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Preface

This preface introduces the ARM® Mali™ GPU OpenGL ES 3.x Developer Guide.

It contains the following:
• About this book on page 7.
• Feedback on page 9.
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 About this book
This book introduces a number of features from OpenGL ES 3.x and the Android Extension Pack, that
you can use with a Mali™ GPU.

 Intended audience

This book is for software developers who want to create OpenGL ES content for devices with Mali™

GPUs.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This chapter introduces the ARM Mali GPU OpenGL ES 3.x Developer Guide.

Chapter 2 Pixel Local Storage
This chapter describes Pixel Local Storage (PLS).

Chapter 3 ASTC texture compression
This chapter describes Adaptive Scalable Texture Compression (ASTC).

Chapter 4 Compute shaders
This chapter describes compute shaders.

Chapter 5 Geometry shaders
This chapter describes geometry shaders and how they can be used.

Chapter 6 Tessellation
This chapter describes the use of tessellation and some optimization techniques.

Appendix A Android Extension Pack
Android Extension Pack enhances OpenGL ES 3.1 gaming with a number of extensions.

Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for those
terms. The ARM Glossary does not contain terms that are industry standard unless the ARM meaning
differs from the generally accepted meaning.

See the ARM Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

 Preface
 About this book
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<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
ARM glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Additional reading

This book contains information that is specific to this product. See the following documents for other
relevant information.

ARM publications
None

Other publications
• Frisken Gibson, S. F., Constrained Elastic SurfaceNets: Generating Smooth Models from

Binary Segmented Data (1999), Mitsubishi Electric Research Laboratories Inc., 201
Broadway, Cambridge, Massachusetts 02139, USA.

• http://paulbourke.net/geometry/polygonise.
• http://iquilezles.org/www/articles/distfunctions/distfunctions.htm.
• https://open.gl/geometry.
• http://0fps.net/2012/07/12/smooth-voxel-terrain-part-2.
• http://research.microsoft.com/en-us/um/people/cloop/acctog.pdf.
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 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title ARM® Mali™ GPU OpenGL ES 3.x Developer Guide.
• The number ARM 100587_0100_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
 Note 

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Preface
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Chapter 1
Introduction

This chapter introduces the ARM Mali GPU OpenGL ES 3.x Developer Guide.

It contains the following sections:
• 1.1 About OpenGL ES 3.0 on page 1-11.
• 1.2 About OpenGL ES 3.1 on page 1-12.
• 1.3 About the Android Extension Pack on page 1-13.
• 1.4 About OpenGL ES 3.2 on page 1-14.
• 1.5 The Mali™ GPU hardware on page 1-15.
• 1.6 The OpenGL ES graphics pipeline on page 1-17.
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1.1 About OpenGL ES 3.0
OpenGL ES 3.0 is an enhancement to OpenGL ES 2.0 standard.

OpenGL ES 3.0 adds features that are already present in OpenGL 3.x. The additional OpenGL ES 3.0
features include:
• Enhancements to the OpenGL ES rendering pipeline that enable acceleration of advanced visual

effects. These include:
— Occlusion queries.
— Transform feedback.
— Instanced rendering.
— Support for four or more rendering targets.

• High-quality texture compression as a standard feature. This means you can use the same textures on
different platforms.

• A new version of the GLSL ES shading language with full support for integer and 32-bit floating
point operations.

• Enhanced texturing functionality that includes:
— Guaranteed support for floating point textures
— 3D textures.
— Depth textures.
— Vertex textures.
— NPOT textures.
— R/RG textures.
— Immutable textures.
— 2D array textures.
— Swizzles.
— LOD and mip level clamps.
— Seamless cube maps.
— Sampler objects.

• A set of specifically sized texture and render-buffer formats that are guaranteed to be present. This
helps you write portable applications because the variability between implementations is reduced.

 Note 

OpenGL ES 3.0 is backwards compatible with OpenGL ES 2.0.

1 Introduction
1.1 About OpenGL ES 3.0
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1.2 About OpenGL ES 3.1
OpenGL ES 3.1 is an enhancement to the existing OpenGL ES 3.0 standard.

OpenGL ES 3.1 adds features that are already present in OpenGL 4.x. The additional OpenGL ES 3.1
features include:
• Compute shaders.
• Indirect draw calls.
• Memory resources:

— Images.
— Shader Storage Buffer Objects.

• Enhanced texturing:
— Texture gather.
— Multisample textures.
— Stencil textures.

• Separate shader objects.
• Shading language features:

— Arrays of arrays.
— Bitfield operations.
— Location qualifiers.
— Memory read and write.
— Synchronization primitives.

 Note 

OpenGL ES 3.1 is backwards compatible with OpenGL ES 2.0 and 3.0.

1 Introduction
1.2 About OpenGL ES 3.1
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1.3 About the Android Extension Pack
The Android Extension Pack adds additional features to OpenGL ES 3.1.

AEP is a set of OpenGL ES extensions that bring console-class gaming to Android. AEP features
include:
• ASTC (LDR) texture compression format.
• Compute shaders.
• Geometry shaders.
• Tessellation.
• Per-sample interpolation and shading.
• Different blend modes for each color attachment in a frame buffer.
• Guaranteed fragment shader support for shader storage buffers, images, and atomics.

 Note 

• AEP is an optional feature in Android L on platforms that support OpenGL ES 3.1.
• AEP is included in the OpenGL ES 3.2 standard.

1 Introduction
1.3 About the Android Extension Pack
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1.4 About OpenGL ES 3.2
OpenGL ES 3.2 is an enhancement to OpenGL ES 3.1 standard.

OpenGL ES 3.2 adds the Android Extension Pack and additional functionality into the core OpenGL ES
standard. It enables desktop-class graphics in mobile, consumer, and automotive hardware. OpenGL ES
3.2 features include:
• Geometry and tessellation shaders.
• Floating point render targets.
• ASTC texture compression.
• Enhanced blending.
• Advanced texture targets:

— Texture buffers.
— Multisample 2D arrays.
— Cube map arrays.

• Debug and robustness features.
• OpenGL ES 3.2 is backwards compatible with OpenGL ES 2.0, 3.0 and 3.1.

1 Introduction
1.4 About OpenGL ES 3.2
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1.5 The Mali™ GPU hardware
Overview of the Mali GPU Midgard architecture family.

This section contains the following subsections:
• 1.5.1 About the Mali™ GPU families on page 1-15.
• 1.5.2 Midgard architecture hardware on page 1-15.

1.5.1 About the Mali™ GPU families

There are families of Mali GPUs: the Utgard architecture family, and the Midgard architecture family.

The Midgard architecture family
The Midgard architecture family of Mali GPUs have unified shader cores that perform vertex,
fragment, and compute processing.The Midgard architecture Mali GPUs support OpenGL ES
versions 1.1, 2.0, 3.0, 3.1, 3.2, and Vulkan. They also support compute applications with
OpenCL 1.1, 1.2 and Renderscript.

The Utgard architecture family
The Utgard architecture family of Mali GPUs have a vertex processor and one or more fragment
processors. They are used for graphics-only applications with OpenGL ES 1.1 and 2.0.

 Note 

AEP and OpenGL ES 3.0 to 3.2 do not work on Utgard GPUs.

Mali GPUs contain the following common hardware:

Tile-based deferred rendering
Mali GPUs use tile-based deferred rendering.

The Mali GPU divides the framebuffer into tiles and renders it tile by tile. Tile-based rendering
is efficient because values for pixels are computed using on-chip memory. This technique is
ideal for mobile devices because it requires less memory bandwidth and less power than
traditional rendering techniques.

L2 cache controller
One or more L2 cache controllers are included with the Mali GPUs. L2 caches reduce memory
bandwidth usage and power consumption.
An L2 cache is designed to hide the cost of accessing memory. Main memory is typically slower
than the GPU, so the L2 cache can increase performance considerably in some applications.

 Note 

Mali GPUs use L2 cache in place of local memory.

1.5.2 Midgard architecture hardware

This section describes the main components of the Midgard architecture Mali GPUs.

Midgard architecture hardware components

Midgard architecture Mali GPUs are typically used in a mobile or embedded environment to accelerate
2D graphics, 3D graphics, and computations.

The graphics are produced using an OpenGL ES graphics pipeline.

A general-purpose application processor runs the operating system, graphics applications, and the Mali
GPU driver.

1 Introduction
1.5 The Mali™ GPU hardware
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Midgard architecture Mali GPUs are configurable so they can contain different components. The types of
components a Midgard architecture Mali GPU can contain are:
• Shader cores.
• Memory Management Units.
• L2 cache.
• Tiler.

This figure shows a Midgard architecture Mali GPU.

Core Group

Job 
Manager

Tiler

Shader Core 
2

Shader Core 
3

Shader Core 
4

Coherent Level 2 Cache Memory Subsystem

Memory 
Management 

Unit

Shader Core 
1

Figure 1-1  Midgard architecture Mali GPU

Shader cores

The shader cores handle the vertex and fragment processing stages of the graphics pipeline.

The shader cores generate lists of primitives and accelerate the building of data structures, such as
polygon lists and packed vertex data, for fragment processing.

The shader cores also handle the rasterization and fragment processing stages of the graphics pipeline.
They use the data structures and lists of primitives that are generated during vertex processing to produce
the framebuffer result that appears on the screen.

1 Introduction
1.5 The Mali™ GPU hardware
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1.6 The OpenGL ES graphics pipeline
Mali GPUs implement a graphics pipeline supporting the OpenGL ES Application Programming
Interfaces (APIs).

This section contains the following subsections:
• 1.6.1 About the OpenGL ES 3.x pipeline on page 1-17.
• 1.6.2 Primitive assembly on page 1-18.
• 1.6.3 Vertex processing on page 1-18.
• 1.6.4 Rasterization on page 1-19.
• 1.6.5 Fragment processing on page 1-19.
• 1.6.6 Framebuffer operations on page 1-19.

1.6.1 About the OpenGL ES 3.x pipeline

Mali GPUs use data structures and hardware functional blocks to implement the OpenGL ES graphics
pipeline.

In the OpenGL ES 3.x pipeline, the shaders specify the vertex and fragment processing operations. The
application must provide a pair of shaders for each draw call. A vertex shader defines the vertex
processing operations and a fragment shader defines the fragment processing operations. The vertex
shader is executed once per vertex, and the fragment shader is executed once per fragment.

Most of the semantics that are associated with data flowing through the pipeline are abstracted into the
following special variables that are declared in the shaders:
• Generic vertex attributes. Generic vertex attributes replace all vertex data, such as position, normal

vector, texture coordinates, and colors.
• Varying variables. All outputs from the vertex shader, except for position and point size, are

abstracted into varying variables. These variables are interpolated across the primitive and are
available to the fragment shader.

• Uniform variables. All global states that are required by vertex and fragment processing, such as
transformation matrices, light positions, material properties, texture stage constants, and texture
bindings, are abstracted into uniform variables. The application sets the values of these variables.

The following figure shows a simplified OpenGL ES graphics pipeline:

1 Introduction
1.6 The OpenGL ES graphics pipeline
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Vertex processing

Rasterization

Primitive assembly

Framebuffer operations

Fragment processing

Figure 1-2  OpenGL ES graphics pipeline

These stages are present, in different forms, in all versions of the OpenGL ES pipelines.

See the Mali Developer Center website http://www.malideveloper.arm.com for information on example
shaders and sample code.

1.6.2 Primitive assembly

The Mali GPU generates primitives starting from the vertices.

A point contains one vertex, a line contains two vertices, a triangle contains three vertices. Vertices can
be shared between multiple primitives, depending on the draw mode. If geometry or tessellation shaders
are present, then vertices can generate a variable number of primitives.

1.6.3 Vertex processing

The vertex data provided by the application is read one vertex at a time, and the shader core runs a vertex
shader program for each vertex.

This shader program performs:

• Lighting.
• Transforms.
• Viewport transformation.
• Perspective transformation.

The shader core or vertex processor also perform the following processing:

• Assembles vertices of graphics primitives.
• Builds polygon lists.

The output from vertex processing includes:
• The position of the vertex in the output framebuffer.
• Additional data, such as the color of the vertex after lighting calculations.

1 Introduction
1.6 The OpenGL ES graphics pipeline
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1.6.4 Rasterization

Each primitive is divided into fragments so that there is one or more fragments for each pixel covered by
the primitive.

Reads data
Reads the state information, polygon lists, and transformed vertex data. These are processed in a
triangle setup unit to generate coefficients.

Rasterizes polygons
The rasterizer takes the coefficients from the triangle setup unit and applies equations to create
fragments.

Interpolation
The properties at individual vertices are interpolated for each fragment produced by
rasterization.

1.6.5 Fragment processing

Each fragment is assigned a color. This stage usually involves one or more texture look-ups.

The fragment shader defines the fragment processing operations and it is executed once per fragment.

1.6.6 Framebuffer operations

The resulting pixel color is placed into the corresponding location in the framebuffer.

Depending on the render states set for the draw call, the fragment is subjected to a series of tests and
combination operations on route to the location. The tests include:
• Depth testing. Compares the new fragment depth value to the depth value of the fragment that is

previously written to this pixel, and discards it if it fails the depth test comparison.
• Blending. Calculates the resulting pixel color as a combination of the fragment color and the existing

pixel color.
• Scissoring. Restricts rendering to a certain area of the framebuffer, and discards the fragment if it is

located outside that area.

1 Introduction
1.6 The OpenGL ES graphics pipeline
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Chapter 2
Pixel Local Storage

This chapter describes Pixel Local Storage (PLS).

It contains the following sections:
• 2.1 About Pixel Local Storage on page 2-21.
• 2.2 Using Pixel Local Storage on page 2-23.
• 2.3 Examples of Pixel Local Storage on page 2-26.
• 2.4 Related extensions on page 2-31.

ARM 100587_0100_00_en Copyright © 2016 ARM. All rights reserved. 2-20
Non-Confidential



2.1 About Pixel Local Storage
Pixel Local Storage is an extension for OpenGL ES 3.0 or higher that enables you to temporarily store
data in a buffer on the GPU.

This section contains the following subsections:
• 2.1.1 Advantages of PLS on page 2-21.
• 2.1.2 Operation of PLS on page 2-21.
• 2.1.3 PLS rendering pipeline changes on page 2-21.

2.1.1 Advantages of PLS

Pixel Local Storage saves memory bandwidth usage and increases performance.

Mali GPUs render images in 16 pixel by 16 pixel tiles. During processing, the data for this is stored in a
tile buffer in the GPU.

The PLS extension enables your shaders to directly access the tile buffer, so they can store data. By
storing data on the GPU, your shaders can store data and pass data between shaders without accessing
external memory.

Memory bandwidth consumes a lot of power in mobile devices so saving memory bandwidth is very
useful. Mobile systems have bandwidth and power limitations so using too much bandwidth reduces
performance.

With PLS you can chain different graphics techniques together without accessing external memory. This
lets you use techniques from desktop platforms such as deferred rendering that would otherwise not be
possible on mobile devices.

2.1.2 Operation of PLS

Pixel Local Storage provides 16 bytes of storage per pixel that is shared by all the fragments that cover
the pixel. You can utilize this storage any way you want to, and you are not limited to the OpenGL ES
formats. For example, you can store color, normals, depth, and other information.

PLS is stored in the same buffer as color data so writing one overwrites the other. The depth and stencil
data are stored separately so these are not affected.

When the Mali GPU has processed a tile, it discards the PLS data. This means it only writes the tile out
to memory and does not use any additional memory bandwidth.

Each shader uses the PLS memory in turn and declares its own view of the PLS memory. This means that
each shader can interpret the memory in whatever way suits it best. The PLS declaration is independent
of the framebuffer format.

To generate output, each of your shaders builds up information in turn in the PLS. You create a final
custom shader known as a resolve shader, to generate the color information, and then write it to the
framebuffer in the correct format.

2.1.3 PLS rendering pipeline changes

Enabling Pixel Local Storage modifies the graphics rendering pipeline.

This diagram shows how the pipeline is modified by PLS.

2 Pixel Local Storage
2.1 About Pixel Local Storage
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Figure 2-1  OpenGL ES pipeline modified by PLS

There are two paths to the PLS storage:
• One provides read and write access directly from the fragment shader.
• The other lets you write color values through the fixed function blender.

The path through the blender is required by the final stage that writes the color to the buffer. Writing
through the blender converts the data to the native framebuffer format when it is written back to main
memory.

2 Pixel Local Storage
2.1 About Pixel Local Storage

ARM 100587_0100_00_en Copyright © 2016 ARM. All rights reserved. 2-22
Non-Confidential



2.2 Using Pixel Local Storage
This section describes using Pixel Local Storage.

This section contains the following subsections:
• 2.2.1 Enabling Pixel Local Storage on page 2-23.
• 2.2.2 PLS interface qualifiers on page 2-23.
• 2.2.3 PLS layout qualifiers on page 2-23.
• 2.2.4 Caveats to using PLS on page 2-24.
• 2.2.5 Performance considerations when using PLS on page 2-24.
• 2.2.6 Alternatives to PLS on page 2-25.

2.2.1 Enabling Pixel Local Storage

You must enable Pixel Local Storage at the beginning of the frame lifetime and disable it at the end of
the frame lifetime.

PLS is exposed as the extension EXT_shader_pixel_local_storage.

Use GL_SHADER_PIXEL_LOCAL_STORAGE to enable and disable PLS. You must do this on a per-
framebuffer basis.

You must disable PLS before switching framebuffer.

During the framebuffer lifetime, draw calls interact with PLS to build up the final pixel color.

2.2.2 PLS interface qualifiers

The Pixel Local Storage extension includes a set of interface qualifiers that you use to declare the PLS
variables. These describe how PLS variables are accessed between fragment shader invocations.

This table lists the interface qualifiers:

Table 2-1  PLS interface qualifiers

Interface Description

__pixel_localEXT Storage can be read from and written to

__pixel_local_inEXT Storage can be read from

__pixel_local_outEXT Storage can be written to

 Note 

You can use __pixel_local_inEXT and __pixel_local_outEXT to reinterpret data between shader
invocations.

2.2.3 PLS layout qualifiers

The Pixel Local Storage extension includes a set of layout qualifiers that you use to declare the PLS
variables. These describe how data is stored in the buffer.

This table lists the layout qualifiers:

Table 2-2  PLS layout qualifiers

Layout Base type

r32ui uint, this is the default

r11f_g11f_b10f vec3

2 Pixel Local Storage
2.2 Using Pixel Local Storage
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Table 2-2  PLS layout qualifiers (continued)

Layout Base type

r32f float

rg16f vec2

rgb10_a2 vec4

rgba8 vec4

rg16 vec2

rgba8i ivec4

rg16i ivec2

rgb10_a2ui uvec4

rgba8ui uvec4

rg16ui uvec2

This is an example of a PLS interface block:

__pixel_localEXT FragDataLocal
{
  layout(r32f) highp float_value;
  layout(r11f_g11f_b10f) mediump vec3 normal;
  layout(rgb10_a2) highp vec4 color;
  layout(rgba8ui) mediump uvec4 flags;
} pls;

 Note 

The compiler requires that the vector sizes of the individual PLS variables match the number of
components in the layout qualifier.

For more information see the shader pixel local storage extension specification at https://
www.khronos.org.

2.2.4 Caveats to using PLS

Be aware of the following caveats when you are using Pixel Local Storage:

• Clearing PLS is not trivial:
— You can clear to 0, this effectively clears all the PLS variables to 0.
— You can clear individual PLS variables using a full-screen quad.

• Blending is not permitted when you are using PLS. You must either do blending manually, or by first
resolving PLS and then doing alpha blending using the fixed function blender.

• Multi-sampling and multiple render targets are not supported.

2.2.5 Performance considerations when using PLS

Be aware of the following performance considerations when you are using Pixel Local Storage:
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• Avoid GPU pipeline bubbles:
— Reading from PLS can cause GPU pipeline bubbles. You can work around this by scheduling the

PLS read as late as possible in your shader.
— Avoid using short sequential shaders that read from PLS.

• Store depth in a PLS variable:
— Reading depth using shader_framebuffer_fetch_depth_stencil causes bigger GPU pipeline

disruptions than using PLS.
— If you are required to read depth often, storing the depth in PLS produces better performance.
— Storing depth in a PLS variable is useful for techniques such as soft particles and deferred

shading.

2.2.6 Alternatives to PLS

You can get some of the same benefits as Pixel Local Storage using a different technique.

You can get some of the same benefits as PLS by using Multiple Render Targets (MRT) together with the
extension GL_EXT_shader_framebuffer_fetch but there are some things to consider:
• This technique only works if you can ensure that the driver knows not to write the render targets back

to main memory.
• PLS is more explicit than MRT. It is harder for your application to get it wrong, and the driver does

not have to try to work out if a render target is used or not.
• PLS is also more flexible. Your shaders can reinterpret data between shader invocations, and it is not

limited to the OpenGL ES 3.x framebuffer formats.

2 Pixel Local Storage
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2.3 Examples of Pixel Local Storage
Pixel Local Storage enables the use of techniques that might not otherwise be possible on mobile
devices.

This section contains the following subsections:
• 2.3.1 Deferred shading on page 2-26.
• 2.3.2 Additional examples of PLS on page 2-28.

2.3.1 Deferred shading

This section describes an implementation of deferred shading using Pixel Local Storage:

A typical implementation of deferred shading using Pixel Local Storage involves splitting the rendering
into three passes:
1. G-buffer generation pass
2. Shading pass
3. Combination pass

G-buffer generation pass
In this pass, the diffuse color and normal properties for each pixel are calculated.
Instead of writing these to normal color outputs, they are placed into the PLS store.
In this example the fragment shader declares a PLS output block and writes to it:

    __pixel_local_outEXT FragData  
    {  
         layout(rgba8) highp vec4 Color;  
         layout(rg16f) highp vec2 NormalXY;  
         layout(rg16f) highp vec2 NormalZ_LightingB;  
         layout(rg16f) highp vec2 LightingRG;  
    } gbuf;  
      
    void main()  
    {  
         gbuf.Color = calcDiffuseColor();  
         vec3 normal = calcNormal();  
         gbuf.NormalXY = normal.xy;  
         gbuf.NormalZ_LightingB.x = normal.z;  
    } 

 Note 

Deferred shading is easier with PLS than MRT, because you do not have to explicitly allocate
the g-buffer targets.

Figure 2-2  G-buffer generation pass
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Shading pass
In the shading pass, the properties are read from the PLS store and lighting values are calculated
based on them. The calculated values are accumulated in the PLS:

__pixel_localEXT FragData  
{  
     layout(rgba8) highp vec4 Color;  
     layout(rg16f) highp vec2 NormalXY;  
     layout(rg16f) highp vec2 NormalZ_LightingB;  
     layout(rg16f) highp vec2 LightingRG;  
} gbuf;  
  
void main()  
{  
     vec3 lighting = calclighting(gbuf.NormalXY.x,  
                                  gbuf.NormalXY.y,  
                                  gbuf.NormalZ_LightingB.x);  
     gbuf.LightingRG += lighting.xy;  
     gbuf.NormalZ_LightingB.y += lighting.z;  
}

Figure 2-3  Shading pass
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Combination pass
The values in the PLS store are used to calculate the final value of the pixel:

    __pixel_local_inEXT FragData  
    {  
         layout(rgba8) highp vec4 Color;  
         layout(rg16f) highp vec2 NormalXY;  
         layout(rg16f) highp vec2 NormalZ_LightingB;  
         layout(rg16f) highp vec2 LightingRG;  
    } gbuf;  
      
    out highp vec4 fragColor;  
      
    void main()  
    {  
         fragColor = resolve(gbuf.Color,  
                             gbuf.LightingRG.x,  
                             gbuf.LightingRG.y  
                             gbuf.NormalZ_LightingB.y);  
    }  

Figure 2-4  Combination pass

2.3.2 Additional examples of PLS

This section shows some examples of the output of different techniques that use Pixel Local Storage.

The following image shows order independent transparency generated using PLS.
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Figure 2-5  Order independent transparency example

The following image is an example of deferred shading using PLS.

Figure 2-6  Deferred shading example
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The following image shows translucent geometry generated using PLS.

Figure 2-7  Translucent geometry example

For more information, see: https://community.arm.com/groups/arm-mali-graphics/blog/2015/04/17/pixel-
local-storage.
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2.4 Related extensions
Extensions enable your shaders to read from the framebuffer, framebuffer depth, and stencil values.

GL_ARM_shader_framebuffer_fetch
This extension enables your shader to read the existing framebuffer value.

To enable this extension, you must add the following code to the beginning of your fragment
shader.

#extension GL_ARM_shader_framebuffer_fetch : enable

Table 2-3  Variable for GL_ARM_shader_framebuffer_fetch extension.

Variable Type Description

gl_LastFragColorARM vec4 Reads the existing framebuffer color

GL_ARM_shader_framebuffer_fetch_depth_stencil
This extension enables your shader to read the existing framebuffer depth, and stencil values.

To enable this extension, you must add the following code to the beginning of your fragment
shader.

#extension GL_ARM_shader_framebuffer_fetch_depth_stencil : enable

Table 2-4  Variables for GL_ARM_shader_framebuffer_fetch_depth_stencil extension.

Variable Type Description Notes

gl_LastFragDepthARM float Reads the existing framebuffer depth value Value is in window coordinate space

gl_LastFragStencilARM int Reads the existing framebuffer stencil value -
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Chapter 3
ASTC texture compression

This chapter describes Adaptive Scalable Texture Compression (ASTC).

It contains the following sections:
• 3.1 About textures on page 3-33.
• 3.2 Texture requirements on page 3-34.
• 3.3 Limitations of existing texture compression formats on page 3-35.
• 3.4 ASTC features and quality on page 3-36.
• 3.5 2D texture compression on page 3-37.
• 3.6 3D texture compression on page 3-39.
• 3.7 ASTC types and extensions on page 3-40.
• 3.8 The astcenc application on page 3-41.
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3.1 About textures
Textures describe the surface properties of objects.

In 3D graphics, the geometry describes the shape and location of objects. Shaders use textures to give
flat geometry the appearance of surface detail.

Shaders can color the surfaces of the object as well as add lighting, surface detail, reflectivity, and other
properties. The textures used can be large, often several megabytes each. These have to be read every
time the shaders run.

In a mobile device, bandwidth uses a lot of power so reducing it is important for both performance and
battery life. Using texture compression saves memory bandwidth.
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3.2 Texture requirements
There are many different uses for textures and these have different requirements.

Some types of textures require different numbers of color components:

• Reflectance textures:
— Diffuse color requires three color components.
— Diffuse color with alpha requires four color components.

• Gloss maps require one color component.
• Height maps require one color component.
• Normal maps:

— Require three color components.
— You can use a two component map and compute the third component in a shader.

Different uses of textures also have different requirements for quality:

• Reflectance textures only ever have a value between 0 and 1 so they can use Low Dynamic Range
(LDR) textures.

• Diffuse map textures tend to require high-resolution textures.
• Lighting textures can be highly variable so these require floating-point or High Dynamic Range

(HDR) textures.
• Lightmaps and environment maps typically require low-resolution textures.
• Gloss maps require high-quality textures.
• Normal maps require high-quality textures.
• User Interfaces require very high-quality textures.

3D textures are possible but are not used very often:
• They are likely to use a large amount of memory.
• There are very few compression formats available.
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3.3 Limitations of existing texture compression formats
There were other texture compression formats available before ASTC.

The other texture compression formats have a number of limitations:
• Most texture formats only support a relatively small number of texturing requirements and quality

levels.
• There is not much support for one or two channel images.
• There are not many options for trading off size against quality.
• None of the compression formats are cross platform so you must use different formats on different

platforms.
• Some texture formats are proprietary so you can only use these on devices from particular vendors.
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3.4 ASTC features and quality
Adaptive Scalable Texture Compression is a technology developed by ARM and AMD that has been
adopted as an official extension to both the Open GL and OpenGL ES graphics APIs. ASTC produces
high quality compressed textures at low bit rates and in many different types of image format
configurations.

ASTC has the following features:
• ASTC is an OpenGL and OpenGL ES approved extension.
• Supports a large number of formats.
• ASTC is flexible, featuring bit rates from eight bits per pixel (bpp) down to less than one bpp. This

enables you to fine-tune the tradeoff of space against quality.
• Supports from one to four color channels, together with modes for uncorrelated channels for use in

mask textures and normal maps.
• Supports both LDR and HDR images.
• Supports both 2D and 3D images.
• ASTC is not proprietary, you can use ASTC on any platform that supports it.
• For the first time it is possible to use 3D textures to store, for example, discrete 3D object info.

Even with all this flexibility, quality is better than existing texture compression formats for LDR images,
and is comparable to other formats for HDR.

All of these features are interoperable. You can choose any combination that suits your requirements.

The variety of block sizes gives you a lot of choices in how to compress a texture. For example, if an
object is far from camera you can use a higher compression ratio because the visual quality is not
important.

Alternatively, if the object is closer to camera the image quality is more important. You can use a lower
compression ratio to produce better quality textures.
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3.5 2D texture compression
ASTC supports a wide range of formats and compression ratios for 2D texture compression.

ASTC compresses images in blocks of 128-bits. Each 128-bit block holds data for a number of pixels at
different numbers of bits per pixel.

ASTC supports the following 2D formats:

Table 3-1  Bitrates of raw format images

Raw input format Raw input bits per pixel

HDR RGB+A 64

HDR RGBA 64

HDR RGB 48

HDR XY+Z 32

HDR X+Y 32

RGB+A 32

RGBA 32

XY+Z 24

RGB 24

HDR L 16

X+Y 16

LA 16

L 8

You can choose between a range of compression ratios and quality levels for 2D textures:

Table 3-2  2D compression bit rates

Block size Bits per pixel

4 x 4 8.0

5 x 4 6.4

5 x 5 5.12

6 x 5 4.27

6 x 6 3.56

8 x 5 3.2

8 x 6 2.67

10 x 5 2.56

10 x 6 2.13

8 x 8 2.0

10 x 8 1.6

10 x 10 1.28

12 x 10 1.07

12 x 12 0.89
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For RGBA, 8 bit per channel textures, the different block sizes give you these compression ratios:

Table 3-3  Compression ratios for RGBA, 8 bit per channel textures

Block size Compression ratio

4 x 4 4.00

5 x 4 5.00

5 x 5 6.25

6 x 5 7.50

6 x 6 9.00

8 x 5 10.01

8 x 6 12.01

10 x 5 12.53

10 x 6 15.00

8 x 8 16.00

10 x 8 20.08

10 x 10 24.97

12 x 10 30.12

12 x 12 35.93
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3.6 3D texture compression
ASTC supports a wide range of formats and compression ratios for 3D texture compression.

You can store a 256x256x256 arbitrary vector field in less than 300KB.

There are many possible uses for 3D textures, such as:
• Smoke.
• Light fields.
• Particle flow.
• Deep surface texture.
• Scene parameters.

ASTC compresses images in blocks of 128-bits. Each 128-bit block holds data for a number of pixels at
different numbers of bits per pixel.

You can choose between a range of compression ratios and quality levels for 3D textures:

Table 3-4  3D compression bit rates

Block size Bits per pixel

3 x 3 x3 4.74

4 x 3 x 3 3.56

4 x 4 x 3 2.67

4 x 4 x 4 2.0

5 x 4 x 4 1.6

5 x 5 x 4 1.28

5 x 5 x 5 1.02

6 x 5 x 5 0.85

6 x 6 x 5 0.71

6 x 6 x 6 0.59
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3.7 ASTC types and extensions
There are a number of ASTC extensions supported in OpenGL ES:

GL_KHR_texture_compression_astc_ldr
This supports 2D textures with LDR. Hardware vendors can decide to implement just the LDR
specification.

GL_KHR_texture_compression_astc_hdr
This extends the LDR profile to add HDR support.

GL_OES_texture_compression_astc
This adds support for compressed 3D textures. This is optional in some GPUs.

 Note 

The ASTC Full Profile is defined by these three extensions combined.

The Mali GPUs, including the Mali-T620, Mali-T720, Mali-T760, Mali-T820, Mali-T830, Mali-T860,
and Mali-T880 support ASTC full profile.
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3.8 The astcenc application
ARM provides an evaluation application called astcenc that can compress textures with ASTC.

This section contains the following subsections:
• 3.8.1 astcenc basic options on page 3-41.
• 3.8.2 Preset compression options on page 3-41.
• 3.8.3 Compressing normal maps on page 3-42.
• 3.8.4 Other color formats and texture types on page 3-42.
• 3.8.5 Advanced compression options on page 3-43.

3.8.1 astcenc basic options

The astcenc application runs from the command line and provides a number of basic options.

Compressing a texture

The astcenc application provides an option to compress a texture.

To compress a texture, use the astcenc command with the -c option:

astcenc -c <input.file> <output.file> <rate> [options]

• The -c option instructs the application to compress input.file and output the result as the texture
output.file.

• rate indicates the block size. You can input this in the following ways:
— A block size such as 5x4 or 3x3x3.
— A target bpp in the range 8.0 to 0.8 for 2D textures.
— A target bpp in the range 8.0 to 0.6 for 3D textures.

Decompressing a texture

The astcenc application provides an option to decompress a texture.

To decompress an ASTC texture use the astcenc command with the -d option:

astcenc -d <input.file> <output.file> [options]

The -d option instructs the application to decompress the texture input.file and output the result as
output.file.

Testing texture compression

The astcenc application provides an option to test the compression of a texture.

To test the compression of a texture use the astcenc command with the -t option:

astcenc -t <input.file> <output.file> [options]

The -t option instructs the application to compress input.file to a texture, then decompress it to the
image file output.file. You can use this option to test different compression options to see how they
work.

3.8.2 Preset compression options

The astcenc application includes a number of preset quality options that enable you to trade off quality
against compression speed.

astcenc includes the following preset quality options:

• -veryfast.
• -fast.
• -medium.
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• -thorough.
• -exhaustive.

You can use the quality presets to give a high-level hint to the compressor, the individual quality factors
are derived from this.

 Note 

• The veryfast option is almost instantaneous, but only produces good results for a small subset of
input images.

• The exhaustive option takes a long time, but often produces results that have very little visible
difference to files compressed in thorough mode.

3.8.3 Compressing normal maps

The astcenc application includes options to compress normal maps, or maps used as a data source.

It has traditionally been a problem to compress normal maps, or maps used as a data source rather than
color information. astcenc includes options for compressing normal maps that implement a number of
additional settings and add weight to angular errors that are more important in normal maps.

The options are:

-normal psnr
This is for compressing two channel normal maps.

-normal percep
This is for compressing two channel normal maps. This option has slightly different weightings
that are designed to provide a better perceptual result.

-mask
This option tells the compressor that the input texture has entirely unrelated content in each
channel. Errors in one channel must not affect other channels.

 Note 

You must only specify one of these options.

3.8.4 Other color formats and texture types

The astcenc application supports sRGB, HDR and 3D textures.

sRGB color space conversion

The astcenc application supports non-linear sRGB color space conversion both at compression and
decompression time.

To keep images in sRGB color space until the point that they are used, compress them normally then use
the sRGB texture formats when you load them. There is an sRGB equivalent of every RGBA format.

As an alternative to using sRGB texture types at runtime, there is a command-line argument that instructs
the compressor to transform textures into linear RGBA prior to compression.

The -srgb argument converts the color space and compresses the texture into linear space. You can load
the texture with the usual RGBA texture formats.

HDR image formats

The astcenc application supports HDR image formats.

Using HDR image formats does not require any additional effort in code.

The encoder does not use HDR encoding by default when it is encoding an image in an HDR format. To
use an HDR encoding use one of the following arguments:
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-forcehdr_rgb
The encoder uses an HDR or LDR as appropriate on a per-block basis.

The alpha channel, if present is always encoded as LDR.

-forcehdr_rgba
The encoder uses an HDR or LDR as appropriate on a per-block basis.

There are also simpler versions of these commands that include alterations to the evaluation of block
suitability better suited to HDR images:

• -hdr.
• -hdra.

The following commands are also similar but check for logarithmic error. Images encoded with these
settings typically produce better results from a mathematical perspective but are not as good for
perceptual artifacts:
• -hdr_log.
• -hdra_log.

3D textures

The astcenc application supports 3D textures at a block level.

There are not many widely used 3D image formats to accept as input, so encoding a 3D texture requires a
special syntax:

-array <size>

This requires a series of 2D files. You provide the input filename and the number of files.

The files must be called FileN where N is a number incrementing from 0 to size-1. For example, if the
input file is slice.png with the argument array 4, astcenc attempts to load files named slice0.png,
slice1.png, slice2.png, and slice3.png. The presence of multiple texture layers is taken as an
instruction to use a 3D block encoding for the requested rate.

3.8.5 Advanced compression options

The astcenc application includes a number of advanced options for controlling image compression.

About advanced compression options

The ASTC compression algorithm works by comparing the block being compressed to algorithmically
generated blocks. This can take a long time because there are a very large number of possible blocks.

The astcenc application uses a form of guided trial and error to find the best block match. The
compression settings define how many blocks are compared and how close to, or far from, a match the
block can be.

There are many available options to set various compression quality factors including:

• The number and scope of block partition patterns to attempt.
• Various signal-to-noise cut-off levels.
• The maximum iterations of different bounding color tests.

There are two main categories of argument:
• Quality metrics.
• Search parameters.

Quality settings

To ensure high quality, adjust the quality metrics. That is, alter the factors used by the compressor to
judge the quality of a block.

The quality metrics are:
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Channel weighting
The simplest quality factors are channel weighting. You can adjust the channel weighting using
the command-line argument:

-ch <red-weight> <green-weight> <blue-weight> <alpha-weight>

The channel weighting defines the weighting values for errors. For example, the following
command defines the error on the green channel as four times more sensitive than errors on the
other channels:

-ch 1 4 1 1

The following example is similar but the total error is lower so the result is produced earlier:

-ch 0.25 1 0.25 0.25

 Note 

You can combine channel weighting with the swizzling argument -esw. For example, for
textures without alpha, the swizzle -esw rgb1 saturates the alpha channel and does not count it
in noise computations.

Block weighting
Pixels in blocks can have relatively low errors between them, but if the errors on pixels at the
edge of adjacent blocks are in different directions the blocks can be visible.
You can control the errors between adjacent blocks with block weighting. For example:

-b <weight>

 Note 

• Block weighting can reduce the appearance of blocky images but can increase the overall
noise level.

• Block smoothing between blocks can be very useful for normal maps.

Search parameters

The astcenc application uses trial and error to find the best block match. The search parameters define
how many blocks are compared, and how good a match the block must be.

The search parameters are:

plimit
The maximum number of partitions tested for each block.

dblimit
This is the maximum Perceptual Signal to Noise Ratio (PSNR) for a block. If a block exceeds
this ratio, the algorithm uses it.

 Note 

This might not be reached if other limits from the settings are hit first.

oplimit
This compares the errors between one and two partitions. If the errors are greater, three or four
partition blocks are not tested.

mincorrel
This sets the similarity of colors that the algorithm tries to fit on a single color plane. The lower
the value, the wider the range of colors possible in a single partition. The block is not tested with
higher numbers of partitions.
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bmc
This is the maximum number of block modes to attempt. The block mode defines how the
individual color values are precision weighted using different binary modes for each partition.

maxiters
The maximum number of refining iterations to colors and weights for any specific partition
attempt.

You can set these values individually to extend searching in specific directions. For example:
• If your texture has a lot of subtle detail, use a high oplimit to ensure subtle color variations do not

get missed.
• If your texture has busy randomized patterns, set a higher plimit to search more partitions for a good

match.

This table shows the settings used for the quality presets:

Table 3-5  Preset quality settings

Preset plimit dblimit oplimit mincorrel bmc maxiters

veryfast 2 18.68 1.0 0.5 25 1

fast 4 28.68 1.0 0.5 50 1

medium 25 35.68 1.2 0.75 75 2

thorough 100 42.68 2.5 0.95 95 4

exhaustive 1024 999 1000.0 0.99 100 4
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Chapter 4
Compute shaders

This chapter describes compute shaders.

It contains the following sections:
• 4.1 About compute shaders on page 4-47.
• 4.2 Differences between compute shaders, vertex and fragment shaders on page 4-48.
• 4.3 Work groups on page 4-49.
• 4.4 Compute shaders example on page 4-50.
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4.1 About compute shaders
Compute shaders enable you to implement complex algorithms and make use of GPU parallel
programming.

Compute shaders enable you to use GPU compute in the same OpenGL ES API and shading language
you use for graphics rendering.

You are not required to learn another API to use GPU compute. The compute shader is another type of
shader in addition to the existing vertex and fragment shaders.
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4.2 Differences between compute shaders, vertex and fragment shaders
There are several differences between compute shaders, vertex and fragment shaders.

This section contains the following subsections:
• 4.2.1 Compute shaders features on page 4-48.
• 4.2.2 Vertex and fragment shaders features on page 4-48.

4.2.1 Compute shaders features

Compute shaders are general purpose and are less restricted in their operation compared to vertex and
fragment shaders.

Compute shaders include the following features:
• Compute shader threads correspond to iterations of a nested loop, rather than to graphics constructs

like pixels or vertices.
• Compute shaders are not part of the graphics pipeline, they have a dedicated single stage pipeline that

executes independently of the rest of the pipeline. You are not required to think about the pipeline
stages, as you are with vertex and fragment shaders.

• Compute shaders are based on the existing OpenGL Shading Language (GLSL) syntax. This makes it
easy for OpenGL ES developers to learn how to write compute shaders.

• Compute shaders are not restricted by the inputs and outputs of specific pipeline stages. They have
direct random access to memory and can read and write arbitrary data that is stored in memory
buffers or texture images.

• Compute shaders can write to Shader Storage Buffer Objects (SSBO). SSBOs provide a flexible input
and output option and enable you to exchange data between pipeline stages. A typical use case for
compute shaders it to create data that is used by the graphics pipeline.

• Explicit parallelism provides you with full control over how many threads are created.

You can consider compute shaders as a lightweight alternative to OpenCL. They are easier to use and
integrate with the rest of OpenGL ES.

4.2.2 Vertex and fragment shaders features

Vertex and fragment shaders can perform computations but this ability is limited because they are
designed for specific purposes.

The graphics pipeline is flexible but it places some restrictions on vertex and fragment shaders:
• Vertex and fragment shaders can read data from arbitrary locations, but can only write to specific

memory locations and data types:
— A fragment shader can only write to one specific pixel in a texture.
— A vertex shader can only write to vertex slot in the transform feedback.

• Vertex and fragment shaders can only read or write in specific pipeline stages. You must consider this
when developing them.

• Parallelism is implied:
— The GPU and driver controls the parallelism.
— The driver parallelizes the workload, you have no control over how this happens.

• Threads are independent:
— There is no sharing of data.
— There is no synchronization between threads.
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4.3 Work groups
Compute shader threads are arranged into work groups.

A single work group consists of multiple threads that you define in the shader code.

Work groups support up to 128 threads, but GPUs can optionally support more. You can query this with
the appropriate glGetIntegerv() function calls.

You can arrange work groups in one to three dimensions. The different dimensions are useful because
you can use them for different types of computations, for example:
• 1D for audio processing.
• 2D for image processing.
• 3D for volumetric processing.

Work groups are independent of each other.

You can synchronize and share data between threads if they are in the same work group. This enables
you to avoid using expensive multi-pass techniques. You cannot synchronize execution between threads
in different work groups.

Compute shaders include a set of synchronization primitives. These enable you to control the ordering of
execution and memory accesses by the different threads running in parallel on the GPU. This ensures that
results do not depend on the order that the threads run in.
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4.4 Compute shaders example
A simple example of how to implement compute shaders within your application.

This example calculates a colored circle with a given radius. The radius is a uniform parameter passed by
the application and is updated every frame to animate the radius of the circle. The whole circle is drawn
using points that are stored as vertices within a Vertex Buffer Object (VBO). The VBO is mapped onto an
SSBO without any extra copying in memory, and passed to the compute shader.

The following code is the compute shader code:

#version 310 es

// The uniform parameters that are passed from application for every frame.
uniform float radius;

// Declare the custom data type that represents one point of a circle.
// This is vertex position and color respectively,
// that defines the interleaved data within a
// buffer that is Vertex|Color|Vertex|Color|
struct AttribData
{
    vec4 v;
    vec4 c;
};

// Declare an input/output buffer that stores data.
// This shader only writes data into the buffer.
// std430 is a standard packing layout which is preferred for SSBOs.
// Its binary layout is well defined.
// Bind the buffer to index 0. You must set the buffer binding
// in the range [0..3]. This is the minimum range approved by Khronos.
// Some platforms might support more indices.
layout(std430, binding = 0) buffer destBuffer
{
    AttribData data[];
} outBuffer;

// Declare the group size.
// This is a one-dimensional problem, so prefer a one-dimensional group layout.
layout (local_size_x = 64, local_size_y = 1, local_size_z = 1) in;

// Declare the main program function that is executed once
// glDispatchCompute is called from the application.
void main()
{
    // Read the current global position for this thread
    uint storePos = gl_GlobalInvocationID.x;

    // Calculate the global number of threads (size) for this work dispatch.
    uint gSize = gl_WorkGroupSize.x * gl_NumWorkGroups.x;

    // Calculate an angle for the current thread
    float alpha = 2.0 * 3.14159265359 * (float(storePos) / float(gSize));

    // Calculate the vertex position based on
    // the previously calculated angle and radius.
    // This is provided by the application.
    outBuffer.data[storePos].v = vec4(sin(alpha) * radius, cos(alpha) * radius, 0.0, 1.0);

    // Assign a color for the vertex
    outBuffer.data[storePos].c = vec4(float(storePos) / float(gSize), 0.0, 1.0, 1.0);
}

When you have written the compute shader code, you must make it work in your application. Within the
application, you must create the compute shader. This is just a new type of shader GL_COMPUTE_SHADER.
The other calls related to the initialization remain the same as for vertex and fragment shaders.

The following code creates the compute shader and checks for compilation and linking errors:

// Create the compute program the compute shader is assigned to
gComputeProgram = glCreateProgram();

// Create and compile the compute shader.
GLuint mComputeShader = glCreateShader(GL_COMPUTE_SHADER);
glShaderSource(mComputeShader, 1, computeShaderSrcCode, NULL);
glCompileShader(mComputeShader);
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// Check if there were any issues compiling the shader.
int rvalue;
glGetShaderiv(mComputeShader, GL_COMPILE_STATUS, &rvalue);

if (!rvalue)
{
       glGetShaderInfoLog(mComputeShader, LOG_MAX, &length, log);
       printf("Error: Compiler log:\n%s\n", log);
       return false;
}

// Attach and link the shader against the compute program.
glAttachShader(gComputeProgram, mComputeShader);
glLinkProgram(gComputeProgram);

// Check if there were any issues linking the shader.
glGetProgramiv(gComputeProgram, GL_LINK_STATUS, &rvalue);

if (!rvalue)
{
       glGetProgramInfoLog(gComputeProgram, LOG_MAX, &length, log);
       printf("Error: Linker log:\n%s\n", log);
       return false;
} 

When you have created the compute shader on the GPU, you must set up handlers that are used for
setting up inputs and outputs for the shader. In this case, you must retrieve the radius uniform handle and
set the integer variable gIndexBufferBinding to 0 because the binding is hard-coded with binding =
0. Using this index, you can bind the VBO to the index and write data from within the compute shader to
the VBO:

// Bind the compute program so it can read the radius uniform location.
glUseProgram(gComputeProgram);

// Retrieve the radius uniform location
iLocRadius = glGetUniformLocation(gComputeProgram, "radius");

// See the compute shader: “layout(std140, binding = 0) buffer destBuffer”
gIndexBufferBinding = 0;

Start the compute shader and write data to the VBO. The following code shows how to bind the VBO to
the SSBO and submit a compute job to the GPU:

// Bind the compute program.
glUseProgram(gComputeProgram);

// Set the radius uniform.
glUniform1f(iLocRadius, (float)frameNum);

// Bind the VBO to the SSBO, that is filled in the compute shader.
// gIndexBufferBinding is equal to 0. This is the same as the compute shader binding.
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, gIndexBufferBinding, gVBO);

// Submit a job for the compute shader execution.
// GROUP_SIZE = 64
// NUM_VERTS = 256
// As the result the function is called with the following parameters:
// glDispatchCompute(4, 1, 1)
glDispatchCompute(NUM_VERTS / GROUP_SIZE_WIDTH, 1, 1);

// Unbind the SSBO buffer.
// gIndexBufferBinding is equal to 0. This is the same as the compute shader binding.
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, gIndexBufferBinding, 0);

You pass the number of groups to be executed to the glDispatchCompute() function, not the number of
threads. In this example this is 2 x 2 x 1 groups, giving 4. However, the real number of threads
executed is 4 x [8 x 8] and this results with a total number of 256 threads. The 8 x 8 numbers are
from the compute shader source code where they are hard-coded.

The compute shader jobs are dispatched and the compute shaders update the VBO buffer. When this is
complete, you render the results to the screen.
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All jobs are submitted and executed on the Mali GPU in parallel. You must ensure the compute shaders
jobs are finished before the draw command starts fetching data from the VBO buffer.

 Note 

This is a special property of compute shaders. You do not usually have to consider this in OpenGL ES.

// Call this function before you submit a draw call,
// that uses a dependency buffer, to the GPU
glMemoryBarrier(GL_VERTEX_ATTRIB_ARRAY_BARRIER_BIT);

// Bind the VBO
glBindBuffer( GL_ARRAY_BUFFER, gVBO );

// Bind the vertex and fragment rendering shaders
glUseProgram(gProgram);
glEnableVertexAttribArray(iLocPosition);
glEnableVertexAttribArray(iLocFillColor);

// Draw points from the VBO
glDrawArrays(GL_POINTS, 0, NUM_VERTS);

To present the VBO results on screen, you can use the following vertex and fragment programs.

The following code shows the vertex shader:

attribute vec4 a_v4Position;
attribute vec4 a_v4FillColor;
varying vec4 v_v4FillColor;

void main()
{
      v_v4FillColor = a_v4FillColor;
      gl_Position = a_v4Position;
}

The following code shows the fragment shader:

varying vec4 v_v4FillColor;

void main()
{
      gl_FragColor = v_v4FillColor;
}
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Chapter 5
Geometry shaders

This chapter describes geometry shaders and how they can be used.

It contains the following sections:
• 5.1 About geometry shaders on page 5-54.
• 5.2 A basic geometry shader example on page 5-55.
• 5.3 Isosurfaces on page 5-56.
• 5.4 Implementing surface nets on the GPU on page 5-58.
• 5.5 An example use for geometry shaders on page 5-60.

ARM 100587_0100_00_en Copyright © 2016 ARM. All rights reserved. 5-53
Non-Confidential



5.1 About geometry shaders
Geometry shaders add an optional programmable stage in the graphics pipeline that enables the creation
of new geometry from the output of the vertex shader.

The ability to create geometry shaders is included in the Android Extension Pack (AEP). Geometry
shaders are typically associated with OpenGL on desktops, but with the AEP you can use them on
Android devices with a Mali GPU.

The following figure shows the position of geometry shaders in the graphics pipeline.

Vertex 
shader

Geometry 
shader

Fragment 
shader

Figure 5-1  Geometry shader pipeline position

Geometry shaders use a function that operates on input primitives. Geometry shaders produce geometry
in the shape that the function describes. Altering the function produces different results. Expanding
geometry using a geometry shader can reduce bandwidth requirements because the bandwidth required
for memory reads is reduced compared to traditional methods.
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5.2 A basic geometry shader example
A geometry shader example takes N points and produces an output from them.

The following code shows an example draw call that performs this action.

layout(points) in;
in vec4 vs_position[];
void main()
{
    vec4 position = vs_position[0];
    gl_Position = position - vec4(0.05, 0.0, 0.0);
    EmitVertex();
    gl_Position = position + vec4(0.05, 0.0, 0.0);
    EmitVertex();
    gl_Position = position + vec4(0.0, 0.05, 0.0);
    EmitVertex();
    EndPrimitive();
}

The result from a geometry shader is stored in texture memory, this makes it very compact.

Related information
https://open.gl/geometry.
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5.3 Isosurfaces
A geometry shader creates an isosurface using a chosen function applied to input vertex data. The input
function for a specific use case creates a surface where the function has a chosen value.

An example use of an isosurface from a geometry shader is in the automated creation of natural looking
terrain. Using appropriate combinations of functions to create the isosurface defines the real-time
generated terrain that is produced.

This section contains the following subsections:
• 5.3.1 How to visualize the creation of an isosurface on page 5-56.
• 5.3.2 Surface nets on page 5-56.

5.3.1 How to visualize the creation of an isosurface

To understand how an effective isosurface is made from a function, it is helpful to start with a simple 2D
example and then extrapolate the same ideas to a 3D example.

Several methods of visualizing isosurfaces exist, these include:
• Ray tracing.
• Generation of a polygonal mesh.

5.3.2 Surface nets

One well known method that creates a polygonal mesh is called marching cubes. However, using an
alternative method called surface nets can produce a similar result with less geometry. This reduction in
geometry reduces the required bandwidth. Surface nets are an effective method for Mali GPUs.

Basic 2D surface net approximation

To start to understand surface nets start with a basic 2D surface net approximation.

A basic surface net creation method in 2D starts with the function overlaid on a grid. The function is
negative one side of the surface, and positive the other side of the surface. Check the four corners of each
square in the grid to see if the function is positive or negative. If all corners have the same sign, then the
cell is either completely inside or outside the surface. If there is a sign change between two corners, then
the function intersects the edge between them.

The following figure shows a simple 2D isosurface.

Figure 5-2  A simple 2D isosurface

The red area represents the coordinates with a negative function value. The line between the red area and
the white area is the isosurface.

To create a basic representation of the surface, place a vertex in the center of each square with an
intersected edge and connect neighboring cells together.

The following figure shows how a basic approximation of the isosurface can be created.
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Figure 5-3  A basic 2D surface net approximation

Related information
Frisken Gibson, S. F., Constrained Elastic SurfaceNets: Generating Smooth Models from Binary
Segmented Data (1999), Mitsubishi Electric Research Laboratories Inc., 201 Broadway, Cambridge,
Massachusetts 02139, USA.
http://0fps.net/2012/07/12/smooth-voxel-terrain-part-2.

Smoothed 2D surface nets

The basic 2D surface net approximation produces a rough result that requires smoothing to make it a
closer fit to the real surface function.

One way of smoothing the result is to apply an iterative relaxation scheme that minimizes a measure of
the global surface roughness. In each pass, this routine perturbs the vertices closer to the surface while
keeping the point inside the original box. Keeping the points inside their original boxes ensures that the
sharp features of the shape are preserved.

This process can be computationally expensive and hard to perform in real time. To reduce the
computation time, take the average of the intersection coordinates for each. The result is a set of points
that can be joined to make a good approximation of the true isosurface.

The following figure shows the intersection average approach.

Figure 5-4  A smoothed approximation of a 2D isosurface

3D surface nets

The 2D surface net concept can be extended to 3D surfaces. Instead of considering squares, consider
cubes. Instead of connecting points with lines, create planes.

The following figure shows an example basic polygon mesh for a 3D isosurface and the result of
smoothing the same mesh.

Figure 5-5  A 3D approximation of an isosurface

Related information
http://paulbourke.net/geometry/polygonise.

5 Geometry shaders
5.3 Isosurfaces

ARM 100587_0100_00_en Copyright © 2016 ARM. All rights reserved. 5-57
Non-Confidential

http://www.merl.com/publications/docs/TR99-24.pdf
http://www.merl.com/publications/docs/TR99-24.pdf
http://www.merl.com/publications/docs/TR99-24.pdf
http://0fps.net/2012/07/12/smooth-voxel-terrain-part-2
http://paulbourke.net/geometry/polygonise


5.4 Implementing surface nets on the GPU
An example GPU implementation of surface nets uses multiple passes to create the isosurface.

1. Sample each corner in the grid. Store the result of the potential function in a 3D texture.
2. Fetch the function value at the eight corners of each cube, one cube at a time. Compute the average of

the intersection points. Store the result in another 3D texture.
3. For every cube that is on the surface, link neighboring cells on the surface together to produce faces.

Passes one and two use compute shaders, and pass three uses a geometry shader.

This section contains the following subsections:
• 5.4.1 Linking points in 3D on page 5-58.
• 5.4.2 Speeding up the geometry shader pass on page 5-58.

5.4.1 Linking points in 3D

Linking the point on a 2D grid is easy to visualize. However, extending this linking concept to 3D can be
harder to visualize.

Each cube on the surface can connect to its six neighbors using 12 possible triangles. A triangle is only
created if both the neighbors being considered are on the surface. Creating triangles in this way across
every cube in the grid creates redundant and overlapping triangles. To avoid duplicating work, only
construct triangles that point backwards from each cube. This means that three edges are considered for
each cube. If one of the three edges exhibits a sign change, the vertices associated with the four cubes
that contain the edge are joined to make a quad.

The following figure shows the possible faces that this method can produce.

Figure 5-6  Possible approximated faces for a 3D surface net

5.4.2 Speeding up the geometry shader pass

You can optimize the geometry shader linking pass so that it runs faster. One way to increase the speed is
to limit the number of cubes that the geometry shader considers.

Only process cubes that are known to be on the surface to reduce the computation required. Use indirect
draw calls and atomic counters to enable the use of this optimization. This work starts during the
previous compute shader stage. If a surface intersects a cube, the compute shader writes the index for the
cube to an index buffer and increments the count atomically. The following code shows an example
implementation of this method.

uint unique = atomicCounterIncrement(outCount);
int index = texel.z * N * N + texel.y * N + texel.x;
outIndices[unique] = uint(index);

In this code, N is the length of the cube sides in the grid.

When the code performs a draw call to the geometry shader, the following buffers can be bound to direct
the geometry shader to operate on the correct cubes:

points_buffer
A buffer containing the grid of points.

index_buffer
The index buffer containing the points that require processing.
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indirect_buffer
An indirect draw call buffer containing the draw call parameters.

The following example geometry shader functions use these buffers.

glBindBuffer(GL_ARRAY_BUFFER, app-&gt;points_buffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, app-&gt;index_buffer);
glBindBuffer(GL_DRAW_INDIRECT_BUFFER, app-&gt;indirect_buffer);
glDrawElementsIndirect(GL_POINTS, GL_UNSIGNED_INT, 0);
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5.5 An example use for geometry shaders
You can use geometry shaders to create a more realistic landscape for a scene. To do this, you must
carefully choose the functions that create the terrain to produce the effect that you want.

This section contains the following subsections:
• 5.5.1 Flat terrain starting point on page 5-60.
• 5.5.2 Oscillating terrain on page 5-60.
• 5.5.3 The effect of adding noise to geometry shader isosurfaces on page 5-61.
• 5.5.4 Flattening the tops of the terrain on page 5-61.
• 5.5.5 How textures and shading can be applied on page 5-61.

5.5.1 Flat terrain starting point

A basic function produces a flat plane. The function is negative below the plane, and positive above it.

The following code shows how this surface can be described.

surface = p.y;

p is the sampling point in 3D space. surface is the function value that is stored in the 3D texture.

The following figure shows an example flat terrain.

Figure 5-7  An example flat terrain isosurface

5.5.2 Oscillating terrain

Terrain is rarely completely flat. If you add an oscillating factor to the geometry shader function, it can
produce more realistic terrain.

The following code shows how an oscillating surface can be defined.

surface = p.y;
surface += 0.1 * sin(p.x * 2.0 * pi) * sin(p.z * 2.0 * pi);

The result looks more realistic than flat terrain, but still does not resemble a real world landscape. This
can be a useful starting point to build on.

The following figure shows an example oscillating terrain.

Figure 5-8  An example oscillating terrain isosurface
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5.5.3 The effect of adding noise to geometry shader isosurfaces

You can add noise to a surface function to make the terrain more realistic. This is a common technique in
procedural modeling.

Noise types that can be added include:
• Simplex.
• Perlin.
• Worley.

The following code shows an example implementation of noise in a geometry shader.

surface = p.y;
surface += 0.1 * sin(p.x * 2.0 * pi) * sin(p.z * 2.0 * pi);
surface += 0.075 * snoise(p * 4.0);

This produces a more realistic effect than the base sine function without noise. However, you can add
further functions to tweak the effect so that it suits the required use case better.

The following figure shows the effect of adding noise to an oscillating isosurface function.

Figure 5-9  The effect of adding noise to an oscillating isosurface function

5.5.4 Flattening the tops of the terrain

You can alter a geometry shader function so that the tops of the resulting hills in the terrain are flat.

The following code shows an example implementation of a flattening alteration.

surface = p.y;
surface += 0.1 * sin(p.x * 2.0 * pi) * sin(p.z * 2.0 * pi);
surface += 0.075 * snoise(p * 4.0);
surface = max(surface, -(p.y - 0.05));

The following figure shows the result of flattening the top of an isosurface function.

Figure 5-10  An example flattened top isosurface function

Related information
http://iquilezles.org/www/articles/distfunctions/distfunctions.htm.

5.5.5 How textures and shading can be applied

The mesh that geometry shaders produce can look unappealing without further processing. Adding
textures and shading can dramatically improve the appearance of geometry.
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You can create code that can add a different texture color for different heights in generated terrain. The
result from this can be very effective. Using height with another value that determines a second
coordinate in a texture can create variations in the texture at a set altitude. This effect looks more varied
and natural than only using height.

One way that you can light the surface is to create code that approximates the gradient of the potential
function in the geometry shader and normalize the result. This method produces a faceted look because
the normal is computer for each face separately. To create a smoother normal, approximate the gradient
at each generated vertex and blend the results between them using the fragment shader.

The following code shows how this can be achieved.

float v000 = texelFetch(inSurface, texel, 0).r;
float v100 = texelFetch(inSurface, texel + ivec3(1, 0, 0), 0).r;
float v010 = texelFetch(inSurface, texel + ivec3(0, 1, 0), 0).r;
float v001 = texelFetch(inSurface, texel + ivec3(0, 0, 1), 0).r;
n = normalize(vec3(v100 - v000,
v010 - v000,
v001 - v000));

The following figure shows an example texture that this method could use.

Figure 5-11  An example terrain texture

Alternatively, you can create code to sample the gradient in the fragment shader. However, this is more
computationally expensive.
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Chapter 6
Tessellation

This chapter describes the use of tessellation and some optimization techniques.

It contains the following sections:
• 6.1 About tessellation on page 6-64.
• 6.2 Common tessellation methods on page 6-66.
• 6.3 Optimizations for tessellation on page 6-67.
• 6.4 Adaptive tessellation on page 6-69.
• 6.5 Aliasing on page 6-71.
• 6.6 Mipmap selection on page 6-72.
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6.1 About tessellation
Tessellation is a graphics technique that creates geometry using your Mali GPU. You can adjust the
amount of new geometry that is created and the shape that the new geometry takes. Tessellation operates
on each vertex individually, and can operate on all the vertices of required primitives.

The ability to use tessellation on an Android device with a Mali GPU is included in the Android
Extension Pack (AEP).

The following figure shows an example of the type of result that tessellation can achieve.

Figure 6-1  An example result of tessellation

Tessellation adds some optional graphics pipeline stages between the vertex shader and fragment shader.

The following figure shows the position of tessellation in the graphics pipeline.

Vertex 
shader Tessellation Fragment 

shader

Figure 6-2  Tessellation pipeline position

The ability to create geometry on the GPU is useful. However, there are some common problems that
you must consider when you use tessellation. These include:

Performance problems
It is possible to create too many triangles that are too small to be seen or be effective. The
computation time that is required to create these triangles can cause performance problems and
is unnecessary.

Patch gaps
Patch gaps occur when:
• Tessellation is not applied when it supposed to be applied.
• The tessellation factors for adjacent edges do not match causing different levels of patch

subdivision.
• The texture filtering that samples the displacement map accesses different texels for

neighboring edges. This can happen if a displacement map texture is wrapped around an
object. Where two edges of the texture meet, texel sampling can sample both sides of the
texture producing unintended results.

Mesh swimming
This is where vertices appear to move around as the camera moves closer to a tessellated object.
This normally happens when the tessellation factors that subdivide the new primitives are
dynamically set using a metric of some kind.
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6.1.1 How tessellation works

Tessellation splits primitives up into a larger number of smaller primitives. It then moves the new
vertices to create more complex geometry than existed originally.

The number of times that primitives are divided, and the way the new vertices are moved are
programmable. A tessellation control shader controls the subdivision of primitives, and a tessellation
evaluation shader controls the movement of the new vertices.

The initial subdivision of an object surface creates a mesh made from quads or triangles.

The following figure shows an example subdivision to create the mesh, and the result of a basic
displacement that creates a ball.

Figure 6-3  An example tessellation process
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6.2 Common tessellation methods
There are several methods that you can use to apply tessellation. You can combine these methods to
create a different overall effect. Which method or methods work best depends on the situation and
outcome you require.

This section contains the following subsections:
• 6.2.1 Displacement mapping on page 6-66.
• 6.2.2 Subdivision surfaces on page 6-66.
• 6.2.3 Smoothed 2D surfaces on page 6-66.
• 6.2.4 Continuous level of detail on page 6-66.

6.2.1 Displacement mapping

Artists create models that have significantly higher triangle counts before they are placed into a game.
When they are put into the game, they must have their triangle counts reduced to meet the available
polygon budget. Displacement mapping stores this information so that it can be restored at runtime.

Displacement mapping stores the details for the high-quality mesh as a texture. Applying an LOD
scheme to this method avoids unnecessary work.

6.2.2 Subdivision surfaces

Subdivision surfaces are used to create smooth surfaces from a less smooth, less detailed input.

This method refines an input polygonal mesh towards the recursive limit of the process being used. This
creates a good approximation of the intended smooth surface.

Related information
http://research.microsoft.com/en-us/um/people/cloop/acctog.pdf.

6.2.3 Smoothed 2D surfaces

GUI elements and text can be described using higher-order geometry such as Bezier curves. Using these
techniques it is possible to produce infinitely smooth curves. You can use tessellation to generate the
geometry to render smooth 2D graphics.

6.2.4 Continuous level of detail

Geometry that covers a small number of pixels requires less tessellation work than geometry that covers
more pixels. One method that uses this property to its advantage is called continuous Level Of Detail
(LOD). This technique avoids creating extra triangles where they are not visible or obvious.

Continuous LOD algorithms provide an apparently continuous transition between detail levels. Discrete
LOD algorithms perform a similar job, but can produce popping when the algorithm switches between
discrete detail levels.

Continuous LOD uses displacement mapping and smoothing.

You can combine discrete LOD and continuous LOD to create the effect you want.
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6.3 Optimizations for tessellation
There are several optimizations that you can apply to tessellation methods to improve performance.

Optimizations discard patches before tessellation is performed, depending on whether a patch is visible
or not.

This section contains the following subsections:
• 6.3.1 Backface culling on page 6-67.
• 6.3.2 Occlusion culling on page 6-67.
• 6.3.3 Frustum culling on page 6-67.

6.3.1 Backface culling

Some of the vertices that tessellation creates are invisible in the final image that is rendered to the screen.
Removing patches before they are sent to the tessellation control shader avoids unnecessary GPU work.

If a patch is not going to be seen, then setting the tessellation factors for the patch to zero culls it. This
stops any additional geometry from being created using that patch.

If there is already a GPU backface culling pass in your graphics pipeline, it is performed after the
tessellation process. A separate pass is required during the tessellation process for it to benefit
tessellation.

The control shader can check whether a patch is visible in the final rendering. To perform this check, you
must program the control shader to examine each vertex of a patch to determine if it is facing away from
the camera. The result for a perfect sphere is that patches with all their vertex normals facing away from
the camera are hidden.

However, checking if a patch faces towards the camera or away can cause some problems. Some patches
that do not face the camera change when they are tessellated so that they reach far enough out from their
original position to be visible. Culling these patches because they face away from the camera means that
when they turn towards the camera, the tessellated effect appears suddenly. This does not produce a good
result. To reduce the impact from this problem, set the culling stage to cull patches with a range of
normal values that still includes patches that face backwards near the edge. You can tune this range to
suit the use case.

6.3.2 Occlusion culling

Occlusion culling tests whether an object is behind another object. If an object is hidden, then occlusion
culling prevents it from being tessellated.

You can implement occlusion culling per-object and per-patch. You can create algorithms that test
whether an object occludes part of itself, which can be useful for more complex geometry.

Some patches that are behind other objects before tessellation can grow to become visible after
tessellation. To reduce the impact from the problem, allow patches that are behind another object by less
than the maximum tessellation displacement to remain, without culling them.

6.3.3 Frustum culling

Frustum culling tests whether an object is in the camera view. If an object is outside the view of the
camera, then tessellation that is performed on it is not visible and can be avoided.

Frustum culling can be performed on the application processor or your Mali GPU. Frustum culling on
the application processor is performed per-object, and frustum culling on your Mali GPU is performed
per-patch.

Use the control shader to check whether a patch is inside the view area. If a patch is on some geometry
that is behind the camera, then tessellating it is unnecessary. To check whether a patch is inside the view
area, the shader must project the patch vertices onto normalized device coordinates and compare the
result with the frustum bounds. If every vertex for a patch is completely off screen, then it can be culled.
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If there is already a GPU frustum culling pass in your graphics pipeline, it is performed after the
tessellation process. A separate pass is required during the tessellation process for it to benefit
tessellation.

You can use frustum culling on the application processor and GPU together to increase performance.

Application processor frustum culling

Frustum culling is normally performed on the application processor. Test each object to see if the
bounding box that defines it is within the camera view. If an object bounding box is outside the view,
then do not tessellate it.

To avoid culling objects that grow into the camera view without culling enabled, ensure that you increase
the size of the bounding box to allow for this.

GPU frustum culling

Frustum culling on your Mali GPU is similar to frustum culling on the application processor. However,
instead of testing each object, test each patch.

Carefully adjust the patch bounding box that the GPU frustum culling uses to avoid popping effects that
can occur when an object moves into the screen space and becomes tessellated.

The AEP PrimitiveBoundingBox extension defines a variable called gl_BoundingBox. This extension
enables frustum culling in the tessellation control shader using the GPU. To use gl_BoundingBox, fill it
with the bounding box info for the patch you are checking.
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6.4 Adaptive tessellation
You can use several adaptive tessellation techniques to prevent unnecessary details being produced that
cannot be seen.

Adaptive tessellation techniques reduce the amount of geometry that tessellation creates, depending on
the position of patches in the camera view.

This section contains the following subsections:
• 6.4.1 Progressive level of detail on page 6-69.
• 6.4.2 Frequency-based tessellation on page 6-70.
• 6.4.3 Geometry adaptive tessellation on page 6-70.
• 6.4.4 Combining adaptive tessellation techniques on page 6-70.

6.4.1 Progressive level of detail

Some patches require less tessellation than others. For example, a patch requires less detail when it is a
long way away from the camera than when it is close to it. Progressive level of detail changes the
tessellation factor to minimize tessellation where it is not noticeable and increases it where it is most
noticeable.

The camera can move so that the amount of tessellation a patch requires changes. This means that your
code must reassess the required tessellation factor regularly.

Some metrics that you can use to determine how much tessellation is required are:
• The distance between each patch and the camera.
• The angle that each patch is being viewed from.
• Screen space that each patch occupies.

Distance-based tessellation

Applying a high level of tessellation works well for objects close to the camera where the most detail is
visible. However, objects that are further away from the camera occupy a smaller area of the screen.
Tessellating these objects to the same level as closer objects creates a large amount of detail that cannot
be seen because it is too small. Distance-based tessellation works to reduce this problem.

To implement this technique, you must create code that sets a maximum tessellation factor for each edge
using the distance from the camera to the patch being processed. Adjust the reduction so that close
objects look highly detailed, but far objects are tessellated less or not tessellated.

View-angle based tessellation

If an object is facing the camera, then normal maps are usually sufficient for most of the side of the
object that faces the camera. However, the edges of the object benefit from tessellation, because they are
seen in profile. Using tessellation along the edges of objects and reducing its use in other places helps
minimize the performance impact of tessellation, and maximize its effectiveness.

Screen-space tessellation

If a patch occupies a large area of the screen, then it requires more tessellation than a patch that occupies
a small area of the screen. Screen-space tessellation adjusts the tessellation factor to use this
characteristic.

Distance-based tessellation and view-angle based tessellation do not stop small patches near the screen
from being tessellated too much. Without screen-space tessellation, these patches produce triangles that
are too small to see.

Create code that analyzes the size of a patch onscreen and sets the tessellation factor using this
information.
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6.4.2 Frequency-based tessellation

Areas that have high frequency details benefit from tessellation more than areas that are smoother.
Frequency-based tessellation adjusts the tessellation factor using a map that indicates the location of high
frequency detail in the initial 3D model.

To use frequency-based tessellation, create a frequency map from the initial 3D model offline, and send it
to the tessellation control shader at runtime. Use this map to set the tessellation factor for each patch.

You can extend this analysis further. If a large area has a similar displacement, then you can displace it
instead of tessellating it.

6.4.3 Geometry adaptive tessellation

Geometry adaptive tessellation examines the curvature of the surface before tessellation is applied. If a
section of terrain or an object is flat, then tessellation is sometimes not as important as it is for strongly
curved areas. For example, a carpet does not usually benefit from tessellation.

However, an object that starts flat but has a highly detailed displacement map might still require a high
tessellation factor.

6.4.4 Combining adaptive tessellation techniques

You can combine different adaptive tessellation techniques to maximize the effect. To do this, create a
weighted average of the result of the different analysis stages and adjust the tessellation value using it.
You can vary the weighting of the average to produce the effect you want.
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6.5 Aliasing
If a displacement map has too much detail for the sample rate of the tessellation mesh, then aliasing can
occur. This reduces the perceived quality of the result. Some alterations can be made to avoid this
problem.

Adding noise can disguise aliasing. The following figure shows the effect of noise on a tessellated sphere
displaying aliasing.

Figure 6-4  An example of aliasing

A technique called importance sampling can reduce aliasing. This technique moves tessellation points so
that they align more closely with the contours of the displacement map.
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6.6 Mipmap selection
If the sampling rate is too low, then sudden variations can appear when the tessellation factor increases.
Adjusting the frequency of the displacement map can improve this problem.

Using different precalculated mipmaps for the displacement map can reduce the effect of this problem.
For example, if a low tessellation factor is being used, the sample rate of the displacement map is low.
Use a lower mipmap level to ensure that high frequency detail in the displacement map does not affect
the result.

Create code that analyzes the frequency of components in the displacement map and the tessellation
level, to enable the selection of the best mipmap level for a specific situation. The result of this analysis
must be passed to the tessellation evaluation shader.
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Appendix A
Android Extension Pack

Android Extension Pack enhances OpenGL ES 3.1 gaming with a number of extensions.

It contains the following sections:
• A.1 Using Android Extension Pack on page Appx-A-74.
• A.2 Android Extension Pack extensions on page Appx-A-75.
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A.1 Using Android Extension Pack
The extensions in AEP are treated as a single package by Android OS. They are exposed in a single
extension.

If the following extension is present, your application can assume all the extensions in the package are
present:

ANDROID_extension_pack_es31a

You can enable the shading language features with the following statement:

#extension

 Note 

AEP requires OpenGL ES 3.1.

In your application manifest, you can declare that your application must be installed only on devices that
support AEP:

<manifest> 
    <uses-feature
        android:name="android.hardware.opengles.aep"
        android:required="true" /> 
    ... 
</manifest>

A Android Extension Pack
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A.2 Android Extension Pack extensions
AEP includes the following features and extensions:

ASTC texture compression
KHR_texture_compression_astc_ldr.

Debugging features
KHR_debug.

Fragment Shaders
Guaranteed support for shader storage buffers, images, and atomics.

Framebuffer operations
EXT_draw_buffers_indexed.
KHR_blend_equation_advanced.

Per-sample processing
OES_sample_shading.
OES_sample_variables.
OES_shader_multisample_interpolation.

Texturing functionality
EXT_texture_cube_map_array.
EXT_texture_sRGB_decode.
EXT_texture_buffer.
EXT_texture_border_clamp.
OES_texture_stencil8.
OES_texture_storage_multisample_2d_array.

Tessellation and Geometry
EXT_tessellation_shader.
EXT_geometry_shader.
EXT_shader_io_blocks.
EXT_primitive_bounding_box.
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