Arm NN

Software Developer Kit (SDK)

Arm NN is an inference engine for CPUs, GPUs and NPUs. It bridges the gap between existing NN frameworks and the underlying IP. It enables efficient translation of existing neural network frameworks, such as TensorFlow and Caffe, allowing them to run efficiently, without modification, across Arm Cortex-A CPUs, Arm Mali GPUs and Arm Ethos NPUs.

Arm NN is free of charge.

Download Arm NN SDK

About Arm NN SDK

Arm NN SDK is a set of open-source Linux software and tools that enables machine learning workloads on power-efficient devices. It provides a bridge between existing neural network frameworks and power-efficient Cortex-A CPUs, Arm Mali GPUs and Arm Ethos NPUs.

Arm NN SDK utilizes the Compute Library to target programmable cores, such as Cortex-A CPUs and Mali GPUs, as efficiently as possible. Arm NN does not provide support for Cortex-M CPUs.

The latest release supports Caffe, TensorFlow, TensorFlow Lite, and ONNX. Arm NN takes networks from these frameworks, translates them to the internal Arm NN format and then, through the Compute Library, deploys them efficiently on Cortex-A CPUs, and, if present, Mali GPUs such as the Mali-G71 and Mali-G72.

In September 2018, Arm donated Arm NN to the Linaro Machine Intelligence Initiative, where it is now developed fully in open source. To find out more, visit mlplatform.org.

 

 

Neural Network SDK Diagram.
Neural Network Diagram for Android.

Arm NN for Android

Also available is Arm NN for NNAPI, Google’s interface for accelerating neural networks on Android devices, made available in Android O. By default, NNAPI runs neural network workloads on the device’s CPU cores, but also provides a Hardware Abstraction Layer (HAL) that can target other processor types, such as GPUs. Arm NN for Android NNAPI provides this HAL for Mali GPUs. A further release adds support for Arm Ethos-N NPUs. 

Arm support for Android NNAPI gives >4x performance boost.

Learn more

Download Arm NN for Android sources. 

Download here

Arm NN performance relative to other NN frameworks

  • Arm NN open-source collaboration enables optimal third-party implementations
  • Deployed in multiple production devices (>250Mu)

Support for Cortex-M CPUs

Machine learning support for Cortex-M microcontrollers is provided by TensorFlow Lite Micro. Further optimization is available via CMSIS-NN, a collection of efficient neural network kernels developed to maximize the performance and minimize the memory footprint of neural networks on Cortex-M processor cores.

Download CMSIS-NN

Arm NN future roadmap

Future releases of Arm NN will enable support for other machine learning frameworks as inputs, and other forms of processor cores as targets. This includes processor cores and accelerators from Arm’s partners, assuming availability of suitable extensions.

Information on the Machine Learning Platform.

Webinar - Project Trillium: Optimizing ML Performance for any Application

Project Trillium is a suite of Arm IP designed to deliver scalable ML and neural network functionality at any point on the performance curve, from sensors, to mobile, and beyond. 

 

Find out more

Community Forums

Suggested answer Debug from reset vector 0 votes 925 views 4 replies Latest 18 hours ago by Ranjith Answer this
Not answered DesignStart Eval : The number of INTISR in Cortex-M3 0 votes 23 views 0 replies Started yesterday by tomaru Answer this
Answered cortex m7 STR fail 0 votes 145 views 4 replies Latest yesterday by OldFoggy Answer this
Suggested answer How does RTOS use MPU on Cortex-M?
  • Real Time Operating Systems (RTOS)
  • Memory
0 votes 320 views 3 replies Latest yesterday by 42Bastian Schick Answer this
Suggested answer build my own board ? 0 votes 1559 views 6 replies Latest yesterday by 42Bastian Schick Answer this
Answered Invalid Exception Class
  • Cortex-A53
  • AArch64
0 votes 1194 views 2 replies Latest yesterday by Killbox Answer this
Suggested answer Debug from reset vector Latest 18 hours ago by Ranjith 4 replies 925 views
Not answered DesignStart Eval : The number of INTISR in Cortex-M3 Started yesterday by tomaru 0 replies 23 views
Answered cortex m7 STR fail Latest yesterday by OldFoggy 4 replies 145 views
Suggested answer How does RTOS use MPU on Cortex-M? Latest yesterday by 42Bastian Schick 3 replies 320 views
Suggested answer build my own board ? Latest yesterday by 42Bastian Schick 6 replies 1559 views
Answered Invalid Exception Class Latest yesterday by Killbox 2 replies 1194 views