.77 DMIPS/MHz*
4.35 CoreMark/MHz****
2.50 / 2.90 / 3.77 DMIPS/MHz*
4.62 CoreMark/MHz****
2.16 DMIPS/MHz
4.35 CoreMarks/MHz
Lockstep configuration Lockstep configuration
Dual-core Asymmetric Multi-Processing (AMP) configuration
Lockstep configuration
Dual-core Asymmetric Multi-Processing (AMP) with QoS configuration
Dual core Symmetric Multi-Processing (SMP) configuration
Lockstep configuration 
Dual, triple or quad-core Asymmetric Multi-Processing (AMP) with QoS configuration
Dual, triple or quad-core Symmetric Multi-Processing (SMP) configuration
Lockstep configuration 
Dual, triple or quad-core Asymmetric Multi-Processing (AMP) with QoS configuration
Dual, triple or quad-core Symmetric Multi-Processing (SMP) configuration

Tightly Coupled Memory (TCM) Tightly Coupled Memory
Low Latency Peripheral Port 
Accelerator Coherency Port
Micro Snoop Control Unit (µSCU)
Tightly Coupled Memory
Low Latency Peripheral Port 
Accelerator Coherency Port
Snoop Control Unit (SCU)
Tightly Coupled Memory
Low Latency Peripheral Port
Accelerator Coherency Port
Snoop Control Unit (SCU)

Tightly Coupled Memory
Low Latency Peripheral Port
Flash Port
8-stage dual issue pipeline with instruction pre-fetch and branch prediction 8-stage dual issue pipeline with instruction pre-fetch and branch prediction 11-stage superscalar pipeline with out-of-order execution and register renaming and advanced dynamic and static branch prediction with instruction loop buffer 11-stage superscalar pipeline with out-of-order execution and register renaming and advanced dynamic and static branch prediction with instruction loop buffer
8-stage dual issue pipeline with instruction pre-fetch and branch prediction
I-Cache and D-Cache I-Cache and D-Cache I-Cache and D-Cache  I-Cache and D-Cache
I-Cache and D-Cache
Hardware divide, SIMD, DSP Hardware divide, SIMD, DSP Hardware divide, SIMD, DSP  Hardware divide, SIMD, DSP
Hardware divide, NEON
IEEE754 Double Precision FPU IEEE754 Double Precision FPU or optimized SP Floating Point Unit IEEE754 Double Precision FPU or optimized SP Floating Point Unit IEEE754 Double Precision FPU or optimized SP Floating Point Unit
IEEE754 Double Precision FPU or optimized SP Floating Point Unit
Memory Protection Unit (MPU) with 8 or 12 memory regions Memory Protection Unit (MPU) with 12 or 16 memory regions Memory Protection Unit (MPU) with 12 or 16 memory regions Memory Protection Unit (MPU) with 12, 16, 20 or 24 memory regions
Stage-1 Memory Protection Unit (MPU) with 0 or 16 memory regions
Stage-2 Memory Protection Unit (MPU) with 0 or 16 memory regions
ECC and Parity protection on L1 memories ECC and Parity protection on L1 memories and AXI bus ports ECC and Parity protection on L1 memories and AXI bus ports.
Error Management with error bank
ECC and Parity protection on L1 memories and AXI bus ports.
Error Management with error bank
ECC and Parity protection on L1 memories and AXI bus ports
Bus interconnect protection 
Vectored Interrupt Controller (VIC) Port or Generic Interrupt Controller (GIC) Vectored Interrupt Controller (VIC) or Generic Interrupt Controller (GIC) Integrated Generic Interrupt Controller (GIC) Integrated Generic Interrupt Controller (GIC)
Integrated Generic Interrupt Controller (GIC), 32-960 interrupts

* The first result abides by all of the 'ground rules' laid out in the Dhrystone documentation, the second permits inlining of functions (not just the permitted C string libraries) while the third additionally permits simultaneous multifile complilation. All are with the original (K&R) v2.1 of Dhrystone.

** CFLAGS ="--cpu cortex-r4 -O3 -Otime --fpu softvfp -Ono_inline -Ono_multifile --fpmode=fast --loop_optimization_level=2"

*** CFLAGS ="--cpu cortex-r5 -O3 -Otime --fpu softvfp -Ono_inline -Ono_multifile --fpmode=fast --loop_optimization_level=2"

**** CFLAGS ="--cpu cortex-r5f -O3 -Otime -Ono_inline -Ono_multifile --fpmode=fast --loop_optimization_level=2"

Cortex-R series processors are all binary compatible, enabling software reuse and a seamless progression from one Cortex-R processor to another as functionality and/or additional processing power is required.

11-stage superscalar pipeline with out-of-order execution and register renaming and advanced dynamic and static branch prediction with instruction loop buffer
Hardware divide, SIMD, DSP

Get Support

Arm Support

Arm training courses and on-site system-design advisory services enable licensees to efficiently integrate the Cortex-R5 processor into their design to realize maximum system performance with lowest risk and fastest time-to-market.

Arm training courses  Arm Design Reviews  Open a support case

Community Blogs

Community Forums

Not answered Trigger a Software Interrupt 0 votes 13 views 0 replies Started 7 hours ago by Aquox Answer this
Suggested answer Modify SP register and PC register in Cortex-M1 using Keil
  • R15 (PC Program Counter)
  • Cortex-M1
  • R13 (SP Stack Pointer)
  • Keil
0 votes 107 views 3 replies Latest 11 hours ago by 42Bastian Schick Answer this
Not answered What is the "Integer divide unit with support for operand-dependent early termination"? 0 votes 45 views 0 replies Started 2 days ago by jing Answer this
Answered Binary Semaphore upset by FIQ
  • Cortex-A
0 votes 871 views 20 replies Latest 4 days ago by 42Bastian Schick Answer this
Not answered Identifying Generic IP Components on an Access Port 0 votes 65 views 0 replies Started 5 days ago by Torsten Robitzki Answer this
Not answered Issue with WatchDog reset De-asserting 0 votes 69 views 0 replies Started 5 days ago by BAB Answer this
Not answered Trigger a Software Interrupt Started 7 hours ago by Aquox 0 replies 13 views
Suggested answer Modify SP register and PC register in Cortex-M1 using Keil Latest 11 hours ago by 42Bastian Schick 3 replies 107 views
Not answered What is the "Integer divide unit with support for operand-dependent early termination"? Started 2 days ago by jing 0 replies 45 views
Answered Binary Semaphore upset by FIQ Latest 4 days ago by 42Bastian Schick 20 replies 871 views
Not answered Identifying Generic IP Components on an Access Port Started 5 days ago by Torsten Robitzki 0 replies 65 views
Not answered Issue with WatchDog reset De-asserting Started 5 days ago by BAB 0 replies 69 views